28. Preparation of a New Anion Exchange Resin

Ryohei Oda, Hiroshi Shimizu and Takashi Tanabe (Oda Laboratory)

As well known, dimethylaniline condenses with formaldehyde easily into N-N'-Tetramethyldiaminodiphenylmethane. From this fact man can directly suppose that N, N'-diphenylpiperazine (DP) would condense with formaldehyde and produce a new kind of synthetic resin and this resin would have the character as an anion exchanger. This suggestion was proved to be fact by actual experiment. The results obtained are summerised in the following table :

exp. No.		catalyser	solvent		capacity of the obtained resin				Degree
INO.	(35%) (mole ratio)			hrs.	milli	equiv. HC1/g resin	milliequiv. resin		of swel- ling
1	1:4	Sulfanilic acid	Methanol 20cc	3		(no resinous	product) -	_	
2	1:4	conc HCl 1cc	Methanol 20cc	9		(tar-like resi	in) ·		
3	1 : 10	conc HCl 10cc	Methanol 20cc	3	3.02		0	43	1.47
4	1 : 10	$\begin{array}{c}\mathrm{N}\ \mathrm{H_2SO_4}\\\mathrm{1cc}\end{array}$	Methanol 40cc	3	2.38		0.	63	1.30
5	1 : 10	$conc H_2SO_4$ 2cc	Water 8cc	1.5	2.81		0.	.39	1,48
6	1 : 10	4	*	at 50°6hr boiling 3hrs			0.	.88	1.23
7	1 : 10	— Ac	etic acid 40cc	3	2.38		0.	.50	1.04
8	1 : 10	NH₄Cl 2g		15	3.89		0.	.75	2.50
9	1:10	"		20	4.57		1.	.03	2.07
10	1 : 10	1 g		10	3,89		0,	.88	2.60

In each case 2g DP were used.

The calculated capacity is ca. 8 milliequiv. HCl/g resin.

29. Syntheses of Non-ionic Surface Active Agents. (II)

Koichi Isoda, Hiroshi Kishikawa and Ryohei Oda (Oda Laboratory)

The authors prepared some non-ionic surface active agents of ethanolamides derivatives.

A) Lauric-acid-ethanolamides and their polyethyleneoxide condensation-products

Lauricacid-monoethanolamide (L. M.) or diethanolamide (L. D.), prepared from lauric acid (b. p./25mmHg 195-215°C.) and monoethanolamines or diethanolamines, are condensed with ethyleneoxide (EO) at various proportions using metallic Na as catalyst at 130-140°C.

The results are as follows.

		· · · · · · · · · · · · · · · · · · ·	······	
	·	Material	Na	Absorbed EO mols /OH lmol
L.M.	5.2	L.M. 10g	0.3g	5.2
L.M.	7.7	L.M. 10g	0.3g	7.7
L.D.	2.0	L.D. 5g	0.1g	2.0
L.D.	5.5	L.D. 10g	0.3g	5.5

Ethyleneoxide vapor inlet speed ca. 6 g/hr.

The surface tensions of their aqueous solutions are ca. 30-35 dynes/cm at 5-0.1 % concentrations.

B) Transesterification coconut-oil with triethanolamine

The authors transesterified coconut-oil with triethanolamine using anhyd. Na_2CO_3 as catalyst.

The results are asfollows.

Reaction Temp. 200°C, Reaction Time 3 hrs. anhyd. Na₂CO₃ 0.15 g

	Coconut Oil	Triethanolamine	Hydroxyl value of reaction-products
CT (1)	21g	6g	155
CT (2)	21g	12g	233
CT (3)	19.5g	14g	219

The surface tensions of their aq. dispersions are ca. 32–36 dynes/cm at 5–0.1% concentrations.

30. The Plastic Aftertreatment on the High Tenacity Rayons. (IV)

Narao Saito

(Horio Laboratory)

The present stage of the author's research was briefly reviewed in contrast to a general status of this kind of aftertreatment hithertofore prevalent here in Japan, now that the author's research proved to have made a pronounced step forward.