28. Preparation of a New Anion Exchange Resin

Ryohei Oda, Hiroshi Shimizu and Takashi Tanabe (Oda Laboratory)

As well known, dimethylaniline condenses with formaldehyde easily into N-N'-Tetramethyldiaminodiphenylmethane. From this fact man can directly suppose that N, N'-diphenylpiperazine (DP) would condense with formaldehyde and produce a new kind of synthetic resin and this resin would have the character as an anion exchanger. This suggestion was proved to be fact by actual experiment. The results obtained are summerised in the following table :

exp. No.	$\begin{array}{c} \text{DP:CH}_2\text{O} \\ (35\%) \\ (\text{mole} \\ \text{ratio}) \end{array}$	catalyser	solvent	boiling hrs.	capacity of the obtained resin				Degree
					milli	equiv. HC1/g resin	milliequi res	v. HC1/cc	or swel- ling
1	1:4	Sulfanilic acid	Methanoi 20cc	3		(no resinous	product)	-	
2	1:4	conc HCl lcc	Methanol 20cc	9		(tar-like resi	n)	-	
3	1 : 10	conc HCl 10cc	Methanol 20cc	3	3.02			0 43	1.47
4	1 : 10	$\begin{array}{c} \mathrm{N} \ \mathrm{H_2SO_4} \\ \mathrm{1cc} \end{array}$	Methanol 40cc	3	2.38			0.63	1.30
5	1 : 10	conc H ₂ SO 2cc	4 Water 8cc	1.5	2.81			0.39	1,48
6	1 : 10	4	#	at 50°6hr boiling 3hrs	2.81 s			0.88	1.23
7	1 : 10		Acetic acid 40cc	3	2.38			0.50	1,04
8	1 : 10	NH₄Cl 2g		15	3.89			0.75	2.50
9	1:10	"		20	4.57			1.03	2.07
10	1 : 10	1g		10	3.89			0,88	2.60

In each case 2g DP were used.

The calculated capacity is ca. 8 milliequiv. HCl/g resin.

29. Syntheses of Non-ionic Surface Active Agents. (II)

Koichi Isoda, Hiroshi Kishikawa and Ryohei Oda (Oda Laboratory)

The authors prepared some non-ionic surface active agents of ethanolamides derivatives.

A) Lauric-acid-ethanolamides and their polyethyleneoxide condensation-products