13. On the Molecular Configurations of γ-BHC, δ-and $\varepsilon-1,1,2,3,4,5,6$-Heptachlorocyclohe xane

Toshihiko Oiwa, Ryoichi Yamada and Minoru Ohno
(Takei Laboratory)

It has been already reported that by the present authors (Botyu-Kagaku, 15, $86(1950)^{(*)}$) a new isomer of $1,1,2,3,4,5,6$-heptachlorocyclohexane ($\mathrm{mp} .55-55.5^{\circ}$; $\varepsilon-h e p t a$) was obtained from the chlorination product of $\gamma-\mathrm{BHC}$. At this time $\delta-1$, $1,2,3,4,5,6$-heptachlorocylohexane (mp. 139-140 ; δ-hepta) and ε-hepta were isolated cholorination product of α-BHC with $\gamma-1,1,2,3,4,5,6$-heptachlorocyclohexane (mp . from the $85-86^{\circ} ; \gamma$-hepta) and $0-1,1,2,2,3,4,5,6$-octachlorocyclohexane by partition chromatography.

The molecular configuration of $\alpha-\mathrm{BHC}$ has been already determined as is shown in Table (Botyu-Kagaku, 15, 32(1950)). The possible isomers of $1,1,2,3,4,5,6-$ heptachlorocyclohexane (hepta), which can be derived from this, are II, III, and IV. Since II has been assigned to be the molecular configuration of γ-hepta ${ }^{(*)}$, one of the two forms left is of δ-hepta, and the other of ε-hepta. Now, taking into account the fact that the forms III and IV can be also derived from the forms VII and V of 16 possible isomers of BHC respectively, and the experimental results that ε-hepta is also produced by chlorination of γ-BHC, it must be said that one of the two, V or VII, is the molecular configuration of γ-BHC. As has been pointed out by Y. Morino et al. (Botyu-Kagaku, 15, 181 (1950)), the calcurated values of dipole mements of the two forms are $3.19-2.93 \mathrm{D}$ (V) and 1.88 D (VII), and the experimental value for $\gamma-\mathrm{BHC}$ is 2.80 D . Consequently, V Should be the molecular configuration of $\gamma-\mathrm{BHC}$. The isomers of hepta which can be derived from V are IV, IV', VI and VI', but among them only IV can be obtained by the chlorination of both $\alpha-$ and γ-BHC. Therefore, the conclusion is that IV is ε-hepta and III is δ-hepta.

Table : The Chlorine Configurations**

I. a-BHCp,p,e, e, e, e	V. γ-BHC...............p, p.p,e,e,e	
	IV.'	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots, p, p, p, \overparen{p e}, e, e$
III. δ-hepta $\ldots \ldots \ldots \ldots \ldots$, p, e, ¢pe, e, e	VI.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdot p, \overparen{p e}, \text { р, e, e, e }$
IV. E-hepta $\ldots \ldots \ldots \ldots \ldots \mathrm{p}, \mathrm{p}, \stackrel{\sim}{\text { pe, e, e, e }}$	VI.'	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ p, p, e, $\overbrace{\text { pe, e }}$
	VII.	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

[^0]
[^0]: ** This is shown by simple notaion of p (polar) and e (equatorial) proposed by C. W. Bekett et al. (J. Am. Chem. Soc., 69, 2488 (1947)).

