(b) The band in pure metal was separated into $m+1$ pieces in alloy, and the total number of surface states was either $m+2$ or 2 .
(c) An attempt of introducing the concept of the surface state into the explanation of activated adsorption had already been made by the authors (Ist ann. meet., Chem. Soc. Japan (May 3, 1948)). Considering above results (a) from this standpoint, it may be able to conclude that the change of catalytic activity in alloys depends much upon the various irregularities at the surface, and little upon the "interior" composition.

## 24. Vapor Phase Catalytic Condensation of Furfural and Acetaldehyde

Ken-ichi Fukui and Masakazu Takei

(Kodama Laboratory)
Vapor phase condensation of furfural with acetaldehyde in the presence of several basic catalysts were investigated for the purpose of obtaining furfuracrolein.

Using MgO catalyst under the suitable condition, we could obtain furfuracrolein with $70.5 \%$ yield for theoretical: some experimental results are tabulated in following 3 tables, where the mol ratio of acetaldehyde to furfural is 1.3. The influence of the $\stackrel{?}{m o l}$ ratio in charge was also investigated, and the result indicated that in general the yield was larger when furfural was used in excess.

Tab. 1. Comparison of various catalysts.
$\left(350^{\circ} \mathrm{C}\right.$ : contact time : 24.5 sec )

| Catalyst | $\mathrm{F} \cdot \mathrm{A}$ | R | $\mathrm{A} / \mathrm{F}$ | $\mathrm{k}_{1} / \mathrm{k}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :--- |
| MgO | 0.705 | 0.047 | 1.55 | 2.30 |
| ZnO | 0.553 | 0.033 | 1.29 | 1.23 |
| CaO | 0.360 | 0.259 | 4.14 | 0.57 |
| $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | 0.256 | 0.314 | 1.31 | 0.34 |

F • A : (mol furfuracrolein produced/mol fulfural converted)
R: (g resinous matter produced/g total aldehyde used)
A/F : (mol ratio of acetaldehyde to furfural which was converted to resinous matter)
$k_{1} / k_{2}$ : (ratio of rate constant of desired reaction to that of resin formation reaction)

Tab. 2. Influence of temperature. (Catalyst: MgO ; Contact time: 24.5 sec )

| Temp. ${ }^{\circ} \mathrm{C}$ | $\mathrm{F} \cdot \mathrm{A}$ | R | $\mathrm{A} / \mathrm{F}$ | $\mathrm{k}_{1} / \mathrm{k}_{2}$ |
| :---: | :---: | :---: | :---: | :--- |
| 250 | 0.558 | 0.047 | 1.84 | 1.26 |
| 300 | 0.484 | 0.126 | 1.85 | 0.95 |
| 350 | 0.482 | 0.104 | 1.19 | 0.94 |
| 400 | 0.464 | 0.082 | 0.97 | 0.84 |

Tab. 3. Influence of contact time. (Catalyst: MgO ; Reaction temp.: $350^{\circ} \mathrm{C}$ )

| Time sec. | $\mathrm{F} \cdot \mathrm{A}$ | R | $\mathrm{A} / \mathrm{F}$ | $\mathrm{k}_{1} / \mathrm{k}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :--- |
| 18 | 0.500 | 0.074 | 1.13 | 1.04 |
| 24.5 | 0.482 | 0.104 | 1.19 | 0.94 |
| 39 | 0.400 | 0.137 | 0.77 | 0.68 |

25. Studies on the Rate of Reaction $\mathrm{CH}_{4}$ and $\mathrm{CO}_{2}$. (III)

Kimio Tarama and Syüichi Hayakawa
(Kodoma Laboratory)

The rate of thermal reaction of $\mathrm{CH}_{4}$ and $\mathrm{CO}_{2}$ was investigated at $1147-1236^{\circ} \mathrm{K}$ and $100-300 \mathrm{mmHg}$ in which the pressure change caused by the reaction was determined and the reaction product was analysed with a modified Ambler's apparatus.

In the earlier stage of the reaction, $\mathrm{H}_{2}$ is mainly formed, as the result of a mere decomposition of $\mathrm{CH}_{4}$ and in the laler stage CO is formed due to the reaction of $\mathrm{CO}_{2}$ and $\mathrm{H}_{2}$ which increased rapidly as the reaction proceeds, but the amounts of CO are always smailer than those of $\mathrm{H}_{2}$.

At constant intial pressures of $\mathrm{CH}_{4}$, the amounts of $\mathrm{H}_{2}$ produced are scarecely affected by the initial pressures of $\mathrm{CO}_{2}$, but contrarily those of CO change regularly with the initial $\mathrm{CO}_{2}$ pressure. On the other hand, both amounts of $\mathrm{H}_{2}$ and CO increase conspicuousily with the initial $\mathrm{CH}_{4}$ pressure when the initial pressures of $\mathrm{CO}_{2}$ are constant.

In the earlier stage of the reaction, the rate of pressure change is the 1st order with respect to the partial pressure of $\mathrm{CH}_{4}$, while the rate of CO formation is always approximately 1 st order respecting partial pressure of $\mathrm{CO}_{2}$.

On the basis of the results of these experiments and the previous investigations on the rates of the reaction of $\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$, the following mechanism is proposed:

$$
\begin{aligned}
& \mathrm{CH}_{3} \xrightarrow{\mathrm{k}_{1}} \mathrm{C}(\mathrm{ad})+2 \mathrm{H}_{2} \\
& \mathrm{CO}_{2} \xrightarrow[\mathrm{r}_{2}]{\stackrel{\mathrm{k}_{2}}{\rightleftarrows}} \mathrm{CO}_{2}(\mathrm{ad}) \\
& \mathrm{CO}_{2}(\mathrm{ad})+\mathrm{H}_{2} \xrightarrow{\mathrm{k}_{3}} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}(\mathrm{ad}) \\
& \mathrm{C}(\mathrm{ad})+\mathrm{H}_{2} \mathrm{O}(\mathrm{ad}) \xrightarrow{\mathrm{k}_{4}} \mathrm{CO}+\mathrm{H}_{2}
\end{aligned}
$$

