<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>原子吸収スペクトル法による有機亜鉛化合物の研究 (I)</td>
</tr>
<tr>
<td>作者</td>
<td>塚口、清一；塚田、弘明；谷田、利明</td>
</tr>
<tr>
<td>引用</td>
<td>京都大学化学研究所報告 (1952), 27: 71-71</td>
</tr>
<tr>
<td>発行日</td>
<td>1952-02-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/74349</td>
</tr>
<tr>
<td>タイプ</td>
<td>学術評論 Paper</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
As the gas in the autoclave is released, the following dissociations take place gradually:

\[(\text{NH}_4)_2\text{CS}\rightarrow\text{NH}_4\text{SCN}+2\text{H}_2\text{S}\] \hspace{1cm} (2),

\[2\text{NH}_3+\text{CS}_2\rightarrow\text{NH}_4\text{SCN}+2\text{H}_2\text{S}\] \hspace{1cm} (3),

so that when the pressure in the autoclave is released in a hot state, a decrease in the yield of \(\text{NH}_4\text{SCN}\) will be resulted, according to equation (3). Furthermore, the experimental result that by increasing charging density of \(\text{NH}_3\) and \(\text{CS}_2\) the formation of \(\text{NH}_4\text{SCN}\) is decreased can be explained quantitatively with a rate equation derived on above reaction schema from the standpoint of chemical kinetics.

27. Preparation of Organo-mercurisulfides. (I)

Seishi Takagi, Hiroaki Tsukatani and Hisashi Tanaka

(S. Takagi Laboratory)

Merthiolate, i.e., sodium ethylmercurithiosalicylate, which was synthesized by Kharasch et al. in 1926, has strong sterilizing power. But, the material mercuri-compound of this substance is expensive. The authors, also with the same purpose, prepared the following compounds, using easily obtainable aromatic mercuri-compounds.

\[
\begin{align*}
\text{Dec. p.} & \\
p-\text{Ethylmercaptomercuribenzoic acid.} & 179.5^\circ-181^\circ \\
p-(\beta-\text{Hydroxyethylmercaptomercuri})-\text{benzoic acid.} & 168^\circ-170^\circ \\
p-\text{Carboxyphenymercurithiosalicylic acid.} & 215.5^\circ-216.5^\circ \\
o-(\beta-\text{Hydroxyethylmercaptomercuri})-\text{benzoic acid.} & 142^\circ-144^\circ \\
4-(\beta-\text{Hydroxyethylmercaptomercuri})-2-\text{chloro-benzoic acid.} & 147^\circ-149^\circ \\
3-\text{Chloro-4-carboxyphenylmercuri-thiosoalicylic acid.} & 204.5^\circ-205.5^\circ \\
2-\text{Chloro-tolyl-4-mercurithiosalicylic acid.} & 153.5^\circ-154.5^\circ \\
2-\text{Chloro-tolyl-4-mercuripseudothiourea chlorohydrate.} & 140^\circ-150^\circ
\end{align*}
\]