absolute temperature) was observed and the activation energy of viscous flow E_3 was calculated. The values of E_3 for TCP, DOP and DBP (dibutyl phthalate) were 7.5, 7.0 and 5.8 Kcal., respectively (weight ratio, resin 100: plasticizer 100). TCP gave higher values of η_3 than DOP at lower temperatures, but at an elevated temperature this order was reversed (Table).

Temp. (°C) Plasticizer	16-28	65	100	150
DBP	1.53×10^{10}	4.34×10^{9}	2.08×10^{9}	3.61×10^{8}
DOP	$2.28 imes 10^{10}$	$5.28 imes 10^{9}$	$1.66 imes 10^{9}$	$6.92{ imes}10^{8}$
TCP	$3.55 imes 10^{10}$	5.92×10^{9}	$1.82 imes 10^9$	1.00×10^{8}

Values of η_3 of plasticized polyvinyl chloride at various temperatures (Weight ratio, resin 100: plasticizer 100). (unit of η_3 : poise).

24. Elastic and Thermal Properties of Vinylon AN and Vinylon C

Waichiro Tsuji

(Sakurada Laboratory)

Various mechanical and thermal properties of an ordinary Vinylon, Vinylon C and Vinylon AN, which were synthesized using the same heattreated polyvinyl alcohol fiber as the raw material, were measured.

Vinylon AN and Vinylon C have higher dry and wet tanacity and wet Young's modulus (Table 1).

		Dry			:	Wet	Wet and	
Materials	Denier	Tenacity (g)	Elong. (%)	Young's Modulus (Kg/mm ²)	Tenacity (g)	Elong. (%)	Young's Modulus (Kg/mm ²)	Dry Tenacity Ratio (%)
Ordinary Vinylon	1.90	6.04	25.7	496	3.89	29.5	94	64.4
Vinylon C	2.24	7.56	38.4	-	5.59	44.0		73.9
Vinylon AN	2.26	6.52	31.2	524	5.12	36.9	264	78.5

Table 1. Mechanical properties (room temp., RH 60-70%).

Vinylon AN showed higher degree of elasticity than ordinary Vinylon, and more excellent properties at the elevated temperature (Table 2).

Materials	Temp. (°C)	10	50	100	150	200	220	230
· · · · · · · · · · · · · · · · · · ·	Tenacity (g)	5.26	5.46	4.63	3.00	1.51	0.82	0.75
Ordinary	Elong. (%)	20.8	29.1	37.2	39.7	50.9	36.8	33.1
Vinylon	Young's Modulus (Kg/mm ²)	496	349	288	91	25	20	20
Na sa	Tenacity	6.09	5.60	5.00	3.35	2.14	1.71	1.71
Vinylon AN	Elong.	25.3	28.2	29.3	30.6	26.1	22.3	23.7
	Young's Modulus	524	266	200	42	21	22	20

Table 2. Mechanical properties at the elevated temperature.

25. Studies on the Catalytic Action of Basic Catalysts: Factors Governing the Aldol Condensation of Crotonaldehyde

Haruo Shingu and Tatsuya Okazaki

(Kodama Laboratory)

As R. Kuhn (Ber., 68, 98 (1936)) and S. Hunning (Ann. 569, 198 (1950)) have shown, the aldol condensation of crotonaldehyde takes place only in the simultaneous presence of acid and base, especially when organic nitrogen bases such as piperidine are used as basic catalysts. In reference to this conjugative action of the acid and base catalysts, we have investigated the effect of the natures of acids and bases in combination, the mol ratio of acid to base, the amount and concentration of the catalyst, the reaction temperature, and the solvent upon the reaction.

The extent of the condensation was determined by the removal of the unreacted crotonaldehyde by fractional distillation.

The catalytic activity of the acetate of the cyclic secondary amines such as piperidine or pipecoline (alpha) was found to be by far larger than that of the corresponding tertiary amines, pyridine or picoline (alpha), or that of the ordinary alkali hydroxides.

A molecular proportion of the acid and the base, i.e. acetic acid and piperidine, was satisfactory for the condensation, and an excess of the acid or the base around this mol ratio showed but little effect on the extent of the reaction.

As for the natures of the acid used as catalyst in conjunction with piperidine and pyridine as the basic component it was shown that an acid with a pK value of 3 to 5 is preferable as the acid component of the catalyst. Stronger or weaker acids were found to be quite unsatisfactory in this connection.