<table>
<thead>
<tr>
<th>Title</th>
<th>Activation of Methyl Group by Nitro Group (VI): A Possible Reaction Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsuruta, Teiji; Nagatomi, Rikio; Furukawa, Junji</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University Chemical Laboratory Report (1952), 30: 47-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1952-09-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/74456</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
The rate of oxygen absorption is markedly affected by a variation in alkali concentration. Relative mean ionic activity (a_r) of KOH in methanol was measured electrochemically. The plots of the rate (dV/dt) of oxygen absorption against the relative activity (a_r) as well as its square (a_r^2) indicate that dV/dt is proportional linearly to a_r^2, but not to a_r itself. Since the activity of undissociated alkali is given by a_r^2/C, where C is a constant, it is possible to consider that the rate of oxygen absorption increases in the first order with the activity of undissociated alkali.

(5) If the reaction held in an aqueous methanolic solution (1:7 by volume), the rate was retarded to about one third. This probably due to the decrease in activity of undissociated alkali owing to better dissociation in an aqueous methanolic solution.

13. Activation of Methyl Group by Nitro Group. (VI)

A Possible Reaction Mechanism

Teiji TSURUTA, Rikio NAGATOMI and Junji FURUKAWA

(Oda Laboratory)

From the experimental results stated in the preceding paper, the following rate law is possible.

$$dV/dt = k_1 [\rho\text{-nitrotoluene}] [\text{undissociated alkali}]$$

where dV/dt is the rate of oxygen absorption and k_1 is a rate constant. Considering the property as active methyl group in ρ-nitrotoluene, it is very reasonable to assume the following equilibrium:

$$O_2NC_6H_4CH_3 + KOH (or KOCH_3) \rightleftharpoons [O_2NC_6H_4CH_2] K + H_2O (or HOCH_3)$$

where K_1 is an equilibrium constant. The formation of several oxidation products of methanol suggests a radical type decomposition of the salt, i.e.,

$$[O_2NC_6H_4CH_2] K \rightarrow O_2NC_6H_4CH_3 + K$$

where k_2 is a rate constant.

The nitrobenzyl radicals thus formed probably combine to give rise to dinitrobenzyl, whereas the potassium radical or atom reacts with methanol to form potassium methylate and hydrogen.

$$2 O_2NC_6H_4CH_3 + CH_3OH \rightarrow O_2NC_6H_4CH_2CH_2CH_3HNO_2$$

$$K + CH_3OH \rightarrow CH_3OK + H$$

It is probably this hydrogen that absorbs oxygen, i.e., hydrogen combines with oxygen to form peroxides such as HO_2 and H_2O_2 which react with methanol (formaldehyde) to give rise to formaldehyde (formic acid). Thus, overall reaction is probably expressed as follows.
Quantitative relation between the reactants and products expected from equation (6) is in good accord with our observation. Equation (1) can be derived from the assumption that reaction (2) determines the overall rate, but similar result is also derived from reaction (3). Therefore, it cannot be decided which is the rate determining step. However, according to our observation, p-nitrotoluene is somewhat soluble in aqueous alkali, and from the latter the nitrotoluene is reversibly recovered by adding mineral acid. This fact supports the assumption that equilibrium (2) is rapidly set up and the radical type decomposition of the salt, i.e., reaction (3) does determine the rate.

The authors are grateful to Professor Ryhei Oda for his suggestive discussion and encouragement in this work, to Professors Shinzo Okada and Shiro Yoshizawa and Mr. Fumio Hine, Department of Industrial Chemistry, Kyoto University, for their helpful discussions and laboratory experiments in the electrochemistry.

14. Studies on the Reaction of Ethyl Azodicarboxylate and Ethyl Oleate

Tokushige SuzukI and Ryohei Oda
(Oda Laboratory)

It has already been known that N-allphhydrazo-N,N'-dicarboxylic ester is produced when olefin is reacted with azodicarboxylic ester at room temperature and the product is saponified with alcoholic patash (E. Müller: Z. angew. Chem., 63, 18).

\[
\text{CH}_3-\text{CH} = \text{CH}_2 + \text{C}_2\text{H}_5\text{O}_2\text{C}-\text{N} = \text{N}-\text{CO}2\text{C}_2\text{H}_5 \rightarrow \text{C}_2\text{H}_5\text{O}_2\text{C}-\text{N}-\text{NH}-\text{CO}2\text{C}_2\text{H}_5
\]

The authors have attempted this reaction with ethyl oleate. The azodicarboxylic ester was synthesized according to the method of Org. Synth. 82, 58.

The results are summarised in the following:

(1) The reaction product from azodicarboxylic ester and oleic ethyl ester (yield; quantitative).

\[
\text{Anal. Calcd. for } \text{CH}_3-\{(\text{CH}_2)\text{H}_n, \text{CH} = \text{CH}-\{(\text{CH}_2)\text{H}_n-\text{COOC}_2\text{H}_5 :}
\]

\[
\text{N}-\text{COOC}_2\text{H}_5
\]

\[
\text{HN} - \text{COOC}_2\text{H}_5
\]

N, 5.77; Found: N, 5.45.

(48)