N_			2441 2081 1871	$2407 \\ 2055 \\ 1822$	1.01 1.01 1.03		
H_2	$\frac{1}{2}$	$1.200 \\ 1.279 \\ 1.309$	3382 3605 2590	3273 3527 3532	$1.03 \\ 1.02 \\ 1.05$		
Не	$0.75 \\ 1.5 \\ 2.5$	$1.124 \\ 1.166 \\ 1.176$	3168 3282 3315	$3010 \\ 3130 \\ 3160$	$1.05 \\ 1.05 \\ 1.05 \\ 1.05$		
A	$0.75 \\ 1.5 \\ 2.5$	$\begin{array}{c} 0.744 \\ 0.648 \\ 0.573 \end{array}$	2097 1826 1616	$1950 \\ 1800 \\ 1700$	$1.08 \\ 1.02 \\ 0.95$		
 2.82 He 18A Mx=14.8*	2.0	0.870	2451	2390	1.03		
1.5 He 1.5A Mx=22.0**	1.5	0.801	2258	2330	0.97		

* $M_{\rm X} = \frac{4 \times 2.28 + 40 \times 1.18}{2.82 + 1.18} = 1.48$ ** $M_{\rm X} = \frac{4 \times 1.5 + 40 \times 1.5}{1.5 + 15} = 22.0$

2. Theory of Limit of Inflammability. (II)

Lower Limit

Rempei Goro and Nishio HIRAI

(Goto Laboratory)

According to the theory proposed by Goto (Rev. Phys. Chem. Japan, 21, 152 (1942)), the correlation between lower limit of inflammability (c_1) and molar heat of combustion (Q) can be expressed by the equation

$$\frac{1}{c_1} = \frac{k}{E} Q + k, \tag{1}$$

where k is a constant and E the heat of activation. The linear relation frund between $\frac{1}{c_1}$ and Q suggests that the activation energy of combustion E is almost constant for most of combustible gases and vapors. By the method of least squares, we have k/E = 0.090, k = 1.56 and accordingly E = 17(Kcal). Assuming that the heat of combustion are distributed equally among all degrees of freedom of excess molecules in a unit volume per one molecule of combustible and that the flame propagation can occur when the energy distributed to every one of oxygen molecule exceeds the activation energy E, the condition for inflammation was given by the relation

$$c_1(Q+E) + \frac{1}{2}fRT = E$$

(2)

where f is the is the degree of freedom of an oxygen molecule, R the gas constant and T the absolute temperature. Since Eq. (2) can be written in the form

$$\frac{1}{c_1}=\frac{Q}{E-\frac{1}{2}fRT}+\frac{E}{E-\frac{1}{2}fRT},$$

(3)

Eq. (2) or (3) is another expression of Eq. (1). From Eq. (2) or (3), the activation energy E and the temperature coefficient of c_1 was estimated as shown in the next table.

Combustible	Q	Temp. Coeff.	$(\times 10^{5})$	E (Kcal/mole)		
Compuscipie	Kcal/mol <i>e</i>	$\triangle C_1 / \triangle T$ obs.	$\frac{fR/2Q}{\text{calc.}}$	from Eq. (3)		
Hydrogen	58	$(\frac{0.034}{350}): 9.5$	12	7.7(8.8%; 100°C)		
Carbon monoxide	68	$(\frac{0.030}{200}): 15$	12	12.8(15%; 100°C)		
Ammonium	76	$(\frac{0.045}{400}): 11$	9	15.9(17.5%; 100°C)		
Methane	196	$(-\frac{0.022}{500}): 4.4$	4	13.1(5.5%; 100°C)		
Pentane	775	$(\frac{0.0031}{233}): 1.1$	0.9	13.8(1.53%; 17°C)		
Benzene	751	$(\frac{0.0024}{150}): 16$	0.9	12.8(1.37%; 100°C)		
Toluene	892	$(\frac{0.0023}{100}): 2.3$	0.8	13.8(1.26%; 100°C)		
Ethylene	311	$(\frac{0.0095}{383}): 2.5$	2.3	12.7(3.45% ; 17°C)		
Acethylene	302	$(\frac{0.0071}{283}): 2.3$	2.3	10.6(2.90%; 17°C)		
Methanol	150	$(\frac{0.016}{200}): 8.0$	4.7	13.4(7.5%; 50°C)		
Propylalcohol	438	$(\frac{0.007}{150}): 4.7$	1.6	13.4(2.45%; 100°C)		
Acetone	395	$(\frac{0.0008}{100}): 8.0$	1.8	13.8(3.0%; 25°C)		

14 - 1

Table 1.	Temperature	coefficients	of	lower	limit.	and	heat	of	activation.
I CLOTE I.	remperature	0000110101100	C.	101101	111110	CLAR CL	TTO CCC	O.	additadion

Mean value of E: 1208.

3. Theory of Limit of Inflammability. (III)

Upper Limit

Rempei Goto and Nishio HIRAI

(Goto Laboratory)

Similarly to the case of lower limit, the eergy of combustion (ε) equally distributed to every degree of freedom of molecules in an unit volume per