(志方益三・木田裕欠) ポーラログラフに依る銅錯鹽の研究(第二報) (75)

ポーラログラフに依る銅錯鹽の研究(第二報)

志方益三

木田裕次

緒言

前報文に於て著者の一人(志方)はボーラログラフに依りて,鹽化銅,硫酸銅の銅析出電位に對する酸基の影響及び電流電壓曲線に現はれた る極大電流現象を理論的に考察し,かゝる極大現象の原因が錯陰イオ ンの存在に依るべきを論じ,またかゝる錯陰イオンの生成の為め必然 的に銅の析出電位が酸基の濃度により影響さるゝことを論じたり。 然して,極大電流あるときは直ちに錯鹽の存在を考慮ぜざる可らざる も極大なき場合に於ても錯鹽の存在はあり得ることを述べたり。

本報告に於ては硝酸銅に對する硝酸鹽の濃度の影響及び極大現象 を認めたるを以て,硝酸銅錯鹽の生成に就きて考察せんとす。

實驗の部

本實驗は前報同様の方法により,水銀滴下極及びポーラログラフを 用ひて行ひたり。

ボーラログラム(ボーラログラフに依りて得たる電流電壓曲線)に於 ては 1 cm が 8.85×10^{-s} Amp. に相當す。 析出電位決定には電流電壓曲 線の傾斜 100 milli volt に就きて 8.85×10^{-s} Amp. の位置を以つてせり。

實驗中空氣恒溫槽の溫度を可及的に 25℃ にせんとせしも往々一時 的に 28℃---22℃ 附近まで上下せり。

水銀滴下極の水銀粒の落下する速さは電解前に電解液中にて五滴

M. Shikata, Memoirs of the College of Agriculture, Kyoto Imperial University No. 4. (1927) 物理化學の進步第一卷第四輯

に就き12秒-13秒を要する様に調節したり。

電解前には電解瓶中の酸素を追出すため溶液中に3時間乃至4時 間水素瓦斯を通じたり。

銅の濃度決定は電氣分析によれり。

次に實驗の結果を示すべし。

	Conc.	Conc.	Anode	Deposition	Saturation	πof	π of	Maximum		
No.		of FNO	π	π	Current	Maximum	Minimum	Current		
	(mol)	(n)	(volt)	(volt)	$(10^{-7}A)$	(volt)	(volt)	(10 ⁻⁷ A)		
1	$2 \times 1.365 \times 10^{-4}$	1n	+ 0.198	$\begin{cases} +0.050 \\ +0.055 \end{cases}$	14.0 15.9	??		?		
2	"	"	+0.198	$\left\{ \begin{array}{c} +0.055 \\ +0.054 \end{array} \right.$	$\begin{array}{c} 21.3\\21.3\end{array}$	$\begin{vmatrix} -0.173 \\ -0.157^{(?)} \end{vmatrix}$?	3,5 3,5		
3	"	"	+0.203	$\begin{cases} +0.049 \\ +0.054 \end{cases}$	$\begin{array}{c} 23.5\\ 26.1\end{array}$	-0.180	?	4.4 3.5		
4	"	0.1n	+0.212	$ \begin{cases} +\ 0.072 \\ +\ 0.078 \end{cases} $	$\begin{array}{c} 26.6 \\ 26.6 \end{array}$	-0.189 -0.169	-	9.7 9.7		
5	"	"	+ 0.211	$\begin{cases} +0.063 \\ +0.060 \end{cases}$? 21.2	? -0.192		? 6.2		
6	"	"	+0.207	$\begin{cases} +0.060 \\ +0.063 \end{cases}$	$\begin{array}{c} 24.8\\19.9\end{array}$	$ ^{?}_{-0.193}$??	? 3.5		
7	"	0.01n	+ 0.241	$ \begin{cases} +0.080 \\ +0.079 \end{cases} $	24.1 22.6	-0.347 -0.340	-0.503 -0.510	$\begin{array}{c} 115.9(?) \\ 112.1(?) \end{array}$		
8	"	"	+0.225	$\left\{ \begin{array}{c} +0.087 \\ +0.077 \end{array} \right.$	23.0 23.9		-0.460(?) -0.469(?)			
9	"	"	+ 0.229	$\left\{ {+0.077\atop +0.078} \right.$	24.8 23.9	-0.353 -0.351	? -0.514	100. 0 104.4		
10	1.365×10^{-4}	1 <i>n</i>	+0.177	$ \begin{cases} +0.033 \\ +0.046 \end{cases} $	9.3 9.7	-				
1 1	"	"	+0.191	$\begin{cases} +0.039 \\ +0.043 \end{cases}$	13.3 12.8	?		? ?		
12		0.1 <i>n</i>	+ 0.191	$\begin{cases} +0.062 \\ +0.063 \end{cases}$	12.4 12.4	=				
13	//	"	+ 0.198	$\begin{cases} +0.063 \\ +0.062 \end{cases}$	$\begin{array}{c c} 14.2\\ 14.2\end{array}$??		? ?		
14	"	"	+ 0.181	$\begin{cases} +0.062 \\ +0.065 \end{cases}$	12.0 12.4	??		?		
15	<i>"</i> #	0.01n	+ 0.200	$\begin{cases} +0.073 \\ +0.073 \end{cases}$	$\begin{array}{c}13.3\\-11.5\end{array}$	$ \begin{array}{r} -0.352 \\ -0.347 \end{array} $?	13.7 - 1 '.9		
	, , , , , , , , , , , , , , , , , , ,									

- 5 System Cu(NO₃)₂-KNO₃ 第

1 6	$1.365 imes 10^{-4}$	0.01n	+0.216		$\begin{array}{c} 11.1 \\ 12.5 \end{array}$	- 0.369 out	? ?	23.0 out
17	"	"	+0.213	$\Big\{ {}^{+0.083}_{+0.073}$	$\begin{array}{c} 10.4 \\ 10.2 \end{array}$	$-0.394 \\ -0.394$? ?	$23.9 \\ 20.7$
18	//	0.2n	變化ス	? ?	9.3 9.7	_		_
19	"	0.01n	"	? ?	8.4 7.9			_
20	"	"	"	??	$\begin{array}{c} 8.6\\ 9.3\end{array}$??	?	??
21	1.365×10-3	0.1n	"	? ?	108.9 109.7	out out	? ?	out out

(志方益三・木田裕次) ポーラログラフに依る銅錯鹽の研究(第二報) (77)

同表第四行は陽極水銀の電位(電位は何れも1nのカロメル電極を基 準とす)にして,陽極補正電位として加算すべきものにて,第五行は鋼の 析出電位,第六行は鋼による飽和曲線の高さを示し,第七行は極大電流 を示す電位,第八行は極小電流又は極小振幅兩者は多くの場合その位 置が一致するものなるも本實驗にては然らざる場合あり。このとき は極小振幅の位置をとれり)に相當する電位,第九行は飽和曲線と極大 電流との差なり。各,の析出電位に就き二個の値を與へたるは同一電 解液にて二度電解して二個の Polarogram を求めたるなり。

電解に際し電解液を電解瓶に注入するときと、最初より電解液を電 解瓶に入れ置き陽極の水銀と接觸せしめ置きたるものとに就き、同一 の電解液の場合、銅の析出電位に差異を認めざりしを以つて、最初より 電解瓶中にて水素を通じたり。 但し HNO。を以つて酸性とせし場合 は電解直前に電解瓶に溶液を注入せり。

第一表 No. 18 以下21までは、この溶液をフラスコに逆立冷却器を附 して30分間乃至40分間煮沸せしめ、その後一夜放置せるものを電解し たるものにして、陽極電位は測定中大いに變化するを認めたり。

——(原報)——

	Conc.	Conc.	Anode	Deposition	Saturation	πof	πof	Maximum
No.	Of	of NH NO	я	π	Current	Maximum Current	Minimum	Current
	(mol)	(n)	(volt)	(volt)	(10-7A)	(volt)	(volt)	(10-7A)
22	$2 \times 1.365 \times 10^{-4}$	1 <i>n</i>	+ 0.162		19.4 19.4	-0.106(?) -0.117(?)	-	? ?
23	"	"	+ 0.159		$19.4 \\ 20.0$	-0.135(?) ?	_	? ?
24	"	"	+0.158	$\left\{ {\begin{array}{*{20}c} + 0.054 \\ + 0.054 \end{array} ight.$	17.7 19.4	??	_	? ?
25	"	0.1n	+0.205	$\Big\{ {}^{+0.061}_{+0.061}$	$24.8 \\ 25.6$	-0.213(?) -0.208(?)	? ?	11.0 11.0
26	"	//	+ 0.208	$\begin{cases} +0.063 \\ +0.063 \end{cases}$	$\begin{array}{c} 22.6\\ 21.2 \end{array}$	-0.144(?) -0.135(?)	? ?	5.5 7.3
27		"	+ 0.197	$\left\{ {\begin{array}{*{20}c} + 0.065 \\ + 0.065 \end{array} } \right.$	$21.7 \\ 23.2$	-0.223(?) -0.212(?)	? ?	6.5 5.8
28	"	0.01 n	+0,221	$\begin{cases} +\ 0.076 \\ +\ 0.080 \end{cases}$	$\begin{array}{c} 24.8 \\ 26.1 \end{array}$	-0.374 -0.368	$-0.526 \\ -0.523$	$\begin{array}{c} 91.2 \\ 88.5 \end{array}$
2 9	"	"	+ 0.220	$\left\{ { + 0.074 \atop + 0.077} \right\}$	24.8 23.5	-0.367 -0.365	Ca. – 0.526 – 0.523	$\begin{array}{c} 91.2 \\ 88.5 \end{array}$
30	11	"	+0.225		$\begin{array}{c} 20.4 \\ 23.0 \end{array}$	- 0.349 Ca 0.348	-0.503 -0.500	92.0 97.4
31	1.365 imes 10 – 4	1n	+ 0.156	$ig\{ +0.056 \\ +0.051 \ight\}$	$\begin{array}{c} 10.6 \\ 10.6 \end{array}$	_	-	
32	11	"	+0.156	$\left\{ {\begin{array}{*{20}c} + 0.047 \\ + 0.044 \end{array} \right.$	9.2 9.7	_	-	
33	"	"	+0.161	$\left\{ {\begin{array}{*{20}c} + 0.052 \\ + 0.050 \end{array} \right.$	9.7 9.7	1	_	_
34	"	0.1 <i>n</i>	+0.207		$\begin{array}{c} 15.0\\ 17.7\end{array}$? ?	· _	? ?
35	"	//	+0.213	$\left\{ {+0.068\atop +0.061} \right.$	$\begin{array}{c} 13.7\\11.5\end{array}$? ?	-	? ?
35	"	"	+ 0,193	$ \begin{cases} +0.059 \\ +0.061 \end{cases} $	$\begin{array}{c} 12.8\\ 15.9\end{array}$? ?		? ?
.37	"	0.01n	+0.210	$\begin{cases} +0.076 \\ +0.070 \end{cases}$	$\begin{array}{c} 11.5\\ 13.3\end{array}$	-0.361 -0.367	_	$\begin{array}{c} 17.7\\ 15.9\end{array}$
38	"	"	+0.216	$\left\{ \begin{array}{c} +\ 0.072 \\ +\ 0.072 \end{array} ight.$	$\begin{array}{c} 10.6\\ 10.6\end{array}$	-0.389 -0.390		$\begin{array}{c} 26.6 \\ 25.7 \end{array}$
39	1.365×10-3	0.1n	+ 0.202	$\left\{ \begin{array}{c} +0.069 \\ +0.071 \end{array} \right.$	$\begin{array}{c} 121.9\\121.9\end{array}$	out out	? ?	out oat
4 '	//	. //	+0.193	$\left\{ \begin{array}{c} +0.058 \\ +0.073 \end{array} \right.$	$116.8 \\ 120.2$	out out	? ?	out out
41	1.365×10-5	"	+0.159	$\left\{ {\begin{array}{*{20}c} + 0.035 \\ + 0.035 \end{array} } \right.$	3.0 3.0		_	·

二 表 System Cu(NO₃)₂—NH₄NO₃ 第

No. of Cu(NO ₃) ₂ (mol) of LiNO ₃ (n) π (volt) π (volt) π (volt) Current (10-7A) Maxmum Current (volt) Minimum Current (volt) Current (volt) 42 $2 \times 1.365 \times 10^{-4}$ $0.01n$ $+0.024$ $\left\{ \begin{array}{c} +0.077\\ +0.077\\ 24.8 \end{array} \right\}$ $23.9\\ Ca0.439$ $-0.523\\ -0.527$ ou 43 $''$ $''$ $+0.023$ $\left\{ \begin{array}{c} +0.078\\ +0.078\\ 29.2 \end{array} \right\}$ $34.5\\ -0.445\\ -0.534$ $-0.536\\ ou ou 44 '' 0.1n +0.210 \left\{ \begin{array}{c} +0.057\\ +0.062\\ 29.2 \end{array} \right\} Ca0.454\\ -0.227\\ -0.227 \end{array} -0.534\\ ou ou 45 '' '' +0.213 \left\{ \begin{array}{c} +0.057\\ +0.065\\ 26.6 \end{array} \right\} -0.191\\ -0.182 -15.4\\ -0.055\\ -0.191 -15.4\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.056\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.053\\ -0.182 -15.4\\ -0.182 -15.4\\ -0.182 -15.4\\ -$	aum
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ent
42 $2 \times 1.365 \times 10^{-4}$ $0.01n$ $+0.024$ $\begin{pmatrix} +0.077 \\ +0.077 \\ 24.8 \end{pmatrix}$ $\begin{matrix} -0.439 \\ Ca0.430 \\ -0.527 \end{pmatrix}$ ou 43 " " $+0.023$ $\begin{pmatrix} +0.078 \\ +0.078 \\ 34.5 \end{pmatrix}$ $34.5 \\ -0.445 \\ -0.534 \end{pmatrix}$ ou 44 " $0.1n$ $+0.210$ $\begin{pmatrix} +0.057 \\ +0.062 \\ 29.2 \end{pmatrix}$ $26.6 \\ -0.227 \\ -0.227 \end{pmatrix}$ $18.4 \\ -0.653 \end{pmatrix}$ 45 " " $+0.213$ $\begin{pmatrix} +0.060 \\ 25.8 \\ +0.065 \end{pmatrix}$ $-0.191 \\ -0.182 \end{pmatrix}$ $-15.4 \\ -0.056 \end{pmatrix}$ 46 " $1n$ $+0.189$ $\begin{pmatrix} +0.051 \\ +0.056 \\ 18.6 \\ -1 \end{pmatrix}$ $-16.82 \\ -15.4 \\ -16.82 \end{pmatrix}$ $-15.4 \\ -16.82 \\ -15.4 \\ -1$	(A)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
43 " " $+0.023$ $\begin{pmatrix} +0.078 \\ +0.078 \\ +0.078 \\ 34.5 \end{pmatrix}$ $34.5 \\ -0.445 \\ -0.445 \\ -0.534 \end{pmatrix}$ out 44 " $0.1n$ $+0.210$ $\begin{cases} +0.078 \\ +0.062 \\ 29.2 \\ -0.227 \\ -0.227 \\ -0.182 \\ -0.1$	it it
43 " " +0.023 $\begin{cases} +0.078 \\ +0.078 \end{cases}$ 34.5 -0.445 \\ -0.445 \end{bmatrix} -0.534 \\ ou 44 " 0.1n +0.210 $\begin{cases} +0.078 \\ +0.062 \end{bmatrix}$ 29.2 -0.227 \\ -0.227 \end{bmatrix} - 18.4 45 " " +0.213 $\begin{cases} +0.057 \\ +0.062 \end{bmatrix}$ $26.6 \\ -0.227 \end{bmatrix}$ - 18.4 45 " " +0.213 $\begin{cases} +0.060 \\ +0.065 \end{bmatrix}$ $26.6 \\ -0.182 \end{bmatrix}$ - 15.4 46 " 1n +0.189 $\begin{cases} +0.051 \\ +0.056 \end{bmatrix}$ $18.6 \\ -0.182 \end{bmatrix}$ - - 47 " " +0.180 $\begin{cases} +0.079 \\ +0.053 \end{bmatrix}$ $18.6 \\ -0 \end{bmatrix}$ - - 48 " $3n$ +0.187 $\begin{cases} +0.079 \\ +0.033 \end{bmatrix}$ $12.4 \\ -0 \end{bmatrix}$ - -	14
44 " $0.1n$ $+0.210$ $\begin{cases} +0.057 \\ +0.062 \end{cases}$ $26.6 \\ -0.227 \end{cases}$ $ 18.7 \\ 18.6 \end{cases}$ 45 " " $+0.213$ $\begin{cases} +0.060 \\ +0.065 \end{cases}$ $25.8 \\ -0.182 \end{cases}$ $-0.191 \\ -0.182 \end{cases}$ $ 15.7 \\ 15.7 \\ 15.7 \end{cases}$ 46 " 1n $+0.189 $ $\begin{cases} +0.051 \\ +0.056 \end{cases}$ $18.6 \\ -0.182 \end{bmatrix}$ $ -$ 47 " " $+0.180 $ $\begin{cases} +0.045 \\ +0.053 \end{cases}$ $18.6 \\ -$ 48 " $3n $ $+0.187 $ $\begin{cases} +0.079 \\ +0.033 \end{cases}$ $12.4 $ $ -$	it
44 " 0.1n +0.210 $\begin{cases} +0.037 \\ +0.062 \\ 29.2 \\ 29.2 \\ -0.227 \\ -0.227 \\ -0.227 \\ -0.227 \\ -0.182 \\ -0.$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.6 .6
45 " +0.213 $\{+0.065\}$ 26.6 -0.182 - 15.7 46 " 1n +0.189 $\{+0.051\}$ 18.6 -	q
46 " 1n +0.189 $\begin{pmatrix} +0.051\\ +0.056\\ 18.6 \end{pmatrix}$ 18.6 <td>.9</td>	.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
47 " +0.180 $\begin{pmatrix} +0.045 \\ +0.053 \end{pmatrix}$ 18.6 48 " 3n +0.187 $\begin{cases} +0.079 \\ +0.033 \end{pmatrix}$ 13.3 \\ 12.4 \end{pmatrix}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
48 " $3n$ +0.187 $\begin{cases} +0.079 \\ +0.083 \end{cases}$ 13.3	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	-
(10) (10)	_
$49 \qquad " \qquad +0.197 \qquad +0.097 \qquad 12.4 \qquad - \qquad -$	-
	9.8
$50 \qquad \qquad$?
51 1 265 \times 10-4 // \pm 0.206 \int + 0.071 15.9 -0.216, -0.361 - 19.9, 1	5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.9
	_
52 // 0.1n +0.1/4 +0.058 16.3	-
53 // // $+0.135$ $(+0.035$ 14.7	-
	•
	-
34 " $1n$ $+0.199$ $\{+0.052$ 8.9 $ -$	
	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
56 // 0.01m 1.0.186 (+0.057 2.90.536 -	-
(0.01n + 0.130) $(+0.054 + 2.2)$	-
57 " " $+0.197$ $\{+0.035$ 2.1 ? ? -	-
	-

表 System Cu(NO3)2—LiNO3 第 Ξ

——(原報)——

第三表No.50,51の第七行には一つのPolarogramに就き二つの値を示 す。これ二つの極大電流の電位lを與へたるなり。

-	Conc.	Conc.	Anode	Deposition	Saturation	πof	πof	Maximum
No	of	of NaNO	п	π	Current	Maximum	Minimum	Current
	(mol)	(n)	(volt)	(volt)	(10-7A)	(volt)	(volt)	(10-7A)
58	5×1.365×10-4	0.01n	+ 0.226	$ \begin{cases} +0.066 \\ +0.075 \end{cases} $	$\begin{bmatrix} 51.3\\ 46.0 \end{bmatrix}$	out out	?	outout
59	"	<i>ii</i>	+0.218	$ \begin{cases} +0.074 \\ +0.078 \end{cases} $	$55.8 \\ 54.9$	out out	? ?	out
60	"	0.1 n	+ 0.257	$ \begin{cases} + \ 0.079 \\ + \ 0.073 \end{cases} $	$\begin{array}{c} 60.2\\ 62.0\end{array}$	out out	-0.552 - 0.552	out out
61	"	"	+ 0.238	$ \begin{cases} +0.076 \\ +0.074 \end{cases} $	$\begin{array}{c} 62.0\\ 66.4\end{array}$	out out	-0.571 - 0.571	out out
62	"	1 <i>n</i>	+0.231		$\begin{array}{c} 63.1\\ 63.1 \end{array}$	-0.200	? ?	10.6 ?
63	//	"	+0.250	$\begin{cases} +0.087 \\ +0.085 \end{cases}$	58 .3 59.2	-0.128(?) -0.097(?)	-	$\begin{array}{c} 17.7\\21.2\end{array}$
64	"	2n	+0.216	$ \begin{cases} +0.064 \\ +0.079 \end{cases} $	46.0 46.0	-0.225 ?	?	13.3
65	$2 \times 1.365 \times 10^{-4}$	0.01n	+ 0.230	$ \begin{cases} +0.089 \\ +0.093 \end{cases} \\$	37.6 39.8	out out	-0.528 - 0.528	out out
66	"	"	+ 0.244	$\begin{cases} +0.090 \\ +0.085 \end{cases}$	32.3 31.4	out out	$-0.519 \\ -0.518$	out Out
67	"	0.1 <i>n</i>	+0.231	$ \begin{cases} +0.073 \\ +0.077 \end{cases} $	$\begin{array}{c} 27.4\\ 26.6\end{array}$	$-0.245 \\ -0.243$	_	7.1 8.0
6 8		"	+ 0.223	$\begin{cases} +0.052 \\ +0.057 \end{cases}$	32.0 31.0	$-0.210 \\ -0.211$?	$15.5 \\ 15.5$
69	"	1n	+ 0.176	$\left\{ {{+0.066}\atop{+0.072}} \right.$	29.2 ?		. —	
70	"	// .	+0.210	$ \begin{cases} +0.060 \\ +0.062 \end{cases} $	27.9 29.6	?		-
71	"	2n	+ 0.152	$\Big\{ {}^{+0.026}_{+0.048}$	$21.7 \\ 22.1$	$-0.236 \\ -0.210$		2.7 3.5
72	"	3n	+0.207	$\begin{cases} +0.065 \\ +0.063 \end{cases}$	$\begin{array}{c} 19.5\\20.4\end{array}$	-0.193 -0.193		5.3 4.4
73	"	"	+0.194	$ \begin{cases} +0.052 \\ +0.058 \end{cases} $	$\begin{array}{c} 22.1\\ 22.1\end{array}$	-0.206		3.1
	,			J				1

第四表 System Cu(NO₃)₂—NaNO₃

——(原 報)——

(81)

			2 N NaNC		NeNG	+2064		
Conc. of Cu(NO ₃) ₂ (mol)	Conc. of NaNO ₃ (n)	Conc. of NaOH (n)	Anode (volt)	Deposition π (volt)	Saturation Current ×10-7A	π of Maximum Current (volt)	π of Minimum Current (volt)	D
1.365×10^{-4}	0.01n	5×10-4n	+0.125	$ig\{ +0.051 \\ +0.051 \ \end{array}$	8.0 8.0	$-0.404 \\ -0.397$	-0.504 - 0.506	

T

No.	Cone. of Cu(NO ₃) ₂ (mol)	of NaNO ₃ (n)	of NaOH (n)	Anode π (volt)	Deposition 7 (volt)	Saturation Current ×10-7A	π of Maximum Current (volt)	π of Minimum Current (volt)	Max imum Current ×10-7A
74	$2 \times 1.365 \times 10^{-4}$	0.01n	5×10-4n	+0.125	$\left\{ \begin{array}{c} +0.051 \\ +0.051 \end{array} \right.$	8.0 8.0	-0.404 -0.397	-0.504 -0.506	87.6 85.9
75	11	"	"	+0.168	$\left\{ {\begin{array}{*{20}c} + 0.058 \\ + 0.057 \end{array} } \right.$	7.7 8.0	-0.403 -0.392	-0.534	1.4
76	. //	"	10-4n	+0.140	$\left\{ \begin{array}{c} +0.027 \\ +0.031 \end{array} \right.$	15.9 19.5	-0.417 -0.429	- 0.555 - 0.555	85.0 85.0
77		"	"	+0.173	$\left\{ {\begin{array}{*{20}c} + 0.049 \\ + 0.051 \end{array} } \right.$	$\begin{array}{c} 21.3 \\ 22.2 \end{array}$	$-0.422 \\ -0.418$	-0.536 -0.536	Ca118.1 117.7
7 8	1.365×10-4	, 11	10-3n	+0.005	$\Big\{ \begin{array}{c} -0.068 \\ -0.069 \end{array} \Big\}$	1.2 0.9	_	_	
79	"		10-4n	+0.191	$\left\{egin{smallmatrix} + 0.067 \\ + 0.069 \end{array} ight.$	8.0 8.1	?	? ?	- ? ?
80	"	-	- 11	+0.196	$\Big\{ {}^{+0.075}_{+0.075}$	8.9 8.0	??	? ?	? ?
81	Cu(OH) ₂ ヲ (ニ飽和セル溶	0.01n Na 液 (15°)	HOH	+0.011	-0.060	1.2	·	Ca-0.489	
8 2	Basic copper NaNO3 = 飽利	nitrate 印セル溶	ヲ0.01n 液	+0.145	$\Big\{ {}^{+ 0.034}_{+ 0.934}$	$\begin{array}{c} 2.2\\ 2.2\end{array}$	—		
	•		,	——(原	報)——				ı

		_*•				4	٥ 	0	
No.	Conc. of Cu(NO ₃) ₂ (mol)	Conc. of KNO ₃ (n)	Conc. o [°] HNO ₃ (n)	Anode π (volt)	Deposition	Saturation current (10-7A)	π of Maximum current (volt)	π of Minimum current (Volt)	Maximum current (10-7A)
83	$2 \times 1.365 \times 10^{-4}$	0.1n	0.1n	+ 0.293	$\begin{cases} +0.056 \\ +0.058 \end{cases}$	$\begin{bmatrix} 35.4(?) \\ 24.6(?) \end{bmatrix}$?	_	??
84	11	"	"	+0.284	$ \begin{cases} +0.060 \\ +0.058 \end{cases} $	$\begin{array}{c} 21.2\\21.2\end{array}$??		?
85	"	"	0.01n	+0.266		28.8(?) 30.5(?)	-0.200 -0.202	'? ?	4.0 3.5
86	3	"	"	+ 0.331	$ \begin{cases} + 0.089 \\ + 0.085 \end{cases} $	31.0	-0.222		8.9
87	<u>u</u>	"	0.001n	+0.288	$ \left\{ \begin{array}{c} +\ 0.057 \\ +\ 0.057 \end{array} \right.$	$22\ 6\ 23.5$	-0.165 -0.186	$ -0.412 \\ -0.412$	3.5 3.5
88	$1.365 imes 10^{-4}$	-	1n	+0.312	{+0.028 ?	11,0 11.0			=
89	//	-	0.1n	+0.305	$ \left\{ \begin{array}{c} + 0.041 \\ + 0.043 \end{array} \right. $	11.7 11.7			-
90	$1.365 imes 10^{-4}$		0.01n	+ 0.394	{+0.077 +0.077	$\begin{array}{c} 20.4 \\ 20.4 \end{array}$		-	
91	"		0.001n	+ 0.299	$ \Big\{ {}^{+0.055}_{+0.050} \Big\} \\$	11.7 12.4	-0.390 -0.454 -0.390 ?	-0.501 ?	5.7 5.7

六 表 System Cu(NO₃)₂—KNO₃--HNO₃

第 七 表 System Cu(NO₃)₃—H₂C

						-	
No,	Conc. of Cu(NO ₃) ₂ (mol)	Anode π (volt)	Depostion π (volt)	Saturation Current (10-7A)	π of Maximum Curreut (volt)	π of Minimum Current (volt)	Maximum Carrent (10-7A)
92	1.365×10-4	??	??	17.3 18.6	??	_	Ca. 159 .5 ?
93	$2 \times 1.365 \times 10^{-4}$? ?	? ?	$\begin{array}{c} 26.6\\ 30.5 \end{array}$? ?	_	?
94	"	?	? ?	38.9 44.3	? ?	_	? ?

第七表は硝酸銅の水溶液を電解せるものにて,陽極電位は測定中に 變化するを以て,鋼析出電位等はこれを示し得ざりき。

實驗結果の考察

簺

本報告に於ては,前報同様硝酸銅は電極に於て Cu' イオンを生ぜず 直ちに金屬銅を出して,銅アマルガムを作り,又水銀滴下極にては Cu' イオンは可逆的に析出工程の進むものと假定す。

硝酸銅錯鹽の生成に關 してはG. Meijer²は Cu₁NO₃)₂—NH₄NO₃—H₂Oの 系に就き研究し、固體の NH₄NO₃をCu₁NO₃)₂の飽和 溶液に加ふれば、固相の硝 酸銅は溶液に入る事實を 認め、錯鹽生成を指摘し、 F. Schreinemakers³⁰等は同 じ系に就きて新らたに Cu₁NO₃)₂·3NH₄NO₃ なる double salt を發見せり。

硝酸鹽溶液中の銅の析 出電位を見るに第一表以 下第四表まで参照同一濃 度の硝酸銅に對して,硝酸 鹽濃度十倍となるに從ひ

夫々最小 6mv.より最大 17 mv.の差にて陰となる。 NaNO₃ 溶液中にて は相當不安定なるも、KNO₃, NH₄NO₃溶液中にては大體 10—13 mv.の差に て移動せるを見る。 前報にて Li uCl₃ 生成の際銅の析出電位に對す る LiCl の影響は LiCl の濃度十倍になるに從ひ $E = -\frac{RT}{2F} ln \frac{[Cl']h^3}{[Cl']m^3} より$ して理論的には 25°C に於て 0.0887 V だけ陰の方に移動することを算出せり。 然して實測値と比して大體その關係を知るに足る結果を得

2) G. Meijer, Rec. Trav. Chem., 43, 1924.

3) F. A. H. Schreinemakers, G. Berkhoff and K. Posthumus, Rec.Trav. Chem., 34, 1924.

たり。 硝酸銅錯鹽が假に Schreinemakers によりて見出されし如きもの として,前報同様に NOs'の影響を見るに今次の如き解離をなすとすれ ば,

---(原報)----

 $\mathrm{Cu}\:\mathrm{NO_{3'2}}{:}3\mathrm{NH_4}\mathrm{NO_3} \rightleftarrows 3\mathrm{NH}{\cdot_4} + \mathrm{Cu} \langle\mathrm{NO_3'}_5'''$

 $\operatorname{Cu(NO_3)_5'''} \rightleftharpoons \operatorname{Cu''} + 5 \operatorname{NO_3'}$

 $CuCl_{s}' の時同様にして$ $<math>E = -\frac{RT}{2F} ln [NO_{s}']_{1}^{5} e^{3}$ 。 故に銅の同量を含む場 合 [NO'sh:[NO_{s}']n = 1:10 と なれば銅析出電位は0.1475 V 員の方に移動すべきな り。然るに實測値は僅か に 10mv.内外員の方に移動 するに過ぎず。故にこの 場合溶液中にては前記の 如き錯鹽の生成は甚だ疑 はしく寧ろ他に何等かの 錯 鹽の生成せるものと思 惟さる。

然るに第九圖に示す如 く硝酸銅のみの水溶液の Polarogram に於ても極大 電流を認めたるを以て、こ の場合にも錯鹽を考慮せ ざるべからず。Cu NO₄'g—H₂O

の系にては Cu(NO_{3b}・2.5H₂O なるものが得られたりと云ふ。故にこの 場合の錯鹽には水分子の關與せるものなるべきを暗示さる。 即ち硝 酸鋼が加水分解によりて含水硝酸鋼錯鹽を生ずるならん。

中性硝酸鹽の添加は析出電位の移動より見て,この含水硝酸銅錯鹽の 生成を增進するなるべく或は又何等か他の錯鹽を生成するならんと 思はる。

次に硝酸溶液中に於ける電解の結果を考ふるに(第六表参照 0.001N 硝酸溶液中にては +0.05 V, 0.01 N の硝酸溶液中にては 0.077 V 而して それより HNO₃ の増加に伴ひ益、析出電位は陰となる。 これ硝酸銅の 加水分解による含水錯鹽の生成が 0.001 N の場合は餘り妨げられざる に反し,0.01 N に於ては、H'のために加水分解が相當抑止されて,含水錯 鹽生成が減少し、 Free Cu' イオンが増大するためなるべく,尙一層の HNO₃ の濃度の増加は再び何等か異りたる錯鹽生成のために Cu' イ オンを減じ,析出電位が再び陰の方に移動するなるべし。 第八圖に於 て No.91 は Polarogram に極大を示し他のものは示さず。 これを第一 圖 No.50 及び第二圖 No.28 と比較するに No.91 は夫, No.50, No.28 と その形に於て類似せるを見る。 然るに同濃度の Cu/NO₃。が同濃度の HNO₃ 溶液及び硝酸鹽溶液の中に於ける場合を見るに,第一表 No.11, No.12 と第六表 No.88,89 と比較すれば HNO₃ の方は尙陰の値を與へ

----(原報)-----

るを以て、HNO₃の方 KNO₃よりも、この錯鹽をより安定ならしむ。又 No.90 と No.50 及び No.16の析出電位は夫、大體に於て一致する故同一 の錯鹽生成するものならば、同一の Polarogram を與へるなるべく、第一 圖及び第八圖の如く、Polarogram に於ける差異は表はれざるべし。 故 に此場合異りたる錯艷の生成が察せらる。 且つ同一濃度の中性鹽溶 液の曲線に就きても NaNO₃、KNO₃、NH₄NO₃ は同一の型を表はし、第一 圖の KNO₃の Polarogram (No. 16) に於ける極大電流の前部の亂れは、 NaNO₃、NH₄NO₃の場合にも表はれ、LiNO₃の場合のみ明かに二つの極 大、No. 50 は明かに表はれたるものを示したるにて、初めの極大の部は 往々亂雜となる)を認ることを以つてしても只單純なる安定なるもの に非らざるを推察せしむ。 この事實は加水分解による含水錯鹽の生 成を尙深く感ぜしめらる。

第六表 No.83—87は同一濃度の KNO。溶液中に於ける同一濃度の硝酸銅に對する HNO。の影響にして,夫,同一濃度の中性鹽溶液中に於けるよりも員なる故錯鹽は HNO。によりて尙多く生成さる ふを見る。 而して硝酸の量の變化に對する析出電位の影響は0.01 N HNO。溶液の とき No.85 は少し陽の値を與へ, No.85 は他と殆んど大なる差異なし。 これは同様含水錯鹽の生成が抑止されるためならんも No.85 の如き 値を示すことある故,只この事實よりして不安定なる化合物なるを知 るのみ。

次にalkaline 溶液中に於ける態度を觀察せん。 Proust は Cu(NO₃)aに鋼 を完全に沈澱せしむるには不十分なる量の NaOH を加へて, Basic copper nitrate を得たり。其他 Basic copper nitrate の生成に關しては幾多の研 究あり。これらによりても愈,含水錯鹽の存在を感ぜしめらるるなり。 第四圖につきて No. 76, 74, 75, 79 は夫,極大電流を示し,殊に No. 76 は第

----(原報)----

二圖 No. 28 によく 敬たる Polarogram を示す。No. 76, 77 は第四表 No. 65, 66 に於けるよりも NaOH のために遙かに陰となり,且つその Polarogram の形も甚だ類似せるものあり。 No. 76, 77 に於ては何等沈澱を認めざ りしを以て OH'のため加水分解が進み,含水硝酸銅錯鹽の生成が增加 せるを知る。又 No. 78 は銅の濃度に對して NaOH の量が遙かに大に して,明かに青色沈澱を認めたるを以て,このものは Cu,OH)。なるべく, No. 81 の Cu(OH)。よりの析出電位と比較して,これを確認し得べし。 而 して No. 74, 75 に於ては NaOH の量は銅の量に對して幾分過量にて電 解の際にも極僅少の青色の混溷を認めたり。 故に Cu(OH)。或は寧ろ basic copper nitrate の存在を推し得るも,その析出電位及び Polarogram よ り見てその然らざるを知るなり。 然してその Polarogram は特殊にし て複雜なる極大電流を示したり。 この原因は不明なるも,これにより て明かに何等かの複雜なる錯靈の存在を認むるを得るなり。又 No. 79, 80 はその析出電位決定甚だ困難なるも,その Polarogram は No. 92 の Cu(NOs¹20の水溶液の電解によるものと甚だ酷似せり。傍九圖参照)

J. Priestley 等は Cu(NO₃)₂の水溶液に加熱して Basic copper nitrate を得 又 A. Vogel 等は Cu(NO₃)₂ と KNO₃の混合溶液を煮沸して緑色板狀結晶 を得たり。

第一表 No. 18—No. 21 は上記の如く電解液を30分間乃至40分間煮沸 して、その加水分解の進行を促せり。 No. 18 と殆んど同じ濃度の溶液 なる No. 12 の Polarogram とは形に於て大なる差異を表はさざるも、第 五圖 No. 20, No. 19 と第一圖 No. 16 とはその Polarogram の趣大いに異る。 而して No. 19 が Basic copper nitrateの飽和溶液の Polarogram が示す Curve に類似せるに比し、 No. 20 は No. 75 が示すものに幾分近き形狀を示す。 然れども No. 75 は明かに沈澱するものあるが故に basic copper nitrate

----(原報)----

の存在は確實にして、これに依れば No. 20, No. 19 も煮沸により加水分 解進みて、漸次 basic copper nitrate に變するなるべし。 而して No. 18 は 何等變化なきは僅か 30 分間の煮沸にては加水分解が十分に進行せざ るに反し, No. 20, No. 19 のものは容易に進行する故に後者は basic nitrate を生成するに容易なる如く想像される含水錯鹽の存在せるも のと推測さる。

結 論

以上を綜合するに CuCl₂-LiCl の系の錯鹽生成の場合は甚だその錯 鹽が簡單にして,前述せる如く,析出電位の移動も Cl'の量に對して,理 論數に近きに反し,硝酸銅錯鹽は複雜にして NO₃'の濃度に對して理論 的に移動せず。これ硝酸銅の錯鹽が加水分解によりて生ずる含水硝 酸銅錯鹽なるによりてなり。かくる含水錯鹽の生成は NaOH 或は熱 の作用によりて增進さるくは明かにして, HNO₃ によりて抑止される ことも認知さる。 實驗に於て alkali 溶液の電解によりて得たる Polarogram と加熱により加水分解を促進せしめて得たる錯鹽の Polarogram のよく似たるによりても,亦中性鹽溶液の電解による Polarogram と alkali 溶液の Polarogram と一致せるに見ても,含水錯鹽の生成は認めら る。 然るに酸性溶液中にては 001 N のとき最も陽なる析出電位を與 へ,それ以上の濃度の硝酸溶液中にては再び析出電位は頁の方に進む。 これによりて他に尙異りたる錯鹽の存在が想像さる。

尚か、る含水錯鹽は加水分解によりて生成するものなる故その態度が單純なる可逆作用に非らざるを推察するに難からず。 この故に 往々析出電位が不安定なる値を示せるなるべし。

以上の如くポーラログラフに依る研究法にては單に推察を下し得 たるに過ぎず。 尚確認を得るためには分光化學的研究法其の他に依 らざる可らざるを感ずるなり。

---(原報)----