<table>
<thead>
<tr>
<th>Title</th>
<th>ヴィスコースに関する研究 第22報 ヴィスコースの比粘度に就て (II)ヴィスコースの流出速度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>中島 正</td>
</tr>
<tr>
<td>Citation</td>
<td>化學研究所學術報告 (1929), 1</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1929-11-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/74534</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
VI 結 論

以上の結果より次の事実を知る。

（1） 球落下法に依る粘度の変化は何れの場合に於ても（Xを除く）Heuser の示へたる型式に従ふ。原料纖維素の種類に依り変化に緩急の相違ある。又大腸菌等の場合変化は緩慢なるも、此は熟成中の浸透に依る外、図の測定法に依る事無論なり。

（2） Fadenziehendes Vermögen の変化は前報の加く大腸球落下速度に依る粘度変化と類似なり。

（3） 稀紡液に就き Ostwald 粘度計にて測定した結果は Heuser の示す型を取る場合に、従前常教室にて得たる型を取る場合を並び（II, IV は Heuser の型なり）。

（4） 原料纖維素の纖維素含量、ヴィスコースの粘度、鋼値及び最高の粘の強さぞその時の Fadenziehendes Vermögen 等間に次の如き関係あるを見る。試料番号はヴィスコース粘度の表の上位にあるものより前半番号を附したるものなり。以下の諸項が幾分の例外を除きてよくその順位に一致するを見るなり。

<table>
<thead>
<tr>
<th>試験番号</th>
<th>ヴィスコースの最小粘度（秒）</th>
<th>絹の強さ（%）</th>
<th>日数（H）</th>
<th>Fadenziehendes Vermögen（cm）</th>
<th>α-纖維素（%）</th>
<th>鋼値</th>
<th>α-纖維素値</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18/5</td>
<td>2.06</td>
<td>9</td>
<td>3.0</td>
<td>98.53</td>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>II</td>
<td>17/5</td>
<td>1.62</td>
<td>12</td>
<td>2.4</td>
<td>95.93</td>
<td>0.46</td>
<td>0.39</td>
</tr>
<tr>
<td>III</td>
<td>10/6</td>
<td>1.95</td>
<td>22</td>
<td>2.5</td>
<td>85.66</td>
<td>0.83</td>
<td>0.87</td>
</tr>
<tr>
<td>IV</td>
<td>6/6</td>
<td>1.83</td>
<td>19</td>
<td>2.1</td>
<td>87.02</td>
<td>1.36</td>
<td>0.65</td>
</tr>
<tr>
<td>V</td>
<td>6.0</td>
<td>1.90</td>
<td>19</td>
<td>1.7</td>
<td>92.23</td>
<td>0.64</td>
<td>0.39</td>
</tr>
<tr>
<td>VI</td>
<td>5/6</td>
<td>2.05</td>
<td>20</td>
<td>2.1</td>
<td>84.08</td>
<td>1.20</td>
<td>1.07</td>
</tr>
<tr>
<td>VII</td>
<td>4/6</td>
<td>1.77</td>
<td>22</td>
<td>2.0</td>
<td>82.27</td>
<td>2.18</td>
<td>1.30</td>
</tr>
<tr>
<td>VIII</td>
<td>4/6</td>
<td>1.63</td>
<td>20</td>
<td>1.9</td>
<td>82.64</td>
<td>1.62</td>
<td>1.20</td>
</tr>
<tr>
<td>IX</td>
<td>2/6</td>
<td>1.45</td>
<td>15</td>
<td>1.0</td>
<td>75.53</td>
<td>2.22</td>
<td>0.93</td>
</tr>
<tr>
<td>X</td>
<td>0.97</td>
<td></td>
<td>23</td>
<td>0</td>
<td>65.18</td>
<td>4.07</td>
<td>1.24</td>
</tr>
</tbody>
</table>

（II）ヴィスコースの流出速度

中 島 正

ヴィスコースの Strukturviskosität に関しては既に向山氏に依り研究されたり。然れどもその価力は低くしてヴィスコース液柱の高さを利用して過ぎず。ヴィスコースの紡絲の際に於ける如き
高圧力下にてその流出来速度の研究は興味ある問題なり。前述当實験室にて既に富久氏により報告された数値に依り計算するに、装置の不完全より来る誤差の範囲内にて Ostwald の式に一致す。かく一気圧より 5 気圧迄の換気試験の範囲に於ても、尚 Ostwald の式に合致するは興味深き事実なり。実験云ふべし。

Wo. Ostwald の式は次に示すが如し。

\[
\log t + n \log p = \log k
\]

此の式を用ひ最小自乗法にて富久氏の数値を計算すれば次表の如し（富久，工化，昭和3, 866）。

<table>
<thead>
<tr>
<th>熟成 1 日， (n = 1.822)， (\log k = 1.825)</th>
<th>熟成 2 日， (n = 1.808)， (\log k = 1.799)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(t (\text{測定}))</td>
</tr>
<tr>
<td>1.5</td>
<td>30.0</td>
</tr>
<tr>
<td>2.0</td>
<td>19.2</td>
</tr>
<tr>
<td>2.5</td>
<td>12.7</td>
</tr>
<tr>
<td>3.0</td>
<td>9.6</td>
</tr>
<tr>
<td>3.5</td>
<td>7.1</td>
</tr>
<tr>
<td>4.0</td>
<td>5.3</td>
</tr>
<tr>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>5.0</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>熟成 3 日， (n = 1.76)， (\log k = 1.821)</th>
<th>熟成 5 日， (n = 1.79)， (\log k = 1.88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(t (\text{測定}))</td>
</tr>
<tr>
<td>1.5</td>
<td>29.2</td>
</tr>
<tr>
<td>2.0</td>
<td>18.6</td>
</tr>
<tr>
<td>2.5</td>
<td>13.4</td>
</tr>
<tr>
<td>3.0</td>
<td>9.6</td>
</tr>
<tr>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>4.0</td>
<td>5.2</td>
</tr>
<tr>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>熟成 7 日， (n = 1.78)， (\log k = 1.963)</th>
<th>熟成 9 日， (n = 1.88)， (\log k = 2.04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(t (\text{測定}))</td>
</tr>
<tr>
<td>1.5</td>
<td>40.9</td>
</tr>
<tr>
<td>2.0</td>
<td>26.5</td>
</tr>
<tr>
<td>2.5</td>
<td>18.2</td>
</tr>
<tr>
<td>3.0</td>
<td>13.3</td>
</tr>
<tr>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>4.0</td>
<td>7.5</td>
</tr>
<tr>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>4.3</td>
</tr>
</tbody>
</table>
ヴィスコースの研究 (第22報) (71)

<table>
<thead>
<tr>
<th>壓力</th>
<th>P</th>
<th>t (計測)</th>
<th>t (計算)</th>
<th>誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>53.6</td>
<td>57.0</td>
<td></td>
<td>-7.4</td>
</tr>
<tr>
<td>2.0</td>
<td>93.1</td>
<td>34.1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>24.2</td>
<td>22.8</td>
<td></td>
<td>+5.8</td>
</tr>
<tr>
<td>3.0</td>
<td>17.7</td>
<td>16.5</td>
<td></td>
<td>+6.7</td>
</tr>
<tr>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>4.0</td>
<td>10.0</td>
<td>9.9</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>6.2</td>
<td>6.6</td>
<td></td>
<td>-6.4</td>
</tr>
</tbody>
</table>

$$
\log \frac{1}{D} + n \log p = \log k
$$

更にかかる圧力にてデューデンによりヴィスコースの押出しがある場合を考えるに、高圧下の報告11報を観るに、圧力を2—3—4気圧に変化して、一定の浴中にデューデンを通じてヴィスコースを押出し、一定の速度にてポリビニオンを挟きたい粘度のデーニールを測定しき、デーニールの逆数$/D$はヴィスコースの流出時間を示す故に Ostwald の式より

$$
\frac{1}{D} \times p^n = k
$$

なれども、どのような程度にデーニールが一致するかを知るには大過なくべし。

第11報(繊維素工業、昭和2, 3, 117)

<table>
<thead>
<tr>
<th>実験結果 イ, 熟成14日, $n = 1.46, k = 0.446$</th>
<th>実験結果 イ, 熟成16日, $n = 1.46, k = 0.533$</th>
</tr>
</thead>
<tbody>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
</tr>
<tr>
<td>4</td>
<td>16.9</td>
</tr>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>12.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実験結果 イ, 熟成16日, $n = 1.46, k = 0.479$</th>
<th>実験結果 イ, 熟成16日, $n = 1.41, k = 0.665$</th>
</tr>
</thead>
<tbody>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>12.1</td>
</tr>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>10.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実験結果 イ, 熟成14日, $n = 1.66, k = 0.380$</th>
<th>実験結果 イ, 熟成16日, $n = 1.56, k = 0.255$</th>
</tr>
</thead>
<tbody>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>18.4</td>
</tr>
<tr>
<td>4</td>
<td>25.3</td>
</tr>
<tr>
<td>壓力</td>
<td>D (計測)</td>
</tr>
<tr>
<td>2</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>22.8</td>
</tr>
<tr>
<td>4</td>
<td>33.4</td>
</tr>
</tbody>
</table>

上記の如く Ostwald の式を利用して相当より実験結果を変形するものなり。