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Abstract 

A great number of Image Processing and Recognition Methods, software pro-

grams and systems have been proposed or developed all over the world. Some of 

them deal with image processing itself, whereas others focus on the recognition 

or further understanding. Image Recognition and Understanding, however, has 

remained a quite difficult field to be tackled with. 

  The research in this thesis places much emphasis on constructing a flexible 

image analysis system which utilizes local features efficiently. A framework for 

flexible feature description, a framework for performing image processing and 

further recognition tasks according to description of features, and a framework 

for flexible control of these processes are investigated in this research. Paral-

lelism of execution is also an important factor in considering image analysis, 

since image analysis has a considerable degree of potential parallelism in many 

forms (spatial parallelism, etc.). Therefore, the realization of parallel execution 
of image analysis is also focused on. 

  The research presented in this thesis includes two systems for Image Pro-

cessing and Recognition. In the first part of this thesis, a system for recogniz-

ing overlapping two-dimensional objects (RTS) is described which proposes a 
methodology for recognizing scenes where already known objects are partially 
occluded. A method for recognizing the objects by integrating locally residing 
features that were detected from an image is described in this part. In the sec-
ond part of this thesis, a system (PAFE) for feature extraction which provides 
a flexible platform for defining structural features as well as primitive features 

is proposed for the realization of parallel execution of the feature extraction 
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processes. A method for the integration of locally residing features is also dis-
cussed in this part. The aim of this research is not to select general features 

that can be applied to all kinds of applications, but to construct a general plat-
form which allows any kinds of features to be used without provoking serious 

conflicts. In both of the approaches, the integrating of local features, which are 
fragments, into some kind of meaningful structure such as a part of an object, 

a complete object or a scene description, is discussed. 
  In Chapter 2, a system RTS for the recognition of overlapping two dimen-

sional objects is described. The features that are useful even for the partially 

occluded objects are introduced. The method to synthesize them according 

to model description and the method to infer object models from combined 
features are also shown in this Chapter. Moreover, a method to match them 

to object models is presented. 
  From Chapter 3 to Chapter 5, a system PAFE is presented. The framework 

for feature definition, the system's basic structure with the multi agent model 

and the system's mechanism for parallel execution are described. In Chapter 3, 
the framework for defining features is shown. In Chapter 4 the organization of 

the system with the multi agent model is presented. In Chapter 5, a methodol-
ogy for the extraction of structural features in parallel processing is presented. 

This method includes parallel feature extraction of bottom-up ways, top-down 
ways and their combinations. Some experiments are also shown in Chapter 6.
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Chapter 1 

 Introduction 

A great number of Image Processing and Recognition Methods, software pro-

grams and systems have been proposed or developed all over the world. Some of 
them deal with image processing itself, whereas others focus on the recognition 

or further understanding. Image Recognition and Understanding, however, has 

remained a quite difficult field to be tackled with. 
  One of the major research topics in image recognition is the problem of 

object modeling, feature definition and feature extraction. A number of re-

search efforts were devoted to defining the features, objects and scenes in the 
images irrespective of the dimensionality (1D, 2D, 3D, ...). Since it is extremely 

difficult to find a general description that covers all the kinds of objects and 

scenes, many specialized methodologies were independently proposed for deal-
ing with many specific targets. Some of them work fairly well for the specific 

targets to which they are directed. Few of them, however, work for a wide 
variety of target due to the extreme difficulty of the construction of a general 

and complete set of features and models. This is the cause for the tremendous 
amount of work needed for developing methods, programs, and systems, for 

each target, although the many methodologies, features and feature extraction 

control structures have many common properties. 
  Therefore, modularity and portability of the features and objects descrip-
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CHAPTER  1. INTRODUCTION2 

tions should be investigated, even though generality of description can not be 

achieved at present. A flexible framework is required which can utilize many 
kinds of object descriptions. For instance, a system is required which can 
be customized for various types of targets, which may be partially occluded 
objects defined by arbitrary structural features and varying with time. 

  At the same time, a framework is required which provides automatic ex-

traction of features according to the feature definitions provided by the user 
or other systems. This implies the need for feature extraction planning and 

execution control. 
  In this thesis, two systems for Image Processing and Recognition are pre-

sented. In the first part, a system for recognizing overlapping two-dimensional 
objects (RTS) is described which proposes a methodology for recognizing scenes 
where already known objects are partially occluded. A method for recognizing 
the objects by integrating locally residing features that were detected from an 
image is described in this part. In the second part, a system (PAFE) for feature 
extraction which provides a flexible platform for defining structural features as 
well as primitive features is proposed for the realization of parallel execution 

of the feature extraction processes. A method for the integration of locally 
residing features is also discussed in this part. The aim of this research is 
not to select general features that can be applied to all kinds of applications , 
but to construct a general platform which allows any kinds of features to be 
used without provoking serious conflicts. In both of the approaches, the inte-

grating of local features, which are fragments, into some kind of meaningful 
structure such as a part of an object, a complete object or a scene description, 
is discussed. 

1.1 Recognition of Overlapping Objects 

Recognizing overlapped and occluded objects is one of the most important 

topics in automation and robot vision systems. Not only occlusion but also 

the incompleteness of image processing techniques lead to the same situations
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in which the features of objects are not completely extracted. Therefore, the 
recognition of partially occluded objects is quite important and widely related 
to other tasks in the image recognition field. 

  When occlusion occurs, recognition becomes difficult due to two reasons. 
One is the problem of segmentation and the other one is partial matching. 
Most of the traditional pattern recognition approaches are too weak to cope 
with these problems, since they require that the unknown objects be extracted 
before their feature values can be measured. For instance, topological features, 
central moment, area, or perimeter used in such approaches are not preserved 
when the objects are partially occluded. 

  Recently some methods were proposed for tackling these problems  [Tro8l, 
Hae82, AF86]. Certain sets of local features are used to define objects. In most 
cases, they are straight lines and circles (sometimes ellipses). These methods 
try to match a set of local features in the image with a set of local features of 

a model. Though they work fairly well for the problem of partial matching, 
they have no proper means for effective selection of candidate models. In other 
words, no means for inferring models from features extracted from the image 

are provided. Therefore, the cost of processing increases exponentially with 
the number of models. 

  A new method for the recognition of partially occluded 2-D objects is pro-

posed in this thesis. The research focuses on the problem of inferring models 
from a set of local features. This method considers a set of corners, parallel 

lines and so on as typical features of objects. Possible candidate models are 
estimated from these features, and structural matching is performed between 

these models and the features obtained from a picture by constructing larger 

structures that are the combinations of various features. Even if the whole 
structure is not obtained due to partial occlusion, the system can infer an ob-

ject if some unique features of the object are obtained. With this method, 
recognition of 2-D objects becomes easier because the number of exact match-

ings performed in a recognition process becomes smaller.
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1.2 Parallel Feature Extraction System 

   (PAFE) 
Many systems have been proposed for image recognition, analysis and under-

standing. There are systems that interprets aerial photographs with black-

board model by Nagao and Matsuyama  [NM801, ACRONYM [BGB79j for 
the interpretation of 3D scenes by Brooks, and a system for the understand-

ing of outdoor scenes by Ohta [Oht87]. Recently, a number of more so-

phisticated experimental systems have been constructed for different appli-

cation domains, such as the interpretation of high-altitude aerial photographs 

[NM80, FP81, DMM85, MH90] including airport scenes; and for outdoor scenes 
[Oht87, HR78, Dea89, AK87] . 
   Some of them are based on the production system or the blackboard model 

[Nii86a, Nii86b1. In these models, data, i.e. images and features extracted 
from them, are stored in shared memory which can be accessed by many other 
modules. The rules or procedures, which are pieces of knowledge about the 
target objects and knowledge about the operations to be performed in the 
systems, process and modify the data in the shared memory. These frameworks 
provide quite flexible platforms for image interpretation, since various kinds of 
data and knowledge can be handled in the same framework. While success has 
been demonstrated to various degrees, developing a domain-independent and 
systematic framework for constructing knowledge-based image interpretation 
systems is still an open problem. 

  One serious problem left open by the above researches is modularity of 
object modeling and feature definition. In other words, knowledge about ob-
jects (features, models etc .), procedures for extracting features and control 
strategies for the recognition process are often mixed in both implicit and ex-

plicit ways in the programs, rules and pieces of knowledge. A large number 
of very complicated programs and rules were developed for each specific task , 
which cannot be applied to other domains. Therefore a framework for defin -
ing features, objects, scenes, feature extraction and object recognition is still
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needed. 

  Another serious problem is the maintenance of consistency and parallelism 

of execution. Many algorithms and systems, including special hardware, have 

been proposed for low level image processing, since the computations at low 

level are well suited for parallel processing. On the contrary, problems of 

in connection with intermediate and high level image analysis such as the 

extraction and recognition of structural features have not been well thoroughly 

investigated, although some systems have been reported [Dea89,  Oht91]. In 
this sense, parallel processing has not received enough attention in the image 

interpretation systems mentioned above. Since a large number of rules and 

procedures have to be integrated in each system in various forms, it is quite 
difficult to maintain consistency during execution. One rule may rewrite the 

data into A, while another rule may rewrite the same data into B causing 

complicated conflicts. At the stage of high level recognition, the data including 

intermediate results are mutually depending on each other. Therefore, it it 

extraordinarily difficult to maintain consistency with approaches such as the 

blackboard model. 

  Nevertheless, there are many areas of application for parallel processing in 

intermediate level processes, i.e. feature extraction or feature synthesis. The 

features can be hypothesized, detected and discriminated with considerable 

amount of parallelism. A great amount of effort should be invested into this 

research topic. 

  In this thesis, a system called PAFE, which provides a flexible platform for 

feature extraction, is presented. 

  There are three objectives in this system: 

  • A flexible framework for feature definition 

  • Coarse grained parallelism 

  • Flexible control of feature extraction with multiple agents 

  To achieve these objectives, modularity of feature definition, feature ex-

traction and control is an essential factor. In this system, features are defined



CHAPTER 1. INTRODUCTION6 

in a structural and hierarchical way. Features and their extraction methods 
are organized in a feature extraction network. In this network, features can 
be defined and extracted in multiple ways. Various kinds of features can be 
defined with the framework proposed for the PAFE system. 

  This system is constructed based on the multi agent model, in which many 
agents work co-operatively and concurrently. In this sense, the structural defi-
nition of the features plays an important role also for the realization of parallel 
execution. The modularity of the hierarchical definition of features makes it 
possible that the extraction of higher level features can be divided into sub-
problems of extraction of lower level features. One of the objectives of this 
system, coarse grained parallelism, can be realized by the parallel execution 
of multiple extraction methods for one kind of feature in parallel or by the 
extraction of multiple kinds of features in parallel. Also another objective of 
flexible feature extraction is achievable through the combinations of top-down 
extraction and bottom-up extraction performed by many agents. 

  The efficiency of the proposed framework was verified in some experiments 
in which this system was applied to some 2-dimensional objects. 

1.3 Outline of the thesis 

In Chapter 2, a system RTS for the recognition of overlapping two-dimensional 

objects is described. Features that are useful even in the presence of partially 
occluded objects are introduced. A method for synthesizing such features ac-

cording to model descriptions and a method for inferring object models from 

combined features are also shown in this Chapter. Moreover, a method for 
matching these features to object models is presented. 

  From Chapter 3 to Chapter 5, the PAFE system is presented. The frame-

work for feature definition, the system's basic structure together with the multi 
agent model and the system's mechanism for parallel execution are described . 
In Chapter 3, the framework for defining features is shown. In Chapter 4 

the organization of the system on the basis of the multi agent model is pre-
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sented. In Chapter 5, a methodology for the extraction of structural features 

suitable for parallel processing is presented. This method includes parallel fea-

ture extraction in bottom-up mode, top-down mode and their combinations. 

Experimental results and the evaluation are given in Chapter 6.



Chapter 2 

Recognition of Overlapping 

Objects 

In this chapter, a system (RTS) for the recognition of overlapping objects is 
presented. The objectives of this system are the selection of features that are 
useful in such situations and to develop an efficient method for the recognition 
of partially occluded objects. 

2.1 Introduction 

Recognizing overlapped and occluded objects is a very important problem in 
automation and robot vision systems. In many situations, objects touch, over-
lap and occlude each other. For example, the task of bin-picking requires the 
recognition of scenes where work-pieces are scattered in a bin. In such situa-
tions, recognition is  difficult for two reasons. One is the problem of (1) segmen-
tation and the other one is the problem of (2) partial matching. Many of the 
traditional pattern recognition approaches are too weak to handle these prob-
lems, since they require complete objects to be extracted in order to measure 
their feature values. For instance, topological features, central moment, area 

and perimeter used by these methods are not preserved when the objects are 

                        8
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partially occluded. 
  Recently some methods were proposed for tackling these problems. They 

work generally well for partial matching of a partly occluded object with a 
model [Hae82,  Tro81, AF86]. Several research reports [5H86, RB84, Rum86] 
describe how the recognition process can be implemented by tree search. They 

focus on one feature (straight line, circle, etc.) and check whether it possibly 
matches a model feature. If it does, the focus shifts to extracting the next fea-

tures to be compared again with the model features. Finally the best matching 
is determined. However, these approaches have no proper means for efficient 

selection of candidate models. In other words, these methods have no efficient 
means for selecting models from features extracted from an image without 
matching. For instance, the researches reported in [Hae82, Tro81, AF86] check 
every possible correspondence between a line in the image and a line in a model 

until a valid one is found. Therefore the larger the number of models is, the 

higher the cost of processing becomes (exponential growth in the worst case). 
  To solve this problem, we propose a new method of inferring models of 
an object from its parts. In this method, several kinds of local features and 
relationships between them are utilized to express an object as well as a set 
of primitive features (that is, straight lines). The uniqueness of the candi-
date model which matches the recognition object is verified by building larger 
structures thorough combinations of those local features. More concretely, a 
2-D object is considered as a set of local topological features such as corners 
and parallel lines. Partial models are inferred from these features. Then by 
combining these features according to local topological relations of lines, the 
number of the candidate models is reduced to a small number. When the set 
of candidate models is reduced to a single model, detailed matching between 
the model and lines extracted from the image is performed. 

  The outline of our system is shown in Fig. 2.1. The system has two kinds 
of data of the recognition objects. The first kind is data of individual models 
consisting of lines and features of the model, and the second kind is data of the 

feature-to-model-table (an inverted table derived from the first data set) which
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            Input (Gray Scale Image) Input (Images of Models) 

 tr 
              Preprocessing 

             Line Extraction 

   / i i.............................................................................. 
            Local Feature Detection 

l.................................... ti------------ 
                                          Feature to Model 

        Model Inference-Table bleJ: 
            Local Feature Construction 

            !fFlies of Individual 
                                          Models 

            Matching in Detail 

—'-0- Flow of Recognition Process 

a" Flow of Model Construction Proceess 

                               Reference 

          Figure 2.1: Overview of the Recognition System 

contains all features gathered from all models. The data in the feature-to-

model-table is referred to in the model inference step, while the data containing 

the individual models is referred to in the detailed matching step. The recogni-

tion process consists of three steps and is performed as shown in Fig. 2.1. The 

structural model description and the modeling process are semi-automatic as 

is indicated by the dotted arrows in Fig. 2.1. 

  With this system, we can manage many models efficiently. Flexible recog-

nition can be achieved, because the most probable candidates are checked first. 

The efficiency of this method was tested by recognition experiments with 2-D 

objects such as pliers, screwdrivers and so on.
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2.2 Features and Model Description 

The primitive feature used in this system is the straight line, since extraction of 

straight lines is relatively easy compared with other features such as curvature, 

regions or textures. The local features utilized in this system are composed of 

straight lines. Curves are approximated as a set of straight lines. 

  In this research, the camera is assumed to be right above the objects, but 

the camera-to-object distance is unknown. The essential data of a straight line 

is a pair of starting point and ending point positions. This data is too weak 

for inferring corresponding candidate models, since rotation and scale changes 

do not preserve these values. More complicated structures than the straight 

line are needed for this model inference problem; for example, corners, parallel 

lines or even more complicated structure must be utilized. 

  Moreover, only relative characteristics of model features should be used for 

dealing with scale changes. In other words, objects should be considered as a 

set of relative characteristics of line combinations. 

Features 

Because of the constrained camera location, only rotation and scale changes 

must be considered. This implies that four degrees of freedom are to be han-

dled. Since a corner and a parallel line pair consist of two lines (which means 
four points 1), they are theoretically  sufficient for inferring a model. When 
occlusion occurs, however, false end points may be detected. In this situation, 

even a corner or a parallel line pair are not sufficient. 

  On the other hand, inner-angles of corners are preserved under rotation, 

scale changes and occlusion, although they may not be sufficient to uniquely 

determine candidate models. Many of them remain unchanged even when 

objects are partially occluded. The aspect ratio of the parallel lines is preserved 

1In reality
, a corner has three points because the corner point should be treated as one 

point.
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under rotation and scale changes, but it is not preserved in the case of occlusion. 

However, approximate correspondences may be found, because the aspect ratio 

never increases in any case. In other words, models with larger aspect ratio 

than the parallel lines in the image can be considered as candidate models. 

  Therefore, corners and parallel lines are used as significant features in our 

system. As for parallel lines, if more than three lines are parallel to each other, 

they are treated as a third kind of feature (multiple parallel lines). 
  The characteristics that represent the features used in the system can be 

summarized as follows. 

Corner: The characteristic used to represent a corner is the inner angle. 

Parallel lines: The characteristic is the aspect-ratio of the region which is 

    bounded by the parallel lines. The aspect-ratio is calculated as follows: 

                   aspect-ratio =  2d/(11 + 12) 

    where d is the distance between the two lines, ll and l2 are the lengths 

    of the two lines. 

  Only these features with their characteristics are used to infer the local 

features of models. 

Relations 

Many relationships which are preserved because of the particular camera ar-

rangement are possible, since a combination of two or more than two lines has 

more than four degrees of freedom. From these relationships , we chose four 
relations which commonly appear between lines in the objects. They are (1) 
connected, (2) parallel, (3) collinear and (4) adjacent (shown in Fig. 2.2). They 
appear in an image even when objects are partially occluded. The lines and 
features which satisfy these relations have a high probability of belonging to 
the same object. The relations (1) and (2) are used for detecting local features 

(corner and parallel lines, respectively). The two other relations are used to 
combine features in the model inference step.
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                 Figure 2.2: Relations of Lines 

Model Description 

The structural description of models is composed of two parts as mentioned 

before (shown in Fig. 2.3). 

  1. A set of lines : positional data of component lines 

  2. A set of features : corners, parallel lines and multiple parallel lines. 

  The first part is the positional data of the component lines. Each model 
has its own coordinate system, with respect to which the locations of lines are 
determined. It is not necessary that the lines are identical with object contours 

(that is, object boundaries) and that they are connected to each other end-to-
end. The second part consists of the features of the models, i.e. corners or 

parallel lines. 

Feature-to-model-table 

When a feature is extracted from an image during the recognition process, the 

objective of the recognition process is to find those models that possibly have 
this feature. It is necessary to search for models whose features' characteristics 

are consistent with the features that were obtained from the image. For this 

purpose we prepared the feature-to-model-table. In this table, all features of
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[MODEL DESCRIPTION] 

 <MODEL>::.(<LINE DATA>,<FEATURE DATA>) 
<LINE DATA>LIST OF LINE'S ATTRIBUTES (POSITION DATA) 
<FEATURE DATA>::=(<CORNER LIST>,<PARALLEL-LINES LIST>, 

                      <MULTI-PARALLEL-LINES LIST>) 

[EXAMPLE] 

NAME: MODEL-2 

, ; <<LINE-DATA>> 
;; (1) LINE-ATTRIBUTE-LIST: 
„ <line>::=(<name>,<x1>,<y1>,<x2>,<y2>,<length>,<orientation>) 

       ((LINE1 -99.375 -11.875 -128.375 47.125 65.74192 116.17529) 
        (LINE2 153.625 -3.875 -128.375 46.125 286.39832 169.94566) 
        (LINE3 72.625 -31.875 154.625 -2.875 86.977005 19.476574) 

        (LINE4 72.625 -31.875 -97.375 -10.875 171.29214 172.95795)) 

;; <<FEATURE2-3DATA>> 
;;(2) CORNER-LIST: 
;; <corner>::=(<angle>,<model-name>,<linel>,<line2>,<type>) 

      ((29.530884 MODEL-2 (LINE2) (LINE3) 2) 
(153.48137 MODEL-2 (LINE3) (LINE4) 1) 

       (123.21735 MODEL-2 (LINE4) (LINE1) 3) 
        (53.770386 MODEL-2 (LINES) (LINE2) 4)) 

;;(3) PARALLEL-LINES-LIST: 
;; <parallel-lines>::=(<aspect-ratio>,<model-name>,<linel>,<line2>) 

((4.9520884 MODEL-2 (LINE2) (LINE4))) 
;;(4) MULTI-PARALLEL-LINES-LIST: 
;; <mp-group>::=(<number-of-lines>,<parameters>,<model-name>,<lines>) 

      nil 

Figure 2.3: Model Description
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all models are sorted by their characteristics. For example, Fig. 2.4 illustrates 

a feature-to-model-table for corners. This table is modified when the set of 

models is changed (addition, deletion or modification of models). 

2.3 Preprocessing,Line Extraction 

    and Grouping 

The flow of the model inference process is shown in Fig. 2.5. This process 

consists of two parts. The first one is (A) feature extraction and grouping of 
lines, and the second one is (B) model inference by local feature construction. 
The former part is described in this section and the latter part is described in 

the next section. 

Preprocessing 

Pictures of the recognition objects are taken by TV-camera and are fed into the 

image processing unit. Subsequently the following operations are performed 

sequentially: (1) smoothing by averaging filtering, (2) differentiation by Sobel 
operator, (3) binarization by thresholding and (4) noise elimination by region 
growing and region reduction. For example, the binary image shown in Fig. 2.7 
was computed from the original image shown in Fig. 2.6. 

Line Extraction 

After preprocessing, lines are extracted from the binary image by the variable 

size slit method. At first, a large slit is applied to the whole picture and projec-

tion curves are  obtained. If there are some sharp peaks in the projection curves 

which exceed a certain threshold, lines may exist in this part of the image along 

the slit. Then, several narrow slits as shown in Fig. 2.8 are applied to these 

parts to investigate whether lines exist or not. By repeating these operations
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[DESCRIPTION] 

<feature-to-model-table>::=(<model list>,<data list>) 

<model list> : list of models 

<data list> : list of features extracted from models 

<feature>::=(<property(single value)>, 

<model-name>,<component-lines>) 

[EXAMPLE] 

FEATURE-TO-MODEL-TABLE FOR CORNER 

;; <<MODEL-LIST» 

(KNIFE HEXAGON WIRE2 WIRE YATTOKO CAP PEN-CAP PLIERS CLIP RIBBON) 

;; <<DATA-LIST>> 

;; <corner>::=(<angle>.<model-name>,<linel>,<line2>) 

      ((1.1864014 YATTOKO (LINE10) (LINE1)) 

       (84.41774 CAP (LINE8) (LINE1)) 

       (84.79385 PLIERS (LINE11) (LINE10)) 

       (86.84451 HEXAGON (LINE3) (LINE7)) 

       (88.45166 KNIFE (LINE6) (LINE7)) 

       (89.71416 KNIFE (LINE7) (LINE1)) 

       (89.97446 RIBBON (LINE11) (LINE10)) 

       (90.80713 CLIP (LINE2) (LINE3)) 

       (90.86807 RIBBON (LINE10) (LINE9)) 

       (332.1392 YATTOKO (LINE8) (LINE9)) 

       (335.8559 WIRE (LINE9) (LINE10))) 

                Figure 2.4: Feature-to-Model Table
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                 Figure 2.7: Differentiated Image
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            Figure 2.8: Line Extraction by Slit Method 

with changed directions of the initial large slit, lines in every direction and of 

a certain minimum length can be extracted. 
  The result of line extraction applied to Fig. 2.7 is shown in Fig. 2.9. 

Relation Detection and Grouping of Lines 

Line relations are detected by checking whether a combination of two extracted 
lines satisfies any one of the four relation criteria defined in Section 2.2. 

  Next, those lines which are identified as being related are grouped. As 
shown in Fig. 2.10, lines are properly divided into groups, if reliable contours 

of objects are extracted. However, it is often difficult in a real image to divide 
them into proper groups, owing to occlusion, shadows and the imperfectness 

of the line extraction process. Since lines, which are grouped together, may be 

component lines of a single object, they are not further split up.
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              Figure 2.9: Result of Line Extraction 

2.4 Model Inference by Local Feature Con-

     struction 

For each group formed in the previous step, candidate models are inferred 

according to the steps indicated in Fig. 2.5. Since small structures (local fea-
tures) are too weak for inferring candidate models uniquely, larger structures 
are generated by repeatedly combining those local features during the recog-

nition process. The following terms are used in this section (illustrated in 
Fig. 2.11). 

Partial structure A set of features composed of lines which are extracted 

    from an image. Corners and parallel lines are the smallest partial struc-

    tures. A combination (union) of partial structures is also a partial struc-
      ture.
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  Relation between lines: 

  connected : (1 9), (3 4), (5 8), (6 7) 

    parallel : (3 5), (4 8) 

   collinear : (2 6), (7 9) 

 Result of Grouping: 

Groupl = { 1, 2, 6, 7, 9 } 

   Group2 = { 3, 4, 5, 8 } 

           Figure 2.10: Example of Grouping Procedure
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Partial model A set of model features. Corners and parallel lines in models 

    are the smallest partial models. 

Hypothesis A hypothesis about a correspondence between a partial structure 

    and a partial model. Hypotheses are attached to each partial structure. 

    This means that candidate models of a partial structure are held by the 

    hypotheses attached to this partial structure. 

Construction An operation for combining partial structures into larger par-

    tial structures. 

  With the above notation, the purpose of the recognition step is expressed 

as the construction of larger partial structures whose candidate partial models 

amount to a very small number. Construction is performed based  on relations 

defined in the preceding section. 

  First, partial models (i.e. corners and parallel lines in models) are inferred 
for each feature. Since the features used in this research do not uniquely 
distinguish models but are common to many models, there are often many 

partial models consistent with the features. This implies that the correct model 
of an object cannot be derived from a single feature in most cases. Therefore a 
combinations of various kinds of features is necessary for deriving the correct 

model. Second, in our method, the consistency of partial models suggested by 
the features is checked. If they are consistent, the features are combined into 

one compound feature (this step is called construction). By doing this, the 
candidate models can be reduced to a set containing only the most probable 

ones. These combinations of features are tested in the order given by the 

probabilities that the lines belong to the same object ( described in Section 2.2). 
When the number of candidate models is reduced to one, detailed matching 

is performed directly between lines extracted from the image and lines in that 

model.
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 [Partial Structure] 

<partial structure> ::= (<SL>. <HYP>) 

<SL> ::= A set of lines extracted from an image 

<HYP>::= A set of hypotheses of correspondence 

       between <SL> and <partial model>s 

<partial model> ::= A set of lines in models 

[Example] 

                                          L4 
L1 

L3 
L2 

SL = {L1, L2, L3, L4} 

HYP = {PM1, PM2, ...., PMn} 

where 

       PM1 = {M11, M12, M13, M14} 

PM2 = {....} 

"M*" indicates a line in models , 
"PM*" indicates a partial model . 

             Figure 2.11: Example of a Partial Structure
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                Figure 2.12: Division of Junction 

2.4.1 Model Inference from Corners 

Partial models are inferred from corners extracted from an image as follows. 

At first, the corners are generated as the smallest partial structures. For each 

partial structure, a set of hypotheses (i .e. hypothetical correspondences be-
tween lines included in the partial structure and candidate partial models) is 
given. 

  • Complex junctions are divided into sets of line pairs on the basis of judge-

    ments about the length of the lines, inner angles of the pairs and average 

    gray-levels of certain regions (as shown in Fig. 2.12). By doing this, 
    complicated junctions are modified into a set of simple corners for which
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                                     Treat as one line 

   Figure 2.13: A sequence of lines are approximatedby a straight line 

    candidate corners in models can be inferred. 

  • Lines which form an obtuse corner (angle close to  180°) are re-labeled 
    as a single line as shown in Fig. 2.13. This makes it easy to match sets 

    of lines which approximate smooth curves (as shown in Fig. 2.14, if the 
    scale changes the lines are extracted differently.). 

  • The inner side of each sequence of connected lines including corners is 
    determined by judgements about the average gray-levels of small regions 

    along these lines (as shown in Fig. 2.15) and the sum of the inner angle 
    for each side. The side whose gray-level is approximately the same as 

    the gray-level of the background is regarded as the outer side. If the 

    gray-scales of both sides are not close to the level of the background, the 
    side which has the bigger sum of inner angles is regarded as the outer 

    side. 

  • Finally, partial structures are created based on corners (one partial struc-

    ture for each corner). Corresponding partial models are suggested by 

    referring to the feature-to-model-table. These partial models are the cor-
    ners of models which have inner angles within some tolerance of the inner 

    angle of the corner in the image. The correspondence between the par-

    tial structure and the partial models is attached as a hypothesis to each 

    partial structure. 

  These operations are sufficient for the planar objects used in this research, 
which consist of straight lines and do not contain many lines in their inner 

regions.
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           Figure 2.14: Example Line Extraction Result 

 Pr  = (P1+P2)/2P2 

P1 

P4 

PI = (P3+P4)/2 
P3 

         P1, .. ,P4 : Average gray level in a small region 
                alongside a line. 

           Figure 2.15: Gray level at both side of a line
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2.4.2 Construction of Corners 

Combinations of corners are considered in this step. If more than two corners 

exist in neighboring positions (this means that two corners share a line), the 
corners are combined, if the candidate partial models corresponding to the 
image-space corners are consistent. 
  For example, assume that in the image  corner]. (consisting of L1 and L2) has 
a corresponding set of candidate models called a_set_of_model_corners1 and 
that corner2 (consisting of L2 and L3) has a_set_of_model_corners2. When 
we consider the combination of corners and corner2, the combined partial 
structure will consist of L1, L2 and L3. In this case, the pair of partial models 

which share the same line can be a candidate for the combination of corners 
and corner2. Now suppose that a partial model model_corner1 consists of 

M1 and M2i another partial model model_corner2 consists of M2 and M3. The 
combination of those partial models is consistent because of the common model 
line M2, so it can become a new partial model consisting of M1, M2 and M3. 

  If there are such models, a new partial structure for the combined corners 

is created (as shown in Fig. 2.11). In this operation, if a set of lines in one 

partial structure implies a set of lines in another partial structure, the implied 

partial structure is deleted (only the biggest one is kept). Even if some partial 
structures are inconsistent, they can co-exist. The reason for this is that the 

evidence from the partial structures may not be strong enough to determine 

which of the structures is correct. 

2.4.3 Model Inference from Parallel Lines 

Partial structures are generated from parallel lines in this step. Candidate 

partial models are also inferred and hypotheses are attached to each partial 
structure. Since lines may be shortened owing to occlusion, parallel lines in 

the model, which have larger aspect ratios than parallel lines in the image, are 

treated as candidate partial models. Therefore parallel lines which have small 

aspect ratio have many candidate models, and therefore only those parallel
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lines, which have large a aspect ratios, are used in this step. 

  Partial structures are generated from multiple parallel lines in the same 

way. First, a partial structure is created for each multiple-parallel-lines, and 

then hypotheses are attached to it. 

  Moreover, if a partial structure exists which contains both lines of a parallel-

lines, the consistency between candidate models of parallel lines and those of 

this partial structure is checked. Then, the number of hypotheses for this 

partial structure is reduced (as shown in Fig. 2.16). 

2.4.4 Construction of Partial Structures 

Since in most cases partial structures generated as described in the previous 
steps have many candidate models, further combinations of partial structures 
are attempted to reduce the number of their candidate models. The conditions 
for generating combinations are the relations between lines mentioned before 

(section 2) and the directional consistency of partial structures as shown in 
Fig. 2.17. For example, in the case of the co-linear relation , if end line seg-

ments of two partial structures are co-linear and the inner regions of the two 

partial structures (determined in the previous steps) are on the same side of 
the two lines as shown in Fig. 2.17(a), they are combined into a bigger partial 
structure. In this way, bigger partial structures, whose lines are union of the 

lines of their component partial structures and whose candidate models are 

the intersection of the lines of the candidate models of the components , are 
generated repeatedly. 

  The operations are as follows. At first, the relations extracted in the feature 

extraction step are selected in the order co-linear , parallel and adjacent. Partial 
structures including these selected relations are searched for each pair of lines 

which satisfy the relations. For two sets of partial structures obtained in this 

way, each combination of the partial structures included in different sets are 

checked. Then the consistency of the candidate partial models are checked and 

a new partial structure is generated from them. If two partial structures in the
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 L1 2 

L3 

L4 

          1. Candidate partial models from the sequence of cor-

            ners (sequence of lines {L1 — L4}): 

                 SCM1 = {PMoi, PMo2, PM03} 

PM01 = {MI,M2,M3,M4} 

PMO2 = {M5,Ms,M7,M8} 

PM03 = {Ms, M10, M11, M12} 

          2. Candidate partial models from the parallel lines 

           (parallel lines {L1, L4}): 

                 SCM2 = {PMII, PM12, PM13} 

PMII = {M1, M4} 

                 PM12 = {M5, Ms} 

                  PM13 = {Ms, M11} 

          3. Candidate partial models after checking the both 

            conditions 

                     SCM3 = {PM01} 

    Figure 2.16: Candidate models after checking the both conditions
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           Figure 2.17: Combination of Partial Structures 

combination are identical, only the check of candidate models is performed as 
described before in Fig.17. 

2.4.5 Operation on Remaining Partial Structures 

After all combinations are tested, there still may remain partial structures to 

which plural candidate models correspond. In such a case, detailed match-
ing is performed for each candidate model, and the one with the highest 

score is regarded as the detailed matching result for this partial structure. 
If detailed matching was performed for partial structures which contain only 

a few lines but have many candidates, more objects could be found. The 
cost and efficiency of recognition, however, must be traded off Therefore de-
tailed matching is performed for those partial structures which have a large 

[number-of-lines / number-of-candidate-models] ratio.
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              Figure 2.18: Flow of Matching Process 

2.5 Detailed Matching 

Since partial structures obtained from the model inference process contain only 

partial information about the model, matching must be performed globally to 

ascertain that the candidate model is the correct one. If plural candidates 

exist, a degree of matching (goodness of fit) must be evaluated for finding 
the best match. The matching process consists of two parts: (a) Searching 
for correspondences of lines and calculation of the translation parameters, and 

(b) evaluation of the matching degree.
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2.5.1 Translation Parameters 

As we assume that objects are 2-D shapes, the transformation of coordinates 
from model to image is linear (rotation, shift, scale change). The initial trans-
lation parameters are calculated from the correspondences of lines in a partial 

structure. Though translation parameters can be obtained from a correspond-

ing pair of lines, i.e. two corresponding pairs of points, only end points of 

lines at which lines connect to other lines are used because of the possibility 

of occlusion. If plural corresponding pairs of points are acquired, the transla-

tion parameters are determined by computing the weighted mean value of the 

parameters for each individual line as follows: 

 P=>L,•P,/  >L,(2.1) 

where L, is the length of the i-th line (or distance between the terminal two 
points), P, represents the value of parameters calculated for each line, and P 
is the resulting initial translation parameter. 

  The reason for computing the average is that longer lines are likely to be 
less affected by noise and line extraction errors. Though this method is less 
accurate than the minimization of the distance between lines by applying the 
least squares method as performed in [Low87], it is less expense and has proved 
to be sufficient in our experiments. 

2.5.2 Searching for Lines 

The following search methods are used: 

 (a) Search by relation : A line in the model, which does not yet correspond 
    to a line in an image and which has at least one relation with lines 

    already corresponded to image lines, is selected . Then the correspond-

    ing line in the image, which satisfies this relation , is searched for. As-
    sume that image-line-1 corresponds to model-line-1 and that model -line-1 

    and model-line-2 satisfy relation-1. Then in order to find image -line-2
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    corresponding to model-line-2, image-lines which satisfy  relation-I with 

image-line-1 are searched for. This method is less affected by transla-

    tion parameter errors, and the computation is much simpler, because the 

    relations have already been extracted during the model inference step. 

 (b) Search by translation : The expected positions of lines in the image, 
    which correspond to lines in models,are calculated from the translation 

    parameters, and lines close to these positions are searched for. By this 

    method, those lines which have no relations to other lines can be found. 

    This method is very much influenced by translation parameter errors and 

    the cost of searching is much higher than that of method (a). 

  In our method, (a) precedes (b). When no lines can be found by (a), (b) 
is applied. If a corresponding line is found, the translation parameters are 

modified by this corresponding pair as follows. 

2.5.3 Verification of Correspondence 

The candidate lines found by searching are tested and the translation param-

eters are modified by equation 2.1. The individual translation parameters are 

calculated for the corresponding pairs, and the global translation parameters 

are modified by these values, if the new values exceed the old values by a 

certain amount. 

2.5.4 Evaluation of Matching 

Through the searching described above, the possible correspondences between 

image lines and model lines are obtained. Translation parameters are deter-

mined at the same time. In this step, these correspondences are evaluated 

based on the translation parameters, in the process of which the estimation 

values for the degree of global matching is calculated. It is determined by 

this estimation whether the correspondence between an object and a model
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          Figure 2.19: Allowance region for a line matching 

is considered valid. In other words, the validity of the hypothesis of a partial 

structure is judged by this estimation. 

  The proximity of two lines is used as the measure for matching evaluation, 

because it can be estimated even in case where lines are partially occluded or 

when multiple correspondences exist for curves. For this purpose, we assume 

a window positioned on one of the lines as the region where matching is per-

mitted. We define the matching degree to be the ratio of the length of the 

candidate line which reaches into the region to the length of the target line as 

shown in Fig. 2.19. 

            M = Lin/Li(2.2) 

where M represents the degree of matching, Lin is the length of the candidate 
line's part included in the window, and L is the length of the target line. 

  The width and length of the window are determined to be large enough so 
that the errors of the line extraction process and the presence of noise will have 
no significant influence. In our experiments,this size is fixed to 10-15 pixels. 
this size is sufficient for lines that are longer than 30 pixels (50-80 pixels on 
the average), and the width is narrower than 5 pixels.
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     Figure 2.20: Allowance region for multiple approximated lines 

  To calculate the value of equation( 2.2), lines in the image are transformed 

into model coordinates by using the translation parameters obtained before. 

Parameters for the image-line to model-line  (Mimage) and model-line to image-
line (Mm°del) transformation are calculated. If lines have multiple correspon-
dences, the value is calculated for each window of corresponding lines as shown 

in Fig. 2.20 and the values are averaged as follows: 

M = E L2"`/ Li(2.4) 

  The estimation value for the whole structure is obtained by averaging the 

matching degrees for each line as follows: 

Mimage = E M2 mage . Li • Wi / E MZ mage Li (2.5) 

(Mm°del is also calculated by above equation) 

Mall B1 • Mimage + B2 • Mm°del(2.6) 

where Mall represents the value for the overall matching degree, Mi is the 

degree of matching for each line, Li as the length of the line, and Wi represents 

a weight assigned the line. 

  The weight Wi depends on whether a line is included in partial structures 

or not. It takes large values for lines that are included, because they are the
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core of this matching for which candidate models are limited to a single one or 
a few. The weights for lines which are not included in any partial structures 

assume a small value. 
  Based on the value  Mall, the match is judged to either have succeeded, or 

to have failed, or to be undetermined. 

2.5.5 Operations after Matching 

Image lines and partial structures are modified in compliance with the result 
of matching. This modification helps the recognition of other objects and can 

take the form deleting incorrect partial structures, modification of other partial 
structures, or the restoration of deleted partial structures. The operations are 

as follows. 

 (a) succeeded : Matched image lines are deleted. Partial structures which 
    contain these lines are deleted. The number of partial structures de-

    creases by this operation. 

 (b) undetermined : No operations are performed. The matching for the 
    hypothesis inconsistent with this partial structure can be performed and 

    the best scored one becomes the result. 

 (c) failed: This partial structure is deleted. Restoration of partial structures, 
    which are deleted, is performed (They had been deleted because their 

    lines are subset of the lines of the partial structure) . No other operations 
    are performed. 

2.6 Automatic Construction of Models 

Models used for recognition are built by off-line processing . The flow of this 
model construction process is shown in Fig. 2.21 . For the most part of this step , 
processing is automatically performed similarly to the recognition process. New
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models can be easily added to the recognition system by this model building 

program. 

 (1) Extraction of lines : Taking a picture of an object with a TV-camera. 
    Preprocessing. Line extraction by the Slit Method [Nag84, Nag86,  NN86]. 

    These steps are described in detail in Section 2.3. 

 (2) Manual modification : Extracted lines are modified manually, since it 
    is difficult to extract lines reliably at a single trial because of shadows, 

    reflection and other kinds of noises. Lines are displayed on a terminal 

    screen and the user can modify them interactively. 

 (3) Extraction of features : Extraction of features from these lines. Extracted 
    features are stored in an individual model description. 

 (4) Registration of features in the feature-to-model-table : After all models 
    have been built, all features are gathered, sorted and then registered in 

    the feature-to-model-table. 

  By using the same analysis process as is used in the recognition step, it 

becomes easier to achieve a coincidence of an image feature and a model feature. 

Because if the user gives ideal features as models to the system, it is quite 

difficult to extract their components from the image. 

2.7 Experimental Result 

Recognition Objects 

We applied our system to two sets of objects, which were (1) ten arbitrary 2-D 
shapes composed of straight lines, and (2) real tools such as pliers, screwdrivers, 
and hexagon-wrenches (10 models).
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 Input of an Image 

                           Preprocessing 

i 

                           Line Extraction 

                          Manual Corrections 

                          Local Feature Extraction 

                         Construction of 
                       the Individual Model Description 

                       Entry to the 
                          Feature-to-Model Table 

              Figure 2.21: Model Construction Process 

Result 

The recognition process applied to Fig. 2.6 resulted in Fig. 2.7, Fig. 2.9, through 

Fig. 2.22(a) to (f). The final result is shown in Fig. 2.22(f). In this recognition 
example, matching is performed 12 times and 4 objects are recognized correctly. 
The result applied to Fig. 2.23(a) is shown in Fig. 2.23(c) which also shows the 
complete success. 

Efficiency 

This method is especially efficient for model sets in which the objects are 
composed of straight lines. Many objects can be recognized regardless of the 

partial lack of objects' boundaries. As for the real tools, though the recognition 
sometimes suffers from the presence of curvature, shadows and lines in the inner 

region, it works well for most cases.
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The Number of Times of Matching 

As shown in the result of Fig. 2.22, the matching was not performed as often 

as in other researches [Hae82,  Tro81, AF86]. In the experiment for model set 

(2), the number of matching operations is generally 2 — 3 times of the number 
of the objects present in an image. 

Efficiency of the Construction 

Many objects are recognized during the step of matching corner patterns. It 
sometimes occurred for model set (1) that all objects in an image were recog-
nized in this step. Although features of parallel lines appeared less often than 
corners and the number of candidate models suggested by their presence is 
sometimes large, the combinations formed from them are efficient and are gen-
erally correct for objects like (2) in which models have many parallel lines. The 
same can be said for the combination of aligned lines. By contrast, the com-
binations of adjacent lines generated many incorrect combinations. However, 
not a few objects were recognized through these combinations. 

2.8 Conclusion 

We have proposed a method for the recognition of overlapping 2-D objects, 
and discussed following points in this chapter: 

  • The selection of local features and relations which have proved to be 
    sufficient for the recognition of overlapping objects. 

  • A method of inferring candidate models from local features. 

  • A method for reducing the number of candidate models by checking com-
    binations of extracted features.
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  • A method for checking the consistency between lines in an image and 

    lines in the candidate models which is applied to only very few such 

     pairs. 

  The efficiency of our method was verified in experiments with a scene in 

which many pieces of papers of arbitrary shapes were stacked in such a way 

that occlusion of boundaries occurred, and in experiments with a scene in 

which real tools are scattered on a planar surface. Our system showed quite 

good performance both for inferring models and for matching shapes. 
  The following points are left for future work. 

  • The handling of various kinds of feature that are sufficient for the recog-

    nition of other kinds of objects. For example, region features based on 

    texture are expected to be sufficient for objects whose shapes are not 

    useful keys for recognition. 

  • The relaxation of camera position constraint . For example, allowing the 
    camera to be tilted or slanted.



Chapter 3 

Feature Definition in PAFE 

In this  chapter and the following chapters, a system with the name PAFE 

(PArallel Feature Extraction system) is presented. This chapter describes the 
framework for feature definition in PAFE. First, an overview of the system 
PAFE is given and then, the definition mechanism for features, the definition 

mechanism for feature extraction, and some experiments which demonstrate 

these definition in real recognition tasks are shown. The next chapter focuses 
on the configuration of this system. The organization of agents as basic mech-
anisms of feature extractions is presented. The control strategy is and various 
kinds of extraction operators realized with several kinds of basic operations are 

discussed in Chapter 5. 

3.1 Introduction 

Many methods proposed for image processing, recognition and understanding. 
Some of them work fairy well for a specific domain. In those systems, however, 

knowledge about recognition objects (features, models, etc.), methods for fea-
ture extraction and the control strategy for recognition process are mixed in 

complicated ways. Few of those systems have a mechanism for defining features 

(and models), which range from the low-level features to the high-level (corn-

                       43
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plex or compound) features within the same framework, and independently of 
the control strategy. 

  For this purpose, we introduce a system based on the multi agent model 

which provides a new framework for feature definition and feature extraction 

suitable for parallel processing. In this system, all features can be defined in 

a declarative way independent of extraction process, which can also be easily 

defined. The pieces of knowledge about features and their extraction processes 

are defined in the form of a network, in which they correspond to nodes and arcs 

respectively. The system performs flexible extraction of features by traversing 

the network. 

  We have constructed a system in which features can be defined hierarchi-

cally, and relations between features and their extraction process can be defined 

easily, especially for compound features. 

3.1.1 Overview of PAFE 

The PAFE system is composed of two groups of modules. One is needed for 

the definition of features and their extraction. This part is composed of the 

feature definition module and the module in which image processing and feature 

extraction routines are gathered. The other part is devoted to the execution , 
i.e. image analysis. Although the configuration of this part is similar to the 

blackboard model, its control mechanism differs from that of the blackboard 

model as was mentioned above. 

  The configuration of PAFE is as follows (illustrated in Fig. 3.1): 

  •  `Feature Definition Module' for feature (and relation) definition 

  • A Module in which primitive routines for image processing and feature 
    extraction are gathered 

  • `Feature Management Agents' for storing image data and features (MA) 

  • `Feature Extraction Agents' for feature extraction (EA)
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                Figure 3.1: System Configuration 

  The feature definition module provides the framework for feature definition 

described in this chapter. Agents for feature extraction and agents for feature 

management are generated during execution according to feature definition. 

Details of the agents' organization and execution mechanism are described in 

the following chapters. 

3.2 Feature and Relation Definitions 

Features in images, which are used for image recognition and image understand-

ing, take various forms. The methodology for their description and definition is 

one of the most important topics in image analysis. For instance, the compar-

isons between the procedural description and the declarative description are 

often discussed as well as the advantages and disadvantages of structural meth-

ods. A general framework into which these parts can be embedded, however, 

seems to have been too remote.



CHAPTER 3. FEATURE DEFINITION IN PAFE46 

  One objective of the PAFE system is to provide a framework for feature 
definition in which many kinds of features can be defined within the same 

system. At the same time, the mechanism for generating the feature extraction 
strategy from a feature definitions directly is also an objective of this system. 

3.2.1 Several Kinds of Feature Definitions 

First let us consider several classes of features: 1. images, 2. curves and regions, 
3. corners, parallel lines and triangles, 4. complex features, objects and scenes. 
Note that this classification is not an absolute one, to which there would not 

be any alternatives. 

  An overview of the features is shown in Fig. 3.2. Class 1 is composed of 
features which have no components, and which have no part-of relations to 
other features, but they may have attribute values or feature values such as 

the range of gray levels of gray scale images. Class 2 consists of the features 
which have no structure or components, but they can have relations to other 
features; for example, adjacency to other features would be such a relation. 
The features in Class 3 have both components and relations . Their structures 
are so simple that alternative descriptions would not be found easily. The 
features classified as class 4 are the complex features, which have components , 
relations and various kinds of alternative forms of description . 

  "Attributes" is essentially required for describing features. The "Compo-
nents" and  "relations" to other features (relations among components at the 
same time) are also required except for the features of class 1. In class 4, an 
important aspect for feature definitions becomes clear. The uniqueness of fea-
ture description is extremely difficult to achieve in class 4. For instance, even 
a rectangle (which is a relatively simple structure) can be defined in more than 
three ways, where one is by the four lines , another one is by the four corners, 

etc. Therefore "multiple definitions of a feature" , i.e. "redundant description 
of a feature", are required for an effective definition . In this way, a structural 

feature may be defined as a feature which has no components . A rectangle
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can be defined as a region segment which has rectangular shape. Allowing 
"multiple definitions of a feature" , the definitions supplementary cover a wider 
variety of situations than the single definition does. If the recognition system 

has the ability of choosing the best description in a given context, the recog-

nition task can become easier. Nevertheless, certain mechanisms for avoiding 

contradictory situations that multiple definitions may cause must be provided. 

  In this research, features are defined structurally and allow "redundant 

description of a  feature". In the following sections, the definitions of features 

and relations are discussed. 

3.2.2 Feature Definition 

In the PAFE system, features are defined in a hierarchical way. A structural 

feature is defined as a combination of component features related by defined re-

lations. From another point of view, a feature is defined as a network in which 

the "nodes" are component features and the "arcs" are relations between com-

ponent features, and both nodes and arcs can have attributes. Fig. 3.3 shows 
an example of a network defined for a monkey wrench used in the experiments 

(Section. 6.1). 
  By definition, a feature includes the following terms. 

  • Attributes and their calculation methods 

  • Component features 

      — primitives (smallest components), {f,} 
      — compound features (which have f z's as components), {fm1} 

  • Labeling variations 

       For identifying variations for component labeling— e .g. the 

       two labelings L1, L2, L3, L4 and L3 , L4, L1, L2 for the sides of 
        a square are identical.
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  • Relations among component features 

  The definition of features includes attributes and their calculation methods, 

component features, definitions for  identifying variations of component labeling 

and relations between component features. An example is shown in Table. 3.1. 

In this way, both structural features and non-structural features can be easily 

defined. Redundant descriptions are allowed such as definitions using different 

sets of component features representing the same feature. For example, a 

rectangle can be simultaneously defined as a set of four straight lines and also 

as a set of four corners. This makes it possible to extract a rectangle from both 

straight lines and corners. 

  With this format, all feature types discussed in the previous section can 

be defined. For instance, an image can be defined as a feature, which has 

no components and relations to other features (or images). A complex object 
can be defined as combinations of many components which can share primitive 

features. 

  Inheritance is another important aspect of feature definition in our system. 

The features defined as subclasses of a parent feature can inherit attributes , 
component features, relations etc . from their parent features. 1D features 

such as `sequence' and `loop', for example, are defined as superclasses of other 

1D features. Other 1D features can inherit attributes such as `end-point' and 
`length' , and relations such as `end-points-adjacent' and so on, if `sequence' is 
specified as a superclass in their definition. 

3.2.3 Feature Definition with Variable Components 

Many types of features have components whose numbers or types can vary . 
For instance, a group of elements which have features in common is such a 

feature, since the number of the elements may vary from situation to situation . 
Additional mechanisms are provided for defining this kind of feature . We 
prepared two types of these `variable-length' features, `sequence' and `group' 
as follows.
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        Table 3.1: Example of Feature Definition (Rectangle) 

(deffeature rectangle 
    (:attributes 

       (center-point (:eval (calculate-center-point)) 
        area (:eval (calculate-area)) 

.............)) 

    (:component-features 
      (:primitive 

 (linel (:type straight-line :attributes (length %lenl)) 

          line4 (:type straight-line :attributes (length %len4)))) 

       (:compound 
         (p11 (:type parallel-lines :components (linel line3)) 

          p12 (:type parallel-lines :components (line2 line4)) 
cl (:type corner :components (linel line2) 

               :attribute (inner-angle (nearly-equal 90))) 

          c4 (:type corner :components (line4 linel) .......))) 

(:labeling-variations 
          (:circular (linel line2 line3 line4)))) 

(:component-relations 

      (parallell (:features (linel line3) :type line-parallel)) 
connects (:features (linel line2) :type line-connect 

                  :attribute (connect-type %ctypei 
                             inner-angle (nearly-equal 90))) 

        cal (:features (corners corner2) :type corner-aligned) 

.....................) 
    (:constraints 

(conl (:parameters (%ctypei %ctype2) 
           :type :member (((1 3)(3 4))((2 4)(1 2)))) 

..................... ))))
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Variable-length sequence: A complete order can be defined for a set of 
     features. 

Variable-length group: Defined as an unordered set. 

  A sequence of connected lines, for example, is defined as a variable-length 
sequence, whereas a group of parallel lines is defined as a variable-length group. 
The extraction methods for these variable-length features are different from 
features with fixed number of components, (they are described in section 3.3.5). 

3.2.4 Several Kinds of Relations 

As stated in Section. 3.2.1, relations between features play an important role in 
feature and object description. Before introducing our definitions of relations, 
let us consider the set of relations required for image recognition. 

  In image analysis, spatial relationships between two features (parallelism, 
for instance) are often used as relations. The relationships due to shared parts 
appears, if more than one structural features have the same feature as their 

component. Suppose that structural feature  Fl has components (fa, fb, fc) and 
another structural feature F2 has (fc, fd, fe). Then Fl and F2 share fc as their 
component. This relationship is useful for defining connecting parts between 
structural features. A, summary of the set of relations is shown in Fig. 3.4. All 
of these relationships can be classified as relationships between the attributes 
of two or more than two features. These attributes are the position , length, 
color or any other kind of feature values. Some relationships between structural 

features are considered as special cases where components are used instead of 
attributes. 

  Relationships often have their own attribute values such as inner angles for 
the connection of two line segments, or distance in the case of adjacencyl . In 

1If the relationships are classified and labelled precisely, these values sometimes become 
redundant. For instance, if the range of the distance is divided into precise classes (touch, 
close to, slightly apart from, apart from, etc. ), the exact value of the distance is no longer re-
quired. However, this causes the required number of relationship types to increase drastically.
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this research, we designed relations to have attribute values in order to avoid 

a larger number of relation types. The formal definitions of relations are given 

in the following sections. 

  These relationships can be considered as a set of conditions that must be 

satisfied by the features. In other words, if a set of features satisfies the con-

dition defined for a certain feature, the corresponding relation is treated as 

existent among the features. For instance, parallelism can be defined as the 

condition that the orientations of features are very close to each other. The 

conditions can be some procedural conditions, which can be checked only by 

calculation, a set of relations, or combinations of relations. The user can use 

relations as pre-conditions of a relation. Suppose that someone wants to define 

the "parallel-and-equal-length" relation. This relations can be defined using 

the already defined relations "parallel" and  "equal-length". In this case, no 

additional conditions are needed. 

3.2.5 Definitions of Relations 

Based on the consideration in the preceding section, we developed the relation 

definition as follows. A relation is composed of attributes, component features , 
procedural conditions and/or other relations. 

  • Attributes and calculation method 

  • Component features (which have this relation) 

  • Condition 

      — in relational form 

      — in procedural form 

  • A scope for finding features 

  An example is shown in Table. 3.2 . This format allows the definitions of 

relations as they were outlined in the previous section .
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            Table 3.2: Example of Relation Definition 

(defrelation symmetric-parallel 
  (:component-features 

  (linel  (:type straight-line) 
   line2 (:type straight-line))) 
  (:condition 

   (:relations 
   (parallel (:features (linel line2) :type straight-line-parallel)) 

   (:procedure 
(prod]. (:eval (straight-line-symmetric linel line2 parameters)))) 

  (:search-area 
   (:from linel :to line2 :type :rectangle 

    :parameter (:center (attribute center linel) :width .........)))) 

3.2.6 Relations between Structural Features 

Relations between structural features are often necessary for recognition. The 

PAFE system provides a simple way for defining this kind of relation in that 

it allows its definition as a set of relations between component features. For 

example, the relation `parallelism of two rectangles' can be defined as the con-

dition that one side of one of the rectangles is parallel to one side of the other 

rectangle (Fig. 3.3 shows the definition). In addition, as there may exist vari-
ous identical definitions, this system provides a simple way for including such 

definitions by using the `labeling variations' defined Section 3.2.2. This system 

provides following the three types as variations. 

   :all ;every combination (e f ) 
   :exists ;one combination (3f) 

   :sequence ;each pair along sequence (di fzl, f32) 
  If the above types are specified, the system tries every combination as de-

fined above. In the case of parallel rectangles, the number of the combinations 

of sides, which may be parallel, is really 16, and these can be incorporated into 

one definition by specifying `:exists' as a variation.
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      Table 3.3: Example of Relation between Compound Features 

(defrelation tow-rectangle-parallel 

 (:component-features 
  (rectanglel (:type rectangle) 

  rectangle2 (:type rectangle) 
 %linel-1 (:component-of rectanglel 

             :name linel :variation :exists) 

%line2-1 (:component-of rectangle2 
             :name linel :variation :exists)) 

........................)) 

3.3 Definition of Feature Extraction 

In the previous section, the framework for feature definition and relation defini-

tion was introduced. The definitions of the feature extraction methods must be 

given in addition to that, because the feature and relation definitions by them-
selves do not provide any extraction methods. For this purpose, we provide 

a format for the definition of feature extraction methods. They are specified 

separately from feature definition, and are described in this section. 

3.3.1 Several Types of Feature Extraction 

In feature extraction, a number of situations arise. Some features are extracted 

by simply applying image processing, whereas others are extracted by utilizing 

combinations of features. First, types of feature extraction are discussed. 

Several Types 

In image analysis, feature extraction is always performed according to rela-

tionships. Let us consider semantic descriptions in Fig . 3.5. Note that these 
relationships are different from the `relations' defined above , which are more 
abstract.
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spatial-inclusion: The output of feature extraction process (extracted fea-
    tures) have no structural relationships to the input of feature extrac-

    tion process (input features), although extracted features are spatially 
    included in the area of the input features. 

component-of: The extracted features are the component features of the 
    input features, or the input features are the components of the extracted 

     features. 

is-a: The extracted feature belongs to a subclass of an input feature. 

depends-on: The existence or the characteristics of the extracted feature 
    depend on the input features. To-occurrence is not always required. For 

    instance, the input features can be considered as contexts (environment 
    and so on). 

  According to these relationships, one can consider several types of feature 

extraction methods: 

 (a) Plural features are detected from a feature (or features) in which they 
    are spatially included: 

                                   1 

                      'outputX(finpt, (i2nput+' '•,(imnput) 

 (b) A feature is converted into another feature whose area of existence is 
    spatially equivalent to or included in it: 

 (output G X (,finput ) 

 (c) A feature is extracted as a combination of features according to the 
    component-of relationships: 

                   Fwhole Finput ® Fnput ®... ®Finput
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 (d) A feature is extracted as a component of a feature whose component is 
    the extracted feature: 

 Feorn.ponent X (finput, E(fwhole)) 

 (e) A feature is extracted according to depends-on relationships.: 

                     Fdepending X( f  input , E (fdepended)) 

  where f is an individual input/output feature, F is a set of features, X is 
an extraction procedure, ® expresses combination similar to direct-product in 
mathematics. and E(x) can be any kind of useful information for the extraction 

process derived from x. 

Several Types from Input and Output 

According to the types of input and output features, four types of feature 

extraction methods are considered in this system: `image processing', `feature 
extraction from image', `feature extraction from feature' and `feature synthesis'. 

Image processing: This operation applies ordinary image processing pro-

    cedures to an input image for generating new images. The input to the 
    operation is a fixed number of image, and the output is also a fixed 

    number of image. This corresponds to (a) in the previous section. 

Feature extraction from image: A defined operation is applied to the in-

    put images. The inputs to this extraction process are also a fixed number 
    of images, but the number of the output features is unknown until the 

    extraction process is completed. This corresponds to (b) and (d) in the 

    previous section. 

Feature extraction from features: A defined operation is applied to the 

    input features. The number of input and output features is unknown. 

   This corresponds to (d) and (e).
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Feature synthesis: Feature synthesis is a syntactic method for extracting 

    structural features. In this operation, a search is performed to gather the 

    component features. This operation corresponds to (c). 

  These four types of feature extraction methods are utilized in the feature 

extraction definition in this system. 

3.3.2 Definition of Feature Extraction Method 

Considering the above types of feature extraction methods, definition of the 

feature extraction methods in this system is as follows. 

  • type of the extraction procedure 

  • procedures for the extraction 

  • input features (they can be component features for constructing struc-

    tural features) 

  • relations among components 

  • calculation methods for extracting, finding the components (optional) 

  The extraction method may be one of the above four types  `image pro-

cessing', `feature extraction from images', `feature extraction from features' ,or 
`feature synthesis' . The components and input features can be any features , if 
they are required for extraction. In this context, it is required to specify the 

set of component features used for extraction, because redundant information 
is contained in this definition, such as the f mi's mentioned in the example in 

Section 3.2.2. For example, the definition of syntactic type extraction requires 

(1) component features and (2) relations. 
  The calculation methods needed for extracting component features can be 

prepared, as in advance for later use. Assume that a parallel-line feature is
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extracted directly from the image. If the routine for detecting the two compo-

nent lines is necessary for further processing, then the routine is added to the 

definition of the parallel lines' extraction method. 

  The above definitions realize all the types of extraction methods discussed 

in Section 3.3.1, and allow to handle any type of input/output and any type 
of semantics. 

  With these feature definitions and feature extraction definitions, features 

are assumed to be organized as a network which shows how features are ex-

tracted from other features. Fig. 3.6 shows an example of such a network in 

which each extraction method is classified. The basic idea of this framework 

is similar to LLVE [Mat88]; however, structural features can not be defined in 
a syntactic way in LLVE. 

  As was mentioned above, more than one extraction method can be defined 
for a feature. For example, edges can be extracted both from a segmented 
image (label image) and from a differentiated image. This is another aspect 

of defining features in multiple ways as well as in the definition of features 

themselves. The redundant description of features is the key concept of this 

system as mentioned before. 

3.3.3 Definition of the Synthesis of Features 

As features can be defined in multiple ways, redundant entries appear in feature 

definitions. It is expensive and ineffective both in cost and robustness to use 

all of them for extraction at one time. In this system, the extraction method 

definitions of structural features are defined as set of component features and 

component relations to be utilized for extraction. In other words, only features 

and relations specified in this extraction definition are used for extraction. 

  The definition of synthesis type feature extraction is as follows: 

  • Features being used:  {L,  f;,  ...  , f ink, ...} 

  • Relations being used: {r2, r;, ...1
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(Bold type face is used for structural features)
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(deffeature-generation (rectangle-from-four-lines rectangle) 
  (:type :syntactic :simple) 

   (:component-features 
 (lines line2 line3 line4)) 

(:component-relations 
(connectl connect2 connect3 connect4))) 

;; linel-line4, connectl-connect4 are defined in the feature definition (Fig. 3.1). 

            Figure 3.7: Definition of Feature Extraction 

pl (parallel lines) 
                                            c(corner) 

  line!o I>o',_ 
o'• 

connect"`'"'--1ca 
                         parallel(corner 

r, aligned) 

pa -----                    (
parallel lines attach) 

   A set ofTwo pairs ofA set of 
    four linesparallel lines four corners 

         Figure 3.8: Definition for a Rectangle (three types)
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  Fig. 3.8 shows three examples of definitions for extracting rectangles. They 

use (1)  {linel,  ... , line4} and {connectl, ... , connect4} , (2) {p11, p12} and 

{pal}, (3) {cl, ... , c4} and {cal, ... , ca4}, respectively (See Fig. 3.7). 

3.3.4 Extraction Execution 

For the extraction of non-structural features, the extraction operation is sim-
ply the application of defined operations to input images/features. On the 
other hand, extraction of structural features is complicated. It is performed by 

search; all component features that satisfy the defined conditions are searched. 
The algorithm is basically a depth-first search, in which the next feature de-
fined in the feature definition is searched sequentially. In this search, however, 

it is not necessary that all component features are extracted before the search 
begins, because a hypothesized feature is created and assigned to a compo-

nent feature that has not been extracted yet. This enables the asynchronous 
extraction of features as described in the following sections. 
  Lethbe a hypothesized feature for a component feature, f r be a candidate 

for Aft, rh(fh, f3) and rr(fz , flr) be the relation between the features, and let 
n be the number of component features. Then, the algorithm is as follows: 

  1. Sort features and relations 

   (.fi , {}), 
   (f2, {ri1(. i > f2)}), 

(f3 {r21(fl , f3 ), r22(f2, f3)}), 

 2. Find the first feature fl in the area in which the area of this feature is 
    expected to be include. Let i = 2. 

 3. Choose one feature f r which has relation r1(f r fir 1) 
(ft is a candidate for fh). 

    If no f, remains, then go to step 4. (if i = 1 terminate this search).
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                 Figure 3.9: Operation of Search 

    Otherwise confirm that f'' satisfies the other relations (r Ti) and con-

    straints specified in the definitions. 

    If confirmed, go to step 5 (This is shown as an arrow labeled with "A" in 
    Fig. 3.9). Else try another f1 (as shown by the arrow labeled with "B") 

  4. If hypothesized feature /Pi for f2 is not created yet, create a hypothesized 
    feature f h' and let i = i + 1. Otherwise let i = i — 1. 

    Go to step 3 (as shown by the arrow labeled with "C") 

  5. If i = n, then generate a new feature instance, else let i = i + 1. Go to 

    step 3. 

  In case of the extraction of variable-length features, of component features 

(ex. f) of the same kind are searched until no more candidates are found. 
This operation is described in the following section.
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 (deffeature-generation (line-sequence-generation line-sequence) 
  (:type :syntactic :variable-length) 

  (:component-features 
(linel (:type straight-line) 

    $line2 (:type straight-line)) ;$ means recursive 
(:component-relations 

(connectl (:type connect :features (linel $line2) 
            :attribute ((type %typel)) 

connect2 (:type connect :features ($line2 $line2) 
            :attribute ((type 7.type2))) 

  (:constraints 
............................... )) 

;;linel, $line2 must be defined precisely because they are not mentioned in the Feature 
Definition. 

Figure 3.10: Definition of extraction method for a feature which has a variable 

number of components 

3.3.5 Extraction of Variable-length Features 

The extraction of variable-length features needs a special mechanism for syn-

thesizing features recursively. For this purpose, a special component can be 

assigned for variable-length features, for which the system tries to extract fea-

tures repeatedly until no more features are found . 
  A few options for this extraction are provided in this system . 

Detect all or longest: Specify whether to detect all features or only the 

    longest feature. Often, the longest feature is required . If `longest` is spec-
    ified, only the longest sequences (groups) are kept and other sequences 

    (subsets of them) are abandoned. 

Termination condition: If the termination condition is satisfied, the search 
    stops. The features gathered up to the point where the search has stopped 

    are used. This applies to cases where a set of feature, which satisfy certain 
    conditions is required.
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Loop condition: Specify the operation to be performed when a loop is de-

    tected (the sequence of features might become circular) while searching 
    for variable-length sequences. (In some cases, it is effective to accept the 

    loop as a new feature of a different type). 

3.4 Feature Instance 

In the preceding sections, the formalism for feature definition and feature ex-

traction definition was discussed. The format for the data extracted from an 

image and the data which specify extraction request is also quite important  for 

the image recognition system. 

  In this section, two types of data (instances) are presented: one is to ex-

press the feature extraction request and the hypothesis of existence of features 

(called `hypothesized feature instance'), and the other is one to express the 
data extracted from an image by feature extraction methods (called `real fea-

ture instance'). Each instance of these two types is generated as a structure2. 

3.4.1 Structures for Feature Instance 

As was discussed in Section 3.2.2, features include several items of data. Con-

sidering this, the structure of an instance must be defined as shown in Table 3.4. 
The structure for relations is shown in Table 3.5. Both structures have slots for 

an identifier, type-of, attribute and so on. The slots for the component features 
and relations between components are defined only for the feature instance. 

Real Feature Instances 

A real feature instance is a structure for a feature which was detected during 

execution. An instance of a real feature (say fr) is created, when a new feature 
is extracted by the feature extraction operation. Attributes for it are calculated 

and given to this instance according to the feature definition. In addition to 

2In reality , this structure is an object of the object orient language FLAVOR.
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             Table 3.4: Structure for a feature instance 

identifier: unique id is assigned to each feature instance 

type-of: the type of a feature (straight line, etc.) 
part-of: the parent feature in which a feature is in-

                       cluded in a structure 

component-features : component features of a feature 

component-relations : relations between components 

attribute: list of attribute values calculated according 

                      to a feature definition 

relations-to-other-features : relations which a feature has with other 

                         features 

position: data for a location 

            Table 3.5: Structure for a relation instance 

identifier : unique id is assigned for each feature instance 

type-of: the type of a relation (connect, etc.) 
component-features : features which satisfy a relation 

attribute: attribute values calculated according to a re-

                  lation definition
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            Figure 3.11: Existence area for real features 

that, the existence area for each feature is given to each feature instance. This 

area is calculated from the occupancy of the feature in the image. Then it is 

expressed as a rectangle3 for simplicity, which can take any size and orientation 

(this is shown in Fig. 3.11 in the following section). 
  As for relation instances, if a set of features satisfies all conditions, a relation 

instance is generated, attributes and component features are calculated, and 

then this relation instance is registered in features which have this relation. 

Hypothesized Feature Instances 

Another type of feature instance is utilized to express a hypothesis and a fea-

ture extraction request. This type of feature instance is called hypothesized 

feature instance (say fh) whose structure is similar to that of a real feature 
instance except that all the attributes and component features do not have 

to be given. Given attributes are thought of as constraints which are used 

  3That is, a MBR (Minimum Bounding Rectangle) which encloses the feature (unless 
another calculation method is given in the feature definition).
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for checking the candidates extracted for this hypothesized feature instance. 
Given components are thought as pre-extracted parts of the feature. Assume 

that f was defined to have three component features. Given a  f  h with only 
one component feature, the system tries to extract the remaining two features 
and checks their combinations. In a sense, this is similar to the unification op-

eration in logic programming. The area of hypothesized feature in the image is 
expressed with a rectangle (similar to the real feature instance case) in which 
candidate features for it are expected to be in. 

  In the case of a relation, a relation instance is generated when the relation 

is detected, and it is treated in a similar as the feature instance case. There 

are also two types of relation instances, which are the real relation instance 

(r'') and the hypothesized relation instance (rh). 

Evaluation of Extracted Features 

For a real feature instance, evaluation (scoring) is often necessary to judge 
whether it is acceptable as a result or not. The feature which receives score 

that is worse than threshold value is rejected and not registered as an extracted 

feature. Feature evaluation, however, is a quite difficult problem, so we decided 

to use a simple method for the time being and leave it for further investigation 

to establish a good evaluation method. In this system, the score of an extracted 

feature is a matching degree between the hypothesized feature instance (which 
is a request) and the real feature instance (which is the data) . It is calculated 
based on the spatial arrangement of components and their scores as follows: 

                    S.O_Ei(Spi+SS)•Asi  
2 Ei Ai 

where, So is the score itself, Sp is the spatial matching degree (for each com-

ponent) between the expected position and real position, Si is the score of the 
i-th component, and Asi is the square measured area of the i-th component . 

  The expected positions of components are calculated as follows: 

              Areas = cal_area(Areai , ..., Arearn)
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 To = get_trans f orm(Areao, Areas ) 
Area = trans f orm(Areah, Ta) 

where cal_area is a function for calculating the total area from the components' 

area, get_trans f orm and transform are functions which calculate transfor-
mation parameters between two areas and which transform an area with these 
transformation parameters respectively. Area is an area defined in the feature 

definition. 
  The score for the spatial matching degree is based on those areas' overlap-

ping degree, that is the overlapping area of Area and Area. If these areas 
are completely identical, the score is 0. Therefore the lower the score, the more 

acceptable is the feature. 

3.5 Examples of Feature Definitions 

Examples of feature definitions for several kinds of targets are presented in this 

section. Two of the examples concern for the recognition of indoor objects and 

another one concerns the recognition of aerial photographs. 

3.5.1 Indoor Objects 

We applied this system to two sets of indoor objects, one of which is a set 
of blocks which are mostly composed of straight lines, the other one is a set 
of tools which are mostly composed of curves. In both experiments, features 
are based on contour lines, in other words, primitive features are composed of 
straight lines, curves and so on. Other features are defined as combinations of 
these. 

Recognition objects: (1) Toy blocks, (2) Tools 

Features, relations: Features and relations are defined as follows (shown in 
    Fig. 3.12, 3.13). Features based on curve and relations between curve is 
    illustrated in
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    features: superclass for images, original image, differentiated image, bi-

       nary image, thinned image, straight line, curve, and compound fea-

          tures. 

    relation: connect, adjacent, collinear, parallel, etc. 

  For objects like blocks that are composed of straight lines, the intermediate 
features and objects can be quite well expressed in our framework. Although 

expressing feature descriptions for tools is more difficult than for blocks, they 
are well defined in this system. 

3.5.2 Aerial Photographs 

The following example shows how the PAFE system can be applied to aerial 

photographs. Regional features are suitable for the recognition of aerial pho-
tographs, since the recognition targets in aerial photographs may be considered 

as almost two dimensional regions whose detailed shapes are not important for 
recognition. For this reason, features in this experiment are mostly based on 
regional features. Therefore the example shows the ability of our system to 

handle the regional features. 

  Several types of regions are defined for the recognition of the semantic 
classes road, house, residential area, crop field, plant area and so on. The 
overview of the features is shown in Fig. 3.15. The attributes assigned to the 

region features are shown in Table. 3.6. The relations defined for the recognition 
task are the relationships between regional features. These are based on the 
relationships between two regions as shown in Fig. 3.16. 

  In this hierarchy, several feature detections are based on is-a relationships . 
For instance, a large region whose attributes satisfy the conditions for a road 

region may be detected as a road region. In addition to that , a special relation-
ship identical is utilized for detection. This relation is used when a new feature 
can be defined based using more than two features on the condition that they 

share one physical structure in an image (or in the real world). For instance, 
the extraction of road regions from elongated regions and large regions implies
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(1) Example for Toy Blocks (based on straight lines as primitives) 

FeatureInput Features Extraction Type Method 
         (Images)(Relations)  

Differentiated Image Original Image Image Processing Sobel operator 
Binary ImageDifferentiated Image Processing Fixed Threshold 

                  Image 
Edge ImageBinary Image Image Processing Thinning  
Straight linel Edge Image FeatureSlit Method 

 Extraction) 
Straight line2 Straight linel SynthesisCollinear, 

          x any numberConnect 
CornerStraight line2 x 2 Synthesis Connect 
Line SequenceStraight line2 Synthesis Connect 

                   x any number 
Parallel lines Straight line2 x 2 Synthesis Parallel 
RectangleCorner x 4Synthesis Corner-aligned 
RectangleParallel lines x 2 Synthesis Parallel-lines-

                                                   attach 
RectangleStraight line2 x 4 Synthesis Connect, Parallel 
ArrowRectangleSynthesis Polygon-parallel 

   Triangle  

where, 
Feature Extraction): Feature Extraction from Images 
Feature Extraction2: Feature Extraction from Features 

Straight Linel: Extracted from an Image 

Straight Line2: Collinear lines combined into one line 

           Figure 3.12: Definitions of Feature Extraction
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(2) Example for Tools (based on curves as primitives) 
In this example, an original image is binarized and then curves are extracted from 
this binary image. 

  Feature Input Features TypeMethod 

   (Images)  
  curve-prim Edge Image Feature Edge trace 

 Extraction) 
  curvecurve-prim Synthesis Curve-aligned 

  corner-curve unified-curve Feature Divide by 
                               Extraction2 curvature 

flat-curve corner-curve Feature Divide by 
                               Extraction2 curvature 

   corner (beak) any kind of curve Synthesis Curve-connect 
  holecorner-curve Synthesis Curve-connect 
                 x any number 

   u-shape flat-curve, corner- Synthesis Parallel, Connect 
                    curve 

  wrench-handle u-shape, hole Synthesis Include 
  wrench-head corner-curveSynthesis Curve-corner-
                                                     connect 
  wrenchwrench-handle, Synthesis Head-and-handle-
        wrench-headattach 

  pliersu-shape x 2,Synthesis U-shape-parallel, 
     beak, holeetc  

           Figure 3.13: Definitions of Feature Extraction



CHAPTER 3. FEATURE DEFINITION IN PAFE75 

                                   These curves can overlap. 

                                                      CC: corner curve 
 -" 'CC  ------  .FC: flat curve 

               CC ..•FC 
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curve aligned 
'curve parallel 

             curve connect 

          Figure 3.14: Curve Definition and their Relations 

that "if a region is an elongated region and is a large region at the same time, 

and if it satisfies some additional conditions then it is a road region". There 

are, of course, detections of other types, for instance, a house region is detected 

by searching for a small region which is close to a road region.
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   Figure 3.15: Features used for the recognition of Aerial Photographs
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             Table 3.6: Attributes for regional features 

region-image: A pointer to the label image from which the region was ex-
    tracted. 

starting-point: An upper-left pixel in the region. 

area: The area (number of pixels) of the region. 

region-id: A unique id for the region. 

color: The average level for the Red, Green and Blue components of the region 

    pixels. 

contour: The sequence of boundary points. 

MBR: A Minimum Boundary Rectangle for the region. 

direction: The direction of the longest side of the MBR. 

eccentricity: The aspect ratio of the MBR. 

centroid: The gravity center of the region.



CHAPTER 3. FEATURE DEFINITION IN PAFE78 

     aiD 
          (a) touch(b) adjacent (c) include 

 (397 
          (d) stab(e) parallel (f) identical 

            Figure 3.16: Relations for Regional Features



Chapter 4 

Organization of Agents in 

PAFE 

In the previous chapter, the framework of feature definition and feature ex-

traction definition in PAFE was presented. This chapter describes the system 

configuration of PAFE is presented. The focus is on the advantages of the 

multi agent model for image analysis. 

  The PAFE system consists of agents (based on the multi agents model) as 
briefly mentioned in the previous chapter. Although the configuration of the 

part for execution is similar to the blackboard model, control is much different 
from  the blackboard model. In this chapter, the blackboard model and its 

problems are introduced briefly first. Then the multi agent model and the 
detailed configuration of PAFE is described. 

4.1 Blackboard Model 

There are a system that interprets aerial photographs with blackboard model 

[Nii86a, Nii86b] by Nagao and Matsuyama [NM80], ACRONYM [BGB79] for 
the interpretation of 3D scenes by Brooks, a system for the understanding of 

outdoor scenes by Ohta [Oht87]. In these models, data, i.e. images and features 
extracted from them, are stored in shared memory which can be accessed by 

                        79
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many other modules. The rules or procedures, i.e. knowledge about the target 
objects and knowledge about the operations carried out in those systems, pro-
cess and rewrite (add, delete or modify) the data in the shared memory. They 
offer a quite flexible framework for image interpretation, since various kinds of 

data and knowledge can be handled in the same framework. While success has 

been demonstrated to various degrees, developing a domain-independent and 

systematic framework for constructing knowledge-based image interpretation 

systems is still an open problem. 

4.1.1 Outline of the Blackboard Model 

The logical structure of the blackboard model is usually described as follows. 

The Knowledge Sources (KS): The knowledge needed for solving the prob-
    lem is partitioned into knowledge sources, which are kept separate and 

    independent. 

The blackboard data structure : The Problem-solving state data are kept 

    in a global database, the blackboard. Knowledge sources produce changes 

    to the blackboard that incrementally lead to a solution of the problem. 

    Communication and interaction among the knowledge sources takes place 

    solely through the blackboard. 

Control : The knowledge sources respond opportunistically to changes in the 

    blackboard. 

  The knowledge sources can be realized as procedures, sets of rules , or logic 
assertions. Most of the knowledge sources in all established systems have been 

represented as either procedures or as sets of rules. However, systems that deal 

with signal processing either make liberal use of procedures in their rules or use 

both rule sets and procedurally encoded knowledge sources . The knowledge 

sources modify only the blackboard or control data structures. 

  The blackboard holds computational and solution-state data needed by and 

produced by the knowledge sources. The knowledge sources use the blackboard
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data to interact with each other indirectly. Sometimes the blackboard is hier-
archically organized into levels of analysis. 

  For image analysis, the blackboard objects corresponds to the storage of 
images and features detected from images and knowledge sources correspond 
to procedures for image processing, feature extraction and reasoning. 

  The advantages of the Blackboard Model are as follows: 

  • It can handle a large solution space. 

  • A variety of input data can be integrated. 

  • Many independent or semi-independent pieces of knowledge can be orga-
    nized. 

  • An incremental and opportunistic problem-solving approach is provided. 

  Several systems for image analysis realized with this model have focused 
on these advantages, especially on independence of the modules for feature 
extraction and reasoning. 

4.1.2 Problems in Blackboard Model 

As shown above, the blackboard model has characteristics which are suitable 
for image analysis. Several problems, however, remain unsolved: 

  • The ways in which objects and image features are defined. 

  • The ways of knowledge decomposition into (semi-)independent pieces. 

  • Maintenance of data consistency in spite of the fact that the data is 

    modified by many knowledge sources. 

  • Parallelism of execution of independent knowledge sources.
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  In some systems, these points were  not considered at all, whereas in others 

solutions are suggested which are not general enough. For instance, VISIONS 

proposed a hierarchical organization of the blackboard, which is decomposed 
into several levels according to the semantic levels of the data such as line, 

region, face, object and so on. The system by Nagao and Matsuyama used a 

structure for the scene at the semantic level. SPAM considered several levels 

for the description of an airport such as fragments, regions, functional area and 

airport. However, these systems do not propose a framework in which users 

can define their own data and their own knowledge sources. 

  The problem of knowledge decomposition and the problem of feature defini-

tion are linked by a tight relationship which is not to be neglected. Parallelism 

and knowledge decomposition are also tightly linked. Therefore, solutions for 

one problem is essentially relating to other problems. This means that solutions 

for each problem need to be considered at the same time. 

4.2 Configuration of PAFE 

Although the blackboard model has characteristics that are well suited for 

image analysis, a new framework for overcoming the weak points of the black-

board model is needed. The PAFE provides such a framework. This system is 

constructed on the basis of the multi agent model which is more flexible than 

the blackboard model. 

4.2.1 Multiple Agent Model 

Recently, frameworks of Multiple Agents have been proposed and incorporated 

into several information processing systems. In the robotics field , the research 
by Brooks [Bro91] is famous for its successful creatures which simulate natural 
insects. Although the research in this paper is unrelated to his proposition 

of intelligence without representation, the multi agents model itself is a quite 

efficient framework for handling complex problems.
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  The model can be defined as  followsl: 

  • Agents have their own tasks as their specialties , i.e. methods for execu-
    tion and purposes for their calculations. 

• Agents act independently of each other. 

  • Communications are taken through certain pre-defined methods , for in-
    stance message passing. 

  The blackboard model can be considered as a restricted multi agent model 

in which communication is limited to referring to the data on the blackboard. 

Though the KS can be directly considered as an agent, the dependencies among 

the execution of KS's are still remained. Especially the parallelism can not be 

realized without modifications. Therefore, another framework called concur-

rent object model was incorporated into PAFE system. 

4.2.2 Overview of PAFE 

The PAFE system is composed of the following modules: 

  • The `Feature Definition Module' for feature (and relation) definition 

  • A module in which primitive routines for image processing and feature 

    extraction are gathered 

  • `Feature Management Agents' for storing image data and features 

  • `Feature Extraction Agents' for feature extraction 

  The agents for feature extraction and the agents for feature management 

are generated according to the feature definitions. Feature extraction is carried 

out through the activities of the agents and their interactions. The execution 

in this system can be described roughly as follows. 

  1Since many researches proposed the agent model independently , the common standard 
has not been established yet.
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                 Figure 4.1: System Configuration 

  • (Off-line) features and their extraction methods are defined. 

   • Feature Management Agents are created. 

  • A feature is requested by the users or other systems. 

   • Feature Extraction Agents are generated from the feature definition. 

   • Feature Extraction Agents request features to Feature Management Agents. 

    They apply feature extraction operations to the features (requested to 
    Feature Management Agents) if they are given. Extracted features are 

    then registered by the Feature Management Agents. 

   • Feature Management Agents store features, and provide features, if re-

     quested. 

   In the following sections, the agents and their execution are presented.
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               Figure 4.2: Concurrent object model 

4.2.3 Concurrent Object Model 

The multi agent model introduced into the PAFE system is realized with the 

software of the concurrent object model [YSHT87]. In this model, a process 
is exclusively assigned to each object for executing its action independently of 
the actions of other objects. An object sends messages to other objects and 
receives messages that affect the object's internal state and its action. This is 
shown in Fig. 4.2. This framework provides a good base for the implementation 
of the agent model. 

  For the implementation of this system, an object is realized as an object 
in an object oriented language to which two processes are attached for reading 
messages and executing messages, respectively. It has a mailbox to which any 
objects can send (write in reality) a message. 

  In this model, each object has its local memory and its own process for exe-
cuting its job concurrently. Objects exchange information by message passing. 

  This system provides two types of message passing, one of which is `send'
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(only message sending) and the other is  ̀send-and-wait' (message sending and 
waiting for reply message) which is used when a reply value or synchronization 
is required. In this system, similar to ABCL/I, neither global time nor a 
scheduler exists and only local time (schedule) is valid. The only method for 
synchronization available is message passing. 

  This model is implemented by software simulation similar to ABCL/I. The 
simulation program was developed on LISP machine (Symbolics) using the 
ordinary process scheduler of Symbolics OS (Genera). Therefore the parallel 

processing of concurrent object model is simulated by the scheduler on a single 
processor. 

4.3 Feature Extraction Agent 

As was shown in Section 4.2, there are two types of agents in this system, 

which are called Feature Extraction Agent (EA) and Feature Management 
Agent (MA). An agent of either type works as a concurrent object. In this 
section, details of Feature Extraction Agents are presented. 

  The structure of this agent is shown in Table 4.1. EA holds the data of 

the feature to be extracted, the data for the extraction operations and the 

data for the features requested to the Feature Management Agents . The EA 
is automatically generated according to the feature definitions. 

4.3.1 The Flow of Execution 

The flow of EA's execution is shown in Fig. 4.3. The operations of an EA 

are composed of two phases. Each phase is triggered by a message from other 

agents, and finishes by sending messages to other agents . 
  In the first phase (say request phase), the EA is activated by receiving a 

hypothesized feature ft!'  as a request for feature extraction. The EA selects the 
extraction method from the given methods in the feature extraction definition. 
Then, it requests features by sending hypothesized features (f") to feature 
management agents (MAs), and becomes inactive until it gets other messages.
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        Table 4.1: Structure of the Feature Extraction Agent 

identifier: unique id assigned to each object 

feature-name: name of a feature to be extracted 

component-features : components of a feature 

component-relations : relations included in a feature 

constraints: constraints for a feature 

structure-variation : labeling variation for a feature 

attribute: attribute definition for a feature 

registration: registration definition for a feature 

extraction-methods : extraction methods defined for a feature 

current-operation : a method which is being executed 

operation-list: methods which are to be executed 

requested-feature-list : a list of features which are requested to fea-

                          ture management agents 

detected-feature-list : a list of features which have already been sent 

                          from feature management agents 

feature-management-agents : a list of feature management agents from 

                          which an agent requests features, and to 

                          which this agent sends extracted features.



CHAPTER 4. ORGANIZATION OF AGENTS IN PAFE88 

In the second phase (say extraction phase), a message from an MA (a reply 
which include the detected features  fT) activates an EA for the execution of the 
feature extraction. The extracted features ( f T,) are sent to the MAs where they 

get registered. Finally, the EA makes a judgement about the result, and if the 
the judgement is positive, the EA sends a request to the MAs to stop further 
execution to extract requesting feature. Or it sends requests for features to the 
MAs again, if the result is not satisfactory. 

  Each feature extraction cycle initiated in response to a request for feature 
extraction consists of the following two phases. 

  1. Request Phase: 

    activation: A hypothesized feature is sent from an MA to an EA as a 
        request of the extraction. The EA selects an extraction method. 

    messages: The features required for the extraction method are requested 
       to MAs by messages from the EA. 

    termination: The EA becomes inactive (The EA waits for messages). 

  2. Extraction Phase: 

    activation: One of the MAs activates the EA by sending a message 

        (Detected features are given). 

    messages: Detected features are sent to MAs. 

terminationl: A request for terminating the extraction of requested 

       feature is sent to MA from the EA. 

termination2: The request for features required for the extraction is 

        sent to MA again. 

  Any messages can be received even if the agent is executing in the above 

two phase. In other words, more than one request can be handled at the same 

time. If another request for the extraction of a different feature is sent to the
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      Figure 4.3: Flow of execution of the feature extraction agent
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EA during the execution of the previous request, the EA can start a new cycle 
for the request independently on the previous request. 

  In the following sections, each operation is described in detail. 

4.3.2 Selection of The Extraction Method 

When a request (hypothesized feature) is sent by MA, EA is activated and then 
the extraction method is chosen to be executed. As more than one extraction 

method can be defined for a given feature, it is necessary for the agent to select 

one (or some) to execute. This corresponds to choosing some arc(s) in Fig. 4.4. 
The arcs related by AND lead to a sets of component feature nodes which 

must be chosen at the same time, while arcs that are related by OR (no AND 
is given) lead to feature nodes which can be chosen independently. 

   In selecting methods, global minimization of expected costs for the ex-
traction of a feature in a distributed environment is a difficult problem. In
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this system, therefore, the agent chooses the one method that is judged to be 
maximumally effective (this judgement is attached to the definition) for this 

particular extraction situation among all methods that have not been tried yet. 
  The number of the methods chosen at one time is important for the paral-

lelism and efficiency of the execution. In this situation, two major strategies 
can be considered. One is to choose only one method, and the other one is 

to choose two or more methods at the same time. As we brought into our 

system the mechanism of the concurrent object model, simultaneous actions 
by different objects can occur. This means that some methods can be chosen 
in parallel. It is obvious, however, that a control strategy is required to avoid 

execution explosion and to make these objects work consistently. Therefore 
basically  only one extraction method is chosen at one time for the above rea-
son (The details are given in the next chapter, which is devoted to describe 

control strategy employed in the PAFE system). 

4.3.3 Execution of Extraction 

On receiving features from MAs, EA checks whether it is able to start execu-

tion. Assume that feature fo is defined as a structure consisting of features fi, 

f2 and a relation r(fi, f2) between fi and f2. Even if fi and f2 were sent to 
the agent, it would not make sense to start execution without having detected 

r(fi, f2). This dependency is detected previously when this agent is generated. 
  If the required input is only a single feature type, the EA will be ready 

to begin execution at any time after the input feature has become available. 

In other words, it is not necessary for the extraction agent to wait until the 
extraction of input features is completed. (The unmarked arcs in Fig. 4.5 

correspond to this type.) If multiple features are necessary as input, the feature 
extraction agent basically has to wait for all input features to become available. 

The arcs marked with  AND  in Fig. 4.5 correspond to this type of extraction. 

(However, since waiting for all the features to become available is inefficient, we 
propose a new method which perform extractions incrementally. This method 
is described in the next chapter)
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  EA then starts the execution of feature extraction by searching or applying 

procedure defined in feature extraction definitions. Some methods may require 

only the application of image processing to  input features (images), whereas 
others may require a search for component features to be used in feature syn-
thesis in which relations and constraints between them have to be considered 

(This search was described in the previous chapter). The detected features 
are sent to MA, which initially requested the hypothesized feature from/ this 
agent. 

4.4 Feature Management Agent 

The Feature Management Agent (MA) manages the storage which holds im-
ages, features and relations that were extracted by EAs. The MS keeps the 

features which need to be extracted some time in the future, the data needed 

as input to the extraction operations, and the data obtained through feature 

extraction process by EAs. It provides stored features on request and identifies 

newly received features. As mentioned above, more than one of this agent of 

this kind can exist such as multiple MAs for only one kind of feature or MAs 

that are assigned to a set of tightly related features. For handling spatial spa-

tial parallelism, more than one MA can be generated, each of which may be 

assigned to a spatially separated area (this is discussed in the Section 4.5). 
  The structure of the MA is shown in Table ??. There are two kinds of 

agents for feature management. One of them is a mesh object which really 

holds the feature data, and the other is a plane object which only delivers 
messages. This separation is introduced in order to handle the spatial division 
mentioned above. Multiple planes can exist as shown in Fig. 4.6. The reason 

for this division is that if all the features are assigned to only one mesh object 

of one plane object, the accesses to a mesh object may be concentrated and 
the communication to the mesh object may become bottle-necked. 

  The agent for the plane receives mainly requests for features from EAs, then, 
if required, duplicates the requests and and delivers them to each mesh object
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Table 4.2: The structure of Feature Management Agents 

(Agent for the management of the plane) 

identifier : unique id assigned to each object 
layer : level of a plane 
window-size : the size of an image plane to be considered 
mesh-number : the number of the spatial division 
mesh-width : the width of each division (mesh) 

 mesh-array : an array whose elements are the pointers to 

              mesh objects 

whose area is overlapping or included in the area of the request. On the other 

hand, the extracted features are also sent directly from EA to plane objects 

because EA does not know to which mesh object the area of an extracted 

feature should be assigned. Other messages are sent directly from the EAs to 

mesh objects. However, the plane objects and the mesh objects can be treated 

as one agent in most cases. In the following, therefore, we do not mention this 

separation for simplicity unless it is essential for the discussion. 

4.4.1 Flow of Execution 

The flow of execution for the MAs is shown in Fig. 4.7. It is composed of two 

groups of operations. One is the phase of receiving requests for features. The 
other one is the phase of receiving the extracted features. 

  In the first phase (say request phase), MA is activated by receiving a hy-
pothesized feature  f  h, which is a request for the feature extraction from EAs, 
the users or other systems. It checks the identity of the requested feature 
with the previously requested features stored in the "detection-map" (shown 
in Table 4.3). If an identical hypothesized feature is found, the MA merges 
the requested one and identical one requested previously. Then, if candidate 

features are already extracted, the MA replies the features to the requesting
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Table 4.3: The structure of the Feature Management Agent 

(Agent for the management of the each mesh) 

identifier : unique id assigned to each object 

position: position in a plane 
width: width of a mesh 
center: center of a mesh 

 plane-object : pointer to a plane object 
 EA-feature-list : a list of pointers to feature extraction agents 

                   handling the features 
 EA-relation-list : a list of the pointers to feature extraction 

                    agents handling the relations 
 extraction-status : a map in which the status of feature extrac-

                     tion execution is stored 
 feature-list : a list of the extracted features 

 identification-method : a list of identification methods for features 

                    (mentioned in Section 3.2.2)
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EA. If not, it sends the hypothesized feature  (ft) to the EA. If the EA which 
extracts that kind of feature does not exist, the MA creates new EA to extract 

it before sending the message. It then becomes inactive until it gets other 

messages. 

  In the second phase (say extraction phase), a message from EA (reply with 
the detected features) activates the MA. On receiving the message (that are 
reply with frs) from MAs, it becomes active again and identifies extracted 
features. The unique (that is, not identified features) extracted features (fr's) 
are sent to EAs that requested the feature previously. 

  The activation and termination for each phase are as follows. 

1. Request Phase: 

    activation A hypothesized feature is sent. 

termination) If the candidate features for it is already extracted, it 

        simply replies them. 

    termination2 If the EA to extract the feature exists, send the request 

       (hypothesized feature) to the EA. If the EA does not exist, it creates 
        new EA for the feature. 

  2. Extraction Phase: 

    activation Replied detected features from the EAs 

termination) Extracted features are sent to the EAs which requested 

        them previously. 

  Each execution for a request of a feature extraction has above two phases 

similar to the EA's action. More than one request can be handled at the same 

time. The order in which feature extraction requests are executed is not fixed, 

i.e. that request for which the needed feature become available first is executed 

first by the MA.
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4.4.2 Identification of Features 

The identification operation is necessary, because essentially identical features 

may be requested or extracted more than one time. For example, this situation 

occurs in a case where more than two upper level features contain the same 

kind of feature and request, or in the case in which essentially identical features 

are extracted by applying more than one extraction method defined for a single 

kind of feature. 

  For hypothesized features, this identification avoids the repetition of es-

sentially identical operations. For real features, it avoids the situation where 

more than one essentially identical features are stored at the same position for 

the same feature. In such situation more than one essentially identical upper 

level features to be extracted, and it would eventually lead to combinatorial 

explosion. 

Identification of Hypothesized Features 

The area of a  hypothesized feature is expressed with a rectangle in which candi-

date features for it are expected to exist (mentioned in the previous chapter). 

The identification of hypothesized features is calculated by checking mutual 
inclusion of these areas of features. The hypothesized features are stored in 

the MA with a hierarchical organization as shown in Fig. 4.8. 
  In this way, the system can merge hypothesized features, if identical ones 

already exist in the current map. By merging them, the MA can avoid send-
ing redundant extraction requests to EAs. Merging makes it possible to let 

features, whose areas are included in the areas of other features, share the can-

didate features of these superordinate features, and vice versa (some check for 
inclusion is still required). 

Identification of Real Features 

The area of a real feature is expressed with a minimum bounding rectangle 

that encloses the feature. The identification of a real feature is calculated by
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          Figure 4.8: Management of Hypothesized Features 

the following two operations. 

Identification by Labeling Variations 

First, for the structural features which have plural components, the variants 

of the component labeling are checked. The identification is necessary, be-

cause identical features may have been extracted. Consider that a rectangle 

can be extracted as a combination of the four lines (11,12, l3, l4), or as some 
other combination such as (l2, l3, l4, 11). If there already are identical features 
in the storage (managed by the MA), newly detected feature is rejected and 
abandoned. 

Identification by area 

Second, for all features, identification is checked with the ratio of the overlap-

ping section to the non-overlapping section as shown in Fig. 4.9. When this 

ratio exceeds a priori threshold, two features of the same type are merged into 

a single feature. In this way, the system can reduce redundancy caused by the 

multiplicity of essentially identical features.
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4.5 Spatial Division of Feature Extraction 

The objective of the PAFE system is not only to provide the system with a 

general feature description and extraction capability, but also to construct a 
system suitable for parallel processing. For this purpose, the spatial division of 
feature extraction is incorporated into the system. The Feature Management 
Agent and a Feature Extraction Agent are assigned to each spatially divided 
section. For the MA, a mesh object is assigned to each division as mentioned 
above. An EA is assigned to each division for each feature. 

  The system realizes spatial parallelism by their concurrent execution capa-
bility.' This is effective especially for the extraction of spatially small features 
and image processing operations which are applied everywhere in the image. 
However, the extraction of a large feature, which belongs to more than one di-
vision, is not so easy because a large feature may lay across sections. However, 
the system avoids serious problems as follows: 

image processing: Image processing composed of local operations such as 
    differentiation can easily be divided. Image processing operations, which 

    use global information such as histogram, are affected by the spatial
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    division. Therefore such operations are not performed separately in each 

section'. 

feature extraction from an image: There are two ways to handle this ex-

    traction case. One way is to extract parts of a large feature within each 

    division separately and combine afterwards as shown in Fig. 4.10(a). The 
    second way is to extract the entire feature in each extraction process and 

    identify it as a single feature afterwards as shown in Fig. 4.10(b). An 
    example of the former case would be the extraction of a curve, and an 

    example of the latter case would be the extraction of a straight line. 

feature extraction from a feature: The registration position of an input 

    feature determines the agents to operate on it. In other words, a Feature 

    Extraction Agent assigned to a particular division gets only the features 

    that are registered in the division. 

feature synthesis: If component features are scattered over several different 

    divisions, the EA assigned to the respective divisions executes the ex-

    traction of features in their own division. Fig. 4.10 shows an example , 
    where one of the component features of {XZ} determines which of the 
    EAs will execute the operation. In other words, the EA assigned to each 

   division starts a search (for the extraction) with X1 in the division as the 
    first node. In this situation, several variants of of the same feature may 

    be extracted in different meshes. Four identical rectangles , for example, 
    would be extracted by four independent EAs if each side of the rectangle 

    lies in a different division. The number of extracted rectangles , however, 
   is the same as in the situation where the spatial division is not consid-

    ered. Therefore, spatial division does not increase the total cost , if the 
    number of component features are fixed . 

    On the other hand, the extraction process for variable-length features can 

   be insufficient. The number of extracted identical features increases with 

2In reality , some of them can be handled if they are implemented carefully



CHAPTER 4. ORGANIZATION OF AGENTS IN PAFE103 

Table 4.4: Comparison between the blackboard and the multi agent models 

                   Blackboard Model Multi Agent Model  

   Data Structure flexibleflexible 
    Date Storage the blackboard an agent (or multi-

                                    ple agents) 
    Primitive Execution a knowledge source an agent (a set of 

                    (divided into small grouped operations) 
                     operational units) 

   Parallelismimplicitexplicit  

    spatial division, because the extraction process may include a procedure 

    which only extracts the longest feature. 

4.6 Comparison between the Blackboard Model 

    and the Multi Agent Model 

In this section, we compare the blackboard model and the multi agent model 

as a summary of this chapter. The following points are discussed below: 

  • The data structures used for image analysis 

  • Data storage 

  • Primitive procedures for image analysis 

  • The control mechanisms 

  Table 4.4 shows the comparison in compressed form.
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The Data Structure 

Although the blackboard model provides a flexible platform for managing var-

ious kinds of data, it does not provide the users the way to define the objects 
and features. Nor does the multi agent model. Our system provides a flexible 

way to define them independently of the blackboard model and the multi agent 
model. 

Data Storage 

The blackboard object in the blackboard model is a storage of data. In image 
analysis systems using the blackboard model, features and relations extracted 
during the recognition process are stored in the blackboard. The data can only 

be referred to by the knowledge sources. The data storage does not have any 

process for handling the data. 
  The data management function is also required in the multi agent model. 

It may be realized as an agent for data management, or may be realized by 
making each agent to have its own data independently. In PAFE, agents for 

data management are provided, which store and handle features and answer 
the queries by the other agents. The computation can be distributed because 

the agents for feature management have their own processes for managing data. 

Primitive procedures 

In the blackboard model, procedures for image processing and analysis are 

realized as knowledge sources. Each knowledge source has a definition in its 
condition part for activating it, and a definition in its action part for processing 

the data. Usually, a knowledge source consists of just one condition and one 

action. 
  By contrast, an agent in the multi agent model can respond to many acti-

vation patterns. It can be activated by receiving messages from other agents, 
or by one of its interior processes (when it includes multiple processes). In this 

sense the agent can be considered as an alternative of a set of rules organized
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into a meaningful group. Or an agent can be considered as a small blackboard 

system embedded in a global blackboard system. In this system, they are au-

tomatically generated according to the feature definitions, which contain the 

methods (routines) for feature extraction. The computation can be distributed 
because the agents for feature extraction have their own processes for executing 
feature extraction. 

Control mechanism 

The control of the blackboard model was presented in Section 4.1. In each 
execution cycle of execution in the blackboard model, every possibility for 
each knowledge source to activate itself is checked. This phase consumes much 
execution time, and is a major obstacle to fast parallel implementation of the 
blackboard model. Though the possibility of parallel execution (of knowledge 
sources) does implicitly exist in this model, it causes serious problems such as 
the difficulties in connection with conflict resolution. 

  In contrast, the multi agent model incorporates explicit parallelism which 

allows each agent to independently execute its own jobs. Since mechanism for 
conflict resolution is not considered in this model, additional operations are 
required for keeping the consistency of the execution. 

  The goal of this system is the parallel and incremental feature extraction 
for the purpose of finding the possible existence of high level features, objects 

and so on. For this purpose, the problem of conflict resolution is not as seri-
ous as seen in image interpretation tasks. The method of extracting features 

incrementally together with operations for the identification check3 can be a 

quite effective method. 
  Details of the control of feature extraction are presented in the following 

chapters. 

  3The operation to identify features and merges them if identical.



Chapter 5 

Control of Agents in PAFE 

In the preceding chapters, the framework for feature definition in PAFE and its 

system configuration were presented. In this chapter, the control mechanism for 

performing feature extraction through the cooperation of agents is described. 

5.1 Introduction 

There is a great need of developing a system that provides parallel and dis-

tributed processing. Many algorithms and systems, including special hardware, 

are proposed for low level image processing. On the contrary, the problems of 

intermediate and high level processing such as the extraction and recognition of 

structural features are not well investigated, although there are some systems 

reported [Dea89,  Oht91]. 
  To realize parallel processing in feature extraction, it is efficient to define 

features structurally as in our system. This makes it possible to divide the 

extraction of higher level features into lower level feature extraction. In our 

system, features and their extraction methods are organized in a feature extrac-

tion network as described in the preceding sections. They can be defined and 

extracted in multiple ways. Within the feature extraction network, different 

paths (that means extraction method) can be executed in parallel. Any combi-
nation of extraction methods such as combinations of top-down and bottom-up 

                        107
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can be dealt with in our framework. However, allowing each agent to choose its 

action arbitrarily (independent of each other and the status of the whole sys-

tem) causes computational explosion. Mechanisms for controlling the agents 
are required to achieve efficient feature extraction. 

   First, in our system, several types of feature extraction are considered. 

Then, the strategy for controlling the agents' actions is proposed. According 

to this strategy, the agents realize flexible feature extraction with coarse grained 

parallel processing. 

5.2 Feature Definition and Extraction Defini-

    tion 

5.2.1 Definitions 

Features, relations and feature extraction are defined as follows: 

                    f  ::= (P,R,C,A,E) 
                    r ::= (P, C, A) 

                    e (F'e,M,Ae) 

where (f, F) and (p, P) are the features (p is used in the description of a 
compound feature when a feature p is a component feature of the compound 

feature), (r, R) are the relations among features , C is the constraints among f 
and r, (e, E) are the methods for extracting the features , Fe is a set of features 
used in the extraction, M is the real procedure executed during extraction and 
Ae is the criterion value for choosing the method e. Each lower-case character 
expresses an element and each uppercase character expresses a set of elements . 

  These definitions can be organized hierarchically , in the case of which mul-
tiple extraction methods can be assigned to any feature . A feature without 
components can be defined by E, which means a procedural definition of the 
feature.
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  With this notation, feature extraction can be expressed as follows: 

 F0 G e{fo} 0 (Fi, F2, ... , Fri) 

where the input features for extraction method el are fl, • • , f„, and F, is a 

set of candidate features for f2. fo in the above notation can be thought of 

as a top-down extraction goal. 0 means that el is applied to a set of input 
features. This makes it possible to specify extraction which processes can not 
be executed without a goal or a model. Extraction based on multiple extraction 

methods can be expressed as follows: 

F0=e{f1o}0(Fi, ... ,F,) U e2{f0} 0 (Fi, ... , F) 

(= (el ® e2){10} 0 (F1, • • • , F)) 

where e expresses the operation for making union of the results which are 

generated by applying extraction methods (e2) to the same input features. 
  The hierarchical combination of several extraction methods allows various 
kinds of flexible extraction. Intermediate features are also extracted during 
extraction execution of the target feature as shown in the feature extraction 
network 4.4. For instance, the situation where several extraction methods are 
applied for the extraction of fo can be expressed as follows: 

F0 (ell ®...®e12){fo}O((c21®...®e2f){fi}O(...),... (esi...){f„}O(...)...) 

Although the intermediate features, which are the input features for the ex-

traction of higher level features, are shared during the execution of extraction, 

this is not explicitly expressed in this formula. 
  With this kind of extraction, any feature, which potentially can be extracted 

in some way, can be extracted by the following procedure: 

   For each target f2, apply every existent extraction method e; 

  In practice,it is impossible to apply every existent method, however, because 

of the following problems:
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  • The computation would explode, if all the possible combination of oper-

    ations was carried out. 

  • Possible candidates of targets (goals) can not be specified before extrac-
    tion starts (we can not know which new goals will be generated during 
    execution without actually carrying out execution), and among these new 

    goal features may be some which cannot be extracted with the present 
    set of extraction methods. 

  Therefore, the several strategies are employed in the PAFE system. In 

this chapter, several types of operations needed for hierarchical extraction of 

features with feature network will be presented first. Then several strategies 

are considered. 

5.2.2 Fundamental Extraction Operations 

For the hierarchical extraction of features, the following two operations are 

essentially required: 

 (a) Receive the data, which are the result of previous executions, and apply 
    selected operations to the data. 

 (b) Send the execution result for registration as newly extracted features. 

  These are very simple operations, which are always required for any kind 

of feature extraction. Next, we have to consider the following two operations: 

 (c) Select one or more extraction methods for extracting candidates for the 
    target feature  (fo)• 

 (d) Request features (fl N Li) required by the selected extraction methods. 

  These two operations enable the top-down extraction of features by break-

ing down the higher level target feature (requested at the top level) into lower
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level features, including the original image or some images which can be directly 

manipulated by the system. 

  Moreover, the evaluation of intermediate results is essential for the flexible 

and reliable extraction of features. The following two operations are performed 

according to the evaluation of intermediate extraction results: 

 (e) If enough results for the target feature  f; cannot be obtained, request 
    re-extraction with a different set of extraction methods. 

 (f) Generate new goals (m e71,) from the intermediate results. 

  Every operation executed in this system is expressed as a combination of 

the above operations (a) through (f). 

5.2.3 Primitive Extraction Strategies 

The combinations of six fundamental extraction operations mentioned above 
form several primitive strategies. Four of them are chosen in this system, as 
shown in Fig. 5.1. 

  The four feature extraction strategies are described below by utilizing the 
following notation: 

   f h : a request for feature extraction (hypothesized feature) 

fT : an extracted feature 
Fr : a set of extracted features f,, 

     :the operation proceeds in the direction of the arrow 

0 : an operation making combinations of features 

  In addition to these, the feature f, can be expressed as ff(f;, fk) if it has f; 

and fk as component features. The operation of making combinations of the 
features are expressed as follows. 

                    FO' FI ®... ®F~ 

  Top-down extraction has three phases.
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      Figure 5.1: Several Primitive Strategies of Feature Extraction
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Initial extraction: Given a request for a feature from an upper level agent (or 
    user), the request is recursively broken into lower level feature requests 

    until the request can be satisfied by an extracted feature (for instance, 
    an original image). For example, in the case of the execution example 

    shown in Fig. 5.1, the extraction of a wrench can be denoted by the fol-

    lowing formula (this corresponds to operations (c) and (d) in the previous 
    section. The execution corresponds also to (a) and (b)): 

 wrench  ntt = wrench nzt(head ntt, handle net) = head,, handle n=t • • • 
Wrench' = {wrench'(head?, handle), ..} = Head' ® Handle' • • • 

Re-extraction: If enough results were not obtainable during the execution, 
    the agents request component features again (this causes the re-extraction 

    of low level features). This corresponds to operation (e) in the previous 
     section. 

(Wrench' Head" ® Handler • • •) 
c wrench: = head: •• 

Completion extraction: If some features score only moderately (that is, 
    their score is below the acceptance level but higher than the rejection 

    level), completion extraction for the confirmation of the feature is required 
    as follows (this corresponds to operation (f) in the previous section): 

wrench'(headi, handle) = wrenchnew(headnew, handle) = headnew 

In this case, a new extraction for a wrench-head (head:ew) is requested for 
verifying the existence of an extracted wrench (wrench'(headi, handle)) with 
moderate score. A new goal for extraction (wrenchnew(head:ew, handle)) is 
generated during this operation.
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  The above three strategies are not enough for usual extraction of the fea-

tures. Additional strategy is required for bottom-up extraction of features, in 

which higher level features are inferred from the extracted features according 

to part-of relationships or other relationships in feature definitions. 

Inferring and/or extraction of upper level features: In bottom-up direc-
    tion, a hypothesized feature which is suggested by some extracted fea-

    tures, which may be the components of the feature, is sent to MAs. For 

    this purpose, there exists a table in which the type of the component 

    features is related to be types of structural features. For example, an 

    instance  handle2i may suggest the existence of plier according to the 

    feature definition shown in Fig 5.1, which causes the extraction of head2 

    to be performed. This corresponds to operation (f) in the previous sec-
     tion. 

handle2i = pliernew(head2new, handle2i) = head2new 

5.2.4 Basic Control Strategy 

In PAFE,strategies used in particular feature extraction situations are com-

posed of the four primitive strategies described above. The basic idea of the 
combination of the strategies, which is taken in usual extraction task , is pre-
sented in this section. 

  First, let fo be a target feature which can be extracted through the extrac-

tion of component features fi and f2. The computation without the changes 

of the target feature is as follows. 

Fo U(eol a ... ® eom){fo} 0 (en ® ... ® ,,in,{fi} 0 17; 
fo 

  The union (U) expresses an operation for identification of extracted features 
mentioned in Section 4.4.2.
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  However, it is efficient to set a target which is  only loosely defined (f Oroose), 
and then choose one or a small number of extraction methods for the extraction 

of fl and 12. In this situation, f Oroose may be a hypothesized feature whose 

position or size is not specified, so that extracted features of any size and of 
any position will match to it. 

                F000se e{fotooee}e{fltoose} O F2 
  If the results of the initial extraction with respect to f Oroo9e, are not satis-

factory, re-extraction is required. For this purpose, a re-extraction request is 

sent to the respective EA through the MA. Re-extraction (that is e{fo} in this 
case) takes place as follows: 

        re-extraction011112r             Foe{fot oose} 0 (ee e){fllooae}0 F`2 

  If there is a candidate feature (fo) for fo, which is above the rejection thresh-

old,but below the acceptance threshold, the system tries to perform completion 

extraction for that feature. For example, the following extraction operation 

may take place: 

                 1,completione01Oe12O Fr 
             0{f0new}{flnew}2 

  With this basic strategy, a simple extraction of a requested feature can be 

performed. 

5.3 Overall Control Strategy 

The execution of several separate agents can carried out in parallel as was 

noted before. This implies that the potential for possible parallelism in this 

framework is quite high. 

  However, if each agent takes its own operation independently of other 

agents, it can easily cause computational explosion. For this purpose, more 

precise control strategy is required because this basic control strategy presented
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in the previous section is not enough to constrain execution of all agents (EAs 
and MAs). The overall control strategy is presented in the following section. 

  In this strategy, we focus mainly on the two advantages of our system, 

which are a flexible combination of top-down search and bottom-up execution, 

and asynchronous incremental execution. 

5.3.1 Combinations of operations 

The features and their extraction methods are organized in a network as shown 

in Fig. 3.6. In this network, features can be extracted along the paths that 

connect nodes. An EA' is assigned to each node of the network, since one or 

more EAs are required for each feature. MAs are assigned to sets of features. 

This means that they construct a network of agents which is analogous to the 

feature extraction network used during execution (on request). The agents 
interact through messages whose contents are mainly hypothesized and real 
features. Thus, agents can interact in quite a simple way by sending hypothe-
sized features, returning extracted features and so on. 

  Moreover, this system can focus on multiple targets and can employ multi-

ple methods for their extraction as well as multiple types of operations (such 
as simple extraction, re-extraction, etc.) in parallel. An EA assigned to a 
node in the feature network is potentially able to carry out the above oper-

ations independent. Each EA requests features from other agents, executes 
feature extraction, and requests features again after having judged the extrac-
tion result. This can be considered as a kind of parallel graph search in which 

any node can be expanded or re-expanded (which corresponds to the trial of 
another OR-arc) independently. 
  Under this organization, the agents select their strategies as mentioned 

above. In this selection, the agents can potentially choose their strategies 

independently of the other agents. For example, an EA in charge of the feature 

 fi executes initial extraction while another EA executes completion extraction 
1When spatial division is considered

, plural EAs are created for one node
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for  f2  . Another example is the case of two parts (fp ,tl, fp rtz) of a common 
parent (f ,hhole),whose extraction takes place independently of each other. Their 
operations would be related to each other only if there existed the ancestor-
descendant relation in the feature extraction network between them. 

  The straightforward implementation, however, in which every agent can 

carry out any operation causes computational explosion in many cases. Obvi-

ously, a better global control strategy is required to make these agents work 
consistently and avoid computational explosion. For this problem, there are 
no general solutions reported, especially for concurrent objects or multi agent 

environments. We propose several constraints for choosing strategies (which 
will be described in Section 5.3.3). 

5.3.2 Incremental execution 

One advantage of using the concurrent object model (multi agent system) is not 

only the parallel execution of unrelated agents, but also data flow execution. 
  First, consider the operation of extracting structural features by combining 

component features. As the system can utilize hypothesized features instead 

of component features in its search when component features are not available, 
extraction of features across agents can be imagined as follows. Let the symbol 

® express "combination" similar to the direct product. 

  1. Component feature candidate fl can be denoted as follows: 

(candidates for fl) = (extracted features) + (hypothesized features) 
F1 = Fl + Fl 

                         1f11, f12' ..., fln' fll' f12' ...} 

  2. The combinations of component feature candidates can be written as 

    follows on the condition that R(F27 F;) is already extracted:
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             • 
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                           ~ ~ ••2 

1 

F10 F11 

           Figure 5.2: Example of Incremental Extraction 

F0F1®.•.®Fn 

=(Fl +Fi)®.••®(FF+FF) 
              rh' 

                          {f11,..., f11,..} ®• • • ®{fnl,..., fnl,..} 

where F means a set of candidate features for fh (Fr is the set of extracted 
features, Fh is the set of hypothesized features). Relations also can be denoted 
by R and r in the same way. fo is composed of f1 to fn and satisfies the 
constraints r(fi, f;)'s. 

  The hypothesized features /hi are generated during the search. Therefore, 
execution can be carried out even if nothing is extracted. The consequence of 
this is that the search can occur whenever new candidates for any component 
features become available. Suppose that f, (that is AFT) was extracted, then 
the new increment of fo (denoted AF(C) can be calculated as follows: 

              Fo' F1®...®(FUDFr)®...®F'n
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 AFo = Fl®...®AFT®...®Fri 

  This can be calculated economically by reordering the search and starting 

the search from f1: 

OFo Fr 0 Fi • 0 Fr, 

                                         These mechanisms realize asynchronous incremental extraction of features. 

Consider the example shown in Fig. 5.2. The component features of F6 are 

sent from F10 and F11 asynchronously. Allowing for incremental execution, 
feature F6 and all the features extracted from F6 are extracted incrementally. 

5.3.3 Overall control strategy 

There are several factors one should consider when making a decision about 

the style of the overall control strategy of the system. 

  • The amount of parallel execution will increase,when the agents assigned 

    to lower level features are allowed to do re-extraction (try another path) 
    unrestrictedly. 

  • However, allowing unrestricted re-extraction also causes a large amount 

    of unnecessary extraction operations to occur,lower level re-extraction 
    might occur which would never take place, if related higher level features 

    were extracted earlier. (Often the area for the extraction operation or 

    even the set of target features to be extracted are constrained by the 
    information provided by higher level features.) 

  Considering these factors, we propose an overall control strategy as shown 
in Fig. 5.3 and having the following properties: 

  • The feature that is initially requested (for the first time) as a component 
    of an upper level feature is to be extracted immediately on request. It can 

    be decomposed into requests of lower level features (component features, 

etc.).
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              Figure 5.3: Overall Control Strategy
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  • The EA that did not receive enough lower features can request lower 

    features again (re-extraction) only, if it is at the lowest level among all 
    EAs that require re-extraction of lower level features. 

  • Completion extraction of a feature can be requested only, if the feature is 

    at the highest level among all features that require completion extraction. 

  The point is that this strategy increases the rate of parallel execution by 

allowing the re-extraction of features that have not been sufficiently extracted 

yet, while avoiding unnecessary extraction operations by restricting completion 

extractions to higher level features. 

  In this strategy, we do not require an additional mechanism for the control of 

 re-extraction operations, because re-extraction requests (hypothesized features) 
from EAs are not distinguished from lower level re-extraction requests. They 

are merged into one request (hypothesized feature) by MAs. For the example 
of Fig. 5.3, whether the request for F10 is a regular request from F5 or a 

re-extraction request from F2 via F5. 

  For the control of completion extraction, however, an additional mechanism 

is required, because the EA has to know whether it is at the highest level 

or not. This is realized by requesting a completion extraction request from 

the highest level EA. If that EA has no feature that requires completion, it 

sends a dummy request for completion extraction. The EAs, which receive a 

dummy request, can carry out completion extraction if necessary, or send their 

own dummy requests to lower level features. In this way, if one EA catches a 

dummy request it can start completion extraction, and none of the other EAs 

at a lower level than this EA will ever start completion extraction. 

  However, even this control strategy sometimes causes computational explo-

sion, and further investigations are required for finding a better strategy.



Chapter 6 

Experimental Result 

In the preceding chapters, the PAFE system was described in detail. In this 

chapter, several experiments are presented to verify the efficiency of feature 

extraction performed by PAFE. 

6.1 Experiments 

This system was implemented on a Symbolics machine in Common Lisp. Most 

of the low level image processing is performed on SUN workstations when 

requested through RPC (remote procedure call) by the Symbolics machine. 
  The concurrent object models have been written in FLAVOR (an object 

oriented language based on Common Lisp). Each object has two processes for 
receiving messages and executing its own operations. Scheduling is left to the 

scheduler of the Symbolics machine. 

  The images to be recognized are images of a set of blocks that are mostly 

composed of straight lines, the images of a set of tools that are mostly composed 

of curves, and the images of a set of aerial photographs that are mostly com-

posed of regional features. The definition of features were defined as described 

in Section 3.5. 

                       122
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6.1.1 Experiments for testing the basic operations 

First, simple experiments not involving complicated control mechanisms are 

shown below. These demonstrate the abilities of feature definition in PAFE and 

the flexibility of the extraction process due to utilizing the feature extraction 

network. 

Indoor Objects 

The results of feature extraction defined in Section 3.5, are shown in Fig. 6.1 

and Fig. 6.2 respectively. The structures for the extracted features are shown 

as well. 

  In example (1), a structured feature arrow was extracted as straight-linel --> 
straight-line2  --> triangle (rectangle) -* arrow. In example (2), the structured 
features shown in Fig. 3.3 were extracted. The numbers of extracted features 

including intermediate features are shown in Table. 6.1. 

  Table. 6.2 demonstrate the effectiveness of spatial division; it compares the 

execution time of feature extraction utilizing spatial division with extraction 

not utilizing spatial division (a whole plane is a single mesh). In this table, 
the execution time without spatial division is denoted by To, the execution 

time for a mesh, when spatially divided, is denoted by T2, their maxima are 

denoted by max(T2/To), the average are by average(T2/To), and the sum are 
by E(T2/T0). Considering that features are not lying uniformly, the spatial 
division is effective except for variable-length features. (The reason was given 
in the previous chapter). 

Aerial Photographs 

The experiments in which PAFE is applied to aerial photographs are shown 

below. In these experiments, precise recognition is not pursued, because mech-

anisms of conflict resolution required for the precise recognition are not intro-

duced into PAFE. The characteristic areas defined in Section. ?? are extracted 

as shown in Fig. 6.3 and Fig. 6.5.



CHAPTER 6. EXPERIMENTAL RESULT124 

             Table 6.1: Numbers of extracted features 

         FeatureNumber Feature  I Number  
          Straight linel 52 curve-prim 15 

        Straight line2 5 curve 15 
        Corner56 corner-curve 21 
         Line Sequence 68 flat-curve 11 
          Parallel lines 33 corner (beak) 27 
      Rectangle 3 hole8 

     Arrow4 u-shape 7 
                                   wrench-handle 2 
                                  wrench-head 1 
                   wrench1 

               pliers1  

             Table 6.2: Comparison of Execution Time 

 Feature (Relation)MaxAverageTotal (
max(T2/To)) (average(T2/To)) (E(T/To))  

 Differentiated Image 0.280.261 .06 
 Binary Image0.390.381 .54 

Curve0.390.251 .0  
 Parallel (Relation) 0.140.121 .93 
 Parallel lines 0.150.071 .12 

Rectangle0.170.071 .11 
Triangle0.140 .050.81 
Line sequence0.750 .223.52  

         The plane for Upper group is divided into 2x 2 Meshes. 
              One for lower is divided into 4x4  Meshes .
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              Figure 6.1: Experimental result for blocks
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            Figure 6.2: Experimental result for tools
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         (c) An example for a structure of an extracted region 

         Figure 6.3: Experiment for Aerial Photographs (1)
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6.1.2 Experiments for testing the control mechanism 

The experiment for the verification of the control mechanism is shown below. 

In this experiment, PAFE was applied to the tools defined above. An example 

of execution steps in the concurrent environment is shown in Fig. 6.6, Fig. 6.8. 

  The extraction process proceeded as follows (letters in parentheses refer to 
sub-images of Fig. 6.6 to Fig. 6.8). 

  1. The 'U-shape' feature was specified as a target by the user. 

  2. Several u-shapes were extracted by the initial extraction operation (c). 

    (Features are presented by rectangle to distinguish them from each other) 

  3. The existence of upper level features (Handle, Head, Handle2) were sug-

    gested by them, and they were requested for extraction (d). 

  4. In this extraction Map, some handles were extracted (e). 

  5. 'Wrench' was suggested from 'Handle', and extraction was performed. 

    Four candidates were extracted (f). 

  6. Completion extractions for the above wrenches were requested, and the 
    extraction of  ̀ Head' was performed (g). 

  7. As the results are not satisfactory, completion extraction operations for 
`Head' are performed

, and new heads are extracted as shown in (h). 

  8. This resulted in the extraction of a new feature of 'Wrench' whose ex-

    traction is completed with the results (i) and (j). 

  9. The extracted incomplete pliers are shown in (k). 

  An intermediate state of extraction execution is shown in Fig. 6.9, in which 

several processes are working simultaneously on the extraction of several fea-

tures. A chart of time traces depicting the extraction of several features from
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beginning to end execution is shown in Fig. 6.10, where the number of  pro-

cesses involved in the extraction of each feature is represented by the thickness 

of the trace lines. Another example of the extraction of tools form an image is 

shown in Fig. 6.11. 

6.1.3 Discussion and Summary 

Flexibility of Definition 

The flexibility of feature definition inherent in PAFE can be clearly observed 

through these the simple experiments. In the case of block-like objects which 

are composed of straight lines, the intermediate features are quite well ex-

pressed in our framework. Although writing feature descriptions for tools is 
more difficult than for blocks, they are well defined in this system, too. The 

same can be said of the regional features of aerial photographs. 

Flexibility of Control 

The experiments in Section 6.1.2 show the flexibility of our system. By allowing 

each agent to choose appropriate strategy independently, the extraction process 

as a whole proceeds in complicated but flexible ways. The system tries to 

extract all the features which are potentially extractable until there is no such 

feature left or until interruption by the user or other systems occurs. 

Parallelism 

During initial extraction when the detection of a loosely specified feature is 

the target, the number of parallel processes executing simultaneously amounts 

a few, say up to ten. The reason for this is that only one target feature was 

specified in the experiments and no spatial parallelism was incorporated for 

the verification of the control mechanism. If plural targets were given to the 

system and spatial division was incorporated, the execution parallelism would 

increase.
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            Figure 6.6: Feature Extraction Progress (1)
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          (g) Extracted Wrench (h) Re-extracted Head 

                                                                • 

                            1.J 

           (i) Result for Wrench 

            Figure 6.7: Feature Extraction Progress (2) 

  During the re-extraction or completion extraction phases, a number of pro-

cesses were running simultaneously. Often their number was on the order of 

tens and sometimes more than one hundred. This occurred mainly because 

new targets has been created for completion extraction. Especially in the case 

of recognition of complicated images, the number of processes often increases 

beyond system capacity. (In this situation, we limit the number of processes 
which are running at the same time.) 

6.2 Summary 

This chapter described some experimental results and the behaviors of a feature 

extraction system with multi agents. These experiments demonstrated the 

characteristics of the PAFE system as follows: 

  • parallelism (concurrency) of extraction execution
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  • flexibility of execution 

  • efficiency of feature extraction by relying on a feature network as shown 

    in Fig. 3.6. 

  Further investigations are required to establish a more efficient control strat-

egy. At the same time, extending the utility of the feature network to encom-

pass most of the recognition objects is an important problem to be tackled 
with. 

Areas for the future work 

There are two main areas for the extension of this research. One is the intro-

duction competition between the agents. The other one is the integration of 

features which are extracted from the various kinds of sources. 

  1. Competition between the agents. 

    In this system, only the cooperative actions of the agents were introduced. 

    However, the competition between agents is sometimes useful for flexible 

    and efficient feature extraction. For example, branch pruning of the 

    parallel search could be realized by allowing only the agents with the 
    highest score in the competition to continue the extraction. 

  2. The integration of features. 

    The identification of extracted features is introduced into this system , 
    needs to be supplemented by feature integration to achieve robust feature 

    extraction.



Chapter 7 

Conclusion 

7.1 Summary 

The objective of the research in this thesis is to construct a constructing a 
flexible image analysis system which utilizes local features efficiently. For this 

purpose, a framework for flexible feature description, a framework for perform-
ing image processing and further recognition tasks according to description 
of features, and a framework for flexible control of these processes were in-
vestigated in this research. Parallelism of execution is also investigated, since 
image analysis has a considerable degree of potential parallelism in many forms 

(spatial parallelism, etc.). 
  In this thesis, two systems for Image Processing and Recognition, which 

were developed in this research, were presented. First, a system for recognizing 

overlapping two dimensional objects (RTS) was described, which proposes a 
methodology for recognizing scenes where already known objects are partially 
occluded by each other. After that, a system (PAFE) for feature extraction 
was described which provides a flexible platform for defining structural features 
as well as primitive features, and which realize parallel execution of feature 
extraction processes. A method for the integration of locally residing features 
was discussed, too. 

  The purpose of this research is not to explore general features which are 

                        139
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applicable to every kind of applications but to construct a general platform 

which allows all kinds of features to be used without causing serious conflicts. 
Especially in both part of the research, integration of local features, which 

are fragments in any case, into some meaningful structure such as a part of an 
object, an object itself or a scene description was at the center of the discussion. 

  For this purpose, the following points were discussed and efficient methods 
were proposed in this thesis: 

  • An efficient method for recognizing overlapping objects. 

  • A framework for feature definition as the basis for realizing modularity. 

      — a hierarchical definition of features 

      — feature extraction with a feature network 

  • A framework of multiple agents allowing parallel execution of extraction 

     process. 

      — flexibility of execution control 

      — parallel (concurrent) extraction execution 

  • A control strategy for feature extraction by the multiple agents. 

  The modularity of the feature definition is fitted to translate the feature 

extraction process into modular components, and to make parallel execution 

easier. The system organization with multiple agents, in which each of them 

perform relatively simple execution, realized a flexible control mechanism as a 
whole system. 

  Several experiments involving 2-D objects demonstrated the abilities of our 

system with regard to the above points: 

  • Scenes of blocks, tools and aerial photographs can easily be analyzed by 

    our system.
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  • The flexibility of the extraction processes was demonstrated. 

  • A certain degree of parallelism was achieved. 

7.2 Areas for future works 

Further investigations are required in regard of the following areas which are 

promising extensions of this research. One area is the competition among 
agents. Another area is the integration of features which are extracted through 

various kinds of extraction processes from the different sources. 

  1. Preparation of a feature network which can satisfactorily be the base for 

    the definitions of most objects. 

    It is quite important to prepare a set of features which are useful for the 

    extraction of many kinds of objects. This set is not necessarily a unique 

    one. They can be several sets depending on the targets. 

  2. Competition among agents. 

    In this system, only cooperative actions of the agents were introduced. 

    However, competition among agents is sometimes useful for flexible and 

    efficient feature extraction. For example, branch pruning of the parallel 

    search could be realized by allowing only the agents with the best scores 

    to continue the extraction. 

  3. Integration of features. 

    In this system, the identification of extracted features is introduced. Fur-

    ther investigation for the integration of them is required to achieve robust 

    feature extraction. For instance, reliability factors could  be efficient base 

    for integration of features which are extracted through various kinds of 

    extraction processes with different reliability. 

  4. A more efficient control strategy. 

    The control strategy for the multiple agent system needs to be extended 

    beyond the scope reported in this thesis.



Bibliography 

[AF86] N. Ayache and  O. Faugeras. A new approach for the recognition and 
        positioning of two-dimensional object. IEEE Trans., Vol. PAMI-8, 

        No. 1, 1986. 

[AK87] K. Andress and A. Kak. A production system environment for 
        integrating knowlodge with vision data. Proc. Workshop, Spacial 

        Reasoning and Multi-sensor Fusion, pp. 1-12, October 1987. 

[BGB79] R. Brooks, R. Greiner, and T. Binford. The acronym model-based 
        vision system. Proc. 6th IJCAI, Tokyo, pp. 105-113, 1979. 

[Bro91] R. Brooks. Intelligence without reason. Artificial Intelligence, 
        Vol. 47, pp. 139-160, 1991. 

[Dea89] B. Draper and et all. The schema system. International Journal of 
        Computer Vision, Vol. 2, pp. 209-250, 1989. 

[DMM85] W. Harley D. McKeown and J. McDermott. Rule-based interpre-
        tatin of aerial imagery. IEEE Trans., Vol. PAMI-7, No. 5, pp. 

        570-585, September 1985. 

[EF86] M. Eshera and K. Fu. An image understanding system using 
        attributed symbolic representation and inexact graph-matching. 

        IEEE, Trans., Vol. PAMI-8, No. 5, pp. 604-618, September 1986. 

                        142



CHAPTER 7. CONCLUSION143 

 [FP81] O. Faugeras and K. Price. Semantic description of aerial images 
        using stochastic relaxation. IEEE, Trans, Vol. PAMI-3, pp. 633-

        642, 1981. 

[Hae82] W. Haettich. Recognition of overlapping workpieces by model di-
        rected construction of object contours. DSIA, Vol. 1, No. 2-3, 1982. 

[HR78] A. Hanson and E. Riseman. Visions: A computer system for in-
        tepreting scenes. Computer Vision Systems, Academic Press, pp. 

        303-333, 1978. 

[Low87] D. Lowe. The viewpoint consistency constraint. Computer Vision, 
         Vol. 1, No. 1, pp. 57-72, 1987. 

[Mat88] T. Matsuyama. Expert systems for image processing — knowledge-
        based composition of image analysis process —. Proc. 9th ICPR, 

        Rome, pp. 125-133, 1988. 

[MH90] T. Matsuyama and V. Hwang. SIGMA. Plenum, 1990. 

[Nag84] M. Nagao. Shape recognition by human-like trial and error random 
         processes. Proc., 2nd Int. Sympo., Robotics Reserch, 1984. 

[Nag86] M. Nagao. Toward a flexible pattern analysys method. Proc. ICPR, 
         Paris, 1986. 

[Nii86a] H. Nii. Blackboard systems : The blackboard model of problem 
        solving, and the evolution of blackboard architectures. The AI Mag-

         azine, pp. 38-53, Summer 1986. 

[Nii86b] H. Nii. Blackboard systems: Blackboard application systems, black-
        board systems from a knowledge engineering perspective. The AI 

         Magazine, pp. 82-106, August 1986. 

[NM80] M. Nagao and T. Matsuyama. A Structural Anarysys of Complex 
        Aerial Photographs. Plenum, New York, 1980.



CHAPTER 7. CONCLUSION144 

 [NN86] M. Nagao and S. Nakajima. Shape recognition system by variable 
        size slit method - it's hardware and software -. Proc. ICPR, Paris, 

        1986. 

[Oht87] Y. Ohta. Knowledge-Based Interpretation of Outdoor Scenes. Re-
       search Notes in Artificial Intelligence. Pitman Advanced Publishing 

        Program, 1987. 

[Oht91] Y. Ohta. Approaches to parallel computer vision. IEICE Trans. 
Vol.E 74, No. 2, pp. 417-426, 1991. 

[RB84] P. Rummel and W. Beutel. Workpiece recognition and inspection by 
        a model-based scene analysis system. Pattern Recognition, Vol. 17, 

        No. 1, pp. 141-148, 1984. 

[Rum86] P. Rummel. Gss - a fast, model-based gray-scale sensor system for 
        workpiece recognition. IEEE Proc. CVPR, 1986. 

[SFO88] A. Sanfeliu, J. Font, and I. Orteu. An architecture based on hybrid 
        system for analyzing 3d industrial scenes. Proc. 9th ICPR, Rome, 

        pp. 368-370, 1988. 

[SH86] T. Skordas and R. Horaud. Planning a strategy for recognizing 
       partially occluded parts. IEEE Proc. CVPR, 1986. 

[Tro81] H. Tropf. Analysis-by-synthesis search to interpret degraded image 
        data. Proc. Robot Vision and Sensory Controls., 1981. 

[Wea87] C. Weems and et. all. Image understanding architechture. Proc. 
        Image Understanding Workshop, DARPA, pp. 483-495, February 

        1987. 

[Wey87] T. Weymouth. Incremental interference: Spatial reasoning within 
        a blackboard architecture. Proc. Workshop, Spacial Reasoning and 

        Multi-sensor Fusion, pp. 34-41, October 1987.



CHAPTER 7 CONCLUSION145 

 [YSHT87] A. Yonezawa, E. Shibayama, Y. Honda, and T. Takada. Modelling 
        and programming in a concurrent object-oriented language abcl/l. 

        Object Oriented Concurrent Programming, 1987.



List of Publications 

List of Major Publications 

[1] Yuichi Nakamura and Makoto Nagao, Recognition of Overlapping 2-D 
   Objects, (in Japanese), Journal of JSAI, Vol. 3, No. 4, pp. 65-77, 1988, 

[2] Yuichi Nakamura and Makoto Nagao, Recognition of Overlapping 2-D 
   Objects by Local Feature Construction Method, Proc. 9th ICPR, 1988, 

[3] Yuichi Nakamura and Makoto Nagao, A Blackboard System for Feature 
   Extraction, (In Japanese), Journal of JSAI, Vol. 5, No. 3, pp. 354-366, 

[4] Yuichi Nakamura and Makoto Nagao, Parallel Feature Extraction System 
   with Multi Agents, Proc. 11th ICPR, 1992, (to be published), 

[5] Yuichi Nakamura and Makoto Nagao, Parallel Search for Feature Ex-
   traction with Concurrent Objects, (In Japanese), Journal of JSAI, (to be 
   published), 

List of Other Publications and Oral Presenta-

tions 

[1] Yuichi Nakamura and Makoto Nagao, Recognition of Overlapping Ob-
   jects, (In Japanese), Proc. 34th Convention of IPSJ, pp. 1681-1682, 1987, 

                       146



CHAPTER 7. CONCLUSION147 

[2] Satoshi Ichikawa and Yuichi Nakamura, Numerical Analysis of Transmis-
   sion Lines with Branches and Junctions, (In Japanese), Journal of IEICE, 

   Vol. J67-Am, pp. 381-390, 1987, 

[3] Yuichi Nakamura and Makoto Nagao, Recognition of Overlapping 2-D 
   Objects, (In Japanese), Proc. CV49-4, IPSJ, 1987, 

[4] Yuichi Nakamura and Makoto Nagao, A Blackboard System for Feature 
   Definition and Extraction, (In Japanese), Proc. Symp. "Towards Ad-

   vanced and High Speed Image Understanding", IEICE, pp. 25-30, 1989, 

[5] Yuichi Nakamura and Makoto Nagao, A Blackboard System for Fea-
   ture Definition and Extraction, (oral presentation), Symp. Expert Vision, 

   IEICE, 1989, 

[6] Yuichi Nakamura, The Modularity and Generality of Feature Extraction 
   System, (oral presentation), AVIRG, February, 1991, 

[7] Yuichi Nakamura and Makoto Nagao, A Feature Extraction system with 
   Concurrent Objects, (In Japanese), Proc. PRU-91-36, pp. 17-26, 1991, 

Abbreviations 

JSAI Japanese Society for Artificial Intelligence 

 ICPR International Conference on Pattern Recognition, IEEE. 

IPSJ Infomation Processing Sciety of Japan 

   CV Computer Vision 

IEICE The Institute of Electronics, Information and Communication Engi-

   neers 

   PRU Pattern Recognition and Understanding 

AVIRG Auditory and Visual Infomation Research Group



                                                              sr,,,


