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Preface 

The primary objectives of this study are to summarize current seismic design code 

provisions for prestressed concrete building structures, to explain the problems 
concerning the seismic design of such buildings and to present the fundamental 
methods to predict the behaviour of prestressed concrete sections, members and 
building frames. 

Chapter 1 introduces the basic concept of prestressing. 

The current seismic design procedure for prestressed concrete building structures in 
Japan is summarized in Chapter 2. This chapter also contains a comparison of the 
seismic design forces in the Japanese and New Zealand loadings codes. Problems 
connoted in the design procedure of prestressed concrete building structures will be 
discussed with some design examples. 

In Chapter 3 moment-curvature characteristics of prestressed, partially prestressed 
and reinforced concrete member sections will be discussed in terms of yield curvature, 
ductility and ultimate available curvature. In addition, an analytical procedure for 

predicting moment-curvature characteristics of prestressed concrete member sections 
which incorporates stress-strain relationships of concrete, ordinary reinforcement and 

prestressing steel is described. 

Prestress introduced into a beam and through the beam-column joint has been shown 
to improve the shear resistance of such joints. However, very little experimental work 
has been conducted. Reversed cyclic loading tests on prestressed concrete beam-
column joint assemblages by the author will be reported in Chapter 4. Main parameters 
investigated are the locations of prestressing steel bar in the section and amount of 

prestressing force. 

In Chapter 5 moment-curvature relationships of prestressed, partially prestressed and 
reinforced concrete sections are idealized on the basis of the idealization proposed by 
Thompson and Park and the experimental work described in Chapter 4. 

Dynamic response analyses of single-degree-of-freedom prestressed concrete sys-
tems are discussed in Chapter 6. On the basis of the analytical results and substitute 
damping procedure proposed by Gulkan and Sozen a method for predicting displace-
ment response of prestressed, partially prestressed and reinforced concrete will be 

presented. 

No literature is presently available describing two-dimensional dynamic response 
analyses  of  prestressed concrete building frames although analyses on single- or multi-
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degree-of-freedom systems have been carried out. In Chapter 7 two-dimensional 
dynamic response analyses conducted on prestressed and reinforced concrete model 
frames will be reported. The analytical results will be compared with the past research 
and the results of multi-degree-of-freedom shear systems. 

In Chapter 8 a seismic design proposal by AIJ task-committee on the seismic design 
of prestressed concrete building structures is to be summarized. In this proposal a 
column sidesway (soft story) mechanism is incorporated as one of intended failure 
mechanism. This is because of difficulty of designing a prestressed concrete building 
for a beam sidesway failure mechanism. Some design examples which demonstrate 
this difficulty is shown. Reversed cyclic loading tests on high strength reinforced 
concrete columns will be reported to see if adequate ductility is secured. 

Two attempts have been made in order to improve the seismic performance of precast 

prestressed concrete beam - column assemblages. Reversed cyclic loading tests on 
precast prestressed concrete beam - column joint assemblages conducted to confirm 
the effects of the above ideas will be described in Chapter 9. 

Chapter 10 summarizes the conclusions of this study and suggests recommendations 
for future research. 

As an appendix the response of unbonded prestressed concrete building frames will 
be discussed on the basis of both experimental and analytical work.  
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Chapter 1 

INTRODUCTION 

1.1 Prestressed concrete 

The ACI building code  [1.1]  defines reinforced concrete and prestressed concrete for 

general use in the code as follows; 

   Reinforced concrete - 
       Concrete reinforced with no less than the minimum amount required by this 

       code, prestressed or nonprestressed, and designed on the assumption that the 
       two materials act together in resisting forces. 

    Prestressed concrete - 
       Reinforced concrete in which internal stresses have been introduced to 

       reduce potential tensile stresses in concrete resulting from loads. 

Prestressed concrete is a type of reinforced concrete in which the steel reinforcement 
has been tensioned against the concrete to improve its response to external loads in the 
aspect of both capacity and deformation. It should be discussed within the category of 
reinforced concrete. 

Prestressed concrete was first introduced to Japanese engineers 41 years ago when 

pretensioned roof panels were constructed. Since many applications have been 
attempted and succeeded in the civil engineering field. However, in the building 
construction field a relatively small number of buildings have been erected. Some of 
these have attracted the attention of the structural engineering community because of 
their innovation and dynamism. Several reasons why prestressed concrete structures 
have not been very successful are that calculation and construction are complicated, 
they are a little more expensive than reinforced concretestructures, and only a small 
number of engineers have experience with it. However, prestressed concrete is just an 
extension of reinforced concrete. For structural engineers who understand reinforced 
concrete, prestressed concrete is also understandable. Design in prestressed concrete 
can result in much larger spans of beams without cracking ( or with small crack 
widths), and smaller deflections than design in reinforced concrete. It also leads to 
more slender structures. Generally span-to-depth ratios of reinforced and prestressed 
concrete beams are approximately 10 and 20, respectively. Thus, prestressing can save 
20-30 % of the concrete volume. 

                                                1



It was reported [1.2] that prestressing would increase the cost of a typical office 
building by only 2-4%. In this case the prestressed concrete building had twice as long 
beams as the reinforced concrete beams in one direction and in the orthogonal direction 
it has the same span length as the reinforced concrete building. Adoption of SRC(steel 
reinforced concrete) increases the cost by  20-30% compared with reinforced con-
crete. This example shows that the cost of a prestressed concrete building is not 
expensive enough to dissuade structural engineers from adopting prestressed concrete 
as a structural type because prestressed concrete has some advantages over reinforced 
concrete. 

The advantages of prestressed concrete building structures are: 
   1. high durability due to the use of high-quality concrete 

   2. more slender members resulting in a lighter-weight building 
   3. larger space because of larger span beams 

   4. a reduced construction term and rationalization of construction by assembling 

       precast prestressed elements in construction sites 
   5. no cracking is effective for offensive circumstances 

   6. less damage due to less energy absorbed in "pinched" hystresis loops 

The comparison of structural types is summarized in Table 1.1 using a six-story 
building as an example. 

A prestressed concrete building usually consists of prestressed concrete beams and 
reinforced concrete columns and walls. In case of precast prestressed concrete 
buildings columns may be prestressed. According to the current concrete design codes 
in Japan ordinary prestressed concrete buildings lower than 31 m can be designed 
either by the ultimate strength design procedure or by the ultimate capacity design 

procedure. In the ultimate strength design procedure elastic analysis can be employed 
to obtain design stresses of the members while in the capacity design procedure plastic 
analysis is required to obtain an ultimate capacity of each layer. Since the ultimate 
strength design procedure is supposed to be easier than the ultimate capacity design 

procedure and non-iterative, most of structural designers prefer ultimate strength 
design to ultimate capacity design. However, is a building with only one prestressed 
concrete beam called a prestressed concrete building ? This must be left to the 
structural designers' discretion. 

The other problems will be discussed in this thesis on the basis of the author's research 
results. Structural concrete is usually divided into four categories : Class I ( prestressed 
concrete ), Class II (partially prestressed concrete), Class III (partially prestressed 
concrete or prestressed reinforced concrete) and Class IV (ordinary reinforced 
concrete). 

Class I: Stress at the extreme tension fiber of the section is in compression under 
service load conditions. There is no possibility of cracking under service loads. 
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                  Table 1.1 Comparison of structural types (in case of six-story office building) 

                       Partially Precast 
                  ReinforcedPrestressedSteelreinforced 

                      prestressed:restressedSteel 
            ::..•concreteconcreteconcrete 'C

oncreteconcrete 

Standard span 1 <10m 10<1<15 12<1<20 12<1<20 10<l<18 1<20 
                length . 

Beam: height 1/10 1/10-412 1/18---1/20 1/15-1/20 #13--1/15 1/13--1/15 

                                        Controls crack          Cr
ack'CrackNo crackNo crack Crack 

                                      width 

          Durability iAverage Good Better Best Good Becomes rusty 

                                                                                    Needs to be 

    Fire resistancecovered with                  GoodGood GoodGood Good 
fire resistance 

                                                                                               material 

               Vibration 

                problem                          No problem No problem No problem No problem No problem Prone 

              Labor needed al 

              construction site              Much Much Much Less MuchLess 

                Term of 
                construction                   Average Average Average Short LongShort 

         Cost11.031.03-1.05 1.15 1.2 —1.4 1 

ca "Design and construction manual of prestressed concrete" by Prestressed Concrete Contractors Association.



Class II: Stress at the extreme tension fiber of the section is in tension but not greater 

than the allowable tensile stress of concrete under service load condition. 

Class III: Flexural cracking under service load condition is permitted. However, the 

crack width shall be less than the allowable values which is specified depending on the 

environmental condition or the designers' decision. 
Class IV: Ordinary reinforced concrete. 

In this thesis, however, three categories are adopted : fully prestressed concrete, 

partially prestressed concrete and reinforced concrete. Fully prestressed concrete 
corresponds to the above category Class I. Class II and III are included in partially 

prestressed concrete. 

1.2 Seismic performance of prestressed concrete building structures 

Even with the advantages described above it has been considered that the seismic 

performance of prestressed concrete is inferior to that of reinforced concrete because 
of its hysteretic characteristics and ductility. Hysteresis loops of prestressed concrete 

members are narrower than those of reinforced concrete members, which have less 

energy dissipation. Past research on prestressed concrete members have pointed out 

that the behavior of prestressed concrete is less ductile than that of reinforced concrete. 

Chapter 21 of  ACI 318-89 contains special requirements for the design and construc-

tion of a structure with reinforced concrete members. The design forces, related to 

earthquake motions, are determined on the basis of energy dissipation in the nonlinear 
range of response. Section 21.2.5 of this chapter specifies reinforcement in members 

resisting earthquake-induced forces. It requires that the ratio of the actual ultimate 

tensile stress to the actual tensile yield strength be not less than 1.25. This requirement 
is based on the assumption that the capacity of a structural member to develop inelastic 

rotation capacity is a function of the length of the yield region along the axis of the 

member. According to the experimental results [1.3] the larger the ratio of ultimate to 

yield moment, the larger the yield region. Prestressing steel does not have such a large 
ratio. For instance, according to ASTM [1.4], the ratio of the minimum tensile strength 

to the minimum yield strength for prestressing tendons is 1.17 for 0.5 and 0.6 in. stress-

relieved strands, respectively. Therefore, prestressed concrete members are consid-

ered not to develop sufficient inelastic rotation for plastic hinging to spread over the 

whole structure. Besides that, precompressed concrete may fail in compression at an 

earlier stage of loading than reinforced concrete. However, past research [ 1.5] showed 
that high-uniform elongation prestressing steel and transverse confining steel can 

improve ductility of prestressed concrete members. 

Park [ 1.6] pointed out that "prestressed concrete members have significantly narrower 

moment-curvature hysteresis loops as shown in Fig.1.1, and hence very much lower 
hysteretic energy dissipation, than reinforced concrete or structural steel members . 
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The maximum displacements reached by code-designed prestressed concrete single-
degree-of-freedom systems have been found to be on average 30% greater than 
reinforced concrete systems of similar initial strength, initial stiffness and viscous 
damping, when responding to severe earthquakes [1.7]." However, Park also pointed 
out in the same reference  [1.6]: 

                     It is evident that in the past there has been excessive emphasis on the 
   desirability of achieving in design structures which, when subjected to 
   cyclic deformations in the inelastic range due to severe earthquake loading, 

   display "fat" load-deformation hysteresis loops. It is now realized that some 
   variation in hysteresis loop shape will not have a major influence on the 

   inelastic dynamic response of earthquake excitation. That is, hysteresis 
   loops showing some pinching or stiffness degradation will not lead to 

   significantly larger inelastic displacements, providing that the structure has 
   some damping of viscous type and is capable of some further damping by 
   hysteretic energy dissipation. 

Besides that, in the reference [1.8] Thompson stated that: 

    The effect of earthquake response spectra may be extremely significant. In 

    practice a prestressed concrete frame will be more flexible than a reinforced 
    concrete structure carrying the same gravity loads, due to its smaller section 

    sizes, and hence the displacement ductility demands may be less than that 
    of an equivalent reinforced concrete structure of the same strength. On this 
    evidence the case for the use of greater seismic design loads for prestressed 

    concrete than for reinforced concrete is debatable. 

W  
Q J 

/ 

                             LATERAL 
                    - DISPLACEMENT 

Fig.1.1 Typical measured lateral-load displacement hysteresis loops for 

      subassemblages of a post-tensioned prestressed concrete portal frame 
              controlled by flexural plastic hinging [ 1.6] 
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1.3 Aims of this research 

The primary objective of this study is to extract the problems from the current seismic 
design code provisions for prestressed concrete building structures and to present the 
fundamental information so that the response of prestressed concrete sections, 
members and building frames can be predicted. On the basis of the above knowledge 
a tentative rational seismic design procedure will be discussed. 

This research is consisted of nine chapters and an appendix: 

The current seismic design procedure for prestressed concrete building structures in 
Japan is summarized in Chapter 2. The seismic design loads used in the Japanese and 
New Zealand loadings codes are compared and some aspects in the current seismic 
design procedures in New Zealand and Japan are discussed by comparison between 
the design methods for reinforced and prestressed concrete building structures. 

In Chapter 3 moment-curvature characteristics of prestressed, partially prestressed 
and reinforced concrete member sections will be discussed in terms of yield curvature, 
ductility and ultimate available curvature. In addition, an analytical procedure for 

predicting moment-curvature characteristics of prestressed concrete member sections 
which incorporates stress-strain relationships of concrete, ordinary reinforcement and 

prestressing steel is described. 

Reversed cyclic loading tests on prestressed concrete beam-column joint assemblages 
by the author will be reported in Chapter 4. These were conducted to examine the effect 
of prestress on the shear resistance of beam-column joints when the prestress was 
introduced into a beam through the joint. The main parameters investigated are the 
locations of prestressing steel bar in the section and amount of prestressing force 
introduced into the beam. The experimental results will be discussed in terms of 
hysteresis behavior of the assemblages and shear resistance of the joint core. 

In Chapter 5 the moment-curvature relationships of prestressed, partially prestressed 
and reinforced concrete sections are idealized on the basis of the moment-curvature 
model proposed by Thompson and Park and the experimental work described in 
Chapter 4. 

Dynamic response analyses of single-degree-of-freedom prestressed concrete sys-
tems are carried out in Chapter  6.  On the basis of the analytical results and substitute 
damping procedure proposed by Gulkan and Sozen a method for predicting displace-
ment response of prestressed, partially prestressed and reinforced concrete will be 

presented. 

In Chapter 7 two-dimensional dynamic response analyses conducted on prestressed, 

partially prestressed and reinforced concrete model frames will be reported. The 
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analytical results will be compared with past research and the results of dynamic 
response analyses on a multi-degree-of-freedom shear system. 

In Chapter 8 a seismic design proposal by  AU task-committee on seismic design of 

prestressed concrete building structures is summarized. In this proposal a column 
sidesway (soft story) mechanism is incorporated as one of the intended failure 
mechanisms. This is because of difficulty of designing a prestressed concrete building 
in a beam sidesway failure mechanism. Some design examples are shown which 
demonstrate the problems of this approach. Reversed cyclic loading tests on high 
strength reinforced concrete columns will be reported to see if adequate ductility is 
secured even for high strength concrete columns with a concrete compressive strength 
of 130 MPa. 

Two attempts have been made in order to improve the seismic performance of precast 

prestressed concrete beam - column assemblages. Reversed cyclic loading tests on 
precast prestressed concrete beam - column joint assemblages conducted to confirm 
the effects of the above ideas will be described in Chapter 9. 

Chapter 10 summarizes the conclusions of this research and suggests recommenda-
tions for future research. 

In addition, two papers written by the author are attached as an appendix in order to 
discuss the response of unbonded prestressed concrete both experimentally and 
analytically. 
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Chapter 2 

CURRENT SEISMIC DESIGN PROCEDURE 

FOR PRESTRESSED CONCRETE BUILDINGS 

IN JAPAN 

2.1 Introduction 

In this chapter, the current seismic design procedure for prestressed concrete buildings 
in Japan is summarized. This chapter contains comparison of seismic design loads 
between New Zealand and Japan, too because the current loadings code in New 
Zealand (NZS 4203:1984)  [2.1] is the only code in the world that has a provision for 

prestressed concrete structures. Then, some aspects in the current seismic design 
procedure in New Zealand and Japan will be disclosed by comparing design methods 
for reinforced and prestressed concrete building structures. 

2.2 Current seismic design procedure for prestressed concrete build-
    ings in Japan 

2.2.1 Code approaches 

Since the Standard for Structural Design and Construction of Prestressed Concrete 
Structures [2.2] was issued by Architectural Institute of Japan (AIJ) in 1961, the 
structural design of prestressed concrete buildings has been based on the strength 
design method. The design of reinforced concrete buildings had been based on 
allowable stress design until a drastic revision was made in 1981. The current seismic 
design method for prestressed concrete buildings was also revised in 1981 by taking 
into account some innovation provisions of the revised design and loading code for 
reinforced concrete buildings. 

The design procedure for prestressed concrete structures issued in 1961 and revised 
in 1981 is divided into some options with respect to the height of a building to be 
designed. For a building height equal to or less than 60 m, there are six options which 
a designer can consider. In this chapter, two typical options which can be applied to 
a building lower than or equal to 60m are described. 

Figure 2.1 is a flow diagram of the design procedure, showing two alternatives. The 
structural design of both alternatives is divided into two phases. One is the first phase 
design based on the allowable stress design concept with linear elastic analysis. The 
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                        START 

                    Assumption of section geometry 

 I 

 i i  
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                        the tendon anchorages. 

               Provide shear strength enough to avoid shear 
                     failure prior to flexural failure 

                         END 

            Fig.2.1 Flow diagram for the design procedure 
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other is the second phase design based on the strength design method with specified 
strengths of materials or capacity design based on overstrength of materials. The first 

phase design is for checking serviceability, and the second is for confirming that the 
building has a greater ultimate strength than is required by the design seismic load. 
Prestressing is primarily introduced to improve serviceability by reducing the crack 
widths and deflections of beams and slabs. However, excessive prestressing may result 
in unsatisfactory behaviour at service loads such as excessive camber. Therefore, the 
checking of serviceability is inevitable. 

2.2.2 First phase design 

In the first phase design using the alternative 1, the service load combination is D +  L  , 
where D and L denote the service dead and live load, respectively. The service snow 
load, S, may be added as well, if necessary. It is not required to consider earthquake 
at this stage because the second phase design will ensure sufficient strength. Members 
are designed either not to crack (fully prestressed concrete) or to meet the specified 
crack width limit (partially prestressed concrete) under this load combination. Deflec-
tions of members are expected to be within acceptable limits. Interstory drift calculated 
for the design earthquake load of D + L + E by elastic analysis shall be smaller than 
or equal to 1/200, where E denotes the seismic design load due to lateral shear force 

Ql given by Eq.2.6. This limitation may be eased to 1/120 where it is confirmed that 
non-structural elements may not be damaged so seriously. 

When the alternative 2 is used, an allowable stress design is also required for the 
seismic load combination of D + L + E . 

The second phase design is supposed to be carried out to confirm that a building 
designed according to the first phase design has an ultimate strength equal to or greater 
than the seismic design load based on possible severe earthquake motions. Practically, 
when designing relatively large buildings in which earthquake loading is dominant, 
structural designers first may conduct the second phase design and then confirm that 
the members meet the first phase design requirements. 

2.3.3 Second phase design by strength design (Alternative 1) 

This design method is applied to a building lower than or equal to 31m. In the ultimate 

strength design procedure, the flexural and shear strengths of members are calculated 

using nominal strengths of materials. The design actions in the members under the 

factored design load are calculated using linear elastic analysis. The design loads, U, 

shall be not less than whichever of the following load combinations is applicable and 

gives the most critical effect: 
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 U  =1.7(D+  L)(2.1) 
U =1.2D + 2L(2.2) 

    U = D + L + (S) + 1.5FeS • E (with earthquake) (2.3) 
U = D + L + 1.5S(with snow)(2.4) 
U = D + L + 1.5W(with wind)(2.5) 

In Eq.2.3, E denotes design load due to lateral shear force Qi, which is given by 

Qi = W • Ci(2.6) 

where W = gravity load above the i-th story, 
Ci = lateral seismic shear coefficient of the i-th story which is given by the 

          following equation. 

Ci =Z - Rt •Ai •Co(2.7) 

where Z = seismic hazard zoning coefficient and varies between 0.8 to 1.0, 
R1 = design spectral coefficient which depends on a subsoil profile and a 

          natural period of vibration of a building, and Rt is given by Eq.2.8. 

       1T <T,} 
   Rt =1-0.2(T/T, —1)2 TT <—T <-2T,(2.8) 

1.6T, IT 2T, <T 

where T is a period of first mode of a building and T. is a factor with respect to a subsoil 

profile. A longer natural period results in smaller R1. R, ranges between 1.0 to 0.25, 
and is expressed schematically in Fig.2.2. Also, Ai = the distribution factor of lateral 

shear forces along the height. A is given by Eq.2.9. 

     12T    A
i =1+ a-at1+3T(2.9) 

where ai is the ratio of the reduced gravity load above the i-th layer to the total reduced 

gravity load above the level of imposed lateral ground restraint. Also, Co is the basic 
seismic coefficient of 0.2, and corresponds to a ground acceleration of about 0.08 - 
0.10g. Recently, it has become popular to express the intensity of an earthquake in 
terms of the velocity because the velocity is related directly to the energy. Thus , the 
above acceleration corresponds to a ground velocity of 25-30 cm/s. 
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                Fig.2.2 Design spectral coefficient, Rt 

In Eq.2.3, 

FeS =FQ.Fs(2.10) 

where Fe is a coefficient that is related to the eccentricity ratio Re in each story (see 
Fig.2.3) and ranges between 1.0 and 1.5. The arrangement of the seismic load resisting 
elements in a building should be as symmetrical as possible about the center of mass 
of the building in order to minimize the torsional response of the building during an 

earthquake. Also, Fs is a coefficient that is dependent on the stiffness ratio Rs in each 

story (see Fig.2.4) and ranges between 1.0 and 1.5. Fs is introduced because the 
existence of an extremely flexible story can lead to a dangerous concentration of 
damage into the story. Values for Fe and Fs with regard to Re and Rs, respectively, are 

given in Table 2.1. 

FeS from Eq.2.10 varies between 1.0 and 2.25. Fes was introduced to provide an extra 
strength in the case of buildings with an unsymmetrical arrangement of the seismic 
load resisting elements and/or with extremely flexible stories. 
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   Table 2.1 Coefficients  Fe and  FS with regard to the eccentricity ratio Re 

                 and stiffness ratio RS, respectively. 

   Re I Fe I Rs I Fs 
5..0.151.0>_0.601.0 
    0.15 - 0.30 Linear0.30 - 0.60 Linear 

              interpolationinterpolation 
?0.301.55_0.301.5  

The code does not rely on the plastic deformation of prestressed concrete members. 
There is no provision on moment redistribution. Prestressed concrete members usually 
have higher flexural crack loads than reinforced concrete, and they recover to their 
original states and respond elastically even after they are loaded up to near their 
ultimate strengths. However, in practice it is unusual for a member section to contain 

prestressed steel without non-prestressed mild flexural steel except for precast 
prestressed concrete structures. A reasonable amount of non-prestressed mild steel in 
the member section results in hysteresis loops and energy dissipation characteristics 
which are similar to those obtained from reinforced concrete members. Besides, the 
ultimate state typical for prestressed concrete members due to compression failure in 
concrete followed by critical reduction in load carrying capacity can be avoided by 
appropriate confining of the concrete. A seismic design procedure which accounts for 
the ductility of members is given in a seismic design procedure proposed by the AIJ 
sub-committee on seismic design of prestressed concrete [2.3]. 

2.3.4 Second phase design by capacity design (Alternative 2) 

The more recent seismic design procedure for reinforced concrete buildings was 

introduced in 1981, soon after the severe Miyagiken-oki earthquake in 1978. The 

design procedure is divided into two phases : one is the seismic design for moderate 

earthquakes and the other is for severe earthquakes. A moderate earthquake is defined 

as an earthquake which is assumed to happen a few times within the service life of 

buildings. Buildings are expected to respond to it in an elastic manner and not to be 

damaged. A severe earthquake is defined as a devastating earthquake which is assumed 

to possibly happen once in the service life of buildings. Buildings are expected not to 

collapse but possibly undergo some structural and non-structural damage. 
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After the 1981 Code came into force, prestressed concrete buildings could be designed 
according to either the previous standard for design and construction of prestressed 
concrete described or the new seismic design procedure issued in 1981. This is a reason 
why there are some options in the design of prestressed concrete buildings. A building 
higher than 31 m and lower than or equal to 60m shall be designed according to the 
more recent design method. 

In Japan, the design procedure issued in 1981 is called capacity design, but this 
capacity design is different from the one described in NZS 3101:1982 [2.4]. In NZS 
3101:1982, energy-dissipating elements of mechanisms are chosen and suitably 
detailed and other structural elements are provided with sufficient reserve strength 
capacity to ensure that the chosen energy-dissipating mechanisms are maintained at 
near their full strength throughout the deformations that may occur. However, in the 
design procedure in Japan issued in 1981, it is not necessary to consider favourable 
energy-dissipating mechanisms, although a ductile moment resisting frame is so 
designed as to avoid brittle failures such as shear failure. The building is required to 
have sufficient ultimate strength to resist severe seismic actions whatever the collapse 
mechanism may be. 

The lateral load resistance in each story is calculated using inelastic analysis or the 
virtual work method based on the overstrengths of materials. The building is required 
to have a lateral shear strength greater than the shear force at each story corresponding 

to the load combination of U =  D+ L + 1.5FeS • E' , where, E' is due to seismic story 

shear Qi , which is given by 

Qi = DS • W • Z • Rr • Ai • Co(2.11) 

where Co is the standard base shear coefficient and for the second phase design 

Co =1.0. This corresponds to a ground acceleration of 0.30 - 0.40 g and a velocity of 

approximately 50 cm/s. DS is the reduction factor which depends on the type and the 
ductility of the structure. This factor is based on the equal energy concept in which the 
energy absorbed by a building which yields with elasto-plastic characteristics is 
assumed to be equal to that of a building which is strong enough to respond elastically . 
From Fig.2.5, 

1 D
s=--------------(2.12) -f2µ-1 

where it is the allowable displacement ductility factor in each story. D S ranges from 
0.3 for ductile frames to 0.55 for a building in which a large portion of lateral load is 

assigned to walls and braces. Other coefficients are the same as those described in the 

previous section. 
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         Fig.2.5 Equal energy concept and the reduction factor, DS 

Comparing the seismic design load of the strength design method in the previous 

section with that of this alternative design method, it is found that they are identical 
in the case of prestressed concrete ductile frames. However, the strength design 

method is based on a linear elastic analysis and nominal material strengths, while the 

capacity design method is based on plastic analysis and material overstrengths. 

In case a designer chooses this option, he has to conduct an allowable stress design for 

the load combination of U = D+ L+ E, where E is identical to the load used in Eq.2.3. 

2.3 Comparison of seismic design load between New Zealand and 

    Japan 

It is said that the seismic design load specified in the Japanese code is much larger than 

that specified in NZS 4203:1984 [2.1], although the seismicity of both countries is 

supposed to be almost the same. The New Zealand code is based on the equal 
displacement concept in which the maximum horizontal deflection reached by a 

building which yields with elasto-plastic characteristics is assumed to be the same as 

that of a building which is strong enough to respond in the elastic range. The Japanese 

code is based on the equal energy concept in which the energy absorbed by a building 

which yields with elasto-plastic characteristics is assumed to be the same as that of a 
building which is strong enough to respond elastically. However, for buildings with a 

relatively long period of vibration, the Japanese code uses the equal displacement 
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concept. If available ductilities are expected to be the same, the yield force,  Qyd and 

Qye, required by the equal displacement and equal energy concepts, respectively, are 

given by the following equations. 

Qyd=Qe/µ(2.13) 

Qye =Qe/421i-1(2.14) 

where, Qe is the required strength of an elastically responding building. Therefore, 

Qye>Qfor for,u>-1. 

For example, consider a prestressed concrete ductile frame with a symmetrical 
arrangement of the seismic load resisting elements about the center of mass and 
without extremely flexible stories. Let the frame be built on a rigid subsoil in the most 
hazardous zone. The design loads U in NZS for the strength method with earthquake 
are given by the following load combinations. 

U =1.0D + 1.3LR + EN(2.15) 

U = 0.9D + EN(2.16) 

The Japanese code gives the following load combination. 

U=D+L+1.5•FeS•E(2.17) 

Here, E = 1.5 • FeS - E is regarded as the seismic design load in the Japanese code, 

while in NZS, EN is the seismic design load. The effects of seismic loads in relation 
to the total design loads are different in the two codes because the load factors for dead 
load and live load are different. 

In NZS, the seismic design load is given by the total horizontal seismic force V, while 
in the Japanese code it is given by the shear force acting on each story. The distribution 
of the seismic load along the height of a building in NZS 4203:1984 is a triangular 
shape with a concentrated load at the top of the building. The Japanese code gives the 

A distribution described in the section on the second phase strength design. The 
Design Guideline for Earthquake Resistant Reinforced Concrete Buildings based on 

Ultimate Strength Concept published by AIJ in 1990 [2.5] have adopted the same 

distribution as NZS 4203:1984. 

The total horizontal seismic force, V, in NZS 4203:1984, and the shear force acting on 

the first story, Q1, in the Japanese code are given by Cd • W and C1 • W, respectively . 
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Therefore, the seismic design coefficient Cd in NZS can be compared with the base 

shear coefficient C1 of the Japanese code, if the total reduced gravity loads above the 

level of imposed lateral restraint  Wt in NZS and W1 in the Japanese code are assumed 

to be identical. Cd is given by the following equation: 

Cd =C-R•S•M=0.8C(2.18) 

where, the risk factor R is assumed to be the smallest value, 1.0, because the Japanese 

code, which does not have a factor corresponding to the risk factor, is supposed to be 

at least satisfied and a designer can provide further load capacity to a building within 

the budget if he predicts its failure would lead to an unusually high level of loss. The 

structural type factor S is taken as 0.8 for a ductile frame and the structural material 
factor M is taken as 1.0 for a prestressed concrete building. The basic seismic 

coefficient C depends on the period of vibration of the building, the seismic zone and 

the subsoil. 

C1 is given by the following equation: 

C1 =1.5•Fe5 •Z•Rt •Al . Co =0.3•Rt(2.19) 

where, Fes is taken as 1.0 for a building with a symmetrical arrangement of seismic 

load resisting elements about the center of mass and without extremely flexible stories, 

Z =1.0 for the most hazardous zone, Al = 1.0 for the first story and Co = 0.2. The 

design spectral coefficient Rt depends on the period of vibration of the building and 

the subsoil. 

In NZS, the period T shall be established from properly substantiated data, or 

computation, or both. T may be calculated by the following Rayleigh formula: 

     (141z2n dX(2 .20) T = 2 

\9I(FX.dX) 

Therefore, T can be calculated from the real structural stiffness and mass. On the other 
hand, in the Japanese code, the period in seconds is calculated using the following 

equation for reinforced concrete buildings: 

T=0.02h(2.21) 

where, h is the height of the building in meters. Hence T depends on the height only, 

and this may lead to a much shorter period than the real period and a larger Rt , although 

Rt can be reduced by 25% if the period is established from properly substantiated data 
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or computation. This equation indicates that, for example, a 30m-high reinforced 
concrete building has the period of only 0.6 seconds. 

For a comparison of seismic loads, it is assumed that the same periods T are obtained 
for a building designed to both codes. Then using C = 0.15 and  Rt = 1.0 for buildings 

with a short period of vibration (T <_ 0.4 seconds) result in giving Cd = 0.12 and 

C1 = 0.3, which means that Q1 in the Japanese code is 2.5 times larger than V in NZS. 

For buildings with a long period (T >_ 3.0 seconds), C = 0.075 and RI = 0.25 result in 

giving Cd = 0.06 and C1 = 0.075, which means that Q1 is 1.25 times larger than V. In 
the Japanese code, Rt can be reduced to 0.25 for longer periods than 2.56 seconds in 
case of rigid subsoil, while in NZS C for a longer period than 1.2 seconds can be 
reduced to half of the value for a short period. 

2.4 Comparison of prestressed concrete building with reinforced 
    concrete building with regard to seismic design load 

In NZS 4203:1984, the structural material factor M for ductile prestressed concrete 
buildings is 25% larger than that for ductile reinforced concrete buildings. This 25% 
higher total horizontal seismic design load for prestressed concrete buildings is to 
allow for the larger response of prestressed concrete buildings than that of reinforced 
concrete buildings. 

However, this provision does not result in a 25% larger seismic design load for 

prestressed concrete buildings than that for ordinary reinforced concrete unless the 
prestressed and ordinary reinforced concrete buildings have exactly the same struc-
tural configuration of frames and dimensions of members. Normally, prestressed 
concrete as a structural type can lead to longer spans. Hence prestressed concrete 
frames may be more flexible than ordinary reinforced concrete frames designed to 
sustain the same gravity load. Therefore, the natural period of vibration of prestressed 
concrete frames may be longer than that of reinforced concrete frames of the same 
height. That may result in smaller seismic design loads for prestressed concrete frames 
because in current seismic design codes, a smaller seismic design load can be applied 
to buildings with longer periods. 

Consider a simple example involving two buildings. One is a four-story prestressed 
concrete building with beams of 21 m span, shown in Fig.2.6(a). The other is a four-
story three-bay reinforced concrete building with beams of 7m span, shown in 
Fig.2,6(b). The latter has one-third span length of the former because it is not practical 
to build a reinforced concrete beam of 21 m length and a 7 m span is considered to be 
appropriate. These two frames are designed to sustain the same gravity loads and are 
supposed to be equivalent to each other. The member dimensions for these two 
buildings are summarized in Table 2.2. The overall depths of the prestressed and 
reinforced concrete beams are assumed to be 1/20 and 1/10 of span length, respec-
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tively. Columns of the prestressed concrete building have larger dimensions than those 
of the reinforced concrete building because they are subjected to larger actions due to 
both gravity load and horizontal load than those of the reinforced concrete building. 
The prestressed concrete beams have a larger modulus of elasticity because they are 
usually constructed of concrete with higher compressive strength. Here, the pre-
stressed concrete beams are assumed to have concrete with a compressive strength of 
30 MPa, while the reinforced concrete beams and columns are assumed to have a 
compressive strength of 20 MPa. The modulus of elasticity is calculated using 

  =  4700Vf  f . Total gravity load is assumed to be 9.8 kN/m2 on each floor. The span 
length of the plane frame perpendicular to the frame considered is assumed to be 7 m. 
The effective member stiffnesses are assumed to be based on 50% of the area and 
moment of inertia of the gross section of the beams and 80% for the columns. Assumed 
stiffnesses are listed in Table 2.3. 

    Table 2.2 Member dimensions for four-story prestressed and reinforced 
                      concrete model frames 

        Members Prestressed concrete Reinforced concrete 
                    frame (mm)frame (mm) 

    Main beams 1000 x 500700 x 400 
    Secondary beams 700 x 400 

     Columns1000 x 1000800 x 800  

                Table 2.3 Effective member stiffnesses 

    PropertiesBeamsColumns 
   Area0.5Ag0.8Ag 

  Moment of inertia _ 0.5Ig0.8Ig  
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Natural periods of the first mode of these frames are 0.992 second for the reinforced 
concrete and 1.214 seconds for the prestressed concrete. These result in basic seismic 
coefficients of C = 0.096 for the reinforced concrete frame and C = 0.075 for the 

prestressed concrete, using Fig.2.7. Fig.2.7 is from Fig.3 of Chapter 3 of NZS 
4203:1984. Products of these seismic coefficients C and the structural material factor 
M are 0.077 for the reinforced concrete frame and 0.075 for the prestressed concrete 
frame. Therefore, if they have the same total gravity load above the level of imposed 
lateral restraint, the seismic design load for the prestressed concrete frame is smaller 
than for the reinforced concrete frame even after structural material factor M is taken 
into account. However, it should be noted that a too flexible frame may not meet the 
interstory drift limitation of the design code. No allowance of this kind can be made 
in the Japanese code because the period depends on only the height of the frame. 

Prestressed and reinforced concrete are not comparable. Each of them has its own field 
to be adopted. The comparison in this section is just an example to demonstrate how 
much larger design seismic load for a prestressed concrete building is required 
compared with that for an equivalent reinforced concrete building if it should exist. 
The word equivalent is vague : equivalent in cost, construction performance, structural 

performance, serviceability, structural configuration. Inherently prestressed and rein-
forced concrete should be treated as structural systems in a same category; structural 
concrete. Prestressed and reinforced concrete was compared in order to establish a 
design procedure or a design criterion of prestressed concrete buildings as an extension 
of that for reinforced concrete buildings. 

2.5 Conclusions 

The current seismic design procedure for prestressed concrete buildings in Japan was 
summarized. The design procedure is complicated because of the options which a 
designer may choose. 

The following aspect of the design of prestressed concrete buildings were described 
and compared with those for reinforced concrete buildings: in NZS 4203:1984, the 

 structural material factor M for prestressed concrete is 25% larger than that for 
 reinforced concrete. However, this does not necessarily lead to 25% greater design 

 seismic load. As shown in the section on the comparison of the seismic design loads, 
 the design seismic load required for a prestressed concrete building may be smaller 

 than that for an equivalent reinforced concrete building because of the longer period 
 of vibration of the prestressed concrete building. 
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Chapter 3 

MOMENT -  CURVATURE CHARACTERISTICS 

OF PRESTRESSED, PARTIALLY PRESTRESSED 

AND REINFORCED CONCRETE MEMBERS 

UNDER REVERSED CYCLIC LOADING 

3.1 Introduction 

Nowadays higher strength structural materials are being used at construction sites. 
These materials enable smaller dimensions of members and make possible the design 
of taller reinforced concrete buildings. However, conventional reinforced concrete 
cannot make the most use of these higher strength materials because serviceability ( 
for example, crack widths of beams and slabs under gravity load ) can not be improved 
although the ultimate strength of members can be higher. In contrast, prestressed 
concrete can extract the full potential of those materials. Design in prestressed concrete 
can result in much longer spans of beams without cracking or with small crack widths, 
and smaller deflections than design in reinforced concrete. 

Many prestressed concrete building structures have been erected. However, it must be 
recognized that past research on prestressed concrete is inferior in quality and quantity 
to that on reinforced concrete. Especially, there are a few systematic research on 
seismic performance of prestressed concrete buildings, which is indispensable to 
countries with high seismicity like Japan. 

To carry out the seismic design of prestressed concrete buildings, prediction of their 
response to earthquakes is needed. To attain this target, research should go through the 
follwing four steps; 1) moment - curvature characteristics of member sections, 2) 
moment (or load) - rotation (or deflection ) relationships of members, 3) shear force 

(or stress) - shear distortion angle characteristics of beam - column joint and 4) lateral 
load - interstory drift angle of each story of a building. As for the first and second steps 
it has been recognized that hysteresis loops of prestressed concrete members are 
significantly narrower than reinforced concrete, which leads to less energy dissipation. 
However, there is few research which relates parameters peculiar to prestressed 
concrete members ( for example, the amount and location of prestressing steel, the 
average prestress, the amount of confining reinforcement, cover thickness and so on 
) with moment - curvature characteristics under reversed cyclic loading although 
several experimental and analytical research on flexural and shear behaviour of 

prestressed concrete members can be found in the past literature. One of the reasons 
is that there are much more parameters which define the behavior of prestressed 
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concrete members than reinforced concrete members. In addition, most of past 
research that tried to evaluate the ductility of prestressed concrete sections and/or 
members have dealt with moment - curvature or load - deflection relationships under 
monotonic loading or envelope curves which were obtained from the experimental 
results of test units under reversed cyclic loading. These provide an approximation for 
the overall behavior of such sections and/or members and therefore indicate the 
maximum possible ductility available. The effect of cyclic loading on the deformability 
of prestressed concrete members has not yet been clarified. 

The final target of this study is not only prediction of seismic response of prestressed 
concrete building structures but also the establishment of a seismic design procedure 
for prestressed concrete. In this chapter, after reviewing previous research, compari-
son of moment - curvature characteristics of prestressed, partially prestressed and 
reinforced concrete member sections is reported. Then, an analytical procedure which 
incorporates stress - strain relationships of concrete, ordinary reinforcement and 

prestressing steel is described. The analytical procedure will be used in the later 
chapters to obtain moment - curvature curves theoretically. 

3.2 Past research 

Blakeley and Park [3.1] obtained theoretically the moment - curvature relationships 
of prestressed, partially prestressed and reinforced concrete beam sections on the basis 
of the stress - strain models under cyclic loading for concrete, non-prestressed mild 
steel and prestressing steel. They compared the theoretical results with the moment  - 
curvature behaviour of the full-scale prestressed concrete beam - column assemblies 
subjected to high intensity cyclic loading. Since it was time-consuming to obtain the 
moment - curvature relationships by this theory, they presented an idealization of the 
cyclic loading moment - curvature characteristics of the members which accounted for 
stiffness degradation after crushing of the concrete in the member has occurred. This 
stiffness degradation followed by moment capacity reduction is typical for fully 

prestressed concrete sections. According to their conclusion the idealizations pro-
posed to represent the cyclic loading of concrete and prestressing steel can be 
successfully used to determine the moment - curvature relationships of a prestressed 
concrete member under cyclic load. The theoretically obtained characteristics have 
been proved to agree well with experimentally derived curves in terms of stiffness 
degradation and energy dissipation. 

Thompson and Park [3.2] conducted the tests on ten concrete beam interior column 
frame assemblies subjected to static cyclic loading simulating the effect of severe 
earthquake loading. The frame members were near full-scale and contained a range of 

proportions of prestressing steel and non-prestressed steel. The behaviour of the 
frames emphasized the need for transverse steel in the plastic hinge zones of flexural 
members and in beam - column joint cores to ensure ductile behaviour and to avoid 
diagonal tension failure. The ductility of prestressed beams was enhanced by the 
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presence of non-prestressed reinforcing steel in the compression zones of members. 
A central prestressing tendon at mid-depth in the beam passing through the joint was 
shown to be effective in contributing to joint core shear strength. Thompson [3.3] 
obtained theoretically the moment - curvature relationships of prestressed, partially 

prestressed and reinforced concrete beam sections by the same analytical method that 
Blakeley and Park [3.1] employed. The theoretically obtained moment - curvature 
curves were compared with the test results. In addition, he investigated the influence 
of amount and location of prestressing steel, amount of transverse reinforcement and 
cover thickness on the ductility of prestressed and partially prestressed concrete beam 
sections. 

The term "prestressed concrete" is somewhat ambiguous. Fully prestressed concrete 
and partially prestressed concrete can be generally involved in this category. Cohn and 
Bertlett [3.4] redefined partially prestressed concrete in terms of three variables related 
to the total amount of steel reinforcement, the proportion of total amount of high 
strength steel to the total amount of non-prestressed steel reinforcement, and the 
degree of prestressing. This definition enabled any structural concrete section design 
to be identified by a point in the three dimensional space of the chosen variables. Limit 
states for all types of structural concrete sections were also defined. The effects of the 
three primary variables above on the inelastic behaviour and ductility of partially 

prestressed concrete sections were investigated. 

Prediction of the moment capacity of a prestressed concrete section is important for 
the design of the section. It can be realized by evaluating the tensile stress in the 

prestressing steel as accurately as possible. Harajli and Naaman [3.5] experimentally 
and analytically investigated the stress  fps in the prestressing steel at ultimate moment 

capacity of partially prestressed concrete beams. They conducted an extensive 

parametric evaluation as well. It clarified the effects of various parameters such as the 
type of section, the reinforcing index, the partial prestressing ratio, concrete strength, 

prestressing and reinforcing steel grades and different amount of compression rein-
forcement on fps. Sensitivity of fps to the variation of certain parameters was also 

studied. 

Two typical research were reported in Japan. Okada et al. [3.6] carried out the tests on 
66 prestressed concrete beams with rectangular sections under reversed cyclic 
loading. The experimental variables involved were a shear span ratio, a tensile 
reinforcement index, a ratio of prestressing steel index to that for prestressing steel and 
non-prestressed steel, the amount and spacing of confining reinforcement and the 
location of prestressing steel. A restoring force model for prestressed concrete beams 
was proposed on the basis of the test results. The deformations at flexural yielding and 
the equivalent damping factors predicted by the proposed model showed considerably 

good agreement with those measured in the tests. In addition, an earthquake response 
analysis using the model for a reinforced concrete column was conducted. The 
analytical results agreed well with the pseudo-dynamic test results. 
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Okamoto [3.7] has tried to establish the seismic design procedure of prestressed 

concrete building structures on the basis of the extensive research results on ductility 

and load - deflection hysteresis characteristics of prestressed concrete members. He 
has proposed two models for load - deflection characteristics of prestressed concrete 

members called PS model and modified PS model. However, equivalent damping 

factors obtained by these models are not quantitatively related with prestressing steel 

ratios  : parameters which can express the characteristics of constituent members in a 

prestressed concrete frame. 

3.3 Moment - curvature relationships of prestressed, partially pre-
     stressed and reinforced concrete beam sections 

Deformation at yielding and ductility ratio  

Figure 3.1 indicates the moment - curvature curves of reinforced, partially prestressed 

and prestressed concrete beam sections theoretically predicted under monotonic 

loading. These beam sections have approximately the same flexural strength. The 

beam sections are also shown in Fig.3.1. The analytical method including the assumed 
stress - strain curves of the materials will be described in the later part of this chapter. 

By using the classification proposed by Cohn and Bertlett [3.4], the sections can be 

described by the three parameters as below; 

Reinforced concrete section 

w = 0.0 

y = 0.0 

K = 0.0 
Partially prestressed concrete section 

w = 0.163 

y = 0.543 

K=0.6 
Prestressed concrete section 

w = 0.327 

y=1.0 

K = 0.6 

where, co =Apfps +Asfy — Asfy  
   bdf ,(3.1) 

         Mpn _ Apfps 
          Mn_Ap fps +Asfy                                                (3.2) 

        Md 
 K = 
M(3.3) 

co = net reinforcement index 
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 y = mixed reinforcement index 
     K = degree of prestressing 

      AP= sectional area of  prestressing steel 

fps = stress in prestressing steel 

As = sectional area of tensile reinforcement 

fy = yield stress of mild steel 

As = sectional area of compressive reinforcement 
fy = yield stress of compressive reinforcement 

     b = beam width 
     d = effective depth taken to the centroid of the total tension force at yielding 

          given by the following equation 

         d = ApfPsdp +Asfyds                                                (3.4)              A
pfps +Asfy 

f , = compressive strength of concrete 
Mpn = moment capacity contributed by prestressing steel 

Mn = nominal (ultimate) moment capacity 

Md = decompression moment 
      M = service moment 

Comparison of these moment - curvature characteristics revealed the characteristics 
of each section. 

1) The yield point on the moment-curvature curve of the reinforced concrete section 
can be clearly defined as the point where any longitudinal reinforcement reaches yield 
strain, which results in abrupt stiffness reduction. In the partially prestressed concrete 
section, the yield point can be defined although it is not so clear as the reinforced 
concrete section. However, in the prestressed concrete section successive gradual 
reduction in stiffness after cracking can be observed and this is followed by crushing 
or spalling of the unconfined cover concrete. 

2) Crushing of the unconfined cover concrete occurs at the smallest curvature in the 

prestressed concrete section because of the larger compressive strain sustained than 
the other sections. 

3) Points indicated as "Yielding of prestressing steel" are the points where strain of 

prestressing steel reached limit of proportionality on the stress - strain curve. The point 
of limit of proportionality is indicated as Point A in Fig.3.2. In the partially prestressed 
concrete section moment increased after yielding of prestressing steel occurred while 

gradual reduction in moment capacity was observed in the prestressed concrete 
section. 
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       Fig.3.2 Typical stress - strain relationship of prestressing steel 

4) A sudden large reduction in moment capacity occurred in the partially prestressed 
section due to fracture of prestressing steel : a strain at fracture was assumed to be 2%. 
This can be defined as an ultimate point of the partially prestressed concrete section. 
However in the prestressed concrete section a clear ultimate point can not be observed 
even in a large deformation of 0 • D = 8%. 

Ductility ratio which is defined as the ratio of the ultimate curvature to the yield 
curvature is often used as a index of estimation of ductility or deformability. However, 
care must be exercised in interpreting what are meant by the term "yield curvature" and 
"ultimate curvature" . In case of a reinforced concrete section without axial load "yield 
curvature" means the curvature at first yield of longitudinal reinforcement in the 
section. In case of a prestressed concrete section it is disputable how to define the yield 
curvature : should it be referred to as the curvature at first yield of longitudinal 
reinforcement, at first yield of prestressing steel or any other points? 

Okamoto specified [3.7] the term "yield curvature" as the curvature where stress in 

prestressing steel reaches its nominal yield stress. This is usually referred to as 0.2% 
off-set yield stress. However, it is difficult to apply this definition to any kind of 

prestressed concrete section including partially prestressed concrete section in a 
unified manner because crushing or spalling of the cover concrete which results in 
abrupt large reduction in capacity may occur before stress in prestressing steel reaches 
its nominal yield stress. 

Harajli and Naaman [3.5] proposed a definition of yield curvature for partially 

prestressed beams based on the moment-curvature relationship of the section. The 
yield curvature was defined as the curvature corresponding to the intersection of two 
lines shown in Fig.3.3 : the first line is an extension of the initial linear portion of the 
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moment-curvature curve while the second line is an extension of the final portion of 

the curve to be assumed linear. 

These two definitions are based on the assumption that yielding of a section should 

originate in yielding of prestressing steel. Cohn and Bartlett [3.4] assumed that the 

yield curvature corresponds to that of the ordinary reinforcing steel. However, this may 
be on the unsafe side especially when a small amount of reinforcing steel is provided 
in the section. 

In the University of Canterbury in New Zealand the yield curvature defined as that 

calculated at moment  MALI assuming the section has a constant flexural rigidity equal 

to that computed or experimentally obtained at 0.75MACI has been used (see Fig.3.4). 

MALI is the nominal moment of resistance calculated on the basis of the ACI code [3.8] 

approach. However, the flexural strength obtained has been found quite conservative 

for members carrying moderate to high levels of axial load. A recent study by Zahn 

[3.9] suggested new definitions for the yield curvature and ideal moment capacity to 
allow for the expected enhancement of flexural strength above the ACI method 

predictions. The definitions are illustrated in Fig.3.5 for a typical moment-curvature 
curve. The actual moment-curvature behaviour is idealized as elasto-plastic with the 
initial elastic portion passing through the point where first-yield occurs. The first-yield 

curvature 0y are defined as that where either any longitudinal reinforcement reached 
yield strain or the extreme compression fiber concrete reached a strain of 0.002. This 

is the strain corresponding to the expected peak in the unconfined stress-strain curve. 

The yield curvature, not the first-yield curvature, is found by scaling the first-yield 

curvature 0y by the ratio of the ideal moment capacity M1 to the first-yield moment 
My. The definition has been developed for a reinforced concrete column section. 

The definitions above were arbitrary. Besides, a prestressed concrete section under 
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          Fig.3.3 Yield curvature by Harajli and Naaman [3.5] 
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reversed cyclic loading indicates narrower hysteresis loops with smaller residural 
deformation than a reinforced concrete section. Therefore, expressing ductility by a 
ductility ratio is not of great significance because ductility should be related to energy 
dissipation capability. In this study a ductility ratio is often indicated. This is defined 
as the ratio of a deformation to the yield deformation which is found when either of 
any longitudinal reinforcement reaches yield strain. However, a corresponding rota-
tion angle or curvature itself is also referred to whenever ductility ratios are indicated. 

Ultimate available curvature and influence of cyclic loading 

A recent study on concrete flexural members by Suzuki et  al. [3.10] suggested new 
defmitions of the ultimate available curvature on the moment-curvature curve of the 
members. The ultimate available curvature was derived from a moment-curvature 
curve subjected to monotonic loading to failure. This is based on monotonic loading 
behaviour because it was aimed at an ultimate point which is of physical significance 
and can be easily calculated. Besides, a suitable amount of transverse reinforcement 

provided can prevent a large reduction in strength even under high-intensity cyclic 
loading into inelastic range. However, it has been observed in past research that the 
available ductility of a section depends much on the imposed curvature history. The 
ultimate curvature resulting from monotonic flexure is usually greater than that 
resulted from cyclic flexure with full reversals. Therefore, it is necessary to define a 
suitable standard curvature history to measure the available curvature ductility. 

Subjected to high axial load, a column section may not sustain the axial load under 
cyclic loading although it can sustain the same level of axial load under monotonic 
loading. This is described in the reference [3.11] by means of analyzing a column 
section. The influence of cyclic loading in the analysis is expressed in Fig.3.6. The 
figure illustrates three moment-curvature curves of the column section of a test unit 
called CH-4 subjected to high axial load of 0.473 f'cAg. All of them were obtained 
theoretically: (A) the moment-curvature curve under monotonic loading calculated 
using the modified Muguruma et al. model proposed in the reference [3.12], (B) the 
moment-curvature curve under cyclic loading using the same model used in (A), and 
(C) the moment-curvature curve under cyclic loading using the re-modified model 
assuming that a descending branch of the skeleton curve after peak-stress does not fall 
below the stress of 0.5 can. 6cm was the peak-stress. As shown in Fig.3.6, the reduction 
in strength under cyclic loading (Curve (B) or (C)) is much larger than that of 
monotonic loading (Curve (A)) in the post-peak region. The theoretical moment-
curvature curve of cyclic loading (B) dropped suddenly at the smaller curvature than 
that of monotonic loading, and the large reduction in strength resulted in instability in 
the analysis. This is because the resultant compressive force in core concrete was not 
able to become large enough to sustain such a high axial load. The stress distribution 
in the column section in the analysis of reversed cyclic loading is different from that 
in the analysis of monotonic loading even if they are obtained at the same curvature . 
This is because stresses in concrete on reloading paths are smaller than those on the 
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envelope curve at the same strains (Fig.3.7). Thus, the effect of cyclic loading should 
be taken into account. 

Zahn [3.9] adopted a sequence of four identical cycles of imposed bending moment 
to curvatures of equal magnitude in both positive and negative directions as a standard 
by which the available curvature ductility factor of a column section is measured 

(Fig.3.8). The section is considered to have achieved its ultimate curvature when one 
or more of the following ultimate limit state conditions is reached. 

1) The moment reached at either positive or negative curvature peak of the last cycle 
has reduced to  0.8Mi, where Mi is the ideal flexural strength of the section. 
2) The strain energy accumulated in the confining reinforcement at the end of the 
fourth cycle is equal to its strain energy absorption capacity and it fractures. 
3) The longitudinal reinforcing steel fractures or buckles. 

The peak curvature when one or more of the above conditions applies is defined as the 
available ultimate curvature. The available ultimate curvature has to be determined by 
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iteration. They adopted an energy balance approach proposed by Mander et al.  [3.11] 
to predict the stage of hoop or spiral bar fracture. The approach reflects the principle 
that the lateral expansion of core concrete at large compression strains is passively 
resisted by confining reinforcement, which has to follow that expansion, thus absorb-
ing strain energy. The increase in the strain energy capacity of compressed concrete 
due to confinement is equivalent to the strain energy stored by the confining 
reinforcement as it yields in tension. Hoop or spiral fracture occurs when the strain 
energy stored in the compressed concrete, plus the additional strain energy required to 

yield the longitudinal reinforcement in compression, is equal to the strain energy 
capacity of the confining reinforcement. 

In the moment-curvature analysis by Zahn [3.9] the moment reduction to 0.8Mi is 

caused by the reduction in stress at the previous unloading strain, Eun, which was 
incorporated in the stress-strain model of concrete to allow for the degradation effects 
due to cyclic loading : the stress in the reloading path at Eun reaches 

f,. = 0.92 fun + 0.08 fro, where fun is the stress corresponding to and fro is the 
stress from where reloading occurs (Fig.3.14). No other cause can be thought. Even 
if another few cycles are imposed, further reduction in moment capacity can not be 
observed. Therefore, a sequence of two identical cycles to curvatures of equal 
magnitude in both positive and negative directions is enough to specify the ultimate 
curvature. 

3.4 Theoretical study of strength and ductility of prestressed con-
     crete members 

3.4.1 Computer analysis program 

A computer program for determining the moment-curvature behaviour of arbitrarily 
shaped prestressed and reinforced concrete members was developed by the author on 
the basis of the research work conducted by Mander et al. [3.13]. A section analyzed 
is divided into some parallel strips which lie perpendicular to the direction of the 
applied load. These strips represent the material properties. The distribution of flexural 
strains is always assumed to be linear through the depth of the section: plane sections 
before bending remain plane after bending. Analysis proceeds by incrementing the 
curvature at the critical section in a series of small steps. The position of the neutral 
axis is obtained by iteration until equilibrium of the internal forces is achieved. After 
that the moment of resistance of the section is calculated. In this way the moment - 
curvature behaviour of the critical section is followed piecewise. 

Reversed cyclic loading histories could be simulated by specifying the required 
maximum curvature at the peak of successive loading cycles and number of steps to 
reach the curvature. As shown in the later chapters of this thesis, cyclic moment 
curvature analyses described above can give approximate predictions of strength and 
stiffness degradation which might be observed from experimental results. 
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3.4.2 Stress-strain models for concrete and reinforcing steels 

The stress-strain models for confined concrete used in this study was developed by 
Mander et al [3.13]. In their research work the model has been found to give good 
agreement with experimentally measured uniaxial stress-strain response [3.14]. The 
model is used to predict the stresses resulting from an arbitrary applied strain history. 
The monotonic loading curves for tension and compression envelop the behaviour 

predicted for cyclic loading. 

3.4.2.1 Stress-strain model for confined concrete 

Control parameters  

Fig.3.9 shows the monotonic stress-strain behaviour for unconfined and confined 
concrete. It was necessary to input the following parameters to the computer program 
to control the stress-strain behaviour. 

   For unconfined concrete: 
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Fig.3.9 Monotonic stress - strain behaviour for unconfined and confined concrete 
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 f't = concrete tensile strength, if not specified f; = 0.6.J f' c in MPa 
Ec. = initial tangent modulus of elasticity, if not specified Ec = 5000. J f c in 

         MPa 

Eco = strain at unconfined strength f' c. E„=0.002 is assumed for ordinary 

          strength concrete 
      Espall = strain at which unconfined cover concrete spalls 

   For confined concrete: 

f' cc = peak strength of confined concrete 

Ecc = strain at confined strength f' cc 

                                  Ecu = ultimate strain sustainable 

Monotonic loading behaviour  

Monotonic compression loading: 

The monotonic envelop stress-strain relation in compression for confined concrete is 

given by Eq.3.5. 

xr 
     f` =fcc 

r-1+xT(3.5) 

fc = concrete stress 
      x = E/Ecc 

E = concrete strain 

     r = Ec / (Ec — Esec ) 
Exec= secant modulus = f 'cc /e, 

For unconfined concrete the same equation is used but the parameters f' cc  and Ecc are 

replaced by f'c and Eco . The falling branch of the stress-strain curve for the unconfined 

cover concrete for strain E greater than 2Eco is taken as a straight line reducing to the 

strain - stress coordinate (E5021 , 0), where Espall is the spalling strain. Thus, Espa should 
be greater than or equal to 2E„. 

Monotonic tension loading: 

The tension strength f't can be input. However, if the data are not available, f't 

suggested in the New Zealand Concrete Design Code NZS 3101 [3.15] can be used. 
According to NZS 3101:1982, f't can be derived from the unconfined cylinder 
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compressive strength  f', by the expression in Eq.3.6. 

f' = 0.6 f (f't and _ f', in MPa)(3.6) 

The stress-strain behaviour in tension is assumed to be elastic until the tensile strength 

f't is exceeded, as given by Eqs.3.7 and 3.8. 

ff =EcE for E< f'/Ec(3.7) 
fc =0.0E? _f t/Ec(3.8) 

As indicated in the above equations, the same initial tangent modulus of elasticity Ec 
is used for both compression and tension loading. 

Determination of Confined Strength f'„: 

The peak strength f' cc  of confined concrete in compression loading is dependent on 

the confining stresses fn and f12 provided by transverse reinforcement in the two 

transverse directions. By using the confining stress ratios fn / f', and 112  / f' c, the 

confined strength ratio f' cc / f'c can be found from Fig.3.10. Fig.3.10 was based on an 

ultimate strength failure criterion for concrete under a general multiaxial state of stress. 

Determination of Strain E„ at Confined Strength: 

The strain E„ at the confined strength f'„ can be obtained using Eq.3.9. 

E„ = Ego {1 + R(f'„ l f' —1)}(3.9) 

The parameter R has been found to be approximately constant by previous researchers 
but values between about 3 and 10 have been suggested. According to Mander's 
recommendations a constant value of R = 5 was used in this study. The strain Eco 
corresponding to the unconfined strength f'c was assumed to be equal to 0.002 for all 

concrete strength considered. This value of Ego is commonly used for normal strength 
concrete. For high strength concrete larger values than 0.002 are usually assumed . 
Muguruma et al. [3.16] proposed the following equation on the basis of the experimen-
tal results in which cylinder compressive strength ranges 26.2 to 87.5 MPa . 

Eco = 0.0013(1 + f c / 98.6)(3.10) 

For instance, Eq.3.10 gives Ego = 0.169% for concrete of 30MPa in compressive 

strength. Concrete compressive strength considered in this study is approximately 30 
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      Fig.3.10 Confined strength determined from the confining stresses 

to 40 MPa. Thus, eco of 0.002 can be used. 

3.4.2.2 Cyclic Loading Behaviour 

Initial loading is assumed to traverse along the envelope stress-strain curves. Different 

behaviour is assumed for unloading from either the compression or tension envelope 

curves. 

Compression Unloading: 

Behaviour on unloading from the compression envelop curve is shown diagrammati-

cally in Fig.3.11. Unloading is assumed to take place from a strain stress coordinate 

(Eun f fun) . The tangent modulus at the start of unloading Eu is assumed to be given by 
Eq.3.11. 

Eu = bcEc(3.11) 

where b = fun / lcbut b> 1 (3.12) 

c =(Ecc/ Eun)o.sbut c < 1(3.13) 
Ec = initial tangent modulus 
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The stress-strain relation is given by Eq.3.14. 

 fc =fun_  xr(3.14)            1 r—1+xr 

where r  =Ec / (Ec — ESec)(3.15) 

Esec=fun / (Eun — Epl)(3.16) 
Epl =Eun — (Eun + Ea)/ (1 + EcEa / fun) 

    = plastic strain(3.17) 

Ea=a(EunEcc)0.5 
    = common strain(3.18) 

      a = ecc /(ecc + E, ) or 0.09eun / Ecc 
      whichever is greater(3.19) 

x=(E—E an) /(Epi—Ean)(3.10) 

Tensile Unloading: 

Tensile strength is assumed to deteriorate depending on the magnitude of previous 

compressive straining as shown in Fig.3.12. On unloading from compression the 

tensile strength is assumed to be given by Eq.3.20. 

    ft = f', (1— Epi / Ecc)for Ecc > Epl 
   = zerofor Ecc < Epl (3.20) 

The stress-strain relation is given by Eq.3.21. 

fc =Er(E—Epl)(3.21) 

where E, = f / Et(3.22) 
Et= f'r 1E(3.23) 

After the cracking strain has been exceeded, E > (Et — Epl ), the tensile strength is 
assumed to be zero. 

Reloading Behaviour: 

Fig.3.13 illustrates situations where reloading may occur from either the compression 

unloading curve or the tension unloading curve after cracking. Reloading is assumed 
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Fig.3.12 Assumed tension strength deterioration due to compressive loading 
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to occur from a strain - stress coordinate  (E„, fro) and the stress-strain relation is 
assumed to be linear as the previous compression loading curve is approached. The 
stress at the previous unloading strain Eun is reduced from fun to f, , as given by 
Eq.3.23 to allow for degradation effects due to load cycling. 

f 0.92 fun + 0.08 fro(3.23) 

The linear stress-strain relation is given by Eq.3.24. 

.fc = fro + Er (E — Ero)(3.24) 

where Er = (fnew — fro)! (Eun — Ero)(3.25) 

A cubic transition is then used to intersect the monotonic compression curve at a return 

coordinate (Ere ,fre) where Eye is given by Eq.3.26 and fre is given by the expression 
for the monotonic compression curve in Eq.3.5. In Mander's idealization a parabolic 
curve was used. 

y—"(£un, fun) 
(4' 
N\(Ere, ire) 

_Oj% 
  co 

   co 
                               /(£urnfne w) 

 N 

t

£pl/ f
ro) 

                 Compression Strain, E, 

           Fig.3.13 Stress - strain curves for reloading branch 
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 Ere = Eun + (fun — Lew) / {Er (2 + f 'cc I f',)}(3 .26) 

The cubic stress-strain relation is given by Eq.3.27. 

fc = fre +Erex+Ax2 +Bx3(3.27) 

where x = E — Ere(3.28) 

A =32(f new—fre)—
xl (Er — 2Ere)(3.29) 

          x 

   unun 

B =(fnew—fre)—-----12 (Ere+Er)(3.30) 

          x 

     unxun 

X un = Eun — Ere(3.31) 

Ere is the tangent modulus at the return coordinate determined from the monotonic 
equation (Eq.3.5). 

3.4.3 Stress-strain model for reinforcing steel 

Stress-strain model for ordinary reinforcing steel proposed by Yokoo et al. [3.17] was 
incorporated in the analysis. However, some modifications were made. 

3.4.3.1 Monotonic stress-strain behaviour 

The assumed monotonic stress-strain behaviour for reinforcing steel is illustrated in 
Fig.3.14. The application of the model in the computer analysis program requires the 
following parameters governing the monotonic stress-strain behaviour to be input by 
the user for both tension and compression loading cases: 

fy = yield stress 
Es = elastic modulus 

Esh strain at commencement of strain hardening 

The stress-strain relations are then given by Eqs. 3.32, 3.33 and 3.34 for loading on the 
initial elastic line, yield plateau, and on the strain hardened curve respectively. 

fs = ESESwhere 0 < Es < Ey (3.32) 

fs = fywhere Ey < Es < Esh (3.33) 
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                  RfsR-1    ESES = fs1 + A-fwhere E
s > Esh (3.34) 

                       y where  fs = steel stress 

Es = steel strain 

Ey = yield strain = fy / Es 

The numerical values for A and R in this study are assumed to be 0.603 and 3.814, 
respectively. These parameters were derived from the tensile monotonic loading test 
results conducted by Fujimura [3.18]. 

3.4.3.2 Cyclic Loading Behaviour 

On load reversal from a coordinate (ei, f) on the monotonic curve a softened curve 
is followed due to Bauschinger effects as illustrated in Fig.3.15. The monotonic or 

skeleton curve is shifted to a new coordinate origin at (Ei , f) . 

When reversal is from the yield plateau, the numerical values for A and R depend on 

an inelastic strain, Ep , given by Eq.3.37. 

A =1.943Ep(—"749)(3.35) 

R =16.4Ep(-°.214)(3.36) 

where Ep=(E— Ei)f—fill—EEy(3.37) 
                                    s After the total length of the yield plateau experienced reaches lesh  – Ey I , the yield 

plateau does not reappear any longer. 

Reversal may occur from a softened branch before merging with the skeleton curve has 

occurred. The reloading curve is expressed by the same equation as the previously 

reversed curve. 

When reversal takes place from the strain hardened skeleton curve, the numerical 

values for A and R in tension and compression paths are given by the different 

equations. 
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 Fig.3.15 Cyclic loading behaviour for ordinary-strength reinforcing steel 
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For compression paths: 

 A= 0.548Smc + 0.518(3.38) 

R= 5.640Smc — 3.929(3.39) 

For tension paths: 

  A = 0.526Smt + 0.681(3.40) 

R= 4.156S., +1.503(3.41) 

             ^ 

    S=f2-flf3- f2fk+1-fk  where,,,(k = 1,2,•••,i) (3.42) 
      \f fy fy 

fk+i - fk = stress amplitude of k-th compression path 

S =maxf2 —flf3—12fk+1 -fk                 f
y fy,,, fy l (k =1, 2,• •,i) (3.43) 

fk+i - fk = stress amplitude of k-th tension path 

3.4.4 Stress-Strain Model for Prestressing Steels 

The stress-strain model used for prestressing tendons was that proposed by Thompson 
[3.9]. 

3.4.4.1 Monotonic Stress-Strain Behaviour 

A monotonic stress-strain relation is assumed to form an envelope for repeated 
loadings of the same sign and is illustrated in Fig.3.16. The curve is defined piece-wise 
as an initial linear portion, a hyperbolic curved portion, and an upper linear branch. The 
following input data is required to describe the monotonic stress-strain behaviour of 
the tendons: 

E pa = strain at limit of proportionality 

E pb = strain at beginning of upper linear branch 

      Epu= ultimate strain 

!pa = stress corresponding to Epa 

f pb = stress corresponding to E pb 

f pu = ultimate stress at strain E pu 

fpi = initial tendon stress after losses 

48



    ,,,o. fpu --------------U f

pbB 

          1 fpa --A 

            z       a             c 

           Epa EpbEpu 

                       Tendon Strain, Ep 

    Fig.3.16 Monotonic stress - strain relation assumed for prestressing steel 

The stress-strain relations corresponding to the monotonic loading curve in Fig .3.16 
are defined piece-wise by Eqs.3.44 to 3.46. 

fp = £pEp for E<—£pa(3.44) 

fp =(fpb£pb — fpa£ pa) /(£pb —£ pa) +£pa£pb(fpa — fpb)/£p(£pb —£pa) 
            for Epa £p <— £pb(3.45) 

fp = fpb + (fpu — fpb)(£p — £pb) I (£pu — £pb ) 
            for Epb £p <— £pu(3.46) 

where Ep = tendon strain 

fp = tendon stress 
Ep = initial Young's modulus = fpa / £ pa 

3.4.4.2 Cyclic Loading Behaviour 

Load reversal in the elastic range will be governed by Eq.3.44. For load reversal in the 

inelastic range the stress-strain behaviour is illustrated in Fig.3.17. (E0 , f0) are the 
coordinates of the reversal point. Unloading will occur along a curve with initial slope 

OEp, where 0 is a modification factor to allow for softening effects which occur with 
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increasing levels of strain. The stress-strain relationship is obtained from Eq.3.47. 

 (Ep —Eo)0Ep =(fp —fo)[1+{(fp —fo)/(fch -f0)}r1](3.47) 
where 0 =58.27Em2 — 7.506Em + 1.043 but 0 < 1.0(3.48) 

Em = current value of maximum imposed strain 

The stress-strain envelope for reversed loading is taken as the original monotonic 

envelope shifted along the strain axis as shown in Fig.3.18. The origin of the envelope 

is taken at coordinates (E2,, ,o) for tensile loading and (Ez,,m,0) for compression 
loading. Ewa is the maximum tensile value of the residual strain EZero which would be 

the strain at zero stress (i.e., residual plastic strain) if the tendon unloaded with 
modulus equal to the initial Young's modulus. Similarly EZ,,.,n is the maximum 

compressive value of Ezero. 

The parameter fch, given by Eq.3.49, is a characteristic stress and r, given by Eq.3.50, 
is a Ramberg-Osgood exponent. 

    fch =OEPU(Epb +Eo —Ezmx —fpb /U-2fo lOEp)/ (OE p —U) (3.49) 
r=57.883-59116E1,1 but r>20(3 .50) 

For compression unloading these parameters are found using Eqs.3.51 and 3.52. 

fch = 0EpU(—Epb + Eo — E. -E fpb / U — 2fo / OEEp) / (oEp —U) (3.51) 
  r = 5.003 —194.551(3 .52) 

where E p1 = plastic strain on the previous cycle 

U = (fpu — fpb) l (spu — Epb)(3 .53) 

Where the plastic strain in the previous cycle Epi is less than 0.001 for tensile loading 

or 0.0003 for compressive loading, the previous loading curve in that direction is 

followed once it is reached. Also, the tendon stress fp cannot exceed the monotonic 

curve value (refer to Fig.3.18). 

A typical example of stress-strain response for prestressing tendons obtained from the 
model is shown in Fig.3.19. 
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             Fig.3.19 Typical stress strain response [3.19] 

Since the numerical coefficients in Eq.3.48, 3.50 and 3.52 were quoted exactly as they 
appeared in Thompson's research work, the number of significant figures were not 

uniform in these coefficients. 

3.5 Procedure of Moment-curvature Analyses [3.19] 

3.5.1 General assumptions 

The following assumptions were made in the moment-curvature analyses: 
1. Plane sections remain plane after bending. 

2. When the compressive strain exceeds the spalling strain (E ,pau), the cover 
   concrete is considered to have spalled and thereafter sustain zero stress . 

3. When the concrete stress exceeds the tensile strength, the concrete is assumed to 
   crack and thereafter the tensile stress is ignored. 

4. The effects of creep and shrinkage are ignored. 
5. There is no bond slip between non-prestressed ordinary reinforcing steel and the 

    core concrete. 
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For the purpose of analysis the cross section is divided into a number of discrete 

elements parallel to the neutral axis of bending. Similarly, the prestressing or non-

prestressed longitudinal steel is divided into a number of levels. The strain distribution 
for the cross section is given by: 

 E(y)  =  E0 + Øy(3.53) 

where so = strain at the centroidal axis, 

      0 = section curvature, 
      y = distance from the reference axis corresponding to the centroidal axis 

          of the beam section. 

Hence for a given strain profile, the axial load, P, and the bending moment, M, can be 

calculated as follows; 

   n,nPn, 

P =f~iA~i+ I fP1 AP! + I fskAsk(3 .54) 
     i=1j=1k=1 

   n,nPn, 

    M = fciAciyci + fPrAPjyPj + EfskAskysk(3 .55) 
    i=1j=1k=1 

where Li = stress in the i-th concrete layer (compression -ve), 

f pj = stress in the j-th prestressing steel level (compression -ve), 

fsk = stress in the k-th nonprestressed longitudinal steel level (compression 
-ve), 

yci = distance from the center of the i-th concrete layer to the reference axis, 

ypj = distance from the center of the j-th prestressing steel level to the 
            reference axis, 

ysk = distance from the center of the k-th nonprestressed longitudinal steel 
           level to the reference axis. 

Moment-curvature relationships are calculated for a prescribed external axial load, Pe, 
on the cross section. Force and strain compatibility which are expressed by Eqs.3.53, 
3.54 and 3.55, must be solved simultaneously. Incremental forces (AP and AM) are 
related to incremental deformations (AO and AE0) by the instantaneous section 

stiffness: 

FAmi EI EZT A01 
[AP][Ez EAAEo(3.56) 
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By numerically integrating the instantaneous values of  Young's modulus across the 

section, the section stiffness coefficients are obtained as follows; 

Ti.npn, 

EA = y EciAci + E EpjApi + y ESkAsk(3.57) 
     i=1j=1k=1 

n,npn, 

    EZ = EEQiAeiyei + EpjApjypj + EESkAskysk(3.58) 
    i=1j=1k=1 

ey = EZ/EA(3.59) 

where EA = effective axial stiffness, 
      EZ = first moment of area of stiffness, 

ey = eccentricity from the neutral axis of the incremental section stiffness, 

ELI = modulus of elasticity of concrete at i-th layer, 

Epi = modulus of elasticity of prestressing steel at j-th level, 

Esk = modulus of elasticity of nonprestressed longitudinal steel at k-th level. 

Therefore the effective flexural stiffness, EI, about the neutral axis of the incremental 
section is defined as: 

n,npTi 

EI =y,EciAciyL +IEpiApiynj+EE'skAskys—EA•ey(3 .60) 
    1=1 j=1k=1 

To generate moment-curvature curves for a prescribed axial load, Pe, only the second 
row of the matrix from Eq.3.56 is used, thus; 

AP=EZ•AO+EA•AE0(3.61) 

where AP = P — PQ(3.62) 
     is the out-of-balance force and P is determined using Eq.3.54. 

Successive curvature increments (AO) are applied and the centroidal strain (AE0) is 
determined using the following algorithm. 
Step 1 : The curvature increment (AO) is added to the value of the previous total 

      curvature (On_1) to give the new section curvature: 

On = On-1+ AO(3.63) 

Step 2 : From the out-of-balance force and the curvature increment, if any, the 
      change in the centroidal strain necessary to restore force equilibrium is 

      calculated using Eq.3.64, which gives: 
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 DEo =AP — EZ • AO  
  EA(3.64) 

This value is then added to the previous total centroidal strain (Eo,n_1) to give the 
corrected centroidal strain: 

Eo,n = Eo,n-1 + DEo(3.65) 

Step 3 : From the revised strain profile given by e(y)n = Eo,n + 0ny, calculate the 
      new axial load (P) and new moment (M) using Eqs.3.54 and 3.55, respec-

       tively. 
Step 4 : Calculate the out-of-balance force (AP) using Eq.3.61. If the absolute value 

      of AP exceeds a specified tolerance, then set AO to zero and the analysis 

      returns to Step 2. Otherwise choose the next curvature increment (AO) and 
      return to Step 1. 

3.6 Conclusions, 

1. Moment - curvature relationships of prestressed, partially prestressed and 
       reinforced concrete beam sections were compared in terms of yield curva-

      ture, ultimate available curvature and ductility ratio as well as a whole shape 
       of the curves. 

2. The analytical procedure for obtaining moment - curvature relationships of 

      prestressed, partially prestressed and reinforced concrete sections based on 
       stress - strain relationships of constitutive materials was described. Analyti-

      cal results will be shown in the later chapter of this thesis. 

[References] 

3.1 R.W.G.Blakeley and R.Park : Seismic Resistance of Prestressed Concrete Beam-
    Column Assemblies, ACI J. Sept. 1971 Title No.68-57, pp.677-692. 

3.2 R.Park and K.J.Thompson : Cyclic Load Tests on Prestressed and Partially 
    Prestressed Beam-Column Joints, PCI J. Sept.-Oct. 1977, pp.84-110. 

3.3 K. J. Thompson : Ductility of Concrete Frames under Seismic Loading, Ph. D. 
    Thesis, University of Canterbury, New Zealand, 1975. 

3.4 M.Z.Cohn and B.Bartlett : Computer-Simulated Flexural Tests of Partially 
    Prestressed Concrete Sections, J.SD,Proc.of ASCE Dec.1982 ST12, pp.2747-
   2765. 

3.5 M.H.Harajli and A.E.Naaman : Evaluation of the Ultimate Steel Stress in 
    Partially Pretressed Flexural Members, PCI J. Sept.-Oct. 1985, pp.54-81. 

                                              55



3.6 M. Okada, M. Hamahara, H. Suetsugu and J. Motooka : Elasto-plastic hysteretic 
   behavior of prestressed concrete beams, Transactions of  AIJ, No.410, 1990, 

    pp.63-69. 
3.7 Okamoto, S : Fundamental Study on Earthquake Resisting Behaviours of 

   Prestressed Concrete Frame Structures, Chapter 6; Seismic Response of Pre-
   stressed Concrete Buildings, Ph. D Thesis, Kyoto University, Japan 1986. 

3.8 Building Code Requirements for Reinforced Concrete (ACI318-89) and Com-
   mentary (ACI318R-89), 1989. 

3.9 F. A. Zahn : The Ductility of Bridges, Ph. D. Thesis, University of Canterbury, 
   1985. 

3.10 K. Suzuki, T. Nakatsuka and M. Awano : Ultimate Limit Index Points of Concrete 
   Flexural Members -(Part 1) Mechanism of existence for ultimate limit index 

   points proposed -, Journal of Structural and Construction Engineering (Transac-
   tions of AIJ), No.383, January 1988, pp.49-57. 

3.11 H. Muguruma, M. Nishiyama, F. Watanabe and H. Tanaka : Ductile Behaviour 
   of High-strength Concrete Columns Confined by High-strength Transverse 
   Reinforcement, Proceedings of ACI International Conference on Evaluation and 

   Rehabilitation of Concrete Structures and Innovations in Design, SP-128 Vol.2, 
   Hong Kong, December 1991, pp.877-891. 

3.12 H. Muguruma and F. Watanabe, Ductility Improvement of High Strength 
   Concrete Column with Lateral Reinforcement, High Strength Concrete, Second 

   International Symposium, ACI SP-121, 1990, pp.47-60. 
3.13 J. B. Mander, M. J. N. Priestley and R. Park, Seismic Design of Bridge Piers, 

   Research Report 84-2, Department of Civil Engineering, University of Canter-
   bury, February 1984. 

3.14 J. B. Mander, Seismic Design of Bridge Piers, Ph. D. Thesis, Department of Civil 
   Engineering, University of Canterbury, 1983. 

3.15 Code for Practice for the Design of Concrete Structures NZS 3101 Part 1: 1982, 
   and Commentary NZS 3101 Part 2: 1982, Standard Association of New Zealand, 

   1982. 
3.16 H. Muguruma, M. Nishiyama and F. Watanabe, Ductility Evaluation of Rein-

   forced Concrete Columns with Normal and High Strength Concrete , Proceedings 
   of Pacific Conference on Earthquake Engineering, New Zealand, 20-23 Novem-

   ber 1991, pp.159-170. 
3.17 Y.Yokoo, T.Nakamura, T.Komiyama and Y.Kawada, Non-Stationary Hysteretic 

   Uniaxial Stress-Strain Relations of a Wide-Flange Steel, Transactions of Archi-
   tectural Institute of Japan, No.259, September 1977, pp .53-66. 

3.18 T. Fujimura, Behavior of High Strength Concrete Column , Master Thesis, Kyoto 
   University, 1991. 

3.19 D. Whittaker, Seismic Performance of Offshore Concrete Gravity Platforms , Ph. 
   D. Thesis, University of Canterbury, New Zealand , October 1987. 

56



Chapter 4 

HYSTERETIC RESTORING FORCE 

CHARACTERISTICS AND SHEAR RESISTANCE OF 

PRESTRESSED  BEAM-COLUMN JOINT ASSEMBLIES 

4.1 Introduction 

Prestressed concrete members usually have higher moments at the commencement of 
flexural cracking than similar reinforced concrete members. Even after they are loaded 
up to near their ultimate strengths they recover to their original states and respond 
elastically unless fracture of the prestressing tendons or of the anchorages takes place. 
For this reason it has been said that, if their cracking, yielding and ultimate displacements 
and the corresponding moment capacities are the same, the displacement response of 

prestressed concrete frames to earthquake ground motions may be larger than that of 
reinforced concrete frames. However, the restoring force characteristics of a frame are 
not dominated only by those of the beams. The moment-rotation relationships of the 

potential plastic hinge regions of the columns may also have a large effect on the 
seismic performance of the frame as may the performance of the beam-column joints 
even though joint cores are generally assumed to have high rigidity in seismic response 
analyses. 

Prestress introduced into a beam and through the joint has been shown to improve the 
shear resistance of beam-column joints. The following reasons can be given: 

(1) The joint core is compressed in the horizontal direction as well as in the vertical 
   direction due to the axial force on the column. Hence the joint core is subjected 

   to biaxial compression which leads to higher compressive strength than uniaxial 
    compression. 

(2) Prestressing is considered to increase the diagonal compression strut action in the 
   joint core because the prestress results in a larger neutral axis depth and restraint 

   of the width of diagonal cracks. 

Besides this, prestress can improve the hysteretic restoring force characteristics of 
beam-column joint assemblages because it helps to preserve the rigidity of the joint 
cores. Stiffness degradation in joints results in pinched hysteresis loops with reduced 
energy dissipation. However, too much prestress, as indicated in Chapter 3, results in 
less ductility in the beams. This problem of decreased ductility may be overcome by 

providing more confining reinforcement in the potential plastic hinge regions. Based 
on the above reasons, well designed prestressed concrete frames are superior to 
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reinforced concrete frames from the view point of energy dissipation. Very little 

research has been carried out to prove that it is possible to have improved performance 

with prestressed members. 

In this chapter, after reviewing previous research and code provisions on the seismic 

design and seismic performance of prestressed concrete beam-column assemblages, 

their hysteretic restoring force characteristics and shear behaviour are discussed based 

on two series of tests conducted by the author. 
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4.2 Review of Previous Research and Code Provisions 

4.2.1 Hysteretic Restoring Force Characteristics of Prestressed Con-
     crete Beam-Column Assemblies 

Few past research studies have been carried out on prestressed concrete beam-column 
assemblages while those on reinforced concrete beam-column assemblages are very 
numerous. Previous research on prestressed concrete beam-column assemblages can 
be divided into two categories: i) research on the hysteretic restoring force character-
istics in order to carry out an inelastic dynamic response analysis of a prestressed 
concrete frame structure and ii) those on the shear strength of beam-column joints to 
conduct shear design of the joint core. 

In the first category of research R.W.G.Blakeley and R.Park  [4.1] conducted tests on 
four full size precast, prestressed concrete beam - column assemblies shown in Fig.4.1 
under large displacement reversed cyclic loading. The columns were pretensioned. 
The beams were post-tensioned with cables passing through the column into an 
exterior anchor block. The cables were grouted. 
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Fig.4.1(a) Precast prestressed concrete beam - column assembly 
          test units (Units 1 and 2) by Blakeley and R. Park [4.1] 
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Fig.4.1(b) Precast prestressed concrete beam - column assembly 
         test units (Units 3 and 4) by Blakeley and R. Park [4.1] 

The test variables included the amount of transverse confining steel for ductility and 
the position of the plastic hinge in the members. Thus, their research was aimed at 
obtaining the hysteretic restoring force characteristics of prestressed concrete mem-
bers or beam-column joint assemblages and comparing them with those of reinforced 
concrete. Shear behaviour of the joint cores was not of great concern. 

Four test units, Unit 1, 2, 3 and 4 were constructed and tested. The mild steel stirrups 
and ties in Units 1 and 3 satisfied the shear requirements in the commonly used code 
for prestressed concrete : ACI 318-63 [4.2] ( also ACI 318-71 [4.3]) and the British 
CP115 [4.4]. Units 2 and 4 also contained special transverse steel for confinement. 
When the paper was written, no recommendations for the amount of special transverse 
steel required in the beam - column joint cores for ductility was available for 

prestressed concrete. In Units 2 and 4, the shear reinforcement in the beams satisfied 
SEAOC 1968 [4.5]. 

The longitudinal non-prestressed mild steels in the beams were terminated at the 
column face. Moist pack mortar joints, 1  in. (25.4mm) thick, were formed between the 
columns and the beams. 
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Units 1 and 2 were designed to form plastic hinges in the beam at the joint , and for Units 
3 and 4 plastic hinges were planned to be formed in the column immediately above or 
below the beam connection. 

Figures 4.2-4.5 show the moment - rotation curves and moment - displacement curves . 
Conclusions reached from the tests are summarized below: 

1. This series of tests showed that prestressed concrete framed structures can be 
capable of resisting moderate earthquakes without structural damage, and of with-
standing severe earthquakes with some possible structural damage. 

2. Energy dissipation is relatively small prior to the commencement of crushing of the 
concrete, but substantial once crushing has occurred. 

3. Large post-elastic deformation capacity can be available in prestressed concrete 
members, even when the transverse reinforcement satisfies only reinforced concrete 
code requirements for shear. 

4. Substantial stiffness degradation occurs when prestressed concrete members are 
subjected to high intensity cyclic loading. 
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Fig.4.2 Moment - displacement curve obtained from Unit 1 by Blakeley and Park [4.1] 
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Fig.4.3 Moment - displacement curve obtained from Unit 2 by Blakeley and Park [4.1] 
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Fig.4.4 Moment - rotation curve obtained from Unit 3 by Blakeley and Park [4 .1] 
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Fig.4.5 Moment - rotation curve obtained from Unit 4 by Blakeley and Park [4.1] 

At the time of their tests there was little information on the behaviour of prestressed 
concrete structures under severe earthquake loading as well as on the behaviour of 

prestressed concrete members under high intensity cyclic loading. Therefore, until this 
research was published, the behaviour of prestressed concrete members under cyclic 
loading had been linked to a bilinear elastic system with much less energy dissipation 
and less ductility than reinforced concrete. However, their tests proved that substantial 
energy dissipation and large post-elastic deformations can be expected for prestressed 
concrete as well as reinforced concrete members, in spite of the moist mortar joints 
without longitudinal non-prestressed reinforcement. 

4.2.2 Shear Strength of Prestressed Concrete Beam-Column Joint 
     Cores 

R. Park and K. J. Thompson [4.6] conducted the first tests which focused on the shear 
strength of prestressed concrete beam-column joint cores. The tests were carried out 
on ten concrete beam - interior column frame assemblies subjected to static reversed 
cyclic loading. The loading pattern selected simulating the effect of severe earthquake 
loading. The dimensions of a beam-column test unit are shown in Fig.4.6. From the 
beams of the ten beam test units, five were fully prestressed and contained nominal 
non-prestressed steel, four were partially prestressed, and one contained only non-

prestressed reinforcement. The beam and column cross sections with the steel details 
are shown in Fig.4.7. 
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     Fig.4.7 Beam and column cross sections with the steel details [4.6] 
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The transverse steel in each joint core consisted of eight rectangular column ties 

(hoops) which were placed around the longitudinal column bars between the top and 
bottom layers of longitudinal beam steel. The average spacing between the tie centers 
was 2 in. (51 mm) near the mid-depth of the joint core. In Units 1 to 8, the eight ties 
were formed from 5/8-in. (15.9 mm) diameter bar. In Units 9 and 10, the top and bottom 
ties were formed from 5/8-in. (15.9 mm) diameter bar and the six intermediate ties 
were formed from 3/4-in. (19.1 mm) diameter bar. 

To calculate the theoretical shear strength  VU of the test units, they applied Eq.4.1 
described in Appendix A of ACI 318-71 [4.3] to the column in the joint core region. 

V,, = vcbd + Av fyd / s(4.1) 

where, v, = nominal shear stress carried by the concrete (psi) 

      b = column width (in.) 
      d = distance from extreme compression fiber to centroid of tension steel of 

         column section (in.) 
A„ = area of one layer of shear reinforcement (in.2) 

fy = yield strength of reinforcement (psi) 
      s = spacing between centers of layers of shear reinforcement (in.) 

vc was given by the following equation. 

vc = 2(1 + 0.0005Nu / Ag )-NIf'c(4.2) 

where Nu = column axial compressive load (lb) 

      Ag = gross area of column section (in2) 

         = compressive strength of concrete (psi) 

The theoretical shear strengths of the joint cores calculated using Eq.4.1 and 4.2 are 
shown in Table 4.1. 

The maximum horizontal shear force, V occurs in the middle region of the beam 
depth between the neutral axis positions of the beam sections shown in Fig.4.8 and is 

given by Eq.4.3. 

V=T4+Ti+C5+Cc—T3—V01(4.3) 

where, T1, T3 = tensile force in prestressing tendons (lb) 

      T4 = tensile force in non-prestressed steel (lb) 

      C5 = compressive force in non-prestressed steel (lb) 
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          Table 4.1 Theoretical shear strengths of the joint cores 
                  calculated using  Egs.4.1 and 4.2 

ACI318-71**Proposed*** 

          Unit Vu Vmax / Vu Vu Vmax / Vu 

             (kips)(kips) 
        1 217 0.98291 0.73 

        4 219 1.01291 0.76 
        5* 220 1.13249 1.00 
        8* 218 0.99292 0.74 
        9* 288 0.84327 0.74 
        7 220 0.89272 0.72 
        2* 221 0.97294 0.73 
        6* 220 0.99290 0.75 
        10 293 0.71371 0.56 
       3 220 0.94249 0.83  

Note: 
 * Yielding of ties and softening of joint core eventually occurred during the 

     inelastic loading cycles in the tests. 
 ** Shear carried by concrete was 12 to 18% of V . 

 *** Shear carried by concrete was 10 to 15% of Vu and by ties was 73 to 89% of 
Vu ). 

Vu : Theoretical horizontal shear strength 

V Theoretical maximum applied horizontal shear force 

                           Column 

col 
 T4

c T
~~—3 

             Q. 
T2f----11•12Beam 

  Cc ---0T4  

          Fig.4.8 External forces acting on the joint core [4.6] 
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 C. = compressive force in concrete (lb) 
Vcol = shear force in column (lb) 

The calculated ratio of the maximum theoretical horizontal shear force in the joint core 
V to the theoretical joint core horizontal shear strength Vu varies between 0.71 and 
1.13. Only Unit 5 had a V / Vu value greater than 1.01. So, according to the ACI 318-
71, all the joint cores were adequately reinforced for shear with the exception of Unit 
5. 

Test Results  

Fig.4.9 shows the relationship of the measured beam moment at the column face 
versus the beam end deflection for all units. The results are summarized as follows; 

Units 1.4. 5.8 and 9 with fully prestressed beams  

Unit 1 and 4: The degradation in the strength and stiffness was due mainly to the 
reduction in the sectional area of the beams when the cover concrete crushed. The 
compression steel in the beams was nominal. No serious damage was observed in the 

joint cores. 
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Unit 8: Although reduction in moment capacity due to concrete crushing was 

observed, it was less significant than in Unit 4 because of the larger area of confined 

core. 

Unit 5, 8 and 9: The degradation of the strength and stiffness was due mainly to the 

gradual degradation of the joint cores. This deterioration of the joint cores was the 
result of repeated opening and closing of diagonal tension cracks in each direction and 

yielding of the ties in the joint core. Units 5 and 9 contained at least as much joint core 
shear reinforcement as Units 1 and 4, but lacked a prestressing tendon at the center of 
the beam depth. The joint cores were not effectively compressed by the prestressing 
force because of yielding of the prestressing tendons near the extreme tension and 
compression fiber. 

The deterioration of the joint core of Unit 8, even though it had a central prestressing 
tendon through the joint core and the same joint core reinforcement as Units 1 and 4, 
occurred because of the high level of moment being maintained in the loading cycles 
in the inelastic range. An upper limit of applied total horizontal joint shear force across 
a joint should be specified. 

Units  2.6.7 and 10 with partially prestressed beams  

After the beam moment capacity had been reached and crushing of the concrete had 
commenced, the energy dissipation capacity of the members was greater than for the 
units with fully prestressed beams although significant degradation of stiffness, and 
in some cases strength, occurred. 

The inelastic deformations concentrated mainly in the beam plastic hinges in Units 7 
and 10 showing the beneficial effect of the non-prestressed longitudinal steel in the 
compression zones of the beam plastic hinges. 

In the case of Units 2 and 6 the degradation of strength and stiffness was due mainly 
to deterioration of the joint cores. These units contained as much joint shear reinforce-
ment and more non-prestressed longitudinal steel than Unit 7. The bond forces from 
the non-prestressed steel in these units caused the moment-deflection relationship to 
indicate a pinched hysteresis. 

Unit 3 - ordinary reinforced beam  

After the maximum moment had been reached in each direction, the subsequent 
reduction in stiffness and strength of the unit was due to damage concentrating in the 

joint core. The 25.4 and 28.6 mm diameter beam bars slipped through the joint core 
during the load cycles in the inelastic range. Joint core shear failure in this reinforced 
concrete unit was more extensive than in any of the other units. 
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Shear Strength of Beam-column Joint Core  

Table 4.1 shows the ratio of the experimental maximum applied horizontal joint core 
shear force, calculated using Eq.4.3, to the theoretical horizontal shear strength, 
calculated by  ACI 318-71 procedure given by Eqs. 4.1 and 4.2. ACI318-71 indicated 
that the joint cores were adequately reinforced for shear except for Unit 5. The test 
results revealed that only the joint core ties of Units 1,4,7 and 10 did not yield and 
softening of joint core did not occur during the tests. 

The authors applied the draft New Zealand concrete design code at the time when the 

paper was published [4.7] to the test units. According to the draft code, the horizontal 
shear strength of the joint core, Vu, is given by Eq.(4.4). 

Vu =V,+0.7P„+nA,,fy(4.4) 

where,K.= 3(1 + f', /3630)"—`(4.5)                    Ag 10 

PAS = prestressing force in the prestressing steels located in the middle third 

         of the beam depth (lb) 
n = number of the shear reinforcement which crosses the corner-to-corner 

           crack 
A„ = sectional area of one layer of shear reinforcement (in.2) 

fy = yield strength of shear reinforcement (psi) 
Nu = axial load on the column (lb) 

      Ag = gross sectional area of the column (in.2) 

f', = compressive strength of concrete (psi) 
V, = horizontal shear force carried by the concrete shear resisting mechanism 

          (lb). When Ni, / Ag < 0.1f',, Tic is assumed to be zero. 

Table 4.1 also shows the ratio of the theoretical maximum applied horizontal core 
shear force to the horizontal shear strength calculated by Eq.4.4. Design by the 

proposed New Zealand procedure resulted in less joint core reinforcement than the 
ACI procedure. The ratios in Table 4.1 indicates that all the test units would not fail 
in joint shear. The authors concluded that the main reason for this wrong prediction 
was that there was no vertical reinforcement capable of carrying shear present in the 

joint cores. The truss mechanism, one of the two typical shear resisting mechanisms, 
did not work effectively. 
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From their tests, two important aspects on shear behaviour of prestressed concrete 
beam-column joint cores can be pointed out; 

(1) Some prestressing tendons should be provided in the vicinity of the beam mid 
   depth to improve the shear capacity of the joint cores. 

(2) Prestressing force in the prestressing steels located in the middle third of the beam 
   depth will increase the shear resistance. 

4.2.3 Code Provisions on Seismic Design of Prestressed Concrete 
    Beam-Column Joint Assemblies 

Among the current concrete design codes in the world, NZS 3101:1982 [4.8] is the 
only one known to have addressed the seismic design of prestressed concrete beam-
column joints. Based on Park and Thompson's research [4.6], additional tests 
conducted by Y.S.Keong [4.9] and other research on reinforced concrete beam-
column joint assemblages [4.10], NZS  3101:1982 [4.8] has specified the principles 
and requirements for prestressed concrete beam-column joints designed for seismic 
loading. The design procedure itself is an extension of that for reinforced concrete 
beam-column joints which includes the ideal horizontal joint shear strength provided 
by a concrete shear resisting mechanism, Val, due to the effective prestressing force 
expressed in Eq.4.6. 

Vch = 0.7PcS(4.6) 

where PAS = the force after all losses in the prestressing steel are taken into account. 
         This steel must be located within the central third of the beam depth. 

Some supplementary requirements are specified in Section 13.5.5 " Joints in pre-
stressed frames " of NZS 3101:1982 [4.8]. Some provisions considered to be of 

particular importance are: 

(1) Anchorage for post-tensioned tendons shall not be placed within beam-column 
   joint cores in order to avoid tensile bursting stresses in a region already subjected 

   to severe diagonal tension from beam and column forces. 

(2) Except as provided by 13.5.5.3 (the following item (3)) the beam prestressing 
   tendons which pass through joint cores shall be placed at the face of the columns , 

   so that at least one tendon is centered at not more than 150 mm from the beam top 
   and at least one at not more than 150 mm from the beam bottom . Such an 
   arrangement of tendons results in more ductile plastic hinge behaviour of beams 

   under inelastic cyclic loading than when the tendons are all concentrated at the 
   mid-depth in the beam. However, in addition to top and bottom tendons , it is very 

   desirable to have at least one tendon located within the middle third of beam depth 
   to help carry the joint core shear force. 
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(3) When partially prestressed beams are designed in which the non-prestressed 
   reinforcement provided at least 80 % of the design resisting moment for 

   earthquake plus gravity load combinations, prestress may be provided by one or 
   more tendons passing through the joint core and located within the middle third 

   of the beam depth, at the face of the column, to minimize loss of effective 

   prestress force under reversed inelastic cycling, and to improve the shear 
   resistance of the joint core. 
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4.3 TESTS ON PRESTRESSED CONCRETE BEAM-EXTERIOR 
    COLUMN ASSEMBLIES  WITH VARIOUS LOCATIONS OF 

    PRESTRESSING STEEL BARS 

4.3.1 Test Program 

Description of Test Units  

Two series of test units, which represented the joint region at the exterior columns of 
one-way moment resisting frames with plastic hinging occurring in the beams at the 
column faces, were constructed and tested. Fig.4.10 shows the overall dimensions of 
the units tested. Both series of test units had a total column height of 1.9 m and a total 
beam length of 1.85 m measured from the column face. The column cross section was 
a 300 mm square. The beam had a 200x300 mm rectangular cross section. Each test 
unit was cast monolithically in a vertical position. 

The main features of each unit were as follows: 

Series A: 
PC1: Prestressing steel bars were located within the central third of the beam depth . 
PC2: Prestressing steel bars were located near the extreme fibre of the beam 

       section. 
RC1: Reinforced concrete beam - exterior column joint with non-prestressed 

      longitudinal beam bars welded to an anchorage plate on the outer side of the 
       column. 

Series B: 
PC3: Similar to PC1 except that both the non-prestressed longitudinal top and 

      bottom beam bars were bent downwards into the joint core or the column core . 
PC4: Similar to PC2 except that both the non-prestressed longitudinal top and 

      bottom beam bars were bent downwards into the joint core or the column core . 
RC2: Similar to RC1 except that both the non-prestressed longitudinal top and 

      bottom beam bars were bent downwards into the joint core or the column core . 

The main variable of the tests was the location of prestressing steel bars . Park and 
Thompson pointed out in their paper [4.6] that only prestressing steel located within 
the central third of the beam depth can be allowed for shear resistance of beam -column 
joint cores. NZS 3101:1982 [4.8] adopted their research results and specifies the 
contribution of prestressing force to shear resistance of joint cores as V

c,, = 0.7 PAS . The 
prestressing steel provided in the vicinity of the extreme tension fiber of a beam section 
is predicted to yield and lose its prestressing force under high-intensity reversed cyclic 
loading. However, the occurrence of this phenomena depends on the ratio of prestress 
to the yield strength of a prestressing steel bar and the intensity of loading and 
deformation to be imposed on the test units. 

74



   009  00£009009 00£009 

    OS rn0)E
uoyyosabot' °sdo°     N=a~6S1 °06-51 0 

,  

o -------------IIIIIIIIIIuuIu1uuIo -------  Ill------------------------------------1----------------------------------- 
------------ I^B1^I1  

           y• 
   bI~;~I~IOLejs•0oy°6-ela1111 ---------------------------05oztjsdooy06-Zl 

           a'n 

     II0Sa s~I~     4110,ses'INNERo`'11: 

      i,1,1„1,1,oIIM as2I^I^I^Irnw.E`°@iii SN @
„,.c11'1111 .5oEiii 

 c aI^,^I^I mcaII_v) 
 tIII~yrIIM 

oZ m o ^^i^ L 2°—1.1..i1•~.     ~~^•I^a—cIII= II= co0°-NMIvg211111. -+ 0)aa,MI. ^h0 ,10 111N II1pCA     v)^^^Emil°a)                         •" I11L
III I 

mom 0)Imo ° 

    •11111 °0, III~+-1 
° imam°II=O 

           111111Imcvc 
--------------------- U~VE1---------------- iuiiiiEsaC0 Ln.-(3iSi,n.0ov) 

N~ QNr 1-1. N 

E • 1^1 

CZ/ 1
..1 

Cl) 

                                               0 009001009008001008                                                                                                Cd 

     EL.sdooc/coEwsdooy~oO    _o°E_60 

IEuI .Iiiii.iri•iaiIiiaara bb 
            11GIIIIIIIl^1luuuu.o -----------------I-------------11111I^Il1IIIIIlI.,LT:linaioorairo”) -----------1-----------------.G.I.u~==waimmumm..i~ 

          o 

    Ill---------------------     11~~T~05    aOL ~jsdooyd6Z—('Ia,®It                                                                              oz c)sdeoy06-Z! I 
                          oS 

I^^^I-o 
 •00FT711 
 c~I^^^1E 

a, 1p11111,,a, 

                     c 

  EI^•^I of @ .crn 
  'c°11111°°,nr   a<~ --------c Qv,    a'^ aI^^^1mht    a

a.,„,I----------- co g.aN11111Qvcog~~ 
I^^^1 h 

     11---------11"r;,_N 
                  I^^1^1 

I^^'^I_•            o
mom° 
   N I^^^IOO9 

     I„;,,INN^'-'U 
------- I^^^1U 

--------------------- 1^^^1 Ea.                      E~~Q..
i\i E-Q ----v0•

~N'C QN= 4 

                                              75



      200200

•F,-1°~f..,-10 
  0193 019. 

 • .~' 

     4-110~
~(c.              „,Do4-016—~°v°o     Prestressingo~ ``'.1rn 

   steel barsco3 -D19u 
Wr ------ 

PC1 D19•°RCv° 

SECTION. A-A SECTION A-A  

       200  
a_300           I140 50,120 50 40  

                                                               0 

   D19 _I1-°v 
 11Prestressingo 9

,o  steel bars°o 
                                                                     o”' 

                   cn10-D19 

PC2--------- 0------ 
D19vov 
                                                   COLUMN SECTION  

SECTION A-A  

         Fig.4.10(b) Beam and column sections of the test units 

The objectives of these tests are; 

(1) to investigate how the location of prestressing steel in the beam section affects the 
   shear behaviour of beam-column joint core, 

(2) to compare a prestressed concrete beam-column joint with the behaviour of a 
   reinforced concrete joint in terms of load carrying capacity, ductility and energy 

   dissipation, and 

(3) to get information to establish a design procedure for shear in prestressed 
   concrete beam-column joints. Such a procedure has been found only in the New 

   Zealand concrete design code NZS 3101:1982 [4.8]. 

The specification of the test units are summarized in Table 4.2. The longitudinal steel 
content for each unit was such that the flexural strength of the column section was 
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              Table 4.2 Specifications of the test units 

         COLUMNJOINTBEAM 
Specimen fc Longitudinal P P/(Ag fc) pwj Longitudinal  e (e/D) Pe 

    (MPa) Rebar  (kN)(%) Rebar (mm) (kN)  
P C 1 41.2264.6 0.071430 (1/10) 276.8• 
P C 24-D19 80 (113.8) 283.9 
P C 3 29.8 10-D19 98.0 0.0364 0.96030 (1/10) 303.3 
P C 4(95 9)80 (1/3.8) 294.2 
R C 1 41.2264.6 0.07146-D19,4-D16 
R C 2 29.898.0 0.0364  

fe : Compessive strength of concrete, P:Axial force on column, Ag:Gross area of column section, 
e : Eccentricity of prestressing steel bar measured from centroidal axis of beam section, 
D : Whole depth of beam, Pe :Effective prestress, 
Pwj : Ash/(bc•jb) (Ash:Total cross-sectional area of horizontal reinforcement within joint core, 

     bc:Width of column, jb:Distance between centroids of nonprestressed compression and 
      tension rebars.) 

Measured yield strength of rebar : D19 ---> 426 MPa, D16 ---> 359 MPa, ---> 335 MPa. 
Specified yield strength (0.2% offset) : 1275 MPa, and 
Specified tensile strength of prestressing tendon : 1422 MPa. 

greater than that of the beam section. The flexural strength of the column was at least 
50% larger than that of the beam. Therefore, under severe cyclic loading plastic 
hinging was forced to occur in the beams adjacent to the column faces rather than in 
the column. Table 4.3 lists the ideal flexural strength of the beams of each test unit 
calculated using the ACI318-89 [4.11] equivalent rectangular stress block. This 
calculation is based on the measured material strengths and the capacity reduction 
factor was assumed to be unity. The beams of all six test units were designed to have 
approximately the same flexural strength. 

  Table 4.3 Ideal flexural strength of the beams and columns of each test unit 

            Unit Mu8 MuC MuC / MuB 

                 (kN) (kN) 

PC1 103.2 157.8 1.53 

             PC2 105.3 157.8 1.50 

            PC3 98.2 139.2 1.42 

             PC4 101.5 139.2 1.37 

             RC1 113.9 157.8 1.39 

            RC2 110.4 139.2 1.26  
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Each series of tests consisted of three units: two units with  a  prestressed concrete beam 
and one with an ordinary reinforced concrete beam. The first series, called Series A, 
contained Units PC1, PC2 and RC1 whose non-prestressed longitudinal beam bars 
were welded to an anchorage plate on the outer side of the column to ensure the 
anchorage detailing of beam bars should not affect the behaviour of joints. The second 
series, called Series B, consisted of Units PC3, PC4 and RC2 whose non-prestressed 
longitudinal top and bottom beam bars were bent downwards into the joint core or the 
column core. The latter is an anchorage detail which is common practice in Japan, 
although the Design Guidelines for Earthquake Resistant Reinforced Concrete Build-
ings based on Ultimate Strength Concept [4.12] published in 1988 recommend that top 
bars should be bent downwards and bottom bars be bent upwards into the column core. 

As described later, the test units of the first series with higher axial load on the columns 
had an extremely good performance with respect to capacity and ductility. Therefore, 
in the second series the test units were designed to have a larger possibility of a joint 
shear failure with a lower axial load on the columns and the anchorage detailing of the 
beam bars than the test units of the first series. 

The mix design for the concrete used for the test units was: 

  25 mm aggregate............ 994 kg/m3 
 Sand............ 762 kg/m3 
  Portland Cement............ 393 kg/m3 
 Water173 litre/m3 

   Water/Cement ratio = 0.44 

The mechanical properties of the materials and other details are included in Tables 4.4 

             Table 4.4 Mechanical properties of concrete 

         Specimen Compressive strength Strain at f'c Initial Modulus 
                   f'c (MPa)(%) of elasticity (104 MPa) 

PC1 
    PC241.20.223.70 
RC1 
        PC3 
    PC429.80.223.00 
RC2  

               Table 4.5 Mechanical properties of steel 

                   Yield strength Yield strain Modulus of Elasticity 
              (MPa)(%)  (105 MPa)  

     D194250.23 
    D163590.201 .82  
C6 93350.181.87  
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and 4.5. 

The prestressing steel bars were post-tensioned to approximately 70 percent of their 

ultimate strength at transfer and grouted. The concrete compressive prestress in the 

beams of each unit at transfer,  Pe, as measured by load cells at the ends of the tendons , 
is listed in Table 4.2. 

4.3.2 Details of beam-column joint core 

joint induced shear force  

Fig.4.11 shows the beam internal forces and the column shear force acting on the joint 
core at the ideal flexural strength of the beam. The maximum horizontal shear force 
Vih occurs in the middle region of beam depth just below the neutral axis position of 

the beam section. Vjh is given by the following equation: 

     —VV.(4 .7) 

                                         Column 

Vcol 

              Beam T7 ~----

                     P..--- 
P20                     +I--A 

                                 Cc 
                          C1 

Fig.4.11 Beam internal forces and the column shear force acting on the 

            joint core at the ideal flexural strength of the beam 

Table 4.6 shows the neutral axis depth, the beam internal forces and ideal flexural 
strength calculated using the ACI318-89 equivalent rectangular stress block. 

In a practical design, prestressing steel bars are usually located centrally between the 
top and bottom non-prestressed longitudinal reinforcement in a beam section. This 
results in a smaller effective depth of prestressing steel bars than that of non-

prestressed tensile reinforcement. Designed to have approximately the same flexural 
strength that the reinforced concrete beam section, the prestressed concrete beam 
section sustains the greater horizontal shear force than the reinforced concrete section. 
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      Table 4.6 Theoretical internal forces in beams at flexural strength 

                     and maximum shear forces 

    Unit C  C  1 C c P 1 P 2 T1 Vcol Vjh VNZS 

         (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 
      PC1 82.1 195.2 469.9 191.6 231.6 241.2 86.2 578.9 867.6 

      PC2 93.5 233.9 411.1 173.4 230.4 241.2 82.4 562.6 867.6 

      PC3 75.1 178.0 430.1 130.5 236.4 241.2 87.9 520.2 736.8 

      PC4 85.4 217.2 375.2 116.2 235.0 241.2 85.2 507.2 736.8 

     RC1 68.9 223.0 362.2585.2 82.8 502.4 867.6 

     RC2 74.5 246.3 314.6560.9 80.3 480.6 736.8  

Note: 
    C : Neutral axis depth 

    Cc : Resultant compression force in concrete 
C1 : Compression force in non-prestressed bottom reinforcement 
P1, P2 : Tensile force in prestressing steel bar 
Ti : Tensile force in non-prestressed top reinforcement 

    Vcol : Shear force in column 
    Vjh : Theoretical maximum applied horizontal shear force 

   VNZS : 1.5Vf f - Al (NZS 3101:1982), 
          where fc' : Compression strength of concrete (MPa) and Aj : Specified cross-sectional 

         area of the joint (mm) 
    * All values were calculated using measured material properties. 

Theoretical shear strength of joint cores  

(i) Requirement for the maximum induced joint shear specified in NZS 3101:1982 

NZS 3101:1982 requires in section 9.5.3.2 that the nominal horizontal shear force in 

the joint in either principal direction, Vjh, shall not exceed the force specified below. 

   (kN)(4.8) 

The effective joint width, bj , shall be taken as (refer to Fig .4.12) 

(a) when bc. > bw 

   either bi = b~ 

   or b1 = b, + 0.5k , whichever is the smaller . 

(b) when be < bw 

   either bi = bw 

   or bi = b, + 0.5k , whichever is the smaller. 
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where, f  c= concrete compressive strength (MPa) 

b~ = overall width of column (mm) 
bw = web width of beam (mm) 

k = overall depth of column in the direction of the horizontal shear to be 
          considered (mm). 

All test units satisfied this requirement. 

                          Approx. 26.5' 

               r__Beam    ..•...•... -----------------t1 

be b  i** 1 bj <-> bw be^ •~ bj 

                                                               Forer 

                                                                  • 

                              Column 

he---- 

bj=kbj=bw 

    or bj = bw+0.5hor b . = be + 0.5hc 
        whichever is smallerwhichever is smaller 

    Fig.4.12 Design of beam - column joint according to NZS 3101:1982 

(ii) Joint shear strength according to ACI318-89 [4.11] 

The nominal shear strength of the external joint without orthogonal beams shall not be 
taken greater than the force specified below for normal weight aggregate concrete. 

12-Jf'cAj (lb.) (f c in psi)(4.9) 

or 1.OV f 'c Ai (N) (f c in MPa)(4.10) 

where, Ai = effective cross-sectional area within a joint (mm2), shown in Fig.4.13, in 

a plane parallel to plane of reinforcement generating shear in the joint. The joint depth 
shall be the overall depth of the column. Where a beam frames into a support of larger 
width, the effective width of the joint shall not exceed the smaller of: 

(a) beam width plus the joint depth 
(b) twice the smaller perpendicular distance from the longitudinal axis of the beam 

   to the column side. 
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The joint shear forces in Units  PCI, PC2, RC1 and RC2 satisfied the requirement. 
Since the design assumptions are based on the experimental results that indicated that 
the joint shear strength was not sensitive to joint shear reinforcement, the joint shear 
strength is related to _ f'c only. The calculated joint shear strengths of Units PC3 and 
PC4 were less than the induced shear force. 

                Direction of forces generating shear 

 .~++;+Effective areab 
;- vI vi ^~...~....~.;.,..+~~^+~ 

W 

             XT 

                 Joint depth h in plane of 
                   reinforcement generating shear 

      Fig.4.13 Design of beam - column joint according to ACI 318-89 

(iii) Joint shear strength according to AU "Design Guidelines for Earthquake Resistant 
Reinforced Concrete Buildings Based on Ultimate Strength Concept" [4.12] 

The nominal shear strength, V1u, of the exterior joint without orthogonal beams shall 

not be taken to be greater than the force specified below. 

Vju = 0.18aBbjDJ(4 .11) 

where, 6B = compressive strength of concrete 

bi = effective width of the joint specified below. 

b j = bb + bai + ba2(4 .12) 
     bb = beam width 
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     either  bai  b / 2 

          or bai = D 14, whichever is the smaller. 

bi is the smaller perpendicular distance from the longitudinal axis of the beam 

          to the column side, shown in Fig.4.14. 

      D = overall depth of the column. 
D~ = overall depth of the column , 

         or the development length for the longitudinal beam bar with a standard 
          90-deg hook. 

DJ 
H-

                      b2 _      2 2 _b2 

                               2 

    D i 1 

/./ 

ba, bb bat 

b1 

     Fig.4.14 Design of beam - column joint according to ALT Guidelines 

The Vju values in Table 4.7 were calculated assuming Di = overall depth of the column. 

The design assumptions of this guideline are the same as ACI318-89. According to the 
calculation results, the AU guideline indicated that Units PC1, PC3, PC4 and RC2, 
which consisted of concrete with lower compressive strength, had higher possibility 
of joint shear failure than the other test units. 

Transverse reinforcement in joint core  

The transverse steel in each joint core consisted of five rectangular column hoops 
which were placed around the longitudinal column bars between the top and bottom 
layers of longitudinal beam steel. The average spacing between the tie centers was 40 
mm. The five ties were formed from 9 mm diameter round bar. 

The measured steel properties are given in Table 4.5. 
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     Table 4.7 Maximum input joint shear force and joint shear strength 

              Unit  V  NZS V ACI V AU 

                    (kN) (kN) (kN) 
PC1 867.6 578.4 556.2 

               PC2 867.6 578.4 556.2 

               PC3 736.8 491.2 402.3 

               PC4 736.8 491.2 402.3 

               RC1 867.6 578.4 556.2 

                RC2 _ 736.8 491.2 402.3  

                 Note: 

VNZS : 1.5 VT T • Ai (NZS 3101:1982) 
                   VACI : 1.0 f : • A, (ACI 318-89) 

VAu : 0.18f c •A1 (ALT Guidelines ) 

                         where f c: compressive strength 

                       of concrete (MPa) and Ai : specified 
                        cross-sectional area of the joint (mm2) 

(i) ACI318-89 (21.4.4) 

To ensure adequate confinement of the joint and to provide lateral support to the 
reinforcement, ACI318-89 requires that the total cross-sectional area of rectangular 
hoop reinforcement be at least 

Ash = 0.30sh" .f c
Ag-1(4.13)               fyhch 

but not less than 

Ash = 0.09sh"fc(4 .14) f
yh 

where, Ag = gross area of section 

Ach = area of core bound by rectilinear ties 

Ash = total area of rectilinear transverse steel at section, including hoops and 
          cross ties 

f = compressive strength of concrete cylinder 

     fyh = yield stress of transverse steel 

      h" = cross-sectional dimension of core 
     s = spacing of ties 
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Table 4.8 summarizes the transverse reinforcement,  Ash, required by ACI 318-89. For 

units PC1, PC2 and RC1, Ash is required to be larger than 166 mm2. The total area of 
reinforcement provided was 128 mm2, which was less than the requirement. For units 
PC3, PC4 and RC2, Ash is required to be larger than 120 mm2, which was less than 

provided in their joints. 

         Table 4.8 Required total area of joint shear reinforcement 

               Unit Ash.prov Ash.NZS Ash.ACI Ash.AIJ 

                (mm) (mm) (mm) (mm2) 

PC1640.0 131.6 850.4 234.2 

           PC2640.0 690.1 850.4 227.6 

           PC3640.0 919.1 615.1 290.9 

            PC4640.0 1514.0 615.1 283.7 

RC1 640.0 616.4850.4 197.5 

           RC2640.0 1434.6 615.1 268.8  

Note: 
   Ash.prov : Total area of horizontal joint shear reinforcement provided in the joint 

   Ash.NZS : Total area of horizontal joint shear reinforcement required by NZS3101:1982 
   Ash.ACI : Total area of horizontal joint shear reinforcement required by ACI318-89 
   Ash.AIJ : Total area of horizontal joint shear reinforcement required by 

AIJ "Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings 
             Based on Ultimate Strength Concept" 

(ii) NZS 3101:1982 

When beams are prestressed through the joint, 0.7 Pis can be considered to be a fraction 

of ideal horizontal joint shear strength, Vch , provided by concrete shear resisting 

mechanism in NZS 3101:1982. Pcs is the force after all losses in the prestressing steel 

that is located within the central third of the beam depth. This provision cannot be 
applied to Units PC2 and PC4, because the prestressing bars were near the extreme 
fibers of the beam section. Another Vch, a fraction of horizontal joint shear strength 

provided by concrete shear resisting mechanism due to axial load on the column [Eq.9-
9 of NZS], was considered to be zero because the average compression stress on the 

gross concrete area of the column was less than 0.1f1 c. However, for external joints 
where the beam flexural steel is anchored outside the column core in a stub satisfying 
Section 5.5.2 of NZS, some Vch [Eq.9-11 ] can be taken into account even if the average 

column compression stress is less than 0.1f' c. This can be applied to units PC1 and 
PC2 whose non-prestressed beam bars were welded to the anchorage plates on the 
outer side of the columns. These are summarized in Table 4.9. The corresponding 
horizontal design shear forces resisted by the joint shear reinforcement, Vsh, are 

calculated and listed in the same table. Dividing these forces by the measured yield 
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strength of joint shear reinforcement,  fyh, gives the total area of horizontal joint shear 

reinforcement, AJh, as listed in the table. The total area provided in each unit was 640 

mm2. This is sufficient for PC1 but insufficient for the rest. The provided reinforce-
ments range between 42 % and 485 % of the joint shear reinforcement required in the 

joints. If Val [Eq.9-11] is not allowed, transverse reinforcement is insufficient for all 
test units as listed in Table 4.9. 

         Table 4.9 Required total area of joint shear reinforcement 
                 according to NZS 3101:1982 

Vch VchVshA jhseq A jh.prov 
        Unit (Eq.9-10) (Eq.9-11) =Vjh-Vch =Vsh/fy 

(kN) (kN) (kN) (mm z)(mm 2) 
PC1 193.8 0.589 V jh 44.1 132 640.0(485%)* 

      PC2 0.0 0.589 V jh 231.2 690(93%) 
    PC3 212.3307.9 919(70%) 
    PC4 0.0507.2 1514(42%)  

    Note: 
Vch(Eq.9-10) :Horizontal shear force to be resisted by the prestressing force, 0.7Pcs in 

                   §9.5.4.2(b) (Eq.9-10) (Pcs is the force after all losses in the prestressing 
                     steel.) 

Vch(Eq.9-11) :Horizontal joint shear strength provided by concrete shear resisting 
                   mechanism only, as specified in §9.5.4.2(c) (Eq.9-11) 

        Vsh :Horizontal joint shear strength provided by horizontal joint shear 
                     reinforcement 

        Ajh.req :Total area of horizontal joint shear reinforcement required in NZS 
3101:1982 
        Ajh.prov :Total area of horizontal joint shear reinforcement provided 

        fy:Measured yield stress of joint shear reinforcement (MPa) 
        * Ajh.prov/Ajh.req ratio 
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(iii) AU "Design Guideline for Earthquake Resistant Reinforced Concrete Buildings 
Based on Ultimate Strength Concept" 

ALT Guidelines require that the total cross-sectional area of joint shear reinforcement 
be at least 

 Ash = 0.003 Vjh / Vjubs(4.15) 

but not less than 0.002 bs , 
where, Ash = total area of a set of joint shear reinforcement in spacing s 

Vjh = theoretical shear force induced in the joint 

Vii, = theoretical shear strength prescribed by Eq.4.11 

     b = joint width 
      s = spacing of hoops 

The required transverse reinforcement for each test unit is listed in Table 4.8. Since V jh 

was greater than V1 for units PC1, PC3, PC4 and RC2, it is no use indicating the total 

cross-sectional area of joint shear reinforcement required by the guidelines. For units 
PC2 and RC1, the required total cross-sectional area of joint shear reinforcement was 
less than provided in the joint. 

4.3.3 Development Length for Series B Test Units 

According to ACI318-89 special provisions for seismic design, the development 
length ldh for a bar with a standard 90-deg hook in normal weight-aggregate concrete 

shall not be less than 8db, 6in.(152.4mm), and the length required by Eq.4.16. 

ldh = fydb 65-^ f'c (fy and f', in psi, and db and ldh in inch.) 

or ldh = _fydb / 5.395-Jf'c (fy and f', in MPa, and db and ldh in mm.) 
                                              (4.16) 

The required development length was 275mm, which was 6mm longer than the 
development length used for the test units in Series B. 

Fujii et al. [4.13] proposed a method for evaluating the anchorage strength of a 
reinforcing bar based on the bearing strength on concrete at the inside of a 90-deg hook 
from the test results of reinforced concrete beam - external column joint assemblies as 
shown in Fig.4.15. The bearing strength was given by the following equation. 
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Fig.4.15 Anchorage strength of a reinforcing bar related to the bearing 
              strength on concrete by Fujii et al. [4.13] 
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   P =  wdbfbear sin 0 • h / (h— j) (kg)(4 .17) 

where, w = f3-r cos(ir / 4 — 0) 

0 = tan-1(ldb / i) 
ldh =11+r+ db 

f3=(r/3db)-0.84 
       fbear — ay 6B 

a=16.1C0 /db 

y=1+30A, /(11s) 
     db = diameter of longitudinal reinforcing bar (cm) 

     r = radius of bend (cm) 
      11 = development length measured from column face to the beginning of the 

         bend (cm) 
     s = spacing of hoops (cm) 

Co = thickness of cover concrete measured from the center of longitudinal 
          reinforcement (cm) 

      h = distance between the contraflexure points of the column (cm) 
aB = compressive strength of concrete (kg/cm2) 

AS = sectional area of transverse reinforcement provided in the joint core 

         (cm2) 
      j = internal lever arm of the beam section (cm) 

The bearing strength calculated based on Eq.4.17 was approximately the same as the 

yield tensile force in the longitudinal reinforcement. 

4.3.4 Loading 

The unit was loaded as shown schematically in Fig.4.16 by vertical axial load on the 
column and by a vertical load on the end of the beam representing shear induced by 
seismic loading. The ends of the column were held on the same vertical line during the 
test and the applied beam load induced reactive shears at the ends of the column. By 
reversing the direction of the vertical beam load, the effect of earthquake loading was 
simulated. 

The axial loads applied to the columns during the tests were 264.6 kN for Units PC1, 
PC2 and RC1, and 98.0 kN for Units PC3, PC4 and RC2, which corresponded to 

0.071f ', Ag and 0.036f ', Ag, respectively, where f', and Ag denote the compressive 

strength of concrete and the gross sectional area of the column. 

The first loading cycle was up to the first yield displacement, and was followed by a 
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                     Fig.4.16 Loading setup 

series of deflection controlled cycles in the inelastic range comprising two full cycles 

to each of the displacement ductility factors of ±2, ±3, and higher. The "first yield" 

displacement at the end of the beam was found when the strain reading of the outermost 

non-prestressed longitudinal reinforcement exceeded its yield strain. 

4.3.5 Measurements 

Beam end deflection was measured by a linear displacement transducer which was 

attached to the measuring apparatus fixed to the ends of the column as shown in

1_, 
                 ,)          i®stO 

       -o- 

        1 Fig.4.17 Measuring apparatus 
170 365 
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 Fig.4.17. Thus, the deflection included the deformation of the beam, joint and column. 
Curvatures and shear deformations of the beam in the potential plastic hinge regions 
and the shear distortion of the joint core were measured and calculated from the 
readings of the linear displacement transducers attached to the units shown in Fig.4.17. 

4.3.6 General Behaviour of Test Units 

Figure 4.18 shows the vertical deflection at the end of the beam plotted against the 
corresponding load of the beam for each unit. All test units except RC2 was able to be 
loaded to well beyond the beam rotation angle of 1/15 with little reduction in moment 
capacity. In unit RC2, after the maximum moment had been reached in each direction, 
the subsequent reduction in stiffness and strength was due to damage concentrating in 
the joint core. 
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        Fig.4.18(a) Vertical deflection at the end of the beam plotted 
           against the corresponding load of the beam (PC 1) 
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        Fig.4.18(b) Vertical deflection at the end of the beam plotted 

            against the corresponding load of the beam (PC2) 
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        Fig.4.18(c) Vertical deflection at the end of the beam plotted 
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Fig.4.18(d) Vertical deflection at the end of the beam plotted 

    against the corresponding load of the beam (PC4) 
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Fig.4.18(e) Vertical deflection at the end of the beam plotted 
   against the corresponding load of the beam (RC 1) 
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      Fig.4.18(f) Vertical deflection at the end of the beam plotted 
          against the corresponding load of the beam (RC2) 

4.3.7 Damage Sustained by Test Units 

Figure 4.19 shows the test units after testing. In the prestressed concrete test units the 
damage concentrated in the beam plastic hinge region while in the reinforced concrete 
units more visible cracks in the beam-column joint core were observed without serious 
damage in the beam plastic hinge region. In RC2, cover concrete on the side of the joint 
core spalled off with cracks running along the beam longitudinal reinforcement 
embedded and anchored in the joint core. 

Comparison of Units PC2 and PC4 having the prestressing steel near the extreme fibers 
with Units PC 1 and PC3 having the prestressing steel in the mid-depth of the beam 
section revealed that there were more visible cracks in the former than in the latter . This 
is due to smaller resultant total prestressing force on the beam section. Prestressing 
steel in the tension side of the beam section is likely to yield while the prestress in the 
compression side loses most of its prestress when it is located near the extreme 
compression fiber. This will be discussed later. 
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4.3.8 Details of Test Results 

Flexural Strength  

Table 4.10 summarizes beam flexural strengths obtained experimentally and theoreti-
cally. The theoretical values were calculated using the  ACI equivalent concrete stress 
block with the measured material strengths of concrete and ordinary reinforcement, 
and with the nominal yield strength of prestressing steel bars. The tensile forces in the 

prestressing steel were calculated based on the assumption that plane sections before 
bending remain plane after bending and perfect bond between concrete and prestressing 
steel. The stress-strain curves for prestressing steel and non-prestressed ordinary 
reinforcement were simplified by idealizing them as two straight lines representing 
elastic perfectly plastic approximation. The capacity reduction factor was assumed to 
be unity. The flexural strengths theoretically obtained were the flexural moment when 
the concrete strain at the extreme fiber of the beam section attained 0.3%. In all test 
units with the exception of PC3 bottom prestressing steel bars reached their yield 
strengths in the calculation. 

    Table 4.10 Flexural strengths obtained experimentally and theoretically 

     Unit MyMuMcal 

(kNm) (kNm) (kNm) 
PC184.8 108.7 103.2 

        PC284.8 118.1 105.3 
       PC38-4.8 108.4 98.2 
        PC488.4 115.0 101.5 

        RC19-1.1 129.2 113.9 
        RC29-6.8 116.9 110.4 

           Note: 
              My : Moment capacity at yielding obtained experimentally 

               Mu : Maximum moment capacity obtained experimentally 
Mcal : Maximum moment capacity obtained theoretically 

The theoretical ultimate flexural strengths calculated using the ACI318-89 methods 
were between 0.88 and 1.03 of the maximum load capacities measured. The ideal 
strengths calculated using the ACI methods are considered to give acceptable lower 
bounds. The overstrength was due to the maximum load occurring at an extreme fiber 
concrete compression strain greater than 0.3 % used in the calculation, to the extra 
confinement given to the beam concrete by the adjacent column, and to the overstrength 
of prestressing steel bars larger than specified. The ultimate strain employed in the 
calculation is of great importance for moment capacity because prestressing steel in 
conventional beam section with prestressing steel having smaller effective depth than 
non-prestressed reinforcement is predicted to remain elastic at the extreme compres-
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sion fiber strain of 0.3% and larger strain results in proportional increment of stress in 

prestressing steel and moment capacity. 

Energy dissipation 

                                                                                                                                                 • Past research [4.14] has shown that less energy dissipation occurs in prestressed 

concrete than in reinforced concrete members. In the tests, narrower hysteresis loops 
of the prestressed concrete test units than those of reinforced concrete units can be 

observed as shown in  Fig.4.18. Equivalent viscous damping factor of the first loading 

cycle to each specified displacement was plotted against ductility ratio 41.1=  3/8y in 

Fig.4.20. 8y was defined as the displacement at the end of the beam when the strain 

reading of the outermost non-prestressed longitudinal reinforcement first exceeded its 

yield strain. The equivalent viscous damping factor heq was calculated by the 
following equation from Ref. [4.15] . 

     _1 LW   h
e4 4 _W

Q(4.18) 

where, ow = area surrounded by one cycle of hysteresis loop 

We = equivalent potential energy represented by a triangular region 

in Fig.4.21. We =2kea2 

 4 ----------------------------------- 0 

U 4-ti 3 -........................................ 
  rn 

c13 2 ..........................      

1 ..........RC1------RC2 

W— — PC 1 • - PC3 — — — PC2 — — PC4  
0 ---------------------------------- 

0 2 4 6 8 10 

                       Ductility ratio, µ 

             Fig.4.20 Equivalent viscous damping factor 
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Unit RC1 had the largest equivalent damping factor at any stage of loading. Until the 
ductility ratio of 4, which corresponds to the beam rotation angle of approximately 4%, 

the prestressed concrete test units showed as large equivalent damping as the 

reinforced concrete units. Beyond that deformation the equivalent damping of Unit 

RC1 increased steeper than the prestressed concrete units and at ductility ratio of 6 it 

was 27% larger than the prestressed concrete units. 

However, from the viewpoint of Japan's seismic design a constituent member is 

expected to sustain a rotation angle of at least 1/50. Thus, the beam rotation angle of 

4% attained in the tests was more than expected and within the range of that 

deformation expected in the seismic design energy dissipation of prestressed concrete 
was comparable to that of reinforced concrete. 

This is mainly due to non-prestressed longitudinal reinforcement provided. The ratio 

of the moment of the non-prestressed steel taken about the centroid of the concrete 
compression block at the ultimate moment capacity of the section to the ultimate 

capacity ranged between 0.45 and 0.48 for the prestressed concrete units. 

 We  =-1  kea  2 

Ow 

     rpprir a ke 

         Fig.4.21 Definition of equivalent viscous damping factor 

                                            99



4.3.9 Series A (Units  PC1, PC2 and RC1) 

Effect of prestressing force on shear behaviour of joint  

The performance of these units was good with little reduction in the load capacities and 
little pinching. Their satisfactory behaviour was due to the rather higher strength 
concrete and the almost perfect anchorage of non-prestressed ordinary reinforcement . 
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      Fig.4.22(a) Stresses in the joint shear reinforcement measured at 
               the peak of each loading run (PC 1) 
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However, a closer observation of the joint behaviour indicates the difference among 
these units. Fig.4.22 shows the stresses in the joint shear reinforcement measured at 
the peak of each loading run. From these figures, the joint shear reinforcement in unit 
RC1 yielded while those in units  PC1 and PC2 remained elastic. Unit RC1 yielded at 
stresses of half and two-thirds of the yield stress developed in the joint shear 
reinforcements of unit PC1 and PC2, respectively. 
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       Fig.4.22(b) Stresses in the joint shear reinforcement measured at 
                the peak of each loading run (PC2) 
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As described in the previous section, flexural and shear deformation of the beam 

potential plastic hinge region and shear deformation of the joint core were measured 
during reversed cyclic loading. The flexural curvature and shear distorion angle in the 
beam potential plastic hinge region and joint core region were calculated from the 
relative displacements of the rods embedded as shown in  Fig.4.17. Fig. 4.23 indicates 
the components of deformation in the joint core. The measured relative displacements 
were also shown in Fig. 4.20 and denoted as 81-85. These displacements can be 

expressed by the following equations. 

81 =-(L1 •L2)• 02 /2+L2 •E2 
82 =-(L1 •L2)•01 /2+L1 el 
83 = (L1 • L2) • 02 12 + L2 • E2(4.19) 
84 =(L1 .L2).01 /2+L1 E1 
35= L1 •El •sina+L2 •E2 • COS a+L2 • y sina 

a= tan-1(4 /L2) 
where, 61,62= flexural curvatures 

El, E2 = longitudinal strain 

y = shear distortion angle 
L1 = vertical length between the top and bottom measuring rods 

      L2 = horizontal distance between the measuring rods 

L1 • E1 • sing L2 • y • sina 

                          -r • 

01 
Li 

' 

    _L---  .a 
L2 •E2 
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          Fig.4.23 Components of deformation in the joint core 
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Equation 4.19 can be solved in respect of 61,02,  E1, e2 and y 

01=(84 —62)1(11.L2) 
    02 =(33 —61)/(L1'L2) 

E1 =(84+82)/(2.L1)(4.20) 
E2 =(83 +61)/(2.L2) 

y={85 -(62 +84)sin(a/2)—(81 +83)cos(a/2)}/(L2 .sina) 

Figure 4.24 shows the shear stress versus the measured shear distortion angle curves. 
It is shown from these figures that the joint shear deformation was confined by the 

prestressing force. 
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Fig.4.24(a) Shear stress versus the measured shear distortion angle curve (PC1) 
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The beam end displacement consisted of the following five components; 

1) flexural deformation in the beam plastic hinge region, 
2) flexural deformation in the beam outside the plastic hinge region, 
3) shear deformation in the beam plastic hinge region, 
4) flexural deformation of the column and 
5) shear distortion of the beam-column joint core. 

Shear deformation of the beam outside the hinge region and of the column were 
considered to be so small that they were neglected. The components 2) and 4) were 
estimated by the method described in the appendix A. The remainder were calculated 
using the strains obtained above. The contributions of these deformations to the overall 
beam end deflection are shown in Fig.4.25. The component of the contribution  of  joint 
shear deformation of RC1 was slightly larger than that of PC1 or PC2. It is noted that 
the ratios of the shear deformation of the beam to the overall deflection of RC 1 was 
larger than those of PC1 and PC2. Prestressing force suppressed not only the joint shear 
deformation but the shear deformation of the beam. 
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              the overall beam end deflection (PC 1) 
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Location of prestressing steel bars  

The load-deflection curves show little difference between PC1 and PC2. The stresses 
developed in the joint shear reinforcement of PC1 with the prestressing steel bars at 
the central third of the beam depth were slightly smaller than those of PC2 whose beam 
had the prestressing steel bars near the extreme fibers of the section. The same matter 
can be pointed out about the contributions of joint shear distortion to the beam end 
deflection and the measured shear distortion angle curves of these two units. There-
fore, prestressing steel near the extreme fibers improved the joint shear resistance as 
well as the one at the central third of the beam depth even in post-elastic range. 

The provision in NZS 3101:1982 that only the prestressing steel located within the 
central third of the beam depth is effective on the joint shear resistance, may be 
extreme. Its effect depends on the ratio of effective stress in prestressing steel to yield 
strength and therefore on how much permanent set strains are sustained under high 
intensity loading. Further examination of the contribution of the prestressing force and 
the joint shear reinforcement to the shear resistance of the joints will be described 
together with the results of the Series B tests described in the later part of this chapter. 
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4.3.10 Series B (Units PC3, PC4 and RC2) 

Effect of Prestressing Force on Shear Behaviour of  .Toint  

The difference in the performance among these three units was clearer than the former 
three units due to the rather lower strength concrete and the inadequate anchorage 
details of the beam longitudinal reinforcement; both the top and bottom bars were bent 
downwards into the joint core or the column core. The performance of PC3 and PC4 
were good with little reduction in the load carrying capacities and little pinching as 
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      Fig.4.26(a) Stresses in the joint shear reinforcement measured at 
               the peak of each loading run (PC3) 
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shown in  Fig.4.18. Contrarily, in unit RC2 some pinching and capacity reduction of 
the load-deflection loops was noticeable even in the loading cycles of lower ductility 
values. Fig.4.26 shows the stresses in the joint shear reinforcement measured at the 

peak of each loading run. Most of the shear reinforcement in RC2 yielded in the loading 
cycles of smaller deformation, while those stresses of PC3 and PC4 were below the 

joint yield stress. The shear stress versus the measured shear distortion angle curves 
of these units shown in Fig.4.27 indicates the effect of prestressing force on shear 
behaviour of the joint. The maximum shear distortion measured in Unit RC2 was eight 
times that in Units PC3 and PC4. 
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       Fig.4.26(b) Stresses in the joint shear reinforcement measured at 
                the peak of each loading run (PC4) 
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Comparison of the load-deflection and shear stress-shear distortion curves for these 
units gives a good indication of where the inelastic deformation was concentrated. The 
contribution of  the  joint shear deformation to overall deflection shows that RC2 failed 
in joint shear. This disclosed that the prestressing force in the beam had a great effect 
on the performance of the beam-column joint. In other words, the prestressing force 

prevented the joint from failing in shear and improved the behavior of the beam-
column joint assembly. 
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Location of Prestressing Steel Bars  

The location of prestressing steel influenced on the joint performance as shown in Figs. 
4.22, 4.24, 4.26 and 4.27; comparison of joint shear stress - shear distortion relation-
ships and of stress developed in joint shear reinforcement between Units PC 1 and PC2, 
and between Units PC3 and PC4. The stresses developed in the joint reinforcement of 
Unit PC4, which has the prestressing steels near the extreme fibers of the section, were 
at most 1.5 times those of unit PC3 with the prestressing steels in the central third of 
the beam depth. The shear distortion angle of the last loading run of unit PC4 was 
approximately twice that of unit PC3, although they were much smaller than that of 
unit RC2. However, as indicated in Series B the difference between PC3 and PC4 was 
so small and the overall performances were approximately the same that the prestressing 
force in the steel near the extreme fibers of the section can be taken into consideration 
when designing the beam-column joint. The provision of NZS 3101:1982 that only the 

prestressing steel located within the central third of the beam depth can be accounted 
for joint shear strength should be reconsidered. 
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4.3.11 Tensile force in prestressing steel bars in Series A and B 

Figure 4.28 shows the envelope curves of the tensile forces in the prestressing steel 

bars at the peak of each loading run measured by load-cells at both ends of the tendons. 

Because of the bond between concrete and bars, they did not represent the maximum 

tensile forces developed in the prestressing steels or the tensile forces which occurred 
at the beam critical section. However, they can be assumed to give a good estimation 

of the maximum tensile forces, because the bond deterioration between concrete and 

prestressing steel bars is likely to occur even during the early stage of inelastic load 
excursion, as observed in the past research  [4.16]  . 

In Units PC2 and PC4 with the prestressing steel bars near the extreme fibers of the 
section, the bars in the tension side of the beam section almost yielded while the tensile 

force in the bars in the compression side lost most of their introduced prestressing 

forces in the loading cycles of higher ductility values as shown in Fig.4.28. In Units 
PC1 and PC3 with the bars at the central third of the beam section, the tensile forces 

did not fluctuate so widely as Units PC2 and PC4. The stresses in the bars in the tension 

side of the beam section appeared to almost reach their yield strengths at the critical 

section of the beam. The total prestressing forces on the beam section of Units PC 1 and 
PC3 were slightly larger than those of Units PC2 and PC4. The reason is that the yield 

strengths in the bars located in the tension side of the beam section were nearly 
developed in all units, that is, they had reached the uppermost limit, while the 

introduced prestressing forces of the bars in the compression side were almost lost in 

Units PC2 and PC4. 
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4.3.12 Contribution of beam prestress to joint shear resistance 

According to NZS 3101:1982, the contribution of the prestress to the shear resistance 
of the joint is specified to be 0.7Pcs. In units PC1 and PC3,193.8kN and 212.3 kN can 
be reduced from the total horizontal shear force induced in the joint. The required total 
area of horizontal joint shear reinforcement are listed in Table 4.9. These are between 
42% and 485% of the horizontal joint shear reinforcement provided in the test units. 
It was only unit RC2 that failed in shear in the joint while the other units were loaded 
well into the inelastic region with little reduction in the load carrying capacity. They 
displayed "fat" load-deflection hysteresis loops. PC4 with only 42% of the required 
NZS 3101:1982 joint reinforcement showed good performance. Table 4.11 lists the 
tensile forces, Vsh meal, in the joint reinforcement measured at the peak of each loading 
run with the ductility factor of 4, which corresponded to the beam rotation angle of 
approximately 1/25. Even in unit PC4, only 70% of the yield force in the joint 
reinforcement developed. 

Vcp is the horizontal joint shear strength provided by prestressing force . This is 
estimated by the following equation. 

Vcp = V jh — Vsh.meas — Vch [Eq.9-11 ](4.21) 
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   Table 4.11 Horizontal joint shear strength provided by  prestressing steel 

                 Unit V sh.meas V cp V cp/Pe 

                     (kN) (kN) 
PC1 85.4 152.5 0.55 

               PC2 106.9 124.3 0.44 
                PC3 113.4 406.8 1.34 
               PC4 150.8 356.4 1.21  

   Note: 
Vsh.meas : Total tensile force measured in horizontal shear reinforcement 

       Vcp : Horizontal joint shear strength provided by prestressing steel bar 
       Pe : Total effective prestressing force 

The last term applies only to the units of Series A. The ratio of Vcp to total effective 

prestressing force, Pe, ranges between 0.44 and 1.34 as listed in Table 4.11. For the 
units whose non-prestressed beam bars were welded to the anchorage plates on the 

outer side of the column, Vcp was smaller than specified in NZS 3101. For the units 

whose non-prestressed beam bars were bent downwards into the joint core or the 

column core, which is common practice in Japan, Vcp was much larger than that. 

Without the contribution of Vch [Eq.9-11 in NZS], Vcp for the units of Series A increased 

by at least 224%, and V,p / Pe also increased to 1.78 for PC1 and 1.61 for PC2. It is 

conservative that the contribution of Vch [Eq.9-11 in NZS] be assumed to be zero. Both 

kinds of joints seem to have a much larger value of Vcp than that predicted by NZS 3101. 

Past research on reinforced concrete beam - column joints have shown that it is difficult 
to measure the tensile force in joint reinforcement which is used only for the shear 
resistance, because the pressure of the joint core concrete against the sides of the 
reinforcement tends to bend the sides outwards. Therefore, these values in the table are 
not supposed to indicate the exact contribution of the prestressing force. However, the 

provision in NZS 3101:1982 seems to be overly conservative. 

4.3.13 Influence of location of prestressing steel on joint shear resist-
     ance 

The test results indicated that there was little influence of the location of prestressing 
steel on the joint shear resistance. This result was different from that of Park and 
Thompson [4.6] who concluded that the location of the prestressing steel had a large 
influence on the joint shear strength. The ratio of the effective stress to the yield 
strength in the prestressing steel was found to be of great importance in assessing the 

joint shear strength. In the units of Park and Thompson [4.6] it varied between 74% 
and 83% while in the units tested by the author it was approximately 60%. The larger 
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margin between the effective and yield stress leads to the later occurrence of yielding 
of prestressing steel. According to the current design code for prestressed concrete 
structures in Japan [4.17], allowable stress to be introduced into prestressing steel is 

specified to be  0.8  f  p), or 0.7 whichever is smaller. f fy and fu denote the yield 

strength and tensile strength of prestressing steel, respectively. Considering loss of 

prestress due to creep and shrinkage of concrete, relaxation of steel stress and so on, 
stress in the prestressing steel results in approximately 0.6 fpy. Therefore, in the design 

of prestressed concrete members prestressing steel outside the central third of the 
section should be accounted for in the assessment of the shear strength of the joint core. 

4.3.14 Comparison of the experimental results with theoretical predic-
     tions 

In the following sections, a comparison of the experimental results for the test units and 
theoretical predictions is made. This includes the moment-curvature hysteresis loops, 
the load-displacement hysteresis loops, the maximum plastic rotation and curvature, 
and the available curvature ductility factor. The cyclic moment curvature theory 
described in Chapter 3 was used to make the comparisons. 

Figs. 4.29(a) to (f) show the moment-curvature characteristics compared. The experi-
mental curvature is the average of that measured over 365 mm gauge length, which 
consisted of the beam potential plastic hinge region of 300 mm from the column face 
and part of the joint region of 65 mm from the column face. The moment is that at the 
column face. In all cases the cover concrete was assumed to have spalled at strains 

greater than 0.007. Buckling of the non-prestressed reinforcement was not considered. 

For all units except for RC2, the experimental curves can be well followed by the 

predicted theoretical curves with respect to the moment capacities and the general 
shape of the loops. For Unit RC2, which failed in joint core shear, those curves showed 

quite different characteristics. The experimental curve showed large pinching and 
reduction in load capacity which was caused by the deterioration of bond. 

The significant difference between the experimental and theoretical curves is that the 
hysteresis loops obtained from the experiments in large inelastic deformation are 
narrower than those theoretically predicted. This may be because of the stress-strain 
relationship assumed for the reinforcing steel in the analyses. Not including buckling 
of longitudinal reinforcement into the analyses may also play an important role . 
Generally, loop shape of moment-curvature curves is likely to be similar to the stress-
strain curve of longitudinal reinforcement. This part of hysteresis loops are largely 
affected by the shape of the stress-strain relationship of the longitudinal reinforcement . 
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4.4 Test on Prestressed Concrete Beam-Exterior Column Joint 
    Assemblies with Various Amount of Prestressing Force 

4.4.1 General 

Based on the test results described in 4.3 the following three items require further 
discussion. 

1. It has been pointed out in past research [4.14] that reinforced concrete members 
   are superior to prestressed concrete with respect to energy dissipation and 

   deformability. However, this conclusion was obtained from the tests on pre-
   stressed concrete beams [4.14]. In case of a  beam-column subassemblage, its 

   behaviour is considered to be largely dominated by the performance of the 

   jointing part. Thus, hysteresis loops of a prestressed concrete beam-column 
   subassemblage might be better than those of a reinforced concrete because 

   prestress introduced into the beam can improve the shear behaviour of the beam-
   column joint core. 

2. Larger prestress has more beneficial effect on the shear behaviour of a beam-
   column joint core. However, it also results in crushing and spalling of the 

unconfined cover concrete and buckling of non-prestressed compression rein-
   forcement of the beam in the earlier stage of the loading. Besides, larger prestress 

   results in larger compressive strain of concrete and it may lead to the deterioration 
   of the concrete due to reversed cyclic loading. 

3. In the tests reported in Chapter 4.3 the same amount of prestressing force was 
   assigned to all test units. The effect of the intensity of prestressing force on shear 

   behaviour of a joint core has not yet been clarified. 

The objective of these tests is to investigate the load - deformation characteristics and 
shear behaviour of prestressed concrete beam - exterior column joint assemblies with 
various amount of prestress. 

4.4.2 Test Program 

description of Test Units  

Three prestressed concrete beam - external column joint assemblages and one 
reinforced concrete beam - column joint assemblage were constructed. Those beams 

had prestressing forces of 0.06, 0.12, 0.18 and 0.0 f' ~Ag, respectively.fc~and Ag 
denote concrete compressive strength and gross sectional area of beam, respectively. 
The term `prestress level' is defined as the ratio of prestressing force introduced into 

the beam to f, c Ag . The upper limit of a prestress level assigned to the test unit was 0.18 
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because of the following reasons; According to Standard for Structural Design and 
Construction of Prestressed Concrete Structures published by Architectural Institute 

 of  Japan (AIJ) [4.17], the permissible concrete compressive stress to be introduced into 

a member under service loads is specified to be 1 / 3 • f . Assuming that a member is 
subjected to concentrical compressive load by prestressing force which results in the 

permissible stress, this prestressing force corresponds to a prestress level of approxi-
mately 0.3. In a practical member, prestress is introduced to counteract or reduce the 
moment caused by vertical loads. Thus, the member is so designed to have a 

compressive stress less than 1 / 3 • f' at the extreme compression fiber and tensile 
stress less than the permissible tensile stress specified in the Standard at the extreme 
tension fiber. In case of partially prestressed concrete, tensile stress greater than the 

permissible tensile stress is sometimes allowed to control crack width. The average 

compressive stress, if divided by f', it is equivalent to a prestress level, comes to 

around 1 / 6 • f',. . Moreover, based on the test results described in Chapter 4.3 and the 

preliminary calculations of the moment capacities of the beams, a test unit with a 
prestress level of 0.2 was predicted to fail in beam flexure rather than in joint shear. 

Fig.4.30 shows the overall dimensions of the four units tested. The dimensions are 
identical to the test units described in Chapter 4.3. The test units had a total column 
height of 1.9m and a total beam length of 1.85m measured from the column face. The 
column cross section was a 300mm square. The beam had a 200x300mm rectangular 
cross section. The specifications of each test unit are summarized in Table 4.12. 

The mix design for the concrete used for the test units was : 

  25 mm aggregate985 kg/m3 

 Sand............ 829 kg/m3 

  Portland Cement............ 325 kg/m3 

 Water172 litre/m3 

   Water/Cement ratio = 0.53 

The compressive cylinder strength had reached f', = 34.4 MPa for Unit RCB-1 and 

f',= 31.8 MPa for the other units at the stage of testing, that is, at the age of 30 days. 
The mechanical properties of concrete are summarized in Table 4.13 . All units were 
cast vertically, compacted using vibrators, and were damp cured in the laboratory . 

Prestress was introduced into the beams 14 days after concrete casting . The prestressing 
steel bars were post-tensioned and grouted. The W/C of the grout mortar was 40% . 

Prestressing steel is usually draped with the location of their resultant force not 
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               Table 4.12 Specifications of test units 

      CompressiveEffective 

 UNIT Strengthof Prestressing Prestressing Pe / Beam          C
oncrete Steel bar force  Abf'c Section 

fc(MPa)Pe(kN) 

•-^-• 3 - D19 
RCB - 1 34.4 -- 0 

3-D19 

017' 3 -D16 
PCB - 1 31.8123.6 0.06 

        SBPR95/120• _ • 3 - D16 

023• - • 3-D13 
PCB - 2 31.8234.7 0.12 

           SBPR95/120. 3 - D13 

026• • 2-D13 
PCB - 3 ' 31.8360.3 0.18 

SBPR110/125. . 2 - D13 

Note: 
   Ab:Gross sectional area of beam 

   0.2% offset yield stress of prestressing steel bar: 
017 --- 1167 MPa, 023 --- 1157 MPa, X26 --- 1216 MPa 

             Table 4.13 Mechanical properties of concrete 

                CompressiveInitial Modulus 
          Unit strength Strain at fc of elasticity 

               fc (MPa) (%) (104MPa) 
       RCB-1 34.4 0.14 3.83 

          PCB-1 
       PCB-2 31.8 0.12 3.83 

 PCB-3  
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coincident with the centroid of a member section. However, the prestressing steel bar 
of the test units was placed at the center of the section because the main objective of 
the experiments was to investigate the fundamental seismic performance of pre-
stressed concrete beam - column joint assemblies. 

Table 4.14 lists the ideal flexural strength of the beam of each test unit calculated using 
the  ACI318-89 [4.11] equivalent rectangular stress block based on the measured 
material strengths with the capacity reduction factor 0 of unity. The beams of all four 
test units were designed to have approximately the same flexural strength. 

The longitudinal steel content was such that for each unit the flexural strength of the 
column section was greater than that of the beam section. Plastic hinging was expected 
to occur in the beams at the column faces. 

   Table 4.14 Ideal flexural strength of the beams, theoretical internal forces 
          in beams at flexural strength and maximum shear forces 

   Unit n Cc Cs Ps Ts Mcal Vcol Vjh 

        (mm) (kN) (kN) (kN) (kN) (kNm) (kN) (kN) 
    RCB-1 4•8.0 222.9 88.8 0.0 311.7 73.2 48.8 2•62.9 
   PCB-1 7•1.8 319.4 163.4 264.9 217.9 80.5 53.7 4•29.2 

PCB-2  9•3.0 413.8 134.2 396.4 151.6 77.8 51.8 4•96.2 
   PCB-3 111.0 494.0 100.4 493.3 101.1 73.8 49.2 545.2  

   Note: 
n : Neutral axis depth 

       Cc : Resultant compressive force in concrete 
       Cs : Compression force in non-prestressed compression rebar 

       Ps : Tensile force in prestressing steel bar 
       Ts : Tensile force in non-prestressed tensile rebar 

       Mcal : Theoretical maximum moment calculated 
             using the equivalent stress block specified in ACI318-89 

       Vcol : Shear force in column 
       Vjh : Theoretical maximum applied horizontal shear force 
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The mechanical properties of steel reinforcement are summarized in Table 4.15. 

         Table 4.15 Mechanical properties of steel reinforcement 

 fy E y fu Es 

               (MPa) (%) (MPa) (105 MPa) 
          D19 ' 362 0.23 563 1.57 

           D16 ' 365 0.22 521 ' 1.67 
D13 ' 398 0.21 554 1.87 

0 9 ' 316 0.16 427 2.00  

          Note: 

             fY: yield strength,£Y: yield strain 

u : Tensile strength, Es : modulus of Elasticity 

Joint induced shear force  

Figure 4.31 shows the beam internal forces and the column shear force acting on the 
joint core when the ideal flexural strength of the beam develops. The maximum 

horizontal shear force Vjh occurs in the middle region of beam depth just below the 

neutral axis position of the beam section. Vjh is given by the following equation: 

Vih =T+P —VCol(4.23) 

                           Column 

                    T Vcol 

           Beam _Pr_1h — 
               ~~ w 

      C f-                        C
C 

                           Vjh = T+P-Vcol  

Fig.4.31 Beam internal forces and column shear acting on the joint 
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T, P and  Viol denote tensile force developed in non-prestressed reinforcement, tensile 
force in prestressing steel bar and column shear force. Table 4.14 shows the neutral axis 
depth, the beam internal forces, the ideal flexural strength calculated using the 

ACI318-89 [4.11] equivalent rectangular stress block as well as Vjh for each test unit. 

Theoretical shear strength of joint cores  

Table 4.16 summarizes the requirement for the maximum induced joint shear specified 
in NZS 3101:1982 [4.8], joint shear strengths according to ACI318-89 [4.11] and to 
"Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based 

on Ultimate Strength Concept" published by ALT ( hereafter referred to as ALT 
Guidelines) [4.12]. Prestressing steel bars are usually placed between the top and 
bottom non-prestressed longitudinal reinforcement in a beam section. This results in 
a smaller effective depth of prestressed sections than that of non-prestressed sections. 
Considering prestressed and reinforced concrete beam - column joints with identical 
dimensions whose beams are designed to have approximately the same flexural 
strength, the tensile force to be developed in the prestressing steel is larger than that 
in non-prestressed reinforcement, and the former have greater horizontal shear force 
in the joint core than the latter. 

    Table 4.16 Maximum input joint shear force and joint shear strengths 

                Unit VNZS VAQ VAIJ 

                  (kN) (kN) (kN) 
                 RCB-1 791.8 525.8 356.0 

PCB -1 7•61.3 505.5 329.1 
                PCB-2 7•61.3 505.5 329.1 
                PCB-3 7•61.3 505.5 329.1  

            Note: 

              VNZS : 1.50V/ f' C • Al (NZS 3101:1982) 

              VACI : 1.00. J f' • A. (ACI 318-89) 
VAIJ : 0.18 • f •A~ (AIJ Guideline ) 

                       where f : compressive strength 

                     of concrete (MPa) and Ai : specified 

                       cross-sectional area of the joint (mm2) 
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Details of steel  in beam-column joint  

The transverse reinforcement in the joint core of Unit RCB-1 was designed to satisfy 
the AIJ Guideline requirement[4.12]. The amount of transverse steel of the other test 
units was identical to that of RCB-1. The transverse steel in each joint core consisted 
of two rectangular column hoops which were placed around the longitudinal column 
bars between the top and bottom layers of longitudinal beam steel. The average spacing 
between the tie centers was 100 mm. The two ties were formed from 9 mm diameter 
round bar with a yield strength of 316 MPa. 

Transverse shear reinforcement required in the joint core, based on the provisions of 
ACI 318-89 [4.11], NZS 3101:1982 [4.8] andALI Guidelines [4.12], are listed in Table 
4.17. The amount of shear reinforcement provided in the joint core of all test units did 
not meet the amount required by ACI 318-89 [4.11] and NZS 3101:1982 [4.8]. Even 
after considering the effect of prestressing force on the joint core shear, NZS 
3101:1982 [4.8] still requires much more reinforcement than the other codes. The NZS 
3101:1982 [4.8] requirements for joint core reinforcement are generally considered to 
be excessive. AIJ Guidelines [4.12] require more steel in Unit PCB-2 and PCB-3 than 

provided. 

The method for evaluating the anchorage strength of a reinforcing bar related to the 
bearing strength on concrete inside the 90-deg hook proposed by Fujii et al. [4.13] 
from both monotonic and cyclic loading tests on beam-column joint assembladges 
indicated that the anchorage strength of the beam longitudinal reinforcement of the test 
units was at least twice its yield tensile force. The 90-deg hook was followed by the 

tail longer than 12db. db denotes the diameter of longitudinal reinforcement. 

        Table 4.17 Required total area of joint shear reinforcement 

             Unit Ash.prov Ash.NZS Ash.ACI Ash.AIJ 

                 (mm2) (mm2) (mm2) (mm2) 
RCB-1 256 832 602 132 

         PCB-1 256 1084 556 234 
         PCB-2 256 1050 556 270 
        PCB-3 256 927 556 300  

Note: 
 Ash.prov : Total area of horizontal joint shear reinforcement provided in the joint 

 Ash.NZS : Total area of horizontal joint shear reinforcement required by 
NZS3101:1982 
 Ash.ACI : Total area of horizontal joint shear reinforcement required by ACI318-

       89 
 Ash.AIJ : Total area of horizontal joint shear reinforcement required by AIJ 

         Guideline 
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 Loading 

The unit was rotated by 90 degrees and set in the loading rig as shown in Fig.4.32. A 

horizontal load was applied at the end of the beam representing shear induced by 

seismic loading. The ends of the column were held on the same horizontal line between 

the pin and roller supports during the test and the applied beam load induced reactive 

shears at the ends of the column. By reversing the direction of the horizontal beam load, 

the effect of earthquake loading was simulated. 

The first loading cycle was up to the first yield displacement, and this was followed 

by a series of deflection controlled cycles in the inelastic range comprising two full 

cycles to each of the displacement ductility factors of ±2, ±3, and higher. The "first 

yield" displacement measured at the end of the beam was found when the strain reading 
of the outermost non-prestressed longitudinal reinforcement exceeded its yield strain 
and the sudden change of stiffness in the applied horizontal load - beam end deflection 

curve was observed. 

                                     Hydrauric jack ----- Load cell 
..7/ ------------I) —------ 

--------} 

------- Specimen 

  Displacem:. t170 
     transduced 

            

, fig  co 

01/ 

44270 
cn 
    o/ 

          Pin support Roller support 

           1500(unit :mm) 

            Fig.4.32 Loading setup and measuring devices 
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Beam end deflection was measured by a linear displacement transducer which was 
attached to the pole fixed to the mid-height of the column as shown in Fig.4.32. The 
deflection was consisted of the deformation of the beam, joint and column of half-
height. It did not include the column deformation between the pin support and the place 
to which the measuring pole was fixed. No visible crack could be found in this part of 
the column and the deformation of this part was considered to be small enough to be 
disregarded. Curvature and shear deformation of the beam in the potential plastic hinge 
region and shear distortion of the joint core were measured and calculated from the 
readings of the linear displacement transducers attached to the units as shown in 
Fig.4.32 by the calculation method described in Chapter 4.3. 

Strain gauges were attached to the beam longitudinal reinforcement at the beginning 
of 90 degree hook, at the column face and at the center of these points. They were also 
attached to the joint transverse reinforcement on both sides of the column. 

4.4.3 General Behaviour of Test Units 

Figs.4.33(a)-(d) show the horizontal deflection at the end of the beam plotted against 
the corresponding load of the beam for each unit. In unit  RCB-1, after the maximum 
moment had been reached at the ductility factor of 2 (beam rotation angle of 
approximately 3%) in each direction, a reduction in stiffness and strength with pinched 
hysteresis was observed. This is mainly because of the bond deterioration of beam 
longitudinal reinforcement in the joint, which followed the yield penetration of 
longitudinal bars. Unit PCB-1 with a prestress level of 0.06 was able to be loaded to 
beyond a beam rotation angle of 1/15 with little reduction in stiffness and strength. The 
load - deflection hysteresis loops indicated that larger energy dissipation could be 
expected in PCB-1 than in Unit RCB-1. The performance of the test unit PCB-2 with 

a prestressing force of 0.121', Ag was much better than that of the reinforced concrete 

joint assemblage but a little worse than that of the assemblage with a prestressing force 

of 0.06 f', Ag. Crushing and spalling of the cover concrete followed by a small 
reduction in strength was observed. Buckling of the beam longitudinal bars followed 
by little reduction in moment capacity was observed at a beam rotation angle of 
approximately 6%. In PCB-3 with the largest prestress level of 0.18, the cover concrete 
of the beam spalled off, which led to a small reduction in strength. Buckling of the 
beam longitudinal reinforcement resulted in a slight reduction of strength, which was 
larger than that in PCB-2. Buckling of reinforcement did not result in such a large 
reduction in strength because moment capacity carried by non-prestressed reinforce-
ment was rather small. 

It should be noted in Unit PCB-3 that the reduction in strength between the first and 
second loading cycles to the same displacement became significant as the reversed 
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cyclic loading progressed. This is because the concrete in compressive region of the 
section of the test units with a large prestress was subjected to larger compressive stress 
than that of the reinforced concrete test unit or the prestressed concrete unit with a 
small or moderate prestressing force at the same deflections. The points on the load  - 
deflection curves where concrete compressive strains at extreme compression fiber 
first reached 0.3 and 0.5% are indicated in Fig.4.33. The strains included the initial 
strain due to introduction of prestress. As the prestress introduced into the beam section 
increased, the deflection where these strains were first reached decreased. 

Figs.4.34(a)-(d) show the test units after testing. In Unit RCB-1, the joint shear cracks 
run from corner to corner of the joint core. It was observed in the prestressed concrete 
units that the cracks in the joint core extended from the anchorage region of 

prestressing steel to the compression regions of the beam critical section. This 
indicates that the concrete compression strut originated in the anchor of prestressing 
steel. 

4.4.4 Details of Test Results 

Hysteretic Restoring Force Characteristics  

Equivalent viscous damning 

Fig.4.35 shows equivalent viscous damping of the first loading cycle to each specified 
displacement plotted against the ductility factors. Until the ductility factor of 2 (beam 
rotation angle of approximately 1/30), the equivalent viscous damping for RCB-1 was 
the largest but the difference was not significant. As the loading cycle progressed, the 
equivalent viscous damping in RCB-1 decreased to less than that at the ductility factor 
of 2 while in the other test units the equivalent viscous damping increased proportion-
ally with the ductility factor. This is easily predicted by the shape of load - deflection 
hysteresis loops shown in Fig.4.33. Past research has shown less energy dissipation of 

prestressed concrete members than reinforced concrete. However, in the case of beam 
- column joints the experimental results revealed that this is disputable . 

The ductility factor attained four (beam rotation angle of approximately 4%) when the 
difference of equivalent viscous damping between the reinforced concrete test unit and 
the prestressed concrete test units became significant. In practical moment resisting 
frames such a large deformation is not expected to be reached. However, closer and 
more careful observation disclosed that in RCB-1 reduction in moment capacity due 
to cyclic loading was more noticeable than in the prestressed concrete test units. In 
these tests, two full cycles to each displacement ductility factor were imposed. If more 
cycles had been imposed on the units, further reduction in capacity and stiffness might 
have been observed in Unit RCB-1. 
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Deformation in beam plastic hinge region and joint core  

Figures 4.36(a)-(d) show moment curvature relationship in beam potential plastic 
hinge region of each test unit. The experimental curvature is the average of that 
measured over 365 mm gauge length, which consisted of the beam potential plastic 
hinge region of 300 mm from the column face and part of the joint region of 65 mm 
from the column face. The moment is that at the column face. Therefore, the curvature 
measured is supposed to include additional deformation due to yield penetration of 
beam longitudinal bars in the joint core region. Comparison of the moment - deflection 
and moment - curvature curves for each unit gives a good indication of where the 
inelastic deformation was concentrated. In all cases the major inelastic contribution to 
beam end deflection came from the deformation at the plastic hinge region in the beam 
close to the column face. 

Figures 4.36(a)-(d) also show moment - curvature curves derived by the cyclic 
moment curvature theory described in Chapter 3 to make the comparisons. In all cases 
the cover concrete was assumed to have spalled off at strains greater than 0.007. 
Buckling of the non-prestressed reinforcement was not considered. It is noteworthy 
that the difference between the experimental and theoretically predicted curves are of 

great significance in RCB-1, while in the prestressed concrete units the experimental 
curves can be well followed by the predicted theoretical curves with respect to the 
moment capacities and the general shape of the hysteresis loops. It has been recognized 
that the shape of moment - curvature hysteresis loops in the cross section of reinforced 
concrete members are largely affected by the shape of stress - strain curves of 
longitudinal reinforcing steel. However, the experimental curve of RCB-1 showed 
large pinching and reduction in load carrying capacity which was caused by the 
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deterioration of bond, causing slip between concrete and beam longitudinal reinforce-
ment in the joint core. Even in the prestressed concrete test units the deterioration of 
bond to be followed by yield penetration of beam longitudinal reinforcement is 
unavoidable, but it was much less significant than that in  RCB-1. The basic assumption 
which was made when deriving the cyclic moment curvature theory for reinforced and 

prestressed concrete sections described in Chapter 3 appears to be more justified in the 
prestressed concrete test units than in the reinforced concrete test unit. The assumption 
is that plane sections before bending remain plane after bending, which implies that 
the longitudinal strain in the concrete and the steel at the various points across a section 
is proportional to the distance from the neutral axis. This assumption cannot be applied 
to the longitudinal reinforcing steel which slips relative to the surrounding concrete. 

The maximum shear distortion angles measured in the joint cores at the maximum 
deflection in the first loading cycle to each specified displacement are plotted in 
Fig.4.37 against prestress levels assigned to the test units. As the prestress level 
increased, the maximum shear distortion angles decreased drastically. The maximum 
shear distortion angle in the final loading run of RCB-1 was more than twice as large 
as that of PCB-1.1n Units PCB-2 and PCB-3 with twice and three times larger prestress 
levels than in Unit PCB-1, respectively the maximum shear distortion angles did not 

proportionally reduce to half and one-third of that Unit PCB-1. A prestressing force 

as small as 0.06 f 'c Ag resulted in much smaller shear distortion angles of the joint core 
than in the reinforced concrete joint. However, prestressing forces larger than 

0.12f Ag did not result in much smaller shear distortion angle or in stiffer joint cores 

than prestressed concrete units with a prestressing force of 0.06 f Ag. 
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    Fig.4.37 Maximum shear distortion angles measured in the joint cores 
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As described, the yield penetration of beam longitudinal reinforcement into the joint 
core as well as the bond deterioration followed by the formation of full depth cracks 
at the critical section of the beam were supposed to be the main reasons of the pinched 
hysteresis  loops of RCB-1. This is confirmed by Fig.4.38. The figure indicates 
longitudinal strains at the center of gravity in the beam section measured within the 

plastic hinge region when the load - deflection hysteresis loops crossed the horizontal 
axis. These strains correspond to the residual longitudinal strains in the first loading 

run to each positive ductility factor. The light prestressing force of 0.06 f',. Ag 
confined the beam elongation much more effectively than in the reinforced concrete 
test unit. The concrete strains measured at the extreme fibers of the beam section in 
each test unit plotted against the measured deflection of the beam are shown in 
Figs.4.39(a)-(d). In RCB-1 the strains at the extreme fibers of the section were in 
tension during almost all loading cycles. If the tensile strains in the concrete were 
assumed to be negligible, then this shows that full depth cracks had developed. 
Contrarily, in the prestressed concrete test units some compressive region in the beam 
section always existed during the loading cycles although full depth cracks were 
observed in the vicinity of the beam deflection of zero in Unit PCB-1 with the smallest 
amount of prestressing force.  
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Fig.4.38 Measured longitudinal strains at the center of gravity in the beam section 

142



          811------ Top extreme fiber ------Bottom extremefiber                     II 

 PCB-1Tension 

Cb\ k 

        (DE 4 - `.=,„ .:y' 

         

..S../     co ..:•&    * _ r
a 'el;- N , 

                                                                                       --, 

                                                 -N, 

         il c0 

                                                                                                        

.,:e---'----, 
   L.._ _,---- 

   (-0--.                 --------1--7--, 

-4 I ICompression 

    -1500150 

                      Displacement in mm 

                          Top extreme fiber 
                           - Bottom extreme fiber 

  8i----------------------------------------------------I I 
        PCB-2Tension 

J:'  

      E 

         2.,4-          r
<     cb**. , 

         tlict—                                                                                Nsk., 
                  -C) 

              ,trz 
         ctl0 

 L-- 
   (r)-.---.., 

                                                                                                                            ----
,,, ‘ 

-4 I I Compression 
    -1500150 

                      Displacement in mm 

Fig.4.39(a) Concrete strains measured at the extreme fibers of the beam section 

                                            143



-----Top extreme fiber 
------ Bottom extremefiber 

      8 ,  1- 

        PCB-3Tension 

           cu 

      E 4 -
   co„ 

                                                  7-

                                                              - 

             ..tz * 

     Iii ct--:, 
            c ,-Q            .

cti- 4= 0 

      6     (-----,-=--                                                                                                                             --,1.-,,.....                                                                                                                                 --.---------„,                                                                                                               ---..,.. 

-4 1 1 Compression 1 --  
    -1500150 

                      Displacement in mm 

                           Top extreme fiber 

                           Bottom extreme fiber   
8 ---------------------------------------------------------1 II 

RCB-1Tension 
                                                                -

,-- _ 

E 4 - 

- 

                      ,....* 
       1";----..•:, s. 

       4i's it ...# • ,,,/ _,, 
            c :"C) 

                                                                        ,........- 

er)--_ -- 

           4                                   Compression   - i1--------- 

    -1500150 
                      Displacement in mm 

Fig.4.39(b) Concrete strains measured at the extreme fibers of the beam section 

144



As described above, it is difficult to predict correctly the behaviour of a reinforced 
concrete beam - column joint assembly based on experimental and analytical results 
of beam specimens because the behaviour was largely affected by the joint core. It is 
impossible to completely impede beam longitudinal reinforcement from coming out 
of the joint core and to prevent full depth cracks from developing in a reinforced 
concrete beam - column joint assembly. Especially, it is unavoidable when the amount 
of beam top reinforcement is much greater than that of bottom reinforcement. 
Contrarily, the behaviour of the prestressed concrete beam - column joint assembly can 
be predicted without considering the shear deformation and/or the bond deterioration 
of beam longitudinal reinforcement, because the joint core keeps almost its elastic 
stiffness and the beam is not predominantly affected by the shear behaviour of the joint 
core due to prestressing force. 

What is described above greatly influences seismic response analysis of a frame. In 
order to predict seismic responses of reinforced concrete frames as precisely as 

possible, the  shear  behaviour of beam - column joints need to be idealized and involved 
in the analysis. Besides, it is necessary to consider beam longitudinal reinforcement 
coming out of the beam - column joint core in the idealization of the behaviour of beam 

plastic hinge regions. However, the assumption of rigid beam - column joint core can 
be justified in the prestressed concrete beam column joint assemblies. Moment - 
curvature hysteresis loops in beam plastic hinge regions can be idealized based on the 
analyses assuming that plane sections before bending remain plane after bending. 
Thus, the past research which has indicated larger responses of prestressed concrete 
frame structures than those of reinforced concrete should be reexamined. 

Shear Behaviour of Joint core 

The experiments reported in Chapter 4.3 have revealed that NZS 3101:1982 [4.8] 
underestimates the beneficial effect of prestressing force to joint shear resistance. 
However, a quantitative conclusion could not be reached because of measured tensile 
forces in the transverse reinforcement dispersing in a wide range and disputable 
estimation of joint shear force resisted by concrete. 

Figure 4.40 shows the maximum total tensile force in the transverse reinforcement 
measured in the first loading run to each positive ductility ratio plotted against 

prestress levels. It is clear that larger prestressing force resulted in smaller tensile force 
in the transverse reinforcement. 

The ratios of total tensile force in the prestressed concrete units to that in the reinforced 
concrete test unit measured at ductility factor of 3 are 0.603, 0.429 and 0.301 for PCB-
1, PCB-2 and PCB-3, respectively. These values are almost as large as the ratios of 
moment capacity carried by non-prestressed reinforcing steel to the total moment 
capacity resisted by non-prestressed and prestressed reinforcement. Paulay et al. 
[4.18] have proposed that shear force induced in the joint core is resisted by two 
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Fig.4.40 Tensile force measured in the transverse reinforcement in the joint cores 

representative mechanisms : a truss mechanism consisted of transverse reinforcement 
and forces in longitudinal reinforcement of beams and columns transferred by bond 
action, and a strut mechanism consisted of concrete strut. In case of the prestressed 
concrete test units, shear force induced by longitudinal beam reinforcement is assumed 
to be attributed to the truss mechanism while the shear force transferred by the 

prestressing steel bar into the joint core is assumed to be assigned to the strut 
mechanism. This is because of poor bond between the prestressing steel and the 
surrounding concrete. In addition, about the same extent of bond deterioration of the 
beam longitudinal reinforcement was assumed in all test units. The total tensile force 
measured in the transverse reinforcement of RCB-1 was approximately 60 kN. 
Therefore, predicted tensile forces in PCB-1, PCB-2 and PCB-3 are 36.2 kN, 25.7 kN 
and 18.1 kN, respectively. They are indicated by arrows in Fig.4.40. The predicted 
values agree well with the measured values although in PCB-1 the measured values 
are scattered depending on the ductilities. 

The design methods for beam - column joints prescribed in NZS 3101:1982 [4.8] are 
fundamentally based on the assumption that the induced shear force in the joint core 
is assigned to both concrete and transverse reinforcement in the joint core. On the 
contrary, the design assumptions of ACI 318-89 [4.11] and All Guidelines [4.12] are 
based on the experimental results that indicated that the joint shear strength was not 
sensitive to joint shear reinforcement. The shear strength of the beam - column joint 
is assumed to be defined by compression failure of concrete diagonal strut . Applying 
the design equation specified in AIJ Guidelines [4.12] to the beam - column joints of 
the test units, the shear strength of each unit is indicated by the solid line in Fig.4.41. 
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As described in the previous chapter, when prestressed and reinforced concrete beams 
have the same moment capacity at the column face in beam - column joint assemblies, 
the horizontal shear force induced in the joint of a prestressed concrete assembly is 

greater than that of a reinforced concrete assembly. Thus, shear forces induced in the 
prestressed concrete test units are larger than those obtained by the ALT methods. 
Nevertheless, as shown in the experimental results the larger prestressing force 
resulted in smaller shear distortion in the joint core and in fewer visible cracks. 

To consider these beneficial effect of prestressing force, the joint shear strength  V1u is 
assumed to be given by the following equation based on the similar assumption to NZS 
3101:1982 [4.8] that part of the shear force is attributed to the effective prestressing 
force. 

V. = 0.18 f '~b1D j +a-Pe(4.20) 

where, f'~ = compressive strength of concrete ( indicated by (5B in ALT Guidelines 
[4.12] ) 

bj = effective depth of joint 

D. = column height or horizontal projected length of longitudinal reinforce-
          ment with a standard 90 degree hook. 

      a = coefficient of efficiency of prestressing force on shear strength of beam 
           - column joint . 

      Pe = effective prestressing force 

                   V =0.18 *f*b, *D + aP 
        'VC 

          900 
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 Fig.4.41 Joint shear strength according to AIJ Guidelines and proposed equation 
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Judging from the experimental results reported here,  a= 1.0 could be adopted, which 

leads to increment of shear strength by Pe. However, there is no available data obtained 
from the experiments in which prestressed concrete beam - column joint assembly test 
units failed in joint shear. Thus, we have to wait for a future research to define the upper 
limit of shear strength. 

4.5 Re-examination of the Test Results in Thompson and Park's 
    Research Work [4.6] 

On the basis of their test results NZS 3101:1982 [4.8] specifies the contribution of the 
beam prestress to the joint shear strength. The test units [4.6] were designed according 
to the shear design method of a member in ACI318-71 [4.3], because ACI318-71 [4.3] 
did not have any provision for the design of beam-column joints. It is of great interest 
to re-examine the test results with respect to the current seismic design code provisions 
and knowledge which has been obtained since it was published. 

Table 4.18 shows the neutral axis depth, the beam internal forces, ideal flexural 

strength calculated using the ACI methods. The total horizontal shear forces V;h across 
the joints are listed in Table 4.19. According to ACI318-89 [4.11], the nominal shear 

strength of the joint with beams on two opposite faces shall be less than 1. 25J f', Ai 

( lc. in MPa and A1 in mm2 ). It is given in Table 4.19 for each unit, assuming the 
strength reduction factor of 1.0. They are 93 to 125% of the shear strength obtained by 
the ACI Code [4.11]. The maximum value of 125% corresponds to Unit 9. However, 

the test units with Vjh / VU.AC! less than unity did not always fail in beam flexure. These 

values with one exception met the requirement of 1. 5-j f', A1 given in NZS 3101:1982 

[4.8]. The joint shear force Vjh of Unit 9 was larger than the limitation prescribed in 
NZS 3101 [4.8]. 

The transverse reinforcement provided in the joint core met the requirement of ACI 
318-89 [4.11] as listed in Table 4.19. The ratio of the total cross-sectional area of 
transverse reinforcement provided in the joint core to that required by ACI 318-89 
[4.11] ranges between 1.22 and 1.57. 

In accordance with NZS 3101:1982 [4.8], the ideal horizontal joint shear strength 

provided by concrete shear resisting mechanism, Val, only is given by the following 
equation, when the minimum average compression stress on the gross concrete area 

of the column above the joint exceeds 0.1f /C J . 

       __2 CiPef1 

                _ 

 Vch
31 As(4.22)10b'h~ 
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     Table 4.18 Theoretical internal forces in beams at flexural strength 
                    and maximum shear forces 

  Unit c  T1 T2 T3 T4 C5 Cc Mb 

         (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kNm) 
      1 163.3 335.1 307.9 186.5 40.1 40.1 829.5 168.9 
    2 81.5 - 350.7 368.9 253.2 466.4 195.5 

    3 70.6 - -526.0 129.1 396.9 188.9 
      4 161.5 344.9 324.4 200.7 46.7 45.4 871.8 179.4 

     5 164.3 575.4334.2 46.3 46.3 909.1 195.9 
     6 94.2 - 355.6 374.7 201.6 528.7 193.0 
      7 101.6 230.1 216.7 123.7 160.6 162.9 568.3 180.9 
      8 160.5 338.6 310.6 188.7 47.6 47.2 838.4 177.5 
     9 175.3 555.4318.6 49.0 47.2 875.8 184.1 
    10 92.2335.5360.5 150.0 546.9 187.2  

    Note: 
      c: Neutral axis depth 

T1, T2 and T3 : Tensile forces in prestressing tendons 1, 2 and 3 
       T4: Tensile force in nonprestressed steel 

       C5: Compressive force in nonprestressed steel 
        Cc: Compressive force in concrete 

       Mb: Theoretical flexural strength of beam 

   Table 4.19 Nominal shear strength in ACI 318-89 and joint shear strength 

                 proposed by Thompson and Park 

   Unit Vjh (kN) Vu.ACI (kN)V jh / Vu.ACI Aprov( h) AACI (mm2) Aprov•/AACI 
   1 ' 943.4 874.2 1.079 ' 397.1 263.7 1.506 

  2* 952.3 954.2 0.998397.1 314.1 1.264 
  3* 921.2 944.1 0.976397.1 307.5 1.291 
   4 983.5 913.1 1.077397.1 287.7 1.380 
  5* 1108.1 930.0 1.192397.1 298.4 1.331 
  6* 970.1 940.3 1.032397.1 305.0 1.302 
  7 872.2 937.7 0.930397.1 303.4 1.309 
  8* 961.2 890.5 1.079397.1 273.6 1.451 
  9* 1081.4 864.6 1.251573.0 364.5 1.572 
  10 930.1 981.4 0.948573.0 469.6 1.220 

Note: 
* Eventually failed in joint core shear in the tests during inelastic loading cycles 

Vjh : Theoretical maximum horizontal shear force applied to joint core 

Vu.ACI : Joint shear strength specified in ACI318-89 = 1.25. j f , • Ai 
    Aprov : Total area of joint shear reinforcement provided 

AACI : Total area of joint reinforcement required by ACI318-89 
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where, C.= V1h 
 VAX  +  VjZ 

VAX = total horizontal joint shear force in x direction 

VIZ = total horizontal joint shear force in z direction 

pe = design axial load in compression with given eccentricity due to gravity 
          and seismic loading acting on the member during an earthquake 

Ag = gross area of section 

b.; = effective width of joint 
he = overall depth of column in the direction of the horizontal shear to be 

          considered 

Vch of each unit was calculated and listed in Table 4.20 with the ideal horizontal joint 

shear strength provided by horizontal joint shear reinforcement, Vsh • 

The shear strength of joint cores are expressed as Vch+ Vshwithout accounting for 

prestressing force. Compared with Vsh, the values, Vch + Vsh are larger than Vsh. In Unit 
9, the shear reinforcement in the joint core itself was theoretically capable of carrying 
121% of the maximum shear force induced in the joint without the assistance of a 
concrete shear resisting mechanism. Without the assistance of prestressing force, all 
test units are considered to have little possibility of joint shear failure. However, Units 
2, 3, 5, 6, 8 and 9 were reported to have failed in joint shear. 

The beneficial effect of axial load on columns and shear reinforcement in the joint core 
would be overestimated in NZS 3101:1982 [4.8]. The provisions in ACI 318-89 [4.11], 
according to which several test units are considered to have high possibility of joint 
shear failure because of high shear forces introduced into the joint cores, may give a 
better suggestion of design of beam-column joint. As described before, the design 
assumptions of ACI 318-89 [4.11] are based on the experimental results that indicated 
that the joint shear strength was not sensitive to joint shear reinforcement. Referring 
to the experimental results, it can be concluded that the design assumptions of ACI 
318-89 [4.11] can be justified. 
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  Table 4.20 Ideal horizontal joint shear strength specified in NZS 3101:1982 

 Unit Vjh (kN) Vch (kN) Vsh (kN) Vch + Vsh (kN) Vjh / (Vch + Vsh ) 
     1 ' 943.4 ' 181.8 943.4 1125.2 0.838 

    2* 952.3 170.0 943.4 1113.4 0.855 

    3* 921.2 171.6 943.4 1115.0 0.826 
    4 983.5 176.3 943.4 1119.7 0.878 
    5* 1108.1 173.8 943.4 1117.2 0.992 
    6* 970.1 172.2 943.4 1115.6 0.870 
    7 872.2 172.6 943.4 1116.0 0.782 
    8* 961.2 179.6 943.4 1123.0 0.856 
    9* 1081.4 183.1 1312.8 1495.9 0.723 
    10 930.1 165.5 1312.8 1478.3 0.629  

Note: 
   * Eventually failed in joint core shear in the tests during inelastic loading cycles 

   Vjh : Theoretical maximum horizontal shear force applied to joint core 

Vol : Ideal horizontal joint shear strength provided by concrete shear resisting 
        mechanism 

Vsh : Ideal horizontal joint shear strength provided by horizontal joint shear 
        reinforcement 
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4.6 Conclusions 

On the basis of the test results described in Chapter 4.3 the following conclusions are 
derived. 

1. It has been pointed out by past research that reinforced concrete members are 
    superior to prestressed concrete with respect to energy dissipation and 

    deformability. However, this conclusion was obtained from the tests on pre-
    stressed concrete beams. In case of a beam-column subassemblage, its behav-

    iour may be largely dominated by the performance of the jointing part. Thus, 
    hysteresis loops of a prestressed concrete beam-column subassemblage might 
    be better than those of a reinforced concrete because prestress introduced into 

    the beam can improve the shear behaviour of the beam-column joint core. 

2. Larger prestress has more beneficial effect on the shear behaviour of a beam-
    column joint core. However, it also results in crushing and spalling of the 

    unconfined cover concrete and buckling of non-prestressed compression rein-
    forcement of the beam in the earlier stage of the loading. Besides, larger prestress 

    results in larger compressive strain of concrete and it may lead to the deteriora-
    tion of the concrete due to reversed cyclic loading. 

The following conclusions can be derived from the test results reported above on the 

prestressed and reinforced concrete beam - column joint assemblies which had the 
same dimensions, moment capacities of the beams and anchorage detailing of beam 
longitudinal reinforcement. 

1. The hysteresis  loops obtained from the test results of the reinforced concrete test 
    unit indicates reduction in capacity and pinching due to bond deterioration of 

    beam longitudinal reinforcement followed by pulling out of reinforcement. 
    Conversely, the prestressed concrete test units showed much better hysteresis 

    loops even in the large ductilities. However, larger prestressing force resulted in 
    spalling and crushing of cover concrete and buckling of beam longitudinal 

    reinforcement. 

2. Until the ductility factor of 2 (beam rotation angle of approximately 1/30) , the 
    equivalent viscous damping for all test units were almost the same. Past research 

    has pointed out that there is less energy dissipation of prestressed concrete than 
    reinforced concrete members. However, including beam - column joints the 

    experimental results revealed this is disputable when prestressing force is not 
    excessive. As the loading cycles progressed, the equivalent viscous damping in 

    RCB-1 decreased to less than that of the ductility factor of 2 while in the 
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    prestressed concrete test units the equivalent viscous damping increased propor-
    tionally with the ductility factor. 

3. Small amount of prestressing force caused a much smaller shear distortion angle 
    and a much stiffer joint core than in the reinforced concrete joint. However, a 

    prestressing force larger than  0.12f Ag resulted in a small shear distortion 
    angle and stiff joint core as the prestressed concrete unit with a prestressing force 

    of 0.06f Ag . 

4. In order to predict the seismic response of reinforced concrete frames as closely 
    as possible, the shear behaviour of beam - column joints needs to be idealized 

    and incorporated in the analysis. Besides, it is necessary to consider beam 
    longitudinal reinforcement coming out of the beam - column joint core in the 

    idealization of the behaviour of beam plastic hinge regions. However, the 
    assumption of rigid beam - column joint core can be justified in the prestressed 

    concrete beam - column joint assemblies. Moment - curvature hysteresis loops 
    in beam plastic hinge regions can be idealized based on the analyses assuming 

    that plane sections before bending remain plane after bending. Thus, from the 
    view point above, the past research which indicated larger responses of pre-

    stressed concrete frame structures than those of reinforced concrete should be 
     re-examined. 

5. The ratio of the total tensile force in the prestressed concrete units to that in the 
    reinforced concrete test units measured at a ductility factor of 3 was almost as 
    large as the ratio of moment capacity carried by non-prestressed reinforcing 

    steel to the total moment capacity resisted by non-prestressed and prestressed 
     reinforcement. 

6. To consider the beneficial effect of prestressing force on beam column joint 

    cores, their shear strength v should be increased as the prestress level increases 
    based on the assumption of NZS 3101:1982 [4.8] that part of shear force is 

    attributed to the effective prestressing force. 

Anchorages placed in beam - column joint core are common practice in Japan while 
the prestressing steel in the test units were anchored to the anchorage plate on the outer 
side of the column. NZS 3101:1982 [4.8] prohibited anchorages kept in beam - column 

joint cores. More research on this matter should be carried out. 
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Chapter 5 

MOMENT-CURVATURE IDEALIZATION OF 

 PRESTRESSED, PARTIALLY PRESTRESSED 

AND REINFORCED CONCRETE SECTIONS 

5.1 Introduction 

It is commonly thought that prestressed concrete members have been considered to 

have narrower hysteresis loops which results in less energy dissipation than reinforced 

concrete loops. On the basis of the experimental results, some researchers have 
attempted to idealize moment-curvature or load-deflection hysteresis loops of pre-

stressed concrete members. Dynamic response analyses which involved those 
idealizations have been carried out in the past and indicated a larger seismic displace-

ment response in prestressed concrete systems than in reinforced concrete systems. 

In this chapter, after reviewing previous research on the idealization of hysteresis loops 

of prestressed and partially prestressed concrete members, a new idealization of 

prestressed and partially prestressed concrete members is proposed by the author. This 
is based on the idealization proposed by Thompson and Park [5.1] and the experimen-

tal results reported in Chapter 4. Some examples of idealized moment-curvature 

characteristics for prestressed, partially prestressed and reinforced concrete sections 
under reversed cyclic loading are presented. 

5.2 Review of Previous Research 

R.A. Spencer [5.2] conducted cyclic loading tests on nine prestressed concrete 
members. On the basis of the test results of moment-rotation characteristics obtained 

he idealized moment-rotation hysteresis loops as shown in Fig.5.1. The loops were 

quite narrow with little energy dissipation. This is because the members tested 
contained prestressing steel only without non-prestressed mild steel. 

Okamoto [5.3] proposed a load-deflection or moment-rotation idealization of pre-
stressed, partially prestressed and reinforced concrete members on the basis of the 

extensive research work on prestressed and partially prestressed concrete beams and 

prestressed concrete frames. Hysteresis loops in the model, called the PS model, which 
is shown in Fig.5.2 were determined so as to give the same equivalent damping factor 

as the experimental hysteresis loops. 

Okada et al. [5.4] proposed a restoring force characteristics model which can be 
applied for prestressed, partially prestressed and reinforced concrete beams on the 
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basis of the test results of 66 prestressed concrete rectangular beams subjected to 
reversed cyclic loading. The test parameters included a shear span ratio, a tensile 
reinforcement index, a ratio of tensile reinforcement index for prestressing steel and 
for non-prestressed reinforcement, an amount and a spacing of confining reinforce-
ment and a location of prestressing steel. The idealization is illustrated in Fig.5.3. 

5.3 Moment-curvature idealization proposed by Thompson and Park 

Thompson and Park developed an idealization for the moment-curvature characteris-
tics of partially prestressed concrete members (ranging between fully prestressed and 
reinforced concrete members) under reversed cyclic loading by combining the 
responses of the prestressed concrete idealization presented by Blakeley [5.5] with 
some modifications and the Ramberg-Osgood idealization. They used a procedure 
similar to that suggested by Iwan [5.6]. 

5.3.1 Prestressed concrete idealization 

The prestressed concrete model consists of three stages as shown in Fig.5.4. Stage 1 
includes cycles in the post-cracking range but before crushing of the concrete 
commences. Stage 2 is reached when crushing has occurred in either direction of 
loading only, and Stage 3 is reached when crushing has occurred in both loading 
directions. Thompson as well as Blakeley noted that an abrupt change in stiffness 
followed by some capacity reduction resulted from crushing of the unconfined cover 
concrete because nonprestressed reinforcement was not provided with the prestressed 
concrete section considered. As shown in the test results in Chapter 4, large prestress 
resulted in crushing of unconfined cover concrete followed by load capacity reduction. 
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     Fig.5.4 Prestressed concrete idealization by Thompson and Park [5.1] 
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The basic parameters which describe the idealized prestressed concrete envelope 
curve are: the elastic stiffness  ke, the maximum moment capacity Mu, the ratio y1 of 

the post-cracking stiffness k1 to ke, the ratio y2 of the post-crushing stiffness k2 to ke, 

and the ratio yi f of Mu to the cracking moment M„. 

(a) Stage 1 

For initial loading in Stage 1, the moment-curvature curve is followed with the 

stiffness ke = Mer / Oer to the initial positive inelastic point lip with coordinates 

(Ocr ,Mer ). For loading beyond this point the curve is followed with stiffness k1. On 
unloading, the curve is followed from the unloading point to a point with coordinates 

(Ocr , (Mer —Mil)), )), where M1i is the initial loop width moment value. This point 
together with the initial negative inelastic point Iin, (—~cr , —Mer ), defines the stiffness 
for the remainder of the unloading and the commencement of negative loading. From 
lin, further loading or unloading follows the same sequence described for positive 
loading. 

(b) Stage 2 

Once the maximum moment + Mu or — Mu has been reached in one loading direction 

only, at the crushing curvature O. the curve continues with stiffness k2.On unloading 

the value of M11 is replaced with Mid, the degraded loop depth moment value. lip is 

replaced by Co, the current positive inelastic point, the coordinates of which are 

dependant on the maximum positive curvature, O,,,p. 

(c) Stage 3 

After curvatures greater than O. have been sustained in both directions, both lin and 
lip are replaced by Cin and Co respectively, and M11 is replaced by M1d . 

(d) Numerical values of parameters 

Thompson pointed out in his thesis [5.7] that use of a constant value of Mid / Mu 
proposed by Blakeley [5.5] resulted in an over-estimation of the energy dissipation 
capacity of prestressed concrete members when subjected to small amplitude defor-
mations after large curvatures had been imposed in both directions . Thompson 
proposed Mid / Mu = 0.4Or / Om in order to describe the hysteresis loop widths, where 

Or is the value of curvature from which unloading commences, Om is the maximum 

positive curvature for unloading from a positive curvature, and Om is the absolute value 
of the maximum negative curvature for unloading from a negative curvature . 
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During Stages 2 and 3 the coordinates of  Cip (0,M) are given by; 

M = 0.5Mu(5.1) 

for cu < O,< 100u, 

0 = 040.23 + 0.050M(5.2) 
0, / 

for Ow >100„ 

0=0.70„,p(5.3) 

where Ou is the curvature at the maximum strength Mu, and O,,,p is the maximum 

positive curvature. Similarly the coordinates of Cm are found from Eq.5.1 and from the 

substitution of I0,,.uz I for O,,, , in Eq.5.2 or 5.3. 

5.3.2 Ramberg-Osgood idealization 

The Ramberg-Osgood idealization for reinforced concrete proposed by Thompson is 

shown in Fig.5.5. The expression used to describe the idealization is 

y-1\ 

                                (0-00)E=(M—M0)1—           Mch—M~(5.4) 

             o where, 0 andM are the curvature and moment on the moment-curvature curve, E is the 
initial elastic stiffness of the section, 00 and Mo are the values of 0 and M at the 

beginning of the Ramberg-Osgood curve, Mch is the characteristic moment, and r is 

the Ramberg-Osgood parameter. 

The expression found for the characteristic moment Mch is 

Mch = Mu (1— 0.05µc)(5.5) 

but Mch is not less than 0. 5Mu, where Mu is the ultimate moment of the section and 
  is the maximum imposed curvature ductility factor defined by 

  = Om / Øy(5.6) 

where Om is the maximum imposed curvature and 03, is the yield curvature. However 
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in the Ramberg-Osgood system a distinct yield curvature does not exist, but the 
effective yield point can be defined as 

 0y =  Mu / E(5.7) 

This definition of yield point is then the same as for the elasto-plastic system. The 
chosen value of the Ramberg-Osgood parameter r is 20 before maximum moment is 
reached; subsequent to the maximum moment being reached in either loading 
direction the value of r is taken as 5. 

M• 

Mu ----------- 

r =20 
Mch = Mu 

                         0 Mch 
i r=5 

                MM                                         ,=-u(1-0.O5µ) 

. _ Mu 

             M-Mr-1\ 
         (O—Oo)E=(M—Mo) 1— ---------o 

                          M
ch — Mo i 

    Fig.5.5 Reinforced concrete idealization by Thompson and Park [5.1] 
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5.3.3 Partially prestressed concrete idealization 

An idealization for the moment-curvature characteristics of partially prestressed 
concrete members  (  which range between fully prestressed and reinforced concrete 
members ) under cyclic loading was obtained by combining the response of the 

prestressed concrete system Mp (0) with the response of the Ramberg-Osgood system 
Mr (0) such that at a curvature 0 the total moment sustained by the system M(0) is 

M(0) = aMr(0)+SMp(0)(5.8) 

where, a = Mru / Mu 
        = Mpu~ Mu 

a+/3=1 

Mu is the ultimate moment capacity of the partially prestressed section, Mru is the 

moment of the non-prestressed steel taken about the centroid of the concrete compres-

sion block at the ultimate moment capacity of the section, and Mpu is the moment of 

the prestressed steel taken about the centroid of the concrete compression block at the 
ultimate moment capacity of the section. 

5.4 An idealization of hysteresis loops of prestressed, partially pre-
     stressed and reinforced concrete proposed by the author 

The idealization proposed by Thompson and Park is quite useful because it can cover 

the whole range of concrete members from fully prestressed members to reinforced 

concrete members depending on the contribution of prestressing steel to the ultimate 
moment capacity of the member section. However, it has two defects; 

(1) In the large ductility range, their prestressed concrete model indicates a some-
   what pinched hysteresis, which is quite different from typical hysteresis loops for 

   prestressed concrete sections as shown in Fig.5.6. This is because the moment of 

Co (0,M) is considered to be so small that a loading path is bent upward at this 

   point, which results in showing similar hysteresis loops to those of a reinforced 
   concrete beam-column assemblage controlled by bond slip of longitudinal beam 

   bars through the joint core. 

(2) Flexural cracking cannot be explicitly defined in their reinforced concrete model 
   because it is described by a Ramberg-Osgood function. Fig.5.7 illustrates the 

   moment-curvature idealization curves up to the yield point or crushing point for 

   prestressed and reinforced concrete sections which have the same elastic stiffnesses 
   and yielding or crushing moments. It has been observed in past research that 
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   prestressed concrete sections usually have higher moments at the commence-
   ment of flexural cracking than reinforced concrete and their post-cracking 

   stiffnesses are lower than those of reinforced concrete if they have approximately 

   the same flexural strengths. This observation differs from their idealizations. 

In this study, the prestressed concrete idealization proposed by Thompson and Park is 

utilized with some modifications made by the author based on the test results reported 

in Chapter 4. An idealization for reinforced concrete is proposed by the author based 

on the similar curves as the prestressed concrete idealization. The variation from 

prestressed concrete sections to reinforced concrete sections including partially 

prestressed concrete is expressed by a and  /3, the same parameters described above. 

5.4.1 Modifications with the prestressed concrete idealization 

Some modifications with the prestressed concrete idealization proposed by Thompson 
and Park were made by the author. In their idealization a negative stiffness for the 
envelope curve was assumed after curvatures greater than O have been sustained in 
either direction. The negative slope resulted from the capacity reduction due to 
crushing and spalling of the unconfined cover concrete. However, it depends on the 
intensity of prestressing force introduced into the beam, the cover thickness, the 
amount of transverse reinforcement and so on. A larger amount of prestressing force 
usually causes a larger reduction in moment capacity in the earlier stage of loading. The 
stiffness k2 for the envelope curve beyond the crushing curvature 0u was assumed to 
be a linear function of a prestress level ri which was defined as the ratio of prestressing 
force to f'~ Ag on the basis of the comparison with the experimental results. 

  k2 = (-0.04 rJ + 0.004)ke(5.9) 

where, n=Pe/(fcAg) 
      PQ = effective prestressing force 

f', = compressive strength of concrete 
      Ag = gross sectional area of member 

The idealization for a prestressed concrete section made by Thompson and Park was 

found to indicate pinched hysteresis loops, which are typical for reinforced concrete 

members controlled by bond deterioration in the region of large deformation. This 

contradicts the test results obtained in past research. This is because the moment of the 

point C;p which was given by Eq.5.1 is considered too small when large curvatures are 

imposed on the section. Therefore, the coordinates of Cip (0, M) were determined as 
follows, 

163



 M  =  0.8Mu(5.10) 

for Ou < (p,p < 100., 

_ 040.3+0.05 "~(5 .11) 
for kip >100. 

= 0.80mp(5.12) 

The loop widths described by Mid / Mu = 0.40r / Om were found to be so large for 

prestressed concrete members that the expression was modified to 
Mid / Mu = 0.30r / Om. Fig.5.8 shows the comparison between the idealization by 
Thompson and Park and the hysteresis loops modified by the author. 
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   Fig.5.8(a) Comparison between the idealizations by Thompson and Park, 
                     and by the author 
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5.4.2 Partially prestressed and reinforced concrete idealization 

The prestressed, partially prestressed and reinforced concrete idealizations are ex-

pressed by the same functions, in which the loop widths Mu and Mid at the coordinate 
of IMP, lin, Co and Can vary depending on the parameter a. 

Mil / Mir = (0.2 + 0.8^)or / om(5.13) 

   Mid Mu =(0.3+0.61/12)0, lPm(5.14) 

Or and Om are the curvature at unloading from the envelope curve and the current value 
of the maximum imposed curvature, respectively. Fig.5.9 illustrates the idealized 
hysteresis loops for a partially prestressed concrete section and a reinforced concrete 
section. The reinforced concrete idealization is similar to a degrading trilinear model 
which has been applied to reinforced concrete sections in past research. 
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5.5 Comparison of experimental and idealized moment-curvature 
    characteristics 

The experimental moment-curvature curves for the beams of ten units presented in 
Chapter 4 were used to test the idealized moment-curvature characteristics reported in 
this Chapter.  Figs.5.10(a) to (j) show the compared moment - curvature characteristics. 
The experimental curvature was the average of that measured over a 365 mm gauge 
length, which consisted of the beam potential plastic hinge region of 300 mm from the 
column face and part of the joint region of 65 mm from the column face. The moment 
was that at the column face. The basic parameters for the prestressed concrete 
idealization ( the elastic stiffness ke, the maximum moment capacity Mu, the ratio yl 

of the post-cracking stiffness k1 to ke, and the ratio yl f of Mu to the cracking moment 

Mir) were obtained from the analytical moment - curvature curves under monotonic 
loading to failure as described in Chapter 3. They are given for each test unit in Table 

5.1. Thompson gave constant values to yl f and yl through all his test units. However, 
the idealization was developed in order to be adopted for moment-curvature hysteresis 
loops in potential plastic hinge regions of a building frame. Besides, the moment-
curvature curves of a section under monotonic loading can be analyzed easily by an 
analytical procedure. Therefore, those parameters were determined from the moment-
curvature curve for each beam section subjected to monotonic loading. 

Figs.5.11(a) to (j) compare the experimental and analytical moment - curvature curves 
of the first cycle of loading up to the first yield point or crushing point. The elastic 
stiffnesses of the analytical curves agreed well with the experimental results. How-
ever, the post-cracking stiffnesses of the analytical curves were greater than the 
experimental results for all test units. Yielding which was defined as the first yielding 
of non-prestressed longitudinal reinforcement was observed in the analytical curves 
at the earlier stage of loading than in the experimental curves. Cracking or yielding was 
followed by the noticeable and abrupt change of stiffness in the analytical curves. In 
the experimental curves the gradual change of stiffness which resulted from cracking 
or yielding was observed. The difference between the experimental and analytical 
curves were more significant in the reinforced concrete test units than in the pre-
stressed concrete. 

The factors a and /3 for partially prestressed units were calculated from the stresses 
developed in the non-prestressed longitudinal reinforcement and the prestressing steel 
bars when the concrete strain at the extreme compression fiber of the section reached 
0.3% using the ACI methods. However, the maximum moment attained in the 
idealized curves were obtained from the analytical moment - curvature curves when 
subjected to monotonic loading because the moment capacity calculated using the ACI 
methods was found to be too conservative. The moment capacity obtained analytically 
was conservative as shown in the figures although in the reinforced concrete test units 
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Table 5.1 Numerical values for the parameters for the prestressed concrete idealization 

 Unit ke  Mu  Yi  f a /3 k2 

PC1 1.64 105.9 0.326 3.04 0.525 0.475 -0.0004 

   PC2 1.68 107.6 0.342 3.00 0.517 0.483 -0.0004 

   PC3 1.45 101.2 0.333 3.04 0.547 0.453 -0.0028 

   PC4 1.57 104.6 0.332 3.28 0.531 0.469 -0.0024 

RC.1 1.65 120.3 0.479 7.29 1.0 0.0 0.004 

  RC2 1.64 117.7 0.454 8.78 1.0 0.0 0.004 

  PCB-1 1.19 75.26 0.362 3.69 0.603 0.397 0.0016 

  PCB-2 1.42 76.6 0.246 3.03 0.436 0.564 -0.0008 

  PCB-3 1.56 72.88 0.176 2.48 0.308 0.692 -0.0032 

  RCB-1 0.776 73.61 0.691 7.17 1.0 0.0 0.004  

Note: 

   ke : Elastic stiffness (10' kN • mm2) 

Mu : Maximum moment capacity (kN • m) 

Yl : Ratio of post-cracking stiffness k1 to ke 

Yl f : Ratio of Mu to the cracking moment M„ 

   a : Ratio of the moment of the nonprestressed steel taken about the centroid 

        of the concrete compression block at the ultimate moment capacity to the 

        ultimate moment capacity of the section 
       : Ratio of the moment of the prestressed steel taken about the centroid of 

        the concrete compression block at the ultimate moment capacity to the 
        ultimate moment capacity of the section 

   k2 : Ratio of stiffness for the envelop curve beyond the crushing or yielding 

        curvature to the elastic stiffness 
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the analytical results were greater than the experimental ones. 

The idealized moment - curvature characteristics coincide quite well with the experi-

mental results except for the reinforced concrete test units RC2 and RCB 1. The 

moment - curvature characteristics of these test units indicated that pinched hysteresis 

loops with capacity reduction became remarkable as the loading progressed. This, as 

investigated in Chapter 4, was due to the additional deformation caused by yield 

penetration of the longitudinal beam bars followed by full depth cracks in the beam 

plastic hinges. 
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5.6 Examples of idealized moment - curvature characteristics for 
    prestressed, partially prestressed and reinforced concrete sec-

    tions under reversed cyclic loading 

 Figs.5.12(a) to (e) show a comparison of idealized moment - curvature curves for five 
fully prestressed, partially prestressed and reinforced concrete sections under reversed 
cyclic loading. The sections have the same initial stiffness ke and moment capacity Mu. 

The (a,/3) which is assigned to the sections are (0, 1), (0.25, 0.75), (0.5,0.5), (0.75, 
0.25) and (1, 0), which correspond to a fully prestressed concrete section through to 
a reinforced concrete section. The cracking moment of each section is assumed to be 

0.625Mu for the fully prestressed concrete section with (a,/3)=(0, 1), 0.5Mu for (a, 

13)=(0.25, 0.75), 0.375Mu for (a,/3)=(0.5,0.5), O. 25M. for (a,/3)=(0.75, 0.25) and 
0.125Mu the reinforced concrete section with (a, /3)=(1, 0). This reflects the fact that 
prestressed concrete sections usually have higher moments at the commencement of 
flexural cracking than reinforced concrete sections. The post-yielding stiffnesses for 

the sections are calculated according to the prestress levels which are assigned to them; 

0.20 for the fully prestressed concrete section with (a, /3) =(0, 1), 0.15 for (a, /3) =(0.25, 
0.75), 0.10 for (a,/3)=(0.5,0.5), 0.05 for (a,/3)=(0.75, 0.25) and 0.0 for the reinforced 

concrete section with (a, f3)=(1, 0). 

The first loading cycle is up to the yield curvature which is four times the flexural 

cracking curvature. This is followed by a series of curvature controlled cycles to each 

of the curvature ductility factors of ±2, ±3 and higher. 

The ratios of the areas surrounded by the idealized moment-curvature curves shown 

in Fig.5.12 to those of the reinforced concrete idealization are plotted against curvature 

ductility factors in Fig.5.13. Before yielding, they are greater than unity. This is 

because there were larger flexural cracking moments than in the reinforced concrete 

section. The case in which the same flexural cracking moment is assumed for all 

through the sections will be referenced later. For ductility factors greater than unity 

each ratio is almost constant regardless of the ductility factors. The ratios are 

approximately 0.5 for the fully prestressed concrete section and 0.85 in average for the 

partially prestressed concrete section with (a,/3)=(0.5,0.5). 

Figs.5.14(a) to (e) show a comparison of idealized moment - curvature curves which , 
this time, have the same flexural cracking moment. A similar figure to Fig .5.13 is 
drawn for the moment-curvature curves plotted in Fig.5.15 in respect to the idealized 
moment - curvature curves in Fig.5.14. The ratios are smaller than unity at any ductility 
factor. 
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  Fig.5.13 Ratios of the areas surrounded by the idealized moment - curvature 
          curves to those of the reinforced concrete idealization 

Figs.5.16(a) to (c) show a comparison of idealized moment - curvature curves for five 

prestressed, partially prestressed and reinforced concrete sections under reversed 
cyclic loading. Each section has the same overall dimensions and material properties. 
The sections are shown in Fig.5.17. The material and section properties are listed in 
Table 5.2. The fully prestressed and partially prestressed sections each contain one 

prestressing steel bar at the center. The amounts of top and bottom ordinary reinforce-
ment are the same. By adjusting the sectional areas of non-prestressed longitudinal 
reinforcement and prestressing steel bar, they were so designed as to have approxi-
mately the same flexural strength. However, the initial stiffness ke, the cracking 
moment M, and the post-cracking stiffness k1 for each section were different. They 
were obtained from the analytical moment - curvature curves subjected to monotonic 
loading. They are summarized in Table 5.3. 

The prestressing force for each section was 0.6 fpyAp, where fpy and Ap are the yield 

strength and cross sectional area of prestressing steel, respectively. The prestress levels 
of all sections, which were defined as the ratio of tensile stress in the prestressing steel 

under service load condition to the yield strength, f,,, were the same . Therefore, a 
larger amount of prestressing steel resulted in a larger prestressing force on the section . 

In case of designing a prestressed concrete member, prestress to be introduced into the 
member is determined from the design stress under the service load condition . The 
prestress level described above is usually determined by the allowable stress to be 
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  Fig.5.15 Ratios of the areas surrounded by the idealized moment - curvature 
          curves to those of the reinforced concrete idealization 

introduced into the prestressing steel which is specified in the design codes. Lower 

prestress levels may result in larger amount of prestressing steel and in larger reserved 
strength for the ultimate load condition. This is an uneconomic design of members, 
although, as shown in Chapter 4, a lower prestress level which resulted in larger reserve 
stresses before the yield of the prestressing steel had a beneficial effect on the shear 
behaviour of beam-column joint. 

Fig.5.18 illustrates the analytical results of moment - curvature curves for the sections 
of interest under monotonic loading. They attained approximately the same flexural 
strength but the shape of the curves are quite different. As varying from reinforced 
concrete to fully prestressed concrete, the section has the larger elastic stiffness, the 
smaller post-cracked stiffness and the larger flexural cracking moment. In the 
reinforced concrete section, the yield point which resulted from the yielding of tensile 
reinforcement can be pointed out because an abrupt change of stiffness appeared in the 
curve. In the prestressed concrete section, the gradual change of stiffness after flexural 
cracking was observed and the strength reduction after the maximum moment was 
attained was more significant as the section varied from a partially prestressed 
concrete section to a fully prestressed concrete section. This was due to crushing of the 
cover concrete. 
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              Table 5.2 Material and section properties 

Unconfined Concrete  

    Compression Strength (MPa)-30.0 
   Tension Strength (MPa)3.00 

   Youngs Modulus (MPa)27386. 
    Strain At Peak Stress (MPa)-0.0020 

  Spalling Strain-0.0070 
  Tensile Strain 0.0001 

Longitudinal SteelCompression Tension 

   Yield Stress (MPa)400.0 400.0 
  Ultimate Stress (MPa)0.00.0 

   Youngs Modulus (MPa)205947. 205947. 
   Strain-hardening Modulus (MPa)0.0. 

  Yield Strain-0.0019 0.0019 
   Strain-hardening Strain-0.0153 0.0153 

Prestressing Steel  

    Tensile Elastic Limit Strain0.0050 
     Compressive Elastic Limit Strain-0.0035 

    Upper Branch Initial Strain0.0130 
   Buckling Strain-0.0115 

   Tensile Ultimate Strain0.0500 
    Compressive Ultimate Strain-0.0500 

    Tensile Elastic Limit Stress (MPa) 980.7 
     Compressive Elastic Limit Stress (MPa) -680.7 

    Upper Branch Initial Stress (MPa)1200.0 
   Ultimate Stress (MPa)1500.0 

   Buckling Stress (MPa)-900.0 
     Tendon Stress After Transfer (MPa) 600.0 

    0.2% Offset Yield Stress (MPa)1103.4 

Volumetric Ratio of Transverse Reinforcement 

    Volumetric Transverse Steel Content (X-direction) = 0.0086 
    Volumetric Transverse Steel Content (Y-direction) = 0.0142 

Fully prestressed concrete section  

    Axial Prestress Force = -1920. kN 

    Prestress Force Ratio = 0.20 f', Ag 

Partially prestressed concrete section  

    Axial Prestress Force = -960. kN 

    Prestress Force Ratio = 0.10 f', Ag 
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Table 5.3 Numerical values for the parameters for the idealization of the sections 

 Unit ke  Mu Yl f a /3 k2  

   PC 3.878 717. 0.094 1.85 0.0 1.0 -0.004 

  PPC 3.277 717. 0.284 2.19 0.5 0.5 0.0 

   RC 2.692 717. 0.633 5.33 1.0 0.0 0.004 

Note: 

   ke : Elastic stiffness (10' kN • mm2) 
Mu : Maximum moment capacity (kN • m) 

   Yl : Ratio of post-cracking stiffness k1 to ke 

Yl f : Ratio of Mu to the cracking moment Mcr 
   a : Ratio of the moment of the nonprestressed steel taken about the centroid 

        of the concrete compression block at the ultimate moment capacity to the 
        ultimate moment capacity of the section 

/3 : Ratio of the moment of the prestressed steel taken about the centroid of 
        the concrete compression block at the ultimate moment capacity to the 

        ultimate moment capacity of the section 

   k2 : Ratio of stiffness for the envelope curve beyond the crushing or yielding 

        curvature to the elastic stiffness 

 800 -------------------------------------- 

600 --------....................................................................................................- 

        400.......................................................................................................... 

           vci..............------------------------------ 
                                      Reinforced concrete section 

z200 f............. ........... Partially prestressed concrete section 
............. - - - - - Prestressed concrete section  

0 ----------------------------------------------------- 
   0123 

                    Curvature, 0 (10-5/mm) 

 Fig.5.18 Analytical moment - curvature curves subjected to monotonic loading 
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5.7 Conclusions 

On the basis of the above analytical study, the following conclusions are reached with 
regard to the idealization of prestressed, partially prestressed and reinforced concrete 
moment - curvature relationships: 

1. By modifying the idealization suggested by Thompson and Park  [5.1], the 
   idealization of prestressed, partially prestressed and reinforced concrete moment 

   - curvature relationships was proposed by the author on the basis of the 

   experimental work and the analytical work. The idealization curves can be 
   applied from fully prestressed concrete to reinforced concrete members. 

2. The idealization was compared with the experimental results described in 
   Chapter 4. It turned out that the moment - curvature curves obtained experimen-

   tally can be well predicted by the idealization. However, all the test units 
   consisted of partially prestressed concrete beams. The idealization should 

   undergo many trials because only a few experimental results of partially pre-
   stressed concrete beam - column joint assemblages available were used to 

   calibrate it. 

3. Some examples of idealized moment - curvature characteristics for fully pre-
   stressed, partially prestressed and reinforced concrete sections under reversed 

   cyclic loading were given for some ranges of the parameters (a,13). 

[References] 

5.1 Thompson, K.J. and Park, R : Seismic Response of Partially Prestressed Concrete, 
  Journal of Structural Division, Proceedings of ASCE Aug.1980 ST8, pp.1755-

   1775. 

5.2 R.A.Spencer : Stiffness and Damping of Nine Cyclically Loaded Prestressed 

   Concrete, PCI J. June 1969 pp.39-52. 

5.3 Okamoto, S : Fundamental Study on Earthquake Resisting Behaviours of Pre-

   stressed Concrete Frame Structures, Chapter 6; Seismic Response of Prestressed 
  Concrete Buildings, Ph. D Thesis, Kyoto University, Japan 1986, pp.250-281. 

5.4 M. Okada, M. Hamahara, H. Suetsugu and J. Motooka : Elasto-plastic hysteretic 

  behavior of prestressed concrete beams, Transactions of AIJ, No.410, 1990, 

   pp.63-69. 
5.5 R.W.G.Blakeley and R.Park : Prestressed Concrete Sections with Cyclic Flexure, 

  J. of SD,Proc. of ASCE Aug.1973 ST8, pp.1717-1742. 

5.6 W. D. Iwan : A Model for the Dynamic Analysis of Deteriorating Structures, Fifth 

  World Conference on Earthquake Engineering, Rome, 1973, Paper 222, Session 

5B. 

5.7 K. J. Thompson : Ductility of Concrete Frames under Seismic Loading, Ph. D. 

  Thesis, University of Canterbury, New Zealand, 1975. 

                                             183



184



Chapter 6 

DYNAMIC RESPONSE ANALYSIS OF 

 SINGLE-DEGREE-OF-FREEDOM 

PRESTRESSED CONCRETE SYSTEMS 

6.1 Introduction 

Past research on prestressed concrete have shown larger response of prestressed 
concrete building structures than reinforced concrete building structures. This is 
because the hysteresis loops of prestressed concrete members have less energy 
dissipation than those of reinforced concrete members. Some researchers have 
conducted dynamic response analyses on prestressed and reinforced concrete systems 
and compared their responses. The first dynamic response analyses on prestressed 
concrete systems were reported by Thompson and Park [6.1]. They idealized moment-
curvature hysteresis loops of prestressed concrete sections on the basis of the 
experimental results of prestressed, partially prestressed and reinforced concrete 
beam-column joint assemblies and the analytical work. The idealized hysteresis loops 
were involved in the dynamic response analysis program as a load-displacement 
relationship of a single-degree-of-freedom system. The conclusion they obtained from 
the analysis was 30% in average larger response of the prestressed concrete systems 
than that of the reinforced concrete systems with the same initial period of vibration. 

In this chapter, after reviewing previous research on dynamic response analyses of 

prestressed concrete systems, the analytical results obtained from the dynamic 
response analyses conducted by the author will be presented. Then, a method to predict 
response of prestressed concrete systems are to be proposed. The analyses to be 
reported in this chapter involve those for single-degree-of-freedom systems. Analyses 
of multi-mass shear systems and two-dimensional systems will be described in the 
later chapters. 

6.2 Review of Previous Research 

As described in Chapter 5, Thompson and Park have conducted an extensive experi-
mental and analytical research work on moment-curvature relationships of pre-
stressed, partially prestressed and reinforced concrete member sections. Dynamic 
response analyses of single-degree-of-freedom systems to El Centro 1940 N-S 
earthquake and two artificial waves were carried out using the idealized moment-
curvature hysteresis loops as load-displacement characteristics of the systems. The 
maximum displacements of prestressed, partially prestressed and reinforced concrete 
systems under severe earthquake motions generally increase with increasing pre-
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stressed component. They derived 30% in average larger response of prestressed 

concrete systems than reinforced concrete systems. 

However, the ratio of maximum displacements between the two systems significantly 

varied from the average value of 1.3. In some cases the displacement response of more 

highly prestressed systems is less than that of the reinforced concrete system of the 
same initial period. Their idealization for reinforced concrete members consists of a 

Ramberg-Osgood function with no defmite stiffness reduction due to cracking. The 

period of vibration in the prestressed concrete system gets longer after cracking and 
this may result in the increased displacement response than that of the reinforced 
concrete system. However, it greatly depends on the characteristics of the earthquake 

record involved in the analysis. Thus, it turned out that the effect of earthquake 
response spectra might be more significant than that of the difference of hysteresis 

loops. They concluded that the load-displacement characteristics did not affect the 

ductility demand as much as the intensity of the earthquake excitation and the initial 

period of vibration. 

Okamoto [6.2] has reached the similar conclusion by means of carrying out dynamic 
response analyses of multi-mass shear systems. He derived the following equation for 

predicting the maximum displacement response on the basis of the analytical results 
on the prestressed, partially prestressed and reinforced concrete systems and the linear 
elastic system with the same initial period of vibration. 

                    0.125 a     Qy=(2µ—1)  
 QEJ2µ—1(6.1) 

where,  Qy = yield capacity 

      QE = capacity response of the linear elastic system 
µ = ductility ratio 

      a = coefficient which allows for the degree of prestressing 

He proposed another idealization for prestressed concrete systems called `Modified 
PS Model' in which the idealized hysteresis loops before yielding has been so 
improved as to reflect real load-displacement curves better . The dynamic response 
analyses for multi-mass shear systems which involved this model suggested another 
expression. 

    Qy_(2µ_ 1)0.15(a')Z 
 _------------------ QE 1/2µ —1(6.2) 

where, a' = coefficient to allow for the degree of prestressing in `Modified PS 

            Model'. 
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The restoring force characteristics applied to the single- or multi-mass shear systems 
in the above research were based on the moment - curvature or load - member rotation 
relationships measured in potential plastic hinge regions of the beam test units and the 
beams in beam - column joint assembly test units. However, Okamoto conducted 

psudo-dynamic loading tests on one-bay two-story frames which consisted of pre-
stressed concrete beams and reinforced concrete columns. The frames were idealized 
as a twin-mass shear system whose shear force-interstory drift relationship was 
assumed to follow modified PS model. The analytical results agreed well with the 
experimental results. However, the test units underwent a displacement of small 
ductility ratios  Cu =1.15- 2.35) while the coefficient a' to allow for the degree of 

prestressing in the model was determined as an average value in the ductility range up 
to 6. 

6.3 Inelastic Dynamic Response Analyses of Single-mass Shear Sys-
     tems 

In this section, the idealized curves proposed in Chapter 5 are used as the load-
displacement idealization except that the ordinates are load V and displacement x. 
Response spectra of the idealized curves to an earthquake excitation for various ranges 
of yield capacity, period of vibration, and so on are calculated to investigate the 
fundamental characteristics of the idealization. However, the author wants to empha-
size that the purpose of this calculation is to examine the justification of the idealization 
because the idealized curves are not considered to express directly the load-deflection 
relationships of a structure or a layer of a building itself : they were derived based on 
the moment-curvature curves obtained experimentally. Although load-displacement 
hysteresis loops of a prestressed concrete member is considered to be similar to the 
idealization, the response of a building is largely affected by the load-deflection 
response of reinforced concrete constituent elements such as columns and walls. A 
comparison between the idealizations for a prestressed concrete and a reinforced 
concrete system which will be described in the later part of this section should be 
referred to as an extreme case of these systems. 

6.3.1 Equation of dynamic equilibrium and the analytical procedure 

Structural systems used in this analysis are idealized as shown in Fig.6.1. This consists 
of rigid girders of mass M, weightless columns with total lateral stiffness k and fraction 
of critical damping c. 

Generally for a non-linear system at time t the equation of dynamic equilibrium is 
expressed as 

Myt+ Cyt + Q(yt) = -M yo(6.3) 
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 Yt 

M 

Fig.6.1 Idealized structural system 

where, M = mass of the system 

      C = damping of the system 

Q(yt) = lateral resistance of the system 
       yt = acceleration of the system 

      yt = velocity of the system 
yt = displacement of the system 

ya = ground acceleration 

Eq.6.3 is rewritten in an incremental form as follows, 

M' Dyt + C. ,4t + OQ(yt) = -M• Ayo(6.4) 

The analytical method employed in this study is the impulse acceleration method [6.3]. 
An acceleration at time to is assumed to be introduced as impulses of y,4t/2 just before 
and after the time tn. At is an time interval, i.e. At =tn-tn1 = to+l'tn.Since the velocity 

in this time interval is assumed to be constant like a step function, the displacement 

varies linearly in this interval. Assuming that the average velocities in the intervals of 

tn_1—tn and to—tn+1 are yn2and YnZ,respectively, we can get the following equations. 

. n41 . yn 1 = yn Lt(6.5) 
2 2 

   yn2of 

   yn 2yn+fityn                                               (6.7) 
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Therefore, the displacement at time  tn,/ is derived from the values yn, yn.l, y„ and At 
which are known quantities. 

yn+i = 2yn - yn.i + yn Ott(6.8) 

In the case of a non-linear analysis, y„ is derived from the following two equations. 

yn=yn1+ l nAt=yn yn.i+ 1yAt(6.9) 2 2At 2
•       ___Cyn_~yn)  yn-yOP(6 .10)      M M 

Thus, yn+i is given as an inductive form. 

  !In+i =-------------1C
AAyn i+2 MOtyn i`~Mn)Ot2yanOtt6.11 +of(6.11) 

2M 

It should be noted that this method does not use a tangential stiffness but a lateral 
resistance Q(y„) itself. From Eqs.6.9 and 6.8 the following two equations are derived. 

     _ 11 (yn+i + yn-yn + yn-i)    yn20t(yn+i-yn-1) —At 2 2(6.12) 

    yn= jj  (yn+i - yn-yn-yn-i) 
Ott(yn+i 2yn + yn-i) —At At At(6.13) 

Thus, the velocity yn and the acceleration y are expressed as central differences. 

The values of the first step of an analysis cannot be calculated by the impulse 

acceleration method because it requires the values of the first and second previous 

steps. In this study they are calculated using the average acceleration method. When 

both the displacement and velocity at time 0 are assumed to be null, the displacement 

in the first step is expressed as follows, 

yi = - ((Wi + (yo)°} At* + At + M ~t2)(6.14) 

6.3.2 Parameters investigated 

A full range of parameters which has a significant influence on the inelastic response 

spectra of the idealized curves is examined. In this study the lateral load strength at 

yielding of the system Vu is expressed as a portion of the weight of the structure W. The 
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ratio is denoted as  13u. 

p=V"(6.15) 

W Once a period of vibration of the system, Te is given, the stiffness of the system, Ke 

is obtained by the following equation. 

            2 

     Ke =   47r 2 M(6.16) 

For a system with unit mass, 

2 Ke =
T2(6.17)           Te 

The period of vibration based on the elastic stiffness varies between 0.1 and 3.0 

seconds. The range of (3u investigated is between 0.2 and 1.4. The elastic response is 
also involved in the analyses. The ratio of the cracking load to the lateral load at 

yielding /3c, ranges between 1/2 and 1/3. The ratio of the elastic stiffness to the secant 
stiffness at yielding Ke / Ky ranges between 2 and 4. A set of the parameters (a, $ ) 
which determines the main characteristics of the idealized hysteresis loops is (0, 1), 

(0.5,0.5) and (1, 0). These are considered to correspond to fully prestressed, partially 
prestressed and reinforced concrete idealizations, respectively. The post-yielding 
stiffnesses are -0.004, 0 and 0.004 as a portion of the elastic stiffness for fully 

prestressed, partially prestressed and reinforced concrete systems, respectively. The 
damping of the system, C, is given as C = 2hw. The assumed damping factor was 
h= 5%. The range of the parameters considered is summarized in Table 6.1. 

              Table 6.1 Range of parameters investigated 

                     DescriptionRange Investigated 
=17„ / WLateral load strength as 0.2 to 1.4 

                          a portion of the weight of system 
/3c, = Vc, / VuRatio of cracking load 1/2 and 1/3 

                          to lateral load strength 
TePeriod of vibration0.1 to 3.0 

  Ke / KyRatio of elastic stiffness 2 and 4 
                          to secant stiffness at yielding 

(cx,Q)Parameters for prestressed (0,1), (0.5, 0.5) and (1, 0) 
                           concrete idealization 

 Earthquake recordsEl Centro NS 1940 and 

Miyagiken-oki NS 1974  
  Intensity of Earthquake recordsOriginal and 50cm/s  
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6.3.3 Earthquake records 

The two typical digitalized earthquake records are included in the analyses; the El 
Centro 1940 North-South Component and the earthquake motion recorded at the first 
floor of the building at Tohoku University during the Miyagiken-oki earthquake in 
1974. Only the first 10 seconds of the earthquake records were used because the 
maximum acceleration and velocity are observed within the first 10 seconds of the 
records which are considered to give the largest effects. The time interval used in the 
analyses was 0.02 seconds. The characteristics of the digitalized earthquake records 
used in the analyses are summarized in Table 6.2. 

           Table 6.2 Characteristics of earthquake wave records 

 Earthquake records El Centro NS 1940 Miyagiken-oki 1974 

 Maximum acceleration (cm/s2) 341.7258.2 

 Maximum velocity (cm/s)33.436.2 

 Maximum displacement (cm)10.914.5  

6.3.4 Response spectra of the idealized curves 

General results  

Displacement, velocity and acceleration response spectra calculated for each system 
and earthquake record are illustrated in Fig.6.2. Typical load-displacement relation-
ships of fully prestressed, partially prestressed and reinforced concrete are shown in 
Fig.6.3. 

In Fig.6.4, the ratios of yield capacities of the systems of interest to the shear response 

capacity of the system responding elastically,  Qy / QE are plotted against ductility 

ratios, µ. The ductility ratio u is defined as the ratio of the maximum displacement, 3m 

to the yield displacement, Sy. The two equations below also appear in the diagrams. 

Qy   1                                                (6
.18) 

   QE .J2,u-1 

Qy 1 

QE(6.19) 
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Eq.6.18 is based on the equal energy concept in which the energy absorbed by a 

building which yields with elasto-plastic characteristics is assumed to be equal to that 
of a building which is strong enough to respond elastically. Strictly speaking, however, 

it is only an impulse input that physically concludes that  Eq.6.18 is derived by the equal 

energy concept. Eq.6.19 is considered to indicate the equal displacement concept in 

which the maximum horizontal deflection reached by a building which yields with 

elasto-plastic characteristics is assumed to be the same as that of a building which is 
strong enough to respond in the elastic range. The markers above the line of Eq.6.19 

suggest that the maximum responses of the systems cannot be predicted conserva-

tively by the equal displacement concept. Similarly, the markers above the curve of 
Eq.6.18 indicate that the equal energy concept gave an unsafe prediction. In the case 

of the response against the El Centro earthquake wave few markers are observed above 

the Eq.6.18. However, as for the Miyagiken-oki earthquake several markers are 
located high above the curve in the large ductility region. These are the responses of 

the system with short period of vibration of 0.1 or 0.2 seconds. 

Ishimaru [6.3] conducted dynamic response analyses on the bilinear elasto-plastic 

systems for three earthquake records with different characteristics. In the case of the 

systems with a frequency of 5.0 Hz using the Miyagiken-oki earthquake the responses 
fell into the region above the curve of Eq.6.18. As for the El Centro earthquake, the 

responses fell into the region below the curve of Eq.6.18 even for the system with the 
same frequency of 5.0 Hz. Eq.6.18 does not always give a conservative prediction for 

a maximum response displacement. 
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           Shear Force Response for Elastic System 
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      Fig.6.5 Shear force response of the system responding elastically 

Figure 6.5 illustrates the shear force responses for the system responding elastically. 
It should be noted that much smaller response for the Miyagiken-oki earthquake than 
for the El Centro earthquake is observed for the period of 0.1 and 0.2 seconds. The 
displacement responses for these two earthquakes are almost the same. This is the 
reason why the responses above the curve of Eq.6.18 appear in Fig.6.4. The difference 
between the elastic responses of the earthquakes may be due to the characteristics of 
the waves. 

Okamoto suggested Eq.6.2 in his doctoral thesis [6.2] on the basis of the dynamic 
response analysis using `Modified PS model'. In this study, however, it is difficult to 
derive a definite conclusion because the responses are significantly depending on the 
earthquake waves. As far as the El Centro NS component is concerned, Eq.6.18 gives 
a relatively good approximation for the maximum responses of the systems . In 
addition, for the systems with smaller Qy / QE ratio QE should be estimated on the 

basis of the yield stiffnesses. In the case of the initial stiffnesses, there are some 
markers whose deviations from Eq.6.18 are quite large. 

Comparison between prestressed and reinforced concrete  

Figure 6.6 shows the ratios of the maximum displacement responses of the prestressed 
concrete systems to those of the corresponding reinforced concrete systems . The 
similar ratios of the partially prestressed concrete systems are plotted against period 
of vibration of the systems in Fig.6.7. The value in the parentheses following the yield 
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       Fig.6.7(a) Comparison of maximum displacement response 
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        Fig.6.7(b) Comparison of maximum displacement response 
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capacity in the legend indicates the average of the ratio for each yield capacity of the 
systems. The average values over the period range of 0.1 to 3.0 seconds might not be 
of importance: if a larger period range was included in the analyses the average values 
would become smaller. The average values for the prestressed concrete systems range 
between 0.98 and 1.39 with the maximum value of 3.23 and the minimum of 0.29. For 

partially prestressed concrete systems those range 0.98 and 1.15 with the maximum 
value of 2.06 and the minimum value of 0.51. Generally, the ratios are larger in the 

period shorter than approximately 0.5 seconds. This corresponds to the displacement 
response spectra given in Fig.6.2. 

If the structural damage can be estimated by the maximum displacement response, the 
damage of prestressed concrete systems is predicted to be 1.39 in average times that 
of reinforced concrete systems. Past research has indicated that the load capacity of a 
system may be increased by 20% if the displacement response should be reduced by 
20%. NZS 4203:1984 [6.4] is based on the analytical results conducted by Thompson 

 [6.1] and on this criteria, although the design seismic load - displacement response 
relationship is not linear. 

6.3.5 Comparison between prestressed concrete and reinforced con-
    crete with pinched hysteresis loops 

As described in Chapter 4, hysteresis loops of a reinforced concrete beam - column 

joint assemblage are not always better than those of a prestressed concrete beam - 
column joint assemblage. Load - displacement hysteretic behaviour controlled by slip 
of longitudinal beam bars through the joint core due to bond deterioration indicates 
degradation of strength and stiffness and pinched hysteresis loops with reduced energy 
dissipation. However, the effect of pinching of the hysteresis loops on the response was 
found to be of little significance by Kitayama et al [6.5]. They concluded that some 
bond deterioration of beam bars within a beam - column joint may be acceptable. 

Park [6.6] is pointing out on the basis of past research that some variation in hysteresis 
loop shape will not have a major influence on the inelastic dynamic response of 

M PC 

                 RC               

I                      rerlYZ/M:)i.': 
       iO mp 

  Fig.6.8 Load - displacement relationships of prestressed concrete system and 

         reinforced concrete system with pinched hysteresis loops 
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structures when subjected to severe earthquake excitation. Thus, hysteresis loops 
showing some pinching or stiffness degradation will not lead to significantly larger 
inelastic displacements if the structure has some damping of viscous type and is 
capable of some further damping by hysteretic energy dissipation. Based on the 
dynamic response analyses, Thompson [6.7] reached the similar conclusion that the 
load - displacement characteristics do not affect the ductility demand as much as the 
intensity of the earthquake excitation and the initial period of vibration. 

It is of great interest that responses of a prestressed concrete system are compared with 
those of a reinforced concrete system whose load - displacement hysteretic behaviour 
is controlled by slip of longitudinal beam bars, that is, indicates pinched hysteresis 
loops. Those two systems are assumed to dissipate the same amount of hysteretic 
energy when they are in steady state at a same amplitude. Fig.6.8 shows the load  - 

displacement relationships of those two systems at the maximum displacement of 8,,,p. 

The hysteresis loops for prestressed concrete systems proposed in Chapter 5 were used 
for load - displacement hysteretic behaviour of the prestressed concrete system. For 
the reinforced concrete system with pinched hysteresis loops, the hysteresis loops for 
reinforced concrete systems proposed in Chapter 5 were employed with some 

modification in post-elastic range. The coordinates of Cip (0, M) are given as follows, 

M = 0.15Mu(6.21) 

for 0u < O < 100., 

  0 = 0,0.3 + 0.050"'p(6.22) 0
u 

for O,„p > 100 

0 = 0.80,„p(6.23) 

The loop width denoted by Mid is assumed to be 0.3M u . The tangential stiffness of the 
hysteresis loops in the region between Cip and C1, is kept zero once the system 
undergoes the yield displacement. Up to yielding, the hysteresis loops assigned to the 

pinched system are exactly the same ones for the reinforced concrete system proposed 
in Chapter 5. 

Figure 6.9 indicates the displacement response spectra of the reinforced concrete 
systems with pinched hysteresis (hereafter referred to as PH system) . The parameters 
assigned for the analyses are the same ones that were used in the previous analyses 
described in the preceding section. Fig.6.10 shows the ratios of the displacement 
responses of the reinforced concrete systems described in the preceding section to 
those of the PH systems. In addition, the ratios of the displacement responses of the 
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prestressed and partially prestressed concrete systems to those of the PH systems are 

plotted against period of vibration in  Fig.6.11 and 12. Fig.6.10 indicates that the ratios 
in the range of the shorter period of vibration than 1.0 sec. are large. In the long period 

range, they are unity. In the small displacement range up to yielding, the responses of 

the reinforced concrete system and the PH system are the same because the hysteresis 

loops are identical. However, beyond the yield displacement, the load - displacement 

characteristics have an effect on the displacement response. 

The average values of the ratios of displacement responses for the prestressed concrete 

system range between 1.09 and 1.14. They are slightly smaller than those in the 

comparison between the prestressed concrete system and the reinforced concrete 

system. The average values for the partially prestressed concrete are approximately 

unity. 

As long as the parameters and the earthquake records used in the analyses are 

concerned, a system whose load - displacement behaviour is that of a fully prestressed 

concrete was found to respond on average approximately 10% in average larger than 

a system with pinched hysteresis loops of the same amount of hysteretic energy 

dissipated. 
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        Fig.6.9(b) Velocity response spectra of reinforced concrete 

                  system with pinched hysteresis 
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Fig.6.9(c) Acceleration response spectra of reinforced concrete 

                  system with pinched hysteresis 
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Fig.6.10 Comparison in displacement response between conven-

              tionally reinforced concrete and PH system 

                                            215



 - v ,, . u .t (1.16)                -  Vu  =  0.2  (1.14) • - - - Vu = 1.0 (1.06)....... Vu-cm(1.13)                   V
u = 0.4 (1.13) -A- Vu= 1.2 (1.00)- - - Vo = as 0.12)                         - - - - Vu = 0.6 (1.12) -0- Vu= 1.4(1.09)   2

.0 ...........................A- - Vu= 0.8 (1.06) (Av. = 1.073]2.0 ............................. - --vu=as (1.03) - - - Vu = 1.0 (0.99) 
                                               II -A- Vu = 1.2 (1.00)            *I      ,T4 ,I, I1, ,--o-- 14, = 1.4 (1.00) 

U U^ .4 . II ,[Av . = 1.061]  -G1.5 ..........11-1,---,:.S.1.                                                                                         Q. 0,.._',X‘.151 

                                                                                                       

..
.,,,1.,,.< 

Cc I -Irfcc                                          Gc,II^
,1, GO \t, /:t\‘rt\ilL __\                                    nA11''''''A 

01.0 1.-''01.,..,'lir,--,.: Q.Q. GoGo,v 
                                                                                                                                      ../ 

                  Vu / Vcr=2, Ke /Ky=2Vu /Va=2, Ke /K =2 
0.5El Centro NS (Original)0.5Miyagiken-oki NSY(Ori.inal) 

   0.0 0.5 1.0 1.5 2.0 2.5 3.00.0 0.5 1.0 1.5 2.0 2.5 3.0 

                Period (sec) - vu= 0.2 (1.14)Period (sec) - vu =0.2(1.18) 
Vu= 0.4 (1.16)....... Vu = 0.4 (1.13)        

I I----Vu = 0.6 (1.12)---  Vo = 0.6 (1.15) 
2.0..................,_....................- - vu 0.8 (1.04)2.0•...................................................... . , - - vu= 0.8 (1.02) 

Vu = 1.0 (0.99)                      ----Vu=1.0 (1.03)•--- 
  AA,.: 

                                                                                                                                              , 

                                -A-Vo= 1.2 (0.97)53'II,-A- Vu= 1.2 (1.00) --ci4,,Ik.:IL,I1, .3) --14,=1 .4 (1.00)    1/4.:‘;-0--Vu= 1.4 (1.00)0                                        -Fi,tI,i  uAfstt'q,t                                                                                          (Ay.= 1.070]   --S1.5 t;......4;-I,‘'(Av. = 1.0681•E1.5 ---i;,,- --,--',-i--t-- --A                                    Q.^,*e%j, (.2...-g‘lit;k‘,16' 
(xI ,/,;',itsi-cc                                                             Go co 

   I/\'/A, 
01.0 -----------------------------------------------------------).i\--'-,------------(.)--1-/.0:*. 
aQ.. G

o Vu /Vor=2, Ke--------------------/K4/y=4Vu / Vcr=2, Ke /Ky=4 
  0.5 1 1................................................. El Centro NS (Original)  _ 0.5Miyagiken-oki NS (Original) 

    0.0 0.5 1.0 1.5 2.0 2.5 3.00.0 0.5 1.0 1.5 2.0 2.5 3.0 

        Period (sec) Period (sec) 
- Vu 0.2 (1.25) - - - Vu= 1.0 (1.10)- Vu 0.2 (1.06) 

Vu 0.4 (1.13) -A- Vu= 1.2 (1.05)....... Vo 0.4 (1.19) - - - - Vu 0.6 (1.16) -0-- Vu= 1.4 (1.04) - - - - Vu = 0.6 (1.14) 
  2.0 ............................- - Vo 0.8 (1.12) (Av. = 1.120]2.0: •.................................................................. Vo 0.8 (1.12)                                                                                               

; - - - Vu= 1.0 (1.07)                                                                                               
; -A- Vu= 1.2 (1.01) tb4/-1CI)/k;\                            -C:-0-Vu = 1.4 (1.02)                             u ,/'i,  .S.1 .5 ..,.........f'---------41,.............................................................G/.5----A-----ir-',--,,v«,:--7--\--,:l....: (Av. = 1.086]  

Q.,ca .i
, 

          l,31/ ! ,i'..,,,            '6'., ,'1,i''-'l01.,                                                                            c
cv,;,..i,\.v„:.'..,•,‘:,.,...: GopA t..lir,,‘,..\i„stoi(1.-1.?s%\-•...., 

01.0-::,•.0 1. 0'.'i^:.''..1--.- (L.ct.' 7,'itV^' c.,cc) 
,,•  

Vo / Vcr=3, K./Ky=2V u / Vcr=3, Ko /K2   0
.5El Centro NS Ori.inal0.5 ........................................... ,Miyagiken-oki NS (Original) 

    0.0 0.5 1.0 1.5 2.0 2.5 3.00 .0 0.5 1.0 1.5 2.0 2.5 3.0 
                                      - vu 0.2 (1.29) 

                Period (sec) Vu = 0.4 (1.16)Period (sec) - Vu= 0.2 (1.09) 
-------------------------------------------------------- •---Vo = 0.6 (1.13)....... Vo=0.4 (1.20) !!-- V o = 0.8 (1.17):----Vo0.6 (1.11) 
  2.0 ...........:vu=1.0(1.11)2.0                     .  V0.8 (1.13)        

1 '          1 
,,-A- Vu= 1.2(1.04)VVu=1.0 (1.05)  --t' 

,t:,.‘6,1 17-,:c..--0--Vo=1.4 (1.04)'780                                                                                                        -A- Vu= 1.2 (1.01) I'V;%,.....................................1 .5 ......1                           (Av. = 1.137]-F,,,:--0-.Vu = 1.4 (1.02)               7-/ -S.1 .5 -.0'--A....................... --------                              0:,1 t 
               / 

                                                              --- ,......................... (Av. = 1.085]  
          ,,                                                         _ 

                                  1/--,A‘: 
                                                                                                    ,1,--• 

     1,...tA1'4/^‘ilIf.4.^-1s,., cccc ': 
       ., ..1p9L

1.0'41'.4':'\01.0''',4^11'',..-.:\\*---------II--s‘-\                                                  

                     Ii\I--WV Vu /Vcr=3, Ko /Ky=4V/V -3Ko/K =4    0.5 ...........................I.................... El Centro NS (Original)0.5 ...........Miyagiken-oki NS(Original)  
   0.0 0.5 1.0 1.5 2.0 2.5 3.00.0 0.5 1.0 1.5 2.0 2.5 3.0 

              Period (sec)                                                   P
eriod (sec) 

Fig.6.11 Comparison in displacement response between 

                  prestressed concrete and PH system 
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6.4 Prediction of displacement response by substitute damping 

6.4.1 Introduction 

Past research has been trying to represent a non-linear hysteresis loop by a vibrating 
linear system. Jacobsen suggested in his paper [6.8] that a particular hysteresis loop 
may be approximately interpreted by a vibrating linear system with equivalent viscous 
damping. 

Gulkan and Sozen [6.9] calculated an average value of the substitute damping ratio, 

 /3S on the basis of the test results on one-story one-bay frames. f3S was obtained using 
the following equation. 

   I3S [2mwo fox2dt, = —mfo yxdt(6.24) 

where, m = mass 
        = base acceleration 

        = mass relative velocity 

2mwo = critical damping coefficient for a single-degree-of-freedom oscil-

              lator 

Equation 6.24 implies that energy input from horizontal uniaxial base motion which 

is represented by the right-hand term is entirely dissipated by an imaginary viscous 

damper associated with horizontal velocity of mass carried by the frame. The critical 

damping coefficient for a single-degree-of-freedom oscillator, 2 woo , was introduced 

to express the substitute damping coefficient as a ratio of the critical damping. 

Using the concept of reduced stiffness and substitute damping, they proposed a 

procedure by which effects of inelastic response for reinforced concrete structures can 
be estimated on the basis of linear response. The reinforced concrete structures can be 

idealized as single-degree-of-freedom systems. The procedure can be used to obtain 

design base shear and maximum displacement to be reached during an earthquake. 

Past research on dynamic response of prestressed concrete have discussed a magnifi-

cation factor of dynamic response of prestressed concrete system to that of convention-

ally reinforced concrete system. However, it was based on rather scattered calculation 

results. In this study as well, ratios of displacement response of single-degree-of-

freedom systems with prestressed concrete type hysteresis loops to those with 

reinforced concrete type ones scatter in the wide range depending on the earthquake 

records used and the natural frequency of the systems. 

In this section, a method for predicting displacement response of prestressed concrete 

systems using the similar concept as Gulkan and Sozen proposed is introduced on the 
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basis of the calculation results in the former section and an additional analysis. The 

method is further extended to obtain design base shear. 

6.4.2 Substitute damping 

The substitute damping was calculated using the base acceleration, mass relative 

velocity time history response and Eq.6.24. Fig.6.13 indicates the calculated substitute 

damping plotted against ductility ratio,  µ, which is defined as a ratio of maximum 

absolute displacement to yield displacement. The substitute damping was obtained 
from the calculation results of the section 6.3.4 of this chapter and the additional 

analysis: the skeleton curve was assumed to be bilinear, i.e., /3c, = 1.0 and Ke = Ky. 
The two earthquake wave records were used : El Centro 1940 NS Component and the 

earthquake motion recorded at the first floor of the building at Tohoku University 

during the Miyagiken-oki earthquake in 1974. The natural period of vibration 

investigated ranged between 0.1 and 3.0 seconds. The coefficient of viscous damping 

was assumed to be 0.05. Including the additional analysis, the parameters investigated 

are p,= 2.0 and 3.0, Te / Ty =1.0, 2.0 and 4.0. Ty is a natural period of vibration 
based on the secant stiffness at yield displacement. Te = a natural period of vibration 

based on the elastic stiffness. The ratio of yield capacity to the weight of a structure, 

which is denoted as /3u ranged 0.2 to 1.4. The plotted data in Fig.6.13 are from the 
results in which the maximum absolute displacement exceeded the yield displace-

ment. 

Gulkan and Sozen [6.9] suggested the substitute damping ratio, /3., would vary with 
attained ductility, µ, as ratio of area EBC to area ABF indicated in Fig.6.14. Therefore, 
the following relationship can be obtained. 

pS «(1-1/Aiii)(6.25) 

They also suggested that if /3S is assumed to have a threshold value of 0.02 at = 1.0, 
Eq.6.25 is expressed as, 

/3S ={1+10(1-1/~)} /50(6.26) 

In this study, however, the best-fit linear equations in the range of u = 1-5 for the 

plotted data are listed below and shown in Fig.6.13 by a solid line for prestressed 
concrete systems and by a dotted line for reinforced concrete systems. 

For reinforced concrete with /3c, =1.0 and Te I Ty =1.0 , 

/3S = 0.07606(2 —1) + 0.09132(6.27) 

                                             219



 O PC (El Centro NS) fi5=0.0760661-1)+0.091320 PC (El Centro NS)0 s=0.05715(/2-1)+0.1850 
0.5 - • RC (El Centro NS)0.5• RC (El Centro NS) • PC (Miyagiken-oki)• PC (Miyagiken-oki) 

o RC (Miyagiken-oki)o RC (Miyagiken-oki)o 
 0.4:4 0.4 P

y/Per=2,Ke/Ky=2 .........0,.......--•.'         P /F'=1,K /K =1;Si 
            y cre y 

     

• -- 

                                                  la. Ct.. 
, E 0.3 ..................................E 0.3 .................................................................................A 
COQ- - ' '•OSM..-0 

                 13a-9 ••
1*,  0

.2 ................02                            0 IN-         1*..•••0)•0...'                      .-.-.......................              •4• ...................... 
•A ,-,......,                     a 

                                                         •*fl
e=0.03160(.1-1)+0.1194    .er      4z0.1..;41-44"...................................e.es ..............................Ja               z0. 1T'..................................................................................44' 

fi5=0.03683(1-1)+0.07694 
O ------------------------------------------0 

1 23456123456 

              Ductility ratio, itDuctility ratio, 12 

O PC (El Centro NS) 
• RC (El Centro NS) 3s=0.06878(p-1)+0.2268 0 PC (El Centro NS) 13s=0.05223(g-1)+0.1832 

0.5 _ • PC (Miyagiken-okt)0.5J• RC (El Centro NS) ------------------ o RC (Miyagiken-oki)!/ ..-• PC (Miyagiken-oki) 
              ..--o RC (Miyagiken-oki)o 
 c=1"P /P =2,K /I< =40....MI crt,'V-     0

.4 - Y Cr e y........- 0.4Py/Pcr=3,Ke/Ky=2." cii-di 
cc..--. ._._. 
ct.cl..• E 0

.3 ---------------.0' -- E 0.3 .........................0-• 
CIS .0.(0    -C3 

           111'      -t3C (1)5-----------• 
1 0.2 

• 

 VI                 •................... o13 s=0.05685(y-1)+0.1464"--,            iiiO• •                                              \ 

• 

 Z 0•. 1 .....................................................................................Z0.1 & ...........................13s=0.03845(2-1)+0.1102 __ 

O -----------------------------------------------0 -------------------------------------- 
1 23456123456 

              Ductility ratio, 12Ductility ratio, p. 

0 PC (El Centro NS) 
• RC (El Canto NS) 

    0.5 • PC (Miyagiken-ola) --------------------- 
                   0 RC (Miyagiken-oki) 0 . - • ''' 

crs:'       0
.4Py/Per=3,Ke/Ky=4 o,.-'•  di

.--..of C. • 

   0.3Fig.6.13 Substitute damping ratio  E
0

410................................ 

                          0-.   us 
la

414o 
      0.2                                 fis--0.0736302-1)+0.2053 20"A 

:a.•     \. 
  •al -----------------------133=0.0624301-1)+0.1281        o- 

 O I  
   123456 V 

                 Ductility ratio, /2 

                                                 B 
,e1r4 4Pe ill Fig.6.14 Substitute damping ratio by1                                       / 1 

ieleerrIr                                  / Ar, +        Gulkan and Sozen [6.9] E                     -ier.fr/                                                                                    ................ ak. .A. AL A. Aa -8 
                            ..-."-- ACF 

                                                                                                          --- 

                                                                                              --. 

                                                                                                                        ...- 

                                                                                      --- 

                                                                                   --- 

                                                                                                         ...- 

                                                                                                     ..-- 

                      D 220



For prestressed concrete with  Ncr =1.0 and Te / Ty =1.0 , 

135 = 0.03683(µ —1) + 0.07694(6.28) 

For reinforced concrete with /3cr = 2.0 and Te / Ty = 2.0, 

/3S = 0.05715(µ —1) + 0.1850(6.29) 

For prestressed concrete with I3cr = 2.0 and Te / Ty = 2.0, 

f3 =O.03583(µ —1)+0.1185(6.30) 

The substitute damping for the other combinations of parameters are summarized in 

Table 6.2. 

Iwan [6.10] proposed the following empirical relationship between an effective period 

shift Teq / Te and a ductility ratio u on the basis of the calculation results of single-

degree-of-freedom systems with hysteretic restoring force characteristics associated 

with linear, simple hysteretic and degrading hysteretic behaviour. 

Teq /Te =1+0.121(µ-1)n :n=0.939(6.31) 

To streamline the discussion, n is assumed to be unity. Within the range of µ = 1-5, the 

difference between n = 0.939 and n =1.0 is as much as 3%. 

When calculating the substitute damping, vµ • Te was used as an equivalent period of 

vibration. The substitute damping must be modified by the factor given by the 

following equation based on the effective period shift suggested by Iwan. 

7=[1+0.121(µ-1)]/Affi(6.32) 

The substitute dampings given by Eqs.6.27 to 6.30 were then modified as follows. 

For reinforced concrete with p„  =1.0 and Te / Ty =1.0 , 

/3s =0.O7606(µ-1)[1+O.121(µ-1)]+0.09132(6.33) 
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For prestressed concrete with  Ncr =1.0 and Te I Ty =1.0, 

   /3S = 0.O3683(µ1)                 [1+ O.121(µ — l)] + 0.07694 (6.34) 

For reinforced concrete with Ncr = 2.0 and Te / Ty = 2.0, 

13S = 0.05715(µ—1}[1 +O.121(µ —1}] + 0.1850 (6.35) 

For prestressed concrete with f3„  = 2.0 and Te / Ty = 2.0, 

p = 0.03583(µ—1)[1 + 0.l21(µ — l}] + 0.1185 (6.36) 

Response spectra are usually given in respect to a particular damping ratio. The 

response spectra for dampings other than this particular damping are assumed to be 

given using the following equations [6.11]. 

For h> 0.05 

S(heq) — 2.25  
    S(0.05) 1.75 + lOheqbut (0.1s<—Teq<—2.5s) (6.37) 

    S(heq~2 .25  \ 41—  log Teq         =1—1—but (2.5s~Teq  <— 10.Os) S(0.05) ` 1.75 + lOheq 1 ,. 0.60 

                                             (6.38) 

For h<-0.05 

S(heq) — 1.5  
   S(0.05) 1 + lOheqbut (0.1s<—Teq)(6.39) 

6.4.3 Prediction of displacement response by substitute damping 

A procedure based on linear response can be used to predict maximum displacement 

response and to evaluate design base shear. The procedure involves the following 
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steps. 

   1. Assume an admissible value of  u. 
   2. Calculate an effective period Teq by using the assumed value of it and 

       Eq.6.31 (n is assumed to be unity). 
   3. Calculate /3S corresponding to the assumed value of ,u by using Eqs.6.33 to 

        6.36. 

   4. Obtain maximum displacement by entering spectral response diagram with 

      the effective period of Teq and a damping ratio equal to /35 determined in Step 
       3. If the spectral response diagram is given in terms of the damping ratio 

       other than /3S, Eqs.6.37 to 6.39 are used for extrapolation. 
   5. If the difference between a ductility factor which is obtained from the 

       maximum displacement and the yield displacement, and the assumed value 
of ,u becomes within a tolerable limit, the maximum displacement and the 

       base shear are considered to give a good approximation. If the error is not 
       in the tolerance, return to Step 1 with a new assumed value of it. 

Example  

Consider a single-degree-of-freedom structure with prestressed concrete type hyster-
esis loops. A period of 1.0 second is assumed on the basis of the secant stiffness at yield 
displacement. When a mass of the structure M is 1.0 kg, the secant stiffness at yield 

displacement Ky is 39.478 kg- cm / s2 / cm. If the yield capacity of the structure is 

assumed to be Qy = 0.2M • g , the yield displacement is given by Qy / Ky = 4.965 cm , 
where g is acceleration of gravity. The skeleton curve of the system is assumed to be 
an elasto-perfectly plastic type : p„ = 1.0 and Ty / Te =1.0 . 

If it is assumed to be 4 the period is modified to 1.363 seconds. Eq.6.33 gives a 

substitute damping ratio of 0.152. For a particular ground motion, a displacement 

response of cm can be obtained by entering a spectral displacement response, for 

instance an average response spectrum by Umemura shown in Fig.6.15. The displace-

ment, velocity and acceleration response spectra are given as follows. 

90T2kGT<_0.5s 

SD (cm) =45TkG 0.5 <_ T <_ 3 (6.40) 
135kGT>3 
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 566TkG T <_ 0.5s 

   Sv (cm /s)= 283kG0.5<_T<_3(6 .41) 
849kG /TT>3 

3.6.g•kG T S0.5s 

SA(cm/s2)= 1.8.g•kG/T 0.55T<_3(6 .42) 
5.4•g•kG/T2 T>3 

where, g = 980 cm I S2 and kG = ratio of maximum ground acceleration to 

acceleration of gravity. Assuming the maximum ground acceleration of 319 cm / s2, 

which is the maximum acceleration record of El Centro 1940 NS Component, the 
displacement response of 19.97 cm is obtained. Since Umemura spectra is considered 

to be given for an oscillator with a damping ratio of 0.05, the response should be 
transferred to a displacement response with the substitute damping of 0.152 by using 

Eq.6.38. This results in the displacement response of 13.73 cm, which corresponds to 

the ductility factor of 2.765. The difference between the assumed value and the result 

is significant. Then, return to Step 1 with a new assumption of ,u = 2.765. 
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 ,u = 2.765 results in the effective period of 1.214 seconds and the substitute damping 
of 0.124. The displacement response obtained is 13.36 cm corresponding to the 
ductility ratio of 2.69. The difference is still large. Return to Step 1 with a new 
assumption  of = 2.69. This results in the effective period of 1.20 seconds, the 
substitute damping of 0.123 and the displacement response of 13.34 cm corresponding 
to the ductility ratio of 2.69. 

The result of the time-history analysis for El Centro 1940 NS Component whose 
spectra are similar to Umemura spectra gives the maximum displacement of 10.43 cm. 
The rather favorable comparison between the "exact" and approximate value of the 
maximum displacement suggests that the substitute damping method may be used 
successfully in the region covered by the exact analyses. 

6.4.4 Comparison of dynamic response between prestressed concrete 
     and reinforced concrete systems 

When comparing dynamic response of prestressed concrete systems with that of 
reinforced concrete system, a clear conclusion cannot be derived because of consid-
erable scatter in the calculation results. Use of substitute damping gives a structural 
designer a good indication of how large displacement can be reached in a prestressed 
concrete system during an earthquake motion. 

In the case of designing a prestressed concrete building frame it is of great importance 
to know how large the maximum displacement is reached during an earthquake 
comparing with a reinforced concrete building frame. There are two cases concerned 
: (1) the same yield capacities are given to both prestressed and reinforced concrete 
systems or (2) the same maximum displacement is predicted to be reached in both 
systems. 

(1) the same yield capacity 

The procedure described in the preceding example is followed to obtain the maximum 
displacement response of a reinforced concrete structure with the same yield capacity 
and secant stiffness at yielding as that of a prestressed concrete structure. 

For instance, Fig.6.16 shows the ductility ratio response of prestressed and reinforced 
concrete systems to Umemura spectra of kG = 0.3255. Their period at yielding is 1.0 
second. Smaller yield capacity results in a larger ductility ratio as past research has 

pointed out. The difference between the responses of the prestressed and reinforced 
concrete systems becomes larger as their yield capacities decrease. 

However, the situation is changed when their responses are expressed by the maximum 
displacements. Fig.6.17 illustrates the maximum displacement response of these 
systems by a solid line for the prestressed concrete system and by a dotted line for the 
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reinforced concrete system. For the prestressed concrete system the maximum 

displacement response slightly decreases as the yield capacity increases. For the 

reinforced concrete system, however, the maximum displacement response rather 

increases as the yield capacity increases. These curves show that even if the yield 

capacity of the prestressed concrete system increases to some degree in order to reduce 

the maximum displacement response, it never reduces to as much a displacement 

response as the reinforced concrete system unless they respond in an elastic manner. 

NZS 4203: 1984 specifies 25% larger seismic design load for a prestressed concrete 

structure than an equivalent reinforced concrete structure. However, the fact described 

above reveals that additional yield capacity alone cannot lead to a reduced displace-

ment response as much as the equivalent reinforced concrete structure. It is not so 

useful to increase yield capacity in order to reduce the maximum displacement 

response. 
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(2) the same displacement 

This case is much more complicated and much more interesting than the former. There 
are two ways for the two systems to reach the  same displacement. One is to boost up 
the yield capacity of the prestressed concrete system. The maximum displacement of 
the reinforced concrete system can be obtained by the same procedure described 
above. If the prestressed concrete system has the same secant stiffness that the 
reinforced concrete system, an assumed yield capacity gives a yield displacement from 
which the ductility ratio can be calculated. From this ductility ratio displacement 
response of prestressed concrete system is obtained. If the displacement response and 
the above maximum displacement response are the same, the assumed yield capacity 
is considered to give the same displacement response that the reinforced concrete 
system. However, as described above, it is difficult to have the same displacements in 
both systems when the yield capacity alone of the prestressed concrete system 
increases. 

The other is to increase the secant stiffness at yielding of the prestressed concrete 
system. In this case the yield capacity of the prestressed concrete system is assumed 
to be equal to that of the reinforced concrete system. The secant stiffness at yielding 
of the prestressed concrete system should be increased so that the corresponding yield 
displacement decreased. From the yield displacement the same procedure in the 
former case is trailed until as large displacement response as the maximum displace-
ment of the reinforced concrete system is obtained. However, it should be noted that 
the maximum ductility ratio is increased as the secant stiffness decreases. 

Example  

Consider a single-degree-of-freedom structure with reinforced concrete type hyster-
esis loops of the same characteristics that the preceding example. If the first trial starts 
with µ = 4 which modifies the period to 1.363 seconds, Eq.6.33 gives a substitute 

damping ratio of 0.247. From Umemura displacement spectra the displacement 
response can be predicted 10.65 cm. This corresponds to the ductility factor of 2.15. 

The second trial : µ = 2.15 and )(3S = 0.159. The predicted response is 11.23 cm, which 

corresponds to µ = 2.26. 

The third trial : µ = 2.26 and Js = 0.165. The predicted response is 11.18 cm, which 

corresponds to it = 2.25. 

The prestressed concrete system with the same yield capacity should have a larger 
secant stiffness at yielding than the reinforced concrete system. If the period at yielding 

of the structure is assumed to be Ty = 0.75 second, the yield displacement is given by 

Qy/KY= 2.793cm. The maximum displacement obtained is 10.89 cm, which is 
approximately the same displacement that obtained above in the reinforced concrete 
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system. The ductility ratio attained 3.90, which is 73% larger than that of the reinforced 

concrete system. 

6.5 Conclusions 

From the above analytical study, the following conclusions are reached with regard to 

dynamic response of prestressed, partially prestressed and reinforced concrete single-

degree-of-freedom systems: 

1. The idealized curves proposed in Chapter 5 were used as the load-displacement 

   idealization. Response spectra of the idealized curves to earthquake excitations 

   for various ranges of yield capacity, period of vibration, and so on were calculated 

   to investigate the fundamental characteristics of the idealization. However, these 

   calculations were conducted in order to examine the characteristics of the 

   idealization curves because the idealized curves are not considered to express 

   directly the load-deflection relationships of a structure or a layer of a building 

   itself : They were derived based on the moment-curvature curves obtained 

   experimentally. The response of a building is largely affected by the load-

   deflection response of reinforced concrete constituent elements such as columns 

   and walls. A comparison between the idealizations for a prestressed concrete and 

   a reinforced concrete system which will be described in the later part of this 

   section should be referred to as the extreme case of these systems. 

2. Comparison of displacement responses between prestressed, partially prestressed 

   and reinforced concrete systems showed that the average ratios of the maximum 

   displacement responses of the prestressed concrete systems to those of the 

   corresponding reinforced concrete systems ranged between 0.98 and 1.39 with 

   the maximum value of 3.23. For partially prestressed concrete systems those 

   ranged 0.98 and 1.15 with the maximum value of 2.06. Generally, the ratios are 

   larger in the period shorter than approximately 0.5 seconds. 

3. Responses of prestressed concrete systems were compared with those of corre-

   sponding reinforced concrete systems whose load - displacement hysteretic 

   behaviour was controlled by slip of longitudinal beam bars, that is, indicated 

   pinched hysteresis loops. The average values of the ratios of the maximum 
   displacement response of the prestressed concrete systems to that of the rein-

   forced concrete systems with pinched hysteresis loops ranged between 1.09 and 
   1.14. They are slightly smaller than those in the comparison between the 

   prestressed and the reinforced concrete systems. The average values for the 

   partially prestressed concrete are approximately unity. 

4. Substitute damping was introduced and calibrated from the results of the time-

   history analyses in order to predict dynamic responses of prestressed , partially 
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   prestressed and reinforced concrete systems. The substitute damping was proved 
   to give a good approximation of responses of those systems. 

5. Some examples using the substitute damping revealed that increasing the 
   strength of some types of structures may increase the maximum displacement. 
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Chapter 7 

DYNAMIC RESPONSE ANALYSIS OF PRESTRESSED 

CONCRETE BUILDING FRAMES 

7.1 Introduction 

Dynamic response characteristic of prestressed concrete single-degree-of-freedom 

systems was reported in Chapter 6 as they were compared with that of equivalent 

reinforced concrete systems. Similar analytical investigations have been carried out 

elsewhere in the past. However, two-dimensional analysis has not yet been conducted 
on prestressed concrete building frames. This kind of analysis is of great importance 

especially in order to develop a seismic design procedure for prestressed concrete 

building frames. Dynamic response analysis using a single- or multi-mass shear 
systems can save time and expense if story restoring force characteristics of a building 

frame are available. However, the restoring force characteristic in each story depends 

strongly on the ratio of the stiffness of the prestressed concrete beams to that of the 
reinforced concrete columns, and the combination of their flexural capacities. Moreo-

ver, the restoring force characteristic of a prestressed concrete beam itself fluctuates 

widely with the amount of  prestressing force and the ratio of the amount of nonprestressed 
longitudinal reinforcement to that of prestressing steel bars. The displacement re-

sponse of prestressed concrete derived by analysis using a single- or multi-mass shear 

system appears to be overestimated, although it may be the upper limit. 

On the basis of the research work by Sharpe [7.1 ], the author has developed a computer 

program for two-dimensional dynamic response analysis which incorporates the 
moment-curvature idealization of prestressed concrete sections proposed in Chapter 

5. In this chapter, after the outline of the analytical procedure, dynamic response 
analyses will be reported on model frames designed in prestressed and reinforced 

concrete. 

Building frames to be treated in this chapter are the frames which consist of beams, 

columns and their assemblages. Structural walls are not taken into account. 

7.2 Damping model 

To model the material and velocity damping present in a dynamically excited frame, 

a general damping system was proposed by Caughey [7.2] to give damping forces 

proportional to both the mass and stiffness of the frame. 
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   [C] = [M] .N-1         a J  • ([M]'[K])'(7.1) 

                  Rayleigh damping, the first two terms of Eq.7.1, was used in this research. The 

damping matrix [C] was defined by the following equation. 

  [C] = a[M] +/3[K](7.2) 

       2w1w2(w2A1—w12,2)  
a =22(7 .3) 

              w1w2 

       2(w1A'1 —w2A'2) 
 =22(7 .4) 

           wl—w2 

where oh and w2 are the first and second natural circular frequencies, and Al and 2,2 

are the respective fractions of critical damping applicable to modes with these 

frequencies. In this thesis, both Al and A2 are assumed to be 5%. 

7.3 Non-linear beam model 

Sharpe [7.1] employed Giberson's one-component model of non-linear beam [7.3]. A 

schematic diagram of the beam model is illustrated in Fig.7.1. It is a one-dimensional 

prismatic beam with spring hinges incorporated at infinitesimal distances from either 
end. By varying the rotational spring stiffness of the independent hinges, the full range 
of situations can be idealized: from the beam with a pinned end to the beam being 

linearly elastic along its entire length. Therefore, the full spectrum of possibilities can 

be covered. The spring rate of each of the hinges is expressed as a fraction of the elastic 

bending stiffness of the beam, 4E1 I L (E, Young's modulus; I, moment of inertia; L, 
length). 

Since the critical sections may occur at the interface of the members rather than at the 
intersection of their center-lines, a modification is made to the transformation matrix 

which relates the coordinates of the member to those of the entire system . Small rigid 
end-blocks at either or both of its ends are introduced on the basis of small deflection 
theory. This transformation is also shown in Fig.7.1. 

The theoretical discontinuity in rotational deformation, which occurs at the critical 

sections in the beam-model, is assumed to extend over an infinitely small length . The 
rotation of the hinge at this point can only be related to the curvature at the same point 

in the real structure if the hinge is considered to have some finite length . This plastic 
hinge length varies with the amount of curvature, the type of material , section 
dimensions, shear span ratio and so on. However, if a constant value for this length is 
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 infi  itely small 

            MA 
B 
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           j' CAsimilar details   A
at both ends 

            spring-hinge rotational stiffness = 4E 

E : Young's Modulus 
I : Moment of Inertia 

Case 1: Hinges A and B both non-linear. 

{6MA 4EI/L  fA1 +—43fB32 fA ' fB {A0A                                                QMB 1+4
3(fA+fa+fA'f)2f3A'fB fB1+43fAOBB 

Case 2: Hinges A non-linear, B linear. 

1 

    {AMA} 4EI / L fA -fA AOA      AMB  1 + fA 1f4+fA.ABB                     2

a) Giberson's one-component non-linear beam model 

                      rigid end-block 

  oimimmmmumio, 

     ^ 

                             new position 
                           of spring hinge 

      b) Beam model modified to incorporate rigid end-blocks which 
            shift the position of the critical sections inwards. 

       Fig.7.1 Beam model [7.1] (to be continued to the next page) 
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                                 rigid end-blocks  YB 
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         c) The transformation from system- to member-coordinates 

                    Fig.7.1 Beam model [7.1] 

assumed, a relationship between the moment and the equivalent curvature at an 
equivalent plastic hinge region can be derived on the basis of small deflection theory 
and the beam-model's hinge rotation. Using the notation of Fig.7.2 and assuming the 
bending moment over the length of the hinge to be constant at that value, the finite 

plastic hinge is first considered to consist of two discontinuous parts, A-B and B-C. For 
each of these halves, 

H 

 2=1191(7.5) 

    M =  El(7 .6) 

For the equivalent continuous hinge A-C, in which constant curvature is assumed, 

H = p92(7.7) 

By the definition of Giberson's beam model 

M =JE 
 L(7.8) 

where E is the angle of rotation of the infinitely small spring hinge. By the geometry 
of the model, 

201 + E = 92(7 .9) 

Thus, by using Eq.7.5 and Eq.7.6, the following relationship can be derived . 
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      Fig.7.2 Beam plastic hinge model (small deflection theory) [7 .1] 

M=EI1 
        H (7.10) 

=EI(e2—E)  
H(7.11) 

      = EI        1H_ ML  ) 
H p 4EIf(7.12) 

= EI---------1 
1 +(7.13) 

          4H----          f 

                                      1 where 4) is the curvature of the equivalent plastic hinge region (V = 
P). The curvature 

of the plastic hinge can be expressed as the following incremental form. 

dM _EI1  
 dO 1 +  L(7 .14) 

4 Hf 

It should be noted that this expression relies on the adoption of small deflection theory. 
This is consistent with similar assumptions made in the analysis of structural frames. 
Obviously, the selection of an unrealistically large plastic hinge length will invalidate 
the use of the above expression. 
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7.4 Column moment - axial load interaction 

Figure 7.3 describes the interaction model chosen for this study. The interaction curve 

is modeled by a series of straight lines. For a typical reinforced concrete column, this 

series of lines are characterized by the following four points; pure axial tension, pure 

bending with no axial load, balanced yield and pure axial compression. More data 

regarding the region between the point representing balanced yield and that represent-

ing pure bending with no axial load can be accommodated if more accurate represen-

tation is needed. 

                                     0 

 ,;c< (0, Pcy) 

                        (symmetrical) 
(Mby, "by) 

              IcompressionMoment 
                 tension ' (Moy 0) 

                                   (0, Pty) 

        Fig.7.3 Column yield moment - axial load interaction model 

7.5 Tracking a moment - curvature relationship 

When the variation in moment, with respect to curvature, is large, there is an often 
unavoidable over- or underestimation of the moment at a particular curvature, which 
is inherent in the procedure when a change of stiffness is incurred. This arises from the 
necessary assumption of linear behavior for the duration of each constant length time-
step. 

There are four ways of getting around the problem of moment overshoot. 

1. The excessive or deficit moment is reset to the value which correctly corresponds 
to the current curvature. 
2. The moment in error is not reset and the analysis proceeds using the erroneous value 
as an initial condition for the following time-step. 
3. The moment to which directed by the moment - curvature relationship for the current 
curvature is limited, and the difference between these two values as a constant 
excessive load is applied on the appropriate node for the duration of the next time-step. 
4. An iterative procedure over any time-step in which any moment overshoot . 

In this research the moment overshoot was counteracted by reinvesting it on the 
following ( constant length) time-step. 
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7.6 Structural layout and description of the buildings 

The buildings analyzed were designed in accordance with the requirements for BDF 

System specified in the seismic design procedure proposed by the ALT task-committee 

on seismic design of prestressed concrete buildings and in part the  All Guidelines [7.4] 
were used. A building to be designed in BDF (Beam sidesway ductile frame) is 

required to fail in beam sidesway mechanism. The design procedure itself employs the 

capacity design method. The detail of this design procedure will be described in 

Chapter 8. The component of horizontal earthquake loading perpendicular to the plane 

of the frames considered was assumed to be resisted by structural wall or some other 
structural systems. The effect of vertical component of earthquake loading on the 

response of the buildings was neglected although it may be of significance for a 

building with long-span beams. Torsional moments and P-A effects were not consid-

ered in the design. 

For simplification the design moment due to earthquake loading only was considered. 

The design moments due to dead and live loads and the secondary moment due to 

prestressing were not taken into account. 

A uniformly distributed dead and live load of 9.8 kPa was assumed. A concrete 

compressive strength of 30 MPa was assumed in both beams and columns. Young's 

modulus of concrete was assumed to be 3.33x 104MPa. Equivalent plastic hinge length 

equal to whole depths of members was assumed. 

There are two research work on plastic hinge length of prestressed concrete members. 

Park et al. [7.5] obtained an equivalent plastic hinge length of approximately half a 

whole depth of prestressed concrete beams from their test results. Okamoto [7.6] 
suggested equivalent plastic hinge length of 

leg /D=0.06•Z/D+0.7(7.15) 

where Z: shear span length, D: whole depth of the section. This can be applied to a 

member whose rotation angle at the either end is greater then 1/100 radian. Okamoto 

examined Park et al's experimental results by his expression and found that his 

equation can be applied to the prestressed concrete beams tested by Park et al. on the 

basis of the distribution of curvature along the beam length. 

Structural layout of the frame to be designed is shown in Fig.7.4. 

7.7 Design of possible plastic hinge regions 

Beam ends, top of the top layer columns and bottom of the first layer columns were 

designed as possible plastic hinge regions. The design moments for these plastic hinge 
regions were determined by a linear analysis of the frame. The elastic analysis was 
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          Fig.7.4 Structural layout of the frames to be designed 

carried out on the assumption that stiffness of beams with plastic hinges at both ends 
and columns with a plastic hinge at either end were reduced to 50% and 70% of elastic 
stiffness, respectively. Members without plastic hinges were assumed to maintain 
elastic stiffness under design seismic load. Member sections were proportioned so that 
interstory drift of every layer was less than 1/300 radian in order to meet the 
requirement of ALT Guidelines. Strictly speaking it is not a requirement. The Guide-
lines say that interstory drift of every layer of a building under design seismic load 
should be equal to or less than 1/200. However, the Commentary says stiffness 
reduction due to cracking should be accounted. In the case of preliminary calculation 
the following assumptions are considered to give a conservative displacement. 
1) Elastic stiffness for the members without plastic hinge 
2) Half an elastic stiffness for the beam members with plastic hinges at both ends 
3) 70% elastic stiffness for the column members with plastic hinge at either end 
4) Apply interstory drift limitation of 1/300 
In designing four- and eight-story frames the above criteria were adopted . 

However, for 16-story frame an impractically large column size was required to meet 
the above regulations. An alternative criteria was applied to the frame : stiffness 
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reduction was not considered and the interstory drift of every layer under design 
seismic lateral load was less than 1/200 radian. This is the design criteria described in 
the current design code for prestressed concrete structures in Japan. Design and 
analytical results of the 16-story frame will be described after analytical results of four-
and eight-story frames are examined. 

The average acceleration method  (/3 =1 / 4 ) was employed in the analysis. Ai 

distribution was employed as a distribution of design layer shear force along the height 
of the building. 

7.8 Design of non-plastic hinge regions 

To give columns a high degree of protection against premature yielding due to dynamic 
effects particularly from the higher modes of vibration of the building, the dynamic 
magnification factor was introduced. According to AIJ Guidelines this is given by the 
following equations. 

coci = 1.0 + (Ow / 00) • (Pchi / 3ci)(7.15) 
wwi =1.0 + (Ocv / 00) • (Nwhi / pwi)(7.16) 

Acoi = 0.25(i =1)(7.17) 
=0.20(2Si<_n/2) 
=0.20+0.10(i—n/2) (i>n/2) 

where coci, wwi = dynamic magnification factors for column and wall in i-th 

                 layer 

0o = C10/ 0.25 
C10 = base shear coefficient of a designed building 

/-'ci , Nwi = ratio of story shear force attributed to column or wall to entire 
                 story shear force under fundamental period of vibration 

       3chi, l3whi = ratio of story shear force attributed to column or wall to entire 
                 story shear force under higher mode of vibration 

Besides consideration of higher mode of vibration, for columns of two-way frames the 
effects of concurrent earthquake attack along both principal axes of the building 
should be considered. This was incorporated by adding 0.1 to the dynamic magnifi-
cation factor according to AIJ Guidelines. For the four-story frame considered, coci of 

each layer is given as follows. 
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 '  c4 =1.43 

wc3 =1.35 

wc2 =1.27(7.18) 

wc1 =1.31 

Therefore, design moments for the members are given in Fig.7.5. For the eight-story 

model frame, design moments of the members and coci of each layer is given in Fig.7.6. 

                               (Unit : kNm) 
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Design axial loads on columns induced by an earthquake are derived on the assumption 

that ultimate flexural strength should develop at all potential plastic hinge regions of 

the beams above the specified layer at once. The following equation was used to design column longitudinal reinforcement.
N j 

    Mu =0.8a,ayD+0.5N•D1—
bD'                 fc(7.19) 

where  Mu = ultimate flexural strength (design moment), at = sectional area of 

longitudinal reinforcement, 6y = yield strength of reinforcement, N = design axial 

load, D = whole depth of column and f', = compressive strength of concrete. The 

sectional area of longitudinal reinforcement required for the columns was determined 
by Eq.7.19 for the minimum axial load. However, in some cases the amount of 
reinforcement was so small that it did not meet the requirement of minimum 
reinforcement specified in the AU code : 0.8% of gross sectional area of column. In 
this study all column sections contains longitudinal reinforcement whose sectional 
area is at least 0.8% of gross sectional area of the column. The moment-axial load 
interaction curve was calculated for each column section using the sectional area of the 
longitudinal reinforcement obtained above. 

7.9 Natural period of buildings 

The natural period calculated on the basis of the same stiffnesses of the member 
sections assumed in the linear analysis is given in Table 7.1. 

       Table 7.1 Natural period of four-, eight- and sixteen-story frames 

         Period (sec.) 4-story 8-story 16-story 

        1st0.488 0.575 1.433 

       2nd0.127 0.166 0.467 

       3rd0.054 0.082 0.260  
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 7.10 Moment - curvature idealization assigned to plastic hinge regions 

The moment - curvature relationship assigned to plastic hinge regions of columns was 
bi-linear. Since stiffness degradation due to cracking can not be allowed in the 
idealization, the first segment up to yielding has a stiffness of 70% of the elastic 
stiffness of the gross section of the columns with plastic hinge at either end. The 
stiffness beyond yield point is assumed to be 1% of the stiffness of the first segment. 

The moment - curvature relationship assigned to plastic hinge regions of the beams 
was the idealization proposed in Chapter 5. It is shown in Fig.7.7. The ratio of yielding 
moment to cracking moment was 2. The ratio of secant stiffness at yielding to elastic 
stiffness was assumed to be 4. 

Prestressed concrete members and reinforced concrete members have quite different 
moment-curvature characteristics as described in Chapter 2. Thus, the moment-
curvature relationship assigned to plastic hinge regions should reflect the difference 
and be based on a practical cross section provided with reinforcement. However, a 
reinforced concrete beam of 20m length is not practical: This was just for a compara-
tive study. Besides, a region of large deflection is of interest in this research work and 
the moment-curvature characteristics up to yielding was considered not to affect the 
response of the frame significantly. 
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    Fig.7.7 Moment - curvature idealization of beam plastic hinge region 
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7.11 Selected ground acceleration records 

The three typical digitalized earthquake records were included in the analyses; The El 
Centro 1940 North-South Component, the earthquake motion recorded at Hachinohe 
harbor during the 1968 Tokachi-oki earthquake and the motion record at the first floor 
of the building at Tohoku University during the Miyagiken-oki earthquake in 1974. 
The first 16 seconds of the earthquake records were used because the maximum 
acceleration and velocity are observed within the first 16 seconds of the records which 
are considered to give the largest effects. The time interval used in the analyses was 
0.005 seconds. To investigate the behavior of the frames during severe earthquakes 
the digitalized earthquake records were amplified so that the maximum velocity of 
each earthquake record was 50 cm/s. The maximum acceleration, velocity and 
displacement of the earthquake wave records used are summarized in Table 7.2. 

            Fig.7.2 Characteristics of earthquake wave records 

  Earthquake records El Centro NS Miyagiken- Hachinohe 
                       1940 oki 1974 EW 1968  

  Maximum acceleration (cm/s2) 341.7 258.2182.9 

 Maximum velocity (cm/s) 33.4 36.235.7 

 Maximum displacement (cm) 10.9 14.5  

7.12 Calculation results of four- and eight-story frames 

The response of the four-story and eight-story frames were analyzed. The envelopes 
of the extreme structural deformations and member actions are presented in terms of 

(1) interstory drifts, (2) beam and column bending moments, shear forces and plastic 
rotations, (3) the development of plastic hinge formation during the earthquakes, and 

(4) shear force induced in each story. 

7.12.1 Results of four-story frames 

Interstory drift  

Maximum interstory drift of each layer is plotted in Fig.7.8. Generally speaking the 
building with prestressed concrete beams exhibits the largest interstory drift among the 
three frames. The interstory drift responses of the reinforced concrete frame were the 
smallest among three types of frames. 
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The ratio of the response of prestressed concrete building to that of the reinforced 

concrete building ranged between 0.87 and 1.58. The interstory drifts along the height 

of the building were almost the same because the intended failure mechanism was a 

beam sidesway mechanism. 

In the analyses of SDOF systems described in Chapter 6 the ratios of the responses of 

the prestressed concrete systems with a various range of natural period and yield 

strength to those of the reinforced concrete systems scattered. In the analyses of the 

frames they were plotted in a relatively small range. 

Comparison of the response results with the results obtained in Chapter 6 reveals that 

the ratios of the responses of the prestressed concrete systems to those of the reinforced 

concrete systems were larger in the analyses of the SDOF systems than in the two-

dimensional analyses of the frame structures. This is because of the influence of the 
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column plastic hinge regions. Since the frames were so designed as to fail in a beam 

sidesway mechanism, this must be an extreme case in which the prestressed concrete 

beam plastic hinge regions strongly influenced the responses of the frames. 

The story shear and interstory drift relationship of each frame obtained from the static 

inelastic analyses is plotted in Fig.7.9. The open circles in the figure indicate that the 

failure mechanism has  formed  ; plastic hinging occurred in the bottom of the first story 

columns, top of the top story columns and beam ends. Fig.7.10 shows the ductility 

ratios of the maximum interstory drift which are defined as the ratios of the maximum 

interstory drifts observed during the dynamic response analyses to the interstory drifts 

obtained from the static inelastic analyses when the failure mechanism formed. They 

were 3.59 to 11.9 for the prestressed concrete frames, 3.20 to 10.1 for the partially 

prestressed concrete and 2.90 to 7.57 for the reinforced concrete. 
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           Fig.7.9 Story shear force - interstory drift relationship 
                obtained from static inelastic analysis 

                                             245



 o----PC —o--  PC 
PPC-s- - PPC .......... 4 -..................................f. .......RC4 - --fl— RC 

00 

2 -..............................u- 2 -........................................ 

 1-................................................................... 
El Centro NS (V  =50cm/s)Hachinohe EW (V =50cm/s) 

0 2 4 6 80 2 4 6 8 
Interstory drift ductilityInterstory drift ductility 

--0— PC 

4 - - PPC•- RC ,

3 
    0 0 

2i; 

1 _;Fig.7.10 Interstory drift ductilities 

          Tohoku Univ. 1F NS (V =50cm/s) 

0 2 4 6 810 12 
Interstory drift ductility 

Moment-curvature relationships of members  

Moment-curvature relationships observed in the second floor beams during the 

dynamic response analyses are plotted in Fig.7.11. The curvature ductility ratios of the 

plastic hinge regions of the beams and columns are summarized in Table 7.3. The 
maximum rotation angles attained during the analyses are also included as the values 

in the brackets. 

The ductility ratios of the 1st-story columns listed in the table are the ratios of the 

attained maximum curvature to the yield curvature with no axial load on the column. 

The maximum rotation angle to be reached during a strong earthquake motion is 

expected to be less than 1/50 for beams and 1/67 for columns according to the AIJ 

Guidelines. The strong earthquake motion is usually defined as an earthquake wave 
whose maximum velocity is 50 cm/s. Therefore, although the responses of the 

prestressed concrete frames were larger than those of the reinforced concrete frames 
with the same design base shear, the deformations are considered to be within the 

tolerance. The important thing is the limitation of design interstory drift which can 

prevent a frame from undergoing an excessive deformation. 
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Plastic hinge formation  

In all cases, the plastic hinges developed at the bottom end of the first story columns, 
at the top end of the fourth story columns and beam ends as intended in the design. 

Story shear force  

Figure 7.13 shows the maximum story shear forces attained during the earthquake 

excitations. The design story shear is also shown in the figure. In the case of design in 
beam sidesway mechanism a triangular distribution of design story shear seems 

suitable. The maximum story shears observed in the reinforced concrete frames were 

slightly larger than those of the prestressed concrete frames although interstory drifts 

of the prestressed concrete frames larger than those of the reinforced concrete frames 

were observed. 
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      Table 7.3 Curvature ductility ratios of the plastic hinge 

              regions of the beams and columns 

El Centro NS  II PC I PPC I RC  
Roof beam 9.58 (1/128) 8.87 (1/138) 8.06 (1/152) 

4th floor beam  7.97 (1/123) 7.16 (1/137) 6.10 (1/162) 

3rd floor beam  7.02 (1/125) 6.29 (1/139) 

2nd floor beam 8.75 (1/115) Wr' = 6.90 (1/146) 
Bottom of 1st- 3.91 (1/129) 3.20 (1/157) 2.98 (1/169) 
story column  

Hachinohe EW II PC I PPC I RC  
Roof beam 10.00 (1/122) 8.98 (1/136) 11.52 (1/106)  
4th floor beam  8.57 (1/115) _______ 7.95 (1/124) _ 9.71 (1/101)  
3rd floor beam 7.84 (1/112)7.64 (1/115) 8.83 (1/99)  
2nd floor beam _ 8.96 (1/112) 9.03 (1/111) 9.94__(1/101)  
Bottom of 1st- 3.74 (1/137) 3.87 (1/130) 4.18 (1/120) 
story column  

Tohoku Univ. NS  I PCI PPC I RC  
Roof beam17.69 (1/69) 15.47 (1/79) 11.10 (1/110) 

4th floor beam  14.71 (1/67) 12.80 (1/77) 9.43 (1/104) 

3rd floor beam  12.91 (1/68) 11.56 (1/76) 7.54 (1/116) 

2nd floor beam  14.55 (1/69) 12.85 (1/78) 8.58 (1/117) 
Bottom of 1st- 7.21 (1/71)5.78 (1/87) 3.72 (1/135) 
story column  
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7.12.2 Results of eight-story frames 

Interstory drift  

Maximum interstory drifts of each layer of the eight-story frames are plotted in 

Fig.7.14. In the case of El Centro earthquake record, the response of the prestressed 

concrete frame was the largest in every story among the three structural systems. The 

interstory drift responses of the partially prestressed and reinforced concrete frames 

were almost the same. The maximum interstory drift of the prestressed concrete frame 
during the earthquake motion was 9% larger than that of the reinforced concrete frame. 

However, in the case of Hachinohe wave the reinforced concrete frame exhibited the 

largest response and the prestressed concrete frame the smallest. The maximum 

interstory drift of the reinforced concrete frame was 35% larger than that of the 

prestressed concrete frame. The interstory drift responses of those frames were around 
1/200 of the story height although the maximum velocity of the earthquake records 

were amplified to  50cm/s, which corresponds to a severe earthquake whose average 
return period is higher than the intended service life of building to be designed. For the 

earthquake wave recorded at Tohoku University, the maximum interstory drift of the 

partially prestressed concrete frame was the largest and exceeded 1/100 of the story 
height in the fifth and sixth stories. That of the prestressed concrete frame reached 1/ 

100 of the story height in the top story. The ratio of the maximum interstory drift of the 

prestressed concrete frame to that of the reinforced concrete frame was 1.11. As for the 
partially prestressed concrete frame, the ratio reached 1.27. 
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The above results shows that the responses of a building to an earthquake wave can not 

be determined only by the type of hysteresis loops assigned to possible plastic hinge 

regions. The characteristics of an earthquake record has the large influence on the 

responses of a building frame. 

The story shear and interstory drift relationship of each frame obtained from the static 

inelastic analyses are plotted in Fig.7.15. The open circles in the figure indicate that 

the failure mechanism has formed ; plastic hinging occurred in the bottom of the first 

story columns, top of the top story columns and beam ends.  Fig.7.16 shows the 

ductility ratios of the maximum interstory drift which are defined as the ratios of the 

maximum interstory drifts observed during the dynamic response analyses to the 

interstory drifts obtained from the static inelastic analyses when the failure mechanism 

formed. They were 1.76 to 8.97 for the prestressed concrete frames, 2.09 to 9.74 for 

the partially prestressed concrete and 2.07 to 6.15 for the reinforced concrete. 
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          Fig.7.15 Story shear force - interstory drift relationship 

                obtained from static inelastic analysis 

Moment-curvature relationships of members  

Moment-curvature relationships observed in the second floor beams during the 

dynamic response analyses are plotted in Fig.7.17. The curvature ductility ratios of the 

plastic hinge regions of the beams and columns are summarized in Table 7.3. The 
maximum rotation angles attained during the analyses are also included as the values 

in the brackets. 

The ductility ratios of the 1st-story columns listed in the tables are the ratios of the 

maximum curvature attained to the yield curvature when the column has no axial load 

on it. 
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                             Table 7.4 Curvature ductility ratios of the plastic hinge 

                              regions of the beams and columns of eight-story frame 

   El CentroNS PC PPC RC TohokuUniv. NS PC PPC RC HachinoheEW PC PPC RC  

    Roof beam 13.26 11.92 12.51 Roof beam 20.4 22.1 13.8 Roof beam 7.35  7.32 9.85 
              (1/154) (1/172) (1/164)(1/101) (1/93) (1/148)(1/279) (1/280) (1/208) 

    8th floor beam 7.93 6.61 7.20 8th floor beam 12.9 14.1 8.80 8th floor beam 4.86 5.04 6.23 
              (1/160) (1/192) (1/176)(1/98) (1/90) (1/144)(1/262) (1/252) (1/204) 

    7th floor beam 5.81 4.56 4.76 7th floor beam 8.84 10.7 7.56 7th floor beam 3.84 4.42 5.13 
              (1/161) (1/205) (1/196) (1/106) (1/88) (1/124)(1/243) (1/211) (1/182) 

     6th floor beam 5.26 4.33 4.33 6th floor beam 7.73 9.61 7.07 6th floor beam 3.49 4.19 4.88 
              (1/161) (1/196) (1/196) (1/110) (1/88) (1/120)(1/243) (1/202) (1/174) 

     5th floor beam 5.05 4.22 4.03 5th floor beam 6.94 8.83 6.88 5th floor beam 3.25 3.95 4.73 
               (1/157) (1/188) (1/197) (1/114) (1/90) (1/115)(1/244) (1/201) (1/168) 

     4th floor beam 4.90 4.01 3.68 4th floor beam 6.77 8.58 6.78 4th floor beam 3.14 3.95 4.71 
               (1/161) (1/197) (1/214) (1/117) (1/92) (1/116)(1/251) (1/200) (1/167)  

     3rd floor beam 5.08 3.98 3.64 3rd floor beam 7.10 8.86 7.16 3rd floor beam 3.15 3.85 4.82 
               (1/168) (1/214) (1/234)(1/120) (1/96) (1/119)(1/271) (1/221) (1/177)  

     2nd floor beam 5.72 4.55 4.13 2nd floor beam 8.62 10.3 8.44 2nd floor beam 3.56 4.13 5.34 
               (1/191) (1/240) (1/265)(1/127) (1/107) (1/130)(1/308) (1/265) (1/205)  

Bottomof2.09 1.66 1.51 Bottom of 3.43 3.9/ 3.31 Bottomof 1.25 1.472.03 
1st-story column (1/234) (1/295) (1/324) 1st-story column (1/143) (1/123) (1/148) 1st-story column (1/392) (1/333) (1/241)  

N ul 
al



As described in the preceding section the maximum rotation angle to be reached during 

a strong earthquake motion is expected to be less than 1/50 for beams and 1/67 for 

columns according to the  AU Guidelines. Therefore, although the responses of the 

prestressed concrete frames were larger than those of the reinforced concrete frames 
when the design base shears were the same, the deformations are considered to be 

within the expectation. 

Plastic hinge formation  

In all cases, the plastic hinges developed at the bottom end of the first story columns, 

at the top end of the fourth story columns and beam ends as intended in the design. 

story shear force 

Figure 7.18 shows the maximum story shear forces attained during the earthquake 

excitations along with the design story shear. The maximum responses of story shear 

were larger than the design story shear. The shape of the story shear force distribution 
was similar to that of the design shear force distribution.Ai-distribution of design shear 

force can be applied to the design of this eight-story frame. 
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7.13 Design of 16-story frames 

The criteria adopted when designing  16-story frames were different from those for the 

four- and eight-story frames. As seen in the dimensions of the columns of the eight-

story frame, as long as 20m spans resulted in huge cross-sections of the columns. It is 

considered not practical to design a taller frame than eight-story frame by the same 
criteria that used for the previous two kinds of frames. In the design of the former model 

frames stiffness reduction due to cracking was taken into account and the interstory 

drift angle of each story was within 1/300 radian. These criteria for deformation are 

too strict for prestressed concrete frames which usually consist of long span beams. 
According to the current seismic design code for prestressed concrete frames the 

criteria for deformation is that the interstory drift angle of each story should be within 

1/200 radian assuming the whole cross section are effective for flexure. The author 

decided to adopt the design criteria conforming with the current seismic design code 
when designing 16-story frames and they are also designed to fail in a beam sidesway 

mechanism. 

The reason why the author did not adopt the design criteria described in the current 

seismic design code for prestressed concrete stuructures is that the criteria is consid-

ered outdated and does not incorporate the capacity design concept. 

A design trial of a 16-story frame with 20m span under the above deformation criteria 

revealed that impractically large column sections were still required. Therefore, a 16-
story model frame with 15m span was chosen although the length of the span was 3/ 

4 of the beam length of the former two kinds of model frames. 

In the analyses of the former two frames, the stiffness of the first story columns up to 

yielding was assumed to reduce to 70% of the elastic stiffness because cracking was 
taken into consider. However, in the analyses of the 16-story frame, such allowance 

was not made. Natural periods of the 16-story frame are shown in Table 7.1. 

7.13.1 Results of 16-story frames 

Interstory drift  

Maximum interstory drift and maximum interstory drift ductility of each layer for each 

earthquake wave are plotted in Fig.7.19 and Fig.7.20, respectively. As the interstory 
drift response increased, the difference between the responses of the prestressed 

concrete and reinforced concrete frames became significant. The responses of the 

prestressed concrete frame were 72 to 155% those of the reinforced concrete frame at 
each floor level. The responses of the partially prestressed concrete frame were 39 to 

147% those of the reinforced concrete frame. 

                                             257



       1/200  ---11/1001/2001/100 

  16 -1.1 1 1!-16•.                          ^••Tohoku Univ. 

  12--- •.. . - . • .-12^ . - -      El C
entro NS • ̂  d; •-. • - 

  1.210 ' (V.•< fLL.10 I --o-- PC• •  50cm/s)-  o—o-- PCo.- PPCo••^ y   ° 8 -• ^).• •—e - PPC - °8 I - -a - RC•..•`. . 
    6_.^•.-- Elastic6—o— Elastic                                             a ^ • = 

  4 -•?••,-4>~^ • 1/100    -•1/200 1/100 —1/200 ------• 
 2 -N. •2— • • - 

  Gr. -I I I I IIIGr. 
  O12 340 1 23 4 

            Interstory drift (cm)lnterstory drift (cm) 

'r 1/200 ,-1/100 

i------------------------------------------------1 IWI —0— PC I 
16 -•• 

     -:'..--a - PPC •• 

14 - r •^t • • 1 f - -a - RC , 
   - ''• 

              12 -••• •--0— Elastic 

  ca10-•.A..Fig.7.19 Maximum interstory drift of 
  o8Hachinohe EW~••~h• sixteen-story building frame 

     6 (V50cm/s)•^ ..4• ^4 
4 - ----- -- .... • •• •I 

         

- ....... f- 1/200 ^r1/100 • • • • 
2 -•• •`V''. • > 

  Gr.1 1 I I I A I  
  O24 6 8 

Interstory drift (cm) 

16-•A •- 16-~.- 

   14 -..~•.. • . - 14 -• A•- • - . . .. _ 
   12 - t ••F—0— PC- 12-a'a•Tohoku Univ 

(V =50cm/s) --              —0 - PPC
- v~ 1•max O10 -..- 

O•8-=°8-Z...—Pc= 
 Li. - P • .. ••El Centro NS --L.L.-6 • —. - PPC -

   6 - a:(V =50cm/s) - 6 -4• •A- -- 
  -,max--. •- 

 4 - •- 4- .• . . - 
        --••-- -- • •- 2 - :- • --

• 
 Gr.1 1-Gr.----------------------------------------- 

  O 2 4680 1 2 3 4 5 
Interstory drift ductilityInterstory drift ductility 

 16 -1-----------------------------------------------------------j~1 1- 

                                                            - 14 --..-- 
-- 

12 --~•. 
. - 

 •10 --•a• • -- 
 O- Hachinohe EW•- 

u 

  on
=(V50cm/s),a' ••:- Fig.7.20 Maximum interstory drift 

    -—0— Pcd • -- ductilities 
4 - • —0 - PPC•a•• --

      - • - - -A- - RC A A. -- 
 2-•- 

  Gr-i i i 1i---------------------------- 
• - 

O 1 2 3 4 5 6 
Interstory drift ductility 

258



 3000     I i i3000 —~------------------- 
                                                                9F ------12F - - - 15F 

........... — — 1OF......13F -- -- 16F 
_ 

     — — —

— 

                         •11F —— 14F 

 2000~~G-~.:—-........................................................                                    2000 

Nto 
              C 1F 5F    1000

— — 2F — - — 6F1000 —............... 
---3F - - - - 7F 

4F — — 8F 
0 I-----------------------------f0 ----------------------------------------------------------- 

0 12 30 123 
             Interstory drift (cm)Interstory drift (cm) 

         Fig.7.21 Story shear force - interstory drift relationship 

                obtained from static inelastic analysis 

Plastic hinge formation  

In the frames analyzed using the El Centro NS wave, plastic hinges formed in all the 

beam ends. No plastic deformation was observed in the columns. Hachinohe EW wave 

caused plastic hinges in all the beams, in the bottom of the first story columns and in 

the several column ends in the mid-height floors. In the analysis using the earthquake 

wave recorded at Tohoku University, plastic hinges formed in all the beam ends and 

in the bottom of the first story columns, although they did not occur at the same time. 

The frames analyzed in this study were designed as to fail in a beam sidesway 

mechanism, but plastic hinges were observed in the several columns other than the 

columns which were expected to have a plastic hinge. This did not occur in the four-

and eight-story frames. It is appeared that higher-mode vibration had an influence on 

the formation of plastic hinges in the columns in the midheight of the frames. 

Story shear force  

Being different from the other two frames, the sixteen-story frame exhibited less story 

shear force response than the design story shear force in most of the stories. 
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rnTable 7.5 Curvature ductility ratios of the plastic hinge regions of the beams and columns 

 0 

   El Centro NS PC PPCRC Hachinohe  EW PC PPC RCTohoku Univ. Ng PC PPC RC  
    Roof beam 15.34 21.4015.40 Roof beam 7.78 7.83 6.08Roof beam13.82 4.80 5.28 

(1/ 138) (1/99) (1/ 137)(1/272) (1/270) (1/348) (1/153) (1/440) (1/401)  
     16th floor beam 7.76 10.677.62 16th floor beam 4.24 3.83 3.43 16th floor beam 7.13 2.72 3.18 

              (1/ 144) (1/104) (1/ 146)(1/263) (1/291) (1/325) (1/156) (1/409) (1/350) 

     15th floor beam 4.11 7.414.85 15th floor beam 3.57 2.58 2.60 15th floor beam 4.722.30 2.19 
              (1/ 191) (1/106) (1/ 162)(1/219) (1/304) (1/301) (1/166) (1/341) (1/358) 

    14th floor beam 2.99 5.933.27 14th floor beam 4.05 2.33 2.41 14th floor beam 3.322.54 1.99 
(1/207) (1/105) (1/ 190)(1/153) (1/266) (1/258) (1/187)(1/244) (1/312) 

    13th floor beam 2.76 4.072.29 13th floor beam 4.77 2.87 2.93 13th floor beam 3.25 2.712.49 
              (1/ 188) (1/128) (1/ 227)(1/109) (1/181) (1/178) (1/160) (1/192) (1/209) 

    12th floor beam 2.44 3.481.90 12th floor beam 5.06 3.383.41 12th floor beam 3.00 2.802.64 
              (1/ 188) (1/132) (1/ 242)(1/91) (1/136) (1/135) (1/153) (1/164) (1/174) 

11th floor beam 1.95 2.161.77 11th floor beam 5.36 4.043.87 11th floor beam 2.67 2.572.49 
(1/213) (1/192) (1/234)(1/77) (1/103) (1/107) (1/155) (1/161) (1/167) 

    10th floor beam 1.43 1.581.48 10th floor beam 5.62 4.554.21 10th floor beam 2.40 2.092.17 
(1/265) (1/240) (1/256)(1/68) (1/83) (1/90) (1/159) (1/182) (1/175) 

    9th floor beam 1.10 1.081.29 9th floor beam 6.37 5.225.07 9th floor beam 2.491.95 2.31 
(1/319) (1/327) (1/272)(1/55) (1/67) (1/69) (1/141) (1/181) (1/152) 

    8th floor beam 1.03 0.931.17 8th floor beam 6.68 5.645.40 8th floor beam ' 2.672.03 3.32 
(1/321) (1/360) (1/284)(1/50) (1/59) (1/62) (1/124) (1/164) (1/100) 

    7th floor beam 1.04 0.870.94 7th floor beam 6.82 5.975.64 7th floor beam . 2.832.09 1.88 
(1/ 306) (1/362) (1/ 335)(1/46) (1/53) (1/56) (1/112)(1/151) (1/169) 

    6th floor beam 1.02 0.860.86 6th floor beam 6.76 6.145.80 6th floor beam 2.932.13 1.92 
(1/ 299) (1/352) (1/ 353)(1/45) (1/50) (1/52) (1/104)(1/143) (1/158)  

    5th floor beam 1.20 0.920.86 5th floor beam 6.57 6.175.83 5th floor beam 2.88 2.071.90 
(1/ 247) (1/322) (1/ 343)(1/45) (1/48) (1/51) (1/103) (1/143) (1/155) 

    4th floor beam 1.19 0.950.90 4th floor beam 6.38 6.145.86 4th floor beam 2.78 1.941.92 
(1/248) (1/311) (1/326)(1/46) (1/48) (1/50) (1/106) (1/152) (1/153) 

3rd floor beam 1.23 0.980.99 3rd floor beam 6.37 6.276.01 3rd floor beam 2.741.801.86 
(1/ 250) (1/317) (1/ 313)(1/48) (1/49) (1/51)(1/113) (1/172) (1/166) 

    2nd floor beam 1.44 1.161.26 2nd floor beam 7.26 7.186.94 2nd floor beam 3.001.881.98 
(1/ 266) (1/330) (1/ 304) (1/53) (1/53) (1/55)(1/128) (1/204) (1/194)
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7.14 Comparison of interstory drift responses among prestressed, 

     partially prestressed and reinforced concrete frames 

Table 7.5 summarizes the maximum interstory drift responses of the frames analyzed 
in this study. Note that all of them were not observed in the same level of floor. The 
values in the brackets 0 are the ratios of the maximum interstory drift responses of the 

prestressed and partially prestressed concrete frames to those of the reinforced 
concrete frames on whichever floor the responses should be observed. 

Their responses are not so different compared with the analytical results obtained from 
the single-degree-of-freedom systems. The averages of the ratios through all the cases 
for the prestressed and partially prestressed concrete frames are 1.11 and 1.09, 
respectively. They are still rather small compared with the results of the SDOF 
systems. As much difference as these ratios is not of great significance : several factors 
which have greater influence on dynamic response results rather than hysteresis loop 
models assigned to the members. 

As far as the interstory drift responses derived from the analyses carried out in this 
research were concerned, the interstory drift responses of the prestressed concrete 
frames were not always larger than those of the reinforced concrete frames. Besides, 
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        Table 7.6 Maximum interstory drift responses of the frames 

                        Interstory drift responses (cm) 

  4-st. frame PCPPCRC 

     El NS 3.40  [1F] 2.97 [2F] 2.69 [2F] 

             (1.26) (1.10) (1.00) 
is I . • F] 4.17 [ ] 

           (0.88) (0.87) (1.00)  
     Tu NS 6.00 [3F] 5.30 [3F] 3.79 [4F] 

             (1.58) (1.40) (1.00) 
  8-st. frame PCPPCRC 

     El NS 2.37 [5F] 2.00 [8F] 2.17 [8F] 

             (1.09) (0.92) (1.00) 
• a .. an. • .: • an • . [ 4 an. F] 

            (0.74) (0.85) (1.00)  
     Tu NS 3.50 [7 and 8F] 4.00 [5, 6 and 7F] 3.14 [4F] 

              (1.11)(1.27)(1.00) 
  16-st. frame PCPPCRC 

     El NS 2.50 [ 16F] 3.50 [ 14 and 16F] 2.48 [ 16F] 

            (1.01) (1.41)(1.00)  
     Ha EW 7.90 [5F] 7.40 [4F]7.10 [4F] 

              (1.11) (1.04)(1.00) 
.:1 F] .•. [ F]. 1 [:F] 

            (1.23) (0.95)(1.00)  

Note : 
      1. The brackets [] indicate the story (or stories) where the maximum 
Interstory drift response was observed. 

      2. The values in the brackets 0 are the ratios of the interstory drift 
        responses of PC and RC frames to those of RC frames. 

it is reported by Ohta [7.7] that the effect of increasing the design horizontal load for 
the prestressed concrete frames was not enough to reduce their responses . 

The seismic design concept which requires prestressed concrete frames to be designed 
against a larger seismic load than reinforced concrete frames , as specified in NZS 
4203:1984, needs to be reconsidered . In addition, as shown in Chapter 4 the hysteresis 
loops of prestressed concrete members are not always inferior to those of reinforced 
concrete members. The seismic performance of prestressed concrete members is much 
better than that of reinforced concrete members in terms of energy dissipation for 
reinforced concrete frames in which the restoring force characteristics are dominated 
by bond deterioration between concrete and longitudinal reinforcement in the joints 
and the plastic hinge regions 
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7.15 Comparison of dynamic responses between two-dimensional 
    frame analyses and analyses using multi-mass shear system 

Past research on the dynamic response of prestressed concrete buildings has been 
carried out using single- or multi-mass shear systems. The analyses described in the 

preceding sections of this chapter are the first two-dimensional analyses in which force 
- deformation relationships of the members of prestressed and partially prestressed 

concrete building frames are idealized on the basis of moment - curvature relation-
ships of the members. Analyses using a multi-mass shear system are often carried out 
in practice to predict the responses of a frame. These analyses are useful to save time 
and expense. However, it is difficult to model the shear force - interstory drift relation 
in each layer, especially in prestressed and partially prestressed concrete building 
frames. In order to use analyses with a multi-mass shear system successfully, it is 
important to know how different the results using multi-mass shear systems are from 
the two-dimensional frame analysis results. 

The envelope curve of shear force and interstory drift relationship of each layer was 
idealized from the static analyses results of the frame. The idealized envelope curve 
consisted of three lines characterized by the slope of the segment representing post-

yield region and three points; the origin, the cracking and the yielding point. Fig.7.23 
shows the calculated results of story shear force - interstory drift relationships obtained 
from an incremental plastic analysis and the idealized relationships. 

The hysteresis loops assigned to each layer are those proposed in Chapter 5 except that 
the ordinates are story shear force  Qi and interstory drift x1. It seems strange because 
the idealized hysteresis loops are based on moment - curvature curves measured in 
beam plastic hinge regions. However, depending on the ratio of prestressing steel to 
ordinary reinforcement and other factors a prestressed or partially prestressed concrete 
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------2F - - o - - 2F (Appr.) 
                   1500 -------------------- - - - 3F - - 3F (Appr.) ------4F —o--4F(Appr.)     '------------------------------------------D  
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1000 ................ .................... 

- fl 

500 -............  
/P .„/ 

                                   ,i1y 

0 0.5 1 1.5 2 
Interstory drift (cm) 

 Fig.7.23(a) Story shear force - interstory drift relationships obtained from incre-
     mental plastic analysis and idealized relationships ( Four-story frame). 
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    Fig.7.23(b) Story shear force - interstory drift relationships obtained from 
   incremental plastic analysis and idealized relationships ( Eight-story frame). 
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    incremental plastic analysis and idealized relationships ( 16-story frame) . 
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frame is considered to show the hysteretic behaviour between the two extremities of 

a fully prestressed and reinforced concrete idealization. 

The impulse acceleration method described in Chapter 6 for single-degree-of-freedom 

systems was extended to apply to a multi-mass shear system and was used. Parameters 
needed for the analyses and models such as the formulation of damping, are the same 

were used in the two-dimensional frame analyses in this chapter. 

Figure 7.24 compares the analytical results for each earthquake wave. The analytical 

results of multi-mass shear systems showed concentration of interstory drift response 
into one or more stories. In two-dimensional analyses a sudden change of the interstory 

drift responses along the height of the buildings can not be observed. 

Four-story building: In the two-dimensional frame analyses, interstory drift re-
sponses in all stories were almost the same whichever earthquake wave was used. This 

reflects the fact that column hinging did not occur except for the bottom of the first-

story columns and the top of the top story columns. However, in the multi-mass shear 

system, concentration of deformation into a particular story was observed. The 
maximum interstory drift in case of the earthquake wave Tohoku Univ NS reached 1/ 

52 radian in the first story while 1/284 in the fourth story. 

Eight-story building: Concentration of interstory drift is not so significant as in the 

four-story building. The distributions of the maximum interstory drifts of the two 

analytical results are quite different. In the two-dimensional analyses, almost a 
uniform distribution was observed. However, in the multi-mass shear system analyses 

the maximum interstory drifts in the mid-stories are significantly larger than in the 

bottom and top stories. The interstory drift responses at the top floor are the least in all 
the floors. 

Sixteen-story building: In Hachinohe EW earthquake wave the significant concen-

tration of interstory drift was observed in the seventh floor for all structural types 

considered. The distribution of the  interstory drifts of the multi-mass shear systems 
was more similar to that of the two-dimensional analyses than in the case of the four-

and eight-story frames. 

Yu et al. [7.5] compared interstory drift response of a six-story reinforced concrete 
frame obtained from two-dimensional frame analyses and analyses in which the frame 

was idealized as a multi-mass shear system. They derived the same conclusion as 

described above; concentration of interstory drift response into a particular story was 

observed in multi-mass shear system. However, increment of a slope in the post-yield 

region resulted in more similar interstory drift response of the multi-mass shear system 

to that of two-dimensional frame analyses. Hysteresis loops assigned to each layer 

proved to have a large influence on the dynamic response and they should be 
determined carefully. 
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Fig.7.25 shows story shear force - interstory drift relation response of each layer of the 
eight-story model frame frim the El Centro NS earthquake wave. One obtained from 
two-dimensional frame analysis was calculated using bending moment response of the 
columns. The curves are more like those of bi-linear hysteresis loops than those of 

prestressed concrete hysteresis loops. This result revealed that the assignment of 
prestressed concrete type hysteresis loops to each layer of a prestressed concrete frame 
which consists of prestressed concrete beams and reinforced concrete columns was not 

justified. Two-dimensional frame analysis should be conducted or a conversion factor 
between these two analyses should be introduced. 

Comparison of the responses of prestressed concrete frames and reinforced concrete 
frames is illustrated in Fig.7.26. The ratios of the responses of the prestressed and 

partially prestressed concrete frames to those of the reinforced concrete frames are 
plotted against each earthquake wave. These figures exhibit that the analyses of multi-
mass shear systems tend to overestimate the response of prestressed concrete frames 
compared with the two-dimensional analyses, especially in lower two building frames. 
For the 16-story frame the ratio of these two analytical methods are almost the same. 
As shown before, the distribution of interstory drifts of the two analytical methods are 
also similar. Therefore, dynamic response of prestressed concrete building frames is 
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Fig.7.25(a) Story shear force - interstory drift response of multi-mass shear system 
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Fig.7.25(b) Story shear force - interstory drift response of two-
                  dimensional frame analysis 
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Fig.7.26 Comparison of interstory responses of prestressed, partially prestressed and 
       reinforced concrete frames (Two-dimensional analyses and multi-mass 

      shear system analyses) 

not as large as past research has pointed out when compared with reinforced concrete 
frames. 

7.16 Conclusions 

From the above analytical study, the following conclusions have been reached with 
regard to dynamic response of prestressed, partially prestressed and reinforced 
concrete building frames: 

1. Two dimensional dynamic analyses on the prestressed, partially prestressed and 
   reinforced concrete building frames were carried out. Three typical earthquake 

   wave records were used as their maximum velocities were amplified to 50cm/s. 
   Four-, eight- and sixteen-story model frames were designed according to the AD 

   Guidelines and the current seismic design method for prestressed concrete 
   building structures. The frames were intended to fail with a beam-sidesway 

    mechanism. 
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2. Comparison of the responses of the above model frames revealed that the 
   responses of the prestressed concrete buildings were not always the largest. The 

   interstory drift responses depended on the characteristics of the earthquake 
   waves, too. Past research has pointed out larger response of prestressed concrete 

   frames than that of reinforced concrete frames. Seismic design load for pre-
   stressed concrete frames specified in NZS 4203  :  1984 should be 25% larger than 
   that for equivalent reinforced concrete frames. However, a difference large 

   enough to give a motivation to assign a larger seismic design load for prestressed 
    concrete frames was not observed. A remained reason to design a prestressed 
   concrete building using a higher seismic design load is less ductile behaviour of 

    prestressed concrete members than reinforced concrete members. 

3. Comparison of the responses between the two-dimensional frame analyses and 
    the analyses using a multi-mass shear system revealed that the ratio of the 
    responses of the prestressed and partially prestressed concrete frames to those of 
    the reinforced concrete frames were overestimated in the analyses of multi-mass 

    shear systems compared with two-dimensional frame analyses. Story shear force 
    - interstory drift responses using these analytical methods indicated that assign-

    ment of prestressed concrete type hysteresis loops to each layer of a prestressed 
    concrete frame which consists of prestressed concrete beams and reinforced 
    concrete columns is not suitable. Two-dimensional frame analysis should be 

    conducted on prestressed concrete building frames. 

4. Considering the test results on the beam-column joint assemblies described in 
    Chapter 4, the current seismic design concept that prestressed concrete frames 

    should be designed against larger seismic design load than reinforced concrete 
    frames, as specified in NZS 4203:1984, needs reconsideration. An improved 

    seismic design concept for prestressed concrete building frames will be discussed 
    in the next chapter. 
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Chapter 8 

SEISMIC DESIGN OF 

PRESTRESSED CONCRETE BUILDING FRAMES 

8.1 Introduction 

The ductility-based structural design method (capacity design of ductile structures) 
was developed for reinforced concrete structuresby Park and Paulay  [8.1] and it has 
been adopted in New Zealand Design Codes [8.2, 8.3]. In Japan, the Design Guidelines 

[8.4] based on the similar philosophy were proposed by ALT (Architectural Institute 
of Japan) Sub-committee for Seismic Design of Reinforced Concrete. 

The seismic design methods in these codes and guidelines aim at a building surviving 
against a severe earthquake by energy absorption of plastic deformation at intended 
hinge regions. Beam yielding sidesway mechanism has been usually recommended as 
the most favorable collapse mechanism. The columns of a building are so designed as 
to have enough strength to assure the beam hinging mechanism and to generally 
remain in the elastic range during a strong earthquake motion. Plastic hinges are 
expected to form at the base of the first layer columns and the upper critical part of the 
top layer columns as well as in the exterior columns subjected to high tensile forces 
due to overturning moment. Flexural overstrength at beam plastic hinges, two-way 
frame actions and dynamic effects on column moments or forces are taken into account 
to estimate the probable maximum column moments or forces to be induced during an 
earthquake. 

The design method which aims at the beam sidesway mechanism would be applicable 
even to prestressed concrete buildings. However, the direct application of the beam 
sidesway mechanism to the design of relatively low rise prestressed concrete buildings 
with fully prestressed concrete long-span beams would be impractical and uneconomi-
cal. Prestressing tendons are usually provided to cancel or reduce flexural moments 
due to dead and live loads. That results in much more strength of the beams than 
required for the actions due to design seismic loads. 

On the basis of the trials of seismic design for prestressed concrete buildings the AIJ 
Task-committee on seismic design of prestressed concrete has reached the conclusion 
that a design procedure to assure a beam hinging mechanism is not always reasonable. 
The committee has proposed a seismic design method for prestressed concrete 
building structures, in which a column sidesway system is allowed. For a building 
which is predicted to collapse in a column sidesway mechanism, the structural safety 
under seismic load is assured by increasing the lateral seismic design force and by 

giving the smooth distribution of story shear strength and rigidity over the building 
height [8.5]. 
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The seismic design procedure is distinguished by the fact that it accommodates not 
only prestressed concrete buildings but also reinforced concrete buildings. Uniform 
design code provisions have been recently proposed [8.1, 8.2]. However, they are 
intended to deal with structural members rather than the structure itself. 

In this chapter, the seismic design method for prestressed concrete buildings which has 
been proposed by the  AIJ Sub-committee for Seismic Design of Prestressed Concrete 
is introduced. As described above, column hinging mechanism is incorporated as a 
design category. Then, some calculation results show how difficult it is to design a 

prestressed concrete building in which beam sidesway mechanism is expected to 
develop. Since it is difficult to ensure ductile behavior in the plastic hinge regions of 
the columns under high axial load, especially for high strength reinforced concrete 
columns, so test results on high strength reinforced concrete columns confined by high 
strength transverse reinforcement will be reported. The test results are also used to 
improve a stress-strain idealization for high strength concrete proposed in past 
research. 

8.2 Seismic design method proposed by the AIJ task-committee on 
     seismic design of prestressed concrete 

8.2.1 Design category 

Figure 8.1 illustrates the design flow of seismic design procedure of prestressed 
concrete buildings proposed by the ALT task-committee. Four design categories are 
considered. Each category is based on the intended structural system of a building to 
be designed. 

a) BDF System (Beam-sidesway Ductile Frame Structures) : beam hinging sidesway 
   mechanism is intended and should be assured. 

b) GDF System (General Ductile Frame Structures): beam hinging sidesway 
   mechanism is not necessarily assured. The column sidesway mechanism is 

   assumed as a probable collapse mechanism. Any kind of collapse mechanism is 

   possible unless it is brittle. Column critical sections should be designed as 
   potential plastic hinge regions. 

c) DWF System (Ductile Wall Frame Structures): collapse mechanism should be 
   initiated by either the flexural yielding at the bottom of walls or the rotational 

   yielding at wall foundations. 
d) SRS System (Strength Resisting Structures): elastic response is expected even 

   during a severe earthquake. Plastic deformation is not relied on. 

It is assumed that the allowable maximum interstory drift during a strong motion 
earthquake for BDF, GDF and DWF systems is approximately 0.01 rad. The corre-
sponding member rotation angle of beams and columns is assumed to be 0.02 rad. 
Thus, plastic hinge regions are required to achieve the rotation of 0.02 rad. without 
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    ENDStrength design for shear force ------------- END 
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                      Fig.8.1 Design flow 
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            Table 8.1 Material strength for reinforcing steel 

    Classification of Grade 30 Steel Grade 40 Steel Prestressing 
    Strength Grade 35 SteelSteel  

  Reliable Strength 6y 6y6py 
   Average Strength 1.10a , 1.106y1.15apy 

    Over-strength1.306y1.256y1.186py  

   Numerical numbers of the steel grade indicates the specified yield 
   strength in kgf/mm2 

ay : Specified yield strength of ordinary reinforcing steel 
6py : Specified yield strength (0.2% off-set) of prestressing steel 

significant reduction of load carrying capacity: the elastic deformation of the non-
hinge region may be ignored. The hinge length is assumed to be 1.5 times the total 
depth of a beam or column section. The hinge length is defined for determining the 
length to be confined by transverse reinforcement. Besides that, it may be needed when 
a non-linear inelastic analysis is carried out. 

8.2.2 Material strength used in structural design 

Reliable strength, average strength and over-strength of sections or members are used 
in the design procedure. The contribution of slab reinforcements to negative moment 
resistance is taken into account in the calculation of beam flexural over-strengths at the 

plastic hinges. The material strengths for reinforcement specified in Table 8.1 are used 
in the calculation of reliable, average and over-strength of sections or members. For 
concrete, a specified design strength, which inherently incorporates an adequate 
magin, is used in strength calculation. 

     Table 8.2 Base shear coefficient for prestressed concrete structures 

   Structural BDF GDF DWF SRS 
System  

C 0.2511BDF I 0.351GDF 10.3011DWF I 0.50  

                 Table 8.3 Magnification factors 

     Constituent beams BDF system GDF system DWF system 

11BDF 'OGDFilDWF  

   Reinforced concrete 1.01.01.0 
   Prestressed concrete 1.21.11.05 
    Partially prestressed 1.11.051.02 

 concrete  
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8.2.3 Seismic design load 

The standard base shear coefficients for ordinary reinforced concrete buildings are 
assumed as below. In GDF system, the larger base shear coefficient than that for other 
ductile systems is specified to avoid an interstory drift angle greater than 0.01 radian 
at the critical story where a  column sidesway mechanism might develop. These values 
are tentatively proposed with consideration of continuance from the current seismic 
design provisions. 

a) 0.25 : Beam-sidesway Ductile Frame Structures (BDF System) 
b) 0.35 : General Ductile Frame Structures (GDF System) 
c) 0.30 : Ductile Wall Frame Structures (DWF System) 
d) 0.50 : Strength Resisting Structures (SRS System) 

On the basis of the dynamic response analyses [8.6, 8.7] and engineering judgements, 
the standard base shear coefficients for prestressed concrete building structures are 

given in Table 8.2 and 8.3. For example, the base shear coefficient for the GDF system 
with fully prestressed concrete beams is 20 % higher than that for an ordinary 
reinforced concrete GDF system. 

In the current New Zealand design code [8.3], structural material factor M for ductile 

prestressed concrete moment resisting frame is 25 % higher than that for a ductile 
reinforced concrete moment resisting frame to allow for larger responses of pre-
stressed concrete structures than reinforced concrete. This results in a 25 % higher total 
horizontal seismic design force. 

For strength resisting concrete structures (SRS System), the base shear coefficient of 
0.50 is given regardless of a type of the beams, because the primary concern is the 
strength and no ductile behavior is expected. 

Design seismic story shear force at k-th story, Qk, is given by Eq.1. This is the same 

as the current code provisions. 

Qk = Ck • Wk(8.1) 
Ck =Z•Rt •Ak •Fe FS •C(8.2) 

             ^ 

  Ak =1+2T -----1-- —ak/(1+3T)(8.3) J
ak 

ak =Wk IW(8.4) 

where Qk : design seismic story shear force at k-th story 

yy : total weight of the building 
     Wk : weight of the building above k-th story 
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                Fig.8.2 Design spectral coefficient, R1 
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Note: 

Jxi , Jyi : Lateral stiffnesses of vertical structural element i in X and Y directions , 
          respectively. 

Xi , Yi : Coordinates of i-th element measured from the center of torsion . 
Rex, Rey : Eccentricity ratios in X and Y directions, respectively . 

                    Fig.8.3 Eccentricity ratio, Re 
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Note: 

8j : Interstory drift of j-th story under seismic design load of the first phase design 
     load. 

S j : Interstory displacement. h1 : story height. 
Rsj : stiffness ratio.n : Number of stories. 

                     Fig.8.4 Stiffness ratio, Rs 

        Table 8.4 Coefficient Fe and Fs with regard to the eccentric-

                  ity ratio Re and stiffness ratio Rs 

   Re Fe Rs Fs  

50.15 1.0 >0.601.0 
0.15-0.30 Linear0.30-0.60 Linear 

               interpolationinterpolation  
?0.30 1.550.301.5  
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 Z  : seismic hazard zoning coefficient, 0.7 < Z <_ 1.0 
     T : fundamental period of vibration of the building in second 

R~ : design spectral coefficient which depends on the subsoil profile and the 

         period of vibration of the building, and R, >_ 0.25 (see Fig.8.2) 
     Ak : lateral shear distribution factor at k-th story 

Fe : coefficient of structural eccentricity at k-th story, 1.0 <_ FQ <_ 1.5 (see 
          Fig.8.3 and Table 8.4) 

      FS : lateral stiffness coefficient at k-th story, 1.0 <_ FS <_ 1.5 (see Fig.8.4 and 
         Table 8.5) 

     C : base shear coefficient given by Table 8.2 

8.2.4 Structural analysis 

Linear elastic analysis for the specified static seismic design story shear force given 
by Eq.1 can be applied to evaluate the maximum effects. In the frame analysis, an 
adequate relative stiffness for each member shall be assumed. If necessary the effect 
of flexural cracking is considered. Moment re-distribution can be considered. How-
ever, the amount should be limited to slightly smaller than that for ordinary reinforced 
concrete structures, because rotational capacity of prestressed concrete beams is 
considered to be smaller than that for ordinary reinforced concrete. 

Ultimate strength design method is useful because no iteration is needed for providing 
reinforcement with the members of a building. 

8.2.5 Design of members 

In seismic design, the most unfavorable load combinations should be considered. The 
loads to be considered have secondary stresses due to prestressing force (U), dead load 

(D), live load (L) and specified seismic design load (E) given by Eq.1. 

a) Beams 

Design for flexure  

Reliable flexural strength of a beam section shall be equal to or greater than the design 
moment as given by Eq.6 for all structural systems. 

The potential beam hinge regions shall behave in ductile manner without significant 
reduction of strength up to the required rotation angle of 0.02 rad. Therefore, an 
adequate amount of transverse reinforcement should be provided in potential plastic 
hinge regions to avoid the buckling of compression reinforcement and the premature 
crushing of concrete under reversed cyclic earthquake loading. 
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  BMR>_BUM+BDM+BLM+BEM(8.5) 

where  BMR : Reliable flexural strength of beam section 

BUM : Related beam moment due to prestressing 

BDM : Related beam moment due to dead load 

BLM : Related beam moment due to live load 

BEM : Related beam moment due to specified earthquake load 

Design for shear  

In the shear design of beams, following equations shall be satisfied. 

  Beams without hinges: 

BQR>B UQ+BDQ+BLQ+BEQ(8.6) 

  Beams with hinges: 
    For hinge region 

7B•B QR > (BMo+BMo) / LB+BUQ+BDQ+BLQ(8.7) 

     For non-hinge region 

   BQR > (BMo+BM) / LB+B UQ+BDQ+BLQ(8.8) 

where BQR : Reliable shear strength of beams 

B UQ : Related beam shear due to prestressing 

      BDQ•Related beam shear due to dead load 

      BLQ•Related beam shear due to live load 

     BEQ : Related beam shear due to specified earthquake load 

OB : Shear strength reduction factor for hinge regions of beams to assure 
          the required hinge rotation indirectly : tentatively OB = 0.9 

     BMo,B111: Flexural overstrengths of plastic hinges at either of beam ends 
     LB : Clear span length of beams 

b) Columns 

Design for flexure  

In a building to be designed as BDF system, reliable flexural strength of column 
section shall be equal to or greater than the design moment as given by Eqs.10 and 11. 
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The potential hinge regions in columns shall behave in a ductile manner without 

significant reduction in load carrying capacity up to the required rotation angle of 0.02 

rad. Thus, an adequate amount of confining reinforcement should be provided in 

potential plastic hinge regions to avoid the buckling of compression reinforcement and 
the premature crushing of concrete under reversed cyclic earthquake loading. 

  For hinge region: 

  CMR>CUM+CDM+CLM+CEM(8.9) 

  For non-hinge region: 

 CMR > J3 . A,. Mo(8.10) 

Dynamic response analyses on multi-mass shear systems were conducted to observe 
how large deformation was concentrated to weakest stories when a column sidesway 
mechanism formed. The systems were consist of eight masses. Each mass weighed 
120 tons. Based on the weight of the masses design shear force imposed on each layer 
was calculated. The elastic stiffness of the systems were calculated so that the 
interstory drift angle of each layer in linear elastic range attained 1/300 radian when 
subjected to the design shear force based on the base shear coeffient of Co = 0.25. The 

yield capacities of the systems were calculated based on the different base shear 
coefficient but the elastic stiffness of the layer is the same. Ai distribution was used as 
a shear force distribution over the height of the systems. 

          Shear force 
           A 

QCo=0.35 
0.004E 

QCo=0.25 — — — 

QCo=0.175 - — 

II 
II 

El 1/300 

0.292% 1.167% Interstory drift 

          Fig.8.5 Shear force - interstory drift envelope model 
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The envelop curve model for shear force - interstory drift of each layer in the case of 

the base shear coefficient of  Co = 0.35 is shown in Fig.8.5 as an example. As shown 
in this figure the elastic portion was a segment which connected the origin and the 

coordinate (1/300, Qc0.025). 

El Centro NS 1940 earthquake wave record was used. To investigate behaviors of the 
frames during a severe earthquake the digitalized earthquake record was amplified so 
that the maximum velocity of the earthquake record was 50cm/s. 

Fig.8.6 shows the maximum interstory drifts of the systems analyzed. The results 
include the responses of: 

   (1) the linear elastic system, 
   (2) the systems which were designed using base shear coefficients of 0.25, 0.35 

        and 0.45. 

   (3) the systems designed basically using base shear coefficients of 0.45 and 
       0.35, but the story shear capacity of the second (Case 1), the fourth (Case 2) 

       or the sixth (Case 3) layer was provided from the base shear coefficient of 
       0.25. Therefore, an interstory drift displacement was expected to concen-

       trate into the weakest layer. If the shear capacity based on Co = 0.25 is 
       assumed to be required, the layers other than the weakest layer had reserved 

       strength. The ratios of the provided strength to the required strength were 1.8 
       (=0.45/0.25) and 1.4 (=0.35/0.25), respectively. 

As expected, the interstory drift concentrated into the weakest story. Table 8.5 
summarizes the analytical results of the maximum interstory drift angles in 10-2 radian. 
The column of the weakest story of each system was surrounded by double lines and 
included the corresponding ductility ratio. 

The maximum interstory drift of the systems decreases as the design base shear 
coefficient increases even though some stories yielded. From the analytical results it 
can be concluded that larger base shear coefficient can lead to a smaller interstory drift 
angle even though interstory drifts of some stories should exceed the yield displace-
ment. 

However, in the system of Co = 0.25 the maximum response was 1.53% in the top 

story, while in the system of Co = 0.45 it was 1.12%, which was 27% smaller than the 
former system. The shear capacity of the latter system was 80% larger than the former. 
Therefore, to increase shear capacities of the layers are not so effective for reducing 
the maximum response. 

The ratios of the maximum response of the C25-C45 systems (designed based on 

Co = 0.45, but there is a weakest story whose shear strength from Co = 0.25) to that 
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        Fig.8.6 Analytical results of maximum interstory drift angle 
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                Table 8.5 Maximum interstory drift angle 

                                                (10-2 radian)  
FloorElastic Co=0.25Co=0.35 Co=0.45Co=0.45 Co=0.35 Co=0.45 Co=0.35Co=0.45  Co=0.35 

IResponse III(2F-C25) (2F-C25)(4F-C25)(4F-C25)f (6F-C25) (6F-C25) 
      0.849 1.532 1.298 1.116 0.832 1.256 1.037 1.2741.007 1.292  

      0.920 1.248 1.112 1.030 0.963 1.038 0.928 1.0130.9501.052  
 6 0.909 0.716 0.724 0.787 0.791 0.703 0.729 0.716 1.502 0.920 

1.81 1.109 
 5  0.879 0.636 0.611 0.657 0.561 0.567 0.632 0.626  0.501 0.583  
 4 0.822 0.598 0.625 0.653 0.519 0.612 1.175 0.794 0.561 0.600 

(1.41) (0.956)  
 3  0.784 0.576 0.692 0.675 0.551 0.622 0.615 0.628 0.561 0.650  

 2 0.758 0.535 0.722 0.775 1. 70 0.87 0.649 0.691 0.661 0.667 
                                    1.65 1.05 

 1 _ 0.786 0.538  0.709 0.794 0.638 I 0.725 0.639 0.660 0.683 0.650  

  of C25-C35 (designed based on Co = 0.35, but there is a weakest story whose shear 

  strength from Co = 0.25) systems ranged from 1.48 and 1.63. In the former systems 
  the weakest stories yielded and the ductility ratios were 1.65, 1.41 and 1.81. In the latter 

  systems the ductility ratios were 1.05, 0.96 and 1.11. These results indicate that both 
  upper and lower limits of story shear strength should be required to control the 

  interstory drift if a column sidesway mechanism should form. 

  In a building to be designed as a GDF system, Eq.8.11 shall be satisfied. Eq.8.11 gives 
  not only the minimum required flexural strength of column sections but also the 

  maximum allowable flexural strength of column sections. Eq.8.11 is intended to give 
  the building the smooth distribution of lateral story shear strength along the building 

  height. In GDF system, a column sidesway mechanism might be formed. This can 
  result in the damage concentrating into the weakest story. To avoid such an unfavorable 

  response, both upper and lower limits of story shear strength need to be introduced as 
  shown in the above analyses. The maximum allowable value of yis tentatively 0.30 

  on the basis of the dynamic response analyses on several types of buildings in which 
  column sidesway mechanism was predicted [8.5]. 

CUM+CDM+CLM +(1 + Y)CEM�CMR>_CUM+CDM+CLM+CEM(8.11) 

  where cMR : Reliable flexural strength of column section 

         UM•:Related column moment due to prestressing 

        CDM•Related column moment due to dead load 

        CLM••Related column moment due to live load 

       CEM•Related column moment due to earthquake load 
        Mo••Column moment induced by the beams framing into the beam- 

            column joint. The beam bending moments are assumed to reach the 
            flexural over-strength and the moments induced by the beams are 
            transferred into the columns following the distribution ratio of the 
            results of the elastic linear frame analysis. 
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 J3 : Coefficient for two way frame action [8.4] 
 : Dynamic magnification factor [8.4] 

     y : Coefficient to limit the distribution of story shear strength along building 
         height ( a tentative value is 0.3 ) 

To assure the required ductility of columns ( 0.02 rad. in a member rotation angle) an 
adequate volume and arrangement of transverse reinforcement should be provided in 
the potential plastic hinge regions considering the design axial load. 

Design for shear  

In shear design of columns in a building to be designed as BDF system, the following 
equations shall be satisfied. 

  Columns without hinges: 

CQR >_/3•A.cQU(8.12) 

  Columns with hinges: 

  For hinge regions 

Oc•C QR ? ( CMo+CMo) / Lc(8.13) 

  For non-hinge regions 

CQR > ( cMo+cMo) / Lc(8.14) 

In shear design of columns in a building to be designed as GDF systems, the following 

equations shall be satisfied. 

  For hinge regions 

Oc•C QR > ( cMo+cMo) / Lc(8.15) 

  For non-hinge regions 

CQR (cMo+CM0)1LC(8.16) 

For the SRS system, the following equation shall be satisfied. 

  QR~CUQ+CDQ+CLQ+CEQ(8.17) 
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where  cQR : Reliable shear strength of columns 

c Qv : Shear forces induced in columns by adjacent beam end moments 
           through beam-to-column joints, where moments of resistance at beam 

          ends should be assumed to reach flexural over-strengths 

c UQ : Related shear force due to prestressing 

cDQ : Related shear force due to dead load 

cLQ : Related shear force due to live load 

cEQ : Related shear force due to earthquake load 

cMo , cMo : Flexural over strengths of plastic hinges at column top and 
          bottom sections 

0, : Shear strength reduction factor for hinge regions of columns which 
          assures the required hinge rotation indirectly ; tentatively = 0.85 

Lc : Clear height of columns 

Design axial load  

Design axial loads for columns are obtained from a linear frame analysis described in 
section 8.2.4, except for the BDF system. 

In a structural design of BDF system, design axial loads of columns are basically 
evaluated on the basis of beam flexural over-strengths. The flexural over-strength is 
assumed to be developed at each potential plastic hinge region of the beams. However 
the full development of beam over-strength at every potential plastic hinge region in 
a high-rise building does not occur due to higher mode vibrations. Therefore, some 
reduction in design column axial load can be considered. The flexural strengths at 
critical column sections are likely to be overestimated when the design axial load 

greater than the actual axial force responses is estimated. Thus, the reduction factor R,, 
in New Zealand Code [8.2] can be used. 

When two way frame action has to be considered, 50 % of axial load induced by 

perpendicular adjacent beams through beam-column joints shall be added to the 
design column axial load. 

8.2.6 Design of the beam-column joint 

Premature shear failure of beam-column joints and excessive slippage of beam 
longitudinal bars from beam-column joints shall be avoided. Therefore, the careful 
detailing of tendon anchorages and the adequate development length and anchorage 
details of beam longitudinal reinforcement shall be considered in addition to the 
assurance of enough shear strength of beam-column joint. 

To resist bursting, horizontal splitting and spalling forces induced by the prestressing 
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tendon anchorages, an adequate volume and arrangement of reinforcements shall be 

provided in the anchorage zone. 

8.2.7 Design Requirements for Walls in DWF System 

In a building to be designed as a DWF system, the development of a collapse 
mechanism must be associated with the flexural yielding at the wall base or the 
rotational yielding of wall foundations. The rotational yielding means that the 
overturning moment at the wall foundations reaches the maximum moment of 
resistance of the wall foundations. The flexural yielding moment and corresponding 
shear at the end sections of the adjacent foundation beams must be considered. Soil 

pressure or pile resistances and the gravity load at the wall foundations should be also 
considered in addition to the flexural strength of the wall itself in the calculation of the 
maximum rotational resistance of the wall foundations. 

The resultant lateral shear resistance of the walls at the first story is assumed to range 
between 30 % and 70 % of the specified seismic shear force at the first story. When the 
overturning moment at the wall foundation computed by a linear frame analysis 
exceeds the rotational yielding moment of the wall foundations, an additional lateral 
shear strength shall be allocated to the boundary frames. However, the walls shall not 

yield at the first story when the whole frame is subjected to the seismic design load 
resulting from the base shear coefficient of 0.2. 

The observations of past earthquake damages have indicated non-ductile shear failure 
of the boundary beams in wall frame structures or coupling beams in coupled shear 
wall structures due to insufficient web reinforcement . Therefore, for the shear design 
of boundary beams or coupling beams, the following equation is applied to assure their 
ductile behavior. 

  For hinge regions 

 owl  B  QR > (BM0-1-BM0)  / LB-1-BU Q+ BDQ-4- BLQ(8.19) 

  For non-hinge regions 

Ow2.B QR > ( BMo+BMo) / LB+B UQ+BDQ+BLQ(8.20) 

where owl , w2 : Shear strength reduction factors for boundary or coupling beams 
          to assure the required member ductility indirectly; tentatively 0w1 = 0.8, 

0w2 = 0.9. 
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8.3 Design example of prestressed concrete buildings 

In this section, the required strength of a frame in order to force hinges into only the 
beams is parametrically demonstrated for a one-bay, four-story model frame. 

Parameters investigated are; 
(1) span  length  (10, 15, 20 and 25 m) 
(2) live load which uniformly distributes on each floor (0.5, 1.0, 1.5 and 2.0 times 
5.88 kPa) ( a span length perpendicular to the plane of the frames considered is 
assumed to be 6m) 
(3) tensile stress, act, induced at the bottom fiber of the mid-span beam section under 
service load condition when assuming that the beams are simply supported. 

 (a) a, = 0(8.21a) 
  (b) a„ = f = 0.07f(8.21b) 

  (c) act = .fra = 3 fr(8.21c) 

where, f : tensile strength of concrete 

f b : modulus of rupture of concrete 
The uniformly distributed dead load is assumed to be 5.55 kPa. 

8.3.1 General description of model frame 

The one-bay, four-story model frame used in this section is illustrated in Fig.8.5. The 

beams with a rectangular cross section of 400 mm wide by 1200 mm deep are post-

tensioned. The square columns reinforced by ordinary strength non-prestressed steel 

are 600x600 mm. The compressive strength of concrete, ff , is 39 MPa and the elastic 
modulus is 3.13x105 MPa. A span length perpendicular to the plane of the frame 

considered is assumed to be 6 m. The story height of each layer was 4 m. The magnitude 

of live load and span length were chosen as parameters. 
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                  Fig.8.7 Model frame investigated 
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8.3.2 Design of prestressed concrete beams 

Assuming that the beams are simply supported at their ends, bending moment at the 
mid-span section is given by the following formula. 

        (Wd+ wl)• SZ  Mo  = 8(8.22) 

A prestressing force is generally introduced to reduce or to cancel the tensile stress in 
beam sections under service load. The magnitude of prestressing force is usually 
determined from how much tensile stress is permitted under the condition. Prestress-
ing force introduced into the beam can be expressed by using the bending moment Mo 

and tensile stress permitted to occur at the bottom fiber of the section if no cracking 
occurs. 

P =0—act Zb    Z
b

A+e(8.23) 

P where, wd : dead load per unit area 

       w1 : live load per unit area 

S span length of the beam 
       Zb : elastic modulus of section of the beam 

       A : sectional area of the beam 
eP : distance of the centroid of the prestressing steel measured from 

              the centroidal axis of the section 

The sectional area of the prestressing steel AP required to introduce this amount of 

prestressing force is given by 

P      A =  Pa .n. f
y(8.24) 

where, a : allowable prestress introduced into the prestressing steel as a ratio to yield 
strength, 17 : ratio of the effective prestress to the prestress just after prestressing and 

fy : yield stress of prestressing steel (fy is assumed to be 1569 MPa). 0.85 and 0.8 are 
usually admitted as approximate values for a and 77, respectively . 

The minimum amount of bonded reinforcement should be provided by the following 
equation according to the current Japanese design code for prestressed reinforced 
concrete (and partially prestressed concrete) structures [8.14]. 
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 pt =a`>—0.4 — 2.04•1(8.25)     bdfc100 

where, a, and d : sectional area and effective depth of ordinary non-prestressed 

reinforcement, b : width of the section, 6g : average effective prestress over the 

section and fc : compressive strength of concrete. a, should not be less than the total 

sectional area of 2-D13 ( 2.53 cm2 ). 

    Table 8.6 Prestressing force, sectional area of prestressing steel and 
                   ordinary non-prestressed steel 

 Frame Prestressing force Total sectional area of Total sectional area of 
                           prestressing steel ordinary reinforcement 

     (kN)(mm2)(mm2)  
M-B(a) 52544940253 
M-B(b) 49004640253 
M-B(c) 46634340253  

  Frame Prestressing force Total sectional area of Total sectional area of 
                             prestressing steel ordinary 

           (kN)(mm2) reinforcement (mm2)  
M-S 10(a) 141213801150 
M-S10(b) 10509901430 
M-S 10(c) 8217901430  
M-S15(a) 30292860253 
M-S15(b) 26752570253 
M-S15(c) 24382270253  
M-S25(a) 80867600253 
M-S25(b) 77317210253 
M-S25(c) 74957010253  

 Frame Prestressing force Total sectional area of Total sectional area of 
                            prestressing steel ordinary 

           (kN)(mm2) reinforcement (mm2)  
M-L05(a) 38963650 253 
M-L05(b) 35413360 253 
M-L05(c) 33053160 253  
M-L15(a) 66126240 253 
M-L15(b) 62575900 253 
M-L15(c) 60215680 253  
M-L20(a) 79737520 253 
M-L20(b) 76157180 253 
M-L20(c) 73796960 253  
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Table 8.6 shows the prestressing force introduced into each beam, sectional area of 

prestressing steel and ordinary non-prestressed steel for each combination of the 
parameters. The suffix of the model name corresponds to the magnitude of tensile 
stress assumed at the bottom fiber of the section indicated in  Egs.8.1(a) to (c). 

8.3.3 Calculation of secondary stress by prestressing 

Fig.8.6 illustrates the tendon profile of the beam. The tendon force P and the member 
stiffness El are assumed to be constant along the span. The secondary stress was 
calculated according to the following assumptions: 
1. The ends of the beam are held against vertical displacement and rotation, but 
longitudinal deformation is not restrained, fixed-end moments are calculated. 
2. The building structure has all been constructed and then the floor beams are post-
tensioned at once, release moments and lateral forces due to prestressing are applied 
as external loads to the beam-column joints at each floor level. The release moments 
are as large as the fixed-end moments but opposite sign. The calculated results are 
based on the assumption that the frame remains uncracked. 
3. The resultant stresses in the members are calculated using the stiffness matrix of 
the frame assembled on the basis of the elastic stiffness of the materials. Creep and 
shrinkage of concrete, and relaxation of prestressing steel are not considered. 
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8.3.4 Design for seismic actions 

The design seismic load in this study is based on the uniformly distributed vertical load 

on the floor. Only 1/3 of the live load was included because full live load is not likely 
to exist during an earthquake. The gravity load for calculating the seismic design 

lateral load at each floor level,  W', is given by 

  W = wd+1w1 •6•S(8.26) 

The base shear coefficient Co was 0.2. Both the seismic hazard zoning coefficient Z 

and design spectral coefficient R1 were unity. The Ai distribution factor of lateral shear 
forces over the height was used. When calculating the design moment of each member, 
the effective member stiffnesses are assumed to be based on 50% of the area and 
moment of inertia of the gross section of the beams and 80% for the columns. 

The combination of design actions considered was; 

G+P+U+1.5K(8.27) 

where, G and P denote the service dead and live load, respectively. U indicates the 
secondary stress due to prestressing force. K denotes the seismic design load due to the 
lateral shear force to each floor. 

8.3.5 Calculation of beam flexural strength 

The flexural strength of the beam sections was calculated using the equivalent 
rectangular stress block specified in ACI 318-89. The yield strength of prestressing 

steel was a nominal value (fy =1569 MPa). Overstrength which might develop in the 

beam plastic hinge regions was not calculated on the basis of overstrength of the 
consititutive materials, but considered to be 120% of the nominal flexural strength of 
the beam section. The overstrength was considered to be resisted by the upper and 
lower column critical sections joining to the beam following moment distribution ratio 
of the columns based on the results of the linear analysis which considers stiffness 
degradation of the members due to cracking. The moment distributed to the columns 
are required in order to avoid column hinging. Higher mode effect and two-way frame 
actions are not incorporated. 

8.3.6 Calculation results 

The ratio of the moment resistance required in order to avoid column hinging, to the 

design moment determined from the combination of design actions, Mnyd / Mscd, is 

plotted against the tensile stress permitted at the bottom of the beam section under 
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service load condition in Fig.8.7. When  Mnyd / Mscd was less than unity, the design 

moment of the beam was determined from the earthquake load and Mnyd / Mscd was 

unity. 

The maximum value of Mnyd / Mscd was 3.22. For reinforced concrete structures, the 

design moment of the beams are usually determined by the earthquake actions. 
Therefore, to prevent the columns from forming plastic hinges, the column design 

moment should be approximately 25% larger than that transferred from the beams 

unless higher mode effect and two-way frame actions are considered. For prestressed 

concrete buildings, as shown in Fig.8.7, a large strength is needed to cause the beam 
hinging mechanism. 
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8.4 Ductility of high strength reinforced concrete columns 
with high strength transverse reinforcement 

8.4.1 Introduction 

As shown in the preceding chapter, realizing beam hinging mechanism for prestressed 
concrete building structures is difficult especially for gravity-load-dominated build-
ing frames. Therefore, column hinging mechanism should be accepted for low-rise 

prestressed concrete buildings if ductility of plastic hinge region of columns is limited 
and the damage does not concentrate in the weakest story. Beam hinging mechanism 
is prefered because of the difficulty of ensuring ductility in the columns with high axial 
loads. Beams, which are theoretically free from axial load, have a high ductility 
capacity. Besides that, in prestressed concrete buildings higher compressive strength 
concrete is usually used than in reinforced concrete buildings. High strength concrete 
is more brittle than ordinary strength concrete with a sudden reduction of stress after 
the compressive strength is reached. 

Lateral confining of concrete is often used to: (1) increase the strength of core concrete 
and (2) improve the ductility. However, past research has pointed out that the effect of 
lateral confining steel on columns of higher strength concrete is less than on those of 
ordinary strength concrete due to the smaller lateral strains of higher strength concrete. 
Volumetric expansion of high strength concrete is not as significant as that in ordinary 
strength concrete. 

 Muguruma et al. tested eight square reinforced concrete columns subjected to 

combined flexure and constant axial loads of 0.254 to 0.629 ff Ag, and the test results 
were reported in the reference [8.8]. ff is the compressive strength of concrete and Ag 
is the gross sectional area of the column. The concrete compressive strengths were 85.7 
MPa and 115.8 MPa. The confining reinforcement had yield strengths of 328 MPa and 
792 MPa. The results of these column tests are summarized as follows: the test 
specimens, which had high strength confining reinforcement, achieved an interstorey 
drift of at least 0.06 rad. without significant strength reduction even under the axial 

load of 0.629 L • Ag. High yield strength confining reinforcement improved the 

flexural ductility of the columns, although the confining reinforcement was less 
effective for columns of higher-strength concrete . On the basis of the test results the 
stress-strain models on confined concrete proposed by Muguruma et al. [8.9], and Kent 
and Park [8.10] were modified and the theoretical moment-curvature curves calcu-
lated using the models enabled the experimental curves to be well predicted . 

In this section the flexural strength and ductility of columns with moderate or high 
axial compression loads are investigated . The ductility requirement for column plastic 
hinge regions has not yet been established . In this research work it will be shown that 
the ductility of high strength reinforced concrete columns can be improved more by 
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high strength lateral confining steel than by ordinary strength confining steel. 

In addition, the stress-strain curve model proposed by Muguruma et  al. [8.9] is re-
modified to get a better prediction. 

8.4.2 Column test units and test procedures 

Four reinforced concrete column units with 200 mm square cross section were 

constructed. The axial loads applied to the columns were Pc, = 0.343 ff • Ag for CL-3 

and CH-3 and Pc = 0.473 ff • Ag for CL-4 and CH-4, where and Ag denotes the 
compressive strength of concrete and the gross area of columns, respectively. The 
longitudinal reinforcing steel for each column consisted of twelve 13 mm diameter 
deformed bars with a yield strength of 403 MPa. The transverse reinforcement of CL-
3 and CL-4 was 6mm diameter hoops from a deformed bar with a yield strength of 408 
MPa. For CH-3 and CH-4 the transverse reinforcements of 6mm diameter deformed 
bar hoops had a yield strength of 873 MPa ( at the 0.2% offset strain). The mechanical 

properties of the steel are summarized in Table 8.6. The bar ends of the hoops were 
flash butt welded in order to develop their full efficiency. The cross sections and the 
dimensions of the columns, and the arrangement of longitudinal and transverse 
reinforcement in the columns, which were identical to those of the columns tested in 
the previous project, are shown in Fig.8.8. The loading setup is shown in Fig.8.9. 

               Table 8.7 Mechanical properties of steel 

----------------------------------

V------------------------------------------------------------------------------------D13 ID6  
    Yeild stress (MPa) 403 408873* 

     Yield strain (%) 0.193 0.206 0.620 
     Modulus of elasticity (MPa) 209000 202000 206000 

    Tensile strength (MPa) 574 582 1021  
Note : *0.2% offset yield stress 
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The mix design for the silica fume high strength concrete  was  : 

   15 mm aggregate (absolutely dry) 1018 kg/m3 
  Sand (absolutely dry)646 kg/m3 
   High-early-strength Portland Cement ............ 538 kg/m3 
 Silica Fume108 kg/m3 
 Superplasticiser13 kg/m3 

 Water133 Litre/m3 

   Water/(Cement + Silica Fume) ratio = 0.18 

The average slump was 134 mm. The compressive cylinder strength had reached ff = 
130 MPa at the stage of testing the columns, that is, at the age of 73 days. The 

mechanical properties of concrete are summarized in Table 8.7. All columns were cast 

vertically, compacted using vibrators, and were damp cured in the laboratory. 

              Table 8.8 Mechanical properties of concrete 

             Compressive strength L (MPa) 130 
              Strain at peak stress E,(To) 0.328 

             Modulus of elasticity E,(MPa) 43900 

            Secant modulus at 1/ 34 (MPa)43700 

The volumetric ratio of confining reinforcement to confined core measured center-to-

center was 4.93 % for all specimens. For CL-3 and CL-4, the area of confining 

reinforcement placed in the column was 85 % and 72 %, respectively, of that calculated 

according to Eq.6-24 and Eq.6-25 in the section 6.5.4.3 of NZS 3101:1982 [8.2] using 

the measured material strengths (f, = 130 MPa and fyh = 408 MPa) and assuming that 
the capacity reduction factor = 1. For CH-3 and CH-4, the area of confining 

reinforcement was 182 % and 155 %, respectively, of that calculated according to the 

above equations using the measured material strengths (ff = 130 MPa and fyh = 873 
MPa) and assuming 4 = 1. ACI 318-89 [8.11] requires 91 to 43 % of the area of 
confining reinforcement placed in the columns. 

The critical plastic hinge regions of the columns were expected to be the regions above 
and below the central stub. However, as indicated in the previous test [8.8], the plastic 
hinge rotation concentrated mainly either above or below the stub. This prevented 

proper evaluation of ductility. In these additional tests, the possible critical regions 
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above the central stub were confined using steel plates on four sides of the column. The 

plates were firmly tied to each other. As tightened, the plates provided the critical 
region with biaxial confining pressure. Little rotation was observed in the regions 

above the central stub during the tests. In the regions below the central stub, which 

were not confined by steel plates, the maximum rotations measured in positive and 

negative loadings were almost the same. 

Reversed cyclic horizontal load was statically applied to the stub by a hydraulic 

actuator. For CL-3 and CH-3 which had lower applied axial loads, the first loading 

cycle consisting of two cycles was followed by a series of deflection controlled cycles 

in the inelastic range, also comprising two full cycles to each of the displacements of 
the first loading cycle multiplied by  ±2, ±3, ±4, ±5 and two more cycles comprising 

one full cycle to ±6 and ±7 times the displacements of the first loading cycle. The first 
loading cycle displacements of the columns were found when the strain reading in the 

longitudinal tension reinforcement exceeded the yield strain which was obtained from 

material test. For CL-4 and CH-4 which had higher applied axial load, the first loading 

cycle up to the interstorey drift of ±1/200 was followed by a series of deflection 
controlled cycles comprising two full cycles to interstorey drifts of ±1%, ±2%, ±3%, 

±4%, and sometimes higher. 

8.4.3 Test results 

Strength  

Figure 8.10 shows the moment measured at the critical section versus interstorey drift 

during the tests. The moment displayed includes the P — A effect. 

The ideal theoretical flexural strength M. of the columns calculated using the ACI 318-

89 equivalent rectangular stress block with 131 = a / c = 0.65 based on the measured 
material strengths was 134.5 kNm for CL-3 and CH-3, and 131.5 kNm for CL-4 and 

CH-4. ~ = 0.65 implies that a triangular compressive stress block of concrete is 
assumed. This is based on the characteristics of high strength concrete: linear 
ascending portion up to the peak stress followed by sudden and large reduction of 
stress. The strength reduction factor was assumed to be unity. These values and the 
flexural strength Me obtained from the test results are shown in Table 8.8. For the 
columns subjected to lower axial loads the ACI method gave a good approximation . 
The worst discrepancy was of the order of 4 %. However, for the columns under high 
axial load the experimental results exceeded the flexural strength obtained by the ACI 
method by 9.4 % on average. 
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 Table 8.9 Comparison of maximum experimentally measured flexural strengths 
       and maximum calculated flexural strengths using ACI methods 

   Specimens Experimental Results (kNm) ACI Methods (kNm) 
             Positive  I 

 

1 Negative Positive 1 Negative 
     CL-3 138.9 -132.4 134.5 (0.97) -134.5 (1.02) 

     CH-3 139.8 -136.4 134.5 (0.96) -134.5 (0.99) 
     CL-4 141.5 -147.2 131.5 (0.93) -131.5 (0.89) 
     CH-4 148.9 -139.0 131.5 (0.88) -131.5 (0.95)  
   Note : Values in the parentheses indicate the ratio of the flexural strengths 

   obtained theoretically to those obtained from the test results. 

As pointed out in Ref. [8.10], "it appears that, for under-reinforced concrete beams, the 
present ACI 318 methods can be used without change, at least for concrete strengths 
up to 83 MPa, and for members subjected to combined axial compression and bending, 
important differences may occur." Compared with the test results, the ideal strength 
calculated using the ACI methods is considered to give acceptable lower bounds for 

the columns with low axial loads less than 0.343 L • Ag. However, most of the concrete 

shell outside the transverse reinforcement was observed to spall off just before or when 
the columns showed the peak measured flexural strengths, while the ACI methods are 
based on a gross sectional area. If they were based on a core dimension, they would 
have a much smaller strength. Therefore, it appears that the methods give a rather 
conservative strength for columns under high axial load. 

The design of transverse reinforcement described in ACI 318 is based on the 
requirement that the final strength must be at least equal to the pre-spalled strength. In 
the column tests, spalling of the cover concrete commenced just before the peak of the 
first loading run into the inelastic range. The load carrying capacity of the columns kept 
increasing after the spalling until the peak flexural strength was reached. From the 
strength viewpoint, the present ACI equation for transverse reinforcement ratio can be 
used for high-strength concrete columns as well. 

The shear distortion calculated based on the readings of the linear displacement 
transducers attached to the potential plastic hinge region shown in Fig.8.9 was so small 
that it was observed during the tests that flexure dominated the behaviour of the 
columns. 
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Ductility  

In Fig. 8.10 the displacement ductility factors  ,u are shown. The displacement ductility 

factor it is defined as ,u = 0 / Ay , where 0 is a displacement and Ay is a yield 

displacement of the equivalent elasto-plastic system with the same energy absorption 

as the moment - interstorey drift relationship obtained from the test results as shown 

in Fig.8.11. The available ductility was defined as the displacement ductility of the 

post-peak displacement when the load carrying capacity had reduced to 80 % of the 

peak load. 

                   Ultimate Load 

Mu ----- 

c) 
 FC'., 

'~Equal areas 
    I 'I Ic) 

Available Displacerien4 
1 1 

Ay DISPLACEMENT 

                Based on Equivalent  
                Elasto-plastic Energy 

               Absorption  

              Fig.8.13 Definition of yield displacement 

Compared with CH-3 of high yield strength confining reinforcement, the test results 
of CL-3 of low strength confining reinforcement indicated the similar hysteresis loops 
and the available ductilities were almost the same. This shows that under low axial load 
on the column, the yield strength of confining reinforcement did not contribute 
effectively to improve the available ductility, because the amount of confining 
reinforcement was supposed to be much more than enough. 
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Some of the transverse reinforcement fractured at the flash butt welding position 
during the tests of CL-3 and CH-3. For CL-3 two of them were found fractured just 
after the last loading run. A hoop just below the central stub of CH-3 was found 
fractured in the second loading run to the displacement ductility factor of 8.3. The 
transverse reinforcement of CL-4 and CH-4 did not fracture. In the material test of the 
transverse reinforcement some of test pieces fractured at the flash butt welding 

position while most of them developed their full strength and fractured somewhere 
else than the welding. It appears to be difficult to rely too much on flash butt welding. 

For the specimens subjected to a higher axial load of 0.473  ff • Ag, the yield strength 
of the confining reinforcement gave a more important contribution to the improvement 
of ductility. The available ductilities were µ =+3.86 and µ =-4.55 for CL-4 and 

µ =+4.27 and µ =-5.5 for CH-4. In addition, the reduction in the load carrying capacity 
in the post-peak region of CH-4 was more gradual than that of CL-4. The first yielding 
of confining reinforcement was observed on the first loading run to the interstorey drift 
of -1/50 for CL-4 and on the second loading run to -1/25 for CH-4. 

The critical factor of determining the available ductility is considered to be buckling 
of longitudinal reinforcement. For all specimens the buckling of longitudinal rein-
forcement was observed in the loading run following the loop where the load carrying 
capacity reduced to about 80 % of the peak load. In the tests of CL-3 and CL-4 with 
low yield strength transverse reinforcement, the buckling seemed to cause a sudden 
large drop of load carrying capacity. High yield strength confining reinforcement used 
in CL-4 prevented more effectively the buckling of longitudinal reinforcement than 
low yield strength confining reinforcement in CL-3 as shown in Fig.8.10. 

8.4.4 Modification of previously proposed stress-strain model of con-
     fined concrete 

In the paper written by Muguruma et al. [8.8], the stress-strain models on confined 
concrete proposed by Muguruma et al. [8.9], and Kent and Park [8.10] were so 
modified as to give theoretical moment-curvature curves closer to those obtained from 
the test results of the columns of high strength concrete. The theoretical moment-
curvature curves calculated on the basis of the modified stress-strain curves and the 
measured material strength enabled the experimental curves to be well predicted. 

However, there are still three problems left to be resolved; (1) The experimental 
flexural strength of the columns exceeded the predicted theoretical values. (2) The 
inclination of the theoretical moment-curvature curves in the large ductility were still 
steeper than that of the experimental curves after the modification of the stress-strain 
curve of concrete proposed by Muguruma et al. (3) The comparison in the reference 

[8.8] was conducted between the theoretical results of monotonic loading and the 
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envelope curves of the experimental results under reversed cyclic loading. 

The analytical method used is as follows; The column cross-section was assumed as 
a series of parallel strips which are perpendicular to the depth of the section. The 
distribution of flexural strains was assumed to be linear through the depth of the 
section. Analysis proceeded by increasing the curvature at the critical section in a 
series of small steps. The position of the neutral axis was obtained by iteration until 
equilibrium of the internal forces was achieved. 

Flexural Strength  

Table 8.9 shows the theoretical flexural strength based on the measured material 
strengths. The theoretical flexural strengths obtained from the monotonic analysis 
were 88 to 103 % of the experimental values. Park et  al. pointed out three reasons in 
their paper [8.10] why the experimental moments exceeded the theoretical moments 
as follows; (1) In the inelastic range, the actual stress-strain curve for the steel under 
cyclic loading lies above the monotonic curve, which is usually assumed in calculation 
of moment capacities, and results in higher steel stresses for a given strain. (2) The 
stress-strain model for confined concrete may not be absolutely accurate. (3) The extra 
confinement caused by the presence of the stiff central stub at high displacement 
ductility factors would mean that the critical section would tend to shift away from the 
region of influence of the stub. If the critical section is taken at 50 % of neutral axis 
depth from the stub face, the theoretical moment capacity would be closer to the 
experimental value. 

       Table 8.10 Maximum flexural strengths theoretically predicted 

                      Theoretical Results (kNm) 
  Specimens Monotonic Loading Cyclic Loading 

            Positive I  Negative Positive INegative  
    CL-3 135.8 (0.98) -135.8 (1.03) 135.8 (0.98) -135.8 (1.03) 

    CH-3 135.8 (0.97) -135.8 (1.00) 135.1 (0.97) -136.8 (1.00) 
    CL-4 131.4 (0.93) -131.4 (0.89) 140.8 (1.00) -138.5 (0.94) 
    CH-4 131.4 (0.88) -131.4 (0.95) 133.3 (0.90) -140.6 (1.01)  
  Note : Values in the parentheses indicate the ratio of the flexural strengths 

  obtained theoretically to those obtained from the test results. 
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As for the first reason, Table 8.10 also shows the theoretical flexural strength obtained 
from the analysis of cyclic loading based on the stress-strain curve model proposed by 
Yokoo et  al [8.13]. The analysis was proceeded following the hysteresis of curvature 
which was calculated the reading of the linear displacement transducers attached in the 

potential plastic hinge region of the column. The theoretical values increased to 90 to 
103 % of the experimental values. However, for the columns under high axial load the 
difference between them were still larger than acceptable. The increment of compres-
sive strength of confined concrete appeared to contribute less significantly to the 
flexural strength than the increment of steel stress. Therefore the large change in the 
flexural strength by the second reason can not be expected. 

In the reference [8.8], the critical section appeared to shift away from the stub face 
based on the close observation of the appearance as well as in the tests reported in this 

paper. This seemed to be more remarkable in the columns subjected to high axial load 
than in those under low axial load. However, the third reason did not affect the peak-
load because it was obtained at a rather small displacement although the load in the 

post-peak region at larger displacement was made larger. The theoretical values 
increased to 152.5 kNm for CL-3 and CH-3, 153.4 kNm for CL-4 and 154.3 kNm for 
CH-4. Thus, the ratio of the flexural strength obtained theoretically to those obtained 
from the test results also increased to 1.04 to 1.15. 

Friction at the pin supports at the top and bottom of the column would give an 
additional strength especially to the columns subjected to higher axial load. However, 
this was not included quantitatively in the calculation. 

Ductility  

Figure 8.12 shows the moment-curvature curves calculated using the original Muguruma 
et al. model on confined concrete [8.9], the modified Muguruma et al. model with 
a=1.2 [8.8] and the experimental results. The reduction in strength of the theoretical 
moment-curvature curves in the large ductility were still larger than that of the 
experimental curves after the modification. To account for this, the modified stress-
strain curve was re-modified as shown in Fig.8.13 as the curve 0-A-C-I. A descending 
branch of the skeleton curve after peak stress does not fall below the stress of 0.5 ac. 

and the stress is kept to 0.5 aim, while in the previous modification the descending 
branch was assumed to reach zero stress. The calculated results are also shown in 
Fig.8.12 as the re-modified model. In the large curvature region, the reduction in 
strength became more gradual than the results of the modified model. However, this 
region was beyond the available ductility and the re-modification seems not to be of 

great importance. 

                                            307



 Ex•-rim-ntal r-sult  

 160 —Re-modifi-d m••el CL -3 

  —e

•120' 

        ,--•;-';V~~f'c

7/~~~~= 130 MPa 
                                                                                    Pc =0.343f'cA 

Hifis~~~~fyh=408MPa 80 —•/•~... • • .-... .. 
   i,(,e/ 

40 —Moe fled model 
                                                      e` 

                                                                                                 •. 

  0--Original model  

 

I------------------------------------------------------------------------------------III I I I> 
                                                                                                  -4 

    0.01.02.0 3.0x10 

               Curvature in 1/mm 

       Experimental resultCL-4 
     A 

160f'c = 130 MPa 
—Pc =0.473f'cA 

2fyh = 408 MPa•1.1i
`Re-modified model q/ Ilillt 

-- 120 —l 

  80—i      .r711111, 
N40—e•••••....../. qir
O—Modified model  

  0 —Origi al model   
I------------------------------------------------------------------------------------I I II I I> 

                                                                                                              -4 
    0.0 1.02.03.0x10 

               Curvature in 1/mm 

    Fig.8.14(a) Comparison of moment - curvature curves experimentally 
                measured and theoretically predicted 

308



       A  Experimental result_ 
 160 —Re-modified model 

                                           CH-3 

     - 

                         ~p'' 
 120-=::. 

   —• •. •f'c = 130 MPa q-,---1"000110.44–.0• !. . • Pc =0.343f'cA 
, —             /~~_/~.-A\Q\.•'fyh = 873 MPa 4--18 0—/~—,e\A° 

     l/~'Modified model  40 — kg(7- a 
          IOri • ' na1 model      0_   

I--------------------------------------------------------------------------------------------III II I > _4 
0.01.02.03.0x10 

               Curvature in 1/mm 

      A Experimental result  
                                         Re-modified model    160 -

       -Modified model             .6-0AILOIA_ '' 120 — 

q_~~°~~••CH-4 
 ••/ 

4–),,,ti,,,ti•~t'° 
 80 —^•' ••~/^of'c = 130 MPa                                                                      ~.o 

                                                                    fyh = 873 MPa 

    I /Ori.inal model 
0 - ^  

   I II II I I                                                                                                        -4 

0.01.02.03.0x10 

               Curvature in 1/mm 

Fig.8.14(b) Comparison of moment - curvature curves experimentally 
                  measured and theoretically predicted 

                                            309



 6cm ---- C 

f- Ai0 Strain at klk3 maximum C• 

o6 cu 1- — r — — — — • 
    i i DG 0.5 6cm 

  6c_Plain II 

      iCo cret I 
                     Confined F, 

Ei Concrete  

----------------------------------------------------- ND-
   0 £m£u£cm £cu 

     Strain £c  

O-A-B • Plain Concrete 
O-A-C-F : Original Model for Confined Concrete 
O-A-C-I : Modified Model 
0 A-C-G-H : Re-modified Model 

Fig.8.15 Stress - strain model on confined concrete 

For CL-3, CL-4 and CH-4, the theoretical moments were much smaller than those of 
the experimental results while for CH-3 the theoretical moments were slightly larger 
than those of the experimental results. The problem is considered to be in the 
evaluation of spalling strain of cover concrete. The cover concrete of the columns was 
appeared to have some strength until the larger strain than assumed in the analysis. The 
spalling of concrete itself was so uncertain that a different result could be obtained even 
if two identical columns were tested under exactly the same condition. 

Cyclic Loading  

The influence of cyclic loading in the analysis is expressed in Fig .8.14. The figure 
contains three moment-curvature curves of CH-4 obtained theoretically; (A) the 
moment-curvature curve under monotonic loading calculated using the modified 
Muguruma et al. model proposed in the previous paper [8.8], (B) the moment-
curvature curve under cyclic loading using the same model used in (A), and (C) the 
moment-curvature curve under cyclic loading using the re-modified model assuming 
that a descending branch of the skeleton curve after peak stress does not fall below the 
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stress of 0.5 cam. As shown in Fig.8.14, the reduction in strength under cyclic loading 

(Curve (B) or (C)) is much larger than that of monotonic loading (Curve (A)) in the 

post-peak region. For the column subjected to high axial load of 0.473 ff • Ag, the 
theoretical moment-curvature curve of cyclic loading (B) dropped suddenly at a 
smaller curvature than that of monotonic loading, and the large reduction in strength 
resulted in instability in analysis. This is because the resultant compressive force in 
core concrete was not able to become large enough to sustain such a high axial load. 
The stress distribution in the column section in the analysis of reversed cyclic loading 
is different from that in the analysis of monotonic loading even if they are obtained at 
the same curvature because stresses in concrete under cyclic loading are smaller than 
those under monotonic loading at the same strains. 

Fig.8.15 shows the stress distributions along the column section of CH-4 calculated 
theoretically. All the curves were obtained at the same curvature of 0.00003 /mm. The 

peak-stress part shifted away from the extreme compression fiber to the extreme 
tension fiber of the section as the loading was advanced. That means the neutral axis 
depth increased. However large the neutral axis depth became, there was a limit that 
the resultant compressive force in concrete was not able to become large any longer. 
As the limit was being approached, the moment capacity dropped suddenly and this 
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reduction in strength led to instability and  termination in analysis. In the post-peak 
region and under high axial load, the difference between the models is of greater 
importance. Besides, high strength concrete loses its strength suddenly in the post-

peak region even if the concrete is well confined. The whole moment-curvature curve, 
even in the large ductility region, can be pursued by using the re-modified model as 
shown in the curve (C) in Fig.8.15, while in case the modified model was used the 
analysis terminated in the third cycle during the loading. In fact, core concrete is 
considered to have some strength up to a much larger strain than assumed in the 
original stress-strain model when it is well confined. 
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8.5 Seismic design of building frames of limited ductility 

The idea employed in the design proposal by  All committee that column sidesway 

mechanism could be permitted but design earthquake load should be increased is not 

innovative because NZS 3101:1982 has the provisions for structures of limited 

ductility. The provisions of NZS 3101:1982 may suggest a fundamental idea of seismic 
design method for prestressed concrete buildings. 

Due to the configuration of structural components or functional requirements some 
building structures may have strengths which are greater than needed for full ductility. 
This type of structures need only limited ductility. Structures of limited ductility are 
defined as structures in which the system as a whole or the primary lateral load resisting 
components are not considered to be capable of sustaining the inelastic displacements 
that are expected in fully ductile structures, without signiicant loss of strength or 
reduction in energy dissipating capacity. As described in the commentary (NZS 
3101:1982 Part 2 Commentary) typical building structures in which the application of 
the design procedure might be appropriate are: 

(a) Frame structures in which the geometrical limitations of Section 6 (in NZS 
   3101:1982) cannot be met. 

(b) Low framed structures in which beams are unavoidably over-reinforced, because 
    of gravity load or to meet minimum reinforcement requirements. 

(c) Structures which, in accordance with generally understood conditions compat-
    ible with ductile design, are irrational, such as deep membered frames arising 

    from the random penetration of walls. 

(d) Long squat wall structures, such as occur as fire or party walls between adjacent 
    residential units, and which possess a great excess of strength over requirements 

   for lateral load resistance. The provisions for structures of limited ductility would 
   also be applicable to frames lying parallel to such walls, where such frames are 

   not treated as secondary elements in accordance with 3.5.14 in NZS 3101:1982. 

Prestressed concrete building structures may be included in the category (b) because 

prestressing steel is provided to reduce gravity load effects and it gives more strength 
needed for lateral load resistance. Moment resisting frames of limited ductility are 
assigned a structural type factor of S = 2.0. This structural type factor may be 
compared with the value of S = 0.8 assigned to ductile frames. That is, moment 
resisting frames of limited ductility are designed for seismic forces which are 2.0/ 
0.8=2.5 times the seismic design force used for the design of ductile moment resisting 
frames. The ratio of design seismic load of frames of limited ductility to that of ductile 
frames is very large in the New Zealand codes compared with the AIJ's proposal: for 
reinforced concrete frames the ratio of design seismic load of BDF buildings to that 
of GDF buildings is 0.35/0.25=1.4, although the distribution of story shear strength 
along the height of the buildings should be as specified. 
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The provisions are applied to only relatively low structures: frames of limited ductility 

have a maximum height of four stories or 18m, or if roof and wall mass are less than 

 150kg  /  m2 of floor area a maximum height of five stories or 22.5m, while in the All's 

proposal, there is no limitation of height of buildings to be designed as GDF buildings. 
Prestressed concrete tall buildings are quite attractive. 

Required flexural strengths are also different between the two design procedures. 

Beams and columns outside the end regions should have flexural strengths, Mi, 

indicated in Eq.8.28. 

OMi > Me +(-3  —1 Meq(8.28) 
where, 0 : strength reduction factor ( 0 = 0.9-0.7 depending on the axial compres-

          sion load and transverse reinforcement provided.) 
Mi : ideal flexural strength 

Me: moment resulting from loading combination U, involving earthquake 
          loads 

      Meq •moment associated with E• 

By substituting S = 2.0 into Eq.8.28, the following equation is obtained. 

OMi > Mg + 1.5Meq(8.29) 

where, Mg: moment associated with G 

             = Me— Meq 
     G : factored gravity load - (dead load and/or live load) specified in NZS 

          4203 or other appropriate loadings code 

In the regions of potential flexural hinging for beams and columns, required flexural 
strengths are given in the following equation. 

OM1 > Mg + Meq(8.30) 

In the All's proposal for beams of GDF buildings, required flexural strengths are 

BMR?B UM+BDM+BLM+BEM(8.31) 

All the notations regarding the equations are given in Section 8.2. 
for columns 

CUM+CDM+CLM +(1 + Y)cEM�CMR>—CUM+cDM+cLM+cEM(8.32) 
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Capacity reduction factor for flexural strength is not incorporated in the equations of 

the All's proposal. 

Shear strengths to be provided are given by the following equation . 

 ~V  >_  Vg  +  2Veq(8 .33) 

where, V : ideal shear strength 

Vgshear associated with G described above 

       Veq•shear associated with E 

On the other hand in the AIJ's proposal shear strengths regarding hinge occurrance . 
Beams without hinges: 

BQR�B UQ+BDQ+BLQ+BEQ(8 .34) 

Beams with hinges: 

     For hinge regions 

OB'B QR > (BMo+BMo) / LB+B UQ+BDQ+BLQ(8.35) 

     For non-hinge regions 

    BQR ? ( BMo+BMo) / LB+B UQ+BDQ+BLQ(8.36) 

For hinge regions of columns of GDF buildings: 

Oe'cQR >(cMo+cMo)/Lc(8.37) 

For non-hinge regions 

cQR (cMo+cMo)/Lc(8.38) 

As shown above, shear strengths provided by the All's proposal are based on the 

flexural overstrengths of end regions of the columns. It is stated in NZS 3101:1982 that 

a suitable margin over required flexural strengths as derived from the structural type 

factor used for flexural design in end regions. Due to larger seismic design load a 

margin as much as Veil would be regarded enough although a capacity reduction factor 

is not taken into account. 
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8.6  Conclusions 

(1) A new seismic design procedure for prestressed concrete building structures 
   proposed by AIJ task-committee was introduced. In the design procedure a 

   column sidesway mechanism is permitted as one type of failure mechanisms. In 
   order to avoid damage concentration into the weakest story, even if soft story 

   forms, the lateral seismic design force should be increased and the smooth 
   distribution of story shear strength be assured. 

(2) It has been stated that to secure beam hinging mechanism is difficult in 
   prestressed concrete building structures because prestressing steel, which is 
   usually high strength steel is provided to mainly reduce gravity load effect and 

   the member sections have much larger strength than required by seismic lateral 
   design force. Some design examples were demonstrated to show how difficult it 

   is to realize beam hinging mechanism in prestressed concrete buildings. The ratio 
   of the moment resistance required in order to avoid column hinging to the design 

   moment determined from the combination of design actions, Mnyd I Mscd , reached 

   3.22 at most. For reinforced concrete structures the design moments of the beams 
   are usually determined by earthquake actions. Therefore, to prevent the columns 

   from forming plastic hinges the column design moment should be approximately 
   25% larger than that transferred from the beams unless higher mode effect and 

   two-way frame actions are considered. For prestressed concrete buildings a large 
   moment resistance is needed to realize beam hinging mechanism. 

(3) The flexural strength and ductility of columns with moderate or high axial 
   compression loads were investigated by carrying out reversed cyclic loading tests 
   on high strength reinforced concrete columns. The test results indicated that 
   adequate ductility was obtained even for such high strength concrete columns by 

   using high strength transverse reinforcement. The secured ductility would be 
   enough even when soft story should form in one of the layers of a building. In 
   addition, the flexural strengths of the test units subjected to the moderate axial 

   load were well predicted by the ACI 318-89 methods with an equivalent 
   rectangular stress block. However, for the columns under high axial load the 

   flexural strengths obtained by the experiment exceeded the predicted values. 
   Comparison between the experimental and theoretical results of moment-curva-

   ture curves indicated that the modified stress-strain model proposed by the 
   authors should be re-modified so as to enable the moment-curvature curves to be 
   well predicted, especially for columns subjected to reversed cyclic lateral loading 

   with high axial compressive load. 
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Chapter 9 

REVERSED CYCLIC LOADING TESTS ON 

PRECAST  PRESTRESSED CONCRETE 

BEAM-EXTERNAL COLUMN JOINT ASSEMBLIES 

9.1 Background 

Construction of prestressed concrete buildings requires more work than conventional 
reinforced concrete buildings. Such work consists of prestressing and grouting. This 
is troublesome and one of the reasons why prestressed concrete buildings have not 
become popular in spite of their performance under service load conditions. One of the 
solutions is use of unbonded tendons. This will be discussed later in the appendix. 
Another option is to adopt a precast prestressed concrete system, in which members 
are produced at a factory and transferred to a construction site, in some case members 
may be made at a construction site and assembled by post-tensioning. Generally in 

precast reinforced concrete systems, reinforcement is required to be connected 
between members to be joined in order to make their performance equivalent to a 
monolithic reinforced concrete building. However, this operation is very complicated 
although some methods have been proposed. Assembling members by post-tensioning 
is an easy way to obtain an equivalent monolithic building. 

Under service load condition a precast prestressed concrete building shows good 

performance: a higher cracking moment than a ordinary precast reinforced concrete 
building and practically no slip deformation at the connections. Even after small 
earthquake motions it can maintain the original stiffness approximately as large as the 
elastic stiffness. 

On the other hand, under large and medium earthquake motions it has been presumed 
that precast prestressed concrete buildings tend to be less ductile and tend to exhibit 
a less stable inelastic response than cast-in-place buildings. This is primarily because 
the inelastic strains are concentrated into the connections and the load-displacement 
hystreresis loops are narrower than cast-in-place reinforced concrete buildings. 
However, due to the limited data available, the seismic performance of precast 

prestressed concrete buildings has not yet been clarified. 
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On the basis of the conclusions of the preceding chapters the following two findings 
can be listed. 

1. Yielding of prestressing steel and inelastic strains of compressed concrete in a 

   prestressed concrete member lead to fatter hysteresis loops. 

2. In a beam-column joint assemblage a suitable amount of prestressing force is 
   beneficial for maintaining stiffness as the assemblage and preventing the beam-

   column joint core from failing in shear. 

Thus, the author has made a suggestion to improve the seismic performance of beam-
column subassemblages. (see Fig.9.1.) 

1. The energy absorbing capability can be improved by locating  prestressing 
   tendons near the extreme fibers of the section to make them yield earlier. Also a 

   larger ratio of introduced prestress to yield strength in a prestressing tendon may 
   be used. 

2. Shear behavior of the joint and slip deformation at the connection can be 
   improved by having prestressing tendons at the center of the member section. 

   They must remain within the elastic range. Thus, the ratio of introduced prestress 
   to yield strength of the prestressing steel is kept small but the introduced prestress 
   should be large enough to maintain the stiffness of overall assemblages. 

A similar idea can be found in NZS 3101:1982 [9.1] : 

   "13.5.5.2 Except as provided by 13.5.5.3 the beam prestressing tendons 
   which pass through joint cores shall be placed at the face of the columns so that 

   at least one tendon is centred at not more than 150 mm from the beam top and at 
   least one at not more than 150 mm from the beam bottom." 

   "C13.5.5.2 Such an arrangement of tendons results in more ductile plastic 
   hinge behaviour of beams under inelastic cyclic loading than when the tendons 

   are all concentrated at mid-depth in the beam. However, in addition to top and 
   bottom tendons, it is desirable to have at least one tendon located within the 
   middle third of beam depth to help carry the joint core shear force." 

The reversed cyclic loading tests described in this chapter has been carried out in order 
to confirm the above ideas. 
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9.2 Test program 

9.2.1 Description of test units 

Six precast prestressed concrete beam-external column joint assemblages were 
constructed. Those beams had total prestressing forces of 0.099, 0.095, 0.16, 0.131, 

0.159 and 0.126  -  Ag  . fc and Ag denote concrete compressive strength and gross 
sectional area of beam, respectively. Prestressing forces introduced to each prestressing 
tendon are given in Table 9.1. The Standard for Structural Design and Construction of 
Prestressed Concrete Structures published by the Architectural Institute of Japan 

(hereafter referred to as the All Standard) [9.2] requires post-tensioning stress of at 

least 20 kg / cm2 (1.96 MPa). In the case of the beam section in this test series the 
effective prestressing force should be greater than 117.7 kN. All test units satisfied the 
requirement. 

               Table 9.1 Specifications of test units 

    Specimen PCX-1 PCX-2PCX-3 PCX-4 PCX-5 PCX-6 

D13mm D13mm D13mmD13mm 

                • 
Beam cross section¢17•17               •(unbonded) 

                                         • D13mm D13mm D13mmD13mm 

Effective prestress of each 89.59 86.8588.95 89.25 88.85 79.44 

prestressing tendon, Pe (kN) (1.49) (1.45)(1.48) (1.49) (1.48) (1.32) 
(Pe / Ag) (MPa) [0.049] [0.0468] [0.0489] [0.0481] [0.0489] [0.0428] 

[Pe / Ag'f'c]114.657.63 108.71 49.90 

                                    (1.91)(0.961) (1.81) (0.832) 
Ag: gross area of beam[0.063] [0.0311] [0.060] [0.027] 

     section89.49 89.1 
f'c: compressive strength of(1.49) (1.49) 86.5 89.69 87.92 87.72 

      concrete[0.049] [0.048] (1.44) (1.49) (1.47) (1.46)                                   [0
.0476] [0.0484] [0.0483] [0.0473] 

Total effective prestressing179.1 176.0 290.1 238.03 294.11 233.51 
    force, Pet (kN)(2.98) (2.933) (4.83] (3.97) (4.90) (3.89) 
                   [0.099][0.095] [0.16] [0.131] [0.159] [0.126] 
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The beam cross sections of the test units are shown in Table 9.1. PCX-1 and PCX-2 

were the test units for investigating the effect of the location of prestressing steel bar 

in the beam section. The distances of prestressing tendons from the centroidal axis of 

the beams in PCX-1 and PCX-2 were 110 mm and 35 mm, respectively. 

PCX-3 and PCX-4 had three tendons in the beam section. The prestressing force 

introduced into the prestressing tendon located at the centroid of the beam section was 

 114.6  kN for PCX-3 and 59.1 kN for PCX-4. In the case of PCX-3 it was almost as large 

as that required by the AU Standard. For PCX-4 it was half of the AU Standard 

requirement. Since those test units had the same prestressing tendons, the ratio of the 
introduced prestress to the nominal 0.2%-offset yield stress which was defined as a 

prestress index is 0.42 for PCX-3 and 0.21 for PCX-4. 

PCX-5 and PCX-6 corresponded to PCX-3 and PCX-4, respectively excepting that 

PCX-5 and PCX-6 had an ungrouted tendon at the centroid of the beam section. 

The precast beams were rested on the temporary supports until non-shrinkage mortar 

at the connections hardened, the ducts were grouted, the grout mortar reached enough 

strength to sustain the prestress and the prestress was introduced. The 15 mm-thick 
connections were filled with non-shrinkage mortar, whose compressive strength was 

50.7 MPa at the time of testing. The stress-strain curve of the mortar was shown in 

Fig.9.2. This was done 33 days after casting 30.3 MPa concrete, that is, 19 days after 

casting 30.9 MPa concrete. The beams were post-tensioned to the columns and the 
ducts were grouted one week later. These operations were summarized in Table 9.2. 

The W/C of the grout mortar was 35%. 

 60 --------------------------------------- 

50.7 v
, 40 

I3 

         n 20 

0.279 

0 ------------------------------------------- 
0 0.10.2 0.3 

                      Compressive strain (%) 

      Fig.9.2 Stress-strain relationship of grout mortar for the connection 
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                 Table 9.2 Age of the test units 

                        PCX-1, PCX-3 and PCX-2, PCX-4 and 
                       PCX-5 (days) PCX-6 (days)  

   Concrete casting 0 0  
  Non-shrinkage mortar cast 3319 

    in the connection  
   Post-tensioning and 3925 

  grouting  
   Tests7763  

The longitudinal steel content was such that for each unit the flexural strength of the 
column section was greater than that of the beam section. Plastic hinging was expected 
to occur in the beams at the  column faces. The mechanical properties of steel 
reinforcement are summarized in Table 9.3. 

Prestressing tendons used in the test units were SBPR 95/120 whose nominal yield 

strength and tensile strength were 95 kg /cm2 and 120 kg / cm2, respectively. The 
mechanical properties of prestressing steel bar are summarized in Table 9.4. 

         Table 9.3 Mechanical properties of steel reinforcement 

                         Yield Yield strain Modulus of 
                  strengthelasticity 

                  (MPa) (%)(105MPa)  

          D10 
       Beam non-prestressed 339 .2 0.192 1.766           l

ongitudinal rebar • 
          D19 

      Column longitudinal rebar 376 .5 0.186 2.027  
9292.1 0.152 1.927 

      Joint shear reinforcement  
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The centroidal tendon of PCX-3 was prestressed greater than that of PCX-4 and it was 

predicted to yield during cyclic loading while that of PCX-4 was expected to remain 
elastic. PCX-5 and PCX-6 were made because their ungrouted tendons were expected 
to remain elastic and not to lose prestress even at large ductilities. 

          Table 9.4 Mechanical properties of prestressing steel 

                        0.2% offset Tensile Modulus of 
                       Yield stress strength elasticity 

                    (MPa) (MPa)  (105MPa)  

t 17mm (SBPR95/120) 1166 1215 1.99  
    D13 mm (SBPD130/145) 1448 1400 2.02  

Fig.9.3 shows overall dimensions of the six units tested. The dimensions were 
identical to the test units described in Chapter 4. The test units had a total column height 
of 1.9m and a total beam length of 1.85m measured from the column face. The column 
cross section was a 300mm square. The beam had a 200x300mm rectangular cross 
section. 
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The mix design for the concrete used for the test units was: 

  25mm aggregate ... 986  kg  /  m3 

 Sand ... 803 kg / m3 

  Portland cement ... 350 kg / m3 

 Water... 175 liter / m3 

  Superplasticizer ... 0.875 kg / m3 
   Water / Cement ratio = 50% 

The compressive cylinder strength had reached ff =30.3 MPa for PCX-1, PCX-3 and 
PCX-5 at the stage of testing, that is, at the age of 77 days . For PCX-2, PCX-4 and PCX-

6 it had reached 4=30.9 MPa at the age of 63 days. The mechanical properties of 
concrete and the non-shrinkage mortar are summarized in Table 9.5. The stress-strain 
curves obtained from compressive tests on concrete cylinders were illustrated in 
Fig.9.4. All units were cast vertically, compacted using vibrators, and were damp cured 
in the laboratory. 

       Table 9.5 Mechanical properties of concrete and grout mortar 

                       Compressive Strain at peak Initial 
         Concrete strength stress modulus of 

                     (MPa) (To)elasticity 

(104MPa)  
     PCX-1, PCX-3 and 30.3 0.2332.29 

 PCX-5  
     PCX-2, PCX-4 and 30.9 0.2332.27 

 PCX-6  
    Non-shrinkage mortar 50.7 0.2792.35  
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9.2.2 Joint induced shear force 

Figure 9.5 shows the beam internal forces and the column shear force acting on the 
joint core when the ideal flexural strength of the beam develops. The maximum 
horizontal shear force,  Vjh, occurs in the middle region of beam depth just below the 
neutral axis position of the beam section. Vjh is given by the following equation. 

V jh = Pl + P2 — Vcol(9 .1) 

                       Column 

                       Pi Vcoi 

Beam  P2Vjh 

                        (, 
P3 I-------~— 

                      Cc 

Vjh = P1+P2-VcoI 

      Fig.9.5 Beam internal forces and column shear acting on the joint 

P1, P2, P3 and Vco1 denote tensile force developed in prestressing steel bars and column 
shear force. Table 9.6 summarizes the neutral axis depth, the beam internal forces, the 
ideal flexural strength calculated using the ACI 318-89 [9.3] equivalent rectangular 
stress block as well as Vjh for each test unit. 

9.2.3 Theoretical shear strength of joint cores 

Table 9.7 summarizes the requirement for the maximum induced joint shear specified 
in NZS 3101:1982 [9.1 ], joint shear strengths according to ACI 318-89 [9.3] and to the 
AU Guidelines [9.4]. 
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     Table 9.6 Ideal flexural strength of the beams, theoretical internal 
       forces in beams at flexural strength and maximum shear forces 

  Unit n  Cc PI P2 P3 MealVcol Vjh 
      (mm) (kN) (kN) (kN) (kN) (kNm) (kN) (kN)  

  PCX-1 58.4 249 768.7 - 181.0 43.8 29.2 151.8 
  PCX-2 72.6 314.8 133.8 - 181.0 39.4 26.3 154.7 
  PCX-3 98.8 422.6 48.6 193.1 181.0 60.6 40.4 333.7 
  PCX-4 90.3 386.1 51.0 154.1 181.0 57.7 38.5 296.6 
  PCX-5 85.9 367.2 53.0 133.2 181.0 56.1 37.4 276.8 
  PCX-6 70.5 306.0 50.4 74.6 181.0 51.3 34.2 221.3 

   Note: 
      n : Neutral axis depth 

       Cc : Resultant compressive force in concrete 
       Cs : Compression force in non-prestressed compression rebar 

       Ps : Tensile force in prestressing steel bar 
       Ts : Tensile force in non-prestressed tensile rebar 

       Mcal : Theoretical maximum moment calculated 
             using the equivalent stress block specified in ACI318-89 

       Vcol : Shear force in column 
      Vjh : Theoretical maximum applied horizontal shear force 

     Table 9.7 Maximum input joint shear force and joint shear strengths 

             UnitVNZS VACI VAIJ 
                  (kN) (kN) (kN)  
               PCX-1743.1 495.4 313.6  
               PCX-2750.4 500.3 319.8  
               PCX-3743.1 495.4 313.6  
               PCX-4750.4 500.3 319.8  
               PCX-5743.1 495.4 313.6  
               PCX-6750.4 500.3 319.8  

           Note: 

            VNZS : 1.50V f' f' • Ai (NZS 3101:1982) 
            VACI : 1.0041 f' • Aj (ACI 318-89) 

             VAIJ : 0.18 • f •A. (AIJ Guideline ) 

                     where f : compressive strength 

                    of concrete (MPa) and Ai : specified 

                     cross-sectional area of the joint (mm2) 
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9.2.4 Details of steel in beam-column joint 

The transverse steel in each joint core consisted of two rectangular column hoops 
which were placed around the longitudinal column bars between the top and bottom 
layers of longitudinal beam steel. The average spacing between the tie centers was 
100mm. The two ties were formed from 9mm diameter round bar with a yield strength 
of 292 MPa. 

9.2.5 Loading 

The unit was rotated by 90 degree and set in the loading rig as shown in Fig.9.6. A 
horizontal load was applied at the end of the beam representing shear induced by 
seismic loading. The ends of the column were held on the same horizontal line between 
the pin and roller supports during the test and the applied beam load induced reactive 
shears at the ends of the column. By reversing the direction of the horizontal beam load, 
the effect of earthquake loading was simulated. 

 Hydra  uri  c jack 
----- Load cell 

.77/ 

--------} ------ 

• 

                                Specimen 

  Di spl a cem:• t170 

     transduce.~ 

                 it,' 

 0 

                           _' 

                        •mot 

         ^(~                                                        270 

           Pin supportRoller support 

--------------------------- owl  
            1500(unit :mm) 

             Fig.9.6 Loading setup and measuring devices 
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The first loading cycle was up to the beam rotation angle of 1/200, and this was 
followed by a series of deflection controlled cycles in the inelastic range comprising 
two full cycles to each of the beam rotation angles of  +1/100, ±1/50, ±1/33, ±1/25 and 
±1/20 rad. This loading sequence was unlike the test series in the preceding chapters 
was adopted because it was expected that definite yielding was not observed. 

9.2.6 Measurements 

The beam end deflection was measured by a linear displacement transducer which was 
attached to the pole fixed to the mid-height of the column as shown in Fig.9.6. The 
deflection consisted of the deformation of the beam, joint and column of half-height. 
It did not include the column deformation between the pin support and the place to 
which the measuring pole was fixed. No visible crack could be found in this part of the 
column and the deformation of this part was considered to be small enough to be 
disregarded. Curvature and shear deformation of the beam in the potential plastic hinge 
region and shear distortion of the joint core were measured and calculated from the 
readings of the linear displacement transducers attached to the units as shown in 
Fig.9.6 by the calculation method described in Chapter 4.3. 

Strain gauges were attached to the joint transverse reinforcement on both sides of the 
column. 

9.3 Test results 

9.3.1 General behaviour of test units 

Figure 9.7 (a)-(f) show the horizontal deflection at the end of the beam plotted against 
the corresponding load of the beam for each unit. All test units were able to be loaded 
to a beam rotation angle of 1/20 rad. with little reduction in stiffness and strength. They 
indicated the load - displacement hysteresis loops with small residual displacement at 
zero load, which is typical for post-tensioned precast concrete subassemblages. 
Fig.9.8 (a)-(f) show the test units after testing. 

9.3.2 Location of Prestressing tendons 

     (PCX-1 vs. PCX-2) 

Little difference between the load - displacement curves of PCX-1 and PCX-2 was 
observed. Since prestressing tendons were located near the extreme fibers of the 
section in PCX-1 and the tendon stress was larger than that of PCX-2, the maximum 
load resistance of PCX-1 was 13 % larger than that of PCX-2. Tendon stress will be 
discussed later in this Chapter. 
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9.3.3 Prestress introduced into the prestressing tendon at the center of 
    the section 

     (PCX-3 vs. PCX-4) 

Fatter hysteresis loops were expected in PCX-4 than in PCX-3 because the prestressing 
tendon at the center of the beam section of PCX-4 was expected to yield and lose its 

prestress. However, little difference between the load - displacement curves between 
the above test units was observed. This is mainly because of the bond deterioration 
between the concrete and the prestressing steel bar. This will be discussed further in 
the next section. The maximum load capacity of PCX-3 is 14 % larger than that of 
PCX-4. This is because a higher tensile stress was sustained by the tendon located at 
the center of the beam section. 

9.3.4 Grouted and ungrouted tendons 

     (PCX-3 vs PCX-5 and PCX-4 vs PCX-6) 

The maximum load capacities of PCX-5 and PCX-6, whose centroidal tendon was 
ungrouted were a little smaller than those of PCX-3 and PCX-4. Table 9.8 summarizes 
the maximum load capacity of each test unit experimentally and theoretically ob-
tained. The theoretically obtained values are based on the  ACI 318-89 methods. The 
tensile stress assumed for the ungrouted tendon was obtained using Eq.18.4 in Chapter 
18 of ACI 318-89 code provisions. 

fps=fse + 67.8 + fc(9.1)               100p
p 

where, fps : stress in prestressed reinforcement at nominal strength, MPa 

      fse : effective stress in prestressed reinforcement (after allowance for all 
          prestress losses), MPa 

fc : compressive strength of concrete 

pp : ratio of prestressed reinforcement = p=Aps  bd
p 

Aps : area of prestressed reinforcement in tension zone, mm2 

     b : width of compression face of member, mm 

dp : distance from extreme compression fiber to centroid of nonprestressed 

           tension reinforcement, mm 

The grouted tendons were assumed to have the same strain that the concrete at the same 

location. Concrete strain was obtained on the basis of the assumption that plain 

sections remain plain after bending. The load capacities theoretically obtained agreed 

well with the experimentally obtained values. However, the maximum measured 
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 Table 9.8 Maximum load capacities experimentally and theoretically obtained 

           Specimen PCX-1 PCX-2 PCX-3 PCX-4 PCX-5 PCX-6 

          Maximum  bad 
capacity (kN) 26.6 23.6 39.1 34.4 34.9 34.2 

         (Experiment) 

          Maximum bad                    26.5 23.9 36.7 35.0 34.0 31.1 
         capacity (kN) (1.00) (0.99) (1.07) (0.98) (1.03) (1.10) 
         (ACI 318-89) 

tensile force in the ungrouted tendon was 165.7 kN for PCX-5 and 118.7 kN for PCX-
6. They were much larger than those obtained by Eq.9.1: 133.2 kN for PCX-5 and 74.6 
kN for PCX-6. When the maximum moment capacity was attained, the tendon force 
was 147.1 IN for PCX-5 and 118.7 kN for PCX-6. The large difference in the tensile 
force in the ungrouted tendon did not result in a large difference in the load capacity 
because the ungrouted tendon was located at the center of the section and did not have 
significant influence on the load capacity. 

9.3.5 Tensile stress of tendon 

Figure 9.9 shows the fluctuation of the tensile forces in the prestressing steel bars 
measured by load-cells at both ends of the tendons. However, only the tensile forces 
measured at the anchorage ends on the column are shown in the figures. Because of 
the bond stress between concrete and the bar, they did not represent the tensile forces 
developed in the prestressing steel bars at the beam critical section. However, they are 
assumed to give a good estimation of the maximum tensile forces because the bond 
deterioration between concrete and the prestressing steel bars is likely to occur during 
the early stage of inelastic load excursion. 

The maximum tensile forces measured in the tendons located at the center of the beam 
section were 180.1 kN for PCX-3 and 120.0 kN for PCX-4. They were well below the 

yield strength of 275.8 kN. According to the objectives of this test series, the 
prestressing tendon at the mid-height of the beam section of PCX-3 was expected to 
yield and the post-tensioning force connecting the beam and the column was expected 
to deteriorate. However, the ratio of the introduced prestress to the yield strength of the 
tendon was so small and bond between concrete and prestressing steel bar deteriorated 
so easily that the tendon stress of PCX-3 did not reach the yield stress that was 

predicted by the preliminary section analyses. 
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The tendons provided near the extreme fibers of the beam section were also predicted 
by the preliminary section analyses to reach the yield stress. However, as far as the 
tendon stresses measured at the load-cells were concerned, they did not reach the yield 
stress. This is because of bond deterioration between concrete and the prestressing 
steel bars in the preliminary section analyses assumed no slip between the concrete and 
the prestressing steel was assumed. 

9.4 Conclusions 

On the basis of the test results described in Chapter 9 the following conclusions are 
derived. 

1.  In order to improve the seismic performance of precast prestressed concrete 
   buildings two attempts have been made in this study: 

   (a) The energy absorbing capability can be improved by forcing prestressing 
   tendons located near the extreme fibers of the member section to yield. This can 

   be realized by larger ratio of introduced prestress to yield strength of a prestressing 
    steel tendon. 

   (b) Shear behavior of the joint and slip deformation at the connection can be 
   improved by placing prestressing tendons at the center of the member section. 

   They must remain within the elastic range. Thus, the ratio of introduced prestress 
   to yield strength of the prestressing steel is kept small but the introduced prestress 
   should be large enough to maintain stiffness of overall assemblages. 

2. Because of poor bond between the concrete and prestressing steel, stresses in the 

   prestressing tendons did not reach the yield stress at the critical section of the 
    beam. Thus, the performance which was expected was not confirmed. 

3. An ungrouted tendon at the center of the beam section was used to keep post-
   tensioning force large enough to maintain uniformity of the whole assemblage. 

   However, because of the same reason above the effect on the seismic perform-
   ance of the test units was not observed. 

4. If a prestressing strand with better bond characteristics had been used, a different 
   result might have been obtained. 
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Chapter 10 

MAJOR CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEACH 

10.1 Major conclusions 

Concluding remarks regarding the results from the study undertaken have generally 

been given at the end of each chapter. They are summarized again as follows: 

Chapter 2 

The current seismic design procedure for prestressed concrete buildings in Japan was 

summarized. The design procedure is complicated because of the options which a 
designer may choose. 

The following aspect of the design of prestressed concrete buildings were described 

and compared with those for reinforced concrete buildings: 

   in NZS 4203:1984, the structural material factor M for prestressed concrete is 

   25% larger than that for reinforced concrete. However, this does not necessarily 
   lead to 25% greater design seismic load. As shown in the section on the 

   comparison of the seismic design loads, the design seismic load required for a 

   prestressed concrete building may be smaller than that for an equivalent rein-
   forced concrete building because of the longer period of vibration of the 

   prestressed concrete building. 

Chapter 3 

1. Moment - curvature relationships of prestressed, partially prestressed and rein-

   forced concrete beam sections were compared in terms of yield curvature, 

   ultimate available curvature and ductility ratio as well as a whole shape of the 

    curves. 

2. The analytical procedure for obtaining moment - curvature relationships of 

   prestressed, partially prestressed and reinforced concrete sections based on stress 
   - strain relationships of constitutive materials was described. 

                                             345



Chapter 4 

The following conclusions were derived from the test results reported in Chapter 4.3 
on the prestressed concrete beam-column subassemblages with various locations of 

prestressing steel bars. 

1. It has been pointed out by past research that reinforced concrete members are 
   superior to prestressed concrete with respect to energy dissipation and 

   deformability. However, this conclusion was obtained from the tests on pre-
   stressed concrete beams. In the case of a beam-column subassemblage, its 

   behaviour may  be largely dominated by the performance of the jointing part. 
   Thus, hysteresis loops of a prestressed concrete beam-column subassemblage 

   might be better than those of a reinforced concrete because prestress introduced 
   into the beam can improve the shear behaviour of the beam-column joint core. 

   This was confirmed by the cyclic loading tests on prestressed concrete beam-
   column subassemblages. 

2. Larger prestress has more beneficial effect on the shear behaviour of a beam-
   column joint core unless it is excessive. However, it also results in crushing and 

   spalling of the unconfined cover concrete and buckling of non-prestressed 
   compression reinforcement of the beam in the earlier stage of the loading. 

   Besides, larger prestress results in larger compressive strain of concrete and it 
   may lead to the deterioration of the concrete due to reversed cyclic loading. 

The following conclusions were derived from the test results reported in Chapter 4.4 
on the prestressed and reinforced concrete beam - column joint assemblies which had 
the same dimensions, moment capacities of the beams and anchorage detailing of 
beam longitudinal reinforcement. 

1. The hysteresis loops obtained from the test results of the reinforced concrete test 
   unit indicated reduction in capacity and pinching due to bond deterioration of 

   beam longitudinal reinforcement followed by pulling out of reinforcement. 
   Conversely, the prestressed concrete test units showed much better hysteresis 

   loops even in the large ductilities. However, larger prestressing force resulted in 
   spalling and crushing of cover concrete and buckling of beam longitudinal 

    reinforcement. 

2. Until the ductility factor of 2 (beam rotation angle of approximately 1/30), the 
   equivalent viscous damping for all test units were almost the same. Past research 

   has pointed out that there is less energy dissipation of prestressed concrete than 
   reinforced concrete members. However, including beam - column joints the 

   experimental results revealed this is disputable when prestressing force is not 
   excessive. As the loading cycles progressed, the equivalent viscous damping in 

   RCB-1 decreased to less than that of the ductility factor of 2 while in the 
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   prestressed concrete test units the equivalent viscous damping increased propor-
   tionally with the ductility factor. 

3. Small amount of prestressing force caused a much smaller shear distortion angle 
   and a much stiffer joint core than in the reinforced concrete joint. However, a 

   prestressing force larger than  0.12f Ag resulted in a small shear distortion angle 
   and stiff joint core as the prestressed concrete unit with a prestressing force of 

0.06f', Ag. 

4. In order to predict the seismic response of reinforced concrete frames as closely 
   as possible, the shear behaviour of beam - column joints needs to be idealized and 

   incorporated in the analysis. Besides, it is necessary to consider bond deteriora-
   tion of beam longitudinal reinforcement in the idealization of the behaviour of 

   beam plastic hinge regions. However, the assumption of rigid beam - column 

   joint core can be justified in the prestressed concrete beam - column joint 
   assemblies. Moment - curvature hysteresis loops in beam plastic hinge regions 

   can be idealized based on the analyses assuming that plane sections before 
   bending remain plane after bending. Thus, from the view point above, the past 

    research which indicated larger responses of prestressed concrete frame struc-
    tures than those of reinforced concrete should be re-examined. 

5. The ratio of the total tensile force in the prestressed concrete units to that in the 
   reinforced concrete test units measured at a ductility factor of 3 was almost as 
   large as the ratio of moment capacity carried by non-prestressed reinforcing steel 

    to the total moment capacity resisted by non-prestressed and prestressed rein-
    forcement. 

6. To consider the beneficial effect of prestressing force on beam - column joint 

    cores, their shear strength Viu should be increased as the prestress level increases 

   based on the assumption of NZS 3101:1982 [4.8] that part of shear force is 
    attributed to the effective prestressing force. 

Anchorages placed in beam - column joint core are common practice in Japan while 
the prestressing steel in the test units were anchored to the anchorage plate on the outer 
side of the column. NZS 3101:1982 [4.8] prohibited anchorages kept in beam - column 

joint cores. More research on this matter should be carried out. 

Chapter 5 

On the basis of the above analytical study, the following conclusions are reached with 
regard to the idealization of prestressed, partially prestressed and reinforced concrete 
moment - curvature relationships: 
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1. By modifying the idealization suggested by Thompson and Park [5.1], the 
   idealization of prestressed, partially prestressed and reinforced concrete moment 

   - curvature relationships was proposed by the author on the basis of the 

   experimental work and the analytical work. The idealization curves can be 
   applied from fully prestressed concrete to reinforced concrete members. 

2. The idealization was compared with the experimental results described in 
   Chapter 4. It turned out that the moment - curvature curves obtained experimen-

   tally can be well predicted by the idealization. However, all the test units 
   consisted of partially prestressed concrete beams. The idealization should 

   undergo many trials because only a few experimental results of partially pre-
   stressed concrete beam - column joint assemblages available were used to 

   calibrate it. 

3. Some examples of idealized moment - curvature characteristics for fully pre-
   stressed, partially prestressed and reinforced concrete sections under reversed 

   cyclic loading were given for some ranges of the parameters  (a,  /3)  . 

Chapter 6 

From the dynamic response analyses, the following conclusions are reached with 

regard to dynamic response of prestressed, partially prestressed and reinforced 

concrete single-degree-of-freedom systems: 

1. The idealized curves proposed in Chapter 5 were used as the load-displacement 

   idealization. Response spectra of the idealized curves to earthquake excitations 

   for various ranges of yield capacity, period of vibration, and so on were calculated 
   to investigate the fundamental characteristics of the idealization. However, these 

   calculations were conducted in order to examine the characteristics of the 

   idealization curves because the idealized curves are not considered to express 

   directly the load-deflection relationships of a structure or a layer of a building 
   itself : they were derived based on the moment-curvature curves obtained 

   experimentally. The response of a building is largely affected by the load-

   deflection response of reinforced concrete constituent elements such as columns 

   and walls. A comparison between the idealizations for a prestressed concrete and 
   a reinforced concrete system which will be described in the later part of this 

   section should be referred to as the extreme case of these systems. 

2. Comparison of displacement responses between prestressed, partially prestressed 

   and reinforced concrete systems showed that the average ratios of the maximum 

   displacement responses of the prestressed concrete systems to those of the 

   corresponding reinforced concrete systems ranged between 0.98 and 1.39 with 

   the maximum value of 3.23. For partially prestressed concrete systems those 
   ranged 0.98 and 1.15 with the maximum value of 2.06. Generally, the ratios are 
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   larger in the period shorter than approximately 0.5 seconds. 

3. Responses of prestressed concrete systems were compared with those of corre-

   sponding reinforced concrete systems whose load - displacement hysteretic 

   behaviour was controlled by slip of longitudinal beam bars, that is, indicated 

   pinched hysteresis loops. The average values of the ratios of the maximum 
   displacement response of the prestressed concrete systems to that of the rein-

   forced concrete systems with pinched hysteresis loops ranged between 1.09 and 

   1.14. They are slightly smaller than those in the comparison between the 

   prestressed and the reinforced concrete systems. The average values for the 

   partially prestressed concrete are approximately unity. 

4. Substitute damping was introduced and calibrated from the basis of the results of 

   the time-history analyses in order to predict dynamic responses of prestressed, 

   partially prestressed and reinforced concrete systems. The substitute damping 
   was proved to give a good approximation of responses of those systems. 

5. Some examples using the substitute damping revealed that increasing the 

   strength of some types of structures may increase the maximum displacement. 

Chapter 7 

From the dynamic response analyses on reinforced and prestressed concrete model 

frames, the following conclusions have been reached with regard to dynamic response 

of prestressed, partially prestressed and reinforced concrete building frames: 

1. Two dimensional dynamic analyses on the prestressed, partially prestressed and 

   reinforced concrete building frames were carried out. Three typical earthquake 

   wave records were used as their maximum velocities were amplified to 50cm/s. 

   Four-, eight- and sixteen-story model frames were designed according to the AIJ 

   Guidelines and the current seismic design method for prestressed concrete 

   building structures. The frames were intended to fail with a beam-sidesway 

    mechanism. 

2. Comparison of the responses of the above model frames revealed that the 

   responses of the prestressed concrete buildings were not always the largest. The 

   interstory drift responses depended on the characteristics of the earthquake 

   waves, too. Past research has pointed out larger response of prestressed concrete 

   frames than that of reinforced concrete frames. Seismic design load for pre-

   stressed concrete frames specified in NZS  4203: 1984 should be 25% larger than 

   that for equivalent reinforced concrete frames. However, a difference large 

   enough to give a motivation to assign a larger seismic design load for prestressed 

   concrete frames was not observed. 
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3. Comparison of the responses between the two-dimensional frame analyses and 
   the analyses using a multi-mass shear system revealed that the ratio of the 
   responses of the prestressed and partially prestressed concrete frames to those of 
   the reinforced concrete frames were overestimated in the analyses of multi-mass 

   shear systems compared with two-dimensional frame analyses. Story shear force 
   - interstory drift responses using these analytical methods indicated that assign-

   ment of prestressed concrete type hysteresis loops to each layer of a prestressed 
   concrete frame which consists of prestressed concrete beams and reinforced 
   concrete columns is not suitable. Two-dimensional frame analysis should be 

   conducted on prestressed concrete building frames. 

4. Considering the test results on the beam-column joint assemblies described in 
   Chapter 4, the current seismic design concept that prestressed concrete frames 

   should be designed against larger seismic design load than reinforced concrete 
   frames, as specified in NZS 4203:1984, needs reconsideration. 

Chapter 8 

 1. A new seismic design procedure for prestressed concrete building structures 

   proposed by  AU task-committee was introduced. In the design procedure a 
   column sidesway mechanism is permitted as on type of failure mechanisms. In 

   order to avoid damage concentration into the weakest story, even if soft story 
   forms, the lateral seismic design force should be increased and the smooth 

   distribution of story shear strength be assured. 

2. It has been stated that to secure beam hinging mechanism is difficult in 

   prestressed concrete building structures because prestressing steel, which is 
   usually high strength steel is provided to mainly reduce gravity load effect and 

   the member sections have much larger strength than required by seismic lateral 
   design force. Some design examples were demonstrated to show how difficult it 

   is to realize beam hinging mechanism in prestressed concrete buildings. The ratio 
   of the moment resistance required in order to avoid column hinging to the design 

   moment determined from the combination of design actions, Mnyd / Mscd ,reached 

   3.22 at most. For reinforced concrete structures the design moments of the beams 
   are usually determined by earthquake actions. Therefore, to prevent the columns 

   from forming plastic hinges the column design moment should be approximately 
   25% larger than that transferred from the beams unless higher mode effect and 

   two-way frame actions are considered. For prestressed concrete buildings a large 
   moment resistance is needed to realize beam hinging mechanism. 

3. The flexural strength and ductility of columns with moderate or high axial 
   compression loads were investigated by carrying out reversed cyclic loading tests 
   on high strength reinforced concrete columns. The test results indicated that 
   adequate ductility was obtained even for such high strength concrete columns by 
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   using high strength transverse reinforcement. The secured ductility would be 
   enough even when soft story should form in one of the layers of a building. In 
   addition, the flexural strengths of the test units subjected to the moderate axial 

   load were well predicted by the ACI 318-89 methods with an equivalent 
   rectangular stress block. However, for the columns under high axial load the 

   flexural strengths obtained by the experiment exceeded the predicted values. 
   Comparison between the experimental and theoretical results of moment-curva-

   ture curves indicated that the modified stress-strain model proposed by the 
   authors should be re-modified so as to enable the moment-curvature curves to be 
   well predicted, especially for columns subjected to reversed cyclic lateral loading 

   with high axial compressive load. 

Chapter 9 

On the basis of the test results described in Chapter 9 the following conclusions are 
derived. 

 1. In order to improve the seismic performance of precast prestressed concrete 
   buildings two attempts have been made in this study: 

   (a) The energy absorbing capability can be improved by forcing prestressing 
   tendons located near the extreme fibers of the member section to yield. This can 

   be realized by  larger  ratio of introduced prestress to yield strength of a prestressing 
    steel tendon. 

   (b) Shear behavior of the joint and slip deformation at the connection can be 
   improved by placing prestressing tendons at the center of the member section. 

   They must remain within the elastic range. Thus, the ratio of introduced prestress 
   to yield strength of the prestressing steel is kept small but the introduced prestress 
   should be large enough to maintain stiffness of overall assemblages. 

2. Because of poor bond between the concrete and prestressing steel, stresses in the 

   prestressing tendons did not reach the yield stress at the critical section of the 
   beam. Thus, the performance which was expected was not confirmed. 

3. An ungrouted tendon at the center of the beam section was used to keep post-
   tensioning force large enough to maintain uniformity of the whole assemblage. 

   However, because of the same reason above the effect on the seismic perform-
   ance of the test units was not observed. 

4. If a prestressing strand with better bond characteristics had been used, a different 
   result might have been obtained. 
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10.2 Recent trends of seismic design of prestressed concrete building 
     structures 

There are two trends in seismic design of prestresssed concrete building structures. 
The first is toward development of rational and suitable seismic design of prestressed 
concrete building structures and the second is toward uniform design procedure of 
concrete building structures. These should be discussed in respect of two points: 
obtaining design stresses, and proportioning member sections and providing reinforc-
ing steel. 

Structural design is usually carried out as follows. 

(1) Design stresses in the constituent members are obtained when external loads are 
   imposed on the building structure. 

(2) On the basis of the design stresses the member sections are proportioned and 
   reinforcing steel are provided. 

(3) In the case of ultimate strength design procedure the above two items are enough 
   to accomplish the structural design. However, it is often required to confirm that 

   the building structure has enough structural resistance at a specified interstory 
   drift angle. 

As for the item (1), seismic design load to be applied statically to building structures 
is a main concern: is larger seismic design load for prestressed concrete building 
structures really needed? Besides that, interstory drift of each layer should be within 
a certain limit. In the current seismic design provisions in Japan, although it is 
complicated because of several options in the procedure, prestressed concrete build-
ings are so designed as to have larger lateral load resistance than reinforced concrete 
buildings. This is originally incorporated mainly due to less ductile behaviour of 

prestressed concrete members. Since several research on dynamic response of pre-
stressed concrete structures another reason has been added: to reduce dynamic 
response to as much as reinforced concrete structures larger seismic design load is 
needed. The limitation of interstory drift angle is the same as reinforced concrete 
structures. This must be considered because prestressed concrete buildings are 

generally more flexible than reinforced concrete buildings: less number of columns 
and larger span beams. A too flexible building frame is harmful to non-structural 
members and  P-0 effect should be considered. In Chapter 7, when a sixteen-story 
model frame was designed, the limitation of interstory drift angle of 1/200 was difficult 
to be met. Unless structural walls are incorporated, a tall prestressed concrete building 
cannot be realized. A building structure in which lateral force resistance is provided 
by the combined contribution of frames and structural walls is usually referred to as 
a dual system or a hybrid structure. Ductile frames can provide a significant amount 
of energy dissipation interacting with walls, while good story drift control during an 
earthquake can be achieved as a result of the large stiffness of walls. The development 
of column hinges can readily be avoided. This may be an answer to design a tall 
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prestressed building. 

The effect of increasing the design seismic load on reduction of dynamic response is 
not clear nor significant. Dynamic response is very dependent on the characteristics 
of earthquake waves used in the analyses. As a uniform seismic design procedure the 

 AD proposal realizes that seismic design procedure accommodates not only pre-
stressed concrete buildings but also partially prestressed and reinforced concrete 
buildings. However, the results of dynamic response analyses in the previous chapters 
imply that it is not necessary to have a larger design seismic load for prestressed 
concrete building structures than reinforced concrete structures. 

The second item, proportioning members and providing reinforcing steel, is recently 
discussed as uniform design code provisions are proposed in some literature. It has 
been stated that unification of the design methods of prestressed and reinforced 
concrete structures is of great importance for development of concrete structures. 
Recently ACI 318 committee proposed a partial unification of the design requirements 
of prestressed and reinforced concrete members [8.10]. Since in the U.S.A. prestressed 
concrete structural members are not allowed to be used in high-seismicity areas, static 
design seismic load for prestressed concrete structures is not specified in the current 
design or loadings codes. The proposal of ACI 318 committee is just for proportioning 
members according to the known design stresses. The proposed method applies to 
beams and columns, reinforced and/or prestressed. The key concept is the definition 
of the strength reduction factor 0 in terms of the maximum steel tensile strain at 
nominal strength. This strain also defines permissible moment redistribution. 

Naaman presented in his paper [8.11] a set of unified recommendations related to the 
reinforcement in reinforced, prestressed and partially prestressed concrete flexural 
and compression members. 

As stated above unification is divided into two phases: design seismic load for concrete 
structures which accommodate not only reinforced concrete but also prestressed 
concrete and member design procedure whichever members should contain prestressing 
steel or not. 

10.3 Recommendations for future research 

Several additional problems encountered during the research work conducted for this 
thesis could not be investigated in detail due to lack of time. The following research 
topics are suggested to establish a better and more rational seismic design procedure 
for prestressed concrete building structures. 

1. Is a larger seismic design load for prestressed concrete buidlings than for 
conventional reinforced concrete buildings really needed? From the analytical results 
on single-degree-of-freedom systems described in Chapter 6 a larger seismic design 
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load appears to be justified. However, at the same time, increasing design seismic load 
was found to not reduce the responses. Besides that, on the basis of the dynamic 
response analyses on prestressed and reinforced concrete building structures the 
difference between the responses of the two  systems were not as significant as that of 
the former analyses. However, the responses were much more dependent on earth-

quake waves than the systems, and only a limited number of model frames were 
analyzed. Thus, more research in this field is needed. 

2. As shown in Chapter 8 it is difficult to design prestressed concrete buildings 
which fail in beam-sidesway mechanism. It was confirmed in the same chapter by 
loading tests on the columns that considerable ductility could be secured even in high 
strength concrete columns if an adequate amount of transverse reinforcement was 

provided. Thus, for low buildings a soft story mechanism can be accepted if a larger 
seismic design load is specified. However, since for tall buildings higher mode effects 
is more significant, a dual system in which lateral load resistance is provided by the 
combined contribution of frames and structural walls may be an option for the design 
of tall prestressed concrete buildings. Further investigation is expected. 

3. Concerning to the above topic, to place the upper limit to column flexural 
capacities as well as the lower limit proposed by AIJ committee has not been 
investigated in detail. In this thesis no examination was not conducted. More practical 
analyses like two-dimensional frame analyses should be conducted in order to confirm 
the effect of this design procedure. 

4. In Chapter 4 it was pointed out that seismic performance of prestressed concrete 
beam-column joint assemblages were not always inferior to that of reinforced concrete 
ones. However, how much prestress is the most effective to improve seismic perform-
ance has not clarified yet. This should be quantified for successful use of prestressing 
not only under service load condition but also under seismic loading. 
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                           SUMMARY 

An analytical method, by which hysteretic restoring force characteristics of 
unbonded prestressed concrete framed structure can be statically persued on 
the basis of material properties, is presented. The bond—slip relationship 
between concrete and prestressing tendon is taken into account, and thus the 
method covers unbonded members and bonded members. For verifying the 
propriety of the analytical method, the experiment is carried out on a 
portal frame with an unbonded prestressed concrete beam of 4.2 m in length 
and reinforced concrete columns of 1 m in height. High intensity reversed 
cyclic lateral loading is applied. The experimental results show a good 
agreement with the analytical ones in terms of load—deflection relation and 
the fluctuation of the tendon stress at anchorage end. 

                         INTRODUCTION 

In seismic area, the application of unbonded prestressed concrete to prima— 
rily earthquake resistant members is prohibited due to several reasons, 
i.e., safety of tendon anchorage assembly against cyclic earthquake load, 
uncertainties with regard to the fluctuation of tendon stress, little avai— 
lable data on hysteretic restoring force characteristics and complexity in 
analysis, etc. However, unbonded prestressed concrete members can be very 
useful to develop the further demand for prestressed concrete structure, 
because of economical advantage of unbonded tendon, that is, no need for 
grouting at the construction site, and of practically perfect protection 
against corrosion comparing with the grouting which is likely to be imper— 
fect. In addition, the past researches reported that small amount of 
additional nonprestressed reinforcement can improve the restoring force 
characteristics and the flexural ductility [1,4]. 

In this study, an analytical method, by which hysteretic restoring force 
characteristics of unbonded prestressed concrete member and framed structure 
can be statically pursued on the basis of material properties , is presented. I

n this method, a structural member is divided into several blocks along 
member axis and each block is further subdivided into layers , which reflect 
mechanical properties of the materials . The stiffness matrix of the member 
is derived from these segments based on the assumptions that stresses and 
strains are constant in a segment and the cross section of the member 
remains plane after loading . The bond—slip relationship between concrete and 
prestressing tendon is taken into account, and thus, this method covers 
unbonded members and bonded members . 

For verifying the propriety of the analytical method , the experiment is 
carried out on a portal frame with an unbonded prestressed concrete beam of 
4.2m in length and reinforced concrete columns of lm in height . High—inten— 
sity reversed cyclic lateral loading is statically applied . The experimental 
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results are compared with analytical results in terms of lateral load  -.de-
flection relation and the fluctuation of tendon stress at the anchorage end. 

              GENERAL DESCRIPTION OF ANALYTICAL METHOD 

For the purpose of numerical calculation, a structural member is divided 
into several blocks in the direction of longitudinal member axis and each 
block is further subdivided into layers. This method is called "Layer 
Element Method" and it has been developed by many researchers. In this 
study, the followings are assumed; 

1) Stress and strain are constant in a layer element. 
2) The cross section of the member remains plane after loading, i.e., the 
longitudinal strain in concrete and the nonprestressed reinforcement is 
proportional to the distance from the neutral axis. 
3) Shear deformation is not taken into consider. Although shear deformation 
is undoubtedly important in case of column, here the bending and axial force 
are assumed to dominate the deformation of the member. 
4) The linear bond-slip relation between concrete and prestressing tendon is 
assumed. 
5) Assumed stress-strain relation of concrete and reinforcement are proposed 
by Kent and Park [2], and Park, Kent and Sampson [5]. 

          Bond Stress and Slip between reinforcement and Concrete 

Increment of bond stress between (j-1)-th block and j-th block ( ATj) is 
calculated by the following equation. 

              2 ( AsPj -1AsPj) 
  AT=(1) 

          J ~
s ( 1j-1  lj ) 

where, AsPj = force increment of reinforcement in j-th block, (1)s = nominal 
surface area of a bar of unit length, and lj = length of j-th block. ATj is 
also expressed by bond-slip relationship ( ATj - ASj ), as follows, 

AT. =KjASj(2) 

where, Kj = tangential modulus of bond-slip relation. In this study, Kj is 
assumed to be constant during loading. 

             (J-1)-TH BLOCK J-TH BLOCK 

 (J-2)-TH BLOCK(J+1)-TH BLOCK 

                7_ AvJ-1DUJREINFORCEMENT 

          k---0U1~-~AU/1,--7AVAUJ-1+1J+1                                                 CONCRETE 
                ~, 

        AS j _] ,------------ASJ _AS j+ 

LJ -1 LJ 

          Figure 1 Compatibility of displacements in the member 
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           The System of Linear Equations of Increments of Slip 

The method used here was proposed by Kosaka et al. [3]. Dividing the member 
in the longitudinal direction into block elements i = 1,2,...,j,... of 
length lj, as shown in Fig.1, the longitudinal strain increment of reinfor— 
cement  AsEj , the concrete strain increment Accj and the increment of slip 
in unit length Abcj are calculated by compatibility of displacements as 
follows, 

  Asc. = ( Auj+1 — Au. )/l.(3) 

  Accj = ( Avj+1 — Av. )/lj(4) 

    Abc. = ( ASj+l — ASj )/lj = ( Avj+1 — Avj )/lj — ( Auj+1 — Au.)/l. (5) 

where, Sj = slip between concrete and reinforcement, uj and vj = 
displacements of reinforcement and concrete. Therefore, 

     Asc. = Accj — Abc. 

     = A
ccj( ASj+1 — AS)/l.(6) 

From the equilibrium of forces, we get the relations between the stress of 
reinforcement and slip as below, 

 at the end 1 of member, as shown in Fig.2; 

  —E
sl =(Esl+pKl) ApSl-EslAS2(7)        1

1 Asll 

 between the ends; 

   E• A- E- A_— Esj-1 AS 

. 

  Esj-1c j-1sjc.1~-1 
_7-1 

           Esj-1+ -s IK3~s( 1j-1+ 1J)AS
j—Es3 AS.                  1 .             1j A

s313+l (8)   ~-1js~ 

 at the end 2 of member, as shown in Fig.2; 

  Esn•Accn=sn—EAS+(EsnpK2AS2(9)       1
nAp      nnAs 

where, Esj and As = tangential modulus and cross sectional area of reinfor— 
cement, pKl = —AsPl/ApS1, pK2 = AsP2/ApS2 , AsP1 and AsP2 = force increment 
of the reinforcement, ApS1 and ApS2 = slip increment of reinforcement at the 
ends of the member. Although pKl and pK2 should be determined by some 
calculation, in this study because of simplification it is assumed that they 
are constant and large enough to restrain the tendon from coming out from 
the joint. This could be justified because prestressing tendon was anchored 
almost perfectly on the steel plate . 

These equations (7-9) represent the system of linear equations of ASj . I
ncrements of slip ( ASj) can be determined by given Accj (strain increment 

of concrete element located at the reinforcement"level) . 
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  JOINT LONGITUDINAL  REIiNFORCEMENTJOINT 

AsP1 A
sP2 

  APS1A
PSZ 

END 1END 2 

PK1 = -ASP1/APS1PK2 = -ASP2/oPs2 

      Figure 2 Force and slip increment of reinforcement 

                                         at the ends of the member 

Substituting the calculated values of Sj into Eq.5, we get Abcj. Stress 
increment of reinforcement Asaj are calculated by 

            Aa.=E.Ac. 
        sJSisJ 

        =E
sjAcJc.-EsjAbjE(10) 

          Derivation of the Stiffness Matrix of the Cross Section 

The cross section of the member is subdivided in the z-direction into layers 
i = 1,2,...,m of cross-sectional areas Aij and centroidal coordinates Zij. 
Centroidal coordinates of longitudinal steel reinforcement in j-th block is 
denoted as sZij, (i = 1,2,...,n). The longitudinal nominal strain increment 
of concrete at any point of the cross section is 

   Ac..= AE- ZA~j(11) 
     ciJOjij 

in which, coj = normal strain at the member axis, x;epj = curvature of j-th 
block. 

Bending moment AMjc and normal force ANjc in concrete are expressed by the 
following equations. 

mm 
       AM.c = - E Zi.A.AcG. + EE..Ii.Ac. 

      Ji=1JJj i=1cJJJ (12) 

                  m 

      AN E Aijc      Aaij(13) 
i=1 

where, Aij = area of concrete in i-th layer of j-th element, and Acaij = 
normal stress in concrete in the longitudinal direction in i-th layer of j-
th block element. Iij = moment of inertia of i-th layer about centroidal 
axis of its layer. 

104A-5



The similar expressions for reinforcements can be obtained as follows. 

                   n 

    AM
JS  = -lEl sAij sZijAsaij(14) 

                    n 

   ANjs=
lEl sAijAsaij(15) 

On the other hand, normal stresses in concrete and reinforcement are 
expressed by the following equations. 

      Ac a. =cEijAcE. =cEij(AcOj- Z.Aij)(16) 

      As0ij=sEijAsc. =sEij(AcEij- AbEij)(17) 

cEij, sEij = tangent modulus of concrete and longitudinal steel. 
Substituting Eqs.16 and 17 into Egs.12-15 , this yields, 

 mm2 
 AMjc =E (-ZA cEij)AcOj+ EcE..(AijZij+ Iij) Aij(18) 

   i=1i=1ij 

     Tm  ANj
cijij=EcEijAAEOj +E(-cEijAZ)Abp (19) i=1i=1 

 nn  AMjc ={E (-sZij sAi)j sEijAEOj+ EsEij sAij sZij2la(20) 
  i=1i=1 

nn 

 AN = E sAij sEijAEOj+E (-sEij sAi)j sZijAt.(21)   i =1i=1 

The total forces ANj and AMjin the cross section are obtained by summing 
up the contributions of concrete and steel. This yields 

     ANj= ANjc + ANjs = ajAcOj+ ajAij(22) 

      AMj= AMj + AMjRjAc
+YjAij(23) Oj
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 m n 

  a.= E
cEi.Ai.+E sA..sEi,(24)     i =1JJ 1=1JJ 

mn 
                                    a:=E Z. E.A.+E((-E. .A..Z. .)    J

i_1c 1J1J1Ji=1s 1Js 1Js 1J(25) 

mn 

          JJJ2J1=1sE1sA.sz1226 
Yj 
          i=1  c        EEi.(Ai.Zi.+Ii.)+JJJ() 

Eqs.23 and 24 represents the force-deformation relations for a cross sec-
tion of the beam. When Eqs.23 and 24 are rewritten in the matrix form, this 
provides 

            AN,1'a.               8j
JJ)~J 

    AM.S.y.A~j(27) 
        J'.JJ, 

                           Consideration of Prestress 

From the equilibrium of forces shown in Fig.3, the increments of axial force 
and bending moment in j-th block, ANj and AMj are obtained as follows. 

ANj = AN2 = -AN1(28) 

      AMj= AQ2(1-x.) + AM2 + AM.= -AM1 + xj AQ1 + AMjP (29) 

where, AN1, AQ1 and AM1 = axial force, shear force and moment at the end 1 
of the member, and AMjP = moment induced by the prestress transfer, given by 
ANp -ej, where ANp = effective prestressing force, ej = eccentricity of 

  °Q1----------- -----AM 

  AN1. --------:'! 

J 

     A,M1----------------AMP 

---------X A 

J 

                          J-TH BLOCK 

A,1J
—------ ----------°Q2 

. oN_---------------------°N2 

                 AVJi--_ -------------°M2 
I,-----------L X J------------- 

e------------------------L-----------------------------' 

AMS IS AVAILABLE DURING PRESTRESSING 

            Figure 3 Equilibrium of forces of the member 
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 tendon measured from the centroidal axis of the section. That is, prestress, 
 which is divided into some loading steps, is assumed to be applied to each 

 block as external loads ANp and  4MjP. During prestressing, tendons are not 
 considered as reinforcements but prestressing force is just replaced by the 
 external loads ANp and AMjP. After prestress transfer, they are assumed to 

 behave like nonprestressing reinforcements with yield strength of ay - op in 
 tension and -ay - ap in compression, where ay = nominal yield stress of 
 prestressing tendon and ap = effective prestress. 

     Derivation of the Stiffness Matrices of the Member and the Structure 

 The stiffness matrices of the member and the structure were constituted by 
 the procedure presented by Kosaka et al. [3] and Tani et al. [6]. The effect 

 of prestress is included in the terms due to bond-slip and nonlinearity of 
 material properties. 

                          Computational Algorithm 

 The computational algorithm in each loading step may proceed as follows; 

 1. For all elements, assume that Acoj and Mcbj are the same as in the 
     previous step. 

 2. Set up the bond stiffness equation in which the bond stiffness and the 
     tangential modulus of reinforcement are assumed to be the same as in the 
     previous step. 

 3. Solve the equation above to get the slip between concrete and reinforce-
     ment in each block. 

4. Set up the stiffness matrix of each block and transfer it into the 
    flexibility matrix. 

5. Combine the flexibility matrices of the sections so that the member 
    flexibility matrices can be obtained. 

6. Transfer the member flexibility matrices into the stiffness ones and 
    constitute the stiffness matrix of the structure . 

7_ Solve the equation above under some support conditions and get the 
     unknown displacements and forces. 

8. Calculate Lcoj and MMj again by using the displacement and force incre -
     ments obtained above. 

9. Compare the assumed values and calculated values of tcoj and Abj , and     return to step 1 if the difference between them is larger than one 
    percentage of the assumed values. If not, go next. 

10. Calculate the stresses and tangential modulus of concrete and reinforce -
    ment according to the strains obtained by using Acoj and Abj . If the 

    tangential modulus in this step differs from the assumed value
, unequiv-    ale nt stress is calculated and released in the next step . 

        EXPERIMENT OF UNBONDED PRESTRESSED CONCRETE PORTAL FRAME 

For verifying the propriety of the analytical method above, the experiment was carried out on two portal frames with an unbo nded prestressed concrete b
eam 4.2 m long and reinforced concrete columns 1 m high

, shown in Fig.4. These two frames were so designed as to have the same lateral load 
resistance. The mechanical properties of concrete and rei nforcement are li

sted in Table 1 and 2 . Specified 0.2% offset yield strength and tensile 
strength of prestressing tendon are 1078 MPa and 1225 MPa

, respectively. The moment capacity of the column is about 1 .5 times that of the beam, so th
at the plastic hinges are intended to be located in beam ends and column b

ases. One frame , 'FR35', was consisted of the beam where the eccentricity 
of prestressing tendon is 35 mm (D/6:D indicates the whole depth) and the other, 'FR60' , has the prestressing tendon whose eccentricity is 60 mm (

D/3.5). Effective prestresses are 107 .8 kN for FR35 and 63.7 kN for FR60. 
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         Figure 4 Dimensions and reinforcing details of specimen 

   Table 1 Mechanical properties Table 2 Mechanical properties 
        of concreteof reinforcements 

      Specimen FR35 FR60 Reinforcement D10 016 08 

    Compressive Strength 36.9 36.8 Yield Strength fy 350.8 346.3 395.9 
   fc' in MPain MPa 

   Strain at fc' in % 0.244 0.218 Yield Strain e y 0.205 0.180 0.224 
  Tensile Strength ftin % 

         in MPa3.4 9.3 Modulus of Elasticity 1.72 1.92 1.78 
                                     in 106 MPa 

Prestress was transferred to the beam while one column base is supported by 

pin and the other is supported by roller. Therefore, the columns were free 
from the moments, shears and axial forces produced by prestressing. After 

prestress transfer, the frame was fixed to the floor. This procedure was 
followed in the calculation, but the friction of tendon during prestress 
transfer is ignored. 

Fig.5 shows loading set-up. Reversed cyclic horizontal load was statically 
applied to the mid-span of the beam by hydraulic jack. Besides the 
horizontal load, the vertical load was also applied at the mid-span of the 
beam, so that the bending moments at the beam ends and the mid-span due to 
the prestressing were offset at the beginning of the test. This vertical 
load was kept constant during the test. 

The frames were subjected to several slow load reversals simulating very 
severe earthquake loading. The "first yield" displacement of the frames were 
found when all the tension reinforcements in expected hinging regions had 
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 w------- ____ 

HYDRAULIC.JACKLOAD CELL1 

---------:: -------HYDRAULIC JACK I 
                                                                                                             MOD               r.-.:.-::f~.:  

                        Figure 5 Loading set-up 

 yielded. The first loading cycle consisting of ten cycles was followed by a 
 series of deflection controlled cycles in the inelastic range, also 

 comprising ten full cycles to each of the displacement ductility factors of 
 ±2, ±3, ±4, and sometimes higher, as illustrated in Fig.6. 

                                   }~10 CYCLES~{/~       
4 -----------------------------------10 CYCLES        II 

-----------1OCYCL1`------------,------------   >)3ES t)1I~I  

 vv\1  
5 -2 7 3 \/  

-4 I----------------------------------------------------- 

            Figure 6 Imposed loading history on the specimen 
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                                                          :::--------r;:... 
                                                                  SXL~=1OCM 

---------* 

                                                                        LJ=12.SCM 

                                                     i"~ .wf'ffl6.~~9'YWr 'N; 

             Figure 7 Divided block elements of the member 

                       used in the calculation 
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In the calculation bond stiffness assumed for  prestressing tendon is 
9.8x10 3 N/mm3. This is about 1/1000 used for nonprestressed deformed bar. 
Fig.7 shows layer elements assumed in the calculation. 

     EXPERIMENTAL RESULTS AND COMPARISON WITH THE ANALYTICAL RESULTS 

Figs.8 and 9 show the first cycle in each series of deflection cycles of the 
measured horizontal load versus horizontal deflection at the midspan of the 

          P150 -FR35( 
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             Figure 8 Load - deflection relation in FR35 
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            Figure 9 Load - deflection relation in FR60 
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 beam. These figures also show the calculated load - deflection curves. The 

 deterioration due to load cycles in concrete and bond is not considered in 

 this calculation, so that each loading cycle comprises only one full cycle. 
 When the experimental results are compared with analytical results, fairly 

 good agreement can be observed. 

 However, the larger the deformation became, the larger difference could be 

 observed. It is mainly because the shear deformation was not taken into 

 consider in the calculation. The shear deformation, especially in the 

 column, dominates the whole deformation of the frame in the loading cycles 

 to high ductility values, and some pinching of the load-deflection loops was 

 noticeable in the experiment. Just before the failure, where the ductility 

 w 
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      Figure 10 Increment of tendon stress - deflection relation in FR60 
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factor is almost  +4, the shear deformation of the column base occupies a 
large portion of the whole deformation, while the deformation of the beam 
remains small. Therefore, the frame moves like a rigid body connected to the 
foundation at the column base. 

In Figs.10 and 11, the first cycle in each series of deflection cycles of 
the measured tendon force increments versus horizontal deflections at the 
midspan of the beam are shown. The calculated results are also shown in the 
same figures. As described before, the shear deformation at the column bases 
results in imposing not so large rotation on the beam ends even in the 
inelastic range. Therefore, the calculated results are larger than the 
experimental results. In addition, in the calculation, the tendon force 
increment continues to increase almost linearly with the deflection of the 
frame because the rotations at the beam ends have a linear relationship with 
the lateral deflection of the frame. 

The maximum tendon force increment measured in the test was up to 196 N/mm 2. 
From analytical and experimental results on the portal frame, the tendon 
force measured at the anchorage ends is not so large. It may be not neces-
sary to consider any risk of tendon fracture even in the inelastic range. 
The tendon force increment measured in the test showed good agreement with 
the predicted value obtained from ACI and NZS. 

CONCLUSIONS 

The analytical method, by which hysteretic restoring force characteristics 
of unbonded prestressed concrete framed structure can be statically pursued 
on the basis of material properties, was presented. The analytical results 
were compared with the experimental results of unbonded prestressed concrete 
portal frame in terms of lateral load versus deflection and increment of 
tendon stress versus deflection relation. Fairly good agreement can be 
observed. However, the larger difference could be found in the loading 
cycles to high ductility values because the shear deformation became domi-
nant. Therefore the method has to be so improved as to take inelastic shear 
deformation into consider. 

The analytical and experimental results showed that the tendon force was not 
so large because the rotation of the beam ends was not so large while the 
large inelastic deformation was imposed on the frame. Therefore, it may be 
not necessary to consider any risk of tendon fracture and the unbonded 
tendon will be successfully used in a primarily earthquake resistant members. 
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             BEHAVIOUR OF UNBONDED PRESTRESSED CONCRETE BEAM 

                         IN RIGID FRAME 

        Hiroshi MUGURUMA*, Fumio WATANABE* and Minehiro NISHIYAMA* 

                            ABSTRACT 

       Many experimental and analytical studies on unbonded prestressed 
  concrete beams have been carried out, but most of them are on the behaviour 

  of simply-supported beams or cantilever-type beams. 

       In this paper, reversed cyclic lateral flexural shear loading tests on 
  unbonded prestressed concrete end-restrained beams for simulating flexural 

  deformation hysteretic behaviours of them in earthquake resistant framed 
  structure are reported. Test results were discussed in terms of the 

  capacity, the fluctuation of tendon stress and the hysteretic restoring 
  force characteristics. Test results revealed that the capacity of unbonded 

  prestressed concrete beams was about 7% smaller than that of bonded beams 
  and the increment of tendon stress measured at the anchorage end of bonded 

  prestressed concrete beams was larger than that of unbonded prestressed 
  concrete beams. Furthermore, little difference on hysteretic restoring 

  force characteristics between unbonded and bonded beams was recognized. 

  1. INTRODUCTION 

       The remarkable progress of unbonded prestressed concrete has 
  considerably expanded the range of application of prestressed concrete 

  because of the easiness of field work and the economy with unnecessity of 
  grouting. In applying unbonded prestressed concrete beam to a constituent 

  member in earthquake resistant framed structure, it is important to 
  investigate the fluctuation of tendon stress and the hysteretic restoring 

  force characteristic. According to the earlier researches, smaller tensile 
  stress increment due to applied load and less energy dissipation to 

  earthquake motion are ^pointed out as the disadvantages in comparison with 
  the bonded beams. However, most of the researches on unbonded beams are the 

  experimental studies on simply supported beams and cantilever type beams 
  and still comparatively little experimental data on the behaviour of 

  unbonded beams in rigid frame are available . 

       In this paper, reversed cyclic lateral flexural shear loading tests 
  carried out on unbonded prestressed concrete end-restrained beams for 

  simulating flexural deformation hysteretic behaviours of them in earthquake 

    Department of Architecture , Faculty of Engineering, Kyoto University 
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resistant framed structure are reported. Besides, the same test mentioned 
above carried out on bonded beams is also reported. The parameters 
considered in this study are (1) bonded beam or unbonded beam, (2) tendon 
profile (straight or concordant with moment diagram) and (3) location of 
tendon at critical section. Test results are discussed in terms of the 
capacity, the fluctuation of tendon stress and the hysteretic restoring 
force characteristics. 

2. TEST SPECIMENS 
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                                                                            5     Fig.1 and Table 1 show,S8 34-----3S 
the details and specifics- 9,2 Unbonded-----------        p

200P,C bar_o!Q tions of test specimens usedp 

in this study. The specimensI-------------------------------o s• 

consisted of unbonded pre-N,r=1ni1iii_uir~'Phia 
stressed concrete beam withM1"~--_ __-
3 m in length and 16x21 cm2i -I`°1-_ 
in cross sectional dimension66 Hoop 

\ 010 Ordinary o0 and heavily reinforced col- reinforcement u"'"' 
umn stubs at both ends of ;fl-- _  
the beam. In the beam sec- -- -~_-'--- 
tion, 4-D1O mm supplementary Nl1500115011300  
reinforcements were arranged 
for preventing concentrated1800 
crack formation and (1)6 mmFig .1 Specimen 
rectangular web reinforce-
ments were placed in a pitch of 15 cm through the whole length of the beam. 
Mechanical properties of ordinary reinforcement and prestressing steel bar 
are summarized in Table 2. Properties of concrete at the age of testing are 
listed in Table 3. Prestressing force for each beam was introduced so that 
the tension stress in the extreme fiber of concrete due to prestressing was 
less than the allowable tension stress (O.O7fc', where fc' is a compressive 
strength of concrete) before the live load was applied. In case of the 
beams having draped tendon profile, the live loads applied to the mid-span 
under the end-restrained condition. On the other hand, beams having 
straight tendon the live loads were applied in simply supported condition. 

                  Table 1 Specifications of Specimens 

  SpecimenU35CR U35SR U60CR U6OSR B35CR B3SSR B60CR B60SR 
                       U35SMU60SM 

   Prestressing tendon 2-69.2 SBPR 110/1252-D9.2 SBPD 110/125  
   Eccentricity (mm) (e/D) 35 (1/6) 60 (1/3.5) 35 (1/6) 60 (1/3.5) 

    Prestressing tendon index qpt 0.17 0.17 0.14 0.14 0.21 0.21 0.18 0.18 
                         qpc 0.34 0.33  0.53  0.51 0.41  0.41  0.64 0.64  

ConcreteCl C2 Cl C2 C3 C3 C3 C3 
    Effective prestressing 

        force (ton)10.44 12.34 10.57 11.94 11.58 11.63 11.61 11.33 
ape/apy0.59 0.72 0.60 0.69 0.67 0.67 0.67 0.67 

     Pe/bDFc0.07 0.08 0.07 0.08 0.10 0.10 0.10 0.10 
    Concentrated load at midspan _1.00 0.51 1.70 0.90 0.96 0.50 1.70 0.84  

      e :eccentricity of tendon 
D :total depth of beam section b:breadth of beam section 
ape :stress of prestressing tendon at prestressing 
apy :yield stress of prestressing tendon 

      Pe :prestressing force 
      Fc :compressive strength of concrete 

     qpt Ap apy/(b dp Fc) 
     qpc = Ap apy/[b(D-dp)Fc] 

      Ap :area of prestressing tendon 
      dp :effective depth of prestressing tendon 
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   3. TEST PROCEDURES AND MEASUREMENTS 

        For applying re-
    versed cyclic  transver-  Table 2 M

echanical properties of reinforcements 
    sal load as simulated 

   earthquake load, one end' D10 4)6 1)9.2 tendon  
    column stub was fixed to Yield stress (kgf/cm2) 3830 3570 13300*  

Yield strain ( % ) 0.204      a rigid steel frame col - El
astic modulus (x10 kgf/cm6) 1.88 1.93 2.02  

umn, while the other end* 0.2% offset yield stress 
    column stub was moved 

    up- and downward without 
    stub rotation. Thus, the Table 3M

echanical properties of concrete     bea m was subjected to an 
  antisymmetric flexure Concrete  Cl C2 C3  

    with constant shearCompressive strength fc'(kgf cm2) 403 467 372  
Tensile strengthIkgf/cm2) 33.3 42.9 30.3       force over the whole 
Initial tangent modulus (x10 kgf/cros) 3.99 3.03 2.32     l

ength of the beam. In Strain at fc'( % ) 0.18 0.24 0.23  
    addition, the constant 

   load as the live weight 
    was applied by servo-
  actuator. Fig.2 showsServo-actuator 
   the schematic figure of Parallel-holder1. 

  loading procedure. Flex-L
oad-cellsOalLoad-cells  ural moment applied to; 

   the beam was measured at lia/~uI   both ends of the beam by Ili lam-mei
ill.4 

                                               load-cells. Each end ofIj~'' 
   these load-cells had anis6/ill= =-~-tiSpcimenNI  universal joint so thatA 

  only the axial load ap--Ifl~~~1111 , 
  plied to the load-cellsOil Jack 11 t•E•ul 

  was measured. FlexuralIi:I ,.:s:::..1:. 
   moment was obtained by 

  both upper and lowerMoved EndFixed End 
   load-cells. Shear force 

  was calculated by usingFig.2 Loading set up 
   these measured flexural 

   moments at both ends of the beam . 

       During cyclic loading , the displacement at the loading stub was 
   measured by displacement transducer . Also, top and bottom fiber strain    di

stributions within the length of 30 cm fr
om both beam end sections were 

   measured by displacement transducers in g
auge length of 10 cm. From the    fib

er strain measurements , the average flexural curvature distributions 
   were calculated . However, flexural curvature will be left for an

other paper    because of th
e limitaion of space . In addition, tensile force increments of 

   prestressing steel bar due to the load application were obtai
ned by load-   cells insert

ed at the anchorage ends . 

  4. TEST RESULTS AND DISCUSSIONS 

       All the specimens failed in flex
ure with crush of concrete and buck-   lin

g of ordinary reinforcements in compression zone at both bea m end sec-   tions
. These failures gradually occurred without sudde

n fall of load    capacit
y. 
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     In Fig.3a and 3b, measured 

flexural moment at beam endx4 
section - the beam rotation.0 

angle relaionships of U6OCR are •-'

d 
 2/~ illustrated. And in Fig.3c, -

~/~^ shear force defined as the sum  w of flexural moments divided byc-othe beam lenth at both beam endIiigsections isshown against the 
beam rotation angle. Because of .w _2 
the prestressing force, exces- 2 S 
sive recovery of deformation can xU6OCR 
be.seen in these figures.w-4 

             -8 -4 0 4 8 

4.1 SHEAR FORCE CAPACITYBeam Rotation Angle in x10-2rad 

     In Fig.4, maximum shear Fig .3a Flexural moment at moved end 
force in each specimen is plot-
ted against its compressive 
strength of concrete. Generally, x4 
the capacity of unbonded beams +-1 
is smaller than that of bonded 2 
beams because the tensile strain 
of the prestressing steel barsw 
in unbonded beams is uniform-~~~~D' over whole length of them. How-m1%/r 
ever, little data on the ratioo•~'r 
of the capacity of unbonded -2//~,-1beams to that of bonded beams, wca7/' 
especially in rigid frame, aren~U6OCR 
available. In this study, ac- _4 
cording to this experimental r.-, -8 -4 0 4 8 
study, capacity of unbonded_2 
beams is about 7% smaller on anBeam Rotation Angle in x10rad 
average than that in bondedFig .3b Flexural moment at fixed end 
beams. 

  In Fig.5a and 5b, shear2 ---------------------------------------------, 
force capacities obtained from 
test are compared with the cal-culated values with particular1-l'reference to the effect of a •,'ilstrain compatibility factor F.uFrom these figures, the mosto0 1 + I E 
fitted F values for unbonded andw 
bonded beams are 0.1-0.2 and                                          co
0.65-1.0, respectively. F value-1-                                    4/0;(for unbonded beams in this paperwU6OCR 
agrees with the value suggested 

for simple supported beams by`? 8 _4 04 $ 
the authurs(1). Therefore, F 
value can be used for the designBeam Rotation Angle in x10-2rad 
of unbonded prestressed concrete 
beams in rigid frame under re-Fig.3c Shear force 
versed cyclic loading. It should 
be noted that F values for 
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bonded beams scattered in the  a  0 
range of 0.65-1.0 with the  spec—  '  1.8 . 

imens. This may be because bond 
stress between concrete and pre— 0III860Ut1.727 
stressing bar deteriorated easi—s 
ly under reversed cyclic loading° 
and the degree of the bond dete—g:. 

rioration depended on the mo,,. 
loadinghistoryand so on. And~1•sas      g 

also,little difference in cal—so~.siaOlsz2                                          E 

culated capacity in the range of EO 
F = 0.3-1.0 may be one of the 'X 

       m 1.4----------------------------------------- reasons.x 350500 

    Concerning to the tendonCompressive Strength of 

profile, there was little dif—2 
ference in the load carryingConcrete in kgf/cm2 
capacities of bonded beamsFig.4 Shear force capacity 
having straight or draped 
tendon, because the moment ca— 1.55           ////                                                             pacity at the critical section o 
having same sectional area ofU35SR 
tendon is only affected by thesU35SM 
eccentricity of tendon. However, uw 
in case of unbonded beams the 
beam having draped tendon showed o 
about 17 % larger capacity due1.50 U6OSM_ 
to the existence of frictionm 
between tendon and surrounding .-
concrete at the bent—up and — 
down corners. Further details 
will be discussed later.U6OSR 

     According to the eccentric—1.45 
0.10.2 ity of prestressing steel bar, 

little effect in shear forceF Value 
capacities could be recognized.Fig.5a F value for unbonded beams 
However, there was a large dif—18 
ference in the moment capacitiesB 60 C R 
at beam ends. When the beam end a 
section was subjected to posi—17 
tive moment, the moment capacity  
was smaller and the crush ofa)B35CR B35SR 
concrete at the top fiber occur— 01 .6• 
red in relatively earlier stageoI 
in loading with the buckling of 
ordinary reinforcements than ai 1.5B60SR that when subjected to negative- 
moment. These tendencies were 
notable in case of the section1.4 
having large tendon eccentricity. 

4.2 FLUCTUATION OF TENDON STRESS1'3                                        0 0
.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

   Fig.6a and 6b show theF Value 
fluctuation of tendon stress inFig .5b F value for bonded beams 
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U6OCR measured at the anchorage m3 
end of the beam against the beamI`VE 
rotation angle. Fig.7 shows the, 2 
increment of tendon stress in' 

 B6OCR. Up to the presentit haso•,1 ~                                  I!!'been thought that the fluctua--'btion of tendon stress at thew0 
anchorage end of the unbonded -d 

beam is larger than that of0> -1 
bonded beam and there may be t x° 
some fear of the fracture of thee-2 
unbonded prestressing steel bar2c°U6OCR 
under reversed cyclic loading.c -3

8              _ 44 8 However, in this test, the 1-1 
increment of tendon stress atBeam Rotation Angle in x10-2rad 
the anchorage part of the bonded 
beam B6OCR was 1.5 times larger Fig.6a Fluctuation of tendon stress 
than that of the unbonded beamat moved end 
U6OCR. The reason is that under 
high intensity reversed cyclic 
loading the expected bond actionw`VE3~ 
between concrete and prestress-2~\ ing bar in the column stub dete-cN ,,riorated easily and most of the•1o1 
increment of tendon stress atac-~:`~ the critical section was trans-w w0\~ 
ferred to the anchorage end. 4_, 2 
Therefore, in so far as this 0 x -i 
test is concerned, the bonded 4a) 
beam has a larger possibility ofN +~-2 
low-cycle fatigue failure at the`~U6OCRI 
anchorage end than the unbondeda -3 

$ -44 8 beam.1-i 

                                          Beam Rotation Angle in x10-2rad 
     It is recognized that the 

tendon profile did not affect Fig.6b Fluctuation of tendon stress 
the increment of tendon stress 

at the anchorage part in bondedat fixed end 
beams, but in unbonded beams 
having draped tendon there was a Ne 5 
large difference between the 
fluctuations of tendon stresses at the both beam ends ( see~~\ Mb. Fig.6a and 6b ). As shown in them 
figures, tendon stress incre-oa)0 \ 
ments were almost proportional .04 
to the beam rotation angle atwB60CR 
the beam end section subjected ~o 
to negative moment. But at the u a 

other end of the beam subjectedI--IH-5-8 -4 0 4 8 
to positive moment, smaller 
tendon stress increments andBeam Rotation Angle in x10-2rad 
larger hysteresis were observed. 
Then, in Fig.8a and 8b, theFig.7 Fluctuation of tendon stress 
difference of tendon stress in-
crements at the anchorage part 
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between moved end and fixed end  cv 1 of the beam U6OCR and U6OSR are \1IIshown against the beam rotation 
angle. It is noted from these o 
figures that constant frictions 

were existent between prestress-A, 
ing bar and its surrounding con-t,0`~ 
crete no matter how large was the ° 

deformation of the beam and theseua 
frictions became 1/3 of tendon2~ 
stress increment at the maximum.wmU60CR',t,A~ 
Furthermore, these constant fric- ,,..,1111`~jW-J 

      "Ill 
                                                   11 

tions may be mainly due to theQcn !..8  —4 0 4 8 
change in angle of unbonded pre-

stressing steel bar.Beam Rotation Angle in x10-2rad 

4.3 HYSTERETIC RESTORING FORCEFig.8a Difference of tendon stress 

  CHARACTERISTIC`v51 ,  

U 

    Fig.9 shows equivalent+_5 
damping factor against the dis- .b.,_. 
placement divided by 6y. From•„ 
this figure, there was little E--' ai 0 
difference in the ability of o m 
energy dissipation between bondedvu 
and unbonded beams.UHU6OSR - 

                             •( 

Fig.10a and 10b show the 4 2 _1t  
non-dimensional hysteretic loops -8 -40 4 8 
of the bonded beam B6OCR and the Q ' B

eam Rotation Angle in x10-2rad unbonded beam U6OCR at deflection 

amplitude of 6y(displacement whenFig.8b Difference of tendon stress 
the ordinary reinforcement 
yielded initially) cycle and 2.00,20 — 
6y cycle,respectively. From these 
figures, there was little differ- °B3;CR 
ence in hysteretic loop betweenUU35SR 
the unbonded beam and the bonded/ /' B6OCR 
beam.w - 

                                                                                                                   . 

         o~B35SR    According to the location ofe;•j•/U6OSR 
prestressing bar, equivalentQ,"U6OCR 
damping factors of the specimens 4-)U35CR,,, 

                                            °_ having small eccentricity of ten- ,•0.10 -,;~/ 
. don (U35CR, U35SR, B35CR and m~: 

B35SRare slightlylargerthan'H/~    gYg.%• 
that of the specimens having w 
large eccentricity of tendon

_/ 
(U6OCR, U6OSR, B6OCR and B60SR).~' 
The reason is that concrete at~r r1 , 1  
the top fiber of the beam end1 2 3 
subjected to positive moment

Deflection / 6y tended to be damaged and the 
moment capacity reduction occur-Fig.9 Equivalent damping factor 
red under reversed cyclic loading in the specimens having large 
eccentricity of tendon than in the specimens having small eccentricity. 
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Fig.lOa Non-dimensional hystereticFig.lOb Non-dimensional hysteretic 

           loop at Syloop at 24 

5. CONCLUSION 

     The following conclusions can be derived from the test results. 

(1) The shear force capacity of unbonded prestressed concrete beams was 7% 
smaller than that of bonded beams under reversed cyclic lateral flexural 
shear loading test. 

(2) A strain compatibility factor F can be used for evaluating the capacity 
of unbonded prestressed concrete beams. The most suitable F value for 
unbonded beams was in the range of 0.1-0.2. F value obtained from the test 
was almost the same value obtained from the test carried on the simple 
supported beams. 

(3) The fluctuation of tendon stress at the anchorage end of bonded 
prestressed concrete beams was larger than that of unbonded beams because 
of the deterioration of bond in the column stub under reversed cyclic 
loading. Therefore, the bonded beams has a larger possibility of low-cycle 
fatigue failure at the anchorage end than the unbonded beams. 

(4) Constant friction was existent between unbonded prestressing tendon and 
its surrounding concrete no matter how large was the deformation of the 
beam because of the change in angle of prestressing tendon. 

(5) There was little difference in hysteretic restoring force character-
istic between bonded beams and unbonded beams. 
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