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                         ABSTRACT 

    The magnetosphere and the interplanetary space are filled with plasmas 

in which various kinds of electromagnetic as well as electrostatic waves 

are excited due to the interaction with high energy particles. Wave-

particle interactions and associated wave phenomena such as anomalous 

 resistivities, plasma beatings and wave-wave couplings play important roles 

in the energy transfer in space. 

    These natural phenomena observed in space plasmas are often highly 

nonlinear and too complicated for analytic theories. In order to obtain 

better understanding of nonlinear wave-particle interactions in space 

plasmas, we have developed three different computer simulation codes, a 

full electromagnetic code, a long-time-scale code for whistler interactions 

and a hybrid electromagnetic code. 

    Using these codes, we first investigated a whistler mode wave-

particle interaction. We clarified basic processes of the interactions and 

effects of the phase bunchings and trappings associated with VLF triggered 

emissions. Effects of co-existing electrostatic waves on whistler mode 

instabilities are also studied. 

    Secondly, we studied heating of heavy ions in the equatorial 

magnetosphere in conjunction with electromagnetic ion cyclotron waves 

generated by anisotropic hot protons. Linear stage of the interaction is 

studied by computing the linear growth rates for various parameters. 

Nonlinear stage is studied by the hybrid electromagnetic simulation. The 

mechanism of the He+ heating is explained by a two-step process. 

    Thirdly. we investigated radiation from two types of high energy 

electron beams. One is the beam injected from a space vehicle, in which we 

found excitation of two types of electromagnetic waves with k vectors 

perpendicular to the external magnetic field. The other is the beam 

modulated by a coherent whistler wave, where we found interesting two-beam 

jetting as a results of trapping and detrapping process, yielding a strong 

electrostatic emissions with k vector parallel to the external magnetic 

field.
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 1

1.1 Wave-Particle Interactions in Space Plasmas  

    Space surrounding our mother planet Earth, which once believed to be a 

void vacuum, is filled with plasma which is the forth state of matter. 

Plasma is a fully or partially ionized gas, which is, however, electrically 

neutral on the average and exhibits collective behavior. It is often said 

that 99% of the matter in the universe is in the plasma state. The 

principal origin of the plasma in the vicinity of the earth is a continuous 

emission of plasma from the sun. This plasma flow which carries away a 

part of the solar energy and fills up the interplanetary space with the 

plasma is designated as the solar wind. Since the geomagnetic field around 

the earth prevents the access of the solar wind toward the earth, a cavity 

is formed around the earth in the midst of the streaming solar plasma. The 

cavity, in which field lines of the earth's magnetic field are confined is 

called the magnetosphere of the earth. Other magnetized planets like 

Jupiter and Saturn also have magnetospheres. 

    In the magnetospheres as well as the interplanetary space there exist 

various kinds of electromagnetic plasma waves. Through interactions with 

plasma particles, these plasma waves play important roles in the transfer 

of the solar wind energy into the magnetosphere and further into the 

ionosphere. Such a transfered energy is evidenced by auroras in the polar 

regions. The wave-particle interactions in the magnetosphere also control 

the environment of electromagnetic radiations and would have influences on 

communication and other human activities in space in the future. 

1.2 Significance of Computer Simulations  

    The space exploration has been achieved by a rapid development of 

space vehicles and their use for scientific survey of our space 

environment. In 1960's and 1970's a lot of discoveries of new phenomena 

were brought from these spacecraft observations. Data analysis-phase 

followed after the discovery-phase yielding a variety of physical models of 

our space plasma environment and theories for the related plasma processes 

taking place therein. However, there still remains a large number of
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problems because of too many degrees of freedom in choice of physical 

models. Natural phenomena in space plasmas are often highly nonlinear and 

too complicated for analytic theories which usually rely on linearization 

or weak nonlinearization, symmetry characteristics, homogeneity or simple 

inhomogeneity and other simplified assumptions. On the other hand, 

observations by satellite are still too coarse: Measurements are limited in 

time and in space, so that much ambiguity is left, which causes disputes 

among related theoretical models. To resolve these uncertainties among 

various models and theories and to find a hint or clue for understanding 

the unsolved physics underlying the observed phenomena, computer 

simulations have been high-lighted as a third promising approach to bridge 

the traditional two approaches, theory and experiment, among  space 

researchers in late 1970's and in 1980's. 

    Computer simulations for space physics may be divided into two 

categories: First is an MHD simulation which follows the nonlinear fluid 

motion of plasmas in their self-consistent fields (and applied fields if 

any). This class of simulations is useful in understanding macroscopic 

global-scale dynamics which cannot be understood by piecewise information 

from individual satellite observations. Second is a particle simulation 

which follows the individual nonlinear motions of many particles in their 

self-consistent fields (or applied fields if any). The particle 

simulations play a significant role in space physics in interpreting highly 

nonlinear kinetic effects like wave instabilities and associated plasma 

scattering, diffusion, heating and particle acceleration. 

    Complicated and sometimes overlapping phenomena which nature generally 

exhibits can be decomposed into simpler elements of physics in simulations 

to obtain a clearer physical picture. One of the advantages of the computer 

simulation is that one can make as detailed diagnostics of plasma and field 

quantities as one desires. A precise visualization of the time evolution of 

the nonlinear micro-dynamics of interest is easily achieved in detail by 

graphic displays of the results of particle simulations. This could not be 

realized either by theory nor by satellite observations. Thus particle 

simulations provide useful data of wave-particle interactions which are 

currently inaccessible to satellite observations nor to theories. One such 

example is a rapid variation of the particle distribution function in 

velocity space. Such detailed information may often provide a hint and 

inspiration not only for further theoretical development but also for 

design of new satellite observations.
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1.3 Contribution of the Present Work  

    In Chapter 2, we first give an introductory review and a guide of 

particle simulations of electromagnetic waves [Matsumoto and Omura, 1984]. 

The basic concept of particle simulations is not given in detail because it 

is found in the existing literature [e.g., Hockney and Eastwood, 1981; 

Birdsall and Langdon, 1984]. We describe one of the important techniques 

in particle simulations, i.e., cancellation of a self-force of 

superparticles. We then explain numerical algorithms and techniques of 

three different simulation codes which have been developed for the study of 

wave-particle interactions and have been successfully used in the present 

work. These codes are (1) Full Electromagnetic (FEM) code, (2) Long Time 

Scale (LTS) code and (3) Hybrid Electromagnetic (HEM) code. The FEM code 

solves Maxwell's equations and equations of motion for individual 

particles. Since no approximation is made to the basic equations, the code 

is applicable to a wide range of problems in plasma physics. We describe 

several techniques of making the simulation code more efficient and 

accurate. Especially, a Multiple-Time-Step (MTS) scheme we developed makes 

the code as efficient as the magnetostatic simulation code (with the Darwin 

approximation), and makes it more applicable to low frequency wave 

phenomena. The LTS code is specially designed for application to whistler 

mode wave-particle interactions. Instead of solving  Maxwell's equations, 

it solves basic equations of wave field deduced from the Maxwell equations 

under an assumption of a monochromatic whistler mode wave with a slowly 

varying amplitude and frequency. The LTS code is very efficient for 

following evolution of a whistler mode wave and motions of resonant 

particles. The HEM code is developed for low frequency ion mode wave-

particle interactions where kinetic effects of electrons are neglegible. 

Ions are treated as particles, while electrons are treated as a massless 

fluid. There exist two types of algorithms for this hybrid formulation. 

One is an explicit scheme which is said to be liable to numerical 

instability and in which we have to choose the time step very small. The 

other is an implicit scheme which is numerically stable but suffers from a 

larger energy loss in the system. We have developed a new explicit scheme 

whose numerical stability is greatly improved and yet its numerical energy 

loss is considerably small. 

    Chapter 3 is devoted to the study of a whistler mode wave-particle 

interaction which is one of the most fundamental wave-particle interactions



 4CHAPTER 1 

in the magnetosphere and plays an important role in the magnetospheric 

dynamics. Nonlinear orbits of resonant electrons in a monochromatic 

whistler mode wave are studied by a test particle simulation  [Matsumoto and 

Omura, 1981]. We show that two types of phase bunching occur in a 

nonuniform magnetic field, and the importance of phase trapping is 

examined. Basic processes of the whistler mode interaction are studied 

using the LTS code with an emphasis on roles of trapped and untrapped 

electrons in a dipole geomagnetic field [Omura and Matsumoto. 1982]. We 

discuss frequency variations of whistler emissions generated through an 

interaction of a triggering whistler packet with an energetic electron beam 

in a homogeneous medium [Omura and Matsumoto, 1984]. Then we study the 

effects of a whistler mode wave on a particle velocity distribution in a 

dipole geomagnetic field. We find that the particle distribution is 

strongly modified and becomes unstable for whistler mode waves owing to the 

nonlinear phase trapping and detrapping [Matthews et al., 1984]. Based on 

this study, we tried a new explanation of VLF triggered emissions 

[Matsumoto and Omura, 1983]. We also studied an excitation of whistler 

mode waves by an energetic electron beam using the FEM code where 

electrostatic waves are also solved [Omura and Matsumoto, 1985]. It is 

found that the whistler mode instability could be suppressed by an effect 

of a co-existing electrostatic wave instability. We give a theoretical 

analysis to this effect of electrostatic waves. 

    In Chapter 4, we study the heating of heavy ions observed in the 

magnetosphere in conjunction with ion cyclotron waves (ICW) generated by 

anisotropic hot protons (i.e., GEOS-1 and 2 and ATS6 results). The ICW has 

a left-handed polarization, while the whistler mode wave studied in Chapter 

3 has a right-handed polarization. However, both waves propagate parallel 

to the static magnetic field, and resonate with counter-streaming energetic 

particles. Therefore, characteristics of these wave-particle interactions 

are basically the same. We first analyze the ion cyclotron interaction in 

a plasma containing cold H+ and He+ ions by computing the linear growth 

rates (both temporal and spatial) for different plasma parameters: 

concentration, temperature, and anisotropy of cold He+ and of hot protons 

[Gendrin et al., 1984]. Through this linear analysis we find suitable 

parameters for computer simulations. Then we run the HEM code with these 

parameters, and find a good agreement between the linear theory and the 

computer simulation at the linear phase as far as the growth rate of the 

wave and the frequency of the most amplified wave and the variation of the 

hot proton anisotropy are concerned [Omura et al., 1984]. The saturation
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occurs due to trapping of the helium particles. However, most interesting 

results concern the heating of cold species. He+ ions are heated mainly in 

the perpendicular direction and they are heated more than cold H+ ions. 

The heating of He+ ions is explained by a two-step process : first He+ ions 

are set into oscillations (in both  v
l and vii) by the growing wave until 

some of the ions attain a parallel velocity of the order of the resonant 

velocity at which time strong heating occurs owing to the nonlinear 

trapping. 

    In Chapter 5, we study a radiation of electromagnetic and 

electrostatic waves from an electron beam for two different physical models 

using the FEM code. One of the problems is a quantitative estimation of 

electromagnetic radiation from an artificially injected electron beam in 

the Space Experiment with Particle Accelerators (SEPAC) which is an active 

and interactive experiment in the earth's upper atmosphere and 

magnetosphere using a high-power electron gun on board the space shuttle 

[Obayashi, 1982]. We find a strong excitation of slow extraordinary wave 

around the electron beam and a propagation of a pulselike ordinary wave 

packet excited as an impulse response to the onset of the beam injection 

[Omura and Matsumoto, 1984]. We also find that the electron beam initially 

expands in the transverse direction to the electrostatic field produced by 

a local excess charge of the beam electrons, and it subsequently oscillates 

with a frequency of the slow extraordinary wave which is excited around the 

beam. The other problem is to explain a phenomenon observed by the ISEE 

satellite which found strong electrostatic bursts often associated with a 

coherent chorus hook element. The electrostatic bursts that are apparently 

hook-induced emissions stimulated by the combined action of a coherent 

whistler-mode wave and a simultaneously observed electron beam with an 

energy range of the order of lkeV [Reinleitner et al., 1982]. In order to 

seek a plausible generation mechanism and interpret this nonlinear 

Phenomenon we carried out computer simulations following nonlinear motion 

of more than a half-million particles in the 128-128 grid space under the 

self-consistent fields [Matsumoto et al., 1984]. The results show an 

interesting two-beam jetting as a result of a trapping and subsequent 

detrapping process, yielding a strong electrostatic emission with k vector 

parallel to the external magnetic field. The nonlinear evolution of the 

wave spectra and of particle distribution functions and their phase-space 

behavior are discussed in connection with the observed ES bursts. 

    In Chapter 6, we summarize the present study and give conclusions 

obtained through the present study via computer simulations. We also



6 CHAPTER 1

clarify 

Finally,

 problems 

we give

 unsolved or items which need further 

suggestions for further works.

investigations.
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                        CHAPTER 2 

     COMPUTER SIMULATIONS  FOR STUDY OF WAVE-PARTICLE INTERACTIONS 

2.1 Introduction 

    In this chapter, we will give an introductory review and guide for 

particle simulation of electromagnetic waves in plasmas. The basic concept 

of particle simulations is not given in detail because it is described 

excellently in the existing literatures [e.g., Langdon and Lasinski, 1976; 

Hockney and Eastwood, 1981; Birdsall and Langdon, 1984]. First we will 

describe important basic concepts of particle simulations such as 

superparticle, discretization of space and time, and cancellation of self-

force in Section 2.2. Section 2.3, 2.4 and 2.5 are devoted to the 

description of the basic equations and numerical algorithms of three 

different simulation codes which have been developed for the present study 

of wave-particle interactions. These codes are (1) Full Electromagnetic 

(FEM) code, (2) Long Time Scale (LTS) code and (3) Hybrid Electromagnetic 

(HEM) code. These simulation codes developed at Kyoto University are named 

"KEMPO" (Kyoto University ElectroMagnetic Particle cOde)
, "KULTS" (Kyoto 

University LTS code) and "KEMHO" (Kyoto University ElectroMagnetic Hybrid 

cOde), respectively. 

2.2 Particle Model Simulations  

    In this section, we will give a short review of the basic concept and 

models used in particle simulation in general. Readers are recommended to 

refer to existing textbook and literature for details [Morse and Nielson, 

1969; Birdsall and Fuss, 1969; Dawson, 1970; Birdsall, Langdon and Okuda, 

1970; Hockney, 1970; Langdon and Birdsall, 1970; Okuda and Birdsall, 1970; 

Okuda and Dawson, 1973; Langdon and Lasinski, 1976;Nielson and Lewis, 1976; 

Hockney and Eastwood, 1981; Birdsall and Langdon, 1984]. 

2.2.1 Superparticles 

    In particle simulation, plasma dynamics is studied by following a 

large number of particles in their self-consistent electric and magnetic 

fields. Naturally, one cannot emulate nature even with the today's super-
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computer. Only several orders of magnitude less number of particles are 

treatable in computer compared with the enormous number of particles in the 

real plasma of almost any size of interest. Therefore we are obliged to use 

an artificial model-particle called  "superparticle" with a larger mass and 

charge than the real particle. The superparticle represents many particles 

in a real plasma, and has a finite size with its charge being distributed 

over a finite region of space. 

    The concept of the finite-sized superparticle was introduced 

historically by two research groups. First one was "Cloud-in-Cell(CIC)" [ 

Birdsall and Fuss, 1969] and the other was "Particle-in-Cell(PIC) [Morse 

and Nielson, 1969]. Both were introduced as an improved model of zero-

sized superparticle (plasma sheet model) to suppress statistical 

fluctuations and short range collisions caused by a delta-functional nature 

of the zero-sized superparticles [Hockney,1966; Birdsall and Fuss, 1969; 

Morse and Nielson,1969; Okuda and Birdsall, 1970; Langdon and Birdsall, 

1970]. At the same time the method of assignment of charge and current of 

the superparticle to its neighboring spatial grids was improved from NGP 

(Nearest Grid Point) scheme to AS (Area Sharing) scheme [Morse and 

Nielson,1969], MPE (Multipole Expansion) scheme and SUDS (Subtracted Dipole 

Scheme) [Kruer et al.,1973]. The theoretical works were developed on the 

modification of the plasma theory for the finite-size superparticle plasma 

[Langdon and Birdsall, 1970; Okuda and Birdsall, 1970]. Details such as 

modification of the dispersion characteristics and of the collisional 

effects are discussed elsewhere in this book [Okuda] and are not given 

here. 

    The shape of the superparticle can be of any form. Normally, however, 

one of the following three shapes is, for practical codings, hired in the 

particle simulation. These three shapes for one dimensional case are 

depicted in Figure 2.1. They are (1) Square-shaped, (2) Triangular-

shaped, and (3) Gaussian-shaped. As for the scheme for the charge and 

current assignment to the neighboring grid points, the AS (area sharing) 

scheme is most frequently used. A schematic illustration of charge and 

current assignment for the square-shaped superparticle with a charge gssi 
is given in Figure 2.2. In the figure the size of the square-shaped 

superparticle is assumed to be identical to that of the grid ( or cell). 

Charge and current of a superparticle is shared by grid points where the 

superparticle is located. The charge and current assignment is made in 

such a way that the share to each grid is proportional to the overlapped 

area of that of the superparticle and the cell area of the grid. Other
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2ab=  i(S)
 s

b

-a 0 a
x

ab=q~s' 

       S

 b

 -a 01 a
 X  e

 0 1
 X

Fig.  2.  1 Three shapes of superparticle: (1) Square-shaped, (2) 
 Triangular-shaped, (3) Gaussian-shaped.

methods of the charge and current assignment have been proposed and are 

described in the literature [ e.g., Hockney and Eastwood, 1981; Birdsall 

and Langdon, 1984; Okuda, 1984]. 

    The charge and mass of the superparticle is much larger than those of 

the real particle. However the following three densities of the 

superparticles are taken to be the same as those of the real particles.

(1) Charge Density

NQ= NrQ S5r (2.1)

(2) Mass Density

NM= NM S5r          r (2.2)

(3) Energy Density

NKT= NKT ssrr (2.3)

where the subscripts, s and r, mean the quantities of the super- and real-

particles, and N, Q, M, x and T denote number density, charge, mass, 

Boltzmann's constant and temperature, respectively. Under these 

equalities, not only the charge to mass ratio but also the basic physical 

quantities such as the plasma and cyclotron frequencies, the Debye length, 

and the thermal velocity are kept identical to each other in both
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simulational and real  plasmas 

the plasma are reproduced in the

Thus the 

particle

most of the 

simulation.

physical properties of

charge current

A:

B:

 C.

D:

(S)
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S 

S3 
S

 (S) q
s,i

 (S) 
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S

S, 
' S
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'S 
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 (S) 
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 (S) 
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qs,i Vs,i

Where S =Si +S2+ S3+S4

Fig. 2.2 Schematic illustration of charge 

 square-shaped superparticle.

and current assignment for the

2.2.2 Discretization of Space and Time 

    In the particle simulation, both space and time are discretized. 

Spatial discretization is introduced by two reasons. One is to speed up 

the calculation of force acting on particles [Buneman, 1959; Dawson,19611. 

Instead of calculating all contribution of Coulomb force from all 

particles, the force acting on a superparticle is calculated by field 

quantities defined on the grid points nearby the particle. Second reason 

is that the superparticle has a finite size over a certain region of space 

so that the spatial resolution smaller than the particle size is
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unnecessary and meaningless. Normally, the spatial grid  spacing is taken to 

be from 1 to 3 times the Debye length. Numerical stability related to the 

choice of the grid size has been studied in detail LLangdon and Birdsall, 

1970; Okuda, 1973; Abe et al.,1981]. 

    Time discretization is inevitable in any numerical approach to any 

partial differential equations. The problem is how large we can choose the 

time step keeping the numerical stability. To avoid the numerical 

instability, the Courant-Fredericks-Lewy (CFL) condition should he 

satisfied. In case of the electromagnetic particle simulation, the CFL 

condition is 

              At < Ar/(c)n)(2.4) 

where n is the spatial dimension of the simulation model, and c is the 

light speed. 

    Discretization of space and time modifies the dispersion 

characteristics. This modification comes from digital samplings of 

continuous quantities in space and time. As is well known from the 

sampling theorem, the frequency w and wavenumber k should be replaced by 0 

= sin(wAt/2)/(wAt/2) and K = sin(kAr/2]/(kAr/2), respectively (see Appendix 

A) Thus the dispersion equation for real plasma, D(w,k) = 0 is modified to 

D(0, K) = 0. Because of this sampling function nature, high frequency and 

large k components are folded down in the low and small k domain in the w-

k space as "aliases". This effect should always be taken into account both 

in designing the model of simulation and in analyzing the simulation data. 

2.2.3 Average Field and Self-Force 

    Since the charge of the superparticle with a finite size smears out in 

space, the force acting on it is the averaged one. In this sub-section, we 

will discuss the procedure for the average and its related self-force 

problem. To this purpose, we will confine ourselves only to the simplest 

case of the square-shaped superparticle in one-dimensional case. Extension 

to the case of superparticles with other shapes and/or two-dimensional case 

is straightforward. We also limit our discussion only to the case of the 

electrostatic electric field as an example of the self-force. The 

magnetostatic self-force can be treated in a similar manner. 

    To guarantee the centered difference scheme for Maxwell's equations 

(Poisson's equation in this particular example), we normally adopt a 

staggered dual grid system composed of full-integer- and half-integer grid
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from  Fn as illustrated in Figure 2.3(b). Then the area-weighted average of 

the electric field E is given by 

 11 
E _ ( 2- a )EX(Hn-1) + ( 2+ a )ExX(Hn) . (2.5) 

The effective electric field which the superparticle feels is this averaged 

value E. It is formally computed by a simple linear interpolation from the 

two values of E
X at two adjacent grid points Hn-1 and Hn as shown in Figure 

2.3(c). However, one should note that the simply interpolated value EINT 

(P) from Ex(Hn -1) and EX(Hn) produces a nonphysical force acting on the 

superparticle. The nonphysical force is called a "self-force". 

Physically, the electric or magnetic field produced by a particle should 

not give any force back to the particle itself. 

    As far as we adopt the staggered dual grid system together with the 

area sharing scheme for charge and current distribution to grid points, the 

self-force comes in automatically and leads to violation of conservation of 

energy and momentum through the nonphysical acceleration of particles. To 

demonstrate how the self-force appears, let us consider a case where only 

one superparticle is placed in the system at a point P as shown in Figure 

2.4(a). The charge density a of the superparticle is distributed to two 

adjacent grid points Fn and Fn+1 by the area sharing scheme. This process 

is identical to divide the concentrated charge density a at the point P 

onto Fn and Fn+i as illustrated in Figure 2.4(b). The resultant charges at 

Fn and Fn+1 are (1-a)Q and au, respectively as shown in Figure 2.4(c). The 

electrostatic field EX produced by the particle is represented by a step 

function with a jump of amount of a/so as shown in Figure 2.5(a). Due to 

the symmetry characteristics, EX = 0 at the particle location P. However, 

in the computer simulation, the electric fields at half-integer grid points 

are calculated from the charge distribution at full-integer grid points. 

Thus as illustrated in Figure 2.5(b), the electric field at the half-

integer points are 

1 a 
Ex(Hn -1) 

2o 

                           1 0                                                                (2.6) 
                      EX(Hn) = — — ( 1 - 2a) 

2 so 

These values are, in turn, used to compute the effective electric field
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acting on the superparticle at P using Eq.(2.5).  Then, unfortunately, the 

result is given by 

              1 Q 
                 Ex(P) = EINT(P) = a( - - a ) -(2.7) 

2o 

which is not zero except for special cases of a = 0 or 1/2 as illustrated 

by Figure 2.5(c). This non-zero electric field acts on the particle and 

accelerates it nonphysically. Therefore, we cannot simply estimate the 

effective electric fields by Eq.(2.5) if we use the Ex values at half-

integer points. However, as shown in Figure 2.5(d), the correct value can 

be computed by the same linear interpolation scheme if we use the electric 

field values at Fn and Fn+1' i.e., at two adjacent full-integer points. 

The values of Ex at these full-integer points are given by (see 

Figure 2.5(b)) 

1 0 
                         E(F)=---a               xn 

2 Eo 

                                                               (2.8) 
1 

Ex(Fn+i) _ - —( 1 - a ) 
2 so 

which yields 

x(P) = EINT(P) = 0(2.9) 

Therefore, to avoid the self-force, we need to relocate the values of Ex 

onto the same grid points where the charge is defined. In the same way, 

the magnetic field should be relocated onto the grid points where the 

current is defined. Details of the grid assignment of various physical 

quantities are described in Section 2.3.3. 

2.3 Full Electromagnetic Code 

2.3.1 General Features of FEM Code (KEMPO) 

    We have developed a two-and-half dimensional electromagnetic 

simulation code which solves Maxwell's equations and equations of motion of 

electrons and, if necessary, ions explicitly. We assume (x, Y, z)-

coordinates neglecting variation along the z axis, i.e., a/az = 0. Three



COMPUTER SIMULATIONS17 

velocity components vx.v
y,vzand all three components of electromagnetic 

fields E and B are retained. Since no approximation is made to the basic 

equations except for 8/8z  = 0. the code is applicable to a wide rage of 

two-dimensional problems in plasma physics. The algorithm for integration 

of the field and particles is designed basically after Langdon and Lasinski 

[1976]. The fields are integrated using Maxwell's equations in a central 

difference form in space and time. Particles are integrated by the 

Buneman-Boris method [Buneman, 1967. Boris, 1970] which is accurate to the 

second order and time-reversible. The current density J and the charge 

density p are calculated using PIC (particle in cell) method which 

distributes the current and charge of a superparticle to the adjacent four 

grid points with the area weighting. The electric and magnetic fields 

acting on the superparticle are interpolated to the particle position from 

the adjacent four grid points with the same area weighting. 

    In the following sections we describe several techniques making the 

simulation code more efficient and accurate. Especially, a Multiple-Time-

Step (MTS) scheme we developed makes the code as efficient as the 

magnetostatic simulation code (with the Darwin approximation), and makes it 

more applicable to low frequency problems such as in the lower hybrid 

resonance region and of ion wave modes. 

2.3.2 Multiple Time Step Scheme 

    The time step which satisfies the CFL condition is often too small for 

the wave modes of interest. Usually the wave frequencies of interest are 

of the order of the plasma frequency or the cyclotron frequency, while the 

maximum frequency in the system is n/At, and is much higher than these wave 

frequencies of interest. Since most of the CPU time is used to solve the 

particle motion rather than the field integration, it is desired to take a 

larger time step for the particle calculations. Langdon and Lasinski 

[1976] proposed an algorithm in which the fields are integrated twice as 

often as the particles. However, they discovered that the algorithm can 

lead to a numerical instability. We developed a new algorithm where the 

particles are advanced less often than the field without leading to the 

numerical instability. A filtering of the field quantities in time is 

performed to avoid the numerical instability. 

    The high frequency parts of the fast extraordinary (FE) and ordinary 

(0) modes, i.e., the light modes, receive little contribution from the 

particle motion which is expressed as the conduction current density J in
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 Maxwell's  equations . This is justified by taking the ratio of the 

 conduction current J and the displacement current a
08E/2t as (see Appendix 

B) 

J--------- 

< ( _a )2 ( 1 + vthB0 )(2.10) 
eo8E/2t (0V

PBw 

where with is the thermal velocity of the particles, and V is the phase 

velocity of the wave. B
w is a wave amplitude and Bo is a static magnetic 

filed. If w >> w and with/V
pG Bw/Bo,the conduction current is negligibly 

small. 

     As the particle motion has little effects on the high frequency waves, 

we may eliminate the high frequency components of the current J, and treat 

the high frequency waves as the light mode in vacua . Then velocities and 

positions of particles may not necessarily be updated at as often as for 

the wave integration. We adopt two different time steps for the field 

integration and particle integration, respectively. The time step for the 

field is called "field-time-step" and the time step for the particles is 

called "particle-time-step". We define the field-time-step as At and take 

the particle-time-step as an integer multiple of the filed-time-step , i.e.. 

mAt. We call the algorithm using the particle-time-step of mAt as 
"Multiple Time Step (MTS) 

scheme" hereafter. 

    In order to eliminate the high frequency component of the current 

density J it is necessary to perform a time-filtering of the 

electromagnetic force acting on the particles. If the particles are not 

affected by the high frequency electromagnetic force , the conduction 

current density J, which is the summation of the particle motion , does not 
have high frequency components, yielding a consistent simulation . Since 

the current density J is calculated at each particle-time-step . the 

current density at each field-time-step is extrapolated and/or interpolated 

from the values available at the two nearest particle-time-steps . 

    In Figure 2.6 the algorithm of the MTS scheme is depicted as a time 

step chart. The time step charts are depicted for the case of m = [even 

number] in Figure 2.6(a) and for the case of m = [odd number] in 

Figure 2.6(b), respectively. E and B are the electric and magnetic 

fields for particle pushing, which are the sums of the fields E and B at 

the m time steps indicated by the dashed rectangle in Figure 2.6. This 

operation automatically gives the averages of the field E and B over the 

period of mAt, and has an effect of the time filtering, which suppresses
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the high frequency components of the fields. These operations are depicted 

in the flow chart of the KEMPO as illustrated in Figure 2.7. Using these 

E and B., we advance the velocities of particles over the P 

part-step mAt. The fields E and B are re-integrated from these Ep 

and B over the period (m-1)At/2 using the field-time-step At recursively.
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 The current density J for the re-integration is interpolated in time from 

 the values at the adjacent particle-time-steps. Then the fields E and B 

 are integrated further over the period of  mat in order to obtain new Ep and 

 Bp,where the current density J is extrapolated from the values at the 

previous two particle-time-steps. 

    The MTS scheme has an effect of digital filtering of the 

electromagnetic fields in time sequence. The digital filtering is an m-

point filtering with equal weightings, which is defined by the following 

 equation. 

                           1(m-1)/2 
            f(T.) =—E0(Tj+k)(2.11) m k=-(m-1)/2 

High frequency waves are attenuated at every particle-time-step. The 

attenuation factor A of the wave of a frequency to is obtained by assuming 

                     1 N 
0(w) = — Z 4(T.) e1wTj(2.12) 

                           N j=1 

where N is a number of time steps. From (2.11) and (2.12), we have 

1 (m-1)/2 -iw(kAt)         ~
f(w)_—ed(w) (2.13)                             m k=-(m-1)/2 

which gives the attenuation factor for m = (even number) as 

~f(w) 2 m/21 
A(wAt) _ = -- C / cos {( k- — )wAt} ] (2 .14) 

(w) m k=12 

and for m = (odd number) as 

~f(w) 1 (m-1)/2 
         A(wAt) = = — { 1+ 2 cos (wkAt) }(2.15) 

(w) mk=1 

                                                                                                                                                                              • The attenuation factor A is plotted as a function of wAt for m = 2 to 8 in 

Figure 2.8. Since the maximum frequency of the system is n/At, A is 

calculated in the range of 0 < wAt < m. As noted from the curves, high 

frequency modes undergo phase-reversal in the MTS scheme, but they also get 

damped and disappear from the system. 

    Electrons undergo oscillation with the plasma frequency w
p in the 

direction of the static magnetic field. Since the plasma oscillation is a 

simple harmonic oscillation, the stability criterion for the leapfrog 

harmonic oscillator {Hockney and Eastwood, 1981] must be so as to give
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Fig. 2.8 Attenuation factor A(wAt) of the MTS scheme for different 
           multiple time steps. The numbers attached to the curves 

           indicate the MTS factor m.

 wpmAt < 2 .(2.16) 

In the transverse plane electrons follow the cyclotron motion with a 

cyclotron frequency wc. The Buneman-Boris method for the particle 

integration is unconditionally stable for the cyclotron motion. However. 

if the frequency of the waves of interest are less than or nearly equal to 

wp or wc, the following condition is generally satisfied in order to obtain 

a reasonable resolution and accuracy. 

             Max(wp,we)•mAtG0.2(2.17) 

We define an attenuation rate rA by log A(w) / (mot). In Figure 2.9 the 

ratio of the attenuation rate and a wave frequency rA/w is plotted as a 

function of wAt for m=1-8. The MTS factor m and field-time-step At must be 

chosen so that rA is much less than physical growth/damping rate of 

electromagnetic waves in the simulation model.
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2.3.3 Grid Location for Integration of the Field 

    For the two dimensional system Maxwell's equations 

following two independent sets of equations.

are reduced to the

(A)

813z 

at

aFy 

Ox

aF< 

ay
(2.18)

aF 
   = c2 [ 

at

8BZ 
 -A

QJx] ay (2.19)

= c2 [ - 
at

aBz 
   - A

oJy ax (2.20)
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(B)

 a  Bx 

at

aEz 

ay

(2.21)

as 

at

aF 

 8x

(2.22)

                aE                        as ask 
z = c2 [ Y - - u

oJzl(2.23)          ata
x 8y 

    These equations (A) and (B) are solved as central difference equations 

in space and time by defining the E, B and J at the location shown in 

Figure 2.10-(a) and -(b) [Langdon and Lasinski, 1976]. For further 

reference we call the grid with label "i" a full grid (F) in x and the grid 

with label "i+1/2" a half grid (H) in x. Likewise, we call the grid with a 

label "j" a full grid (F) in y and the grid with label "j+1/2" a half grid 

(H) in y. Combining x and y locations, we express the locations of the 

grid points with (i,j), (i+1/2,j), (i,j+1/2) and (i+1/2,j+1/2) by FF, HF, 

FH and HH. 

    The grid locations shown in Figure 2.10 are summarized as follows.

Ex Bx Jx HF 

           Ey By JY FH 

Ez Bz Jz HH 

    The current densities Jx, Jy and Jz are defined at different 

locations. To assign contributions of particles to the grid points, we 

have to calculate three different area-weightings. In order to reduce the 

CPU time in calculating area-weightings, we first calculate all Jx,JYand 

Jz at HH grid points, and then relocate Jx and JY to HF and FH grid points 

by the following operations, respectively. 

Jx i+1/2
, j2( Jx i+1/2, j-1/2 + Jx i+1/2,j+1/2)(2.24)

where 

has the 

reduces

1 
  J.  i

,j+1/22(JY i-1/2, j+1/2 + Jy 

the quantities with ° are relocated ones. 

effect of spatial filtering (see Section 

 electromagnetic radiation loss at small

i+1/2,j+1/2

 The relocation 

 2.3.4). This 

wavelengths. As

(2.25)

Procedure 

filtering 

Jz is not
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relocated, it is necessary to apply the three point filtering to bothh in 

x and in y directions. It is noted that filtering of Jx in x-direction and 

Jyin y-direction is not necessary at all, because fluctuations of Jx in x 

direction and Jyin y direction are not responsible to the electromagnetic 

radiations. In addition, the current density 3 and must satisfy
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                       ag 
 div (3 + E - ) = 0(2.26) ° at 

Since the electrostatic components E
x and E are calculated from the 

 charge distribution via Poisson's equation, the relocation of Jx in x and 

Jy in y only increases the inconsistency of Jx and Jy with Ex and Ey, 

respectively. 

    The electric fields Ex and E obtained by integrating Eqs. (2.19) and 

 (2.20) are corrected by solving Poisson's equation using the charge density 

defined at FF grid points. If we calculate an electric force acting on 

particles from the electric field Ex and E defined at HF and FH grid 

points, it results in an electrostatic self-force acting on the particle, 

violating the momentum conservation as discussed in Section 2.1. The area 

weighting in the calculation of the charge density and that in the 

calculation of the force acting on particles must be identical and must be 

done using the quantities defined at the same grid locations. Since the 

charge density is defined at FF grid points, the electric field Ex and E
y 

obtained at FH and HF grid points must be relocated to the FF grid points 

before calculating the particle force. The above discussion of the 

electrostatic self-force is also applied to the magnetostatic force induce 

by Ampere's low rot B = uoJ, which is rewritten as 

aB 
         z - P J

x(2.27) ay 

                      8Bz 
         p Jy(2.28) 

ax 

aB aB 
__y - x = u

QJz(2.29) ax ay 

As the Bz is defined at HH grid points where J
x and Jy are also calculated 

by the area weighting scheme. The relations of Eqs. (2.28) and (2 .29) do 

not produce the self-force. However, B
x and B are defined at HF and FH 

grid points, while Jz is defined at HH grid points. In the calculation of 

the magnetic force acting on particles, B
x and By must be relocated to HH 

grid points. 

    Let us summarize the relocation pfocedure for elimination of the self-

force.
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 Ex HF FF 

 Ey FH 4 FF 

              Bx• HF 4 HH 

By FH -, HH 

EZ and BZ are not relocated. 

    Owing to the relocation procedure, computing time for calculating the 

particle forces is reduced because the area weighting for FH and HF grid 

points are not computed any more. In calculation of electromagnetic forces 

acting on particles, Ex and Ey are interpolated from FF grid points, while 

EZ, B. By and BZ are interpolated from HH grid points. 

2.3.4 Digital Filtering 

    Spatial filterings of the quantities defined at grid points are 

generally used in order to eliminate nonphysical noises at short 

wavelengths, where the finite difference of the fields becomes most 

inaccurate. Two kinds of digital filtering schemes are used in the KEMPO. 

One is a filtering of two-point averaging as defined by 

1 
              4'1+1/2 =(id'i+1 )(2.30) 

which is implicitly involved in the relocation procedure of the field 

quantities. The other is three-point digital filter or a binomial digital 

filter [Birdsall and Langdon, 1984] given as 

1 
                 (1)i

.=—(4)i-1+24)i+4i+1 )(2.31) 

which is explicitly used in the code. The attenuation factor of these two 

filters are given by the following equations. 

   Two-point digital filter : 

                           kAx 
0'(k) = cos — 0(k)(2.32) 

                          2 

   Three-point digital filter : 

                           kAx 
0-(k) = cos ( — )2 0(k)(2.33) 

                           2
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    These filters are used in the following two manners. Firstly they are 

applied to the particle-pushing fields E and B in order to eliminate              P P 

nonphysical random forces which causes stochastic  heatings of particles. 

Since the relocation procedures implicitly involving the two-point filter 

are different for the components (Ex, E. etc.) and for the directions (x 

and y), it is necessary to apply the three-point filter to the components 

and directions which are not affected by the relocation procedure. 

Secondly these filters are applied to the current density calculated from 

the particles. The current density is the source of electromagnetic 

radiations. Fluctuations at short wavelengths correspond to high frequency 

electromagnetic waves which undergo a damping by the time filtering of MTS 

scheme as time goes on. Due to the electromagnetic radiations which are to 

be damped by both spatial and time filtering, particles lose their thermal 

energy. In order to prevent the energy loss, it is necessary to eliminate 

fluctuations at short wavelength by the digital filters. 

2.3.5 Unit System used in the FEM Code 

    It is noted that there is no necessity to stick to a real unit system 

like CGS or MKS unit system in simulations. What is important in 

simulations are ratios of quantities in the system, i.e., a ratio of a wave 

magnetic field to the static magnetic field, or a ratio of a kinetic energy 

to the total energy, etc.. In most of simulations physical quantities are 

normalized to the basic parameters in the system where the basic parameters 

are assumed to be unity. However, selections of basic parameters are 

different depending on physical models. In order to make the simulation 

code applicable to various problems of a wide range of parameters, we do 

not normalize any quantities, or rather we adopt a relative unit system 

where all parameters are calculated from a set of independent basic 

parameters via basic equations. These basic parameters are as follows. 

    1. Angular frequency (plasma, cyclotron, wave frequency etc.) 

                       wpi'mci'w 

    2. System length Lx, Ly 

    3. Charge-to-mass ratio (q/m)i 

    4. Number of superparticles in the system Ni 

where the subscript "i" denotes the i-th species of particles. Note that 

the cyclotron frequency is specified only for species 1. Values of these 

four quantities are given arbitrarily, except that ratios of quantities in
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the same units like w
pi/wci' Ly/Lx or (q/m)2/(q/m)1, are kept the same as 

those of the real physical quantities. Especially, it is noted that 

numbers of superparticles have no relation to the real number densities in 

the plasma, and N1 and N,, are independent of each other. 

    The basic equations are written in the following form which is 

identical to those in the MKS unit system. 

 (1) Equations of motion 

dr 
— - v(2 .34) 

                  dt 

                         y 

                    dv ql 
           —_( E+vxB )(2 .35) 

                    dt ml 

 (2) Maxwell's equations 

                             1 aE 
rot B - ft J + —(2.36) 

c at 

                          aB 
         rot E^= - —(2.37) 
                          at 

        div B^ = 0(2.38) 

-~ p 
div E = —(2.39) 

0 

where c, Eo and go are the light speed, electric permittivity and magnetic 

permeability, respectively. 

    It is noted that co and uo may be chosen arbitrarily except that EoAo 

= 1/c2. For simplicity, we define c
o = 1 and uo = 1/c2, and the units of 

charge, mass, electric and magnetic fields are given based on their 

definition. 

    Other physical quantities are calculated via the following relations 

obtained from the basic equations. The cyclotron frequency of species 1 

and the plasma frequencies of species i are given as 

                                                    2 

             wcl _q1Bowpl =(nigi)1/2(2.40) 
M1m1E
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where niis a particle density of species i defined as adensityin the two 

dimensional system of Lxx L.i.e., 

 -Particle density 

N. 
ni =(2.41) 

                            LxLy 

From (2.40) and (2.41) we can calculat the following physical quantities. 

 -Charge of a particle 

                                                                       z .               s
°LxLYWPI(2 .42)                             gi - 

                                        N.1 

 -Mass of a particle 

                                          2 

              . =s°LxLywpi(2.43) 1 N
i(q/m)i 

 -Static magnetic field 

                 Bwcl         ° =(2.44) 
                           (q/m)1 

It is noted that the mass mi and charge q.1 little physical 

meaning in the relative unit system. What are physically meaningful are 

the mass density miniand charge density q.nigiven as 

    22 

          q.n.=°~pim.n. =° pi(2.45) 
(q/m)i  (q/m)i 

The values of wpiand (q/m)iof different species must be given based on 

the ratios in the physical model. 

2.3.6 Rescaling of Physical Quantities 

    In order to attain computational efficiency, it is necessary to reduce 

the number of operations involved in difference equations of fields and 

particles. Since the operations of multiplication and division by Ar, At/2 

and (q/m)i are frequently used in the difference equations, we rescale the 

distance, time and charge-to-mass-ratio expressed in the relative unit by 

Ar, At/2 and (q/m)1, respectively. Other physical quantities are rescaled
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as follows.

distance 

time 

velocity 

number density 

charge 

mass 

Electric field 

Magnetic field 

Current density 

Electric potential 

Charge density 

 Energy density

Note :

r * 

t* 

v  * 

n * 
* 

q 

m * 

E* 

B* 

J* 

0* 

 * p 
 * 

0

quantities

- (1/Ar) r 

= (2/At) t 

_ (At/2)(1/Ar) v 

_ (Ar)2 n 

= (q/m)1(At/2)2(1/Ar)2 q 

= (q/m)2(At/2)2(1/Ar)2 m 

_ (q/m)1(At/2)2(1/Ar) E 

= (q/m)1(At/2) B 

= (q/m)1(At/2)3(1/Ar) J 

= (q/m)1(At/2)2(1/Ar)2 0 

_ (q/m)1(At/2)2 p 

- (q/m)1(At/2)4(1/Ar)2 0 

with * are rescaled ones.

as 

p

  The difference 

in the following 

and o are omitted

 equations of particle 

simple forms. The *'s 

hereafter. 

v =vn-1/2+En

motion 

on r, t

of 

v.

species 

n, q,

1 

m,

are 

E,

written 

B. J, $,

(2.46)

v' =v -+v xBn (2.47)

v = v +

2

1 + (Bn)2
v' x Bn (2.48)

vn+l/2 = v+ + En (2.49)

rn+1/2= rn + v
n+1/2

(2.50)

For the i-th species 

(q/m)i/(q/m)1. 

    The difference

B

 rn+1= rn+1/2 + 

of particles (i #

v 

1)

equations for fields 

n = Bn-1/2 - v* x En

n+1/2

E and B

are

must

written as

           (2. 

be multiplied

51) 

by

(2.52)
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          Bn+1/2= Bn- V*xEn(2.53) 

 En+1  = En + 2c2 V* x Bn+1/2+ 2Jn+1/2(2.54) 

where the operation v* xAi
,j( A = E or B ) are realized by the following 

simple operations. 

                                                            (2.55)               * ( Vx Ai
,j)x- Azi,j+1Az i,j 

 *(2 .56)         (Vx Ai
,j)y- Az i,j- Az i+1,j 

        ( V* x Ai
,j)z=Ay i+1,j-AYi,J-AX i,j+1+ Ax i,j (2.57) 

    The rescaling is performed after all the input parameters are given to 

the simulation code, and all the output data are reconverted again to the 

values in the relative unit system. Since all input and output data are 

expressed in the relative unit system, users of the code do not have to be 

familiar with the rescaling inside the code. 

2.4 Long Time Scale Code 

    A reduction of CPU time is attainable in particle simulations by 

limiting the allowed wave modes in the simulation to a monochromatic wave 

with the assumption of slow variations in amplitude and frequency. This 

code is called the Long-Time-Scale (LTS) code [Rathmann et al.. 1978, Omura 

and Matsumoto. 19811. Instead of solving the Maxwell equations and 

equations of motion of all particles as is usually done in the conventional 

electromagnetic codes, only the wave amplitude, frequency and wavenumber of 

a monochromatic wave is incremented forwards in time with a self-

consistent updating of charge and current density calculated from numerical 

solutions to the equation of motion obtained solely for resonant particles 

in the monochromatic wave. 

    Basic equations for the monochromatic whistler mode wave and resonant 

electrons are described in Subsections 2.4.1 and 2.4.2, respectively [Omura 

and Matsumoto, 1981]. These equations are coded into difference equations 

in Subsections 2.4.3 and 2.4.4. The flow chart of the LTS whistler 

simulation is given in Subsection 2.4.5.
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2.4.1 Equations of  Wave Fields 
    We assume a purely transverse whistler mode wave which propagates 

along the geomagnetic field line and interacts with counter-streaming high 

energy resonant electrons existing in the magnetosphere. We use a right-

handed coordinate system; z being a distance along the field line from the 

equatorial plane, and x and y axes being perpendicular to the external 

magnetic field. For convenience the wave fields are expressed in complex 

variables with dot marks on their top. The x and y components are 

represented by real and imaginary parts of the complex quantities, 

respectively. 

Bw= Bwx+ iBwyEw=Ewx+ iEwy(2.58) 

Neglecting the term for the displacement current in Maxwell's equation, and 

dividing a conduction current into a cold plasma current Ac and an 

energetic resonant electron current JR' we have Maxwell's equations in the 

form 

   aE 8BaB 
i w= - Wi w= uo(Jc+ AR)(2.59) 
   az ataz 

The linearized momentum equation of the cold electrons is 

aJc 
- it2

ec= 6on4(2.60) at 

where ile is the electron cyclotron frequency. Eliminating Jc and Eui from 

(2.59) and (2.60), we have 

  a a a n2 aa a 
[—(—-iO)—-e—] B= - iu(—- if~ )—`0(2.61) 

az at e az c2 atw 

where lie is the electron plasma frequency. We have assumed that the 

inhomogeneity of the medium is sufficiently small within a distance of the 

wave length, i.e.. 

aftant          
I e I << Ik(io - 0)I I , IeI << Ik1121.(2.62) 

az        eaze 

The quantities Bw and are expressed in terms of the amplitude Bw, JR and 

phase 0 and 0 + OR as
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            13w= Bwexp {DP)  ,)R=JRexP{i(D+14) } (2.63) 

where AYR is a relative phase angle between JR and B. and is assumed to be 

a slowly varying function with respect to time and space. 

    The frequency w and wavenumber k for the right-handed polarized wave 

are defined by 

any80 
        w _ —k = - —(2.64) 
at,8z 

We assume here that the terms involving the first-order time and space 

derivatives of k, JR and MFR as well as the second-order derivatives of Bw 

are negligible. Substitution of (2.63) into (2.61) yields 

 zaFie 

    ( k2 +Be)aBwR+ 2k (0e w )- i (k2 ( 0 - w ) -e w } Bw 
   c2 ataaz ac2

= Il
o k ( S1e - w ) ( JR s i n VR 

Separating imaginary and real parts 

                112e' 81              1, 
 +)w + 2k(0e -

                c2 a t

- iJ
Rcos VR ) 

in (2.65), we have 

w)—=-uok(L)e-w)JE 
az

(2.65)

(2.66)

B2 

               {k2 (e - w) -  w} Etv = uo (0e - w)JB(2.67) 

                              c where 

JE = JRsin(-0R)JB = JRcos(-0R) , (2.68) 

and JE and JB are the components of the transverse resonant current JR 

parallel to the wave electric field Ew, and to the wave magnetic field B. 

respectively (see Figure 2.11). These JE and JB are calculated by the 

following equations 

JE -e E vlisin(-Ci) JB- -e vlicos(-Ci) (2.69) 
  ii 

where vii is a velocity component perpendicular to the external magnetic 

field and C. is a phase angle between v11 and Bw and Z is taken over 

resonant electrons in a unit cell. Since the group velocity is expressed 

by
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Ew  k
 Bo

Fig. 2.11 Configuration of the wave 
fields, wavenumber vector 
and resonant current (JR)

magnetic (Bw) and electric (Ew) 

(k), external magnetic field (Bw), 
and its component JB and JE.

Vg =

2k(fle-w)

k2 + (B2/c2)
(2.70)

we have from (2.66)

aBaB 1 
w=- V ( + — uJ) 

at g az 2oE
(2.71)

The second order differentiation of the wave Phase 0 gives a relation of k

and w as

ak 

at

aw 

az

(2.72)

Using (2.71) and (2.72), we can follow the time evolution of Bw and k, 

while the frequency w is calculable from (2.67) which is rewritten as

W =

k(k - uoJB/B )

k(k - u
oJB/Bw) + 112/c2

~e (2.73)

As is seen in (2. 

Bw, and JB modifies

71) and (2.73), JE 

the frequency w.

causes a change of the wave amplitude
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  2.4.2 Equations of Motion 

      We have derived the wave equations showing how the wave is modified by 

  the presence of the resonant current J
R, which is formed as a result of 

  cyclotron resonance between hot electrons and the wave . The equations of 

  motion of resonant electrons are expressed in the following form . We 
  introduce polar coordinates (v

ii, vi, 0) for the velocity, where vii and vi 
  are the velocity components parallel and perpendicular to the external 

 geomagnetic field respectively, and is the Larmor phase angle of v
i in  th

e rest frame. Equations of motion are then expressed as [e .g. Dysthe, 
 1971] 

dvV2 ap
e                = 0 vsin(4 - 0) -(2

.74) 
       dt20

e az 

       dv wv
iiv~ape 

             dt= 0w(k- vii) sin(0 -gyp) +(2.75) 20
e az 

d0 p w 
(- - vii) cos(0 - 0) + p

e(2.76)              dt v
l k 

                             dz 

                 —  

            dt= v°(2.77) 

where the wave amplitude B
w is replaced by pw= eBw/m. The first terms in 

the right-hand sides of (2 .74) - (2.76) correspond to the effect of the 

wave, while the second terms express the effect of th
e external geomagnetic 

field. The effect of the inhomogeneity of th
e medium is expressed by the 

second terms in (2.74) and (2 .75). which disappear in a homogeneous case . 

2.4.3 Particle Pushing Algorithm 

    The equations for the wave field (2
.71) and (2.73) show that the 

resonant currents J
E and JB control the evolution of the monochromatic 

whistler wave. The resonant currents are c
alculated by solving the 

equations (2.74) - (2 .77) of motion for a large number of hot el
ectrons. A

n algorithm used in the "long-time-scale (LTS)" c
ode for a whistler 

simulation first proposed by Rathmann et al
. [1978] is adopted for particle 

Pushing in the present simulation . The increments of the quantities v
11, v

1,4and z over a time step St are separated into increments due to the
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wave and increments due to the cyclotron motion in the external magnetic 

field. The particle pushing algorithm takes the form of 

f(tn+1) = f(tn) + bf
w + bfc ,(2.78) 

where to+1 -tn + bt, and f is a quantity such as vi
i, v1,1 and z. bfw and 

bfc are increments due to the wave and due to the cyclotron motion, 

respectively, and they are obtained by integrating (2.74) — (2.77) over the 

time interval from tn to to+1 under the conditions that 

Ibv11I<< viil,lbvll<<vl, Ibki«k, Ibilel«I(eI, Ibwl«w, and IaQl«C . The 
increments due to the wave are expressed in terms of the quantities at t = 

tn as 

                 bvii
w=flwvl bcosC(2.79) 

fl w 
               by^ - ( - -H) bcosC(2.80) 

                         C' k 

             0 w 
OW =  ( — -H) bsinC(2.81) w

vC' kii

bzW = ilwvl ( ('bt cosC - bsinC )(2.82) 
                           C,2 

where 

      bcosC = cos(C + C'bt) - cosC , bsinC = sin(C + C'bt) - sinC (2.83) 

and C is a relative phase angle between vi and Bw, i.e., m -0. C' denotes 

a time derivative of C obtained from (2.76), i.e., 

            0 w 
C'  ( — - vii) cosC + 0e - w + kv11(2.84) 

                 v1k 

When C' = 0, (2.79) — (2.82) are not appropriate because the right hand 

sides of these equations show overflows in the calculation process. In 

this case the first terms of (2.81), (2.82) and (2.83) are directly 

integrated assuming C is almost constant, and we have 

bviiw = bt W sinC(2.85)
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(1) 

bvlw = bt 0w ( — - Vii ) 
          k

sinC (2.86)

    at 
641 =— 

      v
1

a W 

(

W 

k - VII)
cos C (2.87)

The increments due to the

1 
   6z

w = - - 6v11wat 2 

cyclotron motion are 

v2 0e(z+ vllat) -

expressed as 

0e(z)

(2.88)

bvu
c= - 

2v11 C2e(z)

(2.89)

      Vl 
bvIC 

2

tle(z + v0at) - 0
e(z)

0e(z)

(2.90) 

bt 
6(0c = — { 0e

. (z) + 0e (z + vll bt) } 2
(2.91)

In the simulation. t2 .

points, and 

interpolated 

manner as

w 
to obtain 

from values

F(z) _

bzc = at ( VII + bVllc } 
            2 

v1, k and 4) are calculated at 

these quantities at particle 

on the neighboring grid points Z

F(Zm) +
F(Zm+l  - F(Z

m)
(z - Zm)

(2.92)

 the spatial 

position z, 

m and Zm+1 in

    AZ 

such as, 0w, w 

  Integration

grid 

 we 

the

where F corresponds 

spacing defined by 

gives the phase of

1V(z) =

to 

AZ 

the

W(Zm) -

quantities 

= Z
m+1 -Zm 

wave,

k(Z
k(Zm)(z - Zm) - ------------ 

                2AZ 

presented in Section 3.3 

geomagnetic field which 

the following equations.

m+1

or k, 

of k(z)

 - k(Z 
1n)

and AZ is 

expressed

(z-Zm)2

we take into 

approximated

(2.93)

the 

by (2

grid 

.93)

    In the simulations 

inhomogeneity of the 

magnetic field given by

is

(2.94)

account the 

by a dipole
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Bo - Bos(E)3 

R RE

^ 1 + 3sin2$

L cos 2 $

z1 
— =  ( x + sinhx coshx l 

R 2^3

(2.95)

(2.96)

(2.97)

             x = 4 sin0(2.98) 

where 0 and R are a geomagnetic latitude and a distance to the point of 

interest from earth's center. The quantities Bo and Bosare magnetic 

fields at (R. $) and at the earth's surface. respectively. RE and L are 
the radius of the earth (6370km) and geocentric distance at the equatorial 

plane normalized to RE. The quantity z is a distance measured along the 

geomagnetic field line from the equatorial plane to the point of interest. 

Let BoEQ denote the magnetic field at R = LRE in the equatorial plane, then 

we have from (2.95) 

BoEQ = L-3Bos(2.99) 

Substituting (2.96), (2.97) and (2.98) into (2.95), we express Bo in terms 

of BoEQ and z as, 

                                 TT-T-72- 
                    Bo BoEQooEQ

( 1 - x2/3 )3 

where x is given as a solution to the following equation. 

2./3 z 
               F(x, z) = x + sinhx coshx - ------- = 0(2.101) 

                                   LRE 

From (2.100) and (2.101) we can calculate the external magnetic field at 

each grid point.

2.4.4 Field Updating Algorithm 

    In the previous section the algorithm for updating physical quantities 

associated with each particle was discussed. This section presents the 

method to update the quantities which are assigned to the spatial grid 

no'rfs. These quantities are the wave amplitude Bw and its time derivative
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 aBw/at, the wavenumber k and its time derivative 8k/8t, the wave frequent) 

co and the wave phase 0 in the rest frame. and the resonant current JE and 

JB. 

     The wave amplitude and the wavenumber are advanced over the time step 

St using their time derivatives at t = t
n. i.e., 

aB 
Bwm(tn+i) = Bwm(tn) + (w)

m(tn) at(2.102) at 

ak 
km(tn+1) - k(tn) + (—)

1(tn) at(2.103) at 

 where the subscript m denotes a value at a grid point Z
m. The wave phase 

 is first advanced at the boundary grid Z
1 and extended successively to the 

 next grid by integrating k over the grid spacing as 

V1 (tn+1) = T1 (t
n) + w(tn) at(2.104) 

1 

m+1 (tn+1) - m(tn+i) - 2(I (tn+1) +kn+1 (tn+1) ) AZ (2.105) 

After the quantities zi,v.and c
lof each resonant particle and the 

wave phase 0 are updated. the resonant current J
E, and JB can be cal

culated. An electron in the particle simulation is not a "real 

electron", but it is a superparticle which represents a number of electr
ons 

in the real plasma. Therefore, we assign a density n
s to each superparticle (w

e may regard it a super-electron with a charge -n
se). and each super-particle forms resonant currents j

Ei and jBi 

jEi = - nse sin(-C1)jBi=- n
se cos(-(1) (2.106) 

where i denotes a quantity of each particle; and C 
1 = ml -gyp (zl) and 0(z1) is calculated by (2.94). These j

Ei and jBi are assigned to the neighboring 
grid points Z

m and Zm+1 (Zm < zi < Zm+1) with the first order particle 
weighting, or particle-in-cell (PIC) model [e

.g. Birdsall and Langdon. 
1984]. Resonant currents assigned to grid Z

m and Zm+1 are thus obtained by 

   J_Zm+ 1-ziZ. - Zm      Em
.i jEi~ZJE(m+1) .ijEi(2.107) AZ 

and JB
m,i and JB(m+l),i are given in the same manner as above. Summing the 

currents JE
mi and JBmi over all particles between Zm-1 and Zm+1 gives the 

resonant currents J
Em and JBm at a grid point Z,.
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    When the resonant currents are  obtained, the wave frequency w and the 

time derivatives 8Bw/8t and 8k/at are calculated through (2.71). (2.72) and 

(2.73) as follows. 

                       km(  k- uJ/B) 
wm = moBmwm(2.108) 

km( km - uoJBm/Bwm ) + Item/c2 

(aBw) =2km(hem - wm )( Bwm-Bw(m-1) +1 0JEm) (2.109) 
at m k2+Bem/c2AZ2 

()ak_wm+1m-1(2.110) 
             atm2AZ 

As (2.109) and (2.110) contain the terms of spatial finite differentiation, 

the boundary conditions must be chosen carefully. In the present 

simulation we assume the wave propagating from the left boundary Z1 to the 

right boundary ZM. The wave field at ZM is reasonably extrapolated from 

the field at ZM_land ZM_2as 

BwM = 2Bw(M -1) - Bw(M-2)(2.111) 

and wM and km are also extrapolated in the same manner. At the left 

boundary Z1, however, extrapolation from Z2 and Z3 is not applicable. 

because the wave propagates from Z1 to Z2 and Z3. In the simulation where 

the wave is externally injected from the boundary, the wave field at Z1 is 

given arbitrarily. In the simulation where a self-evolution of a uniform 

and periodic wave-particle interaction is followed, the field at ZI is set 

equal to the field at Z2. 

JBm/Bwm in (2.108) causes a non-physical fluctuation of w, when the 

wave amplitude Bw becomes very small, because the resonant current JBm 

calculated from a limited number of particles necessarily contains some 

numerical fluctuations. This difficulty is relieved by assuming a thermal 

magnetic noise level Bth in the magnetospheric plasma, and setting the term 

JBm/Bwm equal to JBm/Bth when Bwm < Bth. In the simulation presented in 

Section 6.3 we follow evolution of a wave whose amplitude is Bw=10-5 

10-6Bo, and Bth is chosen as 10-6Bo.
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START

Set Initial Values
 Particle : Z , V,1 , V,, , '

Wave : Bw, k , ,i,, aBw/at , ak/at , w

t = tn

It

Advance Particle Motion
Z,V,1,VA, 4'

Advance Wave Field
Byv, k, ~

t= 4141
n= n., 1

Compute Resonant Current
JE ,JR

Compute Time Derivatives

aBw/at , 8k/at , allat (=(4)

E

STOP

Fig.  2.12 Flow chart of LTS whistler simulation.

2.4.5 Flow Chart of Long Time Scale Whistler Simulation 

    Recurrent use of the particle pushing and field updating algorithms 

enables us to follow a self-consistent evolution of the whistler wave-

particle interaction. Motion of cold plasma particles which support the 

wave propagation is not solved, because its effect is implicitly included
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in the wave equation (2.71) and (2.73). Computing time is greatly saved by 

not solving equations of motion for cold electrons. It is noted that there 

is no necessity to choose the time step as 8t•Max(Q
e. IIe) << 1 which is 

usually a necessary condition in the usual particle simulation of plasmas. 

One requirement of the time step is bt•wt << 1, where wt is the trapping 

frequency given by wt = (kvl~2w)1/2. The relative phase angles C's of the 

resonant particles trapped in the wave potential change with a time scale 

of wt-1 and thus the resonant currents controlling the wave evolution vary 

with wt-1. Another requirement is that Vmaxbt AZ. where Vmax is the 

maximum velocity both in the wave group velocity and in the velocities of 

particles in the system. This is the loosest condition that must be 

satisfied in the difference scheme used in the algorithm. 

    The present simulation method is basically the long-time-scale (LTS) 

algorithm first formulated by Rathmann et al. [19787. In their algorithm. 

however, they follow the time evolution of the wave frequency w using the 

equation 

8w am u 8 kJ 
—+V°V —( ) (2.112) 

at g az 2k gat Bw 

which is obtained by differentiating (2.67) with time t under the 

assumption that the cold plasma dispersion relation without the 

contribution of hot resonant electrons is valid. We found this equation 

vulnerable to a numerical instability because of the time differentiation 

of kJB/Bw which picks up numerical fluctuations of JB, where JB is 

calculated from a limited number of particles and correspondingly involves 

statistical errors. Actually, (2.112) is not necessary in the algorithm if 

the phase relation (2.72) is made use of to follow the time evolution of 

the wavenumber k. In our method the frequency w is determined by (2.73) as 

a function of k and JB/Bw after advancing k in time by (2.72). In the 

method of Rathmann et al., however, the wavenumber k is determined by 

(2.67) or (2.73) as a function of u and JB/Bw after advancing in time by 

(2.112). The flow chart of the LTS simulation is shown in Figure 2.12. 

2.5 Hybrid Electromagnetic Code 
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 2.5.1 Hybrid Model and Basic Equations 

     We have developed a one dimensional electromagnetic hybrid simulation 

 code [Sgro and Nielson, 1976; Byers et al.,  1978] where electrons are 

 treated as a massless fluid and ions are treated as particles moving in the 

 four dimensional phase space (x, v
x.vy.va). Since we are studying low 

 frequency phenomena, we neglect the transverse displacement current in 

Maxwell's equations (the Darwin approximation) as 

aB 
              at=- rotE(2.113) 

                                        - uoJ = rot B .(2.114) 

We also the neglect electron inertia effects for low frequency waves, and 

we have from the electron momentum equation 

y -en
e(E + ue x B) - grad pe = 0 (2.115) 

where -e, ne' ue and pe are electron charge, number density, flow velocity 

and pressure. respectively. Furthermore. we assume the quasi-neutrality 

condition 

-en
e + gsns= 0(2.116) 

where qs and ns are the charge and number density of an "s" ion species. 

respectively. The electron pressure is integrated in time by using the 

electron energy equation 

            (at+ue• grad) Pe = -3Pe div ue(2.117) 
The electron flow u

e is obtained from the current equation as 

ue = (Egsnss- J)/nege(2.118) 
where u

s is the drift velocity of a "s"-th ion species. The ion density ns 
and drift velocity u

s are calculated from the motion of ion particles whose 
Positions and velocities are determined by integrating the equations of 

motion 

       dv
-qs--dx ( E+ v x B ). —= v 

                                                                                                                                                         •                                                          

(2.119)     dt 
msdt 

The magnetic field B and the electron pressure p
e are integrated in time 

using (2.113) and (2.117), while the electric field is determined by a
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predictor-corrector method using (2.114), (2.115). (2.116) and (2.118). 

    For simplicity, spatial variations are restricted to one dimension. 

i.e., the x direction, and periodic boundary conditions are assumed. 

    Basic equations  presented. above are written in the forms which are 

identical to those in MKS unit system. However, it is noted that so and uo 

can be chosen arbitrarily except thatsotto1/c2. 

2.5.2 Unit System for One-dimensional Hybrid Code 

    We choose four independent basic parameters in order to define the 

units of physical quantities in the simulation system. The basic 

parameters are the followings. 

    1. Angular frequency : (plasma. cyclotron or wave frequency) 

    2. System length : L 

    3. Charge-to-mass ratio : (q/m)s 

    4. Number of particles in the system : Ns 

For simplicity, we define uo=1 and so = 1/c2in the basic equations. 

Making use of the following relations obtained from the basic equations. 

                    2 

wps=(nsgs ) 1/2wcs=qsBo,(2.120) 
         rossoros 

we obtain other physical quantities as follows. 

 - Particle density 

                           N 
           ns =s(2.121) 
L 

 - Charge of a particle 

                            2 

              q=E°L wps(2.122)                          s 
Ns(q/m)s 

 - Mass of a particle 

                             2 

           m=soL----------wps(2.123)                          s
Ns(q/m)s 

 - Static magnetic field
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- Wave

B=wc1 o  
(q/m)1

(2.124)

number of mode i

ki= 2ni/L (2.125)

2.5.3 Rescaling of Physical Quantities 

    In order to attain a high computational efficiency, we 

physical quantities solved in a simulation by the following 

quantities [Matsumoto and Omura, 1984] 

  grid spacing: Ax 

   half time step: At/2 

      charge-to-mass ratio of the ion species 1 : (q/m)1 

Other physical quantities are rescaled as follows. 

  distancex* = (1/Ax) x 

  timet* = (2/At) t 

   velocityv = (At/2) (1/Ax) v 

   number density n* = Ax n 

  chargeq* = (q/m)1(At/2) q 

  massm* = (q/m)12A x m 

   electric field E* = (q/m)1 (At/2)2 (1/Ax) E 

   magnetic field B* = (q/m)1 (At/2) B 

   current density J* = (q/m)(At/2) Ax J                            1 

   pressureP* = (q/m)12 (At/2)2 p

rescale 

 three

2.5.4 Grid Assignment and Difference Equations 

   We define a full grid point (j) and a half grid point 

to solve the basic equations as difference equations 

physical quantities to these grid points are the following. 

- Full grid point (j) 

        electric field : E 

         ion flow velocity : u1 

        charge density : p

(j+1/2) in order 

. Assignment of
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         electron flow velocity  : ue 

         current density : J 

- Half grid point (j+l/2) 

        magnetic field : B 

    The magnetic field B at a half grid points is relocated to full grid 

points in order to calculate particle pushing fields by the Particle-in-

Cell method. 

                 B=2( Bj-1/2+ Bj+1/2)(2.126) 

The quantities with ' correspond to those relocated by (2.126) hereafter. 

In the calculation of E, B is relocated again in the same manner, as will 

be shown in the following. 

    Based on the grid assignment, we write the basic equations in a 

difference form. First, the magnetic field are advanced by At/2 

Bi+1/2= Bi+At( Ei+1/2 _ Ei+1/2) (2.127) Y,j+1/2Y,j+1/2 2Ax z,j+1 z,j 

Bi+1/2=BiAt(Ei+1/2 _ Ei+1/2 ) (2.128) z
,j+1/2z,j+1/2 2AxY,j+1 Y,j 

Then, relocating the magnetic field to full grid points by (2.126). 

velocities of particles are advanced from t = i to 1+1 by the Buneman-

Boris method [Matsumoto and Omura, 1984] using electric and magnetic fields 

linearly interpolated from the full grid points. The magnetic field is 

advanced again by At/2 

B1+1 = Bi+1/2+At (Ei+1/2 - Ei+1/2) (2.129) y
,j+1/2 y,j+1/2 2Ax z,j+1 z,j 

           Bi+1= Bi+1/2 +At(Ei+1/2 - Ei+1/2 ) (2.130)             z
,j+l/2z,j+1/2 2Ax Y,j+1 Y,j 

   We obtain the electric field E from the magnetic field B and the 

electron flow velocity ue using the electron momentum equation (2.115). 

Ex
,j = uez,jB)7,j - uey,iBz,i - (1/2)(1/R)(1/Ax)(pe,j+1- pe,j-1 ) (2.131) 

          E= uB-uB(2.132)                        y
,jex,jz,jez,jxo
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                                                         (2.133)                        E
z.i =uey.jBxo -uex,jBY.j 

where Bxois the static magnetic field along the x-axis. 

    The electron pressure is obtained by integrating (2.117) in time using 

the Lax-Wendroff scheme which is accurate to the second order. 

      i+1i -Atiii            p
e.j-pi  2Axuex,j(pe,j+1- pi) 

              + 2 (2©x)2uex.j( pi                                  e.j+1- 2Pe.j+ pi                                                           e.j-1) 

r pe .j 2Ax(uex,j+l- ue,j-1)(2.134) 

    It is noted that At/2 and Ax are set to equal 1 after the rescaling 

described in the previous section, and that the number of operations in 

these difference equations are reduced.
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                        CHAPTER 3 

     WHISTLER MODE WAVE-PARTICLE INTERACTIONS AND VLF EMISSIONS 

3.1 Introduction 

    A lightning discharge radiates electromagnetic waves over a wide range 

of frequency extending beyond that of visible light. Such radiation in the 

frequency range. 0.3  — 30 kHz, is the source of "whistlers" that propagate 

through the ionosphere and magnetosphere in the whistler mode [Helliwell, 

1965; Park, 1980]. This propagation mode is possible only in a magnetized 

plasma and at frequency below both the plasma frequency and the electron 

cyclotron frequency. In addition to whistlers, there are other types of 

whistler mode wave called VLF emissions which exhibit more diversified 

tones in the VLF range. Examples of VLF emissions are shown in Figure 

3.1. 

    Of particular interest are artificially triggered VLF emissions 

because of their potential use in the study of coherent nonlinear whistler 

mode wave-particle interactions in the magnetosphere, because these VLF 

emissions are believed to originate from the region close to the equatorial 

plane of the magnetosphere owing to a cyclotron resonance with counter-

streaming high energy electrons. The nonlinear whistler mode wave-

particle interaction is one of the most fundamental and interesting 

phenomena in the magnetosphere. and plays an important role in the 

magnetospheric dynamics. 

    Many numerical simulation studies as well as theoretical ones are 

reported so far (See a review by Matsumoto [1979]). None of the theories 

nor simulations however, has ever given an adequate and complihensive 

explanation of VLF emissions. In the following sections, we will present 

several theoretical and computational studies we have done in an attempt of 

clarifying the mechanism of coherent VLF triggered emissions. In Section 

3.2, we study nonlinear orbits of resonant electrons in a monochromatic 

whistler mode wave by test particle simulations [Matsumoto and Omura, 

1981]. In Section 3.3. we investigate basic processes of self-consistent 

whistler mode wave-particle interactions using the LTS code [Omura and 

Matsumoto, 1982]. We then study frequency variations of whistler emissions 

triggered in a uniform magnetic field [Omura and Matsumoto. 1984] in 

Section 3.4. In Section 3.5. effects of a whistler mode wave on a particle



50

Various

(a)

kHz 

 7.5 

5.0 

2.5 

kHz 

8.0 

5.0 

4.0 

kHz 

7.0 

4.5 

2.0 

kHz 

4.5 

3.5 

2.0 

kHz 

4.5 

3.5 

2.5

s Spectra 

 RO  19

                        CHAPTER 

of Triggered Emissions 

JUL 731311 UT 

f

1312 UT

3

(b) 

(c) 

(d) 

Ce)

Fig. 3.1

RO 10 JUN 73

.!C
 ̀ 7-1,t -v*

0 

 RO 

0 

RO

5

03

23 

w EL. 

15

AUG

10 

OCT 73 

   $ 

S SEP 73

15    20 

1600 UT  

10 

1213 UT

sec

 15 sec

05 

(after  Helliwell 

1 Examples of VLF

    1015 sec 

and Katsufrakis, 1974) 

triggered emissions in the magnetosphere.



WHISTLER INTERACTIONS51 

velocity distribution in a dipole geomagnetic field are studied, and a new 

explanation of VLF triggered emissions is given [Matsumoto and  Omura. 

19831. Finally. in Section 3.6, we examine effects of co-existing 

electrostatic waves on whistler mode instabilities based on simulations by 

the FEM code [Omura and Matsumoto, 1985]. 

3.2 Nonlinear Orbits of Resonant Electrons

    Inhomogeneity of the geomagnetic field is believed to play an 

important role in the nonlinear whistler interaction. because computer 

simulations [Matsumoto and Yasuda, 1976; Matsumoto et al.. 1980; Kumagai et 

al.. 1980] assuming a uniform external magnetic field could not give 

sufficient interpretations of the triggered emissions. Recently, a self-

consistent computer simulation has been done under a nonuniform external 

magnetic field with a constant gradient [Vomvoridis and Denavit. 1980]. 

However, the real geomagnetic field around the equator does not have a 

constant gradient and should be approximated at least by a parabolic 

magnetic field. In this Section, behavior of resonant electrons in a 

finite amplitude monochromatic whistler mode wave is investigated, assuming 

a parabolic external magnetic field. In addition to the phase bunching 

pointed by Vomvoridis and Denavit [1979] we find another new type of phase 

bunching of resonant electrons associated with the inhomogeneity of the 

magnetic field. Its mechanism is interpreted by a new effect which we term 

the 'cluster effect'. The cluster effect makes it possible to explain a 

long-lasting resonant current which is quite different in nature from the 

resonant current produced by trapped electrons in a uniform magnetic 

field. A test particle simulation of whistler-particle interactions was 

carried out by Ivan et al. [1978] and showed interesting results on pitch 

angle scattering. However, they did not pay attention to the phase-

bunching process as discussed in the present paper. 

    In Subsection 3.2.1 a model of the present simulation is described. 

In Subsection 3.2.2 trajectories of electrons under the effects of whistler 

monochromatic waves propagating along the geomagnetic field line are 

calculated by a test particle simulation. Processes of trapping and 

detrapping of electrons by the waves are then discussed. In Subsection 

3.2.3 two types of phase bunching in a nonuniform magnetic field observed 

in the simulation are explained. and their mechanisms are considered. In 

Subsection 3.2.4 we shall discuss formation of resonant currents due to the
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phase bunching 

gives a summary

as 

and

well as their 

discussion.

effects on the wave fields. Section 6

3.2.1 Simulation Model 

    We consider a finite amplitude monochromatic whistler mode wave 

propagating along the nonuniform geomagnetic field Bo. The wave is 

described by wave magnetic field Bwnand its phase 0n defined at a position 

z in the rest frame, where the suffix n denotes the n-th wave in case 

several waves coexist in the plasma. In the cold background plasma the 

wave propagates with constant amplitude Bwn, frequency wn. and wavenumber 

kn. which are determined by a cold plasma dispersion relation given by 

                              2 

_1~2+ ~'n11e )1/2(3 .1)              kn
cn0e w                    en

where Il
e is the plasma frequency. We introduce 

•), where vii and vl are the velocities parallel 

external geomagnetic field, respectively. and 

in the rest frame. Equations of motion are 

Dysthe, 19717

dv 
= 

dt
envsin(  - n ) -

 polar coordinates (V11. V1, 

and perpendicular to the 

0 is the Larmor phase of vs 

then expressed as [e.g.,

v2 80 
      e

20e 8z
(3.2)

dvl 

- dt

    w
n 

wn     k(- vii) 
     n

sin( - n ) +
vi~vl 80

e

20e 8z
(3.3)

dO 

dt

where B
o and Bwn 

respectively. The

The first term on

 are 

phase

the

Own 

v- vu)  i
cos( 4 - V ) + e

replaced by 0
e(z) = 

V changes according to a 

do 

   dt- wnnv u

right-hand side of

eBo/m and flw = 

relation

(3.2)-(3.4)

(3.4)

eBwn /m ,

corresponds to

(3.5)

the
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effect of th wave, while the second term expresses the effect of the 

external geomagnetic field. The effect of the inhomogeneity of the 

geomagnetic field is expressed by the second terms of (3.2) and (3.3), 

which disappear in the homogeneous case. and by k
n and sae in (3.2)-(3.4). 

    The geomagnetic field approximated by a dipole magnetic field is 

further approximated by the following parabolic equation around the equator 

as 

Bo = BoE C 1 + ( 4.5za/ L2Re) 1(3.6) 

where BoE, L, Re. and za are the magnetic field at the equator, the L value 

of the magnetic field line. the earth's radius, and the distance from the 

equator along the field line, respectively-°. The corresponding angular 

electron cyclotron frequency Qe at position z is given by 

f1e (z) = 12eo ( 1 + 0z2) =eo ( 1 + az2 )(3.7) 

where e o is the angular cyclotron frequency at the equatorial plane. 
coefficient 0 is given by 4.5/(L2Re2), and a and z are normalized 

dimensionless parameters defined by a = (cQeo-1)20 = 4.5c2/( eo LRe)2 and z 
= z

a/(c0eO-1), respectively. The electron density Ne is assumed to be 
constant along the geomagnetic field line 

    Physical parameters in the present simulation have been chosen to be 

comparable to those in magnetospheric experiments. The waves are assumed to 

propagate along a geomagnetic field line of L = 4. Ratios of the wave 

frequency (in the case of a single wave) and plasma frequency to the 

cyclotron frequency at the equatorial plane are w/(2eo - 0.5 and He/ eo 
10, respectively. Ratios of electron velocities to the light velocity c 

are chosen as follows: vii/c = -0.05 and v
l/c - 0.05. However. certain 

modifications are necessary to the amplitude of the wave magnetic field. 

The ratio (2w/0eO is of the order of 10-5 in the magnetosphere for a typical 

whistler wave intensity of 5mr where i2eo/27i = 14kHz is assumed. However. 

the value of (2w/0eO = 10-5 or an even smaller value causes the accumulated 

numerical errors in numerical solutions to equations of motion because of a 

shortage of effective digits in the computer. Therefore we have to scale 

up e /eo to 10-4. However. we need to change the coefficient a for the 
inhomogeneity of Bo correspondingly in order o keep the essential nonlinear 

feature of wave-particle interactions unchanged. For this purpose we 

imposed a requirement that the number of trapped oscillations should be the
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same within a trapping zone in which trapping by the wave is possible in 

resistance against the inhomogeneity of Bo. This requirement gives the 

relation (see Appendix C) 

        a 3/2(3.8) 

                 L Therefore the coefficient a. which is equal to 8.06 x 10-8 for the 

magnetospheric parameters L = 4 andeo=C22n x 14 x 103, is scale up to a = 

(10-4/10-5)3/2 x 8.06 x 10-8 2.55 x 10-6 for the value of tw/ 0e 
10-4. We have thus used the values 0w/0eO = 10-4 and a = 2.55 x 10 in 

the present simulations. 

    Under the parabolic magnetic field with a = 8.0E x 10-8 the length of 

the trapping zone is approximately 710 in units of c0eO-1, as is shown in 

the appendix. Therefore a transit time. which is the time necessary for an 

electron with v I to move across the trapping zone. is 

710/0.05 =1.4 x
-104[QeO1], while the trapping period Tt = 2n/(kv1Rw)1/2 

is 2.8 x 103[0eO] for a typical value of v1= 0.05 [c7, k = 10 [c0eo]. 

and 0 = 10-5[0eo]. Thus the transit time normalized to the trapping period 

is approximated 5.0 in the magnetosphere. On the other hand. in the 

simulation the length of the trapping zone for a = 2.55 x 10-6 is 

approximately 224 [ct2eo-1] (see Appendix C), giving a transit time of 4.5 x 
  3[D

eO-1 
10]. For Ow = 10-4 [eo] we have Tt = 890 [(2e-11, giving the ratio 
of the transit time to Tt of 5.0, which is the same as that in the 

magnetosphere. 

    In the simulation we let quasi-monochromatic waves propagate at the 

group velocity Vgn* which is also a function of position z as 

        aw-

(3.9)2c2kn(z)              gn8k
n 2wn + C 0:06(z)/( e - w )2 I 

               V

The variations of the cyclotron frequency, wave number. resonance 

velocity VR (which is defined byVR=w - 0
e)/k), and group velocity are 

shown in Figure 3.2 as a function of distance from the equatorial plane. 

Note that the resonance velocity increases as the distance from the equator 

increases, while the parallel velocity of the electron, which shows an 

adiabatic motion without the effect of the whistler wave, decreases as it 

moves away from the equator owing to the mirror force. The model of the 

simulation is schematically illustrated in Figure 3.3.
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3.2.2 Trajectories 

Presence of Finite 

    We introduce 

defining

of Electrons along Geomagnetic Field Lines in the 

Amplitude Monochromatic Whistler Mode Waves 

new coordinates(e, V1.C) illustrated in Figure 3.4 by

8 = k ( v ii - vR ) (3.10)

C=4-V (3.11)

Note that the resonance velocity is a function of 

an electron moves along the geomagnetic field 

motion. that is (3.2)-(3.4), are converted into 

(Vomvoridis and Denavit, 1979]

position z 

line. the 

(8, v1, C)

and changes as 

equations of 

coordinates as

d8 
— = kv

l(lwsi_n dt

1 
  - - ( -3v 

  2

kv2
0

e

a 0e

az

(3.12)
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dv 

dt

  sa 1 
- (

e - 8 ) k
sin C + — 

  2

e 
(VR+—) 

k

V1 

e

ae 

az

(3.13)

dC 
 (e - 8 ) cos C + 8(3.14) 

               dt k 

where it is assumed that the wave frequency w and the plasma frequency Ile 

are constant. 

    In the magnetosphere the conditions 

f1e M kv1 w ( e - w ) >> wt>> 94 (3.15) 

are generally satisfied where wt is a trapping frequency defined by wt = 

(kv1tlw)1/2. The variations 68 and b(kvii) of the resonant electron over the 

period wt-1 are both of the order of In In contrast to the fact that 68/8 

— 1 , 6v1/v1 is much less than unity. as is understood from (3.13). since tlw 

<< kv1 and 60e/e << 1. Therefore the equation for v1 is not essential to 
the resonant interaction [Helliwell. 1967]. In view of the condition
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          1, ,Ew 

e=k (v„-VA) 

B09k 
    Fig. 3.4 Configuration of the wave fields (Ew and Bw), the static 

               magnetic field and the wavenumber vector k in the coordinates 
                 (6, v1, C). 

(3.15) the equations of motion are approximated by 

dC 
8(3.16) 
                         dt 

d8                   -cat( R + sin ( )(3 .17) 
                    dt 

where 

           1kv2 80 
R = (- 3 V + 1) e(3.18) 

deaf e 8z 

and v is assumed. 

    It is easily understood that the value of R is an essential quantity 

for the resonant interaction in the inhomogeneous field; it is called an 

inhomogeneity ratio [Nunn, 1971; Vomvoridis and Denavit, 19791. when IRI > 

1. (3.16) and (3.17) give no equilibrium state. Electrons which satisfy 

the condition IRI < 1 can be trapped by the wave when their parallel 

velocity v11satisfies a condition Iv0-VRI < Vt which corresponds to 8 < 

2wt. Hence we call this range where MI < 1 is satisfied a °trapping 

zone°. Note that the trapping zone is specified for each electron because 

the perpendicular velocities vi are different for different electrons. A
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 typical example of the variation of the inhomogeneity ratio R with distance 
 from the equatorial plane is shown in Figure 3.5. assuming that  v1, and Ow 

 are constant. 
In order to demonstrate a difference of behavior between trapped and 

 untrapped electrons under the effect of a single monochromatic whistler 
 wave in the inhomogeneous magnetic field, trajectories of two electrons are 

 shown in Figure 3.6. The parameters of the two electrons are the same 
 except for their initial (. As they travel along the geomagnetic field 

 toward the equator. ivy increases owing to the mirror force -0B0 and 
 finally becomes equal to the resonance velocity IVRI. which becomes smaller 

 with distance. The point where vii = VR is satisfied is called a 'resonant 

point°. After passing this first resonance point the trajectories of 

 trapped and untrapped electrons are separated, as is seen in the figure 

(Roux and Pellat. 19781. The untrapped electrons continues to be 

 accelerated by the mirror force after a small jump in v
ii at the first 

 resonant point. After crossing the equatorial plane it is decelerated by 

 the mirror force and comes to the second resonance point, where its Iv
1l 
 decreases. 

     On the other hand the trapped electron is captured by the wave at the 

first resonance point and afterward moves at an average velocity equal to 

the resonance velocity. As the electron moves away from the equator , its 
inhomogeneity ratio R increases so that the potential trough of the wave 

becomes shallow enough to make the electron detrapped . Note that trapping 
and detrapping of electrons takes place only within the trapping zone where 

IRI < 1. 

    In Figure 3.7, trajectories of 64 electrons whose initial values 

differ only in their phase ( are shown . There are two cases. each with the 

same parameters except for the initial parallel velocity: v
ii(t = 0) = - 0

.487c for case 1, and v
o(t = 0) = -0.486c for case 2. The number of 

trapped electrons is obviously different between case 1 and 2
. though the 

difference in initial parallel velocities is very small
. The reason will 

be discussed later. 

    In the case shown in Figure 3 .8 the resonance points are situated 
outside the trapping zone, and therefore we do not see any occurre

nce of 
trapping. 

    The effects of the whistler wave on an electron depend on the 

deviation of the parallel velocity v
ii from the resonance velocity VR, that 

is on 8. If the deviation is large . the effect of the wave is small . 
because the phase ( changes so rapidly that the average value of th

e second
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  Fig. 3.5 Variation of inhomogeneity ratio R in a parabolic magnetic 
              field: vi = 0.05; a = 2.55 x 10-6. 

erm, sin C in (3.17). becomes nearly equal to zero. However, if electron 

feet two monochromatic whistler waves, the effects of the waves are 

ifferent from a simple superposition of the effect of each wave. To see 

he two-wave effect, we consider a situation where electrons which are 

rapped by the first wave encounter the second wave with a frequency 

lightly different from that of the first wave but with the same 

mplitude. Effective disturbance by the second wave occurs when vii of the 

rapped electrons falls inside the resonance range of the second wave. 

herefore it is required for the effective disturbance that the difference 

f the resonance velocities between the two waves is smaller than the 

econd-wave-trapping speed Vt2 defined by 2wt2/k2, that is 

SVR < Vt2(3.19) 

nder the approximation that k ti k1 = k2 and e are constant. we obtain 

             Sw = kSUR(3.20) 

here ow is the frequency difference of the two waves. Since Vt = 2wt/k. 

he necessary condition for the effective disturbance becomes
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            2 
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The maximum value of the amplitude Ao of the total wave field 

electrons varies slowly with the frequency &w and becomes zero 

period of n/&w. Therefore for very small &w the chance for 

encounter a small wave amplitude and hence undergo detrappi___ 

small.

(3.23)

(3.24)

                                                     seenby the 

with the 

electrons to 

                                                           nq becomes

3.2.3 Phase Bunching in a Nonuniform Magnetic field 

    In a nonuniform external magnetic field, electrons in resonance with a 

monochromatic whistler mode wave are phase-bunched in ways that are 

different from those in a uniform magnetic field. Two striking effects are 

observed in the process of phase bunching. One is called the 'channel 

effect', and the other is called the 'cluster effect'. Phase bunching due 

to the channel effect was pointed out by Vomvoridis and Denavit[l979] and 

is analyzed first in the present paper. Then the cluster effect, newly 

found in the present simulation, is discussed in detail. 

    We first consider the trajectories of electrons in the C-8 phase space 

under a constant R. In Figure 3.10. configurations of trajectories are 

shown for various R values. They are calculated by the simplified 

equations of motion ((3.16) and (3.17)) under given values of the constant 

R. The initial phase was given uniformly over the interval 4n in order to 

demonstrate periodic behavior in C with a period of 2n . In the case of R = 

0, which corresponds to a uniform ambient magnetic field, every particle at 

the resonance velocity is trapped, forming closed contours. and untrapped 

electrons can never cross the resonance velocity line where 8 = 0. In the 
case of 0 < IRI < 1. however, untrapped particles can cross the resonance
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                decreases. 

velocity only in a limited phase range lying between adjacent closed 

contours. Note that the closed region occupied by trapped electrons 

becomes smaller as the absolute value of R increases. Even in the case IRI 

> 1 the phase range in which the trajectories cross the resonance velocity 

is limited, as is shown in Figure 3.11. 

    The reason for this phase limitation can be explained as follows. 

When the electrons approach the resonance velocity in the C-8 plane, the 

acceleration in the direction along 8 takes place because of the sum of the 

mirror effect wt2R and the wave effect wt2sin C. Those electrons which lie 

between (2n -1)n and 2nn (n is an integer) are more accelerated in 8 than 

those lying between 2nn and (2n+1)n because of the sign of R and sin C in 

the case R < 0. Less accelerated electrons have a higher probability of 

falling in the phase range between (2n -1)n and 2nn before crossing 8 - 0. 

Thus the probability of crossing at 8 = 0 with C between (2n -1)n and 2nn 

is higher than it is with C between 2nn and (2n+1)n. Consequently, 

particles whose initial phases are uniform outside the resonance range 

become phase-bunched when they traverse vii = VR. in the C-vii plane even if 

IRI > 1. We call this phase bunching channel effect bunching because the 

passage in the C-vii plane at vii = VR looks like a channel, especially in
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)ries of electrons in the C - vii plane. The trajectory 
is high at a phase range between (2n-1)n and 2nn and 

ueen 2nn and (2n+1)n. This effect is called a channel 

However, we use the term channel effect even for cases 

se in these cases the passage is also restricted. 

Figure 3.7, the number of trapped electrons differs 

upon the initial parallel velocity at the moment of 

wave. In order to clarify the reason for this, 

examined for a number of electrons having a delta 

n with respect to vii and a uniform phase distribution 

the encounter. They are calculated from (3.16) and 

tant inhomogeneity ratio R, and shown in Figure 3.12. 

was given as being uniform over the interval 2n. A 

exhibit very closely spaced trajectories, indicated by 

in Figure 3.12. This is because the gradient of these 

aspect to C was small at the moment when the group of 

ed into the wave. The gradient of the trajectory of an 

 plane is obtained by eliminating a time parameter from 

Ld is given by 

de/d( = wt( R + sin C )/8(3.25)
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at a fixed value of 8. The absolute value of the gradient  d8/dt differs 

according to the phase C, and thus nonuniformity is caused in the 

distribution of trajectories in the C-8. Let Cc denote the phase which 

gives the minimum absolute value of the gradient de/dC. The electrons 

whose initial phases are near Cc move close together along a trajectory 

specified by (Cc, 80). where 80 represents the initial parallel velocity. 

In the case R < -1,c = n/2 + 2nn. The electrons then show clustered 

trajectories around one curve passing through (Cc, in in the C-8 plane. 

In the case -1 < R < 0, however, the gradient d8/dC becomes zero at two 

different phases, satisfying the equation 

               sin Cc + R = 0(3.26) 

Therefore there exist two kinds of curves around which electrons cluster. 

We call this a cluster effect and illustrate it for various values of R in 

Figure 3.12. Note that there is one main trajectory around which other 

trajectories gather in the cases R < -1 and that there are two in the cases 

-1 < R < 0 . 

    In the above discussion a delta function distribution of the parallel 

velocities was assumed as initial condition, but it is not a necessary 

condition for the cluster effect. In the following discussion we derive a 

criterion for the effective cluster effect with respect to the v11 spread in 

the initial distribution. The equation of the trajectories in the C-8 

plane is obtained by integrating (3.25) as 

C = 82 + 2wt(cos C - RC)(3.27)

where C is a constant which specifies the trajectory. We first estimate an 

initial parallel velocity range D(8) for a given fixed initial C which 

corresponds to a phase spread over 2n in C at 8 = 0. From (3.27), giving 8 

= 0, the two values of C, C
I and C2 for C = CA and C = CA + 2n (CA is 

arbitrary), are calculated to give a difference SC = CI -C2 = 4Rw
t2. The 

difference D(8) which gives the same difference SC is easily obtained from 

(3.27) for a fixed C as 

               D(8) = 4nRw2 / [28 - D(8)) = 2nRw2/8(3 .28)

where the second approximation is allowed if D(8) << 8 . It is clear 

the cluster effect appears effectively when the initial 8 distribution 

a spread over a small range of 68, satisfying the condition 68 << D(8) .

that 

has
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    The trajectories cross the resonance velocity almost vertically in the 

 t-e plane. Therefore the clustered electrons moving along the clustered 

trajectories show a strong phase bunching near the resonance velocity , the 
phase tends to be around C = (3/2)n + 2nn because of the channel effect . 
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  Fig.  3.13 Schematic illustration of trapping and detrapping due to a 
              change of size of the trapping region in the inhomogeneous 

              geomagnetic field. 

    In the preceding discussion we have assumed that the inhomogeneity 

ratio R is constant. In reality, however, the absolute value of R 

decreases as the electrons approach the first resonance point, and there 

exists a trajectory along which the electrons are trapped in the wave 

potential trough, as is shown schematically in Figure 3.13. As IRI 

decreases with distance, the size of the trapping region in the C-vii plane 

(shaded area) changes accordingly. Therefore some of the initially 

untrapped electrons have a chance to enter into the trapping region and be 

trapped. After passing over the equator those electrons suffer the inverse 

Process and are finally detrapped. Results of the computer simulation on 

trajectories of electrons in the parabolic model magnetic field under which 

R changes with distance are shown in Figure 3.14. Two cases with a small 

difference in initial parallel velocity are presented in the figure. 

Clustered electrons are seen in both cases. They happen to be trapped in 

case 1 but not in case 2. These two cases correspond to those presented in
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3.2.4 Resonant Current due to Phase Bunching 

    Trapped resonant electrons can give rise to transverse resonant 

currents with a frequency very close to the frequency of the trapping wave, 

because the phase of their vi are correlated with respect to the wave
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resonant current in a uniform magnetic field 
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 Fig. 3.15 Evolution of the distribution of resonant electrons in the ca: 
             of a uniform magnetic field. A delta-functional vii 

             distribution at VR is assumed at t = 0. 

calculated from (3.16) and (3.17), is shown in Figure 3.15. A uniform 

phase distribution and a delta functional vii distribution at the resonance 

velocity are assumed as the initial values. A strong phase bunching 

appears around the phase C = 180° at a time of a quarter of the trapping 

period, and thereafter the phase bunching repeats with a period of half the 

trapping period. Since the phase distribution is symmetric around C = 180 
°
. as is seen in Figure 3.15, the current is formed parallel to the wave 

magnetic field. However, if the uniform distribution in vii has a spread 

greater than the resonance range as shown in Figure 3.16, very little phase 

bunching is observed around the phase C - 180°, which is the center of 

oscillation of trapped electrons as shown in the case of R = 0 in Figure 

3.10. 

    The analysis of the resonant current in a uniform magnetic field is
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   Fig. 3.17 Trajectories of 64 electrons trapped near the equator and 
                resonant current by them. 

the equatorial plane. This is due to a slow change from n to (3/21n of the 

center of the phase oscillation of trapped electrons as the inhomogeneity 
ratio R increases from 0.0 to 1.0. The slow change of the phase Co, around 
which the trapped electrons oscillates, is governed by R + sin Co = 0. 

When R reaches 1.0, however, the electrons are detrapped, and the resonant 

current disappears. The disappearance is seen in Figure 3.17 at t 7Tt. 

    In a nonuniform magnetic field, resonant currents are formed even if 

electrons are not trapped in the wave potential trough. In Case 2 of 

Figure 3.14 the phase range of the untrapped electrons at the resonance 

velocity is limited because of the channel effect, which makes the 

resonance current. In addition, some number of the untrapped electrons 

show the cluster effect, as shown by the dense trajectories in the C-8 

plane, yielding a strong phase bunching near the resonance velocity. The 

temporal variations of the phase distribution and the parallel velocity 

distribution of electrons are presented in Figure 3.18 for Case 2 of Figure
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 Fig. 3.18 Evolution of phase and vii distributions of electrons with the 
             same initial values as those in Case 2 of Figure 3.14. 

3.14. When the electrons come into the resonance range Iv11 -VRI < Vt, 

broad phase bunching by the channel effects is seen in which a very steep 

peak caused by the cluster effect is included. We can observe the same 

kind of phase bunching in Case 2 of Figure 3.7. A strong resonance current 

exists at the resonance point because of the superposition of the channel 

and cluster effects. However, it should be noted that a resonance current 

exists even outside the resonance range. Before reaching the first 

resonance point the electrons begin to form the resonance current with 

gradually increasing magnitude and with high frequency, as is seen in 

Figure 3.7. This current is due to the cluster effect, because clustering 

of the trajectories is possible outside the resonance range, as was 

mentioned previously. When the curve of clustering trajectories in the L-

8 plane has a steeper gradient with respect to C, the clustered electrons 

are more phase-bunched. It is apparent from (3.25) that the magnitude of 

the gradient increases as the parallel velocity vii becomes close to the
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resonance velocity  VR, and the clustered electrons tend to populate within 

a very narrow phase range. Therefore, the magnitude of the resonant 

current increases as the electrons approach the first resonance point. 

However, this resonance current observed outside the resonance range 

disappears if the initial parallel velocity distribution is broad in v
ii 

because of cancellation of cluster effects for each initial v11. The 

reduction of the current due to the cancellation is seen in Figure 3.19, in 

which a broader initial v given than that in Figure 3.7 with otherwise 

the same parameters. 

                             FIRST 
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Trajectories of 64 electrons with various initial values of 
vii. Compare currents at t G 3.8Tt with those in Case 2 of 
Figure 3.7.

    In the previous discussion we have shown the existence of two type of 

Phase bunching: one due to the channel effect and the other to the cluster 

effect. Under a constant R the electrons which encounter the whistler wave 

at a point where their vii is not within the resonance range are never 

trapped by the wave. Therefore the resonant current due to these untrapped 

electrons is formed mostly by the channel effect and for a short time,
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normally shorter than one trapping period. However, when the inhomogeneity 

ratio  R changes as the electrons move, as occurs  in the actual 

magnetospheric plasma, initially untrapped electrons may possibly be 

trapped by the wave potential trough, because the size of the trapping 

region in the C-A plane becomes large as the electrons move toward the 

equator. Examples of this trapping due to the change of R are illustrated 

in Figure 3.14, in which two cases are shown. Case 2 illustrates a 

situation in which untrapped nonclustered electrons are drawn into the 

trapping region, while Case 1 shows an interesting situation in which 

electrons already clustered in the untrapping region are engulfed by the
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remain clustered and then rotate along 

inside the trapping boundary, giving rise 

which lasts for several trapping periods

shows the time variation of the 

  The electrons thus trapped 

a closed orbit in the -9 plane 

to a large-amplitude current 

until the electrons, moving away
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from the equator, are detrapped as the trapping capacity of the wave 

shrinks. This long-lasting current due to clustered trapped electrons  is a 

concept not previously mentioned in the literature. This new type of 

resonant current should be taken into account in the interpretation of 

generation mechanisms of triggered emissions in the magnetosphere. 

    It is noted that in Figures 3.14 and 3.20 a delta function is used for 

the initial vii distribution in order to demonstrate the effect of clustered 

trapped electrons. However, even in cases of more realistic distributions 

of vii with a spread the significance of the clustered trapped electrons is 

still observed, as is shown in Figure 3.21. A strong phase bunching at t = 

1Tt around. C = 210° is due to the channel effect. However, it is temporary 

and never lasts long. In contrast, trapped electrons which are kept 

clustered make a significant contribution to the long-lasting resonant 

current, because other electrons are phase-randomized.

 \
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 3.2.5 Conclusion and Discussion 

     Resonance characteristics of whistler wave-electron interaction in the 

 nonuniform magnetic field have been discussed by many authors. Helliwell 

 [1967] discovered the importance of long-lasting resonant current due to 

 the 'self-consistent wave condition' which is expressed by  v - VR and 

dvi~/dt = dVR/dt. Nunn [19711 studied the behavior of resonant electrons in 

 the nonuniform geomagnetic field which satisfy the same condition as 

Helliwell's [1967]. Nunn termed the condition 'second-order resonance 

 condition'. In Nunn's study, trapped electrons are thought to be a main 

carrier of resonant currents. However, trapping of resonant electrons by 

whistler waves is seemingly a priori assumed. 

     As long as 80e/8z and the wave amplitude f1w are assumed to be 

constant, the contours of the trapped electrons in the vii -c Phase space 

are closed and separated from those of untrapped electrons by a separatrix, 

as shown in Figure 3.10. Therefore any electrons which are originally 

untrapped could not be trapped as long as the inhomogeneity ratio R is 

constant. However, even in the case of constant 80
e/az, trapping of 

originally untrapped electrons is possible at the wave front because of a 

rapid change of R due to a rapid change of the wave amplitude O
w there. At th

e wave front some untrapped electrons located outside the trapping region 

(shaded area in Figure 3.13) are suddenly placed in the trapping region 

because of a rapid expansion of the trapping region . Thus the whistler 

wave train, propagating along the magnetic field line with constant a() /8z , 
looks like a streamer in the velocity (or phase) versus distance space with 

a front-opening and nonbroken side, swallowing electrons into the trapping 

region only at the opening. Electrons approaching the resonance velocity 

toward the side of the whistler streamer . that is, those encountering the 
whistler waves not at the wave front but at the main portion of the wave 

train, could not enter into the streamer (i .e., around the separatrix in 

the vii-( plane). It is noted that the size of the opening changes as the 

wave front moves away from the equator and is finally reduced to zero at 

IRI > 1. Thus the feeding of the trapped electrons into the trapping 

region is apparently possible only during a period when the wave f
ront (not 

the main portion of the wave train) passes through the trapping zone 
where 

IRI < 1 is satisfied. However , since dQe/dz is not constant in the 
magnetosphere,it is possible that untrapped electrons outside the streamer 

enter into the inside of the streamer and are trapped by the wave
. from its 

leaky side, as is schematically shown in Figure 3 .13. 

    In this section, a test particle simulation is carried out to study
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the trapping and associated  detrapping process through a leaky side of the 

wave streamer in the nonuniform geomagnetic field. It was determined that 

the trapping of originally untrapped electrons is actually possible owing 

to the change of the size of the trapping region in the vct phase space. 

as shown in Figures 3.7, 3.9. and 3.14. Therefore, after the wave front 

passes away from the trapping zone, the feeding of trapped electrons into 

the wave potential trough is still possible. An interesting and important 

point in this trapping process is that the trapped electrons never fill out 

the trapping region in the vii -C plane. as do those entering from the wave 

front, but take clustered closed trajectories as a group. Therefore 

direction of the resonant current due to the clustered trapped electrons 

changes with a characteristic period inherent to the clustered orbits. 

while the resonant current due to electrons trapped at the opening, which 

fill the trapping region, gradually changes its direction only by a change 

of a center phase So of the trapping region due to the change of the 

inhomogeneity factor R. 

    Helliwell [19671 studied the nonlinear whistler interaction, taking 

all resonant electrons — both trapped and untrapped — into account in his 

pioneering work. Vomvoridis and Denavit [1979] studied the role of 

untrapped electrons explicitly, which contribute to the resonant current 

through the channel effect. They found that untrapped electrons could form 

a significant resonant current when they pass through the resonance 

velocity outside the resonance region (i.e., outside the wave streamer in 

our image). Thereafter Vomvoridis and Denavit [1980] performed a self-

consistent simulation of the whistler interaction in a nonuniform magnetic 

field with constant dQe/dz. In addition to the growth mechanism similar to 

the homogeneous case they take two other effects into account. One is the 

contribution from untrapped electrons. The other is the inhomogeneity 

effect on the trapped electrons. The latter is essentially the same as the 

effect considered by Nunn [1981]. However, since constant dOe/dz is 
assumed in this simulation, the contribution of clustered electrons, which 

are trapped and remain clustered because of the varying R effect, is not 

included. Electrons which enter from the leaky side of the wave packet and 

are trapped—some of them are clustered in the wave potential trough—would 

form additional trapped electrons entering from the front opening of the 

wave. The contribution of these newly trapped electrons at the main 

portion of the wave train is significant, especially after the electrons 

trapped at the wave front flow away from the trapping zone. 

    In summary. we have pointed out that a new type of phase bunching,
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called cluster effect phase bunching, should be additionally considered in 

the nonlinear whistler interaction in a nonuniform magnetic field with a 

spatially varying gradient. A full simulation under a condition of varying 

R would be necessary to investigate a relative contribution of the cluster 

effect phase bunching in a self-consistent feedback model and to see the 

competing process of untrapped and trapped  electrons. because the size of 

the trapping region changes with time and with space. 

3.3 Self-consistent Evolution of Whistler Mode Waves

In this section basic mechanisms of the wave growth and frequency shift 

involved in the interaction are investigated with the aid of self-

consistent computer simulations. The simulation method used in the present 

study is basically the long-time-scale algorithm [Vomvoridis, 1978; 

Rathmann et al., 1978]. though an improvement is made on it. Special 

emphasis is laid on roles of trapped and untrapped resonant electrons in a 

nonuniform dipole magnetic field. A numerical study of coherent whistler 

mode interactions in an inhomogeneous plasma has been performed by Nunn 

[1974], assumed that resonant currents due to untrapped particles are 

negligible in comparison with those caused by trapped particles. A theory 

of triggered emissions has also been presented by Roux and Pellat [1978], 

who focussed their attention on a change in the distribution function of 

particles due to trapping effects of resonant electrons in the 

inhomogeneous geomagnetic field. However, we will see that untrapped 

resonant particles as well as trapped particles play an important role in 

the interaction. 

    We present wave equations showing how the wave amplitude and frequency 

are changed by resonant currents in Subsection 3.3 .1. In Subsection 3.3.2 

equations of motion of resonant particles are presented . In Subsection 

3.3.3 the simulation method is explained and interactions in a homogeneous 

medium are studied for two types of simulation models , namely a uniform 

periodic model and a nonuniform encounter model . In Subsection 3.3.4, 

interactions in an inhomogeneous medium is studied . Roles of trapped and 

untrapped particles in the evolution of the wave amplitude are 

investigated. A computer simulation of the whistler wave evolution in a 

nonuniform magnetic field of a constant gradient has been done by 

Vomvoridis and Denavit [1980] . They followed the evolution under the 

effects of both trapped and untrapped particles . However, the complexity
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of their simulation model made it difficult to understand the effects of 

trapped and untrapped particles separately, which we clarify in this 

section. Subsection 3.3.5 gives a summary and discussions. 

3.3.1 Equations for the Wave Fields 

    We assume a purely transverse whistler mode wave that propagates along 

the magnetospheric field line and interacts with counter-streaming high 

energy resonant electrons. In Section 2.4, we have derived a set of 

equations showing how the wave amplitude and frequency are modified by the 

resonant currents JB and JE. In this subsection. we relate these equations 

to the linear dispersion relation and the linear growth rate. For 

reference we rewrite (2.71) and (2.73). 

         aBaB1               w
= - V

g(w+—AJ ) (3.31) Bt az 2 o E 

                         k(k - iioJB/Bw) 
w = bl (3.32) 

                    k(k - 1toJB/Bw) + IIe/c2 e 

As is seen in (3.31) and (3.32), JE causes a change of the wave amplitude 

Bw, and JB modifies the frequency w. It is noted that (3.32) corresponds 

to the real part of a dispersion relation of the whistler mode wave in the 

presence of hot electrons. For the linear theory of the inter-action, the 
following relation is deduced from the linearlized Vlasov equation and 

Maxwell's equation, 

w* agb agb 
                                   (VII- - )—- Vl 

    B -7de2~2 k avlavu 
    BRe[-00kmjdv^~j-ovdv(3.33)                l•v - V*1  wuR 

where gb is a distribution function of hot electrons, -e and m are the 

electron charge and mass, respectively. w* and VR are complex quantities 
defined by 

                                             w* - fl 

w*-w+ it V*= ----------e(3.34) 
k 

where r is the growth rate given by
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                             1 dBw 
           r =---(3.35) 

 Bw dt 

Assuming Irl << w, we obtain the real part of the well-known linear 

dispersion relation from (3.32) and (3.33) 

w 8gb 8gb 
                       (v)-- v- 

   2 2wile71r2~~k 8v118v11    c k -_—f -°°dvIIf_°°v2jdv1•(3.36) 
Qe - wNbvIi -VR 

where VR is the resonance velocity defined by VR=( w -ire)/k. Nb and (lb are 

the beam density and the beam plasma frequency, respectively. In the 

linear stage of the interaction the frequency remains constant because 

JB/Bw - constant. In the nonlinear stage. however. (3.36) is no longer 

valid and we expect a nonlinear frequency change satisfying (3.32). 

On the other hand, the imaginary part of the integral in the right-

hand side of (3.33) gives 

JE n2e20e2IIkvl8gb 

        

- ------
2• fovldvl(+) (3.37)      B

w mk8v10 8viivii= VR 

while the following relation is obtained from (3.31). 

                1 JE 
           r=-2uoy

8(3.38) 

                                        w Substitution of (3.37) into (3.38) gives the linear growth rate 

        12(0
e- w)22agbkvl8gb                     vd

v (+) (3.39) 
             kNC0 1 18v

l0e8viivii- VR 

Therefore, the equation (3.31) governing the evolution of the wave 

amplitude gives the growth rate described by the linear theory .

3.3.2 Equations of Motion of Resonant Electrons 

    We have presented the wave equations showing how the wave is modified 

by the resonant current JR. which is formed as a result of cyclotron 

resonance between hot electrons and the wave . The equations of motion of 

resonant electrons are expressed in the following form . We introduce polar
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coordinates  (vii, v1, (1) for the velocity, where v
0 and v1 are the parallel 

and perpendicular velocities to the external geomagnetic field 

respectively, and 4) is the Larmor phase angle of v
1 in the rest frame. 

Equations of motion are then expressed as [e.g.. Dysthe. 19717 

dv i1v1au 
0 v sin(4)- 0) -1(3.40) 

          dtw120
e 8z 

     dv wv v 80 
                =Q(—-v)sin(4-0)+°12(3 .41) 

      dtwk°20
e az 

d0 Cew                     w 
( - v0) cos(0 - 0) + 0

e(3.42)             dt v
1 k 

                            dz 
— = v

11(3.43)                           dt 

where the wave amplitude Bw is replaced by 0 =eBw/m. The first terms in 

the right-hand side of (3.40)-(3.42) correspond to the effect of the wave. 

while the second terms express the effect of the external geomagnetic 

field. The effect of the inhomogeneity of the medium is expressed by the 

second terms in (3.40) and (3.41), which disappear in a homogeneous case, 

as well as by k and 0e in (3.40)-(3.42), which vary slowly with the 

distance in the present model. 

    These equations are used to calculate the motion of resonant 

electrons. However, these are not in an appropriate form for a theoretical 

analysis of trajectories of the electrons. We, therefore, introduce new 

coordinates (8, v, () for this purpose by defining 

              8 = k( v VR )(3.44) 

             C = 0 - 0(3.45) 

The equations of motion, i.e., (3.40) - (3.42) are converted into (8, v1. 

() coordinates as 

d81 kv2 80 
— = kv (sinC - - (-3V +1)(3.46) 

       dtw 2 0e az
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    dv(1  8 v a f/          1w
=( 0

e - 8 )sin( + - ( VR+ - )1e (3.47)                          dt k2k 0
e 8z 

d( 
                —-(12

e-8 )cos(+8(3.48)                    dt kv
l 

where the frequency w is assumed to be constant to clarify the effect of 

the inhomogeneity due to the dipole geomagnetic field. In view of the 

magnetospheric condition as De kv1 w - (e -w) >> wt >> it. the 
equations shown above are well approximated by 

d( 
— = 8(3.49) 

                         dt 

d8 
                 = wt ( R + sin ( )(3.50) 

                    dt 

            1kv2 ao 
R = — (3V-)e(3.51) 2wtR0e 8z 

where wt = (kv10w)1/2 and the equation for v1 is not essential to the 

resonant interaction because 161/v11 << 1 while 168/81 - 1, where 6v1 and 

68 are the increment or decrement due to the interaction of v1 and 8, 

respectively. R is called an inhomogeneity ratio of the medium [Karpman et 

al., 1974; Vomvoridis and Denavit, 1979]. Resonant electrons for which IRI 

< 1 can be trapped by the wave when their parallel velocities satisfy a 

condition Iv11-VRI < Vt where Vt is the trapping velocity defined by 

2(v1ilw/k)1/2. 

Let us consider the variation of the kinetic energy Ki=m(v2i + v2.)/2 
of the i-th electron in the wave. From (3.40) and (3.42) we have 

dKi -1 
= mv

iw0 ksin C.(3.52)                               Wdt 

The energy change depends on (iwhich is the phase angle between the wave 

magnetic field and the perpendicular velocity of the resonant electron. 

Resonant electrons for which v VRhave relatively slow change in their 

('s, and play major roles in the energy exchange with the wave. This fact 

is consistent with the previous equation (3.31). From (3.12) and (3.52) we



WHISTLER INTERACTIONS85 

obtain 

                            ek d 
          J=—EK.(3.53)                         E  

mwOw dt  i 1 

Therefore, if the summation of kinetic energies Ki's of resonant electrons 

decreases, JE becomes negative. which causes wave growth via (3.31). 

3.3.3 Interactions in a Homogeneous Medium 

    Self-consistent simulations are carried out by solving the equations 

(3.40) - (3.43) of motion of a large number of resonant electrons with a 

time step much smaller than the trapping period and updating the wave field 

by using (3.31)-(3.32). Computer time is greatly saved by not solving 

equations of motion for cold electrons. The wave phase is determined by 

(3.32) instead of following the motion of cold plasma particles. This 

method is basically the long-time-scale (LTS) algorithm first formulated by 

Rathmann et al. t19781. In their algorithm. however, they follow the time 

evolution of the wave frequency w by using the equation 

         aw aw kakJ 
            —+ V -- = -oV—(B )(3.54) 

at  az 2k g 81 BW 

which is obtained by differentiating (3.10) with time t under the 

assumption that the cold plasma dispersion relation without the beam 

contribution is valid. We found this equation liable to a numerical 

instability because of the time differentiation of kJB/Bw, which picks up 

numerical fluctuations of JB' where JB is calculated from a limited number 

of particles and involves statistical errors. Actually, (3.54) is not 

necessary in the algorithm if the phase relation (3.15) is made use of to 

follow the time evolution of the wave number k. In our method the 

frequency w is determined by (3.32) as a function of k and JB/Bw after 

advancing k in time by (3.15). In the method of Rathmann et al., however, 

the wavenumber k is determined by (3.10) or (3.32) as a function of w and 

JB/Bw after advancing w in time by (3.54). The numerical stability has 

been improved greatly by our method. We have examined basic processes of 

coherent nonlinear wave-particle interaction in the whistler mode by the 

following two simulation. 

    To begin with, we adopt a very simple simulation model where the wave 

and particles interact with each other uniformly in space. In other words, 

the interaction begins simultaneously at every point in space. The medium
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is assumed to be homogeneous and constant in space and time. This 

corresponds to the conventional theoretical treatment of whistler 

instabilities  (e.g., Kennel and Petschek, 1966]. A periodic boundary 

condition is used in the present simulation. By a favor of the LTS scheme, 

the number of grid points in the system is only three, and the number of 

resonant electrons is only 320. In this model, the total energy. i.e., the 

sum of the wave and particle energies must be conserved. because the 

incoming wave/particles into the simulation region are the same as the 

outgoing ones. The wave energy density W
w and the particle energy density 

Wb are calculated as follows. 

      11 
21211 W

w = –eoE2 +=Bw+ – NcmV=— Br- -------(3.55)         22p22u00- w- w

1 Wb = – Nbm < v2 + v2 >(3.56) 

2 where N
c and Nb are the cold plasma and beam densities, respectively, and 

Vw is a velocity of the cold plasma given by V
w = -Jc/(eNc). In Figure 

3.22 the variations of W
w and Wb as well as the total energy density are 

shown. We see a good energy conservation , because the change in the total 
energy caused by numerical errors is very small in comparison with the 

amount of the exchanged energy between the wave and the electron beam . 
     Before going into the detailed discussion of the simulation result . 

we examine a physical meaning of the effects of resonant currents expressed 

in (3.31) and (3.32). For simplicity, we assume the uniform interaction in 

a homogeneous medium where spatial variation of the wave amplitude is 

neglected. From Maxwell's equations we obtain the energy conservation law, 

aW                w + 3
R' gw = 0(3.57) at 

In the case where 3R is antiparallel to g
w (i.e. JE<0 and JB=0), we have 

aW
w/at > 0. Therefore, the wave energy increases when JE < 0. which is 

consistent with the wave equation (3.31). In the case where 3
R is parallel to g

w (i.e. JE>0 and JB=0), the same discussion leads to the fact the wave 
energy decreases when J

E > 0. In this connection, examination of the 
configuration of the wave vectors involved in the present analysis would be 

fruitful. From (2.60) and (3 .55) we could show that
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Substitution of (3.58) into (3.57) gives

( e Jc 

w

)•Ew = 0 (3.59)

while Maxwell's equations (3.2) require that the total transverse current 

must be parallel to the wave magnetic field i.e.Bw,  

( Jc JR ) // Bw(3.60) 

In the case where JR is antiparallel to E, the wave vectors take the 

configuration depicted in Figure 3.23 as a requirement of (3.59) and (3.). 

The phase angle between and deviates from the right angle by be.



88
CHAPTER 3

 (iJC^JR) 
 (Jc*JR)

 QeI

Jc

,661, 

i/w 

E

JR

Fig. 3.23 Relation between 

the case of wave 

interaction.

the wave vectors 

growth due to the

and the 

 uniform

current vectors 

periodic

in

which is given by

68 = tan1(

 -II 
e

Qe

`1E 
) 

Jc

(3.61)

On the other hand, Maxwell
's equations (3.2) yield

which indicates 

(r/k)Bw to gw as 

wave grows or 

(3.62) as

            w r 
       = -(i— + = -— + — )BB(3.62)6   
wk kw 

that the electric field Ew has a parallel component Ei = -
well as a perpendicular component Er = -i(w/k)Bw when the 

attenuates. The deviation angle is also calculable from

r 
68 = tan1( — ) 

w
(3.63)

Equating (3.61) with (3.63), we have



 WHISTLER INTERACTIONS
89

r w J. 
            – _ ( — - 1 )(3

.64) 
           w ~

e Jc 

Assuming Iri << w, we obtain from (3.2) and (3.3) 

0)6  112 
        J= ----------------o e B(3.65)                         c

k (C2e - w )w 

Combining (3.64) and (3.65), we have the same growth rate expression as 

(3.38) 

                         1 8w JF 

r= - - µ--- 
                           2o8kBw 

The above discussion shows that the wave equation (3.31) or (3.38) is also 

derived by analyzing the vector relation in the case where the resonant 

current JF is parallel or antiparallel to Ew. However, it should be noted 
that the deviation angle be is generally very small when In << w, as 

understood from (3.63), and that the effect of 08 that should be involved 

in the calculation of the resonant current JE and JB is neglegible. 

    In the case where JR is parallel to the wave magnetic field, we have 

Jc•Egw0, and the wave energy does not change but the frequency changes as 
indicated by (3.32). It should be noted that w is a function of JB/Bw. 

Therefore. if the wave amplitude becomes small in the presence of JB, a 

large frequency change is expected. It is noted that a derivative of w 

with respect to JB/Bw has a negative sign, i.e., 

8w 
------------- < 0(3.67) 

8(JB/Bw) 

    The variations of the wave amplitude and frequency corresponding to 

the result in Figure 3.22 are shown in Figure 3.24. Initially, the wave 

exists all over the simulation region as well as the beam whose initial 

velocity distribution has the following form 

          f(viI,VI) = A exp {-(vuio )2 } b( vl- Vlo) (3.68) 
VT 

and is uniform in phase W. Viso and VT are chosen as Viso = VR and VT = 

0.5Vt so that most of the electrons are trapped and VT
o as VTo = -VR so 

that pitch angles of the electrons are about 450. This distribution is far
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from the realistic plasma condition in the magnetosphere but is very 

effective in showing characteristic features of trapped electrons in a 

coherent wave-particle interaction within a limited computer time. 

    The location of the resonant electrons in v S space and its time 

evolution are shown in Figure 3.25. At the initial stage of the 

interaction the hot electrons rotate symmetrically around the point of (C, 

vH) = (180°,VR) in the v C space. As understood from (3.12), the JB 

increases rapidly, while the increase of JE is relatively small because of 

the initial symmetry around (C, v)=(180',VR). Therefore, in a quarter of 

the trap ping period, the amplitude Bw remains almost constant, while the 

frequency decreases because of the increase of JB/B
w. The frequency change 

dw leads to the shift of the resonance velocity through dVR= dw/k and hence 

the distribution of the resonant electrons in the v C plane loses the 

symmetry around the point (C, v) = (180°,VR), giving rise to JE which 

causes a growth and subsequent oscillations of the wave amplitude.



WHISTLER  INTERACTIONS 

VII 

                       

. . , 

         T=0.0T=0.1T=0 .2 
      .._ . 

                              —.1.--7,77--77--„,,, - 0 .05-'..'--•-'.,A .',•wt'''.'::.',2 • --- ,,,.;:ij-ii:-.,..4-,  

                                                                                                                                                                                                                  

• •
.. ....- ... 

       - -- -_ 

0  --------------- 180 360 0 . . ,  180 360 0 . . .                                            180 360 

            T=0.3T=.0.4..T=0 .5   

                 ,----..,„          - 0 .05.---.''.-.:',-,::''..--,. - .f-t,..,.---.,.                                                                                                                                    :..... 

                                                                             <1.',..",-;47,-r;--2.:4 
                                                     „.,..74..",..,..-"'" 

        

. . •  

       0 180 360 0 180 360 0 . . .                                             180 360 

   

. . .• 

        T=0.6T=0 .7..                                                   T=0.8 
       ..... 

       __--......
..,„_ 

-005,--..:.,:,:,,,--.,----. ,..--::5-.--.:rf:,::-.,.-,--...7.,:-....-77.7:-.4,.../,..7-„....                                                   .,, 

                                                                                                                                                     ..--                                                            - 

     . . .. . . " .  

        0 180 360 0 180 360 0 180 360 

  Fig. 3.25 Phase-diagrams of resonant electrons in the v11 - C 
             different times. Eye-shaped dashed lines indicate 

             separatrices of trapping regions.

space at 

the

91

    The same simulation with an electromagnetic (EM) code in which 

Maxwell's equations are solved and motion of both cold and hot electrons 

are solved was reported elsewhere  [Matsumoto and Yasuda, 1976; Matusmoto et 

al., 1980]. Their simulation model and the results are essentially the 

same as the present ones, though their code and needed CPU time were 

different. In order to carry out the same simulation by the EM code, it 

takes about 100 times as much CPU time as the present simulation code. 

These facts as well as the good energy conservation stated above indicate 

the validity and effectiveness of the wave equations (3.31) and (3.32) used 

in the present simulation. 

    The model of the uniform interaction discussed above is appropriate to 

investigate the basic mechanisms of the whistler interaction. However, a 

more realistic model is necessary for modeling an encountering interaction 

where a whistler wave packet encounters electrons and hence the interaction 

begins gradually from the front edge of the wave packet. Therefore, the 

second simulation is carried out with this encounter model. The external 

magnetic field is again assumed to be homogeneous for simplicity. The
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3.3.4 Interactions in an Inhomogeneous Medium 

    Inhomogeneity of the geomagnetic field modifies trajectories 

resonant electrons in the v ( space as shown in Figure 3.13. The st 
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monochromatic whistler mode wave with a constant amplitude and 
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 cases. there arises a situation where either trapped or untrapped electrons 

 dominate in the interaction. 

     As seen in Figure 3.13, the range of phase  C where trapped particles 

 can occupy at v0 =VR is limited when 0 < IRi < 1, while they can occupy the 

 whole range of C in the equatorial region where R=0. On the other hand, 

untrapped electrons occupy a limited phase range at vii =VR and thus phase-

bunched at vTherefore. untrapped particles can equally cause a 

resonant current as well as trapped electrons. In the following we discuss 

the results of computer simulations which show the growth or damping of 

whistler wave packets by trapped or untrapped electrons. separately. 

     We use a model of the simulation in which the wave propagating from 

the southern hemisphere encounters with counter-streaming hot electrons in 

the vicinity of the equator- This model simulates the Siple active 

experiment CHelliwell and Katsufrakis, 1974]. The geomagnetic field is 

assumed to be a dipole field. and the interaction region is assumed to be 

along the geomagnetic field line of L = 4. The initial amplitude and 

frequency of the wave are 10-5 - 10-4BoEQ and 0.50eEQ, where BoEQ and eEQ 
are the geomagnetic field and the electron cyclotron frequency at the 

equator. The cold plasma density is assumed to be constant and taken as 

He/0eEQ=10. 

    To begin with, we focus our attention only on the effects of trapped 

electrons. The average phase of trapped electrons is readily deduced from 

the simplified equations of motion (3.49) - (3 .51). The resonance 

condition for trapped electrons requires 

dCd8 
— 0 , — 0(3.69) 

    dtdt 

which give 

v VRC = -sin-1R(3 .70) 

In a case where electrons move away from the equator , R becomes positive. 
Therefore, the center phase around which trapped electrons oscillate shifts 

toward 2n from n and falls in the range n < C < 2n , and hence the phase of 
the resonant current JR is in the range of 0 < < n . Consequently. we 
have a negative JE which causes a growth of the wave amplitude accordi

ng to 
(3.31). 

    The middle panel in Figure 3 .28 shows the spatial profile of the wave 

amplitude and its time evolution . The wave is uniformly distributed all
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over the simulation region and propagates to the right. Electrons are 

continuously injected from the right boundary. which corresponds to the 

equator, with a velocity distribution given by (3.68) where Vigo c - -0.05, 
VT = 0.5Vt, and Vio/c = 0.05 (c: light speed).VHoischosen to be equal 

to the local resonance velocity. so that these electrons are trapped. 

Trajectories of selected four electrons injected at t = 0 are shown in the 

upper panel. All of four electrons are clearly trapped and oscillate 

around vii = VR. The phase diagram of electrons located at z = -1100 — -

900 at t = 2.3Tt is shown in the lower panel where Tt is a trapping time 

computed by the initial wave amplitude. A clear separation of trapped from 

untrapped electrons is seen. Most of the trapped electrons fall in the 

phase range n < C < 2n, giving rise to a negative JE, which causes the wave 

growth. 

    On the. other hand, if trapped electrons move toward the equator. most 

electrons fall in the phase range 0 < C < n, and hence a positive JE is 

formed to cause damping of the wave. The evolution of the wave amplitude. 

selected trajectories of electrons and their phase diagram are shown in 

Figure 3.29. Electrons are injected from the right boundary so that a 

velocity distribution given by (3.68) are realized at the equator if they 

follow adiabatic motions. Viso and VT are chosen so that most of electrons 

are trapped at the right boundary. 

    The effects of untrapped electrons are examined by the following two 

simulations. Each untrapped electron does not remain in resonance for a 

long period, and the interaction is localized at the resonance point where 

a parallel velocity of the electron satisfies vii ti VR. However, as 

understood from (3.49), the rate of phase change is relatively slow at vi1 

VR and the untrapped electrons should pass a limited range of C outside the 

trapping region. Thus untrapped electrons also show phase-bunching. This 

effect was called channel effect phase bunching [Matsumoto and Omura, 

19811. 

    In the case where electrons are approaching the equator. most 

untrapped electrons fall in a phase range of n < C < 2n at the resonance 

velocity, because of the presence of the forbidden region (trapping region) 

over the phase between 0 and n. The lower panel in Figure 3.30 shows the 

phase bunching of untrapped resonant electrons, and a negative JE is formed 

at the resonance point where a wave growth is observed. Electrons are 

injected in the same manner as in the previous two simulations. However. 

VHo chosen so that electrons resonate with the wave not at the right 

boundary but at the middle of the simulation region where 0 < IRI < 1. The
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previously. The ripples of the wave amplitude on the right side of 

resonance point is caused by the untrapped electrons approaching 

resonance velocity, because those electrons are phase-bunched owing to 

cluster effect [Matsumoto and  Omura,  1981].

the 

the 

the

 3.3.5 Discussion and Conclusion 

     Formation of resonant current by trapped particles has been discussed 

 by many authors (e.g., Dysthe [1971] for a homogeneous magnetic field and 

 Nunn [1974] for a inhomogeneous field; see a review by Matsumoto [1979]) . 
 Resonant current due to untrapped particles has also been reported by 

 Matsumoto and Omura [1981]. We have presented the wave equations that show 

 how these resonant currents modify the wave amplitude and wave frequecncy 

 and discussed the physical meaning of the wave equations in Subsections 

 3.3.1, 3.3.2 amd 3.3.3. On the basis of the wave equations , we have first 
 done self-consistent computer simulations by which we confirm detailed 

nonlinear processes of the wave growth in a homogeneous case . Taking into 
account the inhomogeneity effect of the dipole geomagnetic field , we then 
clarified the effects of trapped and untrapped resonant electrons on the 

wave amplitude. The roles of trapped and untrapped electrons are diff
erent 

and exchange their roles depending on the sign of the geomagnetic 

gradient. In the hemisphere where the whistler wave propagates toward the 

equator, trapped electrons cause wave growth , while untrapped resonant 
electrons cause wave damping . In the opposite hemisphere , these roles are 
exchanged. The simulation results shown in Subsection 3 .3.4 demonstrate 
this difference clearly. Nonlinear frequency shift is also ob

served in the 
simulation when and only when the wave amplitude is 

significantly reduced 
in the presence of strong resonant currents . It may be necessary to adopt 
a wider velocity distribution in v

11 for resonant electrons which is more 
realistic and enables us to simulate the situati

on where both trapped and 
untrapped electrons exist simultaneously . In the present simulations the 
wave is injected continuously into the simulation r

egion. However, it is 
necessary to examine the termination effects 

of a whistler pulse because 
the Siple experiments show that many of artificiall

y triggered emissions 
are preferentially triggered at the terminati

on of triggering waves . 
Computer simulations including these effects 

will be reported in our 
subsequent paper.
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Drift velocity of energetic electrons  : -15000 km/sec 

Parallel temperature of energetic electrons : 57 eV 

Perpendicular temperature of energetic electrons : 7.4 

Density ratio of energetic and cold electrons : 8x10-7
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Fig. 3.32 Spatial profile of wave amplitude and its
time evolution.

The cold electrons are not treated as particles but as a fluid which
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gives the plasma dispersion assumed in Eqs. (3.1) and (3.3). A finite 

length of a whistler wave packet is initially placed in the simulation 

region as seen in Figure 3.32 where the spatial profile of the wave packet 
and its time evolution are plotted. The wave front with Gaussian shape is 

initially placed at Z  = 1000km. It propagates toward the positive z 

direction. The amplitude of the wave Bw is 10-5Bo where Bo is the external 

magnetic field. The simulationregion consists of 101 grid points with a 

spacing of 20km. The energetic electrons are initially placed in the 

region z 1000km and move toward the negative z direction. Newly coming 

particles are subsequently injected at the left side boundary of the 
simulation region. In each cell 400 particles are placed on the average to 

represent a velocity distribution of energetic electrons which is a shifted 

Maxwellian distribution in v a subtracted Maxwellian realizing a loss 

cone distribution in v1[Kennel and Abdalla, 19787 

          f(vii,v1) = A exp {-(vu-V°0) } g(v1)(3.71) 
VuT 

v2 v2 

         g(vl) =11t exp( -2 ) - exp( -12) } (3.72) 
VIT OVIT 

where Viso and VT are chosen as Vuo = V R =0.05c and V R is the resonance 

velocity (w -0e)/k. Vey.                       uT0.5Vt = 2.2x104c, where Vt is a trapping 
velocity 2(v10w/k)1/2in which 0w = eBw/m, and e and m are electronic 
charge and mass, respectively. VIT and $ are chosen as VIT - 0.029c and 11 

= 0.5 so that the average perpendicular velocity vio is 0.05c, and that the 

average pitch angle of the electrons is 45°.

3.4.2 Simulation Results and Their Interpretation 

   The spatial profiles of the wave amplitude and its time evolution are 

shown in Figure 3.32. The time is normalized by the trapping period Tt = 

2n/(kv
100w)1/2 calculated from the initial parameters. Under the present 

parameter, Tt corresponds to 447 electron cyclotron periods ( - 32 msec ). 

The front portion of the pulse continuously grows receiving free energy 

from newly coming electrons through cyclotron resonance. We find the 

emission at the rear end of the triggering pulse. This triggered pulse is 

emitted from the resonant current formed by resonant electrons which have 

been trapped and phase bunched by the triggering pulse.
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Fig. 3.33 Dynamic frequency spectra observed at z = 1000 and 1200 km.

    The dynamic frequency spectra observed at z = 1000km and at z = 1200km 

are shown in Figure 3.33. The amplitude of the wave is indicated by the 

width of the frequency spectra. The frequency of the triggering pulse 

shows a slight decrease first. When the amplitude decreases at the end of 

the triggering pulse, the frequency shows a small falling tone and turns to
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a rising tone followed by frequency oscillations. The portion which shows 

rising tone and subsequent oscillations corresponds to a triggered 

emission. 

    As expressed in Eq. (2.73). the frequency is controlled by the 

resonant current JB and Bw through a factor of JB/Bw. while the amplitude 

Bw is modified by JE as expressed in Eq. (2.71). The resonant currents are 

formed through the process of trapping. phase bunching and detrapping of 

resonant electrons. In order to analyze the process in detail, we plotted 

the local amplitude of the wave and the phase diagram of resonant electrons 

in the vii-C phase space at different times. Figure 3.34 shows the phase 

diagram of resonant electrons in the range of z = 1050 — 1150km. The 

effect of the wave is indicated by the separatrix of the trapping region 

whose range of vii is given as 

                        -VC •(3.73) 

The vertical movement of the separatrix indicates the change of resonance 

velocity and correspond to the change of the frequency and wavenumber. The 

change of the size of the trapping region correspond to the amplitude 

variation. 

    Before encountering the 'wave packet, electrons are distributed 

uniformly in phase. At t = 0.4 — 0.6 the electrons are being engulfed by 

the front portion of the wave packet. Owing to the cyclotron resonance 

with the wave, the electrons trapped in the wave potential well begin a 

spiral motion around the center of the trapping region (vii. r)=(VR. 180°). 

Since.the trapped electrons populate around the phase angle 180°, they form 

the positive resonant current JB and cause the frequency decrease. which is 

recognized from the downward motion of the separatrix in the phase 

diagram. Although the electrons are initially distributed symmetrically 

around the center of the trapping region, the symmetry breaks owing to the 

frequency decrease. This results in the phase bunching in the phase range 

of ( = 180° — 360° at T = 0.8 — 1.0, which forms a negative JE causing the 

wave growth. The wave growth is recognized from the enlargement of the 

separatrix. The phase bunched electrons still continue to rotate in the 

potential well and fall in the phase range of ( - 0° - 180° at T = 1.2. 

forming the positive JE' Since the positive JE causes the wave damping, 

the trapping region shrinks and the phase bunched electrons are then 

detrapped from the potential well. 

    It is noted that the wave damping leads to the frequency decrease in 

the presence of the positive JB. Therefore. the detrapping is induced by
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the frequency decrease as well as the wave damping. At T = 1.4 we can 

observe the detrapping due to the both effects. Once detrapped from the 

potential well, the phase bunched electrons change their phase C with the 

rate as 

                 dC 
dt= k( v VR )(3.74) 

When the electrons comes to the phase range of C = -270° to 90°, they form 

the positive JB causing the frequency increase, which corresponds to the 

rising tone in Figure 3.33. As far as the phase correlation is retained. 

the detrapped electrons form resonant currents JE and JB whose signs change 

rapidly in time. These resonant currents cause the subsequent oscillations 

of the frequency and amplitude after the rising tone. 

    The interpretation stated above is not complete, for we have to 

consider the propagation effects as well. The changes of the amplitude and 

frequency observed at z = 1200km are not the simple reflection of the local 

interaction as stated above, but they include those induced in the upstream 

region, as is obvious from the comparison between the spectra observed at z 

= 1000km and z = 1200km. Basically. however, the resonant electrons 

undergo the above process of trapping, phase bunching and detrapping, 

causing the frequency decrease, wave growth, wave damping, rising tone and 

subsequent frequency oscillations. 

3.4.3 Summary and Discussion 

    The computer simulation described in the preceding section showed an 

evolution of a monochromatic whistler wave pulse encountering counter 

streaming hot electrons in a homogeneous magnetic field. Our findings in 

the simulation are the following. 

1) The front portion of the triggering pulse grows continuously receiving 

   energy from resonant electrons. 

2) The frequency of the triggering pulse decreases slightly due to the 

  formation of a positive resonant current JB. The decrease further lead 

  to a small falling tone with a diminishing amplitude at the end of the 

   triggering pulse. 

3) Following the triggering pulse, an emission is generated by hot 

  electrons which have been phase bunched by the triggering pulse. 

4) The diminishing wave amplitude with the falling tone causes a 

  detrapping of phase bunched electrons, resulting a rising tone and
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   subsequent frequency oscillations. 

5) The range of the frequency variation is about 5% of the initial wave 

   frequency. 

6) The time scale of the frequency variation is a fraction of the trapping 

   period corresponding to -  lOmsec. 

     The range of frequency variations found in the simulation is smaller, 

and the time scale of the variations is shorter than a typical triggered 

emission observed in the magnetosphere. This suggests a limitation of the 

present simulation model, i.e.. the assumption of the homogeneous magnetic 

field. Since the detrapped electrons remain at a constant parallel 

velocity in the homogeneous magnetic field, the resonance condition w = kv
ii 

+
e remains constant. The frequency can be changed only by as resonant 

current JB. Especially for a rising tone JB must be negative, which is 

impossible if the resonant electrons are stably trapped in a wave potential 

well. Therefore, detrapping of phase-bunched electrons are necessary for a 

rising tone [Roux and Pellat, 1978; Matsumoto and Omura . 1983]. In the 

inhomogeneous geomagnetic field the rising tone could continue for a longer 

period, because the phase-bunched electrons, if detrapped at the equator , 
increase their parallel velocities v

ii's(<0). The inhomogeneity of the 
magnetic field seems to be indispensable for a wider and longer frequency 

variation. 

    Another limitation of the present simulation is that only a single 

monochromatic whistler wave is treated in the system . The frequency 

oscillation after the rising tone may reflect a situation where side bands 

are excited. A full electromagnetic particle simulation code can only 

treat the situation properly . The electromagnetic simulation with an 

inhomogeneous magnetic field is currently undertaken in our group , and will 
be published elsewhere. 

3.5 Deformation of Distribution Function by Trapping and Detrappinq

    There are three main categories in theories of VLF triggered 

emissions: (1) : Feedback oscillator theory which is based on the phase 

bunching current in a feedback oscillator system locatin
g in the 

inhomogeneous geomagnetic field [e .g., Helliwell and Ivan, 1982] . This 
theory is not based on a concept of nonlinear phase trapping of 

resonant 
electrons by the triggering wave . (2) : Nonlinear resonant current theory
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based on the nonlinear phase trapping of resonant electrons in the 

inhomogeneous geomagnetic field [e.g., Nunn, 1974, 1983, Omura and 

 Matsumoto. 1982]. This theory does not require the phase detrapping of 

resonant electrons in its mechanism. (3) : Distribution deformation theory 

based on both the nonlinear phase trapping and subsequent phase detrapping 

of resonant electrons in the inhomogeneous geomagnetic field [e.g. Roux and 

Pellat, 1978; Melrose et al.. 19831. 

    In this letter, we report a simulation study corresponding to the 

theory of the third category. Roux and Pellat [1978] found that a strong 

modification of the velocity distribution function of resonant electrons is 

created by a combined action of nonlinear phase trapping and inhomogeneity 

of the geomagnetic field due to the difference of phase space orbits 

between trapped and untrapped electrons. As a result of this orbital 

difference, either a beam or a hole is formed in the distribution function 

in the vicinity of the resonant velocity after the triggering wave releases 

these electrons at the tail end. In order to evaluate the resultant 

deformed distribution function at a detrapping point analytically. they had 

to make a simple assumption that (1) all of the trapped electrons are 

trapped only at the wave front and all of these trapped electrons are 

detrapped at the wave tail end ; and (2) those electrons which suffer from 

orbital change due to the monochromatic whistler wave are only trapped 

electrons, i.e., the contribution of orbital modification of untrapped 

electrons due to the whistler wave to the deformation of the distribution 

function is neglected. The objective of the present letter is to estimate 

the resultant deformed distribution function numerically including the 

points mentioned above which had been neglected in the theory of Roux and 

Pellat. 

3.5.1 Phase Trapping in the Midst of the Wave Train (Side Trapping) 

    As Matsumoto and Omura [1981] pointed out in their test particle 

simulation, phase-trapping takes place not only at the wave front where the 

wave amplitude increases suddenly. but also in the midst of the whistler 

wave train other than the wave front because of the the gradual change of 

the inhomogeneity ratio R (as for the definition of R, see e.g., Nunn, 

[1974] or Vomvoridis and Denavit, [1979]) as the whistler wave propagates 

along the geomagnetic field. In this section. we call this trapping "side 

trapping" in contrast to the "wave-front trapping". The problem is then, 

how many electrons can be trapped by the side trapping when the triggering
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 wave propagates through the sea of the resonant electrons. In order to 

 demonstrate this effect, we assume the unperturbed distribution function of 

 a form of  b(v1 -V10) for perpendicular velocity, of uniform in phase and of 

 a shape as depicted in Figure 3.35(a) for parallel velocity, where Vlo = 

0.087 which gives a pitch angle of 60° for a resonant electron at the 

equator. Figure 3.35 shows a difference of the vu distribution function 

averaged over the phase angle and vT at the equator along a field line of L 

= 4 between t - 0 and t = 6 T
t where Tt is the trapping time. In order to 

make it possible to trace back the original velocity, we divide the 

velocity range into nine sectors with nine different shaded tones. The 

wave front of the whistler wave train is assumed to be located well to the 

northern side of the trapping zone (as for the definition of the trapping 

zone, see Matsumoto and Omura, [1981]). Therefore, no wave -front trapping 

takes place in this model. By the time of t = 6 Tt, all electrons which 

have had the local resonance velocity VR at t 0 have passed the equator 

toward the southern hemisphere. Therefore. at t = 6 Tt, all we see in the 

vicinity of the resonance velocity. v
0 = -0.5 are either untrapped 

electrons or those trapped by the "side trapping". As seen in the figure . 

we could see humps in the vicinity of the resonance velocity indicating 

invasions of electrons from higher velocity region . These invading 

electrons from higher velocity region show the amount of the "side 

trapping" which take place all the way along the wave train from the 

northern limit point of the trapping zone to the equator . 

3.5.2 Contribution of Untrapped Electrons Perturbed by the Triggering Wave 

to the Deformation of Distribution Function 

    In addition to the contribution of trapped electrons , we need to take 
into account the contribution of untrapped electrons to the total 

deformation of the velocity distribution function
. The importance of 

untrapped resonant electrons has been recognized by Bell and Ivan [1981]
. 

even though their main interest is not the deformation of the velocity 

distribution function but pitch angle scattering of those electrons
. 

Figure 3.36 shows an example of how the velocity orbits are strongly 

modified by the triggering whistler wave even for untrapped electrons
. The 

upper panel of Figure 3.36 shows the orbits in the v
ii - z plane of many 

electrons which encounter the whistler wave in the northern hemisphere 

within the trapping zone . The lower panel shows the corresponding orbits 

in the v
1 - z plane. In this example. most of the electrons are not phase
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remain untrapped but their orbits are strongly perturbed from 
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 the calculation of the resultant deformed distribution 

ould not disregard this pumping effect for the untrapped 

ne example of the contribution of these perturbed untrapped 

he deformation of the distribution function is seen in Figure 

ps appearing in the vicinity of vii-0.051c and - 

ed by "a" and "b" in the figure) are created by the pumping 

untrapped electrons. where c is the light speed. 

d Distribution Function caused by a Whistler Pulse Train 

.37 and 3.38 show a simulation result of the deformed 

function at two different times t = 3Tt and 6Tt caused by a 

pulse with an amplitude of 5 mr and a length of 1000 km 

  approximately to 65 msec). The traces of wave front and



WHISTLER  INTERACTIONS
113

wave end tail are depicted in the Figure 3.39 for reference . 
    Nine different shading tones in Figures 3 .37 and 3.38 correspond to 

those in Figure 3.35(a). As seen in Figure 3.39, the triggering whistler 

pulse occupies a region including the equator at t = 3Tt. A large hump 

indicated by "b" and its adjacent hole indicated by "Hole" in Figure 3 .37, 

are clearly due to the pumping effect for untrapped electrons . A small 

hump indicated by "a" is due to locally trapped electrons (mostly by 
"front-trapping") . These particles in the small hump, however , are not 

efficiently accelerated in the direction of v
l because of the small 

geomagnetic inhomogeneity in the vicinity of the equator. Therefore the 

hole just below the resonant velocity does not lead to any strong whistler 

instability. At t = 6 Tt, the whistler triggering pulse is located in the 

northern hemisphere. The velocity distribution function is modified as 

shown in Figure 3.38. The velocity corresponding to the bottom of the hole 

is clearly deviated toward the higher velocity side from the resonance 

velocity. This is due to a sum of contributions from trapped and untrap 

ped particles. Reduction in number in this hole is due to the pump-up 

effect of untrapped particles which takes place in the northern hemisphere 

as illustrated by a typical orbit "b" in the lower panel of Figure 3.38. 

However, in this hole velocity range, a fairly large amount of electrons 

are carried down by the wave trapping from higher velocity region as 

indicated by "a" in the upper panel of Figure 3.38. It is noted that these 

electrons are detrapped at the wave termination and follow their adiabatic 

orbit before reaching the equator as illustrated by a typical orbit "a" in 

the lower panel of Figure 3.38. A small hump which appears next to the 

hole on the higher velocity side is due to the pump-up effect of untrapped 

electrons taking place in the whistler wave train in the northern 

hemisphere. This hole at this time has different nature than that at t = 3 

Tt because it contains a large percentage of trapped electrons which have 

been activated by gaining their vi during their trapped excursion in the 

whistler train. 

    Thus, the hole region with both a steepened gradient of the velocity 

distribution function with respect to parallel velocity and activated 

perpendicular energy resources becomes unstable for an induced whistler 

instability. However it is noted that this distribution function becomes 

unstable immediately after the detrapping takes place in the northern 

hemisphere. As both detrapped and untrapped electrons run along their 

adiabatic orbits, the center velocity of the activated hole moves towards 

higher velocities and may give rise to a falling tone emission. This last
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statement is the same as Roux and Pellat [1978] proposed in their theory, 

and needs to be verified by self -consistent simulation experiments with 

the deformed distribution function computed by the present test particle 

simulation. This simulation is now being carried out and will be published 

in another article. 

3.5.4 Interpretation of Pulse Length Dependence of Triggered Emission 

    Based on the features of deformation of the distribution function by 

the whistler triggering wave, we can interpret one of the well-known 

characteristics of triggered emissions. As schematically illustrated in 

the upper panel of Figure 3.40. the dynamic spectrum of triggered 

emissions changes from falling tones to risers as the length of triggering 

wave is changed from shorter to longer [Helliwell and Katsufrakis, 19741. 

    A short triggering pulse cannot trigger any emissions while it is 

located in the southern hemisphere because those electrons which are 

detrapped from the tail end of the triggering pulse are all inactivated by 

losing their perpendicular energy during their trapped excursion in the 

wave train. This situation is schematically illustrated in Figure 3.40.
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However, if the pulse occupies an appropriate location within the trapping 

zone in the northern hemisphere where the difference of the resonance 

velocities at both ends of the triggering pulse is large enough to produce 

a strong modification of the distribution function, then activated 

electrons are ejected from the pulse tail end. These detrapped electrons 

thus generate a falling tone emissions. On the contrary, in the case of a 

long triggering pulse the wave tail end can be located in the southern 

hemisphere even when the wave front is located far away from the equator in 

the northern hemisphere. Then electrons trapped by both front-and side-

trapping are ejected from the wave tail after a long period in the wave 

trapping well. Therefore these trapped electrons are well activated and 

are ready to generate a riser emission when they begin to run on their 

adiabatic orbits. A schematic illustration for this mechanism is given in 

Figure 3.40. 

3.5.5 Conclusion 

     In this section. a computer simulation study is reported which 

corresponds to an analytic theory of triggered emissions by Roux and Pellat 

[19781. Test particle simulation runs basically support their idea of 

deformation of distribution function created by detrapping of trapped 

electrons. However, it is demonstrated that contribution to the 

deformation comes not only from the electrons trapped at the wave front as 

Roux and Pellat assumed but also from those electrons trapped in the midst 

of the wave train (i.e., side-trapping effect) and also from untrapped 

electrons via strong modification of their adiabatic orbits due to the 

triggering wave (i.e., pump-up effect). The theoretical interpretation of 

dependence of dynamic spectra of triggered emission on the length of 

triggering pulse appears to agree with experimental data. However, it is 

not confirmed quantitatively that the deformed distribution function could 

lead to a generation of triggered emissions. It is not clear either which 

category of theories is the best for the interpretation of triggered 

emissions at the present stage of simulation studies. There are definite 

needs to accomplish different kinds of computer simulations for all the 

three theoretical models.
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3.6 Effects  of  Electrostatic Waves on Whistler Mode. Instability  

    In most of simulation studies as well as theoretical studies. effects 

of electrostatic components are neglected for simplicity and numerical 

efficiency based on the assumption that the transverse whistler mode waves 

and the longitudinal electrostatic waves are independent each other within 

the limit of linear theory. Only Bell and Buneman [1964] compared the 

phase mixing rates of the whistler mode and longitudinal instabilities 

excited by an electron beam. and suggested the possibility for the whistler 

mode instability to take over the longitudinal instability. However. we 

find that the whistler beam instability is suppressed by the beam velocity 

spread due to the nonlinear trapping of beam electrons by the fast-growing 

electrostatic waves. 

    Assuming a coherent whistler mode wave interacting with a counter-

streaming electron beam. we studied the dependence of the whistler 

saturation level on the initial waves amplitudes. We find that a larger 

initial wave can reaches a larger saturation levels. This is contrary to 

the simulation results by Matsumoto et al. [1980]. They neglected the 

electrostatic waves in the simulation. and reached a different conclusion 

that the saturation level is the same regardless of the initial wave 

amplitudes. 

    In Subsection 3.6.1 beam instabilities of the whistler mode waves and 

the electrostatic waves are theoretically studied. We compared the growth 

rates and the widths of parallel velocity spread by nonlinear phase 

trapping for the two instabilities. Based on the linear theory, we 

performed one-dimensional electromagnetic simulations. We performed 

several runs with no initial wave and with different initial waves. We 

also performed one simulation run where electrostatic waves are 

artificially eliminated. The results of these simulation runs are 

presented in Subsection 3.6.2. Subsection 3.6.3 gives conclusions and 

discussion. 

3.6.1 Theoretical Study of the Electron Beam Instabilities 

    The electron beam with a drift velocity parallel to the static 

magnetic field and a perpendicular velocity can excite both the 

longitudinal electrostatic and transverse whistler waves in a magnetized 

plasma. In this section. we examine the growth rates. saturation levels 

and trapping velocities for the longitudinal and whistler instabilities. 

We assume an electron beam with a velocity distribution function given by
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v----------u 

              f(vi~.  v1) = Cep {-(°-)2 } g(v1)(3.75) 
VHT 

where CN is a normalization constant and u is a drift velocity of the 

beam. The subscript ii and 1 attached to v denote the velocity components 

parallel and perpendicular to the static magnetic field Bo. respectively. 

The perpendicular velocity distribution g(v1) is a subtracted Maxwellian 

realizing a loss cone distribution. which is given by [Kennel and Abdalla. 

1978] 

      1v2v2 
g(vi) _ -------- { exp( -  ) - exp( - 12 ) 1(3.76) 

1 - 0 VITOV1T 

The VHHT and VIT are parallel and perpendicular thermal velocity. 

respectively. We assume a monoenergetic beam. that is. 

              rmax >> kVuT(3.77) 

where r
max is the maximum growth rate. 

    First, we consider the longitudinal oscillations whose dispersion 

relation is given by [O'Neil et al., 1971, Akhiezer et al.. 1975] 

H2 n2 
           1- - n --------------2= 0(3.78) 

                   w2(w - ku) 

where n is a density ratio of electron beam and background cold plasma 

nb/nc. Putting to = ku + w'. we find the maximum growth rate and frequency 

are given by 

                         ^3 
rmax = Im(w' ) = 4/3n 1/3ku(3.79) 

                             2 

to = ku + Re (n) = 11
e 1 - 2-4/3n1/3 }(3.80) 

where we assumed the resonance condition n
e = ku. The longitudinal 

electrostatic oscillation grows with the maximum growth rate initially and 

eventually reaches an amplitude large enough to trap the beam electrons 

[O'Neil et al.. 1971]. Since the trapped electrons rotate around the phase 

velocity w/k. the amount of kinetic energy lost from the electron beam is
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             - AW
p = nbmu(u - w/k) = nbm 2-4/3n1/3u(3.81) 

This energy is transfered to the wave energy which is a summation of the 

electric field energy and the kinetic energy of the cold plasma supporting 

the logitudinal wave, that is. 

                 Ww=2&oCw+2ncmVw(3.82) 

) where Vw is a velocity of the cold electrons which follow a sloshing motion 

in phase with the wave. From the equation of motion. we have 

                 Vw - (eEw)/(mw) .(3.83) 

Substituting (3.83) into (3.82). and assuming w = 11e' we have 

              WW= E0E2.(3.84) 

Equating Ww and -Wp,we obtain the saturation level of the electric field 

as [Drummond et al., 19701 

              E= 2-2/3 (nbm)1/2)1/6u2-2/3m0fl2/3 u (3.85)       w
coe 

where m and e are electron mass and charge. respectively. 

    We examine the motion of those trapped beam electrons. We assume the 

(x,y,z) coordinates system where both the static magnetic field Bo and the 

wave number vector k is along the x-axis. The equations of motion of an 

electron in the presence of the longitudinal electrostatic field 

E(x.t) = Ew sin(kx - wt +o)(3.86) 

are described using variables 8 and C 

          8 = k ( v - k ) C =kx-wt+~o(3.87) 

as 

    d8dC 
             = w2 sin C — = 8(3.88) 

      dt dt 

where 0
o is an initial phase of the oscillation and wt is the trapping 

frequency given by
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   (3.89)

 Fig. 3.41 Trajectories of resonant electrons in the 8 -  ( phase space. 

Trajectories of resonant electrons described by (3.88) are shown in Figure 

3.41. The shaded area is the trapping region where electrons are trapped 

and oscillate around (C, 8)  _ (1800, 0.) with approximately the trapping 

frequency. Since the separatrix of the trapping region is given from 

(3.88) as 

82 = 2w2( 1 - cos ( ) .(3.90) 

the width of the trapping area in vii is given by the trapping velocity 

              Vt = 2wt/k .(3.91) 

    After the logitudinal instability reached the saturation, the beam 

electrons undergo trapping oscillation and are diffused over the trapping 

region. Therefore, the velocity spread of the beam electrons are estimated 

by the trapping velocity. From (3.85), (3.89) and (3.91), we obtain the 

trapping velocity for the longitudinal oscillation as
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VtS - 22/3n1/3u - 1.59 n1/3u(3.92) 

The initially monoenergetic beam eventually spread in vii over the range of 

w/k -VtLC v w/k + VtL 

    Second, we examine the whistle mode instability for the electron beam 

with transverse velocity distribution g(vl). Matsumoto et al. [1981] 

estimated the growth rate and the saturation level by a similar method 

presented above for the logitudianl instability. For comparison with the 

longitudinal instability we cite their results in the following. The 

dispersion relation is given by 

II2w fi2(w - ku) Ib(1/22<V2> 
   c2k2 - w2 + --------e+e----------------+12= 0 .(3.93) 

w -0e w - ku -6(w- ku - e ) 

where <v,2> is the mean square perpendicular velocity of the beam. The 

maximum growth rate is obtained from (3.93) as 

                rmax = ^324/3n1/3 Fku(3.94) 

                  w = 0
e - ku - 2 4/3ii1/3Fu(3.95) 

where F is replaced by 

                    k        2<v>22 
F- 1332------------------------------------- 11/3 = (k<vl>)1/3 (3.96) 

             kuQe + 2(0e - ku) ku/ fee u 

The approximation made above comes from an assumption that 0 < (0e -ku)/0e 

< 1 and Ile >> 02 which is well satisfied in the equatorial magnetosphere. 
Under this approximation we obtain a saturation level for the mode with the 

maximum growth rate as 

Bw 
- 2-1/642/3( < )5/3 VI/3u4/3(3.97) to 

      Bo0e 

where Vlo=<vi>= (1 + 0)1/2V,1. 

    Equations of motion for resonant electrons with a counter-streaming 

whistler wave is approximated by (3.88) if we assume the following 

coordinates [Matsumoto and Omura, 1981],
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 a 
                8 k( vii -               we )  C =- V(3.98) 

k 

where W and V are phase angle of a perpendicular velocity vi and the wave 

magnetic field Bw in the rest frame. The trapping frequency is given by 

wt = (kVloeBw/m)1/2(3.99) 

Since the motion of a resonant electron in a whistler mode wave is 

described by the same equation as for a longitudinal oscillation. The 

resonant electrons undergo trapping by the whistler wave and diffused in v0 

over a range of VR -Vtw < v VR -Vtw. VR is the resonance velocity given 

by (w -0e)/k and Vtw is the trapping velocity of the whistler wave given 

from (3.92) as 

                 11/12 1/3 k 1/32/32/3 V
tW = 2( )Vlou(3.100)                                   e 

We now compare the growth rates of electrostatic waves and whistler mode 

waves. From (3.79) and (3.94) we have the ratio 

(rmax)W
="U1 F(3.101) 

(rmin)S kS 

where subscripts "W" and "S" denote quantities of Whistler mode waves and 

electrostatic waves, respectively. Since F = 1 for the magnetospheric 

parameter, the difference comes from the ratio of kW/kE.Since the 

frequency of the whistler mode wave is much smaller than that of the plasma 

oscillation, kW << kE. Therefore, the growth rate of a whistler wave is 

much smaller than that of electrostatic waves. 

    Bell and Buneman evaluated the competing process by defining the phase 

mixing rate (r)max/ku which indicates the wave growth in a time during 

which the electron beam travels over one wavelength {19641. The difference 

of the phase mixing rates is the factor F. Since F could be larger than 

unity, they conclude that the whistler mode wave eventually takes over the 

electrostatic waves. However, they neglected the modulations of electron 

beam by the electrostatic waves. The electrostatic wave grows first and 

reach a saturation level in the initial phase of whistler wave growth. If 

the trapping velocity of the electrostatic wave is small enough compared 

with that of whistler wave, the whistler mode wave could grow even after 

the saturation of the electrostatic wave. We now compare the trapping
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velocities given

If we assume an 

whistler mode 

is of the order 

is large enough

by (3.82) and (3.99), 

VtW 
_ 21/4(k )1/3 v2/3 u-113 

to V
tS 0e 

electron beam with a pitch angle of 45° 

wave of a frequency 0.50
e' the ratio of 

of 1. Therefore, the modulation by the 

to suppress the growth of the whistler

(3.102)

resonating with a 

 trapping velocities 

electrostatic wave 

mode wave.

3.6.2 Simulation Study of Electron Beam Instabilities 

    We performed a self-consistent electromagnetic simulation where 

electrostatic waves and electromagnetic whistler wave are solved 

simultaneously. We assume a one-dimensional periodic system where a 

whistler wave interacts with a counter streaming high energy electrons. In 

order to study the dependence of the whistler instability on the initial 

wave amplitudes of the waves, we performed several runs with different. 

initial wave amplitude. Parameters assumed in the simulations are the 

followings.

   Plasma frequency : 211e 

 - Thermal velocity of background electrons : 0 .Olc 

   Parallel thermal velocity : 0.17c 

 - Perpendicular beam thermal velocity : 0 .21c 

   Parallel beam thermal velocity : 0.01c 

 - Density ratio of beam and background plasma n : 0.01 

- Minimum wave number in the system k
min : 0.614c/ae 

 - Wave number of initial whistler wave : 2.46c/0
e 

   Number of grid points : 1024 

 - Number of particle : 16384 

 - Time step At : 0.005 a-1 

    The initial wave mode number is 4, that is , we have four wavelengths 

in the system. 

    First, we assume no initial wave, and we study wave excitation from 

thermal fluctuation noise by an electron beam (Case A). Kinetic energy 

history is plotted in Figure 3.42. The upper panel shows the parallel and 

perpendicular energy Kai and Kl and drift energy Kd of background cold 

electrons. The lower panel shows those of beam electrons. At first the 

drift energy of the beam decreases. The energy lost from the beam is
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 transfered to the wave and background cold plasma.  However, the energy 

transfer Proceed mainly in the parallel direction, and Ki's of the beam and 

cold plasma hardly change. which imply that excitation of the transverse 

whistler mode wave is small and its effects are negligible. Figure 3.43(a) 

shows a time history of the parallel and perpendicular electric field 

energy. Obviously the parallel electric field is strongly excited in the 

very early stage, while the perpendicular electric field increases 

slightly. The perpendicular magnetic energy density shown in Figure 

3.43(b) increases slightly, indicating that excited wave is purely 

electrostatic. 

     In order to find the initial growth rates of the electrostatic wave 

and whistler mode wave with maximum linear growth rates. we plot time 

histories of the parallel electric field of mode 22. and perpendicular 

magnetic field of mode 4 in Figure 3.44(a) and(b). respectively. Here. 

mode numbers indicate a number of wavelengths in the system. The growth 

rate of the most dominant electrostatic wave is read from Figure 3.44(a) as 

  0.4 and the growth rate of the whistler mode wave is read from Figure 

3.44(b) as — 0.05. Since the theoretical growth rates given by Eqs . (3.79) 

and (3.94) are 0.4 for the electrostatic wave and 0.05 for the whistler 

mode wave, the agreement between the simulation and the linear theory is 

good. 

    Figure 3.45 is the same mode history plots as Figure 3 .44, but for the 

whole simulation run ( t = 0 — 300 Ll
e-1). The dashed lines are theoretical 

saturation level given by (3.85) and (3.97) . For the electrostatic wave 

agreement between the simulation and theory is good . For the whistler mode 

wave, however, the wave growth stops before reaching the theoretical 

saturation level. After that the wave decreases gradually . 

    Since the growth of the whistler mode wave stops when the 

electrostatic wave reaches its saturation, a possible cause of the 

disagreement is a modulation of the electron beam by the electrostatic 

wave. Figure 3.46 shows phase plots of beam electrons in the x - v v
x) sp

ace at different times. Initially beam electrons are distributed 

uniformly in space and monoenergetic in v
ii. At t = 20.00e-1, when the 

electrostatic wave reaches the saturation , the electrons are trapped in the 

electrostatic potential and follow a spiral motion around the phase 

velocity w/k. The number of spirals is 22 and agrees with the mode number 

of the most dominant electrostatic wave . The width of the velocity spread 
is about 0.12c, while the trapping velocity for the electrostati

c wave VtS 
is calculated from (3.92) as 0 .058c. Therefore, the velocity spread is
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(b) 

in Case

about 2VtL. At later times t 400e-1 and 3000e-1, the velocity spread 

becomes gradually larger. This is due to gradual excitation of other 

electrostatic modes and broadening of the spectra of the electrostatic 

waves. 

    An w - k spectra obtained by Fourier-analyzing the wave data both in
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 Fig. 3.45 Time history of (a) parallel electric field of mode 22 and (b) 
           perpendicular magnetic field of mode 4 in Case A : the whole 

           run (t = 1 - 3000e-1). The dashed lines are theoretical 
            saturation levels. 

space and time is plotted in Figure 3.47. Panel (a) is for the 

longitudinal electric field E. and Panel (b) is for one of the transverse 

magnetic field B.We find broad spectra of the electrostatic waves near 

the plasma frequency 20e. On the other hand. a whistler mode wave of mode 

4 is hardly excited and we only find spectra of thermal fluctuations of
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normal modes, that is, whistler mode waves, right and left handed light 

modes in panel (b). 
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   Fig. 3.48 Time histories of perpendicular magnetic field of mode 4 (a) 

              Case A : no initial wave, (b) Case B : Bwo = 1 x 10-4B0, (c) 
              Case C: Bwo = 5 x 10 -1B0, (d) Case D : Bwo = 1 x 10-3B0. 

    As the second step, we put the initial whistler mode wave of mode 4 

which satisfy the resonance condition w = 0
e - ku. We performed three 

simulation runs with different initial amplitudes. We show the history 

plots of the perpendicular magnetic field of mode 4 in Figure 3.48. Panels 

(b), (c) and (d) show the cases with the initial wave amplitudes Bw/Bo = 

1x10-4 (Case B), 5x10-4 (Case C) and 1x10-3 (Case D), respectively. We 

also show the case of noise start in Panel (a). Contrary to the case of 

noise start, the cases with a initial wave show growth and saturation. 

However, the initial growth rates in Panels (b). (c) and (d) are about 0.01 

and smaller than a theoretical linear growth rate 0.053 given by (3.94). 

The saturation levels are different depending on the initial wave 

amplitudes. A whistler mode wave with a larger initial amplitude reaches 

saturation at a larger level. Even for the case with a large initial
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 amplitude B
w/Bo=  1x10-3 shown in Panel (d). the saturation level is 

3x10-36
0and lower than the theoretical saturation level 0.01B0given by 

 (3.97). The cases with the initial amplitudes 5x10-3 and lx10-3 also show 

damping after the saturation. .PP The four simulation runs presented 

above clearly show that the electron beam is strongly modified by the fast-

growing electrostatic waves and growth of a whistler mode wave is 

suppressed due the the modulation. In order to confirm the pure whistler 

mode beam instability theoretically studied in Section 2, we performed a 

non-electrostatic simulation where the longitudinal electrostatic field is 

artificially eliminated from the system (Case E). This is achieved by 

assuming the current density Jx is 0 all the time and not solving Poisson's 

equation. The kinetic energy history is shown in Figure 3.49. Contrary. 

to the electrostatic case in Figure 3.42, the beam drift energy increases 

and perpendicular thermal energy of the beam electrons decreases. giving 

energy to the perpendicular component of cold electrons and the transverse 

electric and magnetic field, whose energy history is shown in Figure 3 .50. 

Out of the thermal fluctuation noises, the most unstable mode grows 

linearly and reaches saturation and oscillates around the saturation 

level. Figure 3.51 shows a history plot of mode 4. The saturation level 

is 0.O1Bo and agree with the theoretical value by (3.97) . Phase plots of 

the beam electrons at different times are shown in Figure 3 .52. The 

initial spiral motion as shown in Figure 3.46 is not found in this case . 

At t = 2000
e-1 the velocity spread by the whistler wave trapping is small, 

while by that time the electrostatic wave almost reached its saturation in 

the previous runs. Therefore, effects of the whistler mode wave on the 

electrostatic instability is very small, and the initial motion of the beam 

electrons are solely decided by features of the electrostatic waves . At 

the end of the run, the velocity spread is about 0 .12c which is 2Vtw,which 

agree with the theory of the nonlinear phase trapping presented in Section 

2. 

3.6.3 Discussion and Conclusion 

    In the present paper, we studied electron beam instabilities of the 

whistler mode wave and the electrostatic waves propagating parallel to the 

static magnetic field. Based on the linear theory
, we obtained the 

saturation levels, and the trapping velocities for the two wave modes
. For 

Plasma parameters at the equatorial magnetosphere . the electrostatic waves 

grows much faster than the whistler mode wave , and it is hardly affected by
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perpendicular magnetic field of mode 4 in Case 
lines the theoretical saturation level .

the whistler mode wave. The growth rate. saturation level and trapping 

velocity of the electrostatic wave in the simulations are in good agreement 

with the linear theory. However, the whistler mode instability is strongly 

affected by the electrostatic waves through modulation of the electrostatic 

phase trapping. Without an initial coherent wave, whistler mode waves 

hardly excited from the thermal fluctuation noises. When we put an initial 

coherent wave, it grows and saturates. However, the growth rate and the 

saturation level are smaller than the theoretical values. 

    Saturation levels of the whistler instability depend on the initial 

wave amplitudes due to the effects of co-existing electrostatic waves. 

This fact is one of possible causes for the existence of power threshold 

for growth of coherent VLF signals in the magnetosphere [Helliwell et al., 

1980]. If the initial amplitude is too small, the beam electrons are 

diffused by the electrostatic waves, before the growing whistler wave 

reaches a detectable value. 

    In the present study, we assumed a very sharp electron beam as a 

source of free energy. Since the growth rates of the electrostatic waves 

excited by the electron beam. is much larger than that of whistler mode 

wave, the electron beam soon diffuse over the width of 2Vts before the 

whistler mode wave grows. Therefore, whistler wave studies with the 

assumption of a very sharp beam are not relevant to a realistic 

interpretation of observations, although the interaction itself is



138
CHAPTER 3

 x

0.30

0.00

-0  .30 

  0. 00 5.12 

 X

TIME = 0.

 10.24

00

X 
>

0.30

0.00

-0 . 30 

 0. 00

 

.5 .  12 

X

TIME =

10.24

20.48

x

0.30

0.00

-0 . 30 

 0. 00 5.12 10.

TIME

 24

110. 96

X

0.30

x 0
.

-0 .

Fig. 3.52

00

30 

 0. 00

Phase 

where

5.12 

 X

TIME

 10.24

plots of beam electrons in the x - vii 
no electrostatic wave exists.

space

= 307.20

: Case E



 WHISTLER INTERACTIONS 

physically interesting,

139



140 

                        CHAPTER 4 

          ELECTROMAGNETIC ION CYCLOTRON MODE  INTERACTIONS 

                    AND HEAVY ION HEATING 

4.1 Introduction  

    It has recently been recognized that heavy ions are important to the 

dynamics and stability of different regions in the earth's magnetosphere. 

Shelley et al. [1976] and Ghielmetti et al. [1978] have reported 

observations of intense fluxes of 0+ streaming up high-latitude auroral 

field lines at altitudes of — 1 RE. Data from the 53-3 satellite show that 

ion composition can vary from 10% to more than 90% oxygen [Mizera et al., 

1981]. 

    The inferences of 0+ streams deep in the magnetotail boundary layer by 

Frank et al. [1977] and Hardy et al. [1977] suggest that there might be 

measurable fluxes of energetic 0+ ions of terrestrial origin deep in the 

plasmasheet. Results from the energetic ion mass spectrometer on ISEE-1 

show that the plasmasheet has a significant and variable ionospheric 

component (He+ and 0+) which represents from more than 10% to 50% of the 

total number density [Petersen et al., 1981]. 

    At the geostationary orbit, 0+ and He ions of medium energy (— 10 

keV) have been found to be important constituents of magnetospheric plasma, 

especially during magnetic storms [Geiss et at.. 1978; Young. 1979; 

Balsiger et al., 1980]. But the most intriguing observational results 

obtained by GEOS-1, -2 and ATS-6 spacecrafts are that He or 0+ ions are 

heated up to suprathermal energies ( — 100 eV) at times when large 

amplitude ions cyclotron waves (ICW's) are detected [Young et al., 1981: 

Mauk et al., 1981; Roux et al., 1982; Fraser. 1982]. 

    The facts that heavy ions are found in many different regions of the 

magnetosphere, that they are of terrestrial origin and that they can be a 

major constituent of the plasma have motivated the community to reexamine 

theoretical studies of wave particle interactions including the effects of 

heavy ions. When studying wave particle interactions in the presence of 

heavy ions, there are two problems. The first is the effect of heavy ions 

on the dynamics and stability of plasmas. The second and more pertinent. 

problem is to understand the mechanism responsible for energizing such 

heavy ions. 

    In several studies, these questions have been stated for different 

regions of the magnetosphere. On auroral field lines, the heating of 0+
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has been studied by using electrostatic waves [Lysak et al., 1980; 

 Papadopoulos et al., 1980; Ashour-Abdalla et al., 1981; Ashour-Abdalla and 

Okuda. 1984]. Lysak et al. [1980] used strong turbulence theory, which 

considered the ion orbits in a set of fixed amplitude waves with a definite 

phase relation. Papadopoulos et al. [1980] argued that the heavy ions form 

a minority constituent of many magnetospheric multi-ion plasmas. As such. 

the heavy ions do not affect the collective mode structure of the plasma 

due to their small abundance ratios. They thus examined the acceleration 

of large M/Q ions in the presence of a coherent large amplitude 

electrostatic hydrogen cyclotron wave. It was found that when the wave 

amplitude exceeds a certain critical value the particle orbits become 

stochastic and the particles can be accelerated by the wave. The most 

important result was that the maximum energy achieved by an ion scales as 

(M/MH)5/3, where MH is the mass of hydrogen and M is the mass of the ion 

under consideration. They concluded that heavy ions are thus 

preferentially accelerated. Ashour-Abdalla and Okuda [1984] studied the 

acceleration of ions on auroral field lines associated with the current-

driven electrostatic ion cyclotron waves in a plasma consisting of hydrogen 

and oxygen ions by simulation techniques. To model the ionospheric source 

of electrons they developed a simulation model in which drifting electrons 

were allowed to enter at the end of the system. They found that the oxygen 

transverse heating generally exceeds that of hydrogen ions at the low 

altitude end of the field line. 

    There have also been studied using electromagnetic waves to explain 

the acceleration of heavy ions. Theoretically it is well known that the 

presence of heavy ions greatly modifies the propagation and amplification 

characteristics of magnetospheric electromagnetic waves. A detailed 

analysis of the wave spectra and energetic proton distribution measured on 

GEOS-1 have shown that the observed wave spectra can be interpreted in the 

framework of the linear theory of ion cyclotron instability excited by an 

anisotropic proton distribution in a plasma containing a small fraction —5 

-15% of He ions [Roux et al., 1982]. Gomberoff and Cuperman [1982] have 

also performed a theoretical analysis in order to evaluate the change in 

the temporal growth rate of such instabilities for various plasma 

parameters. Gomberoff and Neira [1983] undertook the task of evaluating 

the corresponding change in the spatial growth rate. However, such studies 

have generally been done assuming the background plasma to be completely 

cold, T(H+) = T(He+) = 0, whereas it is known from GEOS and DE experiments 

that both electrons and ions can reach a temperature equal to or higher
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than 10 eV [Decreau et al., 1982; Chappell, 1983].  Under such conditions, 

cyclotron absorption by the heavy ion species will compete with the 

amplification induced by hot protons, and growth rates will be strongly 

modified, especially in the vicinity of the heavy ion gyrofrequency. 

Recently Gendrin et al. [1984] carried out a parameter search of ion 

cyclotron waves including the finite temperature effects associated with 

the cold species. 

    The heating of heavy ions by electromagnetic ion cyclotron waves has 

been addressed by several authors. Gendrin and Roux [1980] have studied 

the possibility that the observed heating of He ions up to suprathermal 

energies could be explained by quasi-linear diffusion. Indeed quasi-

linear diffusion of resonant He+ ions having low initial parallel and 

perpendicular velocities can lead to a considerable increase of the 

perpendicular He+ ion distribution. However, to heat the bulk of He+ 

distribution, sufficient wave energy must be available at frequencies where 

a resonant interaction with the cold heavy ion species can take place, 

i.e., at frequencies which are near the heavy ion gyrofrequency. Gendrin 

et al. [1984] found that the maximum growth rates occur at frequencies far 

from the heavy ion gyrofrequency; consequently these waves cannot resonate 

with the bulk of heavy ion distribution. In search of another heating 

mechanism, Mauk [1982, 1983] studied the nonresonant interaction between an 

electromagnetic ion cyclotron wave and thermal He+ ions. He showed that 

associated with the increase in the He+ion perpendicular velocity, phase 

bunching was observed. Unfortunately, Mauk's calculations were done by 

neglecting the ion parallel velocity, which led to incorrect quantitative 

results: an apparently infinite increase of v
i as time elapses and a strong 

effect even when the wave frequency is equal to the helium cyclotron 

frequency. Berchem et al., [1983] and Berchem and Gendrin [1984] extended 

Mauk's work to include the parallel velocity of the ions . They found that 

phase bunching occurs, and the particle attains large perpendicular 

velocities. They carried out a Parameter search as a function of initial 

parameters and were able to derive approximate analytical expressions for 

the maximum temperature of the heavy ions attained . These calculations 

were test particle calculations in which the wave amplitude was kept 

constant, and were therefore not self-consistent . In search of self-

consistency, Tanaka and Goodrich [1984] used simulation techniques to study 

the heating of heavy ions at different regions of the magnetosphere with 

particular emphasis on the heating of Alpha particles at the bow shock . As 

such they considered a plasma consisting of hot highly anisotropic protons
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in the presence of a minority species. Since these studies were concerned 

with gaining an understanding of  He++ at the shock region, they did not 

include a cold hydrogen background representative of the ionospheric 

source. 

    For the sake of completeness, it is worth mentioning that a similar 

mechanism (resonant interaction of one ion species with waves generated by 

a majority ion) has been invoked to explain the excess of He++ ion bulk 

velocity in the solar wind. However, it is only until recently that the 

fundamental modification brought in to the dispersion relation by the 

presence of the heavy ions has been correctly taken into account, which 

means that the results previously obtained are not relevant to the problem 

we are studying here (see Isenberg. [1984a.b] and references therein). 

    In this chapter, our aim is to explain the heating of He observed by 

the GEOS satellite at L - 7. Our starting points is the observation set 

from the GEOS satellite. Having developed the linear theory analysis in 

Section 4.2 [Gendrin et al., 1984], we undertake a simulation study of 

electromagnetic ion cyclotron waves in a plasma consisting of hot 

anisotropic protons, a dominant thermal hydrogen plasma, and a minority 

species of helium ions which will be described in Section 4.3 [Omura et 

al., 1984]. 

4.2 Linear Analysis of Ion Cyclotron Interaction 

    Recent experimental data [e.g., Young et al., 1981; Mauk et al., 1981; 

Roux et al., 1982] obtained on board geostationary spacecraft (GEOS 1 and 

2. ATS 6) have shown the importance of cold He+ ions in the generation of 

electromagnetic ULF ion cyclotron waves (ICW). A detailed analysis of the 

simultaneously measured wave spectra and the energetic proton distributions 

even has shown that the observed wave spectra can be interpreted in the 

framework of the linear theory of ion cyclotron instability excited by an 

anisotropic proton distribution in a plasma containing a small fraction 

(-5-15%) of He ions (see. for example. Roux et al. [1982, Figures 1 and 

9]. 

    Gomberoff and Cuperman [1982] have done a theoretical analysis of this 

kind of interaction in order to evaluate the change of the temporal growth 

rate of such instabilities for various plasma parameters. Gomberoff and 

Neira [1983] performed a similar analysis to evaluate the corresponding 

change in the spatial growth rate. Mauk [1982a] has extended these studies
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by computing the integrated growth along the propagation path. The 

parameters of interest are the number density of cold H+ and He+ ions, 

 n(H+) and n(He+) (the total cold plasma density nc being equal to 

n(H+)+n(He+), the hot proton concentration ratio nh/nc. the hot proton 

anisotropy Ah = (T1/TH)h -1, and the hot temperature Tiih(KTA /2 — 10-

20kev). 

    However, such studies have been done assuming the background plasma to 

be completely cold: T(Hc+) = T(He+) = 0, whereas it is known from GEOS and 

DE experiments that both electrons and ions may reach a temperature equal 

to or higher than 10 eV [Dtcr2au et al., 1982; Horne et al., 1981; 

Chappell. 1983]. Under such conditions, cyclotron absorption by the heavy 

ion species will compete with amplification induced by hot protons, and 

growth rates will be strongly modified, especially in the vicinity of the 

heavy ion gyrofrequency. It is therefore necessary to extend the previous 

computations by including the finite temperature effects associated with 

the cold species. 

    A second reasons for refining the linear stability analysis is as 

follows. Gendrin and Roux [1980] suggested that quasilinear diffusion of 

He+ ions in the presence of ICW's could be responsible for the He+ 

temperature increase which follows, within a time delay of the order of 10-

20 min. the appearance of ULF waves (see, for example, Young et al.[1981, 

Figures 9. 11, and 1). Indeed, quasi-linear diffusion of resonant He+ ions 

having low initial parallel and perpendicular velocities can lead to 

drastic increase of the He+ ion energy, especially in the perpendicular 

direction (see, for example, Gendrin [1981]). However, in order for this 

process to be efficient, waves must be generated at frequencies which 

resonate with the bulk in the He+ distribution, e.g.. with particles whose 

parallel velocity is smaller than or equal to the thermal velocity. If 

these waves cannot be generated by linear instability, such a process would 

be inefficient [Gendrin, 1983]. Therefore it is necessary to know 

precisely the frequency range of the instability in the presence of thermal 

He+ ions, especially in the vicinity of the He+ gyrofrequency f
He+' 
    The above two reasons have motivated a parameter study of ICW 

generation by anisotropic distribution of energetic protons in a 

magnetoplasma containing a small proportion of He+ ions n(He+)/n(H
c+) = p 1-20%) having small but finite temperature . The linear dispersion relation 

has been calculated numerically by a Taylor expansion of the complex plasma 

dielectric function E. The parameters which could be introduced in this 

calculation for each species are its number density, parallel temperature ,
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and perpendicular temperature (bi-Maxwellian distributions are assumed). 

Altogether there are four species: hot protons, cold protons, cold He+ 

ions, and cold electrons The wave polarization mode could also be 

selected. The  dc magnetic field intensity Bo is defined by 0H _ 

2uonKT,i/Bo2. It was chosen equal to 140 nT, a typical value in the 

geostationally orbit. Similarly, the number density of the cold protons 

was set equal to n(Hc+)= 10 cm -3 [e.g., Nigel and Wu Lei, 1984]. The 

computations were restricted to left-handed waves propagating in a 

direction parallel to Bo, to real values of the wavenumber k. and to hot 

proton parallel temperatures such that kToh/2 - 15 keV. The results of 

varying this parallel energy are not included in his study, since they are 

well known and do not depend significantly on the plasma composition: an 

increase in corresponds to an increase in the maximum growth rate and 

to a decrease in the corresponding frequency [e.g., Gendrin et al., 1971]. 

With some exceptions, which will be specified in due time, the ratio Ti/To 

is set equal to 2 for hot protons and 1 for the cold population. 

4.2.1 Role of He Concentration 

    In Figures 4.1 and 4.2 the variations in the temporal and spatial 

growth rates (wi and wi/kVg) are plotted as functions of the real frequency 

w
r (normalized to proton angular gyrofrequency [+) for three different He+ 

concentration ratios. P = 0, 0.05, 0.2. As expected, when He ions are 

introduced, waves are unstable in two frequency ranges: a low frequency 

(LF) and a high-frequency (HF) range, a phenomenon which is at least 

partially responsible for the frequency gap observed around FHe+ [Mauk et 

al., 1981]. The LF branch is unstable between f - 0 and f = fl. The value 

of f1 depends on the He+ concentration, temperature, and anisotropy, as 

will be discussed later. The HF branch has a low frequency cutoff f2 and a 

high-frequency cutoff f3. Low-frequency cutoff f2 is very close to the 

cutoff frequency of the HF branch, defined by fco = fHe+[1 + 3p/(1 + p)] 

[e.g., Gendrin and Roux, 1980], whereas f3 is the critical frequency of the 

instability, which depends not on the heavy species characteristics but 

merely on the hot proton anisotropy [Kennel and Petcheck, 1966]; f3 = fH+ 

Ah/(Ah + 1). 

     Figure 4.1 shows that contrary to what is sometimes claimed. 

introducing a small number of He+ ions into the plasma does not lead to an 

increase in the maximum temporal growth rate of the instability, at least 

when this number does not greatly modify the total number of cold
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particles. This falsely held belief is due to the fact that the very first 

computations of ICW growth rates in the presence of heavy ions involved 

heavy ions as the only cold species [Mark. 1974; Cuperman et al.. 1975; 

Gomberoff and  Cuperman. 1977]; it is well known that increasing the number 

of cold particles in a medium which contains a constant number of hot 

particles leads to a drastic increase of the growth rate, at lease until an 

optimum value of nc/nh is reached [Cuperman and Landau. 1974; Perraut and 

Roux, 1975; Gendrin, 1975]. However, as is shown here. when nch does not 

vary much, the maximum growth rate is not changed when n(He+) is 

increased. 

    The maximum spatial growth rate itself is not increased much when He+ 

ions are introduced (Figure 4.2). However, at most frequencies within the 

frequency range of the instability, the spatial growth rate may be 

increased by a factor as large as 10. These frequency ranges are shifted 

away from the He+ gyrofrequency toward lower frequencies (LF branch) or 

toward higher frequencies (HF branch). Two facts explain this behavior. 

When Heions are introduced, at any given frequency, Vg is decreased (see, 

for example, Gendrin and Roux [1980, Figure 1]), so that at any given 

frequency for which wi remains approximately the same, wi/kVgincreases. 

However, this enhancement takes place only in the frequency ranges where 

waves can either propagate (cutoff effects in the HF branch) or be 

generated (heavy ion cyclotron absorption in the LF branch). 

    One may note in Figure 4.1 and 4.2 that the high-frequency cutoff of 

the LF branch, f1, is decreasing with increasing He+ concentration (at a 

constant temperature), and this characteristic will be explained later. 

    At this point it is worth commenting on the role which is played by 

Heions in the generation of ICW's. Clearly, the introduction of He+ions 

does not change the growth rate of these waves. But observations show that 

when an increase of the thermal He+ concentration is observed. ULF waves 

are excited [see Roux et al., 1982, Table 3], and an explanation of this 

effect must be found. An explanation has been proposed which takes into 

account the inhomogeneity of the medium and which is valid at least for 

waves generated in the HF branch [Rauch and Roux, 1982]: in this frequency 

range and in the presence of He+ ions, waves bounce back and forth with no 

loss along the wave magnetic field line between mirror points located at 

low magnetic latitudes. Therefore the role of He+ might be to enhance the 

length over which amplification takes place and not to increase the growth 

rate per unit length.
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4.2.2 Role of He Temperature 

    Figure 4.3 represents the variation of the temporal growth rate with 

frequency for a constant He+ concentration (r = 0.2) and three different 

He+ temperatures: KT0(He+)/2 = 1.5, 15, and 150eV. The thermal ions are 

assumed to be isotropic (T1(He+)/Tii(He+) = 1). In the HF branch the three 

curves are identical. In the LF branch the three maximum growth rates are 

almost identical, and they occur at almost the same frequency. However,



ELECTROMAGNETIC ION CYCLOTRON  INTERACTIONS149 

the cutoff frequency f1 is decreasing with increasing He+ temperature. 

    This can be interpreted in the following manner: since He+ ions are 

assumed to be initially isotropic, resonating ions gain energy, and the 

wave is absorbed [Gendrin, 1981]. When the He+ temperature is increased, 

more ions can resonate with a wave at the frequency f slightly smaller than 

fHe+. Therefore the absorption band becomes when He+ is increased. The 

frequency f1 above which absorption by thermal He+ ions overcomes the 

amplification by hot protons corresponds to the marginal stability (wi = 

0). When the He+ concentration ratio is reduced, a given He+ resonant 

velocity corresponds to a higher frequency because of the change in the 

dispersion curve. Therefore f1 is also a decreasing function of the He+ 

concentration at a fixed temperature (see previous section). These effects 

are illustrated in Figure 4.4, where the results of the numerical analysis 

for different He+ concentrations (Figure 4.1) or temperatures (Figure 4.3) 

are plotted on the corresponding dispersion curves. The associated He+ 

parallel velocity is given by the slope of the line joining the "marginal 

point" to the point w = He+' k = 0. The parallel energy E11 is of the 

order of KTi1/2. Except for the case p = 0.05 and KTii/2 = 150 eV, Eii is 

larger than KTii/2, the difference between E11 and KTII/2 being smaller for 

higher He+ temperatures and/or for smaller He+ concentrations. 

    Figure 4.4 clearly shows that in general, waves cannot be generated at 

frequencies at which He+ ions with parallel energies smaller than the 

thermal energy can resonate. Consequently, in a homogeneous medium at 

least, the mechanism proposed by Gendrin and Roux [1980] cannot be 

efficient. since quasi-linear diffusion cannot involve the bulk of the 

thermal He distribution. Such an objection was already raised by M. 

Ashour-Abdalla (personal communication, 1982) and quantitatively justified 

[see Gendrin, 1983, appendix]. However, in the real inhomogeneous 

magnetosphere, one may assume that waves are generated off the equator at a 

frequency f smaller than the local value of f1. When the wave propagates 

toward the equator, f/FHe+increases, and the local value of f/f1 may 

become larger than 1. He ions will be heated there, and the wave will be 

absorbed. Such a Process has been suggested by Mauk [1982a, 1983] for 

explaining the "frequency gap" below the equatorial He gyrofrequency. 

4.2.3 Role of He+ Anisotropy+ 

    The previous arguments are valid only for an isotropic He 

distribution. When the He+ distribution has a positive anisotropy (Ti )
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thermal velocity, so that waves which are naturally unstable 

cannot resonate with the bulk of the He+ distribution 

function. The normalizing parameter Va is the Alfven velocity 

associated with the cold protons only.

Tii) the situation is 

Brice and Lucas [1975], 

rate. Evidence for 

KT11(He+)/2 = 15 eV and 

frequency fl is greatly

 different since. as has already been suggested by 

Hei  eions themselves may induce a positive growth 

this is shown in Figure 4.5, which was obtained for 

T1(He+)/TII(He+) = 20. In such a case the marginal 

displaced toward higher frequencies.
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4.2.4 Role 

    In a 

the growth

of Hot 

plasma 

rate can

Proton Concentration 

containing only one ion 

be expressed as 

     wik3/2exp ( - 

           nc

with

k2 
) 

nc

two different temperatures

(4.1)
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where  kl and k2 depend on the magnetic field intensity and on the 

anisotropy and temperature of the hot protons [e.g., Gendrin. 1975] . 

Consequently, when nc is kept constant, wi should be proportional to nh . 

This is what is observed up to a certain value (- 5%) of the ratio n
h/nc 

(Figure 4.6). Above this value the temporal growth rate increases less 

rapidly than does nh, especially in the LF branch. However, the spatial 

growth rate in the same branch increases more rapidly than does nh. 

Unfortunately. our results cannot be compared with those of Gomberoff and 

Cuperman [1982], since these authors have made their computations for a 

constant 0. Consequently, the hot proton energy which thus varies as nh-1 

is far from being a constant when nh is varied. 

    For large 0 values the nature of the instability (absolute or 

convective) must also be discussed. Extending the computation of Wandzura 

and Coroniti [1975] to multicomponent plasmas, Roux et al. C1982] have 

shown that for the parameters A and p which we are using (A = 1, 0 < p < 

0.2), the instability becomes absolute when 01 becomes larger than -1 

(their Figure 12). With the numerical values adopted here for Bo (140nT) 

and for E1 (30keV), 0 is larger than unity for nh > 1.6cm 3. In other 

words, the curves which are drawn in Figure 4.6 represent truly convective 

instabilities up to an abscissa equal to 0.16, since n(Hc+) = 10 cm-3, 

i.e., up to the point where the linear spatial growth rate strongly departs 

from proportionality with nh. 

4.2.5 Instabilities in k Space 

    A numerical simulation program for studying electromagnetic wave-

particle interactions in a multicomponent plasma has been started at the 

University of California at Los Angeles [Omura et al., 1983]. In the 

simulation codes the grid spacing a and the system size L are important 

parameters to which the wavenumbers of the growing modes must be compared. 

that is, it is necessary that L-1 << k/2n << a-1. Additionally, it is 

recommended that the parameters of the simulation experiment be selected so 

that the fewest modes are simultaneously excited. Figures 4.7a and 4.7b 

illustrate the effects of change in the simulation parameters. The 

temporal growth rate (in a periodic system the waves are standing, and the 

spatial growth rate is meaningless) is plotted as a function of k for p = 

0.2, nh/nc = 0.042, and KT1111/2 = 15 keV. 

    In Figure 4.7a, obtained for the two extreme values of KTii(He+)/2 (1.5 

and 150eV), the anisotropy if so large (Ah = 1) that the two branches are
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simultaneously excited, which may pose a problem for the interpretation 

the results. Additionally, the spectrum in k is rather large for 

branch. This phenomenon has two branches consequences: (1) the 

spacing must be small so that it can accommodate large wavenumbers and 

the run has to be long so that the wavenumber which corresponds to 

maximum growth rate can emerge from the other wavenumbers . Increasing 

He+ temperature leads to a decrease in the spectral width , but only in

 of 

each 

grid 

(2) 

the 

the 

the



 ELECTROMAGNETIC ION CYCLOTRON INTERACTIONS
155

I 

3

10-1

102

10-3

104
0 .2

 n{He+1/n[H 

(KTH/2)c = 

(KT~i/2) =

LF

.4

n[Hh J/n[H&+] 

(KT11/2)h = 15 

(Tl /TB )h = 2

.6 .8 1.0

kVa /SZH+

Fig. 4. 7a Variation of the temporal 

He+ concentration and two 

particles' anisotropy is 

k values over which waves

growth rate with wave number 
He+ temperatures. The cold

equal to zero. 

 are unstable.

Note the wide

for two

range of



 156
CHAPTER 4

LF branch. 

    Figure 4. 

the hot proton

Fig.

c 

3

4. 7b

10_I

102

10_a

10-4

7b shows 

anisotroPY

the results obtained 

is reduced (from 1

for 

to 0

two He+ temperatures when 

.5). When Ah = 0.5, the

0

(K  /2)c

--- - (K Til /2),

(Ti/TIN =  -\
1/

(Tl/TAI )h

.2

1.5 

150

.4

n[Hh l/n[H 
n[He]/n[H 
(KTH /2)h = 

(Ti /Til)He

.6 .8

=0 .05 

= 0 .20 

15 keV

1.0

kVa/fH+ 

Variation of the temporal growth rate with wave number for two 
He+ temperatures and two hot proton anisotropies, Ah = (TI/Tii)h 
-1 . The cold particles' anisotropy is equal to zero. For 
these values of the parameters the HF branch is not unstable 
when Ah = 0.5. The HF branch, which is unstable when Ah = 1, 
is not represented here. Note the narrowing of the unstable 
spectrum when Ah is reduced and T(He+) is increased 
simultaneously.

HF branch is 

[19667 theory 

interpretation 

for Ah = 1 has

 no 

[f3 

 of 

not

 longer excited, as expected 

= Ah/(Ah+1) < f
col, an effect 

 the results (in Figure 4.7b 

been plotted). The maximum

from Kennel and Petschek's 

which will simplify the 

the HF branch which exists 

growth rate for the LF



ELECTROMAGNETIC ION CYCLOTRON  INTERACTIONS157 

branch is almost the save as for the case Ah - I, so that nothing is lost 

in the e folding time. By selecting those parameters (Ah = 0.5 and 

rTii(He+)/2 = 150 eV) one has only one excited mode (LF) with a reduced 

width (0.15 < kVa/QH+ < 0.35) instead of two modes over a wide range of k 

values (0.15 < kVa/OH+ < 0.85) Another advantage of such a parameter choice 

is that the temperature difference between the hot and the "cold" 

populations is reduced, thereby minimizing the conflicts in the choice of 

the scaling parameters. The disadvantage is that one must choose a larger 

number of hot particles per cell if one wants to be able to reproduce 

reasonably well a bi-Maxwellian distribution with such a low anisotropy 

[Omura et al., 1983]. 

4.2.6 Conclusions 

    A parameter study of ICW generation in a multicomponent plasma has 

been made. The results can be summarized as follows. 

    1. The introduction of a small fraction of cold heavy ions in a 

plasma already containing a noticeable number of cold protons does not 

drastically change the maximum growth rates (both temporal and spatial) of 

unstable electromagnetic ion cyclotron waves, a conclusion already reached 

by Mauk [1982a]. 

    2. Depending on the anisotropy of the hot proton distribution, waves 

can be excited in two frequency ranges: a low-frequency range and a high-

frequency range. As is expected from linear theory, the low-and high-

frequency cutoffs of the unstable waves belonging to the HE branch are 

determined by the cold He+ concentration and by the hot proton anisotropy, 

respectively. As is shown in this study, the high-frequency cutoff of the 

unstable waves belonging to the LF branch is a function of the heavy ion 

concentration, temperature, and anisotropy. 

    3. Waves generated by hot proton free energy cannot resonate with the 

bulk of the thermal heavy ion velocity distribution. Consequently, quasi-

linear effects in a homogeneous medium, at least, cannot account for the 

heating of the heavY ions. Inhomogeneity effects [Mauk, 1982b, 1983; 

Berchem et al., 1983, also unpublished manuscript, 1984] must be invoked to 

explain this phenomenon. 

     4. During the linear phase a wide range of wavenumbers are generally 

excited. Only for specific combinations of the plasma parameters is this 

range noticeably reduced. Such a result is important for deciding which 

Parameters should be used in numerical simulations.
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4.3 Simulation Study of Heavy Ion Heating 

    One of the challenging magnetospheric plasma physics problems is the 

heating of heavy ions observed in the equatorial magnetosphere in 

conjunction with ion cyclotron waves (ICW) generated by anisotropic hot 

protons (i.e. GEOS-1 and 2 and ATS 6 results). The complexity of the 

mechanisms involved in this phenomenon is such that a numerical simulation 

is the only way to disentangle the problem. In this section we present the 

results of such a simulation. In Subsection  4.3.1. the computational model 

used in the present study is described. Simulation results of the three 

ion component plasma are presented in Subsection 4.3.2. We conclude in 

Subsection 4.3.3 by summarizing and discussing the pertinent heating 

mechanisms. 

4.3.1 Simulation Model 

    We have developed a one dimensional electromagnetic hybrid simulation 

code [Sgro and Nielson, 1976; Byers et al., 1978] where electrons are 

treated as a massless fluid and ions are treated as particles moving in the 

four dimensional phase space (x, v
x,vy,vz). Since we are studying low 

frequency phenomena, we neglect the transverse displacement current in 

Maxwell's equations (Darwin approximation) as 

2B - curl E (4 .2) at 

ltoJ = curl B . (4.3) 

We also neglect electron inertia effects for low frequency waves , and we 
have from the electron momentum equation 

-, 4 -en
e(E + ue x B) - grad pe - 0 (4.4) 

where -e, ne.ue and pe are electron charge, number density, flow velocity 
and pressure, respectively. Furthermore, we assume the quasi-neutrality 

condition 

-en
e + gsns= 0(4.5) 

where q
s and ns are the charge and number density of an "s" ion species, 

respectively. The electron pressure is integrated in time by using the
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electron energy equation 

             a           (at+•e•grad)A e   Pe div ue •(4.6) 

The electron flow u
e is obtained from the current equation as 

ue = (Egsnsu
s- J)/nege(4.7) 

where us is the drift velocity of an "s" ion species . The ion density n
s and drift velocit

y us are calculated from the motion of ion particles whose 

positions and velocities are determined by integrating the equations of 

motion 

                                          4           dv q 
       sdx 

           — 

           _— ( E+vxB ) ,—=v.(4.8) 
    dt msdt 

The magnetic field B and the electron pressure p
e are integrated in time 

using (4.2) and (4.6). while the electric field is determined by a 

predictor-corrector method using (4.3), (4.4), (4.5) and (4.7). 

    For simplicity, spatial variations are restricted to one dimension, 

i.e., the x direction, and periodic boundary conditions are assumed . We 

focus our attention on waves propagating parallel to the external magnetic 

field. Therefore, both the wave vector k and the static magnetic field B
o 

are in the x direction, although the code would allow for any angle between 

k and Bo.We consider three species of ions, i.e., cold H+, cold He+ and 

hot H. with bi-Maxwellian velocity distribution. Initially both cold 

components are isotropic and hot protons have a temperature anisotropy of 

Tl/Tip =2. These particles are distributed uniformly over the simulation 

space consisting of 64 grid points. No wave field is assumed initially 

except for noises introduced by particle thermal fluctuations. 

    The parameters of the simulation have been chosen to represent typical 

conditions prevailing during the day hours at the geostationary orbit where 

most of events involving ICW's and energized He+ ions have been observed: 

 - magnetic field intensity : 140 nT , 

 - cold H+ ion density : 10 cm 3 , 

 - cold He ion density : 2 cm 3 , 

 - thermal energy of both cold species : 1.7eV, 

 - anisotropy of both cold species : T
1/T0 = 1, 

 - hot proton density : 1.1 cm-3, 

 - thermal parallel energy of hot protons : 17 keV. 

 - anisotropy of hot protons : T/T 
ii = 2.
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     Note that with these parameter the ratio of the proton plasma 

 frequency  wH to the proton gyrofrequency OH is equal to 300. and that the 

 Alfven energy mVA2/2 — 5 keV, so that the parallel 0 of the plasma is 

 0.3. 

     In the simulation we do not use the physical parameters as expressed 

 in CGS or MKS units, but instead we use conventional normalizations. It is 

simpler to use a system in which the Alfven velocity VA. the proton 

 cyclotron frequency the the proton charge-to-mass ratio (q/m)H and the 

magnetic permeability u
o are equal to 1. Other parameters are normalized 

to the quantities stated above. Since the static magnetic field is given 

by Bo - ~H/(q/m)H. Bo = 1 and the static magnetic energy density B
og/2uo- 

0.5. The light speed c is equal to VA( wH/i?H ) = 300, from which the 

electric permittivity eo = 1/c2 is deduced. The thermal velocity of the 

cold protons and helium are 0.018 and 0.009 respectively . The thermal 

velocity of the hot protons is 1.8 and 2.55 for the parallel and 

perpendicular direction respectively. 

    The grid spacing is Ax = 1 and the time step At is set equal to 0 .05. 

The number of grid points is .64 and the system length is L
x = 64. The 

number of superparticles in the system is 4096 for each of the cold 

species. As for hot protons, which are a free energy source in the system
, 

a relatively large number of superparticles (32768) is necessary in order 

to make the initial thermal fluctuation noise low . 

4.3.2 Simulation Results 

    The GEOS data suggest that the anisotropic proton distribution excites 

ion cyclotron waves, which are responsible for heating the thermal helium 

ions. In order to test this hypothesis, we have run the simulation code up 

to i1Ht = 1200. We will first consider the initial phase of the process
. 
    In Figure 4.8, we see the time history of the magnetic and electric 

field energy densities for an early stage of the simulation run
. Both the 

magnetic field and electric field energy densities increase throughout the 

time presented in this plot . The perpendicular component of the electric 

field is much larger than the parallel one
, indicating that charge 

neutrality is conserved by the predictor-corrector code and that the wave 

is purely electromagnetic . It should be noted that the magnetic field 

amplitude attains a very large amplitude: B
wave/Bo= 0.055 at 0Ht = 200. Fi

gure 4.9a, shows the hot proton energy density in a direction 

perpendicular and parallel to the ambient magnetic field . Initially at
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time  QHt = 100, the temperature anisotropy decreases only slightly to 

 (TL/TII)h= 1.9. Later on, as we will see in (4.13b), the temperature 

anisotropy decreases more dramatically. as the waves attain large 

amplitudes, so that at QHt = 200. (T
1/T0)11 = 1.6, thus. the hot anisotropic 

proton distribution is responsible for the growth of these waves. The 

lower panels (b) and (c) show the energy density of thermal helium and 

protons respectively. Both thermal ion species are accelerated mainly in a 

direction perpendicular to the ambient magnetic field. with helium ions 

being preferentially accelerated. We will discuss this acceleration 

phenomenon later and we will show that it is in fact a two-step process. 

    To identify the wave mode during the early stages of the simulation 

run. we plot the dispersion characteristics of the wave. This is done by 

Fourier transforming individual k modes in time. Figure 4.10 is a plot of 

frequency w versus wavenumber k for the B component of the magnetic field 

during the time interval 0Ht = 1 - 204. The amplitude of the wave is 

denoted by the height of the peak. It is well known from linear theory 

analysis (e.g. Gendrin and Roux, 1980; Gendrin, 1981) that the addition of 

thermal helium breaks the dispersion relation into two branches , one below 

the helium gyrofrequency known as the low frequency branch (LF) and one 

above the helium gyrofrequency referred to as the high frequency branch 

(HF). In fact the LF branch and HF branch are clearly depicted here . The 

fastest growing frequency occurs in the LF branch with w/f1H = 0.16. kVA/9k 
= 0.29 and B

w/Bo= 0.023. The dashed line is the real part of the 
dispersion relation calculated from the linear theory for the parameters at 

011Ht = 100. By comparing the dashed line and the plot of the simulation 

results, the agreement between the real Part of the linear dispersion 

relation and the simulation results are obvious . 

    To understand the time evolution of the wave properties during the 

linear stage we plot the time history of four dominant modes in Figure 

4.11a. 

    The value of k, the wavenumber is related to the mode number m
. In 

fact k = (2n/L
x)m where LX is the system length. Thus for m = 1.,kVA/9H 

=0.1 whereas for m=2 , kVA/0H =0.2, since L
x = 64, VA = 1 and f1H = 1.0.     I

n Figure 4.11b we plot the linear growth rate versus k for both the 

LF and HF branch. From the upper panel we see that the mode 4
,kVA/I)H=0.4Ft

attains a large amplitude at an early time . The growth rates of these 

modes are found by calculating the slope of the straight dashed line shown 

in Figure 4.11. It is found that both of the growth rates of mode 3 and 4 

are r/t1H = 0.02. Linear theory (Figure 4 .11b) predicts the peak growth
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Fig. 4. 10 We plot the dispersion relation of the By component during the 
early phase of the simulation 1 < QHt < 204. We also plot the 
theoretical linear dispersion relation by dashed lines using 
the plasma parameters at QHt = 100. We observe that both the 
simulation results and the linear theory show the dispersion 
relation separated into two branches; the high frequency branch 
(HF) above the helium cyclotron frequency and the low frequency 
branch (LF) below the helium cyclotron frequency. The fastest 

growing frequency occurs in the LF branch at w/QH = 0.16 and 
kVA/QH =0.29.

rate to be 

simulation.

r/aH = 0. 022 and to occur at kVA/014 = 0.3 in agreement with the

    Having ensured that we can reproduce and understand the linear theory 

from our simulation study we now examine the non-linear physics of the 

interaction. 

    In Figure 4.12 we plot the time history of the magnetic and electric 

energy densities throughout the run. As noted previously, the magnetic
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field increases until about  OHt = 250. reaching a peak value B
w/Bo=0.06 

and then remains at a constant amplitude. The electric fieldbehavior is 

similar, but the peak amplitude in this case is much smaller, E
w/(Boc) = 

1.4x10-4. In a one dimensional system, the peak amplitude is 

representative of saturation, since the wave energy cannot be lost by 

coupling to obliquely propagating waves and therefore remains constant. 

Throughout the simulation run less than 0.2% of the total energy is lost 

demonstrating that computing errors are negligible and that the energy of 

the system is conserved. 

    The time history of the different particle species (Figure 4.13) is a 

most enlightening and interesting plot. Panels (a) and (b) show the 

behavior of the hot anisotropic ions as a function of time. In panel (a) 

we see that the hot protons are losing energy in a direction perpendicular 

to the ambient magnetic field. This results in wave growth which in turn 

causes an increase in the hot proton parallel energy. This expected 

tendency towards an isotropic hot, proton distribution is best seen in Panel 

(b) where we plot (T1/TI~)h as a function of time. It is interesting to 

note that the temperature anisotropy decreases rapidly until Q. t = 360. 

reaching an anisotropy of (T1/TII)h = 1.3. At later times, the anisotropy 

does not change significantly, but reaches a value of 1.2 at the end of the 

run. Panels (c) and (d) show the large heating suffered by the helium 

ions. In fact, we see that the thermal helium has been heated about 100 

times its initial value. We also note that most of the heating is in the 

perpendicular direction. Thermal protons are also heated but to a much 

lesser degree. 

    The snapshots of phase space plots vx- x, vy- x at different times for 

helium ions (Figure 4.14) and thermal protons (Figure 4.15 show complex 

nonlinear structure. Initially, at time aHt = 0. the helium ions are 

uniformly distributed in phase space. At later times, OHt = 100, we see a 

perturbation in v. This perturbation occurs from a simple  x Bo force, 
and results in a transverse motion of the plasma. Later on. OHt = 300 we 

see that the vy is about the same except that the amplitude of the 

oscillations is larger, and tends towards smaller wavenumbers. At that 

time. we note oscillations in the parallel velocity vx. In fact the 

oscillations appear to be folding on themselves. This is because, as the 

perturbation in the transverse velocity occurs. the particles experience a 

force byx bBin the parallel direction. Ati?Ht = 400. the motion is  y
,ZZ9y 

extremely nonlinear, with large striations and large oscillations. The 

motion is so nonlinear that a mixing of plasma, which was originally in
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and Maxwell equation

 811w V x E _ - 
  w8t (4.10)

Solving for v., we get 

w Bw 1 
       vj _ - —(4.11) 

k Bo (1 w/0.) 

where p. _ (q/m)~B8. 

    Thus, the species response is proportional to B
w and depends on the 

mass through the resonant denominator. This is why the effect is less 

dominant for the case of a hydrogen plasma. As the plasma evolves, v~x Bw 

forces become substantial, resulting in a nonlinear motion along the field 

lines. This accounts for the late time behavior when 'spirals' develop in 

the phase space and to a lesser extent in hydrogen. 

    This 'weaker' spiraling for thermal protons is caused by the fact that 

the fastest growing wave is in the LF branch, so that the resonant velocity 

is far from the thermal velocity of protons. In Figure 4.16 we show the 

Fourier analysis of the wave properties, during the nonlinear stage of the 

simulation 0/it = 800 1200. We have decomposed the wave into the forward 

and backward traveling components. It is found that both the forward and 

backward traveling waves have equal amplitudes, and only the LF branch has 

a considerable amplitude. The maximum growth rate r/t = 0.016 has shifted 

to lower wavenumbers. The dominant wavenumbers are best seen in 

Figure 4.17, where in the upper panel we plot a three-dimensional plot of 

the amplitude of the wave magnetic field versus k, as a function of time. 

Looking at Panel (a) it is easy to see that as time proceeds the wave with 

the largest amplitude occurs at longer wavelength. This tendency towards 

longer wavelengths can also be seen in the lower panel where we plot the 

time history of the amplitudes of the four dominant modes. Initially, mode 

3 and 4 seem to be mostly responsible for the large amplitude wave 

observed; however. at later times the amplitude of mode 2 is larger. From 

linear theory analysis the shifting of the fastest growing modes to lower 

wavenumbers could be due to either the heating of the helium ions or to the 

decrease in temperature anisotropy of hot protons [Gendrin et al., 1984, 

Figure 7a, Figure 7b1. 

    However, as can be seen on the referenced figures. the reduction in 

the bandwidth of the unstable waves is more drastic in the first case than
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in the second. Besides. since the most amplified waves belong to the  LF 

branch of the dispersion curve, a decrease of the hot proton anisotropy has 

almost no consequence on the frequency of the maximum growth as long as the 

anisotropy remains above the critical value [Kennel and Petschek. 1966] 

which corresponds to it. The critical anisotropy is defined by: 

w/f1H = Ac/(Ac + 1)(4.12) 

where Ac - T1/TO - 1. 

    For w/i>H = 0.1. Ac — 0.2. Consequently the frequency of the fastest 

growing wave is not much affected by a decrease in the hot proton 

anisotropy as long as (T1/T0)h„1.2. On the other hand, an increase of 

the hot proton parallel energy. as evidenced by the simulation (see 

Figure 4.13), may be at the origin of the decrease of the most amplified 

wave frequency (see e.g. [Gendrin et al.. 1971, Figure 6]). 

    To test which of these factors is responsible, we ran the simulation 

by starting with hotter thermal proton and helium distributions. Ti = To = 

17 eV. while keeping all the other parameters constant. In this later 

simulation, the helium ions were only heated by a factor of 2, while the 

hot proton anisotropy decreased from 2 to 1.25 (still larger than 1.2) and 

while their parallel energy was increased by a factor of 1.4. The shift to 

lower wavenumber was still observed. These results suggest that neither 

the heating of the helium ions nor the decrease in temperature anisotropy 

of the hot protons is responsible for the lowering of the most amplified 

wavenumber. We therefore conclude that the shift to lower wavenumber is 

due to the increase of the hot proton parallel energy. 

4.3.3 Discussion and Conclusion 

    In this paper using simulation, we have studied the bulk heating of 

helium ions starting from an initial anisotropic proton distribution. We 

have shown that the thermal ions are heated to one hundred times their 

initial temperature, due to the growth of large amplitude ion cyclotron 

waves. Before discussing the heating mechanism of the helium ions and the 

saturation of the ion cyclotron waves, let us briefly summarize our 

findings. 

Wave properties:  

1) Large amplitude ion cyclotron waves with peak amplitude B
w/Bo= 0.06 are 

    observed to grow, due to the temperature anisotropy of the hot proton 

    distribution.
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2) Analysis of dispersion properties, frequency and wavenumbers, shows that 

    the presence of helium breaks the dispersion relation into two 

    branches, one below the helium gyrofrequency (LF branch) and one above 

    the helium gyrofrequency (HF branch). This is in agreement with 

    previous work on the linear theory dispersion (see, for example, 

    Gendrin and Roux [1980]). 

3) At the early stage of the simulation, agreement with linear theory is 

    very good. The fastest growing mode occurs on the LF branch with w/L)H 

    = 0.16, kVA/OH = 0.3 and r/i?H = 0.02. whereas linear theory predicts 

w/CH = 0.17. kVA/CH - 0.31 and r/94 =0.022. 
4) The magnetic field reaches a peak amplitude at time OHt = 250 and 

    oscillates about a constant value thereafter. 

5) At later times, the fastest growing mode shifts towards longer 

    wavelengths but remains in the low frequency branch. Spectral 

    analysis for the time period between OHt = 800 and OHt = 1200 shows 

    that the fastest growing mode is at w/OH = 0.11 and kVA/OH - 0.2. As 

    discussed in Subsection 4.3.2 we believe this shift to a lower k mode 

     is due to an increase of the hot proton parallel energy. 

Particle properties:_ 

1) The hot anisotropic distribution tends towards isotropy with time. The 

     temperature anisotropy changes from T1/Tu = 2 at ()Ht = 0 to'T//Tii = 

    1.3 at Q.t = 360 and then changes only slightly until the end of the 

      run. 

2) The thermal protons are only slightly heated during the run. It is 

     because of the fact that the fastest growing wave is in LF branch, 

     causing the resonance velocity to be far from the thermal velocity of 

     the protons. 

3) The cold helium ions are greatly heated, mostly in the perpendicular 

     direction. The perpendicular helium temperature is about 150 eV 

     whereas the parallel temperature is about 70 eV. Most of the 

perpendicular heating occurs before OHt = 360. whereas the parallel 

     heating continues until O,t = 600. 

 4) Phase space plots for helium ions, and to a lesser extent hydrogen ions. 

     show an interesting structure. At the early stages we see oscillation 

     in the v component, which is simply due to an Ew x Bo force. As time 
     evolves these oscillations grow causing a significant 8vy,z x SBz,Y 

     force in the vii direction. This results in spiraling and complex 

     nonlinear motion in the vii- x phase space plots. At later times. we 

     observe thermalization of the helium ion distributions.
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     With these observations in mind we can now discuss the saturation 

 mechanism and the heating of helium ions. First let us discuss saturation 

 of the wave. If we calculate the linear growth rate using plasma 

 parameters at the time of peak amplitude  OHt = 250. we find a positive 

 growth rate. In fact, for hot proton temperature Tu - 20 keV, T1/Tip = 1.5, 

 cold proton temperature T11 = 6 eV. T
i/To = 2, and helium temperature Tip = 

 30 eV. T1/Til = 3.3, we find from linear theory calculation r/f1H = 0.012 . 

     The growth due to positive anisotropy must be balanced by a damping 

 mechanism. One obvious candidate for this damping is trapping of heliums 

by electromagnetic waves. Evidence for particle trapping can be seen in 

the phase space plot v
x- x in Figure 4.14. In fact we calculate the 

trapping frequency for the mode 4 wave 

wtraP= (kBWmv1)1/2(4 .13) 

substituting for k = 0.4, 13w =0.02, q/m = 0.25 and v1 = 0.1, at %it = 250. 
we find wt

rap0.014.Equatingtraprdamp.we find that the damping 
rate is of the same order of magnitude as the growth rate . 

    Now we turn to the problem of heating the helium ions . First, before 

discussing this, we would like to find out whether the heating is bulk 

heating or simply high energy tail formation. To do that we plot in 

Figure 4.18 the distribution functions of helium ions in the parallel 

direction as well as the distribution of helium ions in v
y,one of the P

erpendicular components, at various times . The dashed lines are the 

initial distribution function. Looking at the left column
, we note that at 

time QHt = 200 there is some heating . However, at later times the 

distribution is much hotter. Moreover , this plot shows that indeed we do 

have bulk heating, as opposed to high energy tail formation
. 

    Now looking at the time history plot (Figure 4 .13) we see that the 
heating of helium seems to start from the very beginning

. Yet the thermal 
velocity of helium is such that it is difficult to understand ho

w heating 
takes place. To understand the exchange of energy between the helium ions 

and the waves, we plotE1•v 1 in Figure 4.19a. In the regions where E1•v1 
is positive, the helium ions are gaining energy from the waves a

nd vice 
versa. We note that in general during the initial phase. E1•v1 is positive 
whereas it is oscillating between small positive and negati

ve values 
later. What we believe is happening is that during the initi

al phase, 
while particles are accelerated by the wave there is no heatin

g since the
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Fig. 4.18 A plot of the distribution function of thermal helium at three 
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helium ions have velocities far away from the resonance velocity. We 

therefore advance the following scenario. Initially, the helium ions are 

 set into oscillation (no temperature increase) in both the perpendicular 

and parallel directions by fields of the growing wave. When v11 reaches a 

value near the resonance velocity such that heating can occur. we should 

see a sudden increase in the perpendicular temperature. We define a 

resonance region in the velocity phase space as 

                  VR - Vtrap < vu < VR + Vtrap '(4.14) 

where VR is the resonance velocity given by (w -t e)/k,and Vtrap is the 

trapping velocity given by 2wtrap/k. In the resonance region nonlinear 

trapping of heliums is possible. leading to the heating. The above 

scenario is consistent with the lower panel of Figure 4.13, where the cold 

helium temperature increases from the beginning of the run. The 

temperature plotted there is actually the space-averaged temperature. and 

the oscillatory effects of the waves have been averaged over many 

wavelengths giving an apparent velocity spread and temperature. To bring 

out the effects of the waves and minimize spatial averaging, we measure the 

temperature in a region of space a quarter of the wavelength of mode 4 in 

each direction. In Figure 4.19b,c we show such a local perpendicular 

temperature diagnostic and also the number of helium ions whose velocity 

lies within the resonance region for the mode 4 wave (VR = -0.16, Vtrap 

0.07). At first there are no particles and there is no increase in 

temperature. Later the number of particles has increased and we have a 

sudden surge in temperature. These diagnostics clearly indicate that the 

energy gained by the heliums during the linear phase is transfered to 

 thermal motion due to the nonlinear trapping. 

     The results which have been presented show the efficiency of the 

 simulation code to interpret complex wave particle interactions in a 

multicomponent plasma. Some interesting results have been obtained which 

 concern the heating of heavy ions in the equatorial magnetosphere by 

 ICW's. However, more experimental runs have to be performed and some 

 improvements are still needed to answer specific questions related either 

 with the physics of the phenomenon or to the efficiency of the simulation 

 code. 

     As far as physics is concerned, there remain some discrepancies 

 between the simulation results and experimental data. A drastic lowering 

 in the frequency of the most amplified wave found in the simulation is 

 generally not Observed in experimental data. The delay which is observed
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between the establishment of a rather large wave field and the heating of 

Hei  eion is much shorter in the simulation run than it seems to be in the 

case of experimental data [Young et al., 1981; Roux et al.. 1982]. The 

bunching of He+ ions, which is a striking feature of ATS-6 observations 

[Mauk et al., 1981] is not as clearly reproduced in the results of the 

simulation. 

    Some of these discrepancies can be explained by the fact that the 

numerical runs reproduce a stationary case, and not a progressive one, 

because a periodic boundary condition is assumed in the present 

simulation. Waves cannot escape, and new hot particles are not  injected, 

thus preventing the simulation system to represent an equilibrium where 

input and output energy flows are balanced. The size of the system should 

be increased (Lx>,128) in order to be able to follow in more detail the 

evolution of the most amplified wavenumber. Finally, a parametric study 

(number of particles per cell, more efficient predictor-corrector schemes, 

...) should be undertaken in order to optimize the cost/efficiency of the 

operational code which has been so successfully used throughout this 

study.

PI 

Pi 
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PI 

Pi 
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                CHAPTER 5 

 RADIATION OF ELECTROMAGNETIC AND ELECTROSTATIC WAVES 

            FROM ELECTRON BEAM

5.1 Introduction 

    In this chapter we investigate beam-plasma physics concerning 

radiation of electromagnetic and electrostatic waves from electron beams. 

Since the electron beam traveling through the ambient magnetoactive plasma 

exhibits highly nonlinear feature. we perform computer simulations using 

the Full Electromagnetic (FEM) code. Beam instabilities of whistler mode 

waves and longitudinal electrostatic waves are already studied in Chapter 

3. In this chapter we study two different beam-plasma systems which are 

driven or modulated by external forces. One is a model with an electron 

beam actively injected from the electron gun on board a space vehicle. The 

other is a model with an electron beam modulated by a coherent whistler 

mode wave propagating parallel to the external magnetic field. The former 

model. studied in Section 5.2. is based on the SEPAC (Space Experiment With 

Particle Accelerators) [Obayashi, 1982] which is an active and interactive 

experiment in the earth's upper atmosphere and magnetosphere with a high-

power electron gun on board the space shuttle. The latter model. studied 

in Section 5.3. is based on the observation by ISEE satellite that strong 

electrostatic noise bursts are often associated with a coherent chorus hook 

element when a high-energy electron beam with an energy of the order of 

several hundred electron volts is present [Reinleitner et al., 1982]. 

    Electromagnetic Radiation from an Actively In.iected Electron Beam

    Computer simulations are performed to investigate beam plasma physics 

which takes place in the SEPAC (Space Experiment with Particle 

Accelerators) [Obayashi. 1982]. The SEPAC is scheduled to carry out active 

and interactive experiments in the Earth's upper atmosphere and 

magnetosphere using a high power electron gun on board the Space Shuttle. 

Previous active experiments of beam injection into the magnetospheric 

plasma such as ARAKS experiments ( Gendrin. 1974; Cambou et al.. 1980: 

Pellat and Sagdeev. 1980 and references therein) have revealed many 

interesting phenomena. Beam Plasma Discharge (BPD) is one of them. and has
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been studied extensively ( Bernstein et al.. 1979; Mishin and  Ruzhin. 1980; 

Szucszewicz et al.. 1982; ). In this section. however. we focus our 

attention to the beam-plasma interaction and its resultant wave excitation 

process within the initial time period before the BPD takes place. Using 

two-dimensional electromagnetic particle simulation code (FEM) [e.g.. 

Langdon and Lasinski. 1976; Matsumoto and Omura. 1983] in which Maxwell's 

equations and equations of motion of a large number of particles are solved 

simultaneously, we study the following two problems. One is divergence and 

propagation of the electron beam through the ambient magneto-active plasma, 

and the other is plasma wave excitation by the electron beam. 

    In Subsection 5.2.1 the FEM code is applied to a one-dimensional 

problem for simplicity and computational efficiency. Excitation mechanisms 

of the waves and their propagation characteristics are mainly studied with 

this model. In Subsection 5.2.2 behaviors of the electron beam as well as 

the background plasma are studied with a more realistic two dimensional 

electromagnetic model. Subsection 5.2.3 gives a summary and discussion. 

5.2.1 One-Dimensional Electromagnetic Model 

    The simulation space formed by 2048 spatial grids is taken in a 

transverse plane to the static magnetic field and uniformly filled with 

isotropic plasma particles. The waves are assumed to propagate in x-

direction and the magnetic field is taken along the z-direction. As 

schematically illustrated in Figure 5.1-(a). an electron beam is locally 

injected at x - 1024 in the simulation space with a drift velocity parallel 

to the static magnetic field. In the 1D model the electron beam is a slab 

beam which is spatially uniform in the y-and z-directions. The periodic 

boundary condition is applied to the simulation region along the x-axis 

which is taken sufficiently long so that the localized electron beam as 

seen in Figure 5.1-(a) may not be affected by the periodic boundary 

condition. As the background cold plasma 16384 cold electrons are 

distributed uniformly in the simulation space. The contributions of ions 

are neglected, although the neutrality condition is satisfied by assuming 

the presence of ion charges fixed at the grid points. As the electron beam 

1024 electrons are locally injected at x - 1024 with a spatial spread over 

about 20 grid points and with a drift velocity 0.2c in the z direction. 

where c is the light speed. The cold plasma frequency is 2.011
e and the b

eam plasma frequency is about 2.80
e, where 0e is the electron cyclotron 

frequency. The numerical parameters used in the 1D and 2D simulations are
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as follows:

Grid size; Ax = Ay - 1. 

Cold Plasma Frequency; 11e = 2, 

Time Step; At = 0.01. 

Thermal Speed of the Beam = 1,

Cyclotron Frequency; (le1, 

Light Speed; c = 50. 

Thermal Speed of Cold Plasma - 1, 

Drift Velocity of the Beam = 10.

which gives 

depth of 50.

the Debye length 1 = 0.5. Larmor radius rL = 1 and the skin

(a) 1D Model
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in space and time. we obtain an w - k diagram as shown in Figure 5.2-(b). 

The slow extraordinary wave (SE mode) is clearly excited as well as the 

fast extraordinary wave (FE mode)  CAkhiezer et al., 1975]. The wave most 

strongly excited is the mode at the cutoff frequency of the SE mode. 

    The time evolution of the transverse electric field Ez is shown in 

Figure 5.3-(a). As the magnetic field is in the z-direction. the excited 

wave is the ordinary wave, which is excited by the beam current Jz. The w 

-k diagram of the E
z field is shown in Figure 5.3-(b) The "MAX" in Figures 

in 5.2-(b) and 5.3-(b) indicates the maximum amplitude of the excited 

wave. The SE mode is obviously the most strongly excited mode. 
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Fig. 5. 4 Spatial distributions along the x-axis of the beam electrons 

background plasma at different times.

and

    The electric field  E
x due to the excess charge of the beam electrons 

accelerates the surrounding background plasma electrons and causes a 

formation of a hole as seen in Figure 5.4. The electron beam itself also 

expands in size due to the electric field and subsequently oscillates with 

the period TSE of the most strong SE mode wave. Therefore, the initial

I I
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expansion time of the beam is  1/2TSE. It is noted that the expansion time 

is decided by the background plasma condition rather than the electron beam 

property, because the dispersion characteristics of the SE mode waves are 

determined by the cold plasma. 

5.2.2 Two-Dimensional Electromagnetic Model 

    The FEM code is applied to a more realistic two-dimensional 

electromagnetic model. A two-dimensional simulation space (x-y plane) 

formed by the spatial grid points of 128x128 are taken in a transverse 

plane to the static magnetic field which is taken parallel to the z-axis as 

seen in Figure 5.1-(b). 49152 cold electron is uniformly distributed in 

the simulation space. Dynamics of ions is not followed, although their 

presence is assumed to establish the charge neutrality. 1024 beam 

electrons are injected in the central area with about 4x4 grid points. In 

the FEM code, we assume a spatial uniformity in the z-direction. i.e.. a/az 

- 0 . The x-y simulation plane is fixed at a certain z = zo point but both 

the background plasma and the beam are assumed to be uniform in the z-

direction for all time including the injection time t = 0. In this model 

the electron beam has a cylindrical shape which is uniform in the z - 

direction. The initial drift velocity of the electron beam is 0.2c. and 

the thermal velocity is 0.02c. The thermal velocity of the background 

plasma is 0.02c and the plasma frequency is 2.0 Oe_ The beam plasma 

frequency is about 6.4 De. Owing to the beam charge, an electric field is 

produced radially. The background plasma and electron beam are accelerated 

outward initially and oscillate subsequently. In Figure 5.5 contour maps 

of the distributions of the background electrons and the beam electrons are 

Presented. As in the one-dimensional model. an initial expansion of the 

beam and a formation of a hole in the back ground plasma are found to take 

place followed by subsequent oscillations. The Fourier analysis of the 

electric field Ex and Ez both in time and in space gives m k diagrams as 

shown in Figure 5.6. The w - k diagrams of the cold plasma condition 

before the electron beam injection are also shown in Figure 5.6 for 

comparison. The "MAX" in the diagrams is the maximum amplitude of the wave 

modes shown in each diagram. Possible wave modes in the present 

 configuration, i.e.. in the transverse propagation modes. are fast and slow 

 extraordinary waves for Ex and Ey components. and an ordinary wave for Ez 

 component. From the co k diagrams it is noted that the SE mode is a 

dominant wave to be excited.
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    Although the SE mode wave is most strongly excited around the beam. it 

is not likely to be observed at distance because of the group velocity of 

the wave is very small. On the other hand. the 0 mode wave propagates with 

a velocity nearly equal to the light speed. The 0 mode wave is an impulse-

like wave which is excited by the sudden appearance of the beam current Jz 

at the start of the beam injection. In Figure 5.7 three-dimensional plots 

of the spatial profiles of the E1 field at different times is presented. It 

is noted that the 0 mode wave is an impulse response to the onset of the 

electron beam injection. 

    To see a spatial behavior of the beam in detail, vector plots of the 

current Jx and Jy in the vicinity of the beam are presented in Figure 5.8. 

The current flows inward at first and subsequently rotates owing to the 

variation of the electric field, and then flows outward. It is noted that 

the beam is twisted spatially owing to the ExB drift in addition to its 

radial oscillation. 

5.2.3 Summary and Discussions 

    Simulation results of 10 and 2D electromagnetic models for the beam 

injection in space have been presented in the previous sections. In the 

simulation, ion kinetics is neglected and the plasma is assumed to be
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collisionless, which is valid at the initial stage of the beam-plasma 

interaction. Beam Plasma Discharge (BPD) takes place at several hundred 

plasma periods after the onset of the beam injection ( Bernstein et 

al..1979; Mishin and Ruzhin, 1980; Papadopoulos, 1981; Szucszewicz et al., 

1982). The present simulation therefore is effective only within several 

hundreds of plasma periods. Those phenomena found in the ID model are all 

reproduced in the 2D model. Slow extraordinary waves with long wavelength
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are preferentially excited in the both models. Especially the mode which 

has a wavelength of the system length is the most dominant one among the SE 

mode waves. This is because of the periodic boundary condition assumed for 

the limited number of grid points. The wavelength of the wave that would 

actually excited in the space plasma is still unknown. and may depend on 

the magnetospheric conditions. 

    In the 1D model where we could obtain a better  resolution. the SE mode 

wave at the cutoff frequency was most strongly excited. Therefore. in the 

real experiment the wave at the cutoff of the SE mode will be dominant and 

the oscillation of the beam and the background plasma will have the cutoff 

frequency of the SE mode. These plasma oscillations are observed only in 

the vicinity of the electron beam and subside as neutralization of the beam 

charge proceeds owing to the ion reaction. An impulse-like wave of the 0 

mode are also found to be excited in the both 1D and 2D models. although 

the intensity is much lower than that of the SE mode wave. This wave 

having a electric field Ez is excited by the beam current Jz via 

8E
z/8t = -Jz/e0(5.1) 

This wave propagates radially as seen in Figure 5.7 and is possibly 

observed at distance in accordance with the onset of the beam injection. 

Coinciding with the excitation of the SE mode wave. the beam and background 

plasma start to oscillate with the frequency of the SE mode wave. 

    The initial expansion of the beam lasts for 1/2TSE.It is noted that 

the expansion time is decided by the background plasma condition rather 

than the beam condition itself. 

    In the actual SEPAC experiment on space shuttle. the injection point 

of the electron beam moves spatially with the space shuttle and hence the 

configuration and plasma conditions may be very complicated. As a first 

step of the simulation study of the SEPAC, we assumed a spatial uniformity 

for simplicity. As discussed in Subsection 5.2.3, the nonunifomity in the 

direction of the external magnetic field may well play an important role in 

the excitation of plasma waves. Therefore. as a second-step study. it is 

definitely necessary to do a two-dimensional electromagnetic simulation 

taking one of the two dimensions along the static magnetic field . e.g., in 

the y-direction. This is an extension of the 1D model presented in this 

paper. The periodic boundary condition is no longer applicable to the y-

direction. as we have to simulate the electron beam injection along the y-

direction from the gun. This work is currently being carried out and its 

results will be published elsewhere.
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5.3  Electrostatic_  Radiation from an Electron Beam

Modulated by Coherent Whistler Mode Wave

    Reinleitner et al. [1982, 1983] discovered in the data from the ISEE 

satellite that strong electrostatic (ES) noise bursts are often associated 

with a coherent chorus hook element (see Figure 5.14 in their section). At 

the time of occurrence of these hook-induced ES bursts. a high-energy 

electron beam with an energy of the order of several hundred eV is always 

simultaneously observed. The frequency of the hook-induced ES bursts 

varies from just above the local plasma frequency fpe down to — 50-60% of 

fpe. The relative intensity of the bursts is less than the hook 

intensity. The measured k vector of the ES bursts is parallel to the 

geomagnetic field. As for the generation mechanism of this phenomenon. 

Reinleitner et al. [1983] and Gurnett and Reinleitner [1983] proposed the 

following two step mechanism: (1) First, an obliquely propagating 

monochromatic whistler chorus accelerates trapped Landau-resonant electrons 

due to an increase of its phase velocity as it propagates along the 

inhomogeneous geomagnetic field line and creates an electron beam which 

runs along the geomagnetic field keeping resonance with the obliquely 

propagating whistler chorus. (2) Then. the electron beam itself becomes 

unstable against a resistive instability giving rise to a strong ES wave. 

     In the present paper, we focus our attention only on the second step, 

assuming the co-existence of an obliquely propagating monochromatic 

whistler wave and a resonant electron beam. The study reported here is to 

quantitatively investigate features of the instability in the whistler-

plus-beam system by a particle computer simulation. Our objectives are to 

see if the instability of the whistler + beam system is appreciably 

different from the conventional instability in the beam-plasma system and. 

if so, to study how different it is and to reveal what kind of wave mode is 

preferentially excited and to reveal its mechanism. For this purpose, we 

carried out two computer-runs with two different initial conditions: One 

with the obliquely propagating monochromatic whistler wave and the other is 

without the wave. In both runs, an electron beam with a parallel velocity 

equal to the resonance velocity VR = w/ko is assumed to exist in a 

background warm plasma where w and kii are the wave angular frequency and a 

component of the wavenumber vector projected onto the external magnetic 

field. The computer code used in this study is a two-and-one-half
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dimensional (2-1/2D) electromagnetic particle code (referred to as the  FEM 

code hereafter) which treats two-dimensional structure of all physical 

quantities as well as three-dimensional particle motion. The reason for 

the use of the FEM code, instead of using the more economical EMI code with 

1 spatial dimension and 3 velocity dimensions. is that we need to seek the 

unstable wave modes in the two-dimensional k-vector space in order to 

decide the direction of k vector of the most preferentially excited wave 

mode by the instability concerned.

5.3.1 Simulation Model and Parameters 

    The basic equations solved in the 

e s  s 
( E 

                dt ms

FEM code are:

+ s x B )

drs -t 
= v

s dt

(5.2)

(5.3)

as 
V x = - —        

at

441 aE 
V x B= u J+--

      o c2 at

(5.4)

(5.5)

P 
V•E - —(5.6) 

E13 

where vs, r
s, qs, and ms are velocity, position, charge, and mass of 

superparticles of the s-th kind; E and B are electric and magnetic fields; 

E
o'AOp, J, and c are the permeability, permittivity, charge density, 

current density, and speed of light , respectively. The charge, mass, and 

temperature of superparticles are so decided that the charge density
, mass 

density, and kinetic energy density are kept the same as those of real 

plasma particles. Thus. the plasma frequency 11
s, cyclotron frequency s, 

thermal velocity vth
,s, and the Debye length are kept unchanged from those 

in the real plasma. In the present FEM code
, the super-particles are given 

a square-shaped charge. As for the method of distribution of charge and 

current carried by each individual superparticle to the adjacent fo
ur
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SIMULATION MODEL

Z

Fig. 5.9
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 Ba 72° 

 7  

  128 cells

Coordinate s

----------4> Y 

 Wave,' 

          , 

    K128 cells 

Total Particle Number 

=524,288 (—Half Million)

Coordinate system for the present simulation. The simulation 

area is in the x-y plane with a length of 128 grids in both 
directions. Periodic boundary conditions are applied both to x 
and y boundaries. In both Cases A and B, an electron beam 
streaming along Bo is set as an initial condition together with 
a background of warm bi-Maxwellian plasma. The drift velocity 
of the electron beam is identical for Cases A and B and is 
equal to the resonance velocity of the obliquely propagating 
monochromatic whistler wave. The initial conditions for E and 
B field are all zero except for Bo in Case A. Only in Case B, 
an additional initial conditions are prepared for the electric 
and magnetic fields of the assumed monochromatic whistler wave 
along with the corresponding velocity and spatial modulation of 
warm plasma particles.

grids, and for that of interpolation of the fields onto the particle 

location from the grids, the area sharing scheme (i.e., PIC scheme) was 

adopted. 

    The conventional staggered grid system in space [e.g., Langdon and 

Lasinski, 1976; Hockney and Eastwood, 1983 ] is used along with a leap-

frog scheme in time to rewrite all the basic equations in a form of 

centered difference equations in both space and time. A dual time-step 

scheme is adopted to reduce the CPU time. Particles are updated only at a
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TABLE 1. List of Simulation Parameters

Quantities Notation Case A Case B

Grid spacing, Ar 
Debye length, AD 
System size 
Time step for waves 
Time step for particles 

Electron plasma frequency 
Electron beam plasma frequency 
Electron cyclotron frequency 
Light speed 
Number of background 

  plasma particles per cell 
Number of beam particles 

  per cell 
Density ratio of beam 

  to background plasma 
Total number of particles 
Average velocity of the beam 
Beam thermal speed 
Thermal speed of background 

  plasma 
Propagation angle between 

  k and  Bo 
Amplitude wave magnetic field 
External magnetic field 
Amplitude of wave electric 

 field parallel to Bo 
Amplitude of wave electric 

 field perpendicular to Bo 
Wave frequency 
Number of wave cycles in Lx 
Number of wave cycles in L

y Ph
ase velocity of the wave 

Total time steps 
Total CPU time on FACOM-M200

Ar 
AD 
Ls x Ly 

At„, 
4tp 

lie 
Ha 
S2Q 
c 
No

N,,

n

N, 

vb 

Vb
,th V

th

0

B,,, 

Bo 

EH

El

co (not f) 
Lx 
Ly 
Vph

   1.0 
   1.0 

128 x 128 
  0.01 

  0.08 

  2.0 
  0.2 
   1.0 
 50.0 

 16

16

0.01

 524,288 
    5.48 

0.2(isotropic) 
2.0(isotropic)

10.0

 8,192 

16 hours

   1.0 
   1.0 

128 x 128 
  0.01 

  0.08 

  2.0 
  0.2 
   1.0 
 50.0 

 16

16

0.01

 524,288 
    5.48 

0.2(isotropic) 
2.0(isotropic)

71.6°

0.1 

10.0 

8.4

0.17

  0.27 

1 

 3 

  1.73 

 8,192 

16 hours

Table. List of simulation parameters
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large time step which is some-integer times larger than the time-step for 

field-updating [Matsumoto and  Omura. 1984]. Before carrying the present 

simulation runs. we performed several test runs of our computer code . The 

check we made is a test of its reproducibility of the linear dispersion 

relations of normal mode waves in a magnetized plasma. The results are 

quite satisfactory. All modes including kinetic mode such as electrostatic 

and electromagnetic cyclotron waves are reproduced in the run and their 

dispersion relation agreed quite well with the linear theory. Details of 

the test run will be reported elsewhere [Matsumoto and Omura, 1984]. 

    The model of the two runs for the present study is depicted in Figure 

5.9. The simulation plane is in the x - y plane which are divided into 128 

x 128 cells with a grid size of the Debye length. The system is assumed to 

be periodic in both x and y directions and hence periodic boundary 

conditions are used. The external magnetic field Bo is assumed to be 

parallel to the x-axis. An electron beam is set to run parallel to Bo with 

a velocity equal to a velocity w/kii which is the resonance velocity with 

the obliquely propagating whistler mode wave. The velocity distribution of 

the beam is given by a shifted Maxwellian with center and thermal 

velocities as listed in Table 1. The case in which only the electron beam 

is set in the background of the warm plasma and where no initial wave is 

assumed is called Case A. While the other case is called Case B in which, 

in addition to the electron beam, initial conditions for particles and 

fields are set to make a monochromatic whistler wave propagate at an angle 

of 72° with Bo in the x - Y plane as depicted in Figure 5.9. The fields of 

the monochromatic wave and associated particle velocities and positions of 

the warm plasma particles are related with each other by the linear 

theory. In both Case A and Case B, ions are assumed to be immobile (i.e., 

m = 00) 

    In Table 1, parameters used in Case A and Case B simulations are 

listed up. 

5.3.2 Simulation Results 

  - Evolution of k-spectra and dispersion relation of excited waves 

    Data of electric and magnetic fields assigned to all grid points are 

Fourier-analyzed by an FFT-analyzer and converted to Fourier components on 

the (k11.k1) plane. These Fourier components as a time series were then 

Fourier analyzed in time domain by a post-processor yielding an w k
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diagram of the excited waves. Figure 5.10 shows a contour-map display in 

 the k'1 - klplane of thekspectra ofelectricfieldcomponents,E
y. Eand 

EZ integrated over from w = 0 to w =2.4. The "mode number" described along 

the kH and k
l axes gives a number of cycles of wave within the system 

length in the directions along and perpendicular to B
o, respectively. In 

the results of Case A for the study of the conventional beam instability. 

we do not see any strong waves are excited except for a weak excitation of 

a wave with k11 = 0 and k
l ti 0.05 ( i.e., with a mode number = (0. 1)), 

which turns out to be electron cyclotron waves with w = 2.0. In Case B. 

however. a strong electric field parallel to B
o (i.e., Ex-component) is 

excited with a k-vector parallel to B
o (i.e.. kip = 0.3 and k101. This 

means the excited wave is of electrostatic nature propagating parallel to 

the external magnetic field. An intense spectrum peak at I< - 0.05 and k
l 

= 0.15 or at a modal point of (1 . 3) is the obliquely propagating whistler 

wave. The corresponding co - ki, diagrams for the E
x component in both Case 

A and Case B are shown in Figure 5.11. The frequency spectrum intensity is 

plotted as a function of frequency for each fixed k-value in the figure. A 

clear difference is seen between these two cases. In Case B. strong waves 

are excited with a phase velocity slightly faster than the initial beam 

velocity which is depicted by a dashed line for reference . The frequency 

range of the excited waves is approximately from 0.517e 0.611e to 1.2e. 
where lie (= 2) is the plasma frequency. It is noted. however, that these 

spectra are the integrated ones over the whole interaction time . 

Therefore. the frequency or k-spectrum may be changing from time to time . 

To check this point, the k-spectra in the (k
11, k1) plane at different times 

are shown in Figure 5.12. In Case A, almost no strong wave is seen for all 

these times. In Case B. the peak at (k
H - 0.05, kl = 0.15), which 

represents the E
x-component of the obliquely propagating whistler wave. is 

reducing its height due to the Landau damping by the beam . As the whistler 

wave is attenuated, electrostatic waves with its center in the vicinity of 

(k, k1) = ( 0.25, 0 ) begin to grow up at t = 20 .5 and become strengthened 

after t = 41 shifting their peaks into higher k
ip from k11 = 0.25 to k11 = 

0.40. This result gives if combined with the dispersion analysis in Figure 

5.11 that the wave frequency of the excited electrostatic bursts varies 

from approximately 0.51i
e to 1.211e in a relatively short time of the order 

of z = 8011
e-1. A discussion concerning the characteristic time r of the 

frequency change, will be given later . Intensities of each k
ip mode in Case 

B are plotted as a function of time in Figure 5 .13. 

    Appreciable growth is observed for the modes from #4 to #8 with a
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Fig. 5.10 Analyzed k-spectra of three electric field components for Case 
A and Case B. The k-spectra are shown by contour maps with 

gray code in the (kp, k1) plane. These spectra are those 
averaged over whole simulation time and over a frequency range 
from w = 0 to w = 2.4 which is the maximum sampling frequency 
determined by the sampling rate. Though almost no wave 
excitations are seen in Case A, a strong Ex-component with k // 
Bo is seen in Case B. A sharp peak with kl = 0.15 and kip = 
0.05 corresponds to the obliquely propagating monochromatic 
whistler wave.
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 Fig. 5.11 Dispersion characteristics of the Ex component of the excited 
            waves shown in the form of w - k11 diagrams. The initial beam 

             velocity is shown by dashed lines for reference. 

maximum intensity at mode #5. In the two largest modes #5 and 6, a fast 

growth is seen from t = 30 to a time of the maximum peaks, following the 

initial slow growth phase from t = 0 to t = 30. This indicates the 

instability nature changes at t ti 30 in the whistler + beam system. 

 - Evolution of Spatial and Velocity Distributions of the Beam 

    The electric field component E11 parallel to Bo of the obliquely 

propagating whistler wave spatially traps the resonant electron beam in the 

bottom of its potential well as schematically depicted in Figure 5.14. 

Accordingly, the initial velocity distribution function with a mono-peak at

- VB V
res = w/k11,depicted by a dashed line in the lower panel of Figure 

5.14, is expected to be deformed into twin-peaked distribution function due 

to acceleration and deceleration of the beam electrons by the wave 

potential. Figure 5.15 shows the evolution of the spatial distribution of 

the electron number density for both Case A and Case B. The perturbation 

ANe(x, y) is plotted in the x - y plane by a contour map for selected times 

from 0 to 71.7. In Case A, we see many patches are developed as time 

elapses changing their structure from more clearly lined-up structure along
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 y-axis at t = 10.2 to more scattered patches in the x y plane at later 

time. In Case B, however, the expected spatial trapping is seen clearly at 

t = 20.5, 30.7 and vaguely at t = 10.2 and 41 .0. The high density regions 

are lined-up perpendicular to the wave normal vector of the whistler wave . 

The collapse of the trapping starts around t — 30 giving rise to a complete 

detrapping at t = 40. Figure 5.16 shows the corresponding evolution of the 

parallel distribution function f(v0) as a function of time for both Case A
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 Fig. 5.14 A schematic illustration showing a spatial trapping of the 
            resonant beam electrons in a potential well of E11 of the 

            obliquely propagating whistler wave. The lower panel shows the 
            expected twin-peaked f(vH) due to acceleration and deceleration 

            of beam electrons by E11. 

and Case B. 

    In the conventional beam instability case (Case A). the velocity 

distribution function of the beam shows the well known evolution, i.e.. the 

mean velocity decreases accompanied with the spread of the distribution 

function. This explains the energetics of the conventional beam 

instability. The free energy of the instability is the drift kinetic 

energy of the beam which is deposited into wave energy and thermal energy 

of both ambient and beam electrons. In contrast to this conventional beam 

instability, the [whistler + beam] system shows quite different evolution 

of the f(vii). The initial mono-peaked distribution function is deformed 

into a twin-peaked distribution. separated at the resonant velocity. As 

time elapses, the twin-peaked nature eventually disappears because the wave
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Fig. 5. 15 Evolution of spatial distribution of density perturbation of 
the electron beam: Horizontal and vertical axes correspond to 
x- and y-axes, respectively. The upper and lower columns show 
the sequential changes of the density evolution for Case A and 
Case B, respectively.

loses its potentiality of trappings the beam electrons after t = 30 Th and 

hence no more keep the trapped electrons rotating in the trapping region in 

the phase space. This point will be discussed in more detail later . 

 - Evolution of Phase Space Plot of Resonant Beam Elect
rons 

    The difference of beam electron behavior for the two Cases A and B 

becomes clearer if we see the phase space plot of resonant beam electrons . 

Figure 5.17 gives the phase space plot in the v
ii- x phase space for both 

Case A and Case B. The result for the Case A indicates the well -known 

evolution of the conventional beam instability: At first the beam velocity 

is modified by the electric field created by the beam itself and shows the 

wave structure in the v
~~-x space as seen in the frame for t - 10.2. Then
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               and Case B, respectively.
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the nonlinear state is set-in giving rise to the formation of eddies in the 

 Phase space as seen in the frame for t - 20.5. At later time, however, the 

usual thermalization process takes place yielding the spread of the beam in 

the vii. In Case B, the phase space behavior is much different from that in 

Case A. Until t = 20.5 all of the beam electrons are clearly trapped by 

the wave potential as schematically illustrated in Figure 5.18. Those 

electrons in the right half plane in the phase space plot are decelerated 

and those in the left half plane are accelerated as seen, e.g., in the 

frame for t = 10.2. Then these trapped electrons show a rotational motion 

in the phase space making a spiral as seen in the frame for t = 20.5. The 

magnitude of the velocity modulation is much larger than that in Case A 

under the present simulation parameters. Interesting point, however. is
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seen in the frames at later times after t  = 30.7. As previously mentioned. 

around t = 30 the intensity of the electric field component Ex parallel to 

the external magnetic field is reduced by the Landau damping down to a 

level which can no more keep these electrons being trapped in its potential 

well. Therefore, the electrons at higher speed than the original beam 

velocity, which is equal to the resonant velocity, stay in the higher 

velocity region in the phase diagram and those in the velocity lower than 

the resonant velocity stay in the lower region in the phase space after t 

40. This physically means that two electron beams, one with a higher speed 

and the other slower one than the original (initial) beam speed are created 

at a time of the detrapping of the beam electrons around t = 30. This two-

beam jetting is a key process for the generation of a strong electrostatic 

wave bursts. This point will be discussed later in more detail. At later 

time, the two beams are merged in the velocity space via thermalization 

process with a slow time scale. The final velocity spread of the beam 

electrons is wider than that in Case A. This is an obvious result because 

the beam electrons are scattered additionally by the potential of the 

existi-ng whistler wave in contrast to the simple beam instability in Case 

A. 

5.3.3 Discussion and Conclusion 

    We have shown in the previous section that a strong electrostatic wave 

emission with a k vector parallel to the external magnetic field and with a 

frequency range from 0.5He to 1.211
e is excited when and only when an 

electron beam coexists with a resonant monochromatic whistler wave 

propagating obliquely in the magnetized plasma. Examination of the 

involved microphysics of the wave-particle interactions in the simulation 

results leads to the following physical picture. 

1. Electrons trapped by an obliquely propagating monochromatic whistler 

  wave packet via Landau resonance are accelerated by an action of 

  dispersive acceleration in the nonuniform geomagnetic dipole field 

[Gurnett and Reinleitner, 1983]. thus producing an electron beam which 

  is Landau-resonant with the whistler wave. 

2. The trapped beam electrons show an oscillation in the potential well of 

  the electrostatic electric field component of the whistler wave and 

  absorb energy from the wave causing the Landau damping of the electro-

  static component of the wave. During this process , the velocity 

  distribution of the beam electrons changes from a mono-peaked to a
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  Fig. 5.18 Linear dispersion relations ( m - k diagrams) of beam 
             instabilities. (a) Single beam case, (b) Double beam case. 

  double-peaked distribution with respect to the parallel velocity. This 

  corresponds to a spiral motion of bunched electrons in the vii- x phase 

  diagram. 

3. The eventual damping of the electrostatic component of the electric 

  field of the wave leads to a loss of a capability of trapping these 

  electrons. Thus at a certain time of this damping process, the trapped 

  electrons are detrapped. Approximately half of the detrapped electrons 

  have a higher velocity than the resonant velocity and the rest half have 

  a lower one at the moment of the detrapping. Therefore. two beams with 

  different speeds are created by the process of trapping and subsequent 

detrapping. 

4. The two beam jetting causes a strong electrostatic wave emission with a 

k vector along the external magnetic field. 

    To confirm the final process #4, we can examine a simplified 

dispersion equation of the electrostatic beam instability for both a
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single-beam and dual-beam cases. The well known dispersion equation 
of the 

electrostatic beam instability for the beam-plasma system consisting of 
a 

single cold electron beam is given by 

n2 02 
        1 -  = n e(5 .7) 

                       w2 b ( w - kVB) 2 

where De, nb and VB are the plasma frequency, relative number density of 

the electron beam to the background plasma density, N
b/No and the beam 

velocity, respectively. For the plasma parameters used in the Case A (Beam 

Only Case) simulation, the complex w solutions against real k values are 

depicted in Figure 5.18(a). The real part of w is shown by solid lines, 

while the imaginary part of w is drawn by dashed lines. As is well known. 

the beam branch shows an unstable solution with a positive wi.The maximum 

w.1 approximately 0.3. Our question is then to see whether or not the 

dispersion equation for the beam-plasma system shows larger growth rate 

than the single beam case when the beam density of each beam in the two 

beam case is half of that of the single beam case, remaining the other 

parameters the same. The dispersion equation for the electrostatic 

instability in the two-beam case is given by 

    22 

       1 -n2=ne1 ---------------ne+ ne2e(5.8) 
                w2 - kVB1)2(w - kVB2)2 

where nel and net are the relative beam density, i.e.,nel Nbl/ o' ne2 
Nb2/No. As mentioned before, the complex w solution for real k values are 

examined for nel = ne2 = 0.5ne with other plasma parameters are kept the 

same as before. This corresponds to the plasma parameters for Case B 

simulation. The numerical solutions to w are illustrated in Figure 

5.18(b). As seen by the dashed curve, the imaginary part wi now shows a 

larger value for the beam branch with higher velocity, reaching a maximum 

value of 0.6. 

    In the lower panels in both Figures 5.18(a) and (b), the w - k 

spectrum of the simulation results are shown with the numerical solutions 

to Eq.(5.7) and (5.8), respectively. The numerical solutions agree well 

with the simulation results except for the slower beam branch in Case B. 

The simulation results show almost no wave excitation along the slower beam 

branch against the prediction of the linear dispersion equation. This 

discrepancy is probably due to the difference in temperature of the beam
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In the numerical calculation of the dispersion equation 

while the two beams produced in the simulation have a si 

temperature. 
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particle motion. this corresponds to the electron trapping in the potential 

well of the whistler wave. After a time of detrapping the enhanced kinetic 

energy of the electron beam is released yielding a strong electrostatic 

burst emissions. 

    The generation mechanism of the electrostatic emission burst is thus 

essentially a beam instability boosted-up under the action of the electro-

static component of the obliquely propagating whistler wave by a catalysis 

action of the beam energy reservoir which leads to the two beam  jetting. 

Therefore the wave vector of the generated emission is parallel to the 

external magnetic field as observed by the satellite. It is, however, 

worth noting that if the wave amplitude of the whistler wave is 

sufficiently large, the electrostatic burst emission treated in the present 

paper is possible without having an electron beam at t = 0 because the 

background electrons are trapped by the potential well of the wave and thus 

creating an equivalent electron beam being accelerated by the potential 

well. 

    In summary, we presented results of particle simulations of nonlinear 

wave-wave-particle coupling among resonant particles, electromagnetic and 

electrostatic waves and gave an interpretation of the observed ES bursts 

discovered by ISEE [ Reinleitner et al., 1982, 19837.
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   CHAPTER 6 

CONCLUDING REMARKS

6.1  Summary and Conclusions  

    In this thesis we have made theoretical and computer-simulational 

studies on three types of wave-particle interactions in space plasmas. 

These interactions are whistler mode interactions, electromagnetic ion 

cyclotron interactions and interactions involved in radiations from 

electron beams. For the nonlinear studies of these interactions, we 

developed three kinds of simulation codes. These codes are the FEM, LTS 

and HEM codes, which have been successfully used in the present studies. 

    In Chapter 1, we briefly gave an overview of the present studies and 

discusses the increasing demands for computer simulation studies in space 

plasma physics. In Chapter 2, we described numerical algorithms and 

techniques of the three different simulation codes. The FEM code has been 

applied to the studies of whistler mode interactions and radiations from 

electrons beams. Since this code is 2-1/2 dimensional and possible to 

solve all kinds of plasma waves, further applications to a wide range of 

nonlinear wave-particle interactions are expected. The LTS code has been 

used to analyze the self-consistent evolution of whistler wave in various 

situations. The high numerical efficiency of the LTS code made it possible 

to assume realistic models and parameters in the magnetosphere. The HEM 

code has been applied to the study of electromagnetic ion cyclotron 

interactions. The fluid treatment of electrons made the code very 

efficient in solving low frequency ion mode waves. 

    In Chapter 3, we have investigated the whistler mode wave-particle 

interactions in an attempt to explain the VLF emissions in the 

magnetosphere. Through the analysis of nonlinear orbits of resonant 

electrons in a nonuniform magnetic field, we found that two types of phase-

bunching, cluster and channel effects, are possible and form resonant 

currents. We then performed a self-consistent study. Nonlinear process of 

the wave growth in a uniform magnetic field is examined in detail . 

Difference between uniform (periodic) and nonuniform (encounter) 

interactions is studied. Taking into account the inhomogeneity of the 

dipole geomagnetic field, we found that untrapped resonant electrons as 

well as trapped electrons play significant roles in the wave evolution .
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The role of trapped and untrapped electrons are different and exchange 

their roles depending on the sign of the geomagnetic  gradient. In one 

hemisphere where the whistler wave propagates toward the equator, trapped 

electrons cause wave growth. while untrapped resonant electrons cause wave 

damping. In the opposite hemisphere. these roles are exchanged. 

We found that an emission is triggered owing to detrapping of phase-

bunched electrons from the pulse propagating in a homogeneous magnetic 

field. The emission shows a relatively small rising tone followed by 

subsequent frequency oscillations. Then we investigated quantitative 

change of the velocity distribution function of resonant electrons caused 

by a combined action of nonlinear phase-trapping and geomagnetic 

inhomogeneity. It is pointed out that the contribution by electrons which 

are trapped in the midst of the whistler wave train is as important as that 

by electrons which are trapped at the wave-front. It is further revealed 

that deformation of the velocity distribution function is caused not only 

by trapped electrons but also by untrapped electrons perturbed by a 

whistler triggering wave. The well-known characteristics of pulse length 

dependence of rising or falling tone characteristics of triggered emissions 

are interpreted by the simulation results. Effects of electrostatic waves 

of whistler mode instability have been studied in a simulation where an 

electron beam with a small spread of parallel velocities is assumed. It is 

found that the longitudinal electrostatic instability has a larger growth 

rate than the whistler mode instability, and strongly modifies the electron 

 beam suppressing the whistler instability. 

     In Chapter 4, electromagnetic ion cyclotron wave-particle interaction 

 has been studied first by the linear theory and then by a computer 

 simulation. The mechanism by which hot anisotroPic protons generate 

 electromagnetic ion cyclotron waves in a plasma containing cold H+ and He+ 

 ions is quantitatively studied by computing linear growth rates for 

 different plasma parameters. It is found that for parameters typical of 

 the geostationary altitude the maximum growth rates are not drastically 

 changed when a small proportion (-1-20%) of cold He+ ions are present and                                                                     + 

 that because of the important cyclotron absorption by thermal Heions in 

 the vicinity of the He+ gyrofrequency. waves which could resonate with the 

He+ distribution cannot be generated. Therefore. quasi-linear effects, in 

 a homogeneous medium at least. cannot be responsible for the heating of He+ 

 ions which is often observed in conjunction with ion cyclotron waves. In 

 order to investigate nonlinear process responsible for the He+ heating. we                                                                + 

 have performed a computer simulation. It is found that Heions are heated .4
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mainly in the perpendicular direction and they are heated more than cold H+ 

ions. The heating of  He is a two-step process :first He ions are set 

into oscillations by the growing wave (in both v
i and vii) until some of the 

ions reach a parallel velocity of the order of the resonant velocity at 

which time strong heating occurs owing to the nonlinear trapping. 

     In Chapter 5, we have investigated two types of wave radiation from 

electron beams, electromagnetic radiation from an artificially injected 

electron beam and electrostatic radiation from an electron beam modulated 

by coherent whistler mode wave. The former radiation is in the 

perpendicular direction to the static magnetic field, while the latter 

radiation is in the parallel direction. In the former case we found a 

strong excitation of a slow extraordinary wave around the electron beam and 

a propagation of a pulse-like ordinary wave packet excited as an impulse 

response to the onset of the beam injection. In the latter case we found 

that modulation by the coherent whistler mode wave causes an interesting 

two-beam jetting as a result of a trapping and the subsequent detrapping 

Process, yielding a strong electrostatic emission in the parallel 

direction. 

     In conclusion, we have studied nonlinear wave-particle interactions 

for several phenomena observed in space plasmas using the technique of 

computer simulations. We could obtain good understanding of microscopic 

processes in the interactions through various kind of analyses of the 

simulation data. We found that trapping and/or detrapping of resonant 

particles is one of the major cases of the nonlinearities in the wave-

particle interactions. We hope that the present work contributes more or 

less to the establishment of the space plasma physics . 

6.2 Suggestion for Further Work  

    We have developed three simulation codes in the present study . The 
FEM and HEM codes are programed so as to be applied to general problems , 
while the LTS code is limited to the whistler mode wave-particle 

interaction. Along with the development of these codes , various kinds of 
diagnostic tools such as graphic routines are built up as a library called 

Subroutine Library for Plasma Simulation (SLPS) . There are plenty of 

nonlinear problems which could be studied with the use of these softwares
. 
    Complexity of phenomena in space plasmas also demand improvement of 

these simulation codes. The FEM code which is of 2-1/2D at present is
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expected to be extended to a 3D system, and it is also expected to include 

a relativistic effect in the particle motion. The HEM code which is of  1-

2/2D at present is easily extended to a 2-1/2D system. Another improvement 

that must be done to the FEM and HEM code is to make these code represent 

an open system rather than a closed system. Under the periodic boundary 

condition presently assumed in these code, waves cannot escape from the 

system. and new energetic particle are not injected into the system. 

Therefore, the present simulation system is stationary rather than 

progressive, and it cannot represent an equilibrium where input and output 

energy flow are balanced. Such improvement is eagerly needed as a further 

work. Boundary conditions must be set up carefully to avoid numerical 

instabilities and to represent realistic physical models suitably.
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Numerical  Dis ersion Relation

 Appendix A 

of the Wave in Vacuum

     We examine how the dispersion characteristic of the wave in vacuum is 

modified by the discretization of space and time in the numerical 

simulation. We assume a monochromatic plane wave in vacuum propagating in 

the x-y plane with the wavenumbers k
x and ky such as 

Bz = Bz exp i( wt - kxx - kyY )(Al) 

E
x = Ex exp i( wt - kxx - kyy )(A2) 

Ey = Ey exp i( wt - kxx - kyy )(A3) 

where w is the frequency, and B
z, Ex and are the amplitudes of the 

wave. Writing Maxwell's equations (2.18) - (2.20) in difference forms, we 

have 

Bn+1/2 - Bn-1/2 z
,i+1/2,j+1/2 z,i+l/2,j+1/2 

                 At 

    En- EnEn- En 
        -- Y,i+1,j+1/2y,i,j+1/2+ x,i+1/2,j+1x,i+1/2,j (A4) 

    AxAy 

En+1 - EnBn+1/2 + Bn+1/2 x
,i+1/2,3 x,i+1/2,j = c2  z „ i+1/2,j+1/2 z,i+1/2,j-1/2 (A5) 

  AtAy 

En+1 - EnBn+1/2_ Bn+1/2       Y
, 1,,1+1/2 y, i+1/2, j =-02  z,1+1/2,j+1/2 z, i-1/2, ,1+1/2 (AB) 

  AtAx 

where the subscripts and superscript indicate the grid numbers andtime 

steps, respectively. Substituting (Al) - (A3) into (A4) - (A6) , we have 

       sin ( wAt/2 ) 
B - sin ( kxAx/2 ) E sin ( kyAy/2 ) -------------------- 6 (A7) 

     At/2zAx/2Ay/2x 

sin ( wAt/2 )sin sin ( k
yAy/2 ) ------------------ E

x- c ------------------B(A8)       At/2Ay/2 z
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Defining 

 We rewrite

sin ( wAt/2 ) 

------------------ Ey=-c2 
  At/2

sin ( k
xAx/2 ) 

   Ax/2 

(A7) - (A9) as

Ky =
sin

sin ( k
x Ax/2 ) 

  Ax/2Bz

Ay/2 )

C2 =

sin wAt/2)

(A9)

Ay/2 At/2

QBZ =KxEy -yE) 

(2Ex = c2K
yBZ 

a
y = - c2KxBz 

e nemerical dispersion relation 

5) is identical to the dispersion

(A10)

(A11)

(Al21

(A13)

Eliminating Ex and E from 

2
(A14) 

Since BZ $ 0, we obtain the 

                                                    (A15) 

It is obvious that (Alrelation of the 

wave in vacuum, if Kx, Ky and 0 are replaced by k
x, ky and w. 

    Let us derive the CFL condition for the wave in vacuum. For 

simplicity we assume Ax = Ay ° Ar. Substitution of (A10) into (A15) gives 

      2w4t At22"XAr2Jr      sin(-) = ( c—){ sin ( ) + sin ( ) } (A16) 

   2Ar22 

Since the maximum wavenumbers allowed in the simulation system are given as 

             kx ,max - ky,maxAr(A17) 

The dispersion relation of the wave with the maximum wavenumbers, which 

correspond to the highest frequency in the system. gives 

wAt  At ^2 c 
           sin2( — ) _ ( ,/2 c — )2 = ( )2(A18) 

      2Ar Vn
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where  Vn is the numerical velocity defined by Vn = Ar/At. If Vn < 12c. 

then the frequency w becomes complex, yielding a numerical instability. 

Therefore, the condition for stable time-integration is 

Vn ) /2 c(A19) 

This condition is for two-dimensional systems. As for one-dimensional 

systems, it it straight forward that the condition is modified as 

Vn > c(A20)
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Derivation of (2.10)  

    Light mode (high frequency mode) has little  o 

particle motion, which is expressed by the currei 

equations. 

, 1 aE 
                        rot B = uoJ + 2— 

                                   c2 

Let us compare the order of magnetude of the first and 

the r.h.s of (B1) 

            uoJ c2uoenv w2m 
--------- _ ( —2 )wv 

(1/c)28E/at wE weE 

From the equation of motion. we have 

wv = I—(E + v x B) I< e (E+ vB ) 
mm 

From (B2) and (B3), we have 

        uoJw 2vB ------------------- <( _E)( 1+—) 

(1/c)2aE/atw E 

Maxwell's equation gives 

                         E _ —B= VB                   wP                             W • 

where Vp is the phase velocity w/k. Since B = Bo+ B. 

vB vB v v Bv Bo 

E E VVBVpB         Ppww 

where Bw << Bo is assumed. Substituting (B6) into (B4) 

             wv Bo u
oJ( P )2 ( 

(1/c)2aE/at wVBw

                                   has little  contribution 

                                      the current J in

the second

we have

from the 

Maxwell's

(B1) 

terms in

from

we obtain

(B2)

(B3)

(B4)

 (B5) 

(B5) 

 (B6)

(B7)
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 Appendix C

Derivation of Scalin Relation (3.8)

value 

than

The phase trapping by whistler 

 of the inhomogeneity ratio 

unity. that is,

1

wave is 

R. given

possible as 

by (3.18)

kv2
P

far as 

in the

the 

text

absolute 

is less

I t 
Since wt2 = kv1Dw and 80e/8z = 2$za for the parabolic magnetic field. (C1) 

becomes 

            IBz kv2 
              ---fl—( -3V

R +1 ) G 1(C2) kv 
1 ilwae 

Thus the length Ltrap of the trapping zone is estimated by 

2kv1Q Ltrap 
$[-3VR + (kv2 /I2e) I(C3) 

where v1 = const. k = const, and De eo are assumed. In terms of the 
normalized quantities, (C3) becomes 

2kv1Clw -1 
    L—[c0](C4)              trapa( -3VR + kv2 )eo 

where k, w' and velocity are normalized to c 1, neo eo' and c. respectively. For values of k= 20. v= -0.05 . _5trap= 710 for magnetospheric parameters of a = 8.06 x 10-8 e = 10 , while Ltrappu 
  224 for simulational parameters of a = 2.55 x 10-6 and 9w=10-4.  The 

number of trapped oscillations within the trapping zone is given by 

(Ltrap/IViil)/Tt, that is, 

                       2kvb2 
         ntrap=1w [2n/(kv>7)1/2]-1 

              alvHl( -3VR + kv2 )w 

                    k3/2v 3/2 3/2 03/2       1--------------------------
ww(C5) 

nlvi~l( -3VR + kv2 ) a a 

                                                                                                                                                  •
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Thus the 

passage of

requirement of the same number 

the trapping zone gives

of trapping

 a3/2

oscillation during the

(C6)
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