Title: Study on the Nuclear Characteristics of a Light-Water-Moderated and Heavy-Water-Reflected Core Loaded with Medium-Enriched-Uranium Fuel

Author(s): Shiroya, Seiji

Citation: Kyoto University (京都大学)

Issue Date: 1986-01-23

URL: https://doi.org/10.14989/doctor.r5797

Type: Thesis or Dissertation

Textversion: author
STUDY ON THE NUCLEAR CHARACTERISTICS OF

A LIGHT-WATER-MODERATED AND HEAVY-WATER-REFLECTED CORE

LOADED WITH MEDIUM-ENRICHED-URANIUM FUEL

SEIJI SHIROYA
Study on the Nuclear Characteristics of a Light-Water-Moderated and Heavy-Water-Reflected Core Loaded with Medium-Enriched-Uranium Fuel

Seiji Shiroya

Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka 590-04, Japan

ABSTRACT

In order to examine the feasibility on the use of medium-enriched-uranium [MEU] fuel for a high flux reactor, the nuclear characteristics of a light-water-moderated and heavy-water-reflected annular core loaded with MEU fuel were investigated through the critical experiments using the Kyoto University Critical Assembly [KUCA]. Items of the critical experiments were measurements of (1) the critical mass, (2) the control rod worth, (3) the reactivity effect of boron loaded side-plates, (4) the neutron flux distribution, (5) the kinetic parameter, (6) the void effect on reactivity, and (7) the temperature effect on reactivity. The effect of reducing fuel enrichment on the nuclear characteristics were also investigated through the comparison between the cores loaded with MEU and highly-enriched-uranium [HEU] fuels.

It is concluded from the present study that MEU fuel is feasible for a high flux reactor in place of HEU fuel without any significant reduction in reactor performance. The main features of the nuclear characteristics in
the MEU core are determined by the fact that MEU fuel contains more ^{235}U and more ^{238}U than HEU fuel, and the H^{235}U ratio in the MEU core is smaller than that in the HEU core. The main features of the MEU core are as follows:

(1) The minimum critical mass of ^{235}U in the MEU core is around 20 % larger than that in the HEU core.

(2) The control rod worth in the MEU core is around 10 % lower than that in the HEU core.

(3) The reactivity effect of boron loaded side-plates in the MEU core is sufficient for suppressing the excess reactivity in an initial loading core of a high flux reactor.

(4) The level of the thermal neutron flux in the fueled region of the MEU core is around 10 % lower than that of the HEU core, however, they become much closer in the reflector region.

(5) The value of S/ξ in the MEU core is approximately equivalent to that in the HEU core.

(6) The void effect on reactivity in the fueled region of the MEU core is slightly more negative than that of the HEU core.

(7) The temperature effect on reactivity in the MEU core is approximately equivalent to that in the HEU core, although the Doppler effect in the MEU core is slightly negative and that in the HEU core is nearly zero.

A self-consistent system of the neutronics calculations for the analyses of the KUCA critical experiments is basically established through the present study including some assessments on the capability of computer codes. This self-consistent system of the neutronics calculations provides a possibility to investigate the nuclear characteristics of the MEU and HEU cores in more detail with a certified accuracy.
CONTENTS

I. INTRODUCTION

II. MEDIUM-ENRICHED-URANIUM FUEL COMPARABLE TO HIGH-ENRICHED-URANIUM FUEL

II-1. Introduction
II-2. Basic Physics on the Use of Reduced-Enrichment-Uranium Fuel
II-3. Light-Water-Moderated and Heavy-Water-Reflected High Flux Reactor
II-4. Determination of the Uranium-235 Enrichment of Reduced-Enrichment-Fuel Comparable to High-Enriched-Uranium Fuel
II-5. Fabrication of Medium-Enriched-Uranium Fuel

III. CRITICAL EXPERIMENTS USING MEDIUM-ENRICHED-URANIUM FUEL

III-1. Introduction
III-2. Description of the Cores Employed in the Critical Experiments
III-3. Criticality Measurements
III-4. Rod Worth Measurements
III-5. Measurements of the Boron Reactivity Effect
III-6. Measurements of the Neutron Flux Distribution
III-7. Kinetic Parameter Measurements
III-8. Measurements of the Void Reactivity Effect
 III-8-A. Void Reactivity Effects in the Water Regions
 III-8-B. Void Reactivity Effects in the Fuel Region
III-9. Measurements of the Temperature Effect on Reactivity

III-9-A. Temperature Effects on Reactivity in a Full Loading MEU core

III-9-B. Temperature Effects on Reactivity in the MEU and HEU Cores

III-10. Conclusions

IV. ANALYSES OF THE CRITICALITY AND THE BORON REACTIVITY EFFECT

IV-1. Introduction

IV-2. Calculations
 IV-2-A. Description of the Computer Codes
 IV-2-B. Generation of Group Constants
 IV-2-C. Diffusion Calculations

IV-3. Results and Discussion

IV-4. Conclusions

V. ANALYSES OF THE VOID REACTIVITY EFFECT

V-1. Introduction

V-2. Calculations
 V-2-A. Description of the Computer Codes
 V-2-B. Procedure of the Calculation

V-3. Results and Discussion
 V-3-A. Results of Calculations
 V-3-B. Discussion

V-4. Conclusions
VI. ANALYSES OF THE TEMPERATURE REACTIVITY EFFECT

VI-1. Introduction

VI-2. Calculations
 VI-2-A. Library for the Generation of Group Constants
 VI-2-B. Procedure of the Calculations

VI-3. Results and Discussion
 VI-3-A. Comparison between the Calculated and Measured Results
 VI-3-B. Examinations on the Physical Process of the Temperature Effect

VI-4. Conclusions

VII. CONCLUDING REMARKS

VIII. ACKNOWLEDGMENTS

References
1. INTRODUCTION

Research reactors have been mostly used as a very effective thermal neutron source. In this view point, it is essential for a research reactor to provide the thermal neutron flux as high as possible. The higher is the level of the thermal neutron flux per reactor power, the better the reactor performance becomes. Usually, the highest peak of the thermal neutron flux is attained not in a fuel region but in a reflector region. In order to obtain the higher peak of the thermal neutron flux in the reflector region, a so-called under-moderated core of a small size is desirable, although this is a condition of contradiction. The smaller is the core size, the higher the neutron flux in the fuel region grows up with the increase in power density and the more the fast neutron leakage from the fuel region becomes, which serves as a source term of thermal neutrons in the reflector region. In the under-moderated core, the fast neutron flux in the fuel region becomes relatively higher, whereas the minimum critical mass becomes larger and then the core size becomes larger. The above contradiction is dissolved to some extent by the increase of 235U loading into the core. Therefore, highly-enriched-uranium [HEU] fuel with a high U density is currently used in research reactors, although a low power density and a low temperature of primary coolant are desirable from a thermal-hydraulic point of view. From both view points of the thermal-hydraulics and the neutron economy, plate type fuels with aluminum cladding are currently adopted in research reactors.

Several high flux reactors have been constructed to provide the high thermal neutron flux for the research purposes. In such reactors, high density fuels such as UAl$_x$-Al and U$_{3.6}$O$_6$-Al dispersion aluminide fuels are currently used, whereas U-Al alloy fuel is conventionally used in most
research reactors. At the beginning of the present study 1978, the maximum U densities of U-Al alloy, UAl_x-Al and U_{3}O_{8}-Al dispersion aluminides were approximately 0.7, 1.7 and 1.2 g/cc in commercial base respectively. It makes possible to fabricate fuel having much more density than current fuel. This development in the fuel fabrication technique provides a possibility to use reduced-enrichment-uranium [REU] fuels, including medium-enriched-uranium [MEU] and low-enriched-uranium [LEU] fuels, instead of current HEU fuel in a research reactor including a high flux reactor with a minor reduction in the reactor performance without changing any core dimensions.

From the above viewpoints, the present study is concerned with the use of REU fuel comparable to current HEU fuel in a high flux reactor and is focused mainly on the nuclear characteristics of a core loaded with MEU fuel. The undesirable effects of increasing ^{238}U content in REU fuel may well be cancelled by the increases in ^{235}U and total U densities. The expected demerits for the use of REU fuel are as follows: (1) the neutron flux may fall down in proportion to the increase in ^{238}U content, (2) the peak value of the power density may grow up at a boundary of the fuel region with the increase in ^{235}U content, that may be undesirable from a

Note: Definitions of HEU, MEU, LEU, and REU

<table>
<thead>
<tr>
<th>HEU</th>
<th>MEU</th>
<th>LEU</th>
<th>REU includes MEU and LEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAEA4-6</td>
<td>Present Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{235}U Enrichment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 70 wt%</td>
<td>93 wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 wt%</td>
<td>45 wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20 wt%</td>
<td>20 wt%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
thermal-hydraulic point of view, and (3) the initial cost of the fuel fabrication may go up with the increase in U density of REU fuel. On the contrary, the expected merits are as follows;⁴ (1) the Doppler effect⁷ may grow larger and become more effective to suppress an accidental power excursion with the increase in ²³⁸U content, and (2) the fuel life may become longer because of the accumulation of Pu during burnup, although a main fissile material is ²³⁵U throughout the fuel life. It is worthwhile to investigate quantitatively these merits and demerits.

Several studies on the use of REU fuel in a research reactor have been performed. However, there has been no study on the use of MEU fuel and all studies have been concerned with LEU fuel. For example, the TRIGA type reactor originally utilized LEU fuel of 20 wt% ²³⁵U enrichment,⁸ and all TRIGA type reactors in Japan are using LEU fuel.⁹ The graphite-moderated Semi-Homogeneous Critical Experimental Assembly [SHE] at Japan Atomic Energy Institute [JAERI] is using LEU fuel.⁹,¹⁰ The first critical state in the Japan Research Reactor-2 [JRR-2] at JAERI, which uses heavy-water as a moderator and a reflector, was attained with use of LEU fuel in 1960,¹¹ and LEU fuel was converted to HEU fuel in 1962. Especially, after the US Government declared to stop a supply of HEU fuel in relation to the nonproliferation policy issued in 1977, the special efforts have been internationally focused on the research concerning the reduced enrichment for research and test reactors [RERTR].¹²-¹⁴ Under the instruction of the International Atomic Energy Agency [IAEA], the RERTR program is systematically being performed in many countries to investigate the feasibility on the use of REU fuel in research and test reactors.⁴,⁶,¹⁵-¹⁹ This program includes (1) a development of high density REU fuel, (2) a burnup test of REU fuel, (3) a neutronics calculation for an REU core, (4) a full core mock-up experiment using REU fuel, and (5) a thermal-hydraulic study on ar
REU core. In order to investigate the nuclear characteristics of an REU core in detail, the experimental study should be unavoidable. The full core mock-up experiments are being carried out in the Ford Nuclear Reactor (FNR) of Michigan University using LEU fuel of 20 wt% 235U enrichment$^{20-27}$ and in the critical facility of the Japan Materials Testing Reactor (JMTRC) at JAERI using MEU fuel of 45 wt% 235U enrichment28,29. Both experiments are performed for the core conversions of existing research and test reactors from HEU to REU fuels. The experiment in the JMTRC was started two years later after a first critical state of an MEU core had been attained in the present study.

In the present study, a light-water-moderated and heavy-water-reflect- ted annular core with a flux trap region30 at the core center is chosen as an object of study. The reason is that this type core has recently been proposed and become popular for high flux reactors.$^{31-42}$ High flux reactors now in operation use either light-water or heavy-water as a moder- tor.$^{1-3}$ A light-water-moderated high flux reactor uses beryllium as a reflector, because a capability of neutron reflection in light-water is rather poor, whereas a heavy-water-moderated high flux reactor uses heavy-water as a reflector. Generally, sharper and narrower flux peak of thermal neutrons is obtained in light-water than in heavy-water, and a value of this peak in light-water is $2 \sim 3$ times larger than that in heavy-water. Therefore, a light-water-moderated high flux reactor has a flux trap region usually at the core center where a peak of thermal neutron flux is at- tained. This type reactor is suitable for the neutron irradiation experi- ments. On the other hand, considering a certain wide region in a reflec- tor, the total number of usable thermal neutrons in a light-water reflector is smaller than that in a heavy-water reflector. The neutron flux peak is located at a reflector region in a heavy-water-moderated high flux reactor.
This type reactor is suitable for the neutron beam experiments. In the objective core of study, the merits of the above two type high flux reactors are taken into consideration.

The neutronics calculations were performed to examine the feasibility on the use of REU fuel in a light-water-moderated and heavy-water-reflected type high flux reactor. The fuel enrichment examined in the survey calculations were selected to 93, 45, and 20 wt%43. At first, the criticality calculation on the basis of diffusion theory was performed for 93 wt% HEU fuel utilizing U-Al alloy of 22 wt% U content. Next, with preserving all the core dimensions used in the HEU case, the criticality calculations were performed for 45 wt% MEU and 20 wt% LEU fuels until the same reactivities as the HEU fuel were obtained by increasing total U content in UAl\textsubscript{x}-Al dispersion aluminide. The results of survey calculations show that 45 wt% MEU fuel with 42 wt% U content is feasible in this type high flux reactor and further development in the fuel fabrication technique is necessary to use 20 wt% LEU fuel. Then, the critical experiments was planned to investigate experimentally the feasibility on the use of the above MEU fuel in the proposed high flux reactor.12,46,47

The main purposes of the present study are to investigate experimentally the nuclear characteristics of a light-water-moderated and heavy-water-reflected annular core loaded with MEU fuel, and to establish a self-consistent system for the neutronics calculations in the KUCA through the analyses of the experimental data using the computer codes. The objectives of the present study can be summarized as follows:

(1) To examine the nuclear characteristics of a light-water-moderated and heavy-water-reflected core loaded with MEU fuel comparable to current HEU fuel through the critical experiments using the KUCA and provide the benchmark data for the use of MEU fuel.
(2) To investigate experimentally the effects of reducing fuel enrichment on the core characteristics through the comparison between the cores loaded with HEU and MEU fuels.

(3) To establish a self-consistent system of the neutronics calculations for the analyses of the KUCA experiments which employed a rather complex core configuration and assess the accuracies of the calculated results in comparison with the experimental data.

(4) To provide the possibility for the further detailed survey on the use of REU fuel with use of the self-consistent system for the neutronics calculations in the KUCA established through the present study.

For these purposes, MEU fuel was fabricated using a currently developed technique and the critical experiments were carried out using a light-water-moderated and heavy-water-reflected annular core constructed in the KUCA. Items of the KUCA critical experiments using MEU fuel were as follows; measurements of (1) the critical mass, (2) the control rod worth, (3) the reactivity effect of boron loaded side-plates, (4) the neutron flux distribution, (5) the kinetic parameter, (6) the void effect on reactivity, and (7) the temperature effect on reactivity. Most experimental data of the MEU core were compared with those of the HEU core. Some of the experimental data were analyzed by the neutronics calculations based on diffusion theory in order to establish a self-consistent system. The computer codes utilized in the present study were (1) the generation code of neutron group constants, EPRI-CELL, (2) the multi-dimensional neutron diffusion code based on the finite-difference method, DIF3D, (3) the two-dimensional neutron diffusion code based on the finite-element method, 2D-FEM-KUR, and (4) the standard reactor analysis code system in JAERI, SRAC.
The present thesis provides the results of studies on the nuclear characteristics of a light-water-moderated and heavy-water-reflected annular core loaded with MEU fuel. The survey study on the use of REU fuel comparable to current HEU fuel for a research reactor and the determination procedures of MEU fuel specifications are described in Chapter II. The results of the series of critical experiments using MEU fuel in the KUCA are described in Chapter III in comparison with those of HEU fuel. The analytical studies on the criticality and the boron reactivity effect are described in Chapter IV. The analytical study on the void reactivity effect is described in Chapter V. The analytical study on the temperature reactivity effect is described in Chapter VI. The conclusions obtained through the present series of studies are summarized in Chapter VII.
II. MEDIUM-ENRICHED-URANIUM FUEL

II-1. Introduction

It is worthwhile to study on the compatibility of REU fuel with HEU fuel in a research reactor from a reactor physics point of view, since REU fuel is considered to have the superiority over HEU fuel in the Doppler effect and the fuel life.4

At first, the basic physics on the use of REU fuel is investigated by simple theoretical considerations. On the basis of this consideration, the feasibility of REU fuel comparable to HEU fuel in a high flux reactor is examined by the neutronics calculations based on diffusion theory. A high flux reactor is chosen as the object of study, since most researchers want to use thermal neutrons for their experiments as much as possible. A type of high flux reactor is selected to be a light-water-moderated and heavy-water-reflected annular core which have recently been proposed and become popular for a high flux reactor.31-42 Under an assumption of the unchangableness in the main core dimensions, the survey calculations were performed to examine the feasibility of REU fuel in the above type high flux reactors.43-45 The results of survey calculations showed that 45 wt% MEU fuel with 42 wt% U content is feasible to this type high flux reactor, even under the condition of having the same excess reactivity as an HEU core. Then, this MEU fuel was fabricated using the currently developed fabrication technique for the critical experiments in the KUCA.48,50
II-2. Basic Physics on the Use of Reduced-Enrichment-Uranium Fuel

In this section, the basic physics on the use of REU fuel is investigated by simple theoretical considerations, under an assumption of the unchangeableness in the main core dimensions.

Let's try to explain the effects caused by reduced 235U enrichment of fuel using a well-known equation (4-factor formula) for the multiplication factor in an infinite system, k_∞; that is,\(^7\)

$$k_\infty = \eta f p e,$$

(II-1)

where, η: average number of fission neutrons emitted per thermal neutron absorbed by fuel,

f: thermal utilization,

p: resonance escape probability,

e: fast fission factor.

For the simplicity, a simplified heterogeneous cell which consisted of fuel and moderator is assumed in the following discussion. Note that, in the following equations, the subscript F means fuel and the subscript M moderator. A value of η is calculated by,\(^7\)

$$\eta = \nu \Sigma_f / \Sigma_{aF},$$

(II-2)

where, ν: number of neutrons emitted per thermal fission,

Σ_f: macroscopic fission cross section for thermal neutrons,

Σ_a: macroscopic absorption cross section for thermal neutrons.

A value of f is calculated by,\(^7\)

$$f = \Sigma_{aF} V_F / [\Sigma_{aF} V_F + \Sigma_{aM}(\phi_{thF}/\phi_{thM}) V_M],$$

(II-3)

where, V: volume,

ϕ_{th}: average thermal neutron flux.
A value of p is approximately calculated by,

$$p = \exp\left[-\frac{N \Sigma_{f} \Sigma_{s}}{\Sigma_{F} \Sigma_{s} + \Sigma_{F} \Sigma_{s}}\right],$$ \hspace{1cm} (II-4)

where, N : atomic number density,
Σ_{F} : macroscopic potential scattering cross section,
Σ_{s} : macroscopic scattering cross section.

A value of ϵ is calculated by,

$$\epsilon = \frac{\int \nu(E)\Sigma_{f}(E)\Phi(E) dE}{\int \nu(E)\Sigma_{f}(E)\Phi(E) dE},$$ \hspace{1cm} (II-5)

where, $\nu(E)$: number of neutrons emitted per fission due to neutrons of energy E,
$\Sigma_{f}(E)$: macroscopic fission cross section for neutrons of energy E,
$\Phi(E)$: neutron flux of energy E.

The integral in the numerator of Eq. (II-5) is carried out over the whole energy range, whereas that of the denominator only over the thermal energy range. For the actual use of ϵ, Eq. (II-5) is slightly corrected so as to be consistent with the calculation of p.

When the total U density of REU fuel is assumed to be the same as that of HEU fuel, the effective multiplication factor k_{eff} would decrease rapidly with reducing the ^{235}U enrichment. From Eqs. (II-2) through (II-5), it is evident that all values of n, f and ϵ decrease with reducing the ^{235}U enrichment, whereas only p increases. These behaviors in f, p, and ϵ values can be easily guessed by considering that the $H/^{235}\text{U}$ ratio increases with reducing the ^{235}U enrichment. Therefore, k_{eff} decreases in accordance with the decrease in k_{m}. In order to assure the above argument,
a cell calculation was performed using SRAC71 and the result is shown in Fig. II-1. In this cell calculation, a slab geometry option is utilized. The thicknesses of the fuel meat, Al cladding, and light-water moderator are assumed as 0.5, 0.45, and 2.4 mm, respectively, and the total U density is preserved as 0.636 g/cc, which are equal to those in HEU core constructed in the KUCA.

![Image of Figure II-1](image)

Fig. II-1
Parameter Values of Eq. (II-1) versus ^{235}U Enrichment

When the total U density of REU fuel is increased, k_{eff} increases. The reason is that η approximately maintains its value (in actual, η slightly increases with the decrease in $\text{H}/^{235}\text{U}$ ratio) regardless of the increase in total U density, and both ε and f increase with the increase in total U density, whereas only p decreases. Therefore, it is considered to be possible that an REU core has the same k_{eff} as an HEU core by the increase in total U density of REU fuel. In order to attain the same k_{eff} as an HEU core, the ^{235}U content in REU fuel should be higher than that of HEU fuel.
The excess reactivity ρ_{ex} is essential for the operation of a research reactor. A value of ρ_{ex} should be sufficiently enough to cover the negative reactivity effects caused by the buildup of fission products including xenon and samarium, the ^{235}U burnup, etc. during the steady operation of a certain period. Therefore, in the survey on the use of REU fuel described in this chapter, another assumption is made that ρ_{ex} of an REU core is kept equal to that of an HEU core. This assumption is convenient to investigate the fuel life, since the difference between REU and HEU fuels can be directly observed. This assumption inevitably indicates that the ^{235}U density of REU fuel is higher than that of HEU fuel.

The most different feature of the burnup in REU and HEU cores is the Pu accumulation which occurs mainly in an REU core, although a main fissile material is ^{235}U even in an REU core. The fuel life in an REU core is longer than that of an HEU core, because the accumulation of fissile Pu causes a positive reactivity effect. This indicates that a lower value of k_{eff} is necessary for the reactor operation of an REU core to obtain the same fuel life as an HEU core.

The average fission density in the cell is approximately expressed by,

\[\text{fission density} = \Sigma_f \phi_{\text{th}}, \]

(II-6)

using the average thermal neutron flux in the cell ϕ_{th}. At a specified reactor power, a value of $\Sigma_f \phi_{\text{th}}$ is approximately constant regardless of the ^{235}U enrichment of fuel loaded in a core, since the fission density is proportional to the power density. Under the condition that an REU core has the same excess reactivity as an HEU core, this indicates that ϕ_{th} in an REU core is smaller than that in an HEU core and ϕ_{th} is approximately inversely proportional to the ^{235}U concentration in a core. In addition, it is indicated that the control rod worth in an REU core is smaller than...
that in an HEU core, because ϕ_{th} in an REU core is smaller than that in an HEU core and a usual control rod is designed to absorb mostly thermal neutrons.

However, a ratio of the average fast neutron flux in the cell ϕ_f to ϕ_{th} of an REU core is larger than that of an HEU core, because the $\text{H}/^{235}\text{U}$ ratio in an REU core is lower than that in an HEU core. This is also indicated from the fact that a value of ρ in an REU core is smaller than that in an HEU core and a value of ϵ in an REU core is larger than that in an HEU core. A level of ϕ_f in the fuel region has a special meaning in a high flux reactor, because ϕ_f is a source term of thermal neutrons in the reflector region including the flux trap region. Therefore, it is possible to recover the decrease in ϕ_{th} to some extents in the reflector region of an REU core. This also indicates that a peak value of the power density at the boundary of the fuel and reflector (including flux trap) regions in an REU core is higher than that in an HEU core.

The void reactivity effect in the cell of an REU core is considered to be slightly more negative than that of an HEU core. From Eq. (II-3), the generation of voids in a moderator region causes the increase of f value, since Σ_{aM} decreases with the decrease in moderator density. The increase of f in an REU core having the same k_{eff} as an HEU core is slightly smaller than that in an HEU core, since Σ_{aF} of an REU core is larger than that of an HEU core. On the other hand, from Eq. (II-4), the generation of voids causes the decrease of ρ value, since Σ_{SM} decreases with the decrease in moderator density and I_R increases due to the spectral hardening effect. The decrease of ρ in an REU core is slightly larger than that in an HEU core, since I_R of an REU core is larger than that in an HEU core. Although ϵ increases due to the increase in the first collision probability with
238U nuclei and the increase of ε in an REU core is slightly larger than that in an HEU core, the variance of ε usually causes a minor effect to k_{eff} compared with that of f or p. Therefore, it is expected that the void reactivity effect in an REU core is slightly more negative than that in an HEU core.

The temperature effect on reactivity in the cell of an REU core is considered to be slightly more negative than that of an HEU core. The temperature effect can be divided into 3 effects; namely, (1) the thermal expansion effect, (2) the Doppler effect, and (3) the thermal neutron spectral shift effect. The thermal expansion effect causes an approximately identical effect to the void reactivity effect, since the decrease in moderator density causes a major effect. The Doppler effect gives a negative reactivity effect by the decrease of p in accordance with the increase in I_R of Eq. (II-4). The Doppler effect in an HEU core is approximately zero, since HEU fuel contains only few portion of 238U. The thermal neutron spectral shift effect decreases η value, because Σ_f/Σ_a of 235U decreases with the increase in neutron temperature. The decrease of η in an REU core is slightly larger than that in an HEU core, since the non-$1/v$ factor for Σ_a of 238U increases monotonically with the increase of neutron temperature, whereas that of 235U decreases monotonically. The variances of ε and f are considered to be very small. In view of the above, it is expected that the temperature effect on reactivity in an REU core is more negative than that in an HEU core.
II-3. Light-Water-Moderated and Heavy-Water-Reflected High Flux Reactor

Several high flux reactors are now in operation using HEU fuel.1-3 They can be classified into two types according to the material used as a moderator; namely, light-water and heavy-water. The High Flux Reactor [HFR]2 at Petten in Netherlands, the High Flux Isotope Reactor [HFIR]3 of Oak Ridge National Laboratory [ORNL] in the USA and the SM-2 Reactor1 at Dimitrovgrad in the USSR are light-water-moderated and beryllium-reflected cores. The HFIR and SM-2 have central flux traps30 where the maximum thermal neutron flux can be obtained. The High Flux Beam Reactor [HFBR]3 of Brookhaven National Laboratory [BNL] in the USA and the Grenoble High-Flux Reactor [GHFR]1 at Grenoble in France are heavy-water-moderated and heavy-water-reflected cores. The HFIR and GHFR use involute type fuels and have annular cylinder cores, whereas the HFR, HFBR, and SM-2 use MTR type fuels and have basically rectangular parallelepiped cores. Reactor powers of the HFR, HFBR, SM-2, HFIR, and GHFR are 20, 40, 75, 100, and 100 MW(th), respectively. Maximum thermal neutron fluxes achieved in the HFR, HFBR, SM-2, HFIR, and GHFR are 2.5×10^{14}, 7×10^{14}, 3.3×10^{15}, 5×10^{15}, and 1.5×10^{15} n/cm2sec, respectively.1-3

In view of the above, a light-water-moderated high flux reactor with a central flux trap has a superiority over a heavy-water-moderated high flux reactor for obtaining a high peak of the thermal neutron flux. A current light-water-moderated high flux reactor uses beryllium as a reflector, since light-water has a poor capability for the neutron reflection. Whereas a current heavy-water-moderated high flux reactor uses heavy-water as a reflector, since heavy-water has a good capability for the neutron reflection as well as beryllium. However, the use of beryllium reflector restricts the flexibility to extract neutrons for the beam experiments.
Therefore, with taking into account the merits of the above two type high flux reactors, a light-water-moderated and heavy-water-reflected core has recently become popular.33-40 The ORPHEE reactor of Léon Brillouin Laboratory in France is being operated since 1980 and a maximum thermal neutron flux of 3×10^{14} n/cm2sec is attained at a reactor power of 14 MW(th).33-35 The upgrading program of the Japan Research Reactor-3 [JRR-3] of JAERI is currently being executed to construct the JRR-3(M) reactor which is scheduled to start a regular operation in 1988.36-40 Each reactor uses MTR type fuel and has basically a rectangular parallelepiped light-water-moderated core which is contained in a cylindrical core vessel surrounded by a large annular heavy-water reflector. A light-water-moderated and heavy-water-reflected annular core with a central flux trap has recently been proposed for a high flux reactor.31,32,41,42 A cross-sectional view of this type core is shown in Fig. II-2 as an example.

![Cross-Sectional View of a Light-Water-Moderated and Heavy-Water-Reflected Annular Core with a Central Flux Trap](image)

This core has a central flux trap region of light-water for a heavy irradiation facility and uses heavy-water as a reflector for the convenience of the several beam experiments. Light-water serves as a coolant and a moderator, because high flow rate of coolant is necessary in a high
flux reactor to remove intense heat generated in the fueled region of high power density. The reason is that light-water can be handled more easily than heavy-water which causes a heavy tritium contamination due to D(n,γ)T reactions, when heavy-water is used as a coolant and a moderator. In this core, basically MTR-type fuel is used and the fuel region is separated into two parts by a space for control rods.

II-4. Determination of the Uranium-235 Enrichment of Reduced-Enrichment-Fuel Comparable to High-Enriched-Uranium Fuel

The survey on the core conversion from the use of HEU to REU fuels should be carried out through the neutronics calculations. In the Phase A of the joint study program between Argonne National Laboratory [ANL] and Kyoto University Research Reactor Institute [KURRI], the survey calculations were performed to check the feasibility of REU fuel in the proposed Kyoto University High Flux Reactor [KUHFR]. The proposed KUHFR has basically a light-water-moderated and heavy-water-reflected annular core, though the KUHFR is a coupled-core. Therefore, the results of the Phase A of the ANL-KURRI joint study is quoted here in this section.

In this study, ANL and KURRI independently performed the neutronics calculations with preserving the main core dimensions in the initial design of the proposed KUHFR. Computer codes used in ANL were the EPRI-CELL and PDQ-7 codes, whereas they were the GGC-4, THERMOS, and KR302DPT codes in KURRI. The EPRI-CELL, GGC-4 and THERMOS codes were used to generate the few-group constants for the subsequent diffusion calculations. The PDQ-7 and KR302DPT codes were based on diffusion theory and utilized
the finite-difference method. The two-dimensional core calculations were performed using the PDQ-7 and KR302DPT codes.

In order to determine the enrichment applicable to the proposed KUHFR, the neutronics calculations were performed for two types of REU fuels; namely, 45 wt% MEU and 20 wt% LEU fuels. The calculated results by ANL and KURRI are tabulated in Table II-1 in comparison with a reference case of 93 wt% HEU fuel which has 22 wt% uranium in the fuel meat. Note here that HEU fuel contains U-Al alloy in the fuel meat and reduced enrichment fuels contain UAl_x-Al dispersion aluminide. For the reduced enrichment cases, the uranium contents were increased to maintain the same 235U density as in the HEU case.

<table>
<thead>
<tr>
<th>Uranium-235 Enrichment</th>
<th>Uranium Content in the Fuel Meat</th>
<th>Calculated k<sub>eff</sub> Value</th>
<th>ANL</th>
<th>KURRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 wt%</td>
<td>22.0 wt% 0.72 g/cc</td>
<td>1.1947</td>
<td></td>
<td>1.2081</td>
</tr>
<tr>
<td>45 wt%</td>
<td>38.8 wt% 1.50 g/cc</td>
<td>1.1732</td>
<td></td>
<td>1.1775</td>
</tr>
<tr>
<td>20 wt%</td>
<td>63.4 wt% 3.37 g/cc</td>
<td>1.1493</td>
<td></td>
<td>1.1419</td>
</tr>
</tbody>
</table>

Table II-1 shows that the agreements between two series of calculated results by ANL and KURRI are good. The k_{eff} value goes down with the reduction in 235U enrichment, namely with the increase in 238U content of REU fuel. The maximum uranium content currently qualified was 42 wt% for UAl_x-Al dispersion aluminide. Therefore, there was a possibility to use MEU fuel in the proposed KUHFR without changing any core dimension. On the other hand, it was impossible to use LEU fuel in the current stage. Further development of the fuel fabrication techniques should be necessary to use LEU fuel in the proposed KUHFR.
Generally, the excess reactivity of the initial loading core is essential for the steady operation of a certain period in a research reactor. For the steady operation, even an REU core should have a sufficient excess reactivity, although the life of REU fuel is considered to be longer than that of HEU fuel due to the accumulation of Pu. In this survey, as a first step, the U content of MEU fuel was determined so as to attain the same k_{eff} value as the HEU reference core. Then, in this MEU core, the effect of reduced ^{235}U enrichment on the thermal neutron flux was investigated as shown in Table II-2.

<table>
<thead>
<tr>
<th>Uranium-235 Enrichment</th>
<th>Uranium Content in the Fuel Meat</th>
<th>Calculated k_{eff}</th>
<th>Thermal Neutron Flux D_2O Gap</th>
<th>H_2O Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 wt%</td>
<td>22.0 wt%</td>
<td>1.1947</td>
<td>1.938E14</td>
<td>3.214E14</td>
</tr>
<tr>
<td>45 wt%</td>
<td>42.0 wt%</td>
<td>1.1992</td>
<td>1.844E14</td>
<td>3.109E14</td>
</tr>
</tbody>
</table>

Table II-2 shows that the k_{eff} value of 45 wt% MEU fuel with 42 wt% U content is approximately equivalent to that of the reference HEU core. The total mass of ^{235}U in the MEU core is approximately 6.5 % larger than that of the HEU core. The reductions in the thermal neutron flux at the center of the heavy-water gap between two coupled cores and at the center of each central flux trap of light-water are less than 5 % for the both positions. This result indicate that 45 wt% MEU fuel with 42 wt% U content is feasible for a high flux reactor without any significant reduction in the reactor performance.
On the basis of the results described in the previous section, 45 wt% MEU fuel with 42 wt% U content were fabricated using the currently developed techniques for the KUCA critical experiments.34,36

The total number of fabricated fuel plates were 294 with 32 different widths and curvatures. Specifications of MEU fuel plates are tabulated in Table II-3. An illustration of a fuel plate is shown in Fig. II-3. For reference, specifications of HEU fuel plates which were previously fabricated for the KUCA experiments are tabulated in Table II-4. Note that a design pitch between MEU fuel plates is 3.80 mm, whereas that of HEU fuel is 3.84 mm.

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Inner fuel plate</th>
<th>Outer fuel plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width of fuel (mm)</td>
<td>Width of meat (mm)</td>
</tr>
<tr>
<td>1</td>
<td>48.70</td>
<td>39.50</td>
</tr>
<tr>
<td>2</td>
<td>52.68</td>
<td>43.48</td>
</tr>
<tr>
<td>3</td>
<td>56.66</td>
<td>47.46</td>
</tr>
<tr>
<td>4</td>
<td>60.64</td>
<td>51.44</td>
</tr>
<tr>
<td>5</td>
<td>64.62</td>
<td>55.42</td>
</tr>
<tr>
<td>6</td>
<td>68.60</td>
<td>58.40</td>
</tr>
<tr>
<td>7</td>
<td>72.58</td>
<td>63.38</td>
</tr>
<tr>
<td>8</td>
<td>76.56</td>
<td>67.36</td>
</tr>
<tr>
<td>9</td>
<td>80.54</td>
<td>71.54</td>
</tr>
<tr>
<td>10</td>
<td>84.51</td>
<td>75.51</td>
</tr>
<tr>
<td>11</td>
<td>88.49</td>
<td>79.29</td>
</tr>
<tr>
<td>12</td>
<td>92.47</td>
<td>83.27</td>
</tr>
<tr>
<td>13</td>
<td>96.45</td>
<td>87.25</td>
</tr>
<tr>
<td>14</td>
<td>100.43</td>
<td>91.23</td>
</tr>
<tr>
<td>15</td>
<td>104.41</td>
<td>95.21</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Fabricator: Compagnie pour l'Etude et la Realisation de Combustibles Atomiques (CERCA) in France.
Fuel meat: 600 mm long and 0.5 mm thick UAlx-Al dispersion aluminide
235U enrichment: 44.88%, U content: 41.70%
Fuel plate: 650 mm long and 1.4 mm thick Al plate
Designed fuel pitch: 3.80 mm
One by one, each fuel plate can be inserted between two aluminum side-plates to form a fuel element (refer to Fig. III-2). Illustrations of side-plates are shown in Fig. II-4. Special side-plates containing natural boron for MEU fuel plates were also fabricated.
(a) Side-plate with 3.84 mm Pitch (without boron)
 Inner fuel element: L=59.34 mm, Ei=1.75 mm, Eo=2.08 mm
 Outer fuel element: L=67.41 mm, Ei=2.10 mm, Eo=2.12 mm

(b) Side-plate with 3.80 mm Pitch (with boron)
 Inner fuel element: L=59.40 mm, L=48 mm, 10B=104 mg
 Outer fuel element: L=67.00 mm, L=55 mm, 10B=117 mg

(c) Side-plate with 3.80 mm Pitch (without boron)
 Inner fuel element: L=59.40 mm
 Outer fuel element: L=67.00 mm

(d) Side-plate with 3.84 mm Pitch (without boron)
 Inner fuel element: L=59.34 mm, Ei=1.75 mm, Eo=2.08 mm
 Outer fuel element: L=67.41 mm, Ei=2.10 mm, Eo=2.12 mm

(e) Side-plate with 3.80 mm Pitch (without boron)
 Inner fuel element: L=59.34 mm, Ei=2.42 mm, Eo=1.97 mm
 Outer fuel element: L=67.41 mm, Ei=2.42 mm, Eo=2.44 mm

Fig. II-4 Illustration of Side-Plates for MEU and HEU Fuels
III. CRITICAL EXPERIMENTS USING MEDIUM-ENRICHED-URANIUM FUEL

III-1. Introduction

The main objectives of the KUCA critical experiments using MEU fuel were as follows:

1. To examine the nuclear characteristics of a light-water-moderated and heavy-water-reflected core loaded with MEU fuel comparable to HEU fuel through the critical experiments in the KUCA.

2. To investigate experimentally the effects of reducing fuel enrichment on the core characteristics through the comparison between the cores loaded with HEU and MEU fuels.

3. To provide the benchmark data for the use of MEU fuel in order to assess the computer codes employed in the neutronics calculations.

The critical experiments using MEU fuel in the KUCA were started in May 1981, as a first series of the MEU experiments in the world. In this series of critical experiments, a mock-up core for a proposed high flux reactor was employed; namely, a light-water-moderated and heavy-water-reflected annular core with a central flux trap. The items of the KUCA critical experiments using MEU fuel were the measurements of (1) the criticality, (2) the control rod worth, (3) the reactivity effect of boron loaded side-plates, (4) the neutron flux distribution, (5) the kinetic parameter, (6) the void reactivity effect, and (7) the temperature effect on reactivity. The experimental results are subsequently described in the following sections in comparison with those of the HEU core.
III-2. Description of the Cores Employed in the Critical Experiments

The KUCA is a multi-core type critical assembly, which has 3 core positions designated as A, B, and C.78-84 Light-water is used as a moderator at the C-core position,82 while the solid moderators such as polyethylene and graphite are used at the A-core and B-core positions. For the MEU critical experiments, the C-core position was utilized among the above 3 core positions. In an aluminum core tank of approximately 1.8 m in depth and 2 m in diameter at the C-core position, there is a grid plate onto which a fuel assembly is installed to form a core. Usually, light-water is dumped from the core tank and is stored in another aluminum tank located under the core tank. When the C-core is to be in operation, light-water is pumped up and fed to the core tank to form a light-water-moderated core.

![Fig. III-1](image)

Fig. III-1
View of an Al Heavy-Water Tank

Figure III-1 shows an aluminum heavy-water tank which was employed in the present series of experiments as a container for a heavy-water reflector. This heavy-water tank of 45 cm in inner diameter and 108 cm in outer diameter was installed onto the grid plate in the C-core tank. Figure III-2 shows a view of the assembled fuel elements. This assembly was then installed in the center of the heavy-water tank to form a light-water-moderated and heavy-water-reflected core. Note here that each curved fuel
plate shown in Fig. II-3 can be inserted, one by one, between two side-plates shown in Fig. II-4 to form a fuel element, and the fuel elements are assembled in a cylindrical shape as shown in Fig. III-2.

![Fig. III-2 View of Assembled Fuel Elements](image)

![Fig. III-3 Typical Core Configuration Employed in the Experiments](image)

The core had a cylindrical center island of light-water as a flux trap, and the fuel region was divided into two parts by an annular space
for the control rods. The inner fuel region consisted of 6 fuel elements which were numbered as IN-01, IN-02, ..., IN-06. The outer fuel region consisted of 12 elements numbered as OUT-01, OUT-02, ..., OUT-12, or EX-01, EX-02, ..., EX-12 depending on HEU or MEU fuel elements. The maximum of 15 fuel plates can be loaded into each inner fuel element and 17 plates into each outer fuel element.

A typical core configuration employed in the present series of experiments is shown in Fig. III-3. The criticality of the core was finally controlled by 3 control rods, namely C1, C2, and C3 rods, while all 3 safety rods (S4, S5, and S6) were fully withdrawn to their upper limit at every operation. The detectors for nuclear instruments (#1 through #6) were arranged around the heavy-water tank, under which a neutron source could be inserted.

III-3. Criticality Measurements

As a first step toward the criticality, all outer fuel elements were fully loaded with 17 fuel plates (204 fuel plates total). With use of the inverse multiplication method, the criticality was approached by inserting fuel plates into the inner fuel elements from the outside toward the inside in order. At that time, all side-plates contained no boron. After the critical state of a core was achieved, the excess reactivity was measured by the positive period method.85,86

The experimental results are tabulated in Table III-1 in comparison with those of the HEU cores. Fuel loading patterns of the cores employed in the criticality measurements are shown in Fig. III-4. Note that the experimental error for the excess reactivity measurement in the KUCA
annular core is estimated to be approximately ± 0.005 %Δk/k from experience.

Table III-1 shows that the critical mass of ^{235}U in the MEU core is larger approximately 18 % than that of the HEU core. Table III-1 also shows that a minor change in fuel pitch from 3.84 mm to 3.80 mm evidently decreases the excess reactivities of both MEU and HEU cores. This indicates that both the HEU and MEU cores behave as under-moderated ones.

<table>
<thead>
<tr>
<th>MEU Cores</th>
<th>HEU Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Fuel Plates</td>
<td>262</td>
</tr>
<tr>
<td>^{235}U Mass (g)</td>
<td>4165.7</td>
</tr>
<tr>
<td>U Total Mass (g)</td>
<td>9284</td>
</tr>
<tr>
<td>Al Pipe</td>
<td>not used</td>
</tr>
<tr>
<td>Fuel Loading Pattern</td>
<td>Fig.III-4(a)</td>
</tr>
<tr>
<td>Fuel Pitch (mm)</td>
<td>3.84 3.80</td>
</tr>
<tr>
<td>ρ_{ex} (%Δk/k)</td>
<td>0.211 0.077</td>
</tr>
</tbody>
</table>

* : This pipe separates the center island of light-water from the inner fuel elements (refer to Fig. III-2).

Note here that an aluminum pipe shown in Fig. III-2, which separated the center island of light-water from the inner fuel elements was used in some of HEU cores, whereas this Al pipe was not used in any MEU core. The
reactivity effect of this Al pipe was positive from the experimental data listed in Table III-1. Namely, the critical states of the HEU cores with a 3.80 mm fuel pitch were achieved for both with and without this Al pipe. Therefore, from the consideration of this Al pipe effect mentioned above, the excess reactivity of the HEU core with a 3.84 mm fuel pitch would be less than the measured value and might possibly be negative (subcritical) when this Al pipe was not used. This Al pipe effect also indicates that the void reactivity effect in the central flux trap region is positive, since Al itself is often used as a void substitute.

III-4. Rod Worth Measurements

The safety and control rods in the KUCA basically consist of cadmium plates which absorb thermal neutrons. One can easily understand from the core configuration shown in Fig. III-3 that only 3 rods among 6 rods were worthy in the KUCA core, because only 3 rods located at the space for control rods and the other 3 rods located outside the heavy-water tank. Therefore, the reactivity worths of a safety rod (S4) and two control rods (C2 and C3) which located at the space for control rods were measured using the integral technique of the rod drop method.85,86

Note that there were two types of patterns for fuel loading in the KUCA cores. One was designated as Type-I, the other as Type-II. In the Type-I core, all outer fuel elements were fully loaded with 17 fuel plates and the criticality of the core was adjusted by inserting fuel plates into the inner fuel elements from the outside toward the inside in order. In the Type-II core to the contrary, all inner fuel elements were fully loaded with 15 fuel plates and the criticality was approached by inserting fuel
plates into the outer fuel elements from the inside toward the outside in order. These two types of fuel loading patterns were employed in the experiments to investigate the effects of the reflectors including the central flux trap of light-water, the light-water gap between the heavy-water reflector and the outer fuel region, and the heavy-water reflector. Furthermore, boron loaded side-plates were prepared for MEU cores. Therefore, the effects caused by the change in fuel loading pattern and the use of boron loaded side-plates on control rod worth were investigated in the measurements.

Table III-2 Reactivity Worths of Rods Measured by the Rod Drop Method in the Type-I Core Containing No Boron

<table>
<thead>
<tr>
<th>Fuel Loading Pattern</th>
<th>MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Rod Worth (%Δk/k)</td>
<td>0.71</td>
<td>0.76</td>
</tr>
<tr>
<td>C3 Rod Worth (%Δk/k)</td>
<td>0.71</td>
<td>0.80</td>
</tr>
<tr>
<td>S4 Rod Worth (%Δk/k)</td>
<td>0.74</td>
<td>0.73</td>
</tr>
<tr>
<td>Total Rod Worth (%Δk/k)</td>
<td>2.16</td>
<td>2.29</td>
</tr>
<tr>
<td>No. of Fuel Plates</td>
<td>262</td>
<td>263</td>
</tr>
<tr>
<td>Fuel Pitch (mm)</td>
<td>3.84</td>
<td>3.80</td>
</tr>
</tbody>
</table>

Table III-3 Reactivity Worths of Rods Measured by the Rod Drop Method in the Type-II Core Containing No Boron

<table>
<thead>
<tr>
<th>Fuel Loading Pattern</th>
<th>MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Rod Worth (%Δk/k)</td>
<td>0.81</td>
<td>0.77</td>
</tr>
<tr>
<td>C3 Rod Worth (%Δk/k)</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>S4 Rod Worth (%Δk/k)</td>
<td>0.75</td>
<td>0.88</td>
</tr>
<tr>
<td>Total Rod Worth (%Δk/k)</td>
<td>2.37</td>
<td>2.50</td>
</tr>
<tr>
<td>No. of Fuel Plates</td>
<td>256</td>
<td>275</td>
</tr>
<tr>
<td>Fuel Pitch (mm)</td>
<td>3.80</td>
<td>3.80</td>
</tr>
</tbody>
</table>
The measured results are tabulated in Tables III-2, III-3, and III-4 in comparison with those of the HEU cores. Fuel loading patterns of the cores where the measurements were carried out are shown in Fig. III-5. Note that the experimental error for the total rod worth measurement in the KUCA annular core by the rod drop method is estimated to be less than 5% from experience.

Table III-4 Reactivity Worths of Rods Measured by the Rod Drop Method in the Type-I MEU Core Containing Boron

<table>
<thead>
<tr>
<th>Rod Type</th>
<th>All Outer Side-Plates Containing Boron</th>
<th>All Inner Side-Plates Containing Boron</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Rod Worth (%) (k/k)</td>
<td>0.66</td>
<td>0.70</td>
</tr>
<tr>
<td>C3 Rod Worth (%) (k/k)</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>S4 Rod Worth (%) (k/k)</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>Total Rod Worth (%) (k/k)</td>
<td>2.09</td>
<td>2.21</td>
</tr>
<tr>
<td>Fuel Loading Pattern</td>
<td>Fig. III-5(f)</td>
<td>Fig. III-5(g)</td>
</tr>
<tr>
<td>No. of Fuel Plates</td>
<td>287</td>
<td>282</td>
</tr>
<tr>
<td>Fuel Pitch (mm)</td>
<td>3.80</td>
<td>3.80</td>
</tr>
</tbody>
</table>

Fig. III-5 Fuel Loading Patterns Employed in the Rod Worth Measurements

(a) MEU Type-I (no boron)
(b) MEU Type-I (no boron)
(c) HEU Type-I (no boron)
(d) MEU Type-I (no boron)
(e) HEU Type-II (no boron)
(f) MEU Type-I (outer boron)
(g) MEU Type-I (inner boron)

Arabic Number:
- Number of Fuel Plates
- C2, C3: Control Rods
- S4: Safety Rod
- : Boron Loaded Side-Plate
Tables III-2, III-3, and III-4 show that the worth of each rod is sensitive to the minor change in fuel loading pattern and varied case by case. However, the total rod worth is considered to be not very sensitive to the minor change in fuel loading pattern. The direct comparison of the control rod worth between MEU and HEU cores and between MEU cores with and without boron loaded side-plates are difficult, since the numbers of fuel plates loaded in MEU and HEU cores are different with each other and the relative locations of the control rods in the cores are different accordingly. However, from Tables III-2 and III-3, it is indicated that the total rod worth in an MEU core is smaller than that of an HEU core. From Tables III-2 and III-4, it is also indicated that the total rod worth in a core with boron loaded side-plates is smaller than that of a core without boron loaded side-plates. These phenomena can be explained by the consideration that the thermal neutron flux in an MEU core is lower than that of an HEU core.

III-5. Measurements of the Boron Reactivity Effect

The side-plates containing natural boron was originally designed to act on a core as the burnable poison which suppresses the excess reactivity of the initial core loaded with fresh fuel for the purpose of obtaining a longer fuel life. The boron content in a side-plate was originally determined through the Phase B study of the ANL-KURRI joint study for the proposed KUHFR. Note that a fuel element consists of two side-plates with or without boron and boron loaded side-plates are prepared only for MEU fuel plates.
The reactivity effects of boron loaded side-plates [BP effects] were measured in the following manner; by substituting a fuel element with boron for an element without boron one by one, the excess reactivity or subcriticality of the core was measured before and after the substitution. The excess reactivity was measured by the positive period method, and the subcriticality was measured by the source multiplication method. The BP effect was obtained from the difference between the reactivities measured before and after each substitution.

![Diagram of step-by-step procedure]

Arabic Number : Number of Fuel Plates
- C2, C3 : Control Rods
- S4 : Safety Rod
- : Boron Loaded Side-Plate

Fig. III-6 Experimental Procedure of the BP Effect Measurements in the Outer Fuel Region

In each measurement, an objective fuel element for a substitution was filled to its capacity with fuel plates. For the measurements of BP effects in the outer fuel region, a Type-I core was employed. Namely, all
outer fuel elements were loaded with 17 fuel plates and the criticality was essentially adjusted by the number of fuel plates inserted into the inner part of the inner fuel element. The experimental procedure for the BP effect measurements in the outer fuel region is shown in Fig. III-6.

On the other hand, for the BP effect measurements in the inner fuel region, a Type-II core was employed. Namely, all inner fuel elements were loaded with 15 fuel plates and the criticality was adjusted by the number of fuel plates inserted into the outer part of the outer fuel element. The experimental procedure for the BP effect measurements in the inner fuel region is shown in Fig. III-7.

![Diagram showing the experimental procedure for BP effect measurements in the inner fuel region.](image-url)

Fig. III-7 Experimental Procedure of the BP Effect Measurements in the Inner Fuel Region
Therefore, through the BP effect measurements, the mass reactivity effects of fuel plates were also obtained. Note that, in the BP effect measurements, the fuel pitch in the element with boron was 3.80 mm and the pitch in the element without boron was 3.84 mm.

![Graph showing reactivity effects](image)

Fig. III-8 Reactivity Effects Caused by Each Substitution of a Fuel Element with Boron for an Element without Boron in the Outer Fuel Region

![Graph showing reactivity effects](image)

Fig. III-9 Reactivity Effects Caused by Each Substitution of a Fuel Element with Boron for an Element without Boron in the Inner Fuel Region

The results of the BP effect measurements are shown in Figs. III-8, III-9, and III-10, and are tabulated in Table IV-3 of Chapter IV together
with the results of the mass reactivity effects of fuel plates in comparison with the calculated results. The BP effects for the substitution were approximately \(-0.4 \% \Delta k/k\) per outer fuel element and \(-0.6 \% \Delta k/k\) per inner element, whereas \(^{10}\text{B}\) mass in each outer side-plate was 117 mg and that of an inner side-plate was 104 mg. Therefore, on contrary to the fact that \(^{10}\text{B}\) mass in an outer fuel element was heavier than that of an inner element, the BP effect in the outer fuel region was smaller than that of the inner fuel region. This indicates that the thermal neutron flux in the inner fuel region is higher than that of the outer fuel region. This conjecture is supported by the experimental data that the mass reactivity effects of fuel plates in the inner fuel region was larger than those of the outer fuel region (refer to Table IV-3 in Chapter IV). One can estimate the experimental error for the BP effect measurement from Fig. III-8, in which raw data are plotted. That is approximately \(\pm 0.01 \% \Delta k/k\) for each substitution.

![Integral Reactivity Effects of the Inner and Outer Elements Containing Boron](image)

Fig. III-10
Integral Reactivity Effects of the Inner and Outer Elements Containing Boron
In addition, due to the interference effect between adjacent side-plates with boron, the reactivity effect of each substitution was not constant for each substitution. The total BP effects were approximately -4.7 %Δk/k in the outer fuel region when there was no boron loaded side-plate in the inner fuel region, and -3.7 %Δk/k in the inner fuel region when there was no boron in the outer fuel region. In consideration of the interference effect between the inner and outer side-plates with boron, which can be estimated from Fig. III-9 as approximately 0.05 %Δk/k per inner fuel element when all outer side-plates containing boron, the total BP effect would be approximately -8 %Δk/k for the whole core.

III-6. Measurements of the Neutron Flux Distribution

The neutron flux distributions in the MEU cores were measured using the foil activation technique. Gold wires of 0.5 mm diameter, with and without cadmium sheath, were activated in various regions of the core. The relative neutron flux distributions were obtained for various positions. Cadmium sheath of 0.5 mm thickness and 1 mm inner diameter was employed in order to obtain the thermal neutron flux distributions only in the vertical direction.

The irradiated positions of Au wires are shown in Figs. III-11 and III-12. The numerical symbols "1 ~ 11" in Figs. III-11 and III-12 indicate the positions where Au wires were set vertically, whereas the alphabetical symbols "a ~ p" indicate Au wires set horizontally. Two types of cores were employed for the measurements; namely, with and without an acrylic void tube of 9.2 cm inner diameter and 8 mm thickness at the central flux trap region of light-water. In the core with an acrylic void tube, the
horizontal neutron flux distributions were mainly measured and the thermal neutron flux distributions were obtained only at the positions "2" and "5" shown in Fig. III-11. In the core without void, the thermal neutron flux distributions were mainly measured along the vertical direction.
The MEU cores were fully loaded with 294 fuel plates in the measurements. Therefore, the criticality of cores were essentially adjusted by the number of fuel elements consisted of boron loaded side-plates. The Au wires were irradiated at a reactor power of approximately 1 W. Each irradiation time was 30 minutes. After the irradiation, Au wires were cut
into small pieces of 1 ~ 2 cm length. The gamma-rays of 412 keV emitted from the decay of 198Au were counted with an automatic sample changer (OKEN model S-1023) which consists of a well-type NaI(T1) scintillator of 2" diameter and 3" length.

Horizontal Neutron Flux Distributions

Typical neutron flux distributions in the horizontal direction are shown in Figs. III-13, III-14, and III-15.

![Diagram showing horizontal neutron flux distributions in the fuel region and the central void tube.](image)

Fig. III-13 Horizontal Neutron Flux Distributions in the MEU Core with a Central Void at the Positions "a ~ m" Shown in Fig. III-11

Figure III-13 shows the neutron flux distributions in the fuel region and in the central void tube. This figure shows that the thermal neutron flux in the inner fuel region is higher than that of the outer fuel region. Neutron flux distributions at the positions "j ~ m", measured at the middle height of the fuel plates between the side-plates, have some depressions in the fuel region due to boron contained in the side-plates. Neutron flux distributions at the positions "j ~ m" also indicate that there are flux
peaks at the central flux trap, at the control rod region, and at the light-water gap between the outer fuel elements and the heavy-water reflector caused by the existence of light-water. This figure shows that the neutron flux at the position "g" in the central void tube is flat, since there is no neutron scattering and absorbing material in a void region. At the outer part of the inner fuel region, the neutron flux at the position "f", which was measured on the top of fuel plates, is more depressed than that of the position "i". This is because the lower edge of the fully withdrawn safety rod S4 was near that position at the irradiation of Au wire.

Figure III-14 shows the neutron flux distribution measured at 4.4 cm below the middle height of the fuel plates in the heavy-water reflector. This distribution has no peak and decreases rather rapidly with the distance from the center of core. This phenomenon is attributed to the facts that there is light-water gap of approximately 2.5 cm thickness between the outer fuel elements and the heavy-water reflector and a 30 cm thick heavy-
water layer is not sufficient enough for a neutron reflector. Although the horizontal neutron flux distributions have not been measured in an HEU core, it is considered that the similar feature to this can be observed in an HEU core, since the similar results to those in the MEU core was obtained in the HEU core for the vertical flux distributions (refer to Figs. III-20 and III-21).

![Figure III-15](image)

Fig. III-15 Horizontal Neutron Flux Distributions in the MEU Core with a Central Void at the Position "n" Shown in Fig. III-11

Figure III-15 shows the neutron flux distribution measured at the middle height of the fuel plates in the azimuthal direction at the outer surface of the outer fuel region. Although most side-plates contain boron, there are flux peaks in the vicinities of side-plates regardless of with and without boron. However, the flux peaking is larger at the region without boron than that at the region with boron. This is attributable to the fact that a region in the vicinity of side-plates consists of not only aluminum but also light-water. One can find from this figure that the experimental error in the neutron flux measurement was around a few percent.
Typical neutron flux distributions in the vertical direction in the core with a central void are shown in Figs. III-16, III-17, and III-18, and those for the core without a central void are shown in Figs. III-19 and III-20.

Figure III-16 shows the neutron flux distribution in the heavy-water reflector. The neutron flux at the height of the upper edge of fuel plates is higher than that of the lower edge. Similar asymmetric features can be observed in all of the vertical neutron flux distributions. The reason is that the thicknesses of light-water and heavy-water layers are not the same at the upper and lower sites. At the upper site, they are much thicker than those at the lower site. In addition, there are layers of other materials such as the aluminum basements of fuel elements and the stainless-steel grid plate of the core tank at the lower site. These materials
are not favorable in a viewpoint of the neutron reflection and thermal neutrons are strongly absorbed by a stainless-steel layer.

Figure III-17 shows the neutron flux distributions between the side-plates in the fuel region. This figure shows that the neutron flux in the inner fuel region is higher than those of the outer fuel region. In the outer fuel region, the neutron flux at the position "8" is higher than that of the position "6". The difference between the positions "6" and "8" in the outer fuel region is attributed to that the position "6" is sandwiched between two boron loaded side-plates and the position "8" is sandwiched between side-plates with and without boron. At the upper and lower sites of the fuel plates, the neutron flux peaks can be observed due to the existence of the light-water reflectors.
Figure III-18 shows the neutron flux distributions along center axes of the central void, outer fuel, and inner fuel regions. This figure shows that the neutron flux in the central void is the highest, that of the inner fuel region is the second, and those of the outer fuel region are the third. In outer fuel region, the difference between fuel elements with and without boron is not so clear as that shown in Fig. III-17. In the fuel regions, the ratios of the neutron flux peaks at the upper and lower sites of the fuel plates to the neutron flux peaks at the middle of the fuel plates in Fig. III-18 are higher than those in Fig. III-17. The reason is that the neutron flux is measured at the side-plate region in Fig. III-17, whereas that is measured at the actually fueled region in Fig. III-18.

![Graph showing neutron flux distributions](image)

Fig. III-18 Vertical Neutron Flux Distributions in the MEU Core with a Central Void at the Positions "1 ∼ 4" Shown in Fig. III-11
The experimental data show that, in MEU core with a central void, the neutron flux in the heavy-water reflector is the highest, the second is that of the central void region, and the third is that of the side-plate region, and the lowest is that of the fuel region. Furthermore, the neutron flux in the inner fuel region is higher than that of the outer fuel region as suggested previously in Section III-5. The cadmium ratios in the central void and heavy-water regions were approximately 1.7 and 20 at the middle height of the fuel plate, respectively.

![Graph showing neutron flux distributions in the MEU core (Fig. III-19)](image)

Fig. III-19 Vertical Neutron Flux Distributions in the MEU Core without a Central Void at the Positions "9 ~ 11" Shown in Fig. III-12

Figure III-19 shows the neutron flux distributions along the center axes of the central flux trap of light-water, the outer fuel region, and the heavy-water reflector. The neutron flux in the central flux trap is distinctly higher than anywhere else and the neutron flux in the heavy-
water reflector is higher than that of the outer fuel region, whereas the neutron flux in the heavy-water reflector is the largest in the MEU core with a central void. This indicates that the central light-water region has a good capability as a neutron flux trap.

Figure III-20 shows the neutron flux distributions at the same positions as those shown in Fig. III-19. The cadmium ratios in the central flux trap, heavy-water reflector, and outer fuel regions were approximately 16, 30, and 3.0 at the middle height of the fuel plate, respectively. Therefore, the cadmium ratios in the central flux trap and heavy-water reflector regions in the core without void were larger than those of the core with a central void.

Fig. III-20 Vertical Flux Distributions of Thermal Neutrons in the MEU Core without a Central Void at the Positions "9 ~ 11" Shown in Fig. III-12
In the HEU core, only the vertical neutron flux distributions were measured. Figure III-21 shows the thermal neutron flux distributions along the center axes of the central flux trap of light-water, the inner and outer fuel regions, and the heavy-water reflector. Note that the HEU core was not fully loaded with the fuel plates and had a wider central flux trap region of light-water. Moreover, the boron loaded side-plates were not utilized in the HEU core.

Figure III-21 shows that the neutron flux in the central flux trap is the highest, the second is that of the heavy-water reflector, the third is that of the inner fuel region, and the lowest is that of the outer fuel region. The neutron flux peaks are observed at the upper and lower sites of the fuel plate in the inner and outer fuel regions. These phenomena in
the HEU core are consistent with those in the MEU core. The cadmium ratios in the central flux trap, heavy-water reflector, outer fuel, and inner fuel regions in the HEU core without void were measured as approximately 18, 15, 3.8, and 3.6 at the middle height of the fuel plate, respectively. Hence, the cadmium ratios in the HEU core were larger than those of the MEU core except for the heavy-water reflector region. This indicate that the neutron spectra in an MEU core are harder than those of an HEU core.

From Fig. III-20, the neutron flux peaks in the central flux trap and heavy-water reflector regions are approximately 8 and 2.5 times larger than that of the outer fuel region. Whereas, in the HEU core, the neutron flux peaks in the central flux trap and heavy-water reflector regions were approximately 6 and 2 times larger than those of the outer fuel region, respectively, as shown in Fig. III-21. It is inadequate to compare these results directly, since there exists a difference between the configurations of MEU and HEU cores. However, the above results indicate that there is a recovery mechanism of the thermal neutron flux in a reflector including a flux trap for the reduction of the thermal neutron flux in a fuel region due to the reduction in 235U enrichment.

<table>
<thead>
<tr>
<th>Table III-5</th>
<th>Reflector Savings in the MEU and HEU Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>MEU Core</td>
</tr>
<tr>
<td>Heavy-Water Reflector</td>
<td>9.8 ± 0.3</td>
</tr>
<tr>
<td>Outer Fuel Region</td>
<td>7.8 ± 0.1</td>
</tr>
<tr>
<td>Inner Fuel Region</td>
<td></td>
</tr>
<tr>
<td>Central Flux Trap</td>
<td>8.1 ± 0.1</td>
</tr>
</tbody>
</table>

The thermal neutron flux distributions in the MEU core without void were fitted to cosine curves using the least square method in order to obtain vertical reflector savings. The reflector saving is especially important to determine the transverse buckling of a core which should be
used in the two-dimensional calculations. The results are tabulated in Table III-5 in comparison with those of the HEU core. Since there exists a difference between the core configurations of the MEU and HEU cores, a direct comparison may not be adequate. However, the region dependent reflector savings in the MEU and HEU cores approximately agreed with each other.

III-7. Kinetic Parameter Measurements

Among the kinetic parameters, the ratio of the delayed neutron fraction β to the prompt neutron life time λ is especially important for the kinetics of a nuclear reactor and a value of β/λ is often used for the reactor safety calculations. Therefore, the kinetic parameter β/λ was measured in the MEU core using the Feynman-\(\alpha\) method and the pulsed neutron method.

In the pulsed neutron experiments, fission chambers of 0.5" diameter were located at the center of the flux trap and at the middle of the heavy-water reflector and a pulsed neutron source of a handy type (KAMAN NUCLEAR model A-800/801) was located outside the heavy-water tank. With use of the Simmons and King technique, the decay constants of the prompt neutrons α were measured for a few subcritical states of which reactivities were previously known. By plotting a curve of α versus the subcriticality, the curve was extrapolated to the critical state for determining a value of β/λ.

In the Feynman-\(\alpha\) experiments, a BF$_3$ counter of 0.5" diameter was located at the center of the flux trap region and a 3He counter of 0.5" diameter was located at the middle of the heavy-water reflector. At a
critical state, a value of \(\alpha \) which corresponds to \(\beta/\lambda \) was measured by using a pulse rate analysis mode of a multi-channel analyzer (HITACHI 505A).\(^9\)

The agreement between \(\beta/\lambda \) values measured by the above two methods was very good. The results are tabulated in Table III-6 in comparison with those of the HEU core. Note that only the Feynman-\(\alpha \) method was employed in the HEU core and Type-I cores (refer to Section III-4) were used for the measurements.

<table>
<thead>
<tr>
<th>Table III-6 (\beta/\lambda) Values in the MEU and HEU Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU Cores</td>
</tr>
<tr>
<td>Number of Fuel Plates</td>
</tr>
<tr>
<td>Boron Loaded Side-Plates</td>
</tr>
<tr>
<td>(\beta/\lambda) (sec(^{-1}))</td>
</tr>
</tbody>
</table>

A value of \(\beta/\lambda \) in a small sized core depends strongly on a core configuration. In the present core, it depends strongly on an effectiveness of a reflector including a flux trap. When the effectiveness of the heavy-water reflector grows higher, the value of \(\beta/\lambda \) would decrease. On contrary, when the flux trap of light-water grows more effective, \(\beta/\lambda \) would increase its value. This tendency can be seen in Table III-6. The effectiveness of the light-water flux trap for the neutron reflection grows higher with the increase in number of fuel plates loaded into the core, because the volume of flux trap becomes smaller and the neutron importance in the flux trap grows higher in the Type-I core. It is inadequate to compare directly \(\beta/\lambda \) values in the MEU and HEU cores, since the number of fuel plates loaded to the core is different from each other. It is indicated from the experimental results, however, that the difference between \(\beta/\lambda \) values in the MEU and HEU cores are small.
III-8. Measurements of the Void Reactivity Effect

The void reactivity effects were measured at several locations in a core, since the void reactivity is an important physical quantity in a research reactor both for the operation and for the safety analysis.

III-8-A. Void Reactivity Effects in the Water Regions

Firstly, with use of Al void pipes with several diameters and thicknesses, the void reactivity effects were measured in an MEU core at 4 locations; namely, (1) the center of the central flux trap of light-water, (2) the space for the control rods, (3) the light-water gap between the outer fuel elements and the heavy-water tank, and (4) the middle of heavy-water reflector. The MEU core employed in this series of experiments was fully loaded with 294 fuel plates and one half of the outer fuel elements consisted of boron loaded side-plates. The excess reactivities were measured before and after pouring light-water or heavy-water into an Al void pipe by the positive period method. From the difference between the above two reactivities, the void effect was obtained.

The results were tabulated in Table III-7 in comparison with those of the HEU core. Note that the HEU core was not a fully loaded one and was a Type-I core loaded with 277 fuel plates.

Table III-7 shows that the void reactivity effects are negative in the space for the control rods and at the middle of heavy-water reflector, whereas they are positive at the other locations. Note that experimental error is estimated to be ± 0.005 %Δk/k for this void reactivity measurement from experience. In the MEU core, the void coefficients of reactivity are estimated to be approximately 1×10^{-5} Δk/k/cm³ at the center of the flux.
trap, $-5 \times 10^{-6} \Delta k/k/cm^3$ at the space for the control rods, 2×10^{-6} $\Delta k/k/cm^3$ at the light-water gap between the outer fuel elements and the heavy-water tank, and $-2 \times 10^{-7} \Delta k/k/cm^3$ at the middle of the heavy-water reflector, respectively. A direct comparison between the MEU and HEU cores is inadequate, because there is a difference in the volume of the central flux trap of light-water. However, the experimental results indicate that the void reactivity effect in the central flux trap of an MEU core is slightly larger than that of an HEU core.

Table III-7 Reactivity Effects of Al Void Pipes

<table>
<thead>
<tr>
<th>Locations in the Core</th>
<th>Outer Diameter (cm)</th>
<th>Inner Diameter (cm)</th>
<th>Void Reactivity (Δk/k) MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of the Central Flux Trap of H$_2$O</td>
<td>1.0</td>
<td>0.7</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>1.9</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.1</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.2</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.3</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.38</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Space for Control Rods</td>
<td>1.0</td>
<td>0.7</td>
<td>-0.011</td>
<td></td>
</tr>
</tbody>
</table>

H$_2$O Gap between the Outer Fuel Elements and D$_2$O Tank

<table>
<thead>
<tr>
<th></th>
<th>Outer Diameter (cm)</th>
<th>Inner Diameter (cm)</th>
<th>Void Reactivity (Δk/k) MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.7</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.3</td>
<td>0.063</td>
<td></td>
</tr>
</tbody>
</table>

Middle of the D$_2$O Reflector

<table>
<thead>
<tr>
<th></th>
<th>Outer Diameter (cm)</th>
<th>Inner Diameter (cm)</th>
<th>Void Reactivity (Δk/k) MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.5</td>
<td>2.9</td>
<td>-0.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>5.5</td>
<td>-0.030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>8.4</td>
<td>-0.078</td>
<td></td>
</tr>
</tbody>
</table>

III-8-B. Void Reactivity Effects in the Fuel Region

Secondary, the void reactivity effects in the fuel region of the MEU and HEU cores were measured with a gas bubbling technique, since it was considered to be impractical to use an Al pipe in the narrow flow channels (2.4 mm) of the KUCA core.
Measurement of Void Fraction

When determining the void reactivity coefficient, a direct measurement of the channel-averaged void fraction in the core is preferable. However, the following limiting conditions existed in the core:

1. Adjacent fuel elements, control rods, heavy-water tank and other core components obstructed the access of equipment to the test section.
2. Probes such as optical probes and anemometers could not be introduced into the test section due to its narrow channel width.
3. Conductance probe techniques could not provide sufficient sensitivity because of the high resistivity of the ion-exchanged light-water in the core tank.

For these reasons, it was decided to measure the void fraction in an out-of-pile experiment using a full-scale fuel element mock-up made of aluminum alloy. Figure III-22 shows the schematic drawing of the equipment for the out-of-pile experiment. A fuel element mock-up was set up in a
tank filled with tap water to approximately 30 cm above the top of the fuel mock-up in order to simulate the pressure condition in the core tank of the KUCA. Air was supplied by an air-compressor and introduced into the test channel through a small needle-like nozzle (stainless-steel tube of 1.0 mm inner diameter and 1.5 mm outer diameter) mounted at the bottom of the channel. The nozzle was placed upright at the center of the channel with the nozzle tip 1 cm above the bottom of the fuel plates. The flow rate of air was measured with a rotameter.

A two-phase flow measuring device based on the conductance probe technique,100 can be utilized now to measure the local void fractions in the flow channels because of sufficient electric conductivity of tap water. The probe consisted of two electrodes; one was fixed in water and grounded, while the other was movable. When the tip of the movable electrode was in the water, a low-level voltage was obtained; when it was in air bubbles, a high-level voltage was obtained. Thus, the local void fraction could be determined by averaging a properly processed signal.

The calibration curve, i.e., the channel-averaged void fraction versus the air flow rate, was obtained by the following procedure:

1. Place the movable electrode at a particular location and measure the local void fractions at air flow rates from 50 to 450 ℓ/h with an increment of 50 ℓ/h. Continue sampling for 20 sec and repeat 10 times under a given condition. Finally, average the measured void fractions to obtain a local void fraction.

2. Repeat Step (1) at predetermined locations (24 to 36 points per channel) to obtain the void fraction profile. The locations of the calibrated channels are shown in Fig. III-23. For each channel (refer to Fig. III-23), one must calibrate the length of the arc centerlines of the channels, which varies from channel to channel even though the
The channel-averaged void fraction at a given flow rate can be determined by averaging the void fraction profile over the channel at the same flow rate.

Since the local void fractions are measured only along the arc center-lines of the channels, some corrections for the average void fractions are necessary to take into account the radial profile of the local void fraction. Visual observations indicated that the bubbles were large enough to be taken as Taylor bubbles in the radial direction over the range of the gas flow rates in this work. Therefore, the modification was made by calculating the liquid film thickness along a Taylor bubble, using the equations by Üzugü et al.101

Note also that the width of the channels was 2.44 mm in the out-of-pile experiment whereas the channel width for the in-pile experiment was 2.4 mm. In addition, air was used in the out-of-pile experiment whereas N\textsubscript{2} gas was injected into the core. It was assumed, however, that the calibration curves for the void fraction obtained from the out-of-pile experi-
ment were applicable to the in-pile experiment because the difference in the cross-sectional area of the channels was less than 3% and the physical properties of air and nitrogen are very similar to each other.

Measurement of Void Reactivity

The in-pile experiment consisted of two parts. In the first series of experiments, bubbles were generated in a single channel to investigate the effects of the fuel enrichment, bubbling location and boron loaded in the side-plates on the void reactivity. In the second series, bubbles were generated in two separated channels as well as in two adjacent channels simultaneously to examine the additivity and the interference effect of the void reactivity.

Table III-8 Summary of the Cores Employed in This Experiment

<table>
<thead>
<tr>
<th>Core</th>
<th>Number of Fuel Plates</th>
<th>235U Loading (g)</th>
<th>Excess Reactivity ($\times 10^{-3}$ $\Delta k/k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU Core without Boron</td>
<td>263</td>
<td>4176.4</td>
<td>1.5</td>
</tr>
<tr>
<td>MEU Core with Boron</td>
<td>267</td>
<td>4229.5</td>
<td>0.4</td>
</tr>
<tr>
<td>HEU core without Boron</td>
<td>278</td>
<td>3542.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* : Measured when a needle-like nozzle is in the outermost channel of the outer fuel element.

Three types of Type-I cores were constructed in the first series of experiments, namely, the MEU core without boron, the MEU core with boron, and the HEU core without boron. The fuel loading and the excess reactivity of these cores are shown in Table III-8.
The tenth, eleventh, and twelfth plates of IN-05 counted from the outside have been removed.

Fig. III-24 Configuration of the MEU Core without Boron

Figure III-24 shows the MEU core without boron. The reactivity was controlled with three control rods (C1, C2, C3) while three safety rods (S4, S5, S6) were held at their upper limit during normal operation. The fuel loading was such that the reactivity of void could be compensated for
using only the C2 rod, while the other rods were fully withdrawn. Small-diameter aluminum tubes were also inserted into the control rod region adjacent to the elements IN-04, EX-08 and EX-07 to adjust the excess reactivity. Voids were generated by bubbling N₂ gas in the elements IN-02 and EX-04. Locations of the channels where voids were generated are shown in Fig. III-25. Nitrogen was supplied from a gas bomb and the flow rate was measured with a rotameter.

![Fig. III-25 Positions of the Voided Channels in the MEU Core](image)

The configuration of the MEU core with boron was almost the same as shown in Fig. III-24, except that the side-plates of the elements IN-02 and EX-04 contained boron. These elements were then referred to as IN(B)-02 and EX(B)-04, respectively.

Figure III-26 shows the HEU core without boron. In the HEU core, outer fuel elements are denoted by "OUT" instead of "EX" in order to distinguish the HEU core from the MEU core. As shown in Table III-8,
IN-01 to IN-06 = Inner Fuel Elements (Containing No Burnable Poison)
OUT-01 to OUT-12 = Outer Fuel Elements (Containing No Burnable Poison)
C1 to C3 = Control Rods
S4 to S6 = Safety Rods
FC1 to FC3 = Fission Chambers
UIC4 to UIC6 = Uncompensated Ionization Chambers

OUT-01 to OUT-12 contain 17 fuel plates.
IN-04 and IN-06 contain 13 fuel plates.
IN-01, 02, 03, 05 contain 12 fuel plates.
Total: 278 fuel plates.

Fig. III-26 Configuration of the HEU Core without Boron

approximately 18% less 235U was needed in the HEU core without boron in order to produce approximately the same excess reactivity as in the MEU core without boron. Since the 235U content is less in HEU fuel plates than
in MEU fuel plates, however, one or two extra fuel plates were loaded in each inner fuel elements of the HEU core without boron. For this reason, the void reactivity was measured in the extra channel G(H) in the inner element IN-02 as well as Channels A(H) through F(H) as shown in Fig. III-27.

In the second series of experiments in which bubbles were generated in two channels, a core configuration very similar to the MEU core shown in Fig. III-24 was employed. The following differences were that in the second series of experiments; (1) small aluminum tubes were not utilized, (2) ten fuel plates were inserted into the inner fuel element IN-05 in order from the outside, and (3) the location of the inner fuel element containing nine fuel plates was different. In the first run of the second series which is discussed later, the inner element with nine fuel plates was the element IN-04, while in the second run it was IN-03. Therefore, in
the second run, the core was symmetrical with respect to vertical plane P-Q as shown in Fig. III-28. The locations of voided channels during the second series of experiments are shown in Fig. III-28.

A diagram of the N_2 gas supply system is shown in Fig. III-29. Nitrogen gas was supplied from a large gas bomb and introduced into the channels through the same needle-like nozzles used in the out-of-pile experiment, which were mounted at the bottom of the channels in the same
manner. The flow rate of N_2 gas was measured with a rotameter.

Fig. III-29
The N_2 Gas Supply System

In the first series of experiments, the void reactivity coefficient was measured by the following procedure:

1. Place a needle-like nozzle at the bottom of the test channel so that the tip of the nozzle is positioned at the center of the cross section of the channel and 1 cm above the bottom of the fuel plates. Clamp the N_2 gas pipeline so that it will not move during the measurement. The locations of the test channels were shown in Figs. III-25 and III-27.

2. Feed light-water to the core tank. Fill the pipeline with N_2 gas and purge any light-water from the pipeline before criticality is attained. Move the C2 rod to attain criticality while the other rods are fully withdrawn.

3. Move the C2 rod to the upper limit and measure the stable period of
the increasing neutron level by using a multi-channel scaler, thus obtaining the excess reactivity of the core when the gas flow rate is zero.

(4) Set N_2 gas flow rate at 50 k/hr and use the C2 rod to attain criticality. Measure the excess reactivity again in the same manner as step (3).

(5) Repeat step (4) at gas flow rates of 100, 200, 300 and 400 k/hr.

(6) Calculate the void reactivity coefficient from the difference between the excess reactivities with and without voids.

In the second series of in-pile experiments, in which bubbles were generated in two channels simultaneously, the same basic procedure as in the first series, i.e., the positive period method, was used to measure the reactivity. To measure the small interference effect of void reactivity, however, two methods were employed.

In the first run of the second series, the reactivities were measured, voiding in adjacent channels I and J shown in Fig. III-28, both separately and simultaneously. Let $\rho_v(I)$ be the reactivity of voiding in Channel I, and $\rho_v(I+J)$ be that of voiding in Channels I and J simultaneously, then the interference effect can be measured by ρ_{int}, defined as

$$\rho_{\text{int}} = |\rho_v(I+J)| - |\rho_v(I) + \rho_v(J)| . \quad \text{(III-1)}$$

If $\rho_{\text{int}} = 0$, the additivity of reactivity with a single voided channel exists; otherwise, the interference effect exists. Channels I and J were chosen because in the first series of the experiment, the void reactivity for a given channel-averaged void fraction had a maximum absolute value (most negative) in those channels located at the middle of the outer fuel
element. Hence, the experimental error was expected to be minimum for those channels.

It turned out from the first run, however, that the interference effect was small enough to be within the experimental error even if any interference effect existed. Therefore, the following alternative technique was devised in the second run in order to reduce the experimental error which was attributed to the summing up of measured reactivities. In the second run, two pairs of adjacent channels (K, L and M, N) were chosen, as shown in Fig. III-28. From the viewpoint of fuel loading in the core, channels K and M are symmetrical to each other with respect to line P-Q, and likewise, channels L and N. Theoretically, this means that

\[\rho_v(K) = \rho_v(M) \quad \text{(III-2)} \]

and

\[\rho_v(L) = \rho_v(N) \quad \text{(III-3)} \]

It is assumed here that the separated channels of any pair were independent of each other in terms of the void reactivity. Then

\[\rho_v(K+N) = \rho_v(K) + \rho_v(N) \quad \text{(III-4)} \]

and

\[\rho_v(L+M) = \rho_v(L) + \rho_v(M) \quad \text{(III-5)} \]

Therefore, if one measures the reactivity of voiding two adjacent channels \(\rho_v(K+L) \) or \(\rho_v(M+N) \) and that of voiding two separated channels \(\rho_v(K+N) \) or \(\rho_v(L+M) \), one may obtain the interference effect as follows:

\[
\rho_{\text{int}} = \left| \rho_v(K+L) \right| - \left| \rho_v(K+N) \right| ,
\]

\[
= \left| \rho_v(M+N) \right| - \left| \rho_v(L+M) \right| . \quad \text{(III-6)}
\]
Results of Void Fraction Calibration

An example of the local void fraction profile is shown in Fig. III-30. The ordinate represents the local void fraction, the abscissa the distance from the centerline of the channel, and the oblique line the height measured from the bottom of the fuel plates. The names of the channels correspond to that shown in Fig. III-23.

Figure III-30 indicates that the horizontal profile of the local void fraction is similar to a Gaussian distribution with the shape becoming more blunt with increasing distance from the nozzle. Such a profile of the local void fraction was commonly observed through all conditions in the calibration of the void fraction.

The channel averaged void fraction is calculated by averaging the local void fraction profile. The result is given in Fig. III-31 as a function of the gas flow rate for all channels marked in Fig. III-23. These calibrated channels correspond to all the channels in Figs. III-25.
and III-27 except channel G(H) in Fig. III-27. Taking advantage of the fact that the cross-sectional area of channel G(H) is in between that of channels A and D, the average void fraction for channel G(H) was estimated by a linear interpolation of the results for those channels.

![Calibration Curves for Void Fraction in Flow Channels A through F](image)

Fig. III-31
Calibration Curves for Void Fraction in Flow Channels A through F

Results of Void Reactivity in a Single Channel

The results of void reactivity versus gas flow rate in the first series of in-pile experiments are shown in Figs. III-32 and III-33. They indicate that the overall effect of voids on reactivity is negative in the fuel regions and the effect is maximum in the middle channels while it is minimum in the channels adjacent to the reflector. The result for channel G(H) is the exceptional case in which the void reactivity appears to be positive. Note, however, that the result for channel G(H) may not be reliable because the measured reactivities are very small and the error in the measurement is comparable to the measured values. Figure III-32 also indicates that the existence of boron loaded side-plates near the bubbling channel weakens the reactivity effect of void.
Fig. III-32 Measured Void Reactivity versus Gas Flow Rate for the MEU Cores with and without Boron

From the results shown in Figs. III-32 and III-33 and by using the calibration curves Fig. III-31, the relation between the void reactivity and the channel-averaged void fraction can be obtained. The overall void fraction, which is defined by the ratio of the void volume to the total light-water volume in the fueled regions, is calculated from the channel-averaged void fraction. The overall void reactivity is then obtained as a function of the overall void fraction. The results are shown in Figs. III-34, III-35, and III-36. Note here that the overall void coefficient thus obtained may be different from that for a homogeneous void over the
MEU core, which means that the neutron importance at the voided channel is
chamber. In addition, the volume of the heated region is smaller in the
consideration on the volume described in Section II-Z of the preceding
factors. This is consistent with the simple
negatively larger (more negative) in the MEU core than in the HDU core, which
the HDU and MEU cores, it can be seen that the void effect on reactivity is
previously, and strongly space-dependent. Comparing the results between
negative in the heated regions, except in channel G(1), which was discussed
These figures indicate that the reactivity coefficient of voids is
the HDU core compared with that of MEU core

Fig. III-33 Measured Void Reactivity versus Gas Flow Rate for

Core even if the apparent overall void fraction is unchanged.
larger in the MEU core. Moreover, the energy spectrum of neutrons is harder in the MEU core because of the larger fraction of ^{238}U in the fuel. These effects tend to increase the void effect in the MEU core. Further studies may be needed, however, in order to give a thorough explanation.

Fig. III-34
Void Reactivity versus Overall Void Fraction for the MEU Core without Boron

Fig. III-35
Void Reactivity versus Overall Void Fraction for the MEU Core with Boron
Results of Interference Effect of Void Reactivity

Table III-9 Results of Reactivity of Voiding Two Channels

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Voided Channel</th>
<th>Channel-Averaged Void Fraction (%)</th>
<th>Void Reactivity ($\times 10^{-3}$ Δk/k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Run</td>
<td>I</td>
<td>32</td>
<td>-0.30</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>32</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>I and J</td>
<td>both 32</td>
<td>-0.62</td>
</tr>
<tr>
<td></td>
<td>K and L</td>
<td>both 32</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>M and N</td>
<td>both 32</td>
<td>-0.71</td>
</tr>
<tr>
<td></td>
<td>K and N</td>
<td>both 32</td>
<td>-0.64</td>
</tr>
<tr>
<td>Second Run</td>
<td>M and L</td>
<td>both 32</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td>K and L</td>
<td>both 20</td>
<td>-0.45</td>
</tr>
<tr>
<td></td>
<td>K and N</td>
<td>both 20</td>
<td>-0.45</td>
</tr>
</tbody>
</table>

The channel averaged-void fraction and the void reactivity in the second series of in-pile experiments are presented for each channel or each pair of channels in Table III-9. Based on the results, the interference effect ρ_{int} can be calculated by using Eq. (III-1) for channels I and J, and Eq. (III-6) for channels K, L, M, and N. Thus, ρ_{int} obtained from the
first run is \((0.01 \pm 0.04) \times 10^{-3}\) \(\Delta k/k\) for a channel-averaged void fraction of 32 %, and that obtained from the second run becomes \((0.04 \pm 0.03) \times 10^{-3}\) \(\Delta k/k\) for a channel-averaged void fraction of 32 % and zero for a channel-averaged void fraction of 20 %. Since the last result \((0 \Delta k/k)\) was calculated from only one set of data, the statistical error is not estimated.

On the basis of experience in measuring the excess reactivity in the KUCA, the experimental error is estimated to be approximately \(\pm 0.05 \times 10^{-3}\) \(\Delta k/k\). Hence, the values of \(\rho_{\text{int}}\) obtained above are within the experimental error. Therefore, it may be concluded that the interference effect with two adjacent voided channels, whose channel-averaged void fraction is as high as 32 %, is within the experimental error if the interference effect even exists.

Conclusions

The results obtained from this work are summarized as follows.

(1) The reactivity coefficient of voids is negative in the fueled regions for all the core configurations employed here.

(2) The void effect is strongly space-dependent; the effect is maximum in the middle channels in the inner and outer fuel regions while it is minimum in the channels adjacent to the reflector.

(3) The reactivity coefficient is slightly larger (more negative) in the MEU core than in the HEU core.

(4) The void effect is weakened by the existence of boron loaded side-plates near the voided channel.

(5) The interference effect with two adjacent voided channels, whose channel-averaged void fraction is as high as 32 %, is within the experimental error.
III-9. Measurements of the Temperature Effect on Reactivity

The temperature coefficients of reactivity are important physical quantity concerned deeply with reactor operation and safety. Therefore, the measurements of the temperature effect on reactivity were performed. The purposes of the experiments are to investigate the dependencies of temperature reactivity effects on (1) the geometrical heterogeneity in the multi-region type core, (2) the 235U enrichment of fuel, and (3) boron contained in the side-plates as a burnable poison.

III-9-A. Temperature Effect on Reactivity in a Full Loading MEU Core

Firstly, the temperature effects were measured in the MEU core fully loaded with 294 fuel plates under the conditions with and without a central acrylic void tube which was utilized in the neutron flux measurements (refer to Section III-6). The reasons were as follows; (1) the experimental results of Al void pipe effects demonstrated that the void reactivity coefficient in the central flux trap of light-water was positive as described in Section III-8-A and (2) the feature of the neutron flux distribution was different from each other in the MEU cores with and without a central void as described in Section III-6. Therefore, it was interesting to investigate the effect of a central void on the temperature reactivity effects.

Then, the MEU cores with and without a central void were constructed in the KUCA. The criticality of the core was adjusted by the number of boron loaded side-plates. Note that, in this experiment, the fuel pitch in the fuel element with boron was 3.80 mm and the pitch in the element without boron was 3.84 mm. With use of heaters and stirrers, the
temperature of light-water and heavy-water were raised simultaneously and uniformly. At several temperatures in a range of 20 °C through 75 °C, the excess reactivities were measured by the positive period method. The temperatures at several locations in the core were monitored with thermocouple type thermometers and the uniformity of temperature in the core was assured for each measurement.

Let \(p(T) \) be the excess reactivity of the core at a temperature \(T \) (°C) and \(p(T+\Delta T) \) be the excess reactivity at a temperature \((T+\Delta T) \) (°C). Then, the temperature coefficient \(\alpha(T+\Delta T/2) \) can be obtained as,

\[
\alpha(T+\Delta T/2) = \frac{p(T+\Delta T) - p(T)}{\Delta T} .
\]

(III-7)

Fig. III-37 Temperature Coefficients of Reactivity for the MEU Cores with and without a Central Void
The results are shown in Fig. III-37. Figure III-37 shows that the temperature coefficient is positive below 70 °C for the core without a central void. On the other hand, in the core with a central void, the sign of the temperature coefficient changes from positive to negative at approximately 33 °C. Two curves of the temperature coefficients are almost parallel, however, the gradient for the core with a central void is slightly steeper than that of the core without a central void. The difference between two curves is approximately 9×10^{-5} A/k/k/°C. These results indicate that the thicker the light-water layer in the center of core becomes, the larger (more positive) the temperature coefficient grows. This indicates that the positive temperature coefficient of the core is mostly attributed to the positive temperature coefficient of the central flux trap of light-water. This also indicates that the temperature coefficient is strongly depend on the core configuration.

III-9-B. Temperature Effects on reactivity in the MEU and HEU Cores

Secondary, the temperature effects were measured in the MEU and HEU cores to investigate the effect of reduced 235U enrichment. The Type-I and Type-II Cores (refer to Section III-4) were employed for both MEU and HEU cores to investigate the effect caused by a change in core configuration. In the Type-I MEU cores, the temperature effects in the cores with and without boron loaded side-plates were also measured to investigate the effect caused by an existence of boron. In this series of experiments, the fuel pitch was 3.80 mm for all cases. The fuel loading patterns of the cores employed in the experiments are shown in Figs. III-38 and III-39.
Fig. III-38
Fuel Loading Patterns of the MEU Cores Employed in the Temperature Effect Measurements

Fig. III-39
Fuel Loading Patterns of the MEU Cores Employed in the Temperature Effect Measurements

A heater and a stirrer were installed in the heavy-water tank, and several thermocouples and two quartz-type thermometers were settled at various locations in the C-core tank as shown in Fig. III-40. These
thermometers were used to check the uniformity of temperature in the core during the measurements. The temperature of light-water was raised using 3 heaters and a stirrer installed in the dump tank from which light-water was pumped up to the core just before the reactivity measurement.

When the temperatures of light-water and heavy-water reached the same level, the excess reactivity or subcriticality was measured using the positive period method or the source multiplication method. Thus, the temperature dependent excess reactivities at several temperatures were obtained in a range from 20 °C to 75 °C. The temperature coefficient was determined by two methods. One was calculated directly using the experimental data by Eq. (III-7). The other was calculated by fitting the experimental data to a quadratic curve,
\[p(T) = aT^2 + bT + c, \quad (III-8) \]

where, \(a, b, c \) : constants,

using the method of least squares. Thus, the temperature coefficient was obtained as,

\[a(T) = 2aT + b. \quad (III-9) \]

Tables III-10 Temperature Effects on Reactivity in the MEU Cores

<table>
<thead>
<tr>
<th>Designation of Core</th>
<th>MEU-I (no BP)</th>
<th>MEU-II (no BP)</th>
<th>MEU-I (Outer BP)</th>
<th>MEU-I (Inner BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Fuel Plates</td>
<td>263</td>
<td>256</td>
<td>286</td>
<td>281</td>
</tr>
<tr>
<td>measured</td>
<td>0.073[25.1°C]</td>
<td>0.132[28.9°C]</td>
<td>-0.007[23.7°C]</td>
<td>-0.001[22.0°C]</td>
</tr>
<tr>
<td>excess</td>
<td>0.212[35.1°C]</td>
<td>0.248[35.2°C]</td>
<td>0.152[39.2°C]</td>
<td>0.209[39.7°C]</td>
</tr>
<tr>
<td>Reactivity (\rho_{ex}) (%(\Delta k/k))</td>
<td>0.389[49.7°C]</td>
<td>0.397[49.4°C]</td>
<td>0.281[59.0°C]</td>
<td>0.332[59.2°C]</td>
</tr>
<tr>
<td>(\rho_{ex}) results of Least Square Fitting</td>
<td>a: -1.07x10^-4</td>
<td>b: 2.08x10^-2</td>
<td>c: -3.82x10^-1</td>
<td>a: -1.33x10^-4</td>
</tr>
<tr>
<td></td>
<td>b: 2.10x10^-2</td>
<td>b: 1.68x10^-2</td>
<td>c: -3.25x10^-1</td>
<td>b: 1.89x10^-2</td>
</tr>
<tr>
<td></td>
<td>c: -3.96x10^-1</td>
<td>c: -3.46x10^-1</td>
<td>c: -3.55x10^-1</td>
<td>c: -3.55x10^-1</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>1.29[32.0°C]</td>
<td>1.18[31.3°C]</td>
<td>0.97[34.7°C]</td>
<td>1.07[35.0°C]</td>
</tr>
<tr>
<td>Calculated</td>
<td>1.27[38.0°C]</td>
<td>1.05[38.5°C]</td>
<td>0.71[44.1°C]</td>
<td>0.77[44.8°C]</td>
</tr>
<tr>
<td>by using</td>
<td>1.18[45.3°C]</td>
<td>1.04[45.6°C]</td>
<td>0.59[54.0°C]</td>
<td>0.47[54.5°C]</td>
</tr>
<tr>
<td>Eq.(III-7)</td>
<td>0.94[54.5°C]</td>
<td>0.55[54.3°C]</td>
<td>0.30[65.1°C]</td>
<td>0.43[64.9°C]</td>
</tr>
<tr>
<td>(a (10^{-5}\Delta k/k))</td>
<td>0.63[64.5°C]</td>
<td>0.47[63.5°C]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A value in [] shows a temperature \(T \) (°C).

*: Refer to Fig. III-38.

The results are tabulated in Tables III-10 and III-11. The results show that the temperature coefficients are positive in the measured temperature range for all the cores employed in this series of experiments. This is expected from the results of the Section III-8-A, because the cores had no central void. However, this also indicated that, in a high temperature region above 100 °C, the temperature coefficient becomes negative for
all the cores employed in this series of experiments.

Table III-11 Temperature Effects on Reactivity in the HEU Cores

<table>
<thead>
<tr>
<th>Designation of Core</th>
<th>HEU-I (no BP)</th>
<th>HEU-II (no BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Fuel Plates</td>
<td>277</td>
<td>274</td>
</tr>
<tr>
<td>Measured Excess Reactivity $\rho_{ex} (%\Delta k/k)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.044 [22.4°C]</td>
<td>0.009 [24.4°C]</td>
</tr>
<tr>
<td></td>
<td>0.009 [26.6°C]</td>
<td>0.129 [33.5°C]</td>
</tr>
<tr>
<td></td>
<td>0.108 [35.2°C]</td>
<td>0.192 [39.4°C]</td>
</tr>
<tr>
<td></td>
<td>0.152 [39.8°C]</td>
<td>0.251 [48.1°C]</td>
</tr>
<tr>
<td></td>
<td>0.238 [49.7°C]</td>
<td>0.316 [57.3°C]</td>
</tr>
<tr>
<td></td>
<td>0.286 [57.8°C]</td>
<td>0.344 [66.4°C]</td>
</tr>
<tr>
<td></td>
<td>0.337 [66.3°C]</td>
<td></td>
</tr>
<tr>
<td>Results of Least Square Fitting $\rho_{ex} = aT^2 + bT + c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a : -0.98×10^{-4}</td>
<td>a : -1.40×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>b : 1.73×10^{-2}</td>
<td>b : 2.06×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>c : -3.82×10^{-1}</td>
<td>c : -4.08×10^{-1}</td>
</tr>
<tr>
<td>Temperature Coefficients Calculated by Using Eq.(III-7) $\alpha (10^{-6} \Delta k/k/°C)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.25 [24.5°C]</td>
<td>1.33 [29.0°C]</td>
</tr>
<tr>
<td></td>
<td>1.15 [30.9°C]</td>
<td>1.06 [36.5°C]</td>
</tr>
<tr>
<td></td>
<td>0.97 [37.5°C]</td>
<td>0.68 [43.8°C]</td>
</tr>
<tr>
<td></td>
<td>0.87 [44.8°C]</td>
<td>0.70 [52.7°C]</td>
</tr>
<tr>
<td></td>
<td>0.60 [53.8°C]</td>
<td>0.31 [61.9°C]</td>
</tr>
<tr>
<td></td>
<td>0.60 [62.1°C]</td>
<td></td>
</tr>
</tbody>
</table>

Note: A value in [] shows a temperature T (°C).
* : Refer to Fig. III-39.

The results of least square fitting shown in Tables III-10 and III-11 indicate some features of the temperature effects on reactivity. In a low temperature region (refer to values of "b" in Tables III-10 and III-11), the temperature coefficient decreases with the increase in number of fuel plates loaded to the core, regardless of the Type-I and Type-II and of with and without boron for both the HEU and MEU cores. In other words, the smaller is the critical mass, the larger (more positive) the temperature coefficient grows up in a low temperature region. Therefore, the temperature coefficient grows more positive with the increase in effectiveness of a light-water reflector including a flux trap. This indicates that the temperature coefficient of a light-water reflector is positive. Whereas that of a fuel region is usually negative, because the neutron leakage from the fuel region becomes large with the increase of temperature. Note here
that, although the core employed in this experiment was a mock-up of a light-water-moderated and heavy-water-reflected annular core with a central flux trap of light-water, the actual core had a more than 2.5 cm thick light-water gap between the heavy-water tank and the outer fuel elements.

The gradient of the temperature coefficient (refer to values "a" in Tables III-10 and III-11) of the Type-II core is steeper than that of the Type-I. This means that the temperature coefficient of the Type-II core grows smaller (more negative) than that of the Type-I in a high temperature region. This may be attributed to the size of the central flux trap and the thickness of the light-water gap between the heavy-water tank and the outer fuel elements. This is also consistent with the results of the preceding section which indicate that the less is the volume of central light-water, the steeper the gradient of the temperature coefficient becomes. However, in the MEU cores with boron, the slope in the MEU core with inner boron is steeper than that of the core with outer boron regardless of the size of central light-water. This may be attributed to the boron effect. The difference between values "a" or "b" in the Type-I and Type-II MEU cores is smaller than that between the HEU cores. This indicates that, in the HEU core, the temperature coefficient depends more strongly on the core configuration than in the MEU core. This may be attributed to the effect of reduced 235U enrichment.

Further experimental study may be necessary to obtain a thorough explanation of the temperature effects on reactivity. However, the experimental results indicate that the temperature effects depends strongly on the core configuration rather than on the 235U enrichment or the existence of boron.
III-10. Conclusions

The results obtained through the critical experiments are summarized as follows:

(1) The number of fuel plates needed to attain criticality in the MEU core is less than that in the HEU core. The critical mass of the MEU core is approximately 18% larger in 235U mass than that of the HEU core.

(2) The total reactivity worth of the control rods is around 10% smaller in the MEU core than the HEU core. The control rod worth decreases further with the introduction of the boron loaded side-plates.

(3) In the MEU core, the total reactivity effect of the boron loaded side-plate is approximately -8 $\%$k/k. The reactivity effect of a boron loaded side-plate in the inner fuel region is larger than that in the outer fuel region. The interference effects are observed between two adjacent boron loaded side-plates.

(4) The neutron spectrum in the MEU core is harder than that in the HEU core. The ratio of the thermal neutron flux in the reflector including the central flux trap to that in the fuel region of the MEU core is larger than the ratio in the HEU core. This ratio changes remarkably with the introduction of a central void. For both the MEU and HEU cores, a high peak of the thermal neutron flux is observed in the central flux trap of light-water. On the other hand, there is no flux peak in the heavy-water reflector, because the KUCA core has rather thick light-water layer between the heavy-water reflector and the fueled region. The vertical reflector saving in the MEU core is almost the same as that in the HEU core.
(5) The kinetic parameter S/L in the MEU core is almost the same as that in the HEU core. The value of S/L is in the middle of that in a light-water moderated and reflected core, and that in a heavy-water moderated and reflected core. The value of S/L depends strongly on the core configuration.

(6) In the central flux trap of light-water and in the light-water gap between the heavy-water reflector and the outer fuel elements, the void reactivity effects are positive, whereas those are negative in the other regions. In the fuel region, the void reactivity in the MEU core is slightly more negative than that in the HEU core, and the void effect is slightly weakened by the existence of the boron loaded side-plates. At the middle flow channel of the fuel element, the void effect has the most negative value. The interference effect of void reactivity between two adjacent flow channels in the fueled region is negligibly small.

(7) The temperature effects on reactivity is positive for both the MEU and HEU cores with the central flux trap of light-water in a range of 20 °C through 70 °C. The temperature coefficients of reactivity depends more strongly on the core configuration rather than on the 235U enrichment and the existence of boron. The temperature effects become negative with the introduction of a central void.
IV. ANALYSES OF THE CRITICALITY AND THE BORON REACTIVITY EFFECT

IV-1. Introduction

The determination of the critical mass provides the most essential base for reactor physics. In order to design a new reactor including a core conversion in accordance with the use of REU fuel, one should predict the effective multiplication factor as accurate as possible through the neutronics calculations. Therefore, it is important to assess the accuracy of the neutronics calculations in comparison with the experimental data. Moreover, in order to estimate a reactivity effect, the criticality calculation should provide an accurate value of k_{eff}, since the reactivity is defined from a difference between k_{eff} values. It is also important to estimate the boron reactivity effect accurately, since boron is often utilized as a material for the control rod or burnable poison.

The main objective of the present study is to establish a self-consistent system for the neutronics calculations in the KUCA through the analyses of the critical experiments using HEU and MEU fuels. Since the KUCA experiments have provided the only benchmark data for the use of MEU fuel in a light-water-moderated and heavy-water-reflected annular core, it is significantly important to assess a method of the neutronics calculations for an MEU core as well as an HEU core.

As a first step to establish a self-consistent system for the neutronics calculation, an assessment is made through the analyses of the experimental data using the ANL code system consisted of the conventional codes, because this code system has provided good results for the benchmark calculations in the RERTR program and commonly used as a standard.
code system for the neutronics calculations of research reactors. Therefore, it is important to assess quantitatively its capability for the KUCA core loaded with MEU fuel, since the KUCA core has a remarkable heterogeneity in geometry which is difficult to model precisely with use of the conventional codes based on the finite-difference method. The assessment includes analyses on (1) the criticality data of HEU and MEU cores and (2) the reactivity effect data of boron for MEU cores. The ANL code system employed in this study consists of two codes: (1) the EPRI-CELL code for the generation of few-group constants and (2) the DIF3D code for diffusion calculations.

The present assessment also includes results from a finite-element diffusion code, 2D-FEM-KUR, which was developed in a cooperative research program between KURRI and JAERI. Since this code provides the capability for mocking-up a complex core configuration, it is especially important to assess this code for the KUCA core. Therefore, with use of the same group constants generated by the EPRI-CELL code, the 2D-FEM-KUR code was applied to the analysis of the KUCA experiments and the results were compared with those from the DIF3D code. Through this comparison, the merits and demerits of the 2D-FEM-KUR and DIF3D codes, which are based on the finite-element and finite-difference methods, respectively, can be clarified for the analyses of the KUCA experiments. The finite-element method employed in the 2D-FEM-KUR code is considered to be advantageous for the detailed analysis on the measurements of the boron reactivity effect [BP effect].
IV-2. Calculations

IV-2-A. Description of the Computer Codes

Microscopic broad-group cross sections were generated using the EPRI-CELL code. This code combines a heterogeneous P_1 GAM102 type treatment in the fast and resonance ranges with a heterogeneous integral-transport treatment [THERMOS]103 in the thermal range. The P_1 GAM type treatment includes (1) an interpolation over tabulated groupwise-resonance integrals as a function of temperature and potential scattering for the resonance self-shielding, (2) resonance overlap corrections, (3) an optional buckling search, and (4) several other refinements. The code also provides a cell depletion calculation using the CINDER code for each THERMOS space point in a depletable zone. Cell-averaged cross sections at any time step in a depletion history can be obtained in either a 2-, 3-, 4- or 5-group structure. A flow diagram of the EPRI-CELL code is shown in Fig. IV-1.

![Flow Diagram of the EPRI-CELL Code](image-url)
The EPRI-CELL libraries are mostly based on the ENDF/B-IV data file. The 68 group fast library was generated using MC2-2 and the integral transport RABANL option in the MC2-2 code can be used to calculate the resonance self-shielding parameters. The 35-group thermal library was generated using the AMPX or NJOY codes with an Sαβ treatment for hydrogen and deuterium in light-water and heavy-water, respectively.

The diffusion calculations were performed using the DIF3D and 2D-FEM-KUR codes. The DIF3D code has the capability for one- through three-dimensional diffusion calculations for several geometries based on the conventional finite-difference method. In the present study, a two-dimensional option of the code [DIF3D(2D)] was adopted. The 2D-FEM-KUR code is a two-dimensional diffusion code based on the finite-element method.

IV-2-B. Generation of Group Constants

The core employed in the KUCA critical experiments was divided into 10 regions for the MEU core (refer to Fig. IV-6) and into 11 regions for the HEU core. For the MEU core, these regions were: (1) the inner and (2) the outer fuel regions, (3) the inner and (4) the outer side-plate regions, (5) the light-water region at the center of core, (6) the control rod region, (7) the outer vessel region between the outer fuel elements and the heavy-water reflector, (8) the heavy-water reflector region, (9) the outer wall region of the aluminum heavy-water tank, and (10) the light-water reflector region outside the heavy-water tank. For the HEU core, (11) the inner vessel region including the Al pipe which separated the inner fuel elements from the central flux trap of light-water (refer to Fig. III-2) was also modeled.
For generating the group constants, the EPRI-CELL code with a one-dimensional slab geometry was used for each of the above regions. The upper energy boundaries of the five-group structure used in this study were: 10 MeV, 0.821 MeV, 5.53 keV, 1.855 eV and 0.625 eV.

![Model for the Fuel Region Used in the Unit Cell Calculation](image)

Fig. IV-2 Model for the Fuel Region Used in the Unit Cell Calculation

For the inner (1) and outer (2) fuel regions shown in Fig. IV-2, the materials between two side-plates (an enclosed area with double dotted dash lines in Fig. IV-2) were modeled as a unit cell using a slab geometry for a fully loaded fuel element. The fuel meat, aluminum clad and light-water moderator were modeled preserving their thicknesses as shown in Fig. IV-2. The effect of a residual region between two side-plates (an enclosed area with double dotted dash lines and dash lines in Fig. IV-2) was considered by using an artificial extra region. With homogenizing materials (aluminum and light-water) in the residual region, the thickness of the artificial extra region, \(x \) (cm), was assumed as:

\[
x = \frac{d / 2}{S_t / S_r - 1},
\]

(IV-1)
where, \(d \) : fuel pitch (cm).

\(S_t \) : total area of the region between two side-plates (cm²).

\(S_r \) : area of the residual region between two side-plates (cm³).

RABANL^105 corrections were applied for the resonance self-shielding.

Fig. IV-3 Model for the Side-Plate Region with Boron Used in the Cell Calculation

For the inner (3) and outer (4) side-plate regions shown in Fig. IV-3, the treatment was different for the side-plates with and without boron. In each case, the small portion of light-water in the grooves for fuel plate insertion into the side-plates was ignored, but the light-water in a gap between two adjoining side-plates was taken into account. For the side-plates with boron, the spectrum for collapsing the cross-sections was generated using a homogenized core source in order to consider the effect...
of leakage neutron spectrum from the actual fuel region. On the other
hand, for the side-plates without boron, a simple ^{235}U fission spectrum was
assumed without attaching any special source region. For the side-plates
with boron, all regions were represented preserving their thicknesses, and
the effect of end sections of the side-plates containing no boron were
taken into consideration by using an artificial extra region shown in Fig.
IV-3.

For regions (5) through (11), a ^{235}U fission spectrum was employed for
collapsing the cross sections. In the control rod region (6), aluminum
spacers, aluminum sheaths for the control rod insertion and all other
aluminum support structures were homogenized. On the other hand, in the
inner (11) and the outer (7) vessel regions which consisted of aluminum and
light-water, geometrical heterogeneities were taken into account. For the
outer tank wall region (9), the group constants prepared for aluminum in
the outer vessel region (7) were utilized. In the central light-water (5)
and the light-water reflector (10) regions, the group constants were
generated for a 10 cm thick light-water layer assuming the same thickness
for both regions.

IV-2-C. Diffusion Calculations

The experimental results gave the axial reflector savings in the MEU
core as 8.1 ± 0.1 cm in the central light-water region, 7.8 ± 0.1 cm in the
outer fuel region and 9.8 ± 0.3 cm in the heavy-water reflector region,
respectively (refer to Table III-5 in Section III-6). In the present
study, the experimental values of the axial reflector savings were adopted
to calculate the transverse buckling employed in the two-dimensional
diffusion calculations.
In the DIF3D(2D) code, one quarter of the core was modeled in X-Y geometry as shown in Fig. IV-4. In the inner part of the core, a mesh of approximately 0.25 × 0.25 cm was employed. In the heavy-water reflector and in the heavy-water tank regions, a 1 × 1 cm mesh was basically used. In the light-water reflector region, a 2 × 2 cm mesh was mainly adopted.

Fig. IV-4 Example of a Jagged X-Y Approximation for One Quarter of the MEU core Used in the DIF3D(2D) Code

Fig. IV-5 Example of a Explicit Representation for One Quarter of the HEU Core Used in the 2D-FEM-KUR Code for the Comparison with the DIF3D(2D) Code
Fig. IV-6 Example of a Explicit Representation of the Full MEU Core Used in the 2D-FEM-KUR Code for the Detailed Analysis on the Boron Reactivity Effects

Fig. IV-7 Example of the Finite-Elements Used in the 2D-FEM-KUR Code
Figure IV-5 shows the core configuration simulated by the 2D-FEM-KUR code for the comparison with the DIF3D(2D) code. For the detailed analysis on the boron effect measurements, the full core was explicitly modeled by the 2D-FEM-KUR code as shown in Fig. IV-6, by taking advantage of the finite-element method for the capability of the precise geometrical representation. Figure IV-7 shows an example of the finite-elements used in the detailed analysis on the boron effect measurements.

IV-3. Results and Discussion

Results of the calculations are tabulated in Tables IV-1 through IV-3 together with the experimental results. Table IV-1 shows a comparison between the DIF3D(2D) and 2D-FEM-KUR codes for the criticality measurements. Table IV-2 makes the same comparison for the boron effect measurements. Table IV-3 shows the results from the 2D-FEM-KUR code for the detailed analysis on the boron effect measurements. Figure IV-8 shows the reactivity effect caused by the substitution of a fuel element with boron for a fuel element without boron in the outer fuel region, and Fig. IV-9 shows the BP effect for the inner fuel region. Note that experimental errors for the excess reactivity and BP effect measurements in the KUCA annular core are estimated to be 5×10^{-5} and 1×10^{-4} $\Delta k/k$ from experience, respectively.

Tables IV-1 through IV-3 show that differences between the results of calculations and experiments were less than 2% in C/E ratios for eigenvalues. The calculated eigenvalues were always higher than the experimental values. One reason for this tendency was due to the unit cell model employed for the fuel region in generating the group constants. In the
present study, an artificial extra region was employed as shown in Fig. IV-2 so that the effect of the area surrounding the actually fueled region was taken into account. The extra region which consisted of light-water and aluminum tended to increase the apparent H/\(^{235}\)U ratio in the actually fueled region. This caused a shift from an under-moderated fuel region to a more moderated region and led to the over-estimation of the eigenvalues.

<table>
<thead>
<tr>
<th>Pitch (mm)</th>
<th>Number of plates</th>
<th>(k_{\text{exp}})</th>
<th>(k_{\text{cal}})</th>
<th>(C/E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU (44.88%)</td>
<td>3.80</td>
<td>262</td>
<td>1.0008</td>
<td>1.0112</td>
</tr>
<tr>
<td>MEU (44.88%)</td>
<td>3.84</td>
<td>262</td>
<td>1.0021</td>
<td>1.0112</td>
</tr>
<tr>
<td>HEU (93.14%)</td>
<td>3.84</td>
<td>276</td>
<td>1.0047</td>
<td>1.0198</td>
</tr>
</tbody>
</table>

Table IV-1: Eigenvalue for the Critical State without Boron

(a) DIF3D(2D) code

<table>
<thead>
<tr>
<th>Pitch (mm)</th>
<th>Number of plates</th>
<th>Eigenvalue</th>
<th>Reactivity effect of BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner SP without BP</td>
<td>3.84</td>
<td>288</td>
<td>1.0047</td>
</tr>
<tr>
<td>Outer SP with BP</td>
<td>3.80</td>
<td>288</td>
<td>1.0188</td>
</tr>
<tr>
<td>All SP without BP</td>
<td>3.84</td>
<td>288</td>
<td>1.0667</td>
</tr>
<tr>
<td>All SP with BP</td>
<td>3.84</td>
<td>294</td>
<td>0.9840</td>
</tr>
</tbody>
</table>

(b) 2D-FEM-KUR code

<table>
<thead>
<tr>
<th>Pitch (mm)</th>
<th>Number of plates</th>
<th>Eigenvalue</th>
<th>Reactivity effect of BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner SP without BP</td>
<td>3.84</td>
<td>288</td>
<td>1.0047</td>
</tr>
<tr>
<td>Outer SP with BP</td>
<td>3.80</td>
<td>288</td>
<td>1.0190</td>
</tr>
<tr>
<td>All SP without BP</td>
<td>3.84</td>
<td>288</td>
<td>1.0649</td>
</tr>
<tr>
<td>All SP with BP</td>
<td>3.84</td>
<td>294</td>
<td>0.9840</td>
</tr>
</tbody>
</table>

Another calculation was performed to examine the effect of the extra region mentioned above for generating the group constants in the fuel region. Namely, in this calculation, the extra region was completely excluded from the unit cell model. It was found that the calculation using the group constants generated exclusive of the extra region led to the
under-estimation of the eigenvalue. The reason is considered that, with excluding the extra region, the actually fueled region becomes a less moderated region, since the effect of the region containing light-water next to the fuel region is neglected.

Table IV-3 Substitution Effects of Boron Loaded Side-Plates in the MEU core

<table>
<thead>
<tr>
<th>No. of fuel plates</th>
<th>Number of element with BP</th>
<th>Eigenvalue</th>
<th>BP effect (%(\Delta k/k))</th>
<th>Mass effect(^{tt}) (%(\Delta k/k))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner Outer</td>
<td>(k_{exp}), (k_{cal}), (C/E)</td>
<td>(\delta p_{exp}), (\delta p_{cal}), (C/E)</td>
<td>(\delta p_{exp}), (\delta p_{cal}), (C/E)</td>
</tr>
<tr>
<td>263</td>
<td>0 0</td>
<td>1.0047</td>
<td>1.0143 1.0096</td>
<td>-0.44 -0.39 0.88</td>
</tr>
<tr>
<td>263</td>
<td>0 1</td>
<td>1.0004</td>
<td>1.0104 1.0100</td>
<td>-0.36 -0.39 1.07</td>
</tr>
<tr>
<td>263</td>
<td>0 2</td>
<td>0.9965</td>
<td>1.0084 1.0099</td>
<td>-0.37 -0.38 1.02</td>
</tr>
<tr>
<td>265</td>
<td>0 3</td>
<td>1.0008</td>
<td>1.0110 1.0102</td>
<td>-0.37 -0.38 1.02</td>
</tr>
<tr>
<td>267</td>
<td>0 3</td>
<td>0.9969</td>
<td>1.0072 1.0103</td>
<td>-0.38 -0.38 1.04</td>
</tr>
<tr>
<td>267</td>
<td>0 4</td>
<td>1.0010</td>
<td>1.0114 1.0103</td>
<td>-0.38 -0.38 1.04</td>
</tr>
<tr>
<td>271</td>
<td>0 4</td>
<td>1.0055</td>
<td>1.0164 1.0103</td>
<td>-0.39 -0.38 0.97</td>
</tr>
<tr>
<td>271</td>
<td>0 5</td>
<td>1.0015</td>
<td>1.0125 1.0110</td>
<td>-0.40 -0.38 1.07</td>
</tr>
<tr>
<td>271</td>
<td>0 6</td>
<td>1.0011</td>
<td>1.0124 1.0113</td>
<td>-0.41 -0.39 1.06</td>
</tr>
<tr>
<td>277</td>
<td>0 7</td>
<td>0.9969</td>
<td>1.0075 1.0106</td>
<td>-0.41 -0.39 1.06</td>
</tr>
<tr>
<td>277</td>
<td>0 8</td>
<td>1.0003</td>
<td>1.0116 1.0115</td>
<td>-0.42 -0.42 1.02</td>
</tr>
<tr>
<td>277</td>
<td>0 9</td>
<td>1.0003</td>
<td>1.0118 1.0115</td>
<td>-0.42 -0.42 1.02</td>
</tr>
<tr>
<td>280</td>
<td>0 10</td>
<td>1.0015</td>
<td>1.0125 1.0116</td>
<td>-0.43 -0.41 1.06</td>
</tr>
<tr>
<td>280</td>
<td>0 11</td>
<td>1.0014</td>
<td>1.0128 1.0115</td>
<td>-0.43 -0.41 1.06</td>
</tr>
<tr>
<td>284</td>
<td>0 12</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.43 -0.41 1.06</td>
</tr>
<tr>
<td>284</td>
<td>0 13</td>
<td>1.0014</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 14</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 15</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 16</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 17</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 18</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 19</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 20</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 21</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 22</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 23</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 24</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 25</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
<tr>
<td>286</td>
<td>0 26</td>
<td>1.0015</td>
<td>1.0128 1.0113</td>
<td>-0.44 -0.41 1.06</td>
</tr>
</tbody>
</table>

Total: -4.74 -4.80 1.01 4.44 4.60 1.04

Total: -3.70 -3.28 0.88 2.93 2.70 0.92

\(^1\): Fuel pitch is 3.80 mm in the side-plate with BP and that is 3.84 mm in the side-plate without BP.

\(^{tt}\): Mass reactivity effect to the fuel plate

Table IV-1 also shows that the C/E ratio for the HEU core was slightly higher than that for the MEU core. The neutron spectrum in the fuel region
of the MEU core is harder than that of the HEU core, since the $H/^{235}U$ ratio in an essential lattice cell of the MEU core is lower than that of the HEU core. Therefore, the neutron reflection effect by the region containing light-water in the vicinity of the fuel region is considered to be larger in the MEU core than in the HEU core. The neutron reflection effect causes to soften the neutron spectrum in the lattice cell, that is analogous to the effect caused by the increase in $H/^{235}U$ ratio of the lattice cell. This indicates that the use of an artificial extra region is more adequate in the MEU core than in the HEU core. This is considered to be a main reason why the C/E ratio for the HEU core was slightly larger than that for the MEU core. In order to attain better C/E ratio, however, it might be necessary to investigate further the method generating the few-group constants or to check the cross section library itself.

It should be noted that the number of fuel plates in the MEU core at the critical state was less than that for the HEU core as shown in Table IV-1. This fact indicates that MEU fuel has a slightly higher reactivity worth in comparison with HEU fuel, in other words, MEU fuel is not exactly equivalent to HEU fuel, in spite of the original intention. Originally, the specification of MEU fuel was determined through the Phase A calculation of the ANL-KURRI joint study using the ANL code system, so that MEU fuel would be equivalent to HEU fuel. The procedure of the Phase A calculation is cited here for reference: (1) the eigenvalue was calculated for the proposed KUHFR core loaded with HEU fuel, and (2) varying the uranium content in the UA$_1$–Al of MEU fuel under the condition preserving all dimensions of the structures in the core, the eigenvalue was calculated for the KUHFR core loaded with MEU fuel until the same eigenvalue as calculated for the KUHFR's HEU core was achieved. In the Phase A calculation which is described in Section II-4, the U density of HEU fuel meat
was assumed as 0.72 g/cc that corresponds to the U density in U-Al alloy itself (refer to Tables II-1 and II-2). Whereas, the effective U density of the HEU fuel meat utilized in the KUCA is 0.64 g/cc due to a limitation in the fuel fabrication technique (refer to Table II-4). Therefore, a k_{eff} value of an HEU core in the Phase A calculation was larger than k_{eff} of an actual core due to the increase in 235U mass loaded into a core. Accordingly, a reactivity worth of MEU fuel grows higher than that of actual HEU fuel. For reference, the U density of MEU fuel used in the Phase A calculation was 1.7 g/cc as shown in Table II-2 and the effective U density of the MEU fuel meat utilized in the KUCA is 1.68 g/cc as indicated from Table III-3.

In Table IV-1, the 2D-FEM-KUR code well follows the experimental result that the excess reactivity of the MEU core with a 3.84 mm fuel pitch was slightly higher than that with 3.80 mm fuel pitch. For example, the difference between measured excess reactivities for the above two fuel pitches was clearly confirmed through several experiments examining the reproducibility (refer to Table III-1 in Section III-3). On the other hand, for such a minor change in the fuel pitch, the DIF3D(2D) code could not follow the experimental result due to the poorer geometrical representation than the 2D-FEM-KUR code. For this reason, it was decided that the 2D-FEM-KUR code was to be applied to a detailed analysis of the experiments measuring the boron effects. For reference, in the present study, the CPU time for the 2D-FEM-KUR code was approximately one quarter of that for the DIF3D(2D) code.

In general, Tables IV-1 and IV-2 show that the agreement between the results obtained using the DIF3D(2D) code and the 2D-FEM-KUR code was excellent. Therefore, it demonstrates that both the 2D-FEM-KUR code with its precise geometrical representation and the DIF3D(2D) code with a jagged
X-Y approximation for the core can be applicable for the neutronics design calculation of a complex core similar to the KUHFR.

Fig. IV-8 Reactivity Effects Caused by a Substitution of a Fuel Element with Boron for a Element without Boron in the Outer Fuel Region

Table IV-3 shows that differences between the results of calculations and experiments were less than 12% for the boron reactivity effects and less than 13% for the mass reactivity effects of the fuel plate. In the outer fuel region, however, the agreement between the calculation and experiment was fairly good for the total boron reactivity effect and the total mass reactivity effect in the analysis of the boron substitution effects. These agreements are remarkable considering the difficulty to calculate such effects based on diffusion theory. Figures IV-8 and IV-9 show that the calculation well reproduced the qualitative dependence
observed in the experiments of the boron substitution effect upon the substituting position. For the outer elements, the boron substitution effects were well simulated except for some positions. On the other hand, for the inner fuel elements, calculations led to the systematic underestimation of the boron substitution effects by around 12%, which is caused by the fact that the inner fuel region has more curved geometry and higher neutron importance than the outer fuel region. In other words, a curved geometry was approximated to a slab geometry in the generation procedure of the group constants in the present study. Therefore, a model used in the group constant generation is poorer in the inner fuel region than in the outer fuel region, that may lead to an inaccurate result of calculation. Moreover, when the inaccurate group constants are used in a region having higher neutron importance, a calculated result becomes more inaccurate. This is considered to be one reason for the above underestimation, however, further investigation would be necessary to clarify thoroughly the reason.

Although further investigation would be necessary to obtain more accurate results of calculations, confidence has been gained through the present study that the 2D-FEM-KUR code is an excellent tool for the analysis of the KUCA MEU experiments. In the next step, the use of the SRAC code system71 is to be anticipated for the generation of the group constants, since the SRAC system has a capability of a two-dimensional treatment for the generation of group constants.
IV-4. Conclusions

The results obtained through this study are summarized as follows:

(1) Differences between the results of calculations and experiments are less than 2% in C/E ratios for eigenvalues, with use of the ANL code system which is widely used in the RERTR program.

(2) The agreement between the results obtained using the DIF3D(2D) code and the 2D-FEM-KUR code is excellent. The 2D-FEM-KUR code is more advantageous than the DIF3D(2D) code in the precise geometrical representation and in the CPU time for a complex core configuration.

(3) With use of the 2D-FEM-KUR code, the calculated results of the boron and mass reactivity effects approximately agreed with the experiments. The agreement is good for the boron and mass reactivity effects in the analyses of the boron substitution effects in the outer fuel region.

(4) One should be careful, when an artificial extra region is attached in the cell calculation. A special attention should be paid in a generation process of the group constants to take into account the geometrical heterogeneity of a core. Further study would be necessary to generate the proper group constants for the boron loaded side-plates especially in the inner fuel region, where the neutron importance is the highest and a strongly curved geometry is used.
V. ANALYSES OF THE VOID REACTIVITY

V-1. Introduction

Since the void reactivity coefficient is a physical quantity closely related to the safety of liquid-moderated reactors, which are commonly used as research reactors, it is important to investigate this quantity. Especially in water-moderated research reactors which utilize plate type fuel, the void reactivity effect in the fuel region is designed to provide the most dominant negative feedback which could terminate a power excursion due to an accidental introduction of positive reactivity. Therefore, to submit an application of safety review (the Reactor Installation License by the Government) for a reactor construction including a core conversion in accordance with the use of REU fuel, it is significantly important to develop a method for calculating accurately the void reactivity in either core loaded with HEU fuel or REU fuel.

Through the KUCA experiments described in Section III-8-B, the void reactivity effects were measured at various locations in the fuel region of an annular core loaded with HEU fuel or MEU fuel. These data on the void reactivity effect have provided useful benchmark data not only for the use of MEU fuel but also for water-moderated reactors, since there was only few data obtained by injecting real voids in the fuel region.97,96

Main objectives of the present study was to develop a method for calculating the localized void reactivity and to assess the developed method of calculation in comparison with the experimental results.56 The method for calculating the void reactivity was developed with use of current codes for the generation of the few-group constants and for the
diffusion calculation including the perturbation calculation. In order to establish a self-consistent system for the neutronics calculations in the KUCA, the assessment was performed through the following examinations:

1. Whether the developed method of calculation can reproduce the observed spatial dependence of the void reactivity in the fuel region, in other words, how large the discrepancy between the measured and calculated void reactivities is.

2. What is the most dominant nuclear feature (diffusion, absorption, moderation or generation of neutrons) affecting the reactivity change due to the injection of voids into a flow channel.

3. Whether the method of calculation can be applied to the MEU core as well as the HEU core and to the MEU cores with and without boron.

4. Whether the method is applicable to calculating the reactivity effect of bubbling in a pair of flow channels.

V-2. Calculations

V-2-A. Description of the Computer Codes

The calculation has been performed using SRAC71 and the 2D-FEM-KUR code,69 since SRAC has been applied to several benchmark problems and has provided good results.27,28,72,107-110 SRAC was employed to generate the few-group constants for the subsequent diffusion calculation, since a two-dimensional transport calculation as well as a one-dimensional diffusion calculation was thought to be necessary to take into account the heterogeneity of the complex core constructed in the KUCA as suggested in Section IV-3. 2D-FEM-KUR was employed for both the criticality and void
reactivity calculations, since this code is assessed to be adequate for the analysis of the KUCA experimental data.

SRAC,71 which stands for "Standard Reactor Analysis Codes", has been developed at JAERI as a code system for the analysis and design of a thermal nuclear reactor. It consists of neutron cross section libraries, auxiliary processing programs, neutron spectrum routines, one- and two-dimensional transport routines, one- through three-dimensional diffusion routines, dynamic parameters and cell burn-up routines. The user can select either cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or S_n) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections can be performed separately at the user's discretion. Special attention is paid to a two-dimensional treatment of heterogeneities when performing cell calculations. Various techniques are employed to access the data storage and to optimize the internal data transfer.

The 2D-FEM-KUR code69 is a two-dimensional diffusion code employing the finite-element method which facilitates the precise modelling of complex core configurations, and has a capability for eigenvalue and perturbation calculations. The routine for the perturbation calculation can compute each contribution of the diffusion, moderation, absorption and generation of neutrons, to the reactivity change.

V-2-B. Procedure of the Calculation

The void reactivity was calculated by the following procedures:

(i) Generate 4-group constants for the subsequent calculations.
(ii) Perform the eigenvalue calculation using diffusion theory.
(iii) Calculate the void reactivity using perturbation theory.
The flow chart for the calculation is shown in Fig. V-1.

![Flow Chart for the Calculation](image)

Fig. V-1 Flow Chart for the Calculation

(i) Generation of Four-Group Constants

The cylindrical core loaded with MEU or HEU fuel, in which the void reactivity measurements were performed, was divided into the following 10 regions including the reflector regions, as shown in Fig. V-2:

![Core Configuration Used in the Diffusion Calculation](image)

Fig. V-2 Core Configuration Used in the Diffusion Calculation

(1) Inner fuel regions.
To generate 4-group constants whose upper energy boundaries are 10 MeV, 497.87 keV, 5.53 keV and 0.68256 eV (thermal cut-off), the following three serial steps were performed with use of SRAC to take the heterogeneity of the core into account:

Step I : "Unit Cell" calculation,
Step II : "Super Cell I" calculation, and

Each step will be described below in detail.

The fundamental library of group constants was produced mainly from the ENDF/B-IV nuclear data file with 107 energy groups. The transport cross-sections for the P_0 transport calculation were calculated by the B_1 approximation, and the diffusion coefficients were obtained assuming $D = 1/(3\Sigma_{tr})$. The resonance absorption for heavy nuclides was calculated by two methods: a table look-up method for the neutron energy $E \geq 130.07$ eV, and a collision probability method using the ultra-fine energy points of 4600 for 130.07 ev $\geq E \geq 0.68256$ eV. Thus, the user library was construct-
ed with a structure of 50 energy groups (23 fast groups and 27 thermal groups), as shown in Table V-1.

Table V-1 Energy Group Structure

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Fast Energy (eV)</th>
<th>Group Number</th>
<th>Thermal Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine</td>
<td>Coarse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.10000E+8a</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.47237E+7</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.22313E+7</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.10540E+7</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.49787E+6</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.23518E+6</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.11109E+6</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0.52475E+5</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>0.24788E+5</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0.11709E+5</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0.55308E+4</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.26126E+4</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>0.12341E+4</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>0.38295E+3</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>0.27536E+3</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0.13007E+3</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>0.61416E+2</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>0.29023E+2</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>0.13710E+2</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>0.6476E+1</td>
<td>43</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>0.3059E+1</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>0.1853E+1</td>
<td>45</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>0.1125E+1</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>0.6823E+0</td>
<td>47</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>0.5980E-2</td>
<td>48</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>0.1466E-2</td>
<td>49</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>0.3523E-3</td>
<td>50</td>
</tr>
</tbody>
</table>

*Read as 0.10000E + 8.

Step I : "Unit Cell" Calculation

The "Unit Cell" calculation was performed to obtain cell-averaged cross sections for the so-called fuel meat region, which is composed of fuel meat (UA1 alloy in HEU fuel and UA1-Al dispersion aluminide in MEU fuel), aluminum cladding and light-water moderator. Assuming a fixed source problem, this calculation was performed with use of the collision probability routine in SRAC. Although the actual fuel plate has a curved geometry, it was approximated by a slab geometry as shown in Fig. V-3. In this step, the above 50 groups were collapsed to 19 groups (10 fast groups...
and 9 thermal groups as shown in Table V-1).

Curved Geometry

and 9 thermal groups as shown in Table V-1).

Fig. V-3 Simplified Model of the Fuel Meat Region for the "Unit Cell" Calculation

Step II: "Super Cell I" Calculation

The "Super Cell I" calculation was performed with use of the TWOTRAN code (two-dimensional S_n transport calculation code)97 in SRAC. Using TWOTRAN, a P_0 and S_4 calculation was performed in order to take into account the neutron flux distribution in the azimuthal direction, especially the effect of a flux tilt due to natural boron (a strong absorber) contained in some of the side-plate regions.

In this step, the cell-averaged 19-group constants of the so-called fuel region were generated by collapsing spatially over regions D and E described below (refer to Fig. V-4), with use of the 19-group constants for the fuel meat region (Region E) obtained in Step I. The 4-group constants of the side-plate region, which consisted of regions A through C described below, were also generated for use in the subsequent diffusion calculation. It should be noted here that, for regions other than the fuel meat region, the 19-group constants were generated in advance of the calculation by collapsing the 50-group constants (user library) with use of the standard
For simplicity, a curved geometry of the fuel element was approximated by a rectangular one, where the average arc length and the cross sectional area of the fuel region were preserved. An example of the model for the calculation in this step is shown in Fig. V-4. The area was divided into the following 5 regions along the X-axis:

Region A: light-water gap region between adjacent side-plates,
Region B: aluminum plate region of the side-plate,
Region C: groove region of the side-plate,
Region D: part of the fuel plate region without fuel meat, and
Region E: part of the fuel plate region with fuel meat.

When the side-plates contained boron, Region B was subdivided into 3 regions.

In the Y direction in Fig. V-4, extra water regions were attached to both ends of the fuel element in order to consider the effect of reflection by light-water in those regions. The axial buckling obtained from the neutron flux measurement, which tabulated in Table V-2, was used to take into account the effect of neutron leakage in the vertical direction. A reflective boundary condition was assumed for all boundaries.

<table>
<thead>
<tr>
<th>Region No.</th>
<th>Vertical Buckling, $B^2 \times 10^{-3} \text{cm}^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU</td>
<td>HEU</td>
</tr>
<tr>
<td>5</td>
<td>1.6966</td>
</tr>
<tr>
<td>1, 4, 6, 7</td>
<td>1.7289</td>
</tr>
<tr>
<td>8, 10</td>
<td>1.5595</td>
</tr>
</tbody>
</table>

*: Refer to Fig. V-2.

Step III: "Super Cell II" Calculation

In consideration of the neutron flux distribution in the radial direction, the "Super Cell II" calculation was performed with use of the CITATION code (multi-dimensional diffusion calculation code) in SRAC. One-dimensional cylindrical geometry was employed with the 19-group constants including the group constants for the fuel region obtained through Step I and II as shown in Fig. V-5.

In the vertical direction, the axial buckling tabulated in Table V-2 was used. Through this step, the 19 groups were collapsed to 4 groups, and the 4-group constants of the various regions in the core were obtained (except for the side-plate region where the group constants were previously
obtained in Step II).

![Diagram](image)

Fig. V-5 "Super Cell II" Model for the MEU Core

(ii) Eigenvalue Calculation for the Effective Multiplication Factor

Employing the 2D-FEM-KUR code, two-dimensional diffusion calculations based on the finite-element method were performed with use of the 4-group constants obtained in the "Super Cell I and II" calculations. In the vertical direction, the buckling tabulated in Table V-2 was used. The model of the core configuration used for this calculation was shown in Fig. V-2.

(iii) Perturbation Calculation for the Void Reactivity

For the calculation of void reactivity, it was assumed that the voids were mixed homogeneously with light-water in the flow channel. Four-group constants for this mixture were obtained with use of SRAC. To collapse the
energy groups, the standard fission spectrum and 1/E spectrum + a Maxwellian distribution were assumed in the fast and thermal energy regions, respectively. Then, using the neutron flux and adjoint flux distributions obtained through the previous eigenvalue calculation, a perturbation calculation was performed to obtain the void reactivity with use of the 2D-FEM-KUR code.

V-3. Results and Discussion

V-3-A. Results of the Calculations

Void Reactivity with a Single Voided Channel in the MEU Core with Boron

The void reactivity with a single voided channel in the MEU core with boron was measured as described in Section III-8-B. The core configuration is shown in Fig. V-6. The side-plates of the fuel elements IN(B)-02 and EX(B)-04 contained boron loaded side-plates. Voids were generated by injecting N₂ gas into the fuel elements IN(B)-02 and EX(B)-04 as shown in Fig. V-7.

Table V-3 Effective Multiplication Factor in the Core without Void

<table>
<thead>
<tr>
<th>Core</th>
<th>Measured Excess Reactivity, ρ_{ex} (10^{-3} Δk/k)</th>
<th>Effective Multiplication Factor, k_{eff} Experiment</th>
<th>k_{eff} Calculation</th>
<th>C/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU Core with Boron</td>
<td>0.4</td>
<td>1.0004</td>
<td>1.0033</td>
<td>1.0029</td>
</tr>
<tr>
<td>HEU Core without Boron</td>
<td>1.6</td>
<td>1.0016</td>
<td>1.0038</td>
<td>1.0022</td>
</tr>
<tr>
<td>MEU Core without Boron</td>
<td>1.9</td>
<td>1.0019</td>
<td>1.0058</td>
<td>1.0039</td>
</tr>
</tbody>
</table>

- 109 -
Fig. V-6 Configuration of the MEU Core with Boron

The effective multiplication factor (k_{eff}) of the core without voids was calculated to be 1.0033, while the measured value was 1.0004, then a C/E ratio is 1.0029 as shown in Table V-3. The measured and calculated void reactivities are shown in Fig. V-8. The results of the calculation
for the void reactivities are also presented in Table V-4 in comparison with the experimental data.

![Diagram of flow channels]

Fig. V-7 Cross-sectional View of Voided Flow Channels in Fuel Elements for the MEU Core with Boron

The discrepancy between the calculated and measured void reactivities is less than 0.04×10^{-3} $\Delta k/k$. The calculation approximately reproduces the dependence of void reactivity upon the location of the voided flow channel except in channels B(B) and F(B).

Figure V-8 shows that the measured void reactivities in Channel B(B) are larger than in Channel C(B), which are contrary to the calculated results. Figure V-8 also shows that the measured void reactivities in Channel F(B) are very close to those in Channel D(B) with which the calculated ones agree well as shown in Table V-4.
Fig. V-8 Measured and Calculated Void Reactivities versus Channel-Averaged Void Fraction for the MEU Core with Boron

Table V-4 Calculated Results of Void Reactivity in the MEU Core with Boron

<table>
<thead>
<tr>
<th>Voided Channel Location</th>
<th>Void Fraction (%)</th>
<th>Void Reactivity ($\Delta k/k$)</th>
<th>Contribution of Nuclear Features ($\Delta k/k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experiment*</td>
<td>Diffusionb (Total)</td>
</tr>
<tr>
<td>A(B)</td>
<td>10</td>
<td>$-0.5E-5$</td>
<td>$1.2020E-5$</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>$-1.6E-5$</td>
<td>$2.7103E-5$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-2.7E-5$</td>
<td>$4.6594E-5$</td>
</tr>
<tr>
<td>B(B)</td>
<td>10</td>
<td>$-9.0E-5$</td>
<td>$-7.9482E-6$</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>$-18.0E-5$</td>
<td>$-1.7830E-5$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-27.1E-5$</td>
<td>$-3.0348E-5$</td>
</tr>
<tr>
<td>C(B)</td>
<td>10</td>
<td>$-7.9E-5$</td>
<td>$-8.8275E-6$</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>$-15.4E-5$</td>
<td>$-1.9725E-5$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-22.2E-5$</td>
<td>$-3.3499E-5$</td>
</tr>
<tr>
<td>D(B)</td>
<td>10</td>
<td>$-3.4E-5$</td>
<td>$-4.4412E-5$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-12.2E-5$</td>
<td>$-1.3724E-4$</td>
</tr>
<tr>
<td>E(B)</td>
<td>10</td>
<td>$-5.4E-5$</td>
<td>$-6.7311E-5$</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>$-13.0E-5$</td>
<td>$-1.3807E-4$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-21.4E-5$</td>
<td>$-2.1365E-4$</td>
</tr>
<tr>
<td>F(B)</td>
<td>10</td>
<td>$-3.8E-5$</td>
<td>$-2.7302E-5$</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$-13.0E-5$</td>
<td>$-8.8746E-5$</td>
</tr>
</tbody>
</table>

*The void reactivities obtained by the fitted curves to the experimental data (see Fig.V8).
bThe perturbed reactivity by change in the diffusion length in both the vertical and the horizontal directions.
cThe perturbed reactivity by change in the diffusion length only in the vertical direction.
dThe perturbed reactivity by change in the diffusion length only in the horizontal direction.
eThe perturbed reactivity by change in the rate of neutron absorption.
fThe perturbed reactivity by change in the degradation of the moderation effect.
*Read as -0.5×10^{-5}.
The void reactivity with a single voided channel in the HEU core without boron was also measured as described in Section III-8-B. The core configuration is shown in Fig. III-26. Voids were generated in the fuel elements IN-02 and OUT-04, as shown in Fig. III-27.

As shown in Table V-3, the calculated K_{eff} in the core without voids was 1.0038, while the measured one was 1.0016, then a C/E ratio is 1.0022. Figure V-9 shows the measured and calculated void reactivity versus the channel-averaged void fraction. The results of the perturbation calculation for void reactivities are tabulated in Table V-5 in comparison with the experimental data.

The discrepancy between the calculated void reactivities and the measured ones was less than $0.05 \times 10^{-3} \Delta k/k$. The calculation approximately reproduced the spatial dependence of the void reactivity in the fuel region except in channels E(H) and G(H).
Table V-5 Calculated Results of Void Reactivity in the HEU Core

<table>
<thead>
<tr>
<th>Voided Channel Location</th>
<th>Void Fraction (%)</th>
<th>Void Reactivity ($\Delta k/k$)</th>
<th>Contribution of Nuclear Features ($\Delta k/k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experiment</td>
<td>Calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G(H)</td>
<td>10</td>
<td>0.0</td>
<td>-1.5689E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.4E-5</td>
<td>-2.8775E-5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.7E-5</td>
<td>-3.8104E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-11.8E-5</td>
<td>1.053E-4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-18.8E-5</td>
<td>1.589E-3</td>
</tr>
<tr>
<td>B(H)</td>
<td>10</td>
<td>-8.0E-5</td>
<td>8.863E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-17.8E-5</td>
<td>1.796E-4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-27.8E-5</td>
<td>2.399E-4</td>
</tr>
<tr>
<td>C(H)</td>
<td>10</td>
<td>-5.2E-5</td>
<td>7.754E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-15.6E-5</td>
<td>1.570E-4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-24.6E-5</td>
<td>2.308E-4</td>
</tr>
<tr>
<td>D(H)</td>
<td>10</td>
<td>-5.2E-5</td>
<td>4.033E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-10.4E-5</td>
<td>8.1527E-5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-15.6E-5</td>
<td>1.2992E-4</td>
</tr>
<tr>
<td>E(H)</td>
<td>10</td>
<td>-10.4E-5</td>
<td>6.852E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-19.0E-5</td>
<td>1.4095E-4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-26.2E-5</td>
<td>2.1887E-4</td>
</tr>
<tr>
<td>F(H)</td>
<td>10</td>
<td>-1.8E-5</td>
<td>2.795E-5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-5.6E-5</td>
<td>5.858E-5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-8.4E-5</td>
<td>9.2831E-5</td>
</tr>
</tbody>
</table>

*The void reactivities obtained by the fitted curves to the experimental data (see Fig.V-4).
*The perturbed reactivity by change in the diffusion length in both the vertical and the horizontal directions.
*The perturbed reactivity by change in the diffusion length only in the vertical direction.
*The perturbed reactivity by change in the diffusion length only in the horizontal direction.
*The perturbed reactivity by change in the rate of neutron absorption.
*The perturbed reactivity by change in the degradation of the moderation effect.
*Read as -1.5689×10^{-7}.

Figure V-9 shows that the calculated void reactivities in Channel E(H) are the third largest in absolute value for a given channel-averaged void fraction, whereas the measured ones were the first or second largest. Figure V-9 also shows that the measured void reactivities in Channel E(H) are close to those in Channel B(H) with which the calculated ones agree very well as shown in Table V-5. Figure V-9 shows that the calculated void reactivities in Channel G(H) are negative, whereas the measured ones are slightly positive. Therefore, it is indicated that Channel G(H) was treated as an under-moderated region in the calculation, whereas it was found to be a slightly over-moderated region in the experiment.
Void Reactivity with Two Voided Channels in the MEU Core without Boron

As described in Section III-8-B, void reactivities were measured in the unpoisoned MEU core with two adjacent or two separated voided channels, the locations of which are shown in Fig. III-28. These measurements were analyzed in order to examine the further application of the computational method developed for the analysis on the void reactivity of a single voided channel. It should be noted that the method of calculation is unable to estimate the interference effect of two adjacent voided channels on the reactivity, because the method employed was based on perturbation theory.

The calculated k_{eff} in the core without voids was 1.0058, while the measured one was 1.0019, then a C/E ratio is 1.0039 as shown in Table V-3.

<table>
<thead>
<tr>
<th>Channel-Averaged Void Fraction (%)</th>
<th>Void Reactivity ($\times 10^{-3} \Delta k/k$)</th>
<th>Calculation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.17</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>-0.35</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>-0.53</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>-0.57*</td>
<td>-0.62</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.63</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*This void reactivity was obtained by interpolation between the void reactivities at the void fraction of 30 and 35%.

As for the first run in the second series of experiments Table V-6 and Fig. V-10 show the comparison between the calculated and measured void reactivities with two adjacent voided channels (channels I and J). The discrepancy between the measured value and the calculated one was $0.05 \times 10^{-3} \Delta k/k$ at a channel-averaged void fraction of 32%.

In the second run, Table V-7 shows the calculated and the measured void reactivities for a given channel-averaged void fraction when the voids were generated in two adjacent or two separated flow channels. Figure V-11
shows the comparison between the calculated and measured void reactivities for the two adjacent voided channels (channels K and L or channels M and N), and Fig. V-12 shows that for the two separated voided channels (channels K and N or channels L and M). The discrepancy between the average of the measured void reactivities and the calculated ones was approximately 0.10×10^{-3} $\Delta k/k$ for both cases.

![Graph showing void reactivity versus channel-averaged void fraction](image)

Table V-7 Calculated Results for the Second Run of the Second Series of Experiments

<table>
<thead>
<tr>
<th>Channel-Averaged Void Fraction (%)</th>
<th>Void Reactivity ($\times 10^{-3}$ $\Delta k/k$)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculation</td>
<td>Two Adjacent Voided Flow Channels</td>
</tr>
<tr>
<td>10</td>
<td>-0.17</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>-0.35</td>
<td>-0.45</td>
</tr>
<tr>
<td>30</td>
<td>-0.53</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>-0.57*</td>
<td>-0.69</td>
</tr>
<tr>
<td>35</td>
<td>-0.63</td>
<td>---</td>
</tr>
</tbody>
</table>

This void reactivity was obtained by interpolation between the void reactivities at the void fraction of 30 and 35%.
Fig. V-11
Void Reactivity versus Channel-Averaged Void Fraction for the MEU Core with Two Adjacent Voided Channels (The second run in the second series of experiments)

Fig. V-12
Void Reactivity versus Channel-Averaged Void Fraction for the MEU Core with Two Separate Voided Channels (The second run in the second series of experiments)
V-3-B. Discussion

As for the k_{eff} in the core without voids, the calculated results agreed with the experimental data to within 0.5% in the C/E ratio, regardless of whether the core was loaded with HEU or MEU fuel and with or without boron. Note that the excess reactivity was measured under the condition that the needle-like nozzle was installed in the core. The reactivity effect of the needle-like nozzle was estimated as approximately $-0.3 \% \Delta k/k$. Therefore, the agreement between the calculated and measured results is considered to be much better (within 0.2% in C/E ratio).

For reference, another calculation was performed to obtain k_{eff} in the MEU core without boron using the group constants obtained by EPRI-CELL67 which is used for the generation of group constants in Chapter IV, for the purpose of assessing the present method of group constants generation through a comparison. The calculated k_{eff} and the C/E ratio were 1.0158 and 1.0139, respectively. Whereas those were 1.0058 and 1.0039 in the present study as shown in Table V-3. Therefore, the better results were obtained with use of SRAC than those by the EPRI-CELL code. In the present study, a two-dimensional treatment was employed in the generation process of group constants using SRAC, whereas only one-dimensional treatment is available in EPRI-CELL. This indicates that a two-dimensional treatment is preferable to take into account the geometrical heterogeneity in the KUCA core for the generation of group constants. This result also provides good information to establish a self-consistent system for the neutronics calculations in the KUCA.

For the void reactivity of a single voided channel, the discrepancy between the experiment and calculation was less than $0.05 \times 10^{-3} \Delta k/k$. This discrepancy is the order of the experimental error for the excess
reactivity measurement in the KUGA cylindrical core, since this error was estimated to be approximately $\pm 0.05 \times 10^{-3}$ $\Delta k/k$ from the past experiences.

The spatial dependence was reproduced by the calculation fairly well except for the several cases. There are four possible causes for these exceptions:

(1) The neutron flux and adjoint flux in the voided flow channels were calculated by the diffusion code (2D-FEM-KUR). Generally speaking, a diffusion calculation is not adequate in the vicinity of the boundary such as that between the water reflector and fuel region or in the vicinity of a strong absorber, because anisotropic scattering cannot be neglected near the boundary and Fick's law is not suitable in a strong absorber. Therefore, the calculated neutron flux and adjoint flux may not be accurate in those regions.

(2) In generating the 4-group constants in the voided flow channel, the weighting spectrum in collapsing the energy groups was the standard spectrum (fission + 1/E + Maxwellian) installed in SRAC. This weighting spectrum did not take into account the spatial dependence of the neutron spectrum upon the location of voided flow channels in the core.

(3) The calculation employed the axial buckling obtained experimentally in the core without voids. Therefore, the change in axial buckling caused by void generation was not considered in the perturbation calculation for void reactivities. This may have contributed to the underestimation of the void reactivities.

(4) In an actual core, the neutron spectrum in the fuel region varies its feature, position by position. Therefore, the effective cross sections in an actual fuel region are space dependent. This effect is considered to be remarkable near the boundary of the fuel region,
since the regions containing light-water exist around the under-moderated fuel region. Whereas the group constants in the fuel region are obtained by averaging over the whole fuel region in the cell calculation, even if the neutron reflection effect caused by light-water existing in the vicinity of the fuel region is taken into consideration in the generation process of group constants. This may cause a difference between the calculated and measured results of the localized void reactivity such as for a few voided channels in the fuel region. This difference is considered to be fairly large near the boundaries between the fuel region and the light-water region including the central flux trap, control rod, and outer vessel regions (channels A, C, D, E, and G), where the neutron spectrum may be remarkably softened.

Greater attention should be paid to the calculation of void reactivity in the slightly over-moderated fuel region next to the thick light-water layer, and it is desirable to study further on the improvement of the computational method for the void reactivity in such a region. From the above, it is considered that the agreement between the calculated and measured results would be better, when the void is generated uniformly in the whole fuel region.

Since the apparent density of light-water moderator decreases with the increase in void fraction, the void reactivity is affected by the following three competing effects:

1. Neutron absorption is diminished,
2. Diffusion length becomes longer, which increases the neutron leakage from the core,
3. Moderation of neutrons is degraded.
The contributions of these effects to the void reactivity were calculated by the 2D-FEM-KUR code in order to make a physical image clear, and they are tabulated in Tables V-4 and V-5. It was the degradation of the moderation effect that causes the dominant void reactivity, and accounts for the negative sign of the void reactivity coefficient. The decrease in neutron absorption had a positive contribution to the reactivity change. The effect of an increase in the diffusion length was positive in the horizontal direction except for two of the voided flow channels: either at the center of, or at the outermost edge of, the outer fuel element. On the other hand, this diffusion effect was negative in the vertical direction for all voided flow channels. The total reactivity change by this diffusion effect turned out to be negative except for the voided flow channels at the innermost flow channel of the inner fuel element. The diffusion effect mentioned above suggests that the reflection by light-water in the center of core might be considerable and much larger than the reflection by heavy-water surrounding the fuel regions.

In order to examine the further application of the computational method, void reactivities with two voided channels were calculated and compared with the experimental results as shown in Tables V-6 and V-7 and Figs. V-10 through V-12. The discrepancy between the calculated and measured void reactivities was less than 0.10×10^{-3} Δk/k, which was approximately twice as much as that for a single voided channel shown in Table V-6. It might be necessary to improve the method of calculation if the void reactivity in the core with several voided channels is to be calculated. The reason is that, with use of perturbation theory, the discrepancy between the calculated and measured void reactivities for several voided channels in the fuel region might grow larger than that for
a single voided channel.

The developed method of calculation employing perturbation theory was assessed to be adequate for the calculation of localized void reactivity, since the discrepancy between the measured and calculated void reactivities was approximately equal to the experimental error for a single voided channel in the fuel region. In addition, the perturbation calculation employed in this study might be applicable to calculate the void reactivity when voids are generated uniformly over the fuel region. In this case, more attention should be paid to the generation of the few-group constants in the voided region, because the voided region is so wide that the interference effect may well exist between voided fuel elements. On this purpose, the eigenvalue calculation employed in the criticality calculation might be also applicable, because the void reactivity would be large enough for an eigenvalue calculation. Moreover, the moderator temperature coefficient which is also related closely to the safety of water-moderated reactors could be calculated by the eigenvalue calculation employed in the present study.

It should be noted that the void reactivity in the unpoisoned MEU core with single voided channel was not calculated in this study. The reason was that the core configuration employed for the measurement in the unpoisoned MEU core with a single voided channel provided an additional difficulty for precise modelling in the calculation. Among the cores employed in the void reactivity measurements, only this core had aluminum tubes with small diameter at a specific location in the annular control rod region and one fuel plate inserted apart from the normal fuel region where fuel plates were arranged with 3.80 mm pitch as shown in Fig. III-24 in Section III-B-B. Since a poor modelling for a core configuration would lead to an inaccurate result of calculation for the void reactivity, such a core was
thought to be not adequate for the special purpose of examining the effect of reducing fuel enrichment on the void reactivity by the calculation in comparison with the experimental result.

On the other hand, for the unpoisoned MEU core, the void reactivity with two voided channels was measured in the preceding study employing a core which was very close in the configuration to the poisoned MEU and unpoisoned HEU cores with a single voided channel. Since the interference effect was found to be negligible in the experiments, the effect of reducing enrichment on the void reactivity could be examined indirectly through the calculations for the unpoisoned HEU core with a single voided channel and for the unpoisoned MEU core with two voided channels.

V-4. Conclusions

The results obtained through this study are summarized as follows:

(1) The calculated results for k_{eff} in the core without voids, agreed with the experimental data to within 0.5 % in the C/E ratio, regardless of whether the core was loaded with MEU or HEU fuel and with or without boron. Therefore, there is a good prospect of the application of the computational method to the core loaded with LEU fuel.

(2) With regard to the void reactivity in a single flow channel, the calculation approximately reproduced the dependence of the void reactivity upon the void-injected location except for the few cases. The discrepancy between the calculated and measured void reactivities was less than $0.05 \times 10^{-3} \Delta k/k$, regardless of whether the core was loaded with MEU or HEU fuel and with or without boron. Additionally,
the perturbation calculation showed that the degradation of the moderation effect dominated the void reactivity in the under-moderated fuel region.

(3) The discrepancy between the calculated and measured void reactivities for two voided channels was approximately twice as much as that for a single voided channel. If the void reactivities in the core with several voided channels where the interference effect might exist are to be calculated, it might be necessary to improve the method of calculation.

(4) SRAC is more advantageous than EPRI-CELL for the generation of group constants in the KUCA annular core. The reason is that SRAC has a capability of two-dimensional treatment which facilitates to take into account more accurately the heterogeneity in a core than EPRI-CELL which can treat only the one-dimensional problems.
I. Introduction

The temperature coefficients of reactivity are important parameters to estimate the inherent stabilities of reactor cores. If the reactor is designed to have a negative temperature coefficient, an increase in temperature due to the increase in reactor power causes a decrease in reactivity; the power will then tend to decrease. Thus, the reactor is inherently self-stabilizing. If the negative temperature coefficient is too large in magnitude, however, a reactivity change caused by the increase from the room temperature to an operating temperature, the so-called temperature defect, will be so large that it will be difficult to assure a sufficient excess reactivity under an operating condition and a sufficient anti-reactivity margin of the control systems for a safe cold shutdown. In order to minimize the temperature defect while maintaining a stability in operation, a precise understanding and accurate predictions of temperature effects are required. Moreover, when low temperature coolant is introduced into a core having a large negative temperature coefficient, an accident may occur due to an introduction of a large positive reactivity.

Quite many studies have been performed on this subject, since the temperature coefficient of reactivity is an important physical quantity. Moreover, this quantity is usually measured in any reactor before a regular operation to assure the safety. However, there has been no data for a core loaded with MEU fuel. A purpose of the present study was to understand in certain depth the physical processes of temperature effects and to predict the temperature effects precisely, especially for a
light-water-moderated and heavy-water-reflected high flux reactor which uses either HEU or MEU fuel. The other purpose was to establish a self-consistent system for the neutronics calculations in the KUCA through the analysis of the temperature effect on reactivity.

According to the physical processes involved, temperature effects can be divided into following three categories:

1. Doppler broadening effect.
2. Thermal expansion effect.
3. Thermal neutron spectral shift effect.

The above three categories were taken into consideration for the calculation of the temperature effect on reactivity. In the present study, the temperature effect on the axial buckling was investigated using one- and two-dimensional cylindrical geometries in the calculation. The dependencies on the three categories were also examined as well as the region-dependent temperature effects.

VI-2. Calculations

There are two general methods to calculate the temperature effect on reactivity; namely, the integral and perturbation theory methods. The integral method is as follows: Calculate the effective multiplication factors \(k_{\text{eff}}(T_i) \) and \(k_{\text{eff}}(T_j) \) of a reactor system at temperatures \(T_i \) and \(T_j \). Then, obtain the temperature effect on reactivity \(\rho(T_{ij}) \) as,

\[
\rho(T_{ij}) = \frac{k_{\text{eff}}(T_i) - k_{\text{eff}}(T_j)}{k_{\text{eff}}(T_i) \times k_{\text{eff}}(T_j)}
\]

(\text{VI-1})
where,
\[T_{ij} = \frac{(T_i + T_j)}{2} . \]

The temperature coefficients is obtained as,
\[\alpha(T_{ij}) = \frac{\rho(T_i)}{(T_i - T_j)} . \]

Since a high accuracy in the \(k_{\text{eff}} \) calculations is required to obtain accurate results by the integral method, a detailed cell calculation model, and a multi-group and multi-dimensional core calculation model were used with the most advanced techniques for the reactor calculations. In order to calculate the temperature effect on reactivity in the complex core described in Section III-9-B, such a treatment mentioned above was considered to be unavoidable. However, it was difficult to know the contributions of the nuclear parameters to the temperature effects quantitatively by this method.

In order to investigate directly the quantitative contributions of the nuclear parameters to the temperature effect, one should perform the calculation based on perturbation theory. It is evident that perturbation theory is especially powerful to calculate a localized reactivity effect such as the void reactivity effect in a single flow channel between the fuel plates. Although perturbation theory is suitable for a detailed understanding on the mechanism of the temperature effect, it was considered to be difficult to apply for an analysis of the temperature effect on reactivity measured in the complex KUCA core. Moreover, it is considered to be difficult to calculate the temperature effect on reactivity by a simple perturbation theory, which assumes the unchangeableness in the neutron and adjoint flux distributions, since the temperature of the whole core changed uniformly in the measurement.
In view of the above, the temperature effects were calculated by the integral method with use of the SRAC code system. The effective multiplication factors were calculated at the three temperatures (namely, 300 K (27°C), 325 K (52°C), 350 K (77°C)) for which the scattering kernels are prepared for the neutron cross section library in SRAC. The flow chart for the calculation is shown in Fig. VI-1.

![Flow Chart for the Temperature Effect Calculations](image)

Fig. VI-1
Flow Chart for the Temperature Effect Calculations

Note that, in the present study, the 2D-FEM-KUR code is not used, whereas this code is successfully used in Chapters IV and V. The reason is that the 2D-FEM-KUR code has no option for a two-dimensional cylindrical geometry [R-Z] which approximately facilitates a three-dimensional treatment. For a calculation of the temperature effect, it is considered that a
change in a neutron reflection efficiency of a water reflector should be taken into consideration not only in the horizontal direction but also in the vertical direction, since the fuel region of the KUCA annular core behaves as a under-moderated region as described in Chapters IV and V. On the other hand, SRAC has an R-Z option as well as a one-dimensional option for the core calculation. Therefore, SRAC is employed in the present study with sacrificing a precise representation in geometry for the azimuthal direction of the KUCA annular core, that is available by 2D-FEM-KUR, in a step of the core calculation. Instead, a special attention is paid to taken into account the geometrical heterogeneity effect in a generation process of the group constants.

VI-2-A. Library for the Generation of Group Constants

The fundamental library of group constants was produced mainly from the ENDF/B-IV nuclear data file104 with 107 energy groups. The transport cross sections for the P_0 transport calculation were calculated by the B_1 approximation, and the diffusion coefficients were obtained assuming $D = 1/(3\Sigma_T)$. The resonance absorption for heavy nuclides was calculated by two method; a table look-up method for the neutron energy $E \geq 130.07$ eV, and a collision probability method using the ultrafine energy points of 4600 for 130.07 eV $\geq E \geq 0.68256$ eV (thermal cut off). Thus, the user library was constructed with a structure of 50 energy groups (23 fast groups and 27 thermal groups), as shown in Table VI-1.

In this procedure, the temperature effects according to the following three physical processes were taken into account:

(1) Doppler broadening effect.

(2) Thermal expansion effects (decrease in the number densities of
(3) Thermal neutron spectral shift effects (which are caused by a change of the scattering kernels in the thermal region).

Table VI-1 Energy Group Structures Used in the Calculation

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Fine</th>
<th>Coarse</th>
<th>Fast Energy (eV)</th>
<th>Group No.</th>
<th>Fine</th>
<th>Coarse</th>
<th>Thermal Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.10000E+8*</td>
<td>11</td>
<td>6</td>
<td></td>
<td>0.68256E-0</td>
</tr>
<tr>
<td>2</td>
<td>0.47237E+7</td>
<td>2</td>
<td>0.41399E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.22313E+7</td>
<td>2</td>
<td>0.34206E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.10540E+7</td>
<td>2</td>
<td>0.29792E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.49787E+6</td>
<td>2</td>
<td>0.25683E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.23518E+6</td>
<td>2</td>
<td>0.21878E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.11109E+6</td>
<td>2</td>
<td>0.18378E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.52475E+5</td>
<td>2</td>
<td>0.15183E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.24788E+5</td>
<td>2</td>
<td>0.13700E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.11709E+5</td>
<td>2</td>
<td>0.12293E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.55308E+4</td>
<td>2</td>
<td>0.10963E-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.26126E+4</td>
<td>2</td>
<td>0.97080E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.12341E+4</td>
<td>2</td>
<td>0.85397E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.58295E+3</td>
<td>2</td>
<td>0.74276E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.27536E+3</td>
<td>2</td>
<td>0.64017E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.13007E+3</td>
<td>2</td>
<td>0.54520E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.61442E+2</td>
<td>2</td>
<td>0.45785E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.29023E+2</td>
<td>2</td>
<td>0.37813E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.13710E+2</td>
<td>2</td>
<td>0.30602E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.64760E+1</td>
<td>2</td>
<td>0.24154E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.30590E+1</td>
<td>2</td>
<td>0.18467E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.18554E+1</td>
<td>2</td>
<td>0.13543E-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.11253E+1</td>
<td>2</td>
<td>0.93805E-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.68256E-0</td>
<td>2</td>
<td>0.59804E-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.33423E-2</td>
<td>2</td>
<td>0.33423E-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14663E-2</td>
<td>2</td>
<td>0.33423E-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35238E-3</td>
<td>2</td>
<td>0.10000E-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : Read as 0.10000×10^8.
VI-2-B. Procedure of the Calculations

Step 1: Primary Cell Calculation

The primary cell calculation was performed to obtain the cell-averaged cross sections for the so-called fuel meat region, which is composed of fuel meat (U-Al alloy in HEU fuel and UAlx-Al dispersion aluminide in MEU fuel), aluminum cladding and light-water moderator. Assuming a fixed source problem, this calculation was performed using the collision probability routine in SRAC. Although the actual fuel plate has a curved geometry, it was approximated by a slab geometry as shown in Fig. V-3. In this step, the 50 groups were collapsed to 19 groups (10 fast and 9 thermal groups as shown in Table VI-1).

Step 2: Secondary Cell Calculation

The secondary cell calculation was performed using the TWOTRAN code111 in SRAC. Using TWOTRAN, a P_0 and S_4 calculation was performed in order to take into account the neutron flux distributions in the azimuthal direction.

In this step, the cell-averaged 19-group constants of the fuel element were generated using the 19-group constants for the fuel meat region (Region E in Fig. V-4) obtained in Step 1. Note here that, for region other than the fuel meat region, the 19-group constants were generated in advance of the calculation by collapsing the 50-group constants (user library) using the standard spectrum (fission + 1/E + Maxwellian) installed in SRAC.
For simplicity, a curved geometry of the fuel element was approximated by a rectangular one as shown in Fig. V-4. Here, special attention was paid to conserve the volumes of the fuel meat and boron loaded regions. As shown in Fig. V-4, in the actual curved geometry, the widths of fuel plates increase with the distance from the center of core, but the thickness of the side plate regions are almost constant. Therefore, the fuel elements were divided into several regions along the radial direction and plural secondary cell calculations were performed for one fuel element, as illustrations are shown in Figs. V-2 through V-7.
Fig. VI-3 Secondary Cell Model for a Fully Loaded Outer Fuel Element without Boron

Fig. VI-4 Secondary Cell Model for a Partially Loaded Inner Fuel Element with Boron
Fig. VI-5 Secondary Cell Model for a Fully Loaded Outer Fuel Element with Boron

Fig. VI-6 Secondary Cell Model for a Fully Loaded Inner Fuel Element without Boron
Step 3: Core Calculation

Using the 19-group constants obtained by the above process, the core calculation was performed using the CITATION code112 in SRAC. A one-dimensional [1-D] cylindrical geometry was employed for this eigenvalue calculation as shown in Fig. VI-8 and 10-group constants (5 fast group and 5 thermal group) for a two-dimensional [2-D] R-Z calculation were also generated.

In the vertical direction, the axial buckling obtained experimentally was used, which is tabulated in Table VI-2. Note here that, since the axial thermal neutron flux in the inner fuel region of the MEU core is not measured, the vertical buckling for the outer fuel region of the MEU core
is used for the inner fuel region.

Fig. VI-8 One-Dimensional Model for the Type-I MEU Core without Boron

Table VI-2 Vertical Buckling and Reflector Saving

<table>
<thead>
<tr>
<th>Region</th>
<th>MEU Core</th>
<th>HEU Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buckling, B^2 (10$^{-3}$ cm2)</td>
<td>Reflector Saving (cm)</td>
</tr>
<tr>
<td>(A)</td>
<td>1.6966</td>
<td>8.14</td>
</tr>
<tr>
<td>(B)</td>
<td>1.7289</td>
<td>7.78</td>
</tr>
<tr>
<td>(C), (D), (E)</td>
<td>1.5595</td>
<td>9.78</td>
</tr>
<tr>
<td>(F), (G)</td>
<td>1.5595</td>
<td>9.78</td>
</tr>
</tbody>
</table>

* : Refer to Fig. VI-8.
Using the group constants obtained by this one-dimensional core calculation, two-dimensional R-Z core calculations were performed by the CITATION code using a calculation model shown in Fig. VI-9. To estimate the difference between the 1-D and 2-D calculation models for temperature effects, 1-D calculations of the same energy structure were also performed.

Fig. VI-9 Two-Dimensional Model for the Type-I MEU and HEU Cores
VI-3. Results and Discussion

VI-3-A. Comparison between the Calculated and Measured Results

Table VI-3 Calculated and Measured k_{eff} Values at 300 K

<table>
<thead>
<tr>
<th>Designation of Core</th>
<th>ρ_{ex} at 300 K [%k/k]</th>
<th>Effective Multiplication Factor</th>
<th>C/E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experiment *1</td>
<td>Calculation</td>
</tr>
<tr>
<td>MEU-I (no BP)</td>
<td>0.101</td>
<td>19g. *3 1-D *5 1.0125</td>
<td>1.0115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. *4 2-D *6 1.0173</td>
<td>1.0163</td>
</tr>
<tr>
<td>MEU-II (no BP)</td>
<td>0.146</td>
<td>19g. 1-D 1.0203</td>
<td>1.0188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. 2-D 1.0236</td>
<td>1.0221</td>
</tr>
<tr>
<td>MEU-I (Outer BP)</td>
<td>0.031</td>
<td>19g. 1-D 1.0069</td>
<td>1.0066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. 2-D 1.0117</td>
<td>1.0114</td>
</tr>
<tr>
<td>MEU-I (Inner BP)</td>
<td>0.067</td>
<td>19g. 1-D 1.0088</td>
<td>1.0081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. 2-D 1.0141</td>
<td>1.0134</td>
</tr>
<tr>
<td>HEU-I (no BP)</td>
<td>0.014</td>
<td>19g. 1-D 1.0212</td>
<td>1.0211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. 2-D 1.0243</td>
<td>1.0242</td>
</tr>
<tr>
<td>HEU-II</td>
<td>0.047</td>
<td>19g. 1-D 1.0260</td>
<td>1.0255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10g. 2-D 1.0283</td>
<td>1.0278</td>
</tr>
</tbody>
</table>

*1,*2 : Interpolated value at 300 K from the experimental data using the method of least-squares.
*3 : Core calculation was performed with use of the 19-group constants.
*4 : Core calculation was performed with use of the 10-group constants.
*5 : Core calculation was performed with use of the one-dimensional model.
*6 : Core calculation was performed with use of the two-dimensional model.

Table VI-3 shows the calculated effective multiplication factors at 300 K in comparison with experimental values. The experimental values at 300 K are obtained from the interpolation of the measured data using the quadratic curves obtained by the method of least squares. This table shows the dependencies of k_{eff} values on the energy group structure when one-dimensional models are used with 10- and 19-group constants and the differ-
ences between k_{eff} values calculated by the one- and two-dimensional models with 10-group constants. The calculated values are approximately 1 ~ 3% larger than experimental values. This may be caused by a poor representation of the annular core for the azimuthal direction in a step of the core calculation. Note that the excess reactivity was measured under the condition that a heater, a stirrer, and several thermometers were installed in the core, whereas the calculation did not take into account this effect. The total reactivity effect of a heater, a stirrer, and several thermometers was estimated to be around $-0.2 \sim -0.3 \%\Delta k/k$ by the experiment. The agreement of the calculated and measured k_{eff} values is considered to be better than that shown in Table VI-3.

Fig. VI-10 Temperature Effects on the Excess Reactivity in the MEU and HEU Cores without Boron
(The calculated values are normalized to the experimental quadratic curves at 300 K)
Although small effects are observed in Table VI-3 depending on the energy group structure, the values calculated by two-dimensional models are greater than those by one-dimensional models. This indicates that the temperature effect on the axial buckling is not negligible.

Figures VI-10 through VI-13 show the temperature effects on the excess reactivities in the individual cores. Figure VI-10(a) corresponds to the Type-I MEU and HEU cores without boron, Fig. VI-10(b) to the Type-II MEU and HEU cores without boron. Figures VI-11(a) and VI-11(b) corresponds to the Type-I MEU cores loaded with all inner and outer side-plates containing boron, respectively. In these figures, the curves for the experimental data are quadratic ones determined by the method of least squares. Note that the calculated values are normalized to the experimental ones interpolated at 300 K.
The tendency in the temperature effects on reactivity calculated by two-dimensional models excellently agree with the experimental data, whereas calculated ones by one-dimensional models underestimate the temperature effects. This can be attributed to the neglect of the positive temperature effects of the light-water reflectors above and below the core in the one-dimensional model. The positive temperature effect due to the axial reflectors is considered to be fairly large, since the KUCA annular core behaves as an under-moderated core as described in Chapters IV and V.

Figures VI-12 and VI-13 show the temperature coefficients of the individual cores. Figure VI-12(a) corresponds to the Type-I and Type-II MEU cores without boron, Fig. VI-12(b) to the Type-I and Type-II HEU cores without boron, and Fig. VI-13 to the Type-I MEU core loaded with all inner or outer side-plates containing boron. In these figures, the lines that
represent the experimental data are obtained by differentiating the quadratic equations as described in Section III-9-B.

These figures show that the calculated results approximately reproduce the measured temperature coefficients. However, there exist some discrepancies between the gradients of the calculated and measured temperature coefficients. The agreement of the calculated and measured gradients in the Type-I core is better than that in the Type-II core. This tendency was also observed in the analyses of the boron reactivity effects described in Section IV-3. The diameter of the central light-water region in the Type-I core is larger than that in the Type-II core, whereas the thickness of the light-water gap between the outer fueled region and the heavy-water reflector in the Type-I core is thinner than that in the Type-II core. Therefore, the neutron importance of the inner fuel region is higher in the Type-II core than the Type-I core. Moreover, the inner fuel region has a more curved geometry than that of the outer fuel region. However, in the
generation process of the group constants, both fuel regions are assumed to be slabs in the primary cell calculation or rectangles in the secondary cell calculation, although plural cell calculations were performed along the radial direction in the secondary cell calculation. This may affect the results of calculations, since even small differences in group constants may cause a large difference in reactivity at a region having a high neutron importance.

Figure VI-14 shows a calculated flux distribution of thermal neutrons in the horizontal direction for the Type-I MEU core without boron. This flux distribution reproduces well the tendency observed in the neutron flux measurements described in Section III-6. In the Type-II core, the neutron flux peak is much sharper at the central flux trap region than that in the Type-I Core. This figure indicates that the temperature effects in the
light-water regions, where the neutron flux peaks are observed, would be fairly large, since a flux leveling effect would occur due to the decrease in absorption cross section of light-water with the increase in temperature. The temperature effect in the central flux trap region is especially important, since the level of flux peak is the highest.

VI-3-B. Examinations on the Physical Processes of the Temperature Effect

Since good agreements have been obtained in general, the method employed in the present study could be regarded as reasonable. Therefore, several examinations were performed using the assessed method of calculation for the purpose of further understanding on the physical processes of the temperature effect. In these examinations, the temperature effects of the light-water reflectors above and below the core are not considered, since all calculations are performed by one-dimensional models for the simplicity. Consequently, in order to compare these calculated values with the experimental data, this effect (namely, the difference between one-dimensional calculations and two-dimensional calculations) should be compensated.

Figure VI-15 shows the results of calculations considering three physical processes of temperature effects individually; namely, (1) the Doppler effect, (2) the thermal expansion effect, and (3) the thermal neutron spectral shift effect. Figures VI-15(a) and VI-15(b) correspond to the Type-I MEU and HEU cores without boron, respectively. From these figures, the Doppler effect is slightly negative in the MEU core and almost zero in the HEU core; the thermal expansion effect is negative in the either MEU or HEU core; the thermal neutron spectral shift effect is positive for the both cores; and overall, the temperature effects are
The main contribution of the thermal expansion effect for a negative reactivity can be regarded as the increase in fast neutron leakage due to the decrease in number density of the light-water moderator in the core region. Although the thermal neutron leakage also increases with the decrease in number density of light-water, the thermal neutron nonleakage probability depends mainly upon the neutron temperature, rather than upon the number density of the light-water. A positive temperature effect caused by the thermal neutron spectral shift can be attributed mainly to the positive temperature effect of the light-water reflector due to a flux.
leveling effect. Since this positive effect outweighs the negative one caused by the thermal neutron leakage, the thermal neutron spectral shift effect gives a positive temperature effect.

Figures VI-16 through VI-18 show the region-dependent temperature effect on reactivity in each core. In all the cores, the temperature effects of the fuel regions are negative, those of the light-water regions are positive, and those of the heavy-water reflector regions are almost zero. Though a negative void coefficient of the control rod region is experimentally proven as described in Section III-8-A, the calculated temperature coefficient of this region is positive. This phenomenon can be
referred to the decrease in the absorption cross section of light-water with increasing thermal neutron temperature. In the Type-I cores without boron, the positive temperature effect of the central light-water region is the greatest among all regions, whereas in the Type-II cores without boron, the temperature effect of the central light-water region is approximately equivalent to that of the outer vessel region. This is simply attributed to the sizes of the central light-water region and the light-water gap region between the outer fueled region and the heavy-water tank. In the cores with boron, the magnitudes of the temperature effects in the fuel region containing boron and in the light-water regions adjacent to the fuel

Fig. VI-17 Region Dependent Temperature Effect on Reactivity in the Type-II MEU and HEU Cores without Boron
regions containing boron is small. This is because the existence of boron reduces the importance of the areas in the vicinity of boron. Further investigation would be necessary to understand the difference in the temperature effect between the core loaded with MEU and HEU fuels or between the cores with and without boron, since the cores employed in the measurements were different with each other in the core configuration.

Note that, in the actual design of a light-water-moderated and heavy-water-reflected high flux reactor, the thickness of the light-water layer between the fueled region and the heavy-water reflector would be reduced for the purpose of separating completely the light-water moderator from the
heavy-water reflector. Furthermore, in the actual design of a high flux reactor, the size of the central light-water region would be reduced by the installation of an irradiation facility or by the introduction of a central void tube as a second instrument for the reactor shut down. These devices in the actual design would assure the negative temperature effect on reactivity.

VI-4. Conclusions

The results obtained through this study are summarized as follows:

1. The measured temperature coefficients are approximately simulated by the calculations for the Type-I MEU cores with and without boron, the Type-II MEU core without boron, and the Type-I and Type-II HEU cores without boron. The agreement is better for the Type-I cores which have larger central light-water regions than the Type-II cores.

2. The results of two-dimensional calculations agreed with the experimental data better than those of one-dimensional calculations. This indicates that the temperature effect on the axial buckling may not negligible.

3. The Doppler effect causes a slightly negative reactivity effect in the MEU cores with the increase in temperature, whereas it is close to zero in the HEU cores. The thermal expansion effect causes a negative effect in the either MEU or HEU cores, whereas the thermal neutron spectral shift effect causes a positive effect in the both MEU and HEU cores with the increase in temperature. The total effect of the above three processes is positive.
(4) The temperature effect on reactivity in the fuel region is negative and, in contrast, that in the light-water region where there is a thermal neutron flux peak is positive. They compete each other and totally give a positive effect.
VII. Concluding Remarks

Through the present study on the nuclear characteristics of a light-water-moderated and heavy-water-reflected core loaded with MEU fuel using the KUCA, several interesting characteristics of an MEU core are revealed by the comparison with an HEU core. Note here again that MEU and HEU fuels employed in this study consist of UAl\textsubscript{x}-Al dispersion aluminide and U-Al alloy, respectively. MEU and HEU fuels are of 45 wt\% and 93 wt\% 235U enrichments, and contain 42 wt\% and 22 wt\% total U, respectively, and the KUCA cores employed in this study is light-water-moderated and heavy-water reflected annular ones with the central flux trap of light-water, which has been proposed for a high flux reactor. The KUCA cores have rather thick light-water layer between the outer fueled region and the heavy-water reflector, whereas this layer would be reduced its thickness in an actual high flux reactor for the purpose of separating the light-water moderator from the heavy-water reflector.

In general, the nuclear characteristics of the core does not change so much with the conversion from HEU to MEU fuels. Therefore, it is concluded that MEU fuel is considered to be feasible for a high flux reactor in place of HEU fuel without any significant reduction in reactor performance.

Through the experimental study, although a direct comparison between the HEU and MEU cores is not available due to the limitations in the experimental conditions, the nuclear characteristics of a light-water-moderated and heavy-water-reflected annular core with a central flux trap are mostly clarified. The main features of the MEU and HEU cores obtained in the experimental study can be summarized as follows:
(1) The minimum critical mass of 235U increases approximately 18% in the MEU core compared with the HEU core due to the increase in 238U loading. MEU fuel has a 2 to 3% larger reactivity worth per fuel plate than HEU fuel, since MEU fuel contains slightly excessive 235U compared with HEU fuel. Therefore, it may be possible to reduce slightly the U content in MEU fuel in order to attain the same reactivity effect as HEU fuel.

(2) The level of the thermal neutron flux at a specified reactor power in the fueled region decreases approximately 10% in the MEU core compared with the HEU core, since the 235U mass loaded to the core is larger in the MEU core than in the HEU core. However, the thermal neutron flux in a reflector region decreases a few percent in the MEU core, because the neutron spectrum in the MEU core is harder than that of the HEU core. This indicates that, at the vicinity of a reflector, the peak of power density in the MEU core would be slightly higher (a few percent) than that in the HEU core.

At a central flux trap of light-water, a highest flux peak of thermal neutrons is observed in both the MEU and HEU cores, and the height of this peak is 2 to 3 times higher than that at a heavy-water reflector. The thermal neutron flux peaks are also observed at the space for the control rods, at the side-plate region, at the light-water gap between the heavy-water reflector and the outer fueled region, and at the upper and lower sites of the fuel region. With the introduction of a large central void, a level of thermal neutron flux in the central flux trap becomes lower and that in the heavy-water reflector grows larger. In the core with a large central void, the highest peak of thermal neutron flux can be observed in the light-
water gap between the heavy-water reflector and the outer fueled region. The thermal neutron flux in the inner fuel region is higher than that in the outer fuel region.

(3) The control rod worth in the MEU core is approximately 10% lower than that of the HEU core, when a thermal neutron absorber is used as a material for the control rods. The reason is that the neutron spectrum in the MEU core is harder than that in the HEU core.

(4) The total reactivity effect of boron loaded in the side-plates as burnable poison is approximately 8%Δk/k in the MEU core and this is sufficient for suppressing the excess reactivity in an initial loading core of a high flux reactor. The reactivity effects of the boron loaded side-plates are larger in the inner fuel region than in the outer fuel region, contrary to the fact that the mass of boron contained in an inner side-plate is slightly less than that of an outer side-plate. This is consistent with the thermal neutron flux distribution. The boron reactivity effect in the HEU core would be slightly higher (around 10%) than that of the MEU core, since the control rod worth is higher in the HEU core than in the MEU core.

(5) The void reactivity effect in the fueled region of the MEU core is slightly more negative than that of the HEU core. The void reactivity effects are positive in the central flux trap of light-water and in the light-water gap between the heavy-water reflector and the outer fueled region, where large flux peaks of thermal neutrons are observed. The other regions have negative void reactivity effects. The void reactivity is affected by the following three competing effects; namely, the neutron (A) absorption, (B) diffusion, and (C)
moderation effects. In the fueled region, the neutron moderation effect dominates the void reactivity and causes a negative effect. On the contrary, in a thick light-water region near the fuel region, the neutron absorption effect dominates the void reactivity and causes a positive effect. The neutron diffusion effect provides a negative reactivity in the middle of the fuel region and increases its value to positive in the light-water region next to the fuel region.

(6) The temperature effects on reactivity in the MEU and HEU cores are approximately equivalent with each other. The temperature reactivity effects are positive in the KUCA cores regardless of MEU or HEU and of with or without boron. The temperature effect on reactivity is positive in all light-water regions, whereas the void reactivity effects is negative in the space for the control rods, and that is negative in a fueled region. In the KUCA core, the large positive temperature effects in the central flux trap of light-water and in the light-water gap between the heavy-water reflector and the outer fueled region overweigh the negative effects in the fuel regions.

The temperature effects are determined by the following three competing effects; namely, the (A) Doppler, (B) thermal expansion, and (C) neutron spectral shift effects. The Doppler effect in the MEU core causes a slightly negative reactivity effect, while that is close to zero in the HEU core. However, the Doppler effect is fairly small among the above three effects. The thermal expansion causes a negative effect that is analogous to the void reactivity effect, while the thermal neutron spectral shift causes a positive effect. The thermal neutron spectral shift effect in a light-water region, from which neutrons are reflected into fuel region, is especially important,
since this effect mainly causes the decrease in absorption cross sections of light-water.

(7) The kinetic parameters β/λ in the MEU and HEU cores are approximately equivalent with each other. The kinetic parameter is mostly determined by a core configuration. In the KUCA core, a value of β/λ is positioned at the middle of that in a light-water moderated and reflected core and a heavy-water moderated and reflected core.

One should be careful to design a light-water-moderated and heavy-water-reflected annular high flux reactor with a central flux trap, since a size of central flux trap is essential for the temperature effect on reactivity and a central light-water region also has a large positive void reactivity effect. In order to investigate further on the effects of reducing fuel enrichment precisely and on the nuclear characteristics of a light-water-moderated and heavy-water-reflected core itself, the analytical study should be necessary, since there are several limitations in the experimental conditions. For this purpose, an assessed self-consistent system for the neutronics calculations, including the nuclear data file, processing codes for the generation of group constants, and core calculation codes based on diffusion or transport theory, should be necessary.

In the analytical study, the assessment of the computer codes are carried out through the comparison with the experimental data in order to establish a self-consistent system for the neutronics calculations in the KUCA. The results obtained through this assessment can be summarized as follows:

(1) The assessed computer codes in this study are EPRI-CELL, DIF3D, 2D-FEM-KUR, and SRAC. With use of all codes employed in this study.
the calculated results of effective multiplication factors agree with the experimental data within 2 ~ 3 %. Further study would be necessary to obtain much accurate results, however, SRAC and 2D-FEM-KUR are considered to be the main codes in the self-consistent system for the neutronics calculations in the KUCA.

(2) The calculated results of the boron, void, and temperature effects agree mostly with the experimental data. The finite-element method is successful for the accurate modeling of the complex core configuration and powerful for the analysis of the localized reactivity effects. The conventional finite-difference method can be applicable to a complex core with a device in the generation of the group constants.

(3) A special attention should be paid in the generation process of the group constants to take into account the geometrical heterogeneity of a core. One should be careful, when the artificial extra region is attached in the cell calculation. Further study would be necessary to generate the proper group constants especially in the inner fuel region, where the neutron importance is highest and a strongly curved geometry is used.

(4) For the accurate calculation of the void and temperature effects on reactivity, a change in vertical buckling should be taken into consideration. Therefore, the three-dimensional calculation would be necessary to obtain more accurate result.

(5) With use of the computer codes assessed in the present study, further examination on the characteristics of the MEU and HEU cores would become possible with a certified accuracy. This is essentially important, since the experimental conditions are limited in an actual
reactor system. In contrast, the calculations would allow any condition in an ideal reactor system. Therefore, one can perform the further investigations on the use of MEU fuel and the differences between the MEU and HEU cores would be revealed in detail. In addition, one can perform the study on the design of a high flux reactor similar to the KUCA core employed in this study.

Through the present study, the self-consistent system for the neutronics calculations in the KUCA has been basically established with use of the ENDF/B-IV data file, the SRAC code system and the 2D-FEM-KUR code as main parts. This self-consistent system is anticipated to be applied widely to the analyses of the critical experiments performed in the KUCA, and to be refined through the further assessments comparing the calculated results with the various experimental data.
VIII. ACKNOWLEDGEMENT

The author would like to express his sincere thanks to Professor Hiroshi Nishihara of Kyoto University for his kind guidance of this study, and for his helpful advise and valuable suggestions on this subject.

The author also wish to express his thanks to Professors Toshikazu Shibata, Itsuro Kimura, and Keiji Kanda of KURRI for their continuous encouragement and valuable discussions through the course of this study.

The author is deeply indebted to all staffs of the KUCA including Messrs. Masatoshi Hayashi and Keiji Kobayashi for their generous supports and assistance in the experiments. The author is grateful to Messrs. Yoshihiro Nakagome and Toshimitsu Sagane who made efforts to fabricate MEU and HEU fuels for the KUCA experiments. The author must express his thanks to Dr. Kaichiro Mishima, Messrs. Hiroshi Fukui and Yasuhide Senda for their cooperations in the experiment and analysis of the void reactivity effect, and to Mr. Masa-aki Mori for his cooperation in the experiment and analysis of the temperature reactivity effect.

The author is grateful to Professor Yuichi Ogawa's group of Hokkaido University, Professor Otohiko Aizawa's group of Musashi Institute of Technology, Professors Shozo Nakadoi and Shigeyasu Sakamoto's group of Tokai University, Professor Kojiro Nishina's group of Nagoya University, Professor Kenji Sumita's group of Osaka University, Professor Ryota Miki's group of Kinki University, and Professor Kazuhiko Kudo's group of Kyushu University for their cooperations in the part of experiments and fruitful discussions. The author is also grateful to the members of the KUCA Technical Committee chaired by Professor Hiroshi Nishihara of Kyoto University, including Professor Naohiro Hirakawa of Tohoku University, Professor Masaharu Nakazawa of Tokyo University, Professor Keisuke
Kobayashi of Kyoto University, Professor Akito Takahashi of Osaka University, and Dr. Shojiro Matsuura, Dr. Iwao Kobayashi, and Dr. Masaharu Nakano of JAERI, for invaluable discussions.

The author appreciate the generous instruction and helpful suggestions for the use of SRAC by Dr. Keichiro Tsuchihashi of JAERI. The author is also grateful to Dr. Yoshitaka Naito of JAERI and Mr. Shin-ichiro Tsuruta of the Japan Information Service who mainly developed 2D-FEM-KUR. The author must express his thanks to all members of RERTR/ANL including Dr. W. L. Woodruff, Dr. M. M. Bretscher, Dr. J. E. Matos, and Dr. A. Travelli for their generous help and valuable suggestions on the use of the ANL code system.

The calculations were mainly performed at the Data Processing Center of Kyoto University and partly at the computer centers of ANL and JAERI.

A part of this study was performed as the ANL-KURRI joint study.

This study was financially supported by the Ministry of Education, Science and Culture.
References

33. The ORPHEE Reactor, Pamphlet, Laboratoire Léon Brillouin, CEA-CNRS, France.

