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PREFACE

   In natural and social sciences, a sudden and discontinuous change of the state 
may occur as the external causes vary continuously: buckling and collapse of 
structures, the flutter of aircrafts, the onset of turbulence in a fast-moving 
fluid, the phase transition of fluids, the fracture of a crystal lattice, the evolu-
tionary stability of stars and planetary masses, the charged water drops of thun-
derstorms in an electric field, the heat conduction and fluid flow in thermo-
dynamics and so far. The discontinuous instability phenomena can never be com-

pletely interpreted in the classical Newton's mechanics using solutions of unified 
differential equations.

   Thom proposed the philosophical concepts of the catastrophe theory in order 
to clarify the topological aspect of the sudden discontinuities in "Structural Sta-
bility and  Morphogenesis"(1972). An instability may be determined from a poten-
tial function with several internal state variables and some external control para-
meters. When the control parameters vary continuously, the number of the local 
minima representing the stable equilibrium states through the potential function 
may change in a discontinuous way. The Thom's Theorem classifies the structur-
ally stable equilibria of the gradient system, and says that, for the essential 
state variables < 2 and the control parameters < 4, the canonical form of the 
potential function is just equivalent to either of the seven elementary cat-
trophes: fold, cusp, swallowtail, butterfly, hyperbolic umbilic, elliptic umbilic and 
parabolic umbilic.

   The catastrophe theory has been applied to the instability problems of several 

disciplines of pure mathematics, mechanical engineering, hydrodynamics, thermo-

dynamics, crystallography, cosmology, economics, social sciences and biology.

   In civil engineering field, the catastrophe theory provides an effective means 
for reasonable understanding of static instability or buckling. The internal state 
variables and the external control parameters in the catastrophe theory corre-
spond to the generalized coordinates and the loading parameters & initial imper-
fection parameters in the elastic stability theory, respectively. Especially, a ques-
tion must be answered how imperfections affect the load-carrying capacity of 
structures; imperfection sensitivity of structures. The catastrophe theory sig-
nificantly contributes to such problems. The load-carrying capacity of structures 
corresponds to a singular point on the equilibrium surface of structures. Thus, 
the imperfection sensitivity can be expressed in terms of the bifurcation set in 
the catastrophe theory.

   This dissertation aims to apply the catastrophe theory to evaluation proce-
dures of the ultimate strength of typical civil engineering structures in both the 
elastic and elasto-plastic ranges. The paper is divided into three parts: the PART 
I states an introduction to both structural instability theory and the catastrophe 
theory from two view points of pure mathematics and engineering, the PART II 
discusses on a proposal of the catastrophe analysis of elastic structures by the 
use of discretizations and modal transforms, and the PART III formulates a new 
approach to a unified expression of ultimate strength of compressed slender struc-
tural members. The present procedures do not need the so-called nonlinear ana-
lysis to evaluate successively the equilibrium states up to the ultimate strength 
of the structure in elastic and elasto-plastic ranges.



   The chapter 1 of the PART I is concerned with an introduction to the inter-

pretation of the concepts such as equilibrium, stability and imperfection sensi-
tivity of conservative structural systems using the general elastic stability theory 

and the catastrophe theory. In the chapter 2 of the PART I, brief reviews are 

presented on the catastrophe theory and its applications in engineering sciences 
from a knowledge of the singularity theory of mappings  in pure mathematics. 

The main mathematical background is provided item by item in the APPENDIX 

of the PART I.

   The chapter 1 of the PART II is concerned with an elastic catastrophe anal-

ysis of discrete structural systems with large degrees of freedoms. The present 
numerical analysis makes use of discretization methods and diffeomorphic modal 
transformations in the light of the Thom and Thompson's theories. The chapter 2 
of the PART II gives a direct computational algorithm to determine the imper-
fection sensitivity curves or surfaces from the singularity condition in the catas-
trophe theory. The chapter 3 of the PART II is a comparative study on "inex-
tensible" column models neglecting the axial deformations through the present 
analysis for continuous and discrete systems. In the chapter 4 of the PART II, 
the present catastrophe analysis is also applied to axially "extensible" columns, 
compressed rectangular unstiffened plates and compressed rectangular stiffened 

plates through the static condensation procedure. A simplified element method 
adopted herein is briefly described in the APPENDIX A. Also, the standardization 
of the structural potential function to the Thom's catastrophe unfolding is in the 
APPENDIX B.

   In the chapter 1 of the PART III, a unified new approach is proposed to the 

prediction of ultimate strength of slender structural members in the elasto-plastic 
range. The fundamental concepts of the approach is discussed in details. Then, 
numerical illustrations of the present approach are demonstrated for axially com-

pressed steel columns. In the chapter 2 of the PART III, the present approach is 
formulated for compressed plates with and without stiffeners. Especially, for 
stiffened plates, the approach is also applied to independent two modes of the 

global and local bucklings of the stiffened plate. Furthermore, using the present 
approach, a Monte Carlo simulation is performed on appropriate statistical dis-
tributions of the residual stresses and the initial deflections for compressed 

plates and stiffened plates. Then, the most frequent combinations of such imper-
fections can be explicitly determined. The chapter 3 of the PART III formulates 
the simplified approach for compressed cylindrical shells with considerations of 
interaction between both asymmetric and axi-symmetric buckling modes. Finally, 
some experimental data in this PART III were acquired in the CATS, computer 
aided testing system, at Kyoto University in the APPENDIX.
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INTRODUCTION

     PART I 

TO INSTABILITY AND CATASTROPHE





CHAPTER 1

 INSTABILITY AND CATASTROPHE

1.1 General Remarks

   Pioneer works on the stability of an equilibrium state of a structure in class-

ical engineering mechanics were initiated by Euler and Lagrange in the eigh-

teenth century. Euler invented his calculus of variations for a bifurcation 

problem on his "Euler strut". Lagrange introduced the analytical energy approach 
to mechanics through his fundamental energy theorem using the associated total 

potential energy.

   In the nineteenth century, Poincare produced a general bifurcation theory in 
a mathematical sense so as to clarify many qualitative characteristics of solu-
tions for a set of differential equations. He classified them into two typical 
forms of limit point and bifurcation point. Hamilton developed the vector fields 
for a set of first-order differential equations. Also, Liapunov gave the mathe-
matical definitions of stability, and proposed the general energy function with his 
name. These investigations on nonlinear problems of equilibrium states in pure 
and applied mathematics will be briefly described in the next chapter 2 of this 
PART I.

   Koiter unified a general bifurcation theory of an elastic continuum under con-
servative loading in engineering science, and discussed its stability, post-bifur-
cation and imperfection sensitivity within his energy approach framework[1,2]. He 
had already proposed an algebraic energy function with the essential instability 
modes after eliminating the other inessential ones. Furthermore, discussions on 
the nonlinear branching, postbuckling and imperfection sensitivity of continuous 
elastic structures were made by Koiter, Budiansky and Hutchinson[3-6]. Especially, 
Hutchinson extended such a general theory to problems of instabilities in the 
plastic range[7-10].

   Research groups at University College London, associated with Thompson, 
Hunt, Roorda, Supple, Croll and their colleagues, have provided a great number 
of significant contributions to study the nonlinear branching of discrete or dis-
cretized conservative structural systems using their generalized coordinates[11-24]. 
Thompson and Hunt summarized their remarkable investigations in the famous 
monograph, "A General Theory of Elastic Stability"(1973)[25], which played the 
most important role in engineering applications of Poincare's dynamics to finite 
discrete coordinate systems. Also, Huseyin developed his multi-parameter stability 
theory of elastic structures under combined loading[26-32]. Sewell made a static 
perturbation procedure to trace equilibrium paths near critical points in structural 
buckling problems[33-371. Moreover, Thompson, Hunt, Roorda, Chilver, Supple and 
Johns have clarified the stability, postbuckling and imperfection sensitivity at the 
two-fold compound branchings[38-50]. Also, independently, Ho established a rea-
sonable estimation procedure of elastic buckling loads in nonlinear systems[51-53].

   Thompson and Hunt have unified the general bifurcation theory of elastic 
conservative systems[54-64] from a knowledge of the catastrophe theory by Thom 
and Zeeman[65-68]. The interaction concepts between such two theories of 
Koiter-Thompson and Thom will be interpreted as follows:
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Table 1.1.1  Classification of Static Instabilities of Engineeing Structures.

 issificati Classification \ Name of Structures c

O

5' U

u

Emu
Ja
V

Stand-Point Type
eo co
Rai w

View Point

Global

Partial

Local

J

J
J

J J

J J

J

./IJ

Types of
Instability
(CATAS-
TROPHE)

Limit Point, Snap-through (FOLD)
Asymmetric Buckling (FOLD)

Stable Symmetric (CUSP)

Unstable Symmetric (DUAL CUSP) J IJ

V

J J~J

J
~J

J

   In civil engineering field, the possibility of various instability phenomena may 
increase with large degree of freedoms of structures. For typical structures, 
Table 1.1.1 shows that the instabilities can be classified into global, partial and 
local ones from the analytist view point, and that they can be also identified by 
the canonical forms of catastrophe potential functions. In this table, the types of 
catastrophes are marked only of so-called distinct critical points, and the possi-
bility of interactive or coincident instabilities, e.g., umbilics, may exist for each 
type of structures marked in more than two items.

   Practical structures have unavoidable imperfections such as initial displace-
ments, residual stresses and load eccentricities in their manufacture and const-
ruction. Then, a question must be answered how such imperfections affect the 
load-carrying capacity of structures. In other words, discussions will  concentrate 
on the well-known imperfection sensitivity of structures. The catastrophe theory 
provides significant reasonable contributions on such problems [62,64,69]. The load-
carrying capacity of the structure is assumed to be the maximum value of a 
single loading parameter among several control ones as mentioned in the next 
section. The maximum corresponds to a singular point on the equilibrium surface 
of the structure. Thus, the relation between the load-carrying capacity and 
several imperfections in the stability theory can be expressed in terms of the 
catastrophe map in the catastrophe theory[64,69-71].

   The catastrophe map means a projection of a set of singular points on the 
equilibrium surface into the control-parameter space. The projection yields the 
bifurcation set in the control-parameter space, and the set explains the imperfec-
tion sensitivity curves, surfaces or spaces. For examples, the so-called "one-half 
power law" of the asymmetric buckling and the "two-thirds power law" of the 
unstable symmetric buckling are of the bifurcation sets for distinct critical 

points, which are clarified by Roorda's experiments[14] and Koiter-Thompson the-
ory[1,25]. At the same time, these sets are interpreted as those of fold and dual 
cusp catastrophes.

   Simultaneous buckling problems are focused on when two distinct instability 
phenomena take place with coincidence and near-coincidence of the loading para-
meter. Then, in a mathematical sense , the Hessian matrix of the potential func-
tion is degenerate. Thompson, Hunt, Huseyin, Hansen and others have classified 
such two-fold compound bifurcation points of the "semi-symmetric" potential func -
tion into three umbilic subtypes[42,54,72-77].

2



   This chapter presents an introduction to equilibrium, stability and imperfection 
sensitivity of conservative structural systems within frameworks of the general 
theory of elastic stability and the catastrophe  theory[78,79]. A classification of 
critical points in both the distinct and the simultaneous cases will be briefly 
described for ideal perfect systems with no initial imperfections. Then, topologi-
cal meanings of the use of the catastrophe map will be explained in order to 
evaluate the load-carrying capacity in engineering practice.

1.2 Elastic Conservative System 

   A potential function of structural system can be regarded as a function of 
the internal state variables x=(x1,x2,...,xN) for prescribed external control para-
meters (cl,c2,...,cK). The potential function is defined by[62,69,711 

  V( x, c) = V( xi, cj)(1.2.1) 

which may be regarded as a single-valued real function of (N+K) independent 
variables, x and c, and is assumed to be infinitely differentiable with respect to 
them[71,80,811. 

   The system considered is also assumed to be conservative and to behave 
elastically in the material sense except for the PART III in this dissertation. 
Further, the system is assumed to obey the following two Liapunov's axioms[82]: 

(1) For a fixed value c, the system is in an equilibrium state if and only if 
     its potential function is taken to be stationary at such state with respect 

      to x. 
 (2) For a fixed value c, the system is in a stable equilibrium if and only if 

     its potential function has a local minimum value at such state with re-
     spect to x. The system is governed by the so-called Perfect-Delay conven-

     tion in a mathematical sense[80,81,83]. 

   Figs. 1.2.1 show the concept of stability of equilibrium state. Fig. 1.2.1(a) is 
'stable" state at which the potential function has a local minimum value , and 
says that the system keeps the current equilibrium state for an infinitesimal per-
turbation of potential function near the state. Fig. 1.2.1(b) is "unstable" state at 
which the potential function has a local maximum value, and means that the 
system transforms an other equilibrium state with lower value of the potential 
function for a perturbation. Moreover, Fig. 1.2.1(c) is "neutral" state at which 
the potential function has a constant stationary value, and says that the system 
keeps any equilibrium state without regard to a given perturbation.

L/

H H

(a) (b) 

Fig. 1.2.1 Stationary Equilibrium States. 
 (a) Stable (b) Unstable (c) Neutral 
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   Now,  in this dissertation, the change of control parameters may be more 
slow, but it may be more sensitive to the potential function than that of the 
state variables. The latter may vary abruptly. That is, the former are assumed 
to be slow-time scale, while the latter to be fast-time scale[84]. Thus, a pertur-
bation of potential function may be found to be given by that of its control 
parameters in the case of considering the instability phenomenon through the 
catastrophe theory.

   A great significant problem will arise on the correspondence of the state 
variables and the control parameters in both the catastrophe theory by Thom and 
Zeeman and the elastic stability theory of structural mechanics by Koiter and 
Thompson. The state variables correspond to the generalized coordinates for a 
discrete system, and are designated as Q=(Q1, Q2,...,QN). Whereas the control 
parameters become both the magnitudes of applied conservative loads and un-
avoidable initial imperfections such as initial displacements, residual stresses and 
load eccentricities in manufacture and construction of structural system. The im-
perfection parameters can be also regarded as some equivalent loading para-
meters[55,60,61], so that the multi-parameter stability theory has been proposed 
by Huseyin et al[32,85]. Here, in this dissertation, the control parameters consist 
of a single loading one and several initial displacement ones.

   The following peculiar correspondence between variables and parameters is 
carried out for the buckling problem of slender structures or models in the dis-
sertation. The control parameters are designated as A = (Ao, A 1) such 
that A o= A is the loading parameter and the remainders A i (i=1,...,K-1) are 
theinitial displacement ones. The "perfect" system means that it has no initial 
displacements and has only a single loading parameter, that is, Ao = A , A i 
0 (i=1,...,K-1). On the other hand, the "imperfect" system possesses a single load-
ing parameter and at least more than one non-zero initial displacement para-
meters.

1.3 Classification of Instabilities

1.3.1 General remarks

   In the elastic conservative system, for fixed control parametersA , the 

gradient of its potential function defines a set of equilibrium points. That is, an 
equilibrium surface is given by a set of solutions of N equilibrium equations 

    grad V = 0 oraQ=0(i=1,...,N) for prescribedA(1.3.1) 
                             i This set yields some equilibrium surfaces in the (Q, A ) space when 11 varies . 

   A structural instability which occurs at a singular point on such an equi-
librium surface can be classified from a knowledge of its topological aspects 
[59]. The classification is accomplished by studying on the behavior of "equili-
brium paths" on the equilibrium surface when A o = A changes for both the 
ideal perfect system and the corresponding imperfect system [ 14,16,18,25, 82 ,86]. 

   In this section, consider a ideal perfect system; K=1 with only a single load-
ing parameter and no initial displacements. This case has been powerfully studied 
by Thompson et al. since 1960's[19-25]. Then, for a prescribed value A , a single-value solution of Eq. (1.3.1) is expressed by

4



 Qi = QF(A )(i=1,...,N)(1.3.2) 
where the superscript "F" refers to the fundamental solution in the equilibrium 
surface. 

   Now, consider the stability of structural system using a perturbation of the 
potential function Vdue to that of the state variables Qi from the fundamental equilibrium state, QF( A ), for a given loading parameter A . Thus, an infinitesi-
mal perturbation of the potential function, V, can be expressed by 

SV(gi, A) = V(QF + qi, A ) - V(Qq, A )(1.3.3) 
when the loading parameter A remains fixed. In whigh, (g1,...,gN) are incremental 
generalized coordinates from the fundamental one Tit. 

   The perturbation of a potential function defines the stability of the system 
in the following manner: 

(i) if S V > 0, then the system is in a stable equilibrium state, 
   (ii) if S V < 0, then the system is in an unstable equilibrium state, and 

   (iii) if S V = 0, then the system may be in a neutral equilibrium state. 

Three possible equilibrium states are graphically shown in Figs. 1.2.1. 

   An explicit form of the perturbation S V can be determined in terms of the 
Taylor expansion of V with respect to the qi (or Qi) about the origin (or the 
fundamental point F). The form follows 

    6V(1:110A)=SV(1) + S V(2) + SV(3) + SV(4) +...(1.3.4) 

where 

6v(1) = Vi( A )qi ,

S V(2) = 2Vij(Maigj 

SV(3) = 6Vijk(A)gigjgk , 

6V(4) = 24Vijk2,(A)gigjqkqQ ,

for a prescribed loading parameter A . Also, Vi, V••, Vi•k and Vi•kkk denote the 
first, second, third and forth partial derivatives withresjpect tothe q• (or Qi), 
respectively. All thederivatives are evaluated at the origin q•=0 (or the funda- 

mental point Qi= Q•. Further, the subscripts, i, j, k,... obey the summation con-
vention form 1 to N. The qi means an infinitesimal incremental displacement Sqi 
in a neighborhood of the origin. 

    When the system, stays in an equilibrium state satisfying a set of Eq. (1.3.1), 
the first term SV ")) in the right hand of Eq. (1.3.4) disappeares for any dis-
placement perturbation qi (1=1,...,N). Thus, in the first approximation, the second 
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term

 (i)

clarifies the stability of equilibrium states of the system. 

if OV(2) > 0, or if the determinant of the "stability matrix" 
matrix"

or the
"Hessian

det[ V11( A
z 

)]=det [aq q7 (A )] (i,j=1,...,N)

(ii)

(iii)

is positive 

state.

definite at the

if 602) < 0, 
origin, then the 

if 6V(2) = 0, or 
system is in an

or if 

system

origin, then the system is in a stable

the Hessian determinant is negative 

is in an unstable equilibrium state.

if the Hessian determinant 

uncertain equilibrium state.

           )det[Vij(A)] = 0 

   The above first two conditions 
function V can be expressed by 
topological sense at the origin or 
dition can be replaced for

(iii)* An eigenvalue

 (A) qj = 0 Vij 

has more than 
  A = A c.

characteristic

one

vanishes at the

(i,j=1,...,N)

 assert that, for a specified A 

a "structurally stable" Morse 

the fundamental point F. While

equation

eigenvalues

(i,1=1,...,N)

vanishing at the

equilibrium

definite at the

origin, then the

(1.3.5)

, the potential 
function in the 

 the third con-

origin for a

(1.3.6)

peculiar value

   A discontinuous and sudden catastrophe phenomenon may occur at this point 
(Qi, A )=(QC, AC), which is equivalent to an isolated "degenerate" point . Herein, the point'Fis especially designated as the capital superscript "C"

, named "cri-tical". Thus, incrementals of state variables and loading parameter from the point 
(Qi, AC) can be rewritten by 

Qi = Q i + qi (i=1.,,,.N) and A = Ac + A(1 .3.7) 
Then, the critical point (QC AC ) is transformed into the 

origin (qi,A)=(0,0) in the new coordinat
es.

   By tl~use of these notations, a determination of the sign of the quadratic 
term6Vis made through a convenient diagonalization proc

ess of its Hessian matrix V
lj( A). For this purpose, a linear transformationj(A)will be intro- duced in a neighborhood of the critical origin C (q

1, A )=(0,0J, and a new coor-dinate system ui can be further defined as follows: 

qi = ij( A) uj (i=1,...,N; j=1,...,n; n«N)(1 .3.8) 

where the transformi(A) is commonly taken as the eigenvector -matrix whose components consist of n€igenvectors corresponding to the n lower eigenvalues of Eq. (1.3.6). That is , herein, it equals to (1)ij(0) whenA=0. The critical point C 
appears at the origin (upA)=(0 ,0) in the newcoordinate.

6



   Therefore, for a prescribed incremental loading parameter  A near zero, a 
new potential function is obtained by 

D(ui, A) = V(Q i + qi, Ac + A) - V(Q', Ac + A )(1.3.9) 

in a neighborhood of the critical origin (ui,A )=(0,0). 

   Moreover, the potential function is expressed in the Taylor expansion in a 
neighborhood of the critical origin ui=0 for prescribed A near zero 

D(ui, A) = D(1) + D(2) + D(3) + D(4) + ... 

           =Di()ui+2Dij()uiuj+6Dijk()uiujuk+—
(1.3.10) (1.3.10) 

where each derivative with respect to the coordinate u; is evaluated at the ori-
gin C (ui, A)=(0,0). Since the system stays in an equilibrium state, the first linear 
terms in the right hand side vanish for all i (i=1,...,n). The second quadratic 
terms may be diagonalized through Eq. (1.3.8). 

 A) =CAsij(i,j: not summed) (1.3.11) 

where C•(A) (i=1,...,n) are called "stability coefficients", andS..denotes the 
well-known Kronecker's delta. Then, the quadratic terms are written' as the form 
of 

  2Ci(A)u2.(1.3.12) 
which determine the stability of the system considered. 

(i) If Ci( A) > 0 for all i, then the system is in a stable equilibrium state, 
(ii) if C•(A)< 0 for certain i, then the system is in an unstable equilibrium, and 
(iii) if C11(A) = 0 for more than one i, then the system is in a "critical" equi-

   librium state. 

   In two cases of (1) and (ii), the potential function D of Eq. (1.3.9) can be 
expressed in the general quadratic form, i.e., the Morse function of Eq. (1.3.12) . 
On the other hand, the case (iii) says that its critical origin u•=0 is "non-Morse" 
or "degenerate" point. This paper treats such a singular point. Since Ci(0)=0 when 
A =0, the singular point is commonly classified into two types of equilibrium 

points through the mathematical bifurcation theory by Poincare[871, Koiter[1] and 
Thompson[25,54,621 as follows: 

(a) Limit Point or Snap Through Point  

   An equilibrium path near this point has a local minimum value at which the 
system may lose its stability, and may jump an another stable equilibrium state. 
This condition can be written by 

     -3x# 0(i=1 ,...,n) (1.3.13)       -au  
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which  is evaluated at the point. 

(b) Bifurcation Point  

   More than two independent equilibrium paths intersect at this point, and the 
system may exchange its stability from a stable equilibrium to an unstable one, 
or vice versa. This condition can be written by 

D° = 0(i=1,...,n) (1.3.14) 

   Similar classification has been also developed by Huseyin in his multi-para-
meter stability theory of elastic systems[32,85]. He called the type(a) "general", 
and the type(b) "special". 

   Now, consider m-fold compound critical points such that 

    Di=O, D%=Ci=OandDaa=Ca#0 
            (i=1,...,n) (i=1,...,m) (a =m+1,...,n) 

                                                        (1.3.15) 

where the superscript "c" refers to the evaluation of each derivative at the 
critical origin C, and the subscript "i" and " a " are reordered herein. In other 

words, this condition equals that the Hessian matrix D i•=Di•(0) has "rank" (n-m) 
and "corank" m in a topological manner. 

    Under this situation, the quadratic form is the Morse function consisting of 
only the inessential state variables, u a(a =m+1, ...,n). More than cubic terms 
remain in functions of all the state variables ui (i=1,2,...,n). The main objective 
in this chapter is to describe a brief discussion on an explicit expression of 
potential function, involving the essential stable variables ui (i=1,2,...,m) and the 
loading parameter A . For this purpose, effects of the inessential state variables 
u on the third and higher order terms of the potential function must be inves-

 tigated using reasonable strategies. Koiter especially developed a powerful proce-
dure selecting some essential eigenmodes of instabilities in kinematically possible 
displacement field[1,88]* Also, Thompson and Hunt proposed an alternative method, 
which can provide a potential function an explicit expression including the active 

 state variables and the control parameters through elimination of the passive 
 state variables[56, 59,60,62]. 

    Now, (n-m) equilibrium equations for the inessential state variables 

   D  = 0(a =m+1,...,n) (1.3.16) 

leads to (n-m) real single-value solutions 

ua = ua (ui, A)(i=1,...,m; a =m+1,...,n) (1.3.17) 

which give functions of the essential variables and the loading parameter . These 
solutions require great complicated calculations since they are (n-m) nonlinear 
simultaneous equations with (n-m) unknown variables ua. Such difficulties can be 
dissolved by expanding algebraically the considered potential function. 

    Upon substitution of Eq. (1.3.17) into Eq. (1.3.9), a new potential function A 
is defined by
* In a 
tion[37,

mathematical sense, this process is called the Liapunov-Schmidt Reduc-
in chapter I-2]. 
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 A(ui, A) = D[ui, u  (uj, A ), A ]
(i,j=1,...,m; a =m+l,...,n) (1.3.18)

   Then, two potential functions of D and A give the identical important infor-
mations about both equilibrium and stability of the system considered. An equi-
valence between these two potential functions can be discussed fully in the 
chapter 1 of PART II. The instability phenomena at the critical origin (ui,A)=(0,0) 
(i=1,...,n) being m-fold compound critical point of the potential functions of D 
can be realized as those at the origin (ui, A)=(0,0) (i=1,...,m) of new potential 
function A. Thus, each potential derivative of A at any point on the equilibrium 
states is associated with that of D through formal algebraic computations by 
Thompson et al. and Niwa et al.[25,54,78,79].

AF = DF=0, Ai=Di=0,

APF = D of Aoc=Doc

AFj= Aij= Dij Ail = DC. = 0 ,

A0_ D°] AO=Do

AFjk =

AF   jkL=

DF jk

DFjk2
n 

- 3 

a=m+1 

n 
 - 3

DF.  aii

Aijk 

F Dak2

= D ijk

Aij1k = Dijkk
a =m+ 1

  F  D
aa 

DcDal]
aklC Dca

(1.3.19)

where the subscripts refer to the partial derivative with respect to the essential 
state variables ui (i=1,...,m) and the superscript "o" refers to the partial deriva-
tive with respect to the loading parameter A .. In which, such derivatives of the 
potential function A are evaluated at any points on the equilibrium states, in-
cluding the fundamental and the critical points on equilibrium paths.

   Using 
the Taylor 
For fixed 
origin C

these 
 form 

value

values, the 
 about the 

of A near

potential function A can be explicitly expanded in 
critical origin, i.e., m-fold compound critical point. 

zero, the potential function in a neighborhood of the

A(ui, A)=Ai(A 1 )u
i # 2 Ai.( A )uiuj

1 
+ 6 Ac jk( A )uiujuk +24 AljkR.( A )uiujukuR (1.3.20)
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can be obtained as a linear function of X Since the system stays in the fun-
damental equilibrium state, the first terms in the right hand side disappear in 
order to solve a set of  u1 for prescribed X. These solutions yield both the fun-
damental and the postbuckling paths in the equilibrium space. 

   Of course, the m-fold critical point is given by the origin (u1, X)=(0,0). 
Furthermore, the second terms vanish at such a point 

Ai(0) = 0 and Aij(0)= 0 (i,j=l,•••,m)(1.3.21) 

Therefore, discussions on the stability problems of the system depend on inves-
tigating the features of the cubic and higher terms at the point.

k2 Alll#0................................................................. Limit Point (Fold) 

'i=0 A1I1#0 .................................................................Asymmetric Buckling 
                                           (Fold) 

   Alll`0 Allll'0............................................. Stable Symmetric 
                                               Buckling (Cusp) 

.A111141............................................. Unstable Symmetric                                                Buckling (Dual Cusp) 

A1111=0 A11111#0......................... (Swallowtail) 

                      A11111=0 A111111#0(Butterfly) 

                              A111111=0I ... (Higher Order 
                                                    Catastrophes) 

Fig. 1.3.1 Classification of Distinct Critical Points. [25] 

1.3.2 Distinct critical point

   Thompson and Hunt accomplished a refined classification of a discrete critical 
point for m=1 by means of a reasonable perturbation procedure in their general 
theory of elastic stability[ 19-25], and they associated it with the concepts of the 
catastrophe theory[54-64]. This classification is shown in Fig. 1.3.1. The typical 
equilibrium paths are drawn in Figs. 1.4.1, 1.4.2, 1.4.3 and 1.4.4 for limit point, 
asymmetric point of bifurcation, stable symmetric point of bifurcation and un-
stable symmetric point of bifurcation, respectively. In these figures, solid lines 
denote stable equilibrium paths, whereas dashed lines denote unstable ones. 
Moreover, Q(or q) and a provide an essential state variable after eliminating the 
remainder inessential state variables and the corresponding initial imperfection. 

   A distinct critical point can be generally classified into two types: limit 
point and bifurcation point as previously denoted, (a)limit point and (b)bifurcation 
point, and is rewritten in the following. 

fLl Limit point or snap through point

   The system loses the stability at this point, which is 
first approximation in the potential function of the perfect 
in a neighborhood of the critical origin (u1, X )=(0,0) 

A(u1,A ) = 6 A111u 1 + Aiul X

unstable itself. The 
system is expressed

(1.3.22)
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which can be obtained from representing the linear term of  X in Eq. (1.3.20) by 
the use of Eq. (1.3.19). Therefore, each coefficient of the above form  is not a 
function of A , but constant, evaluated at (u 1, X )=(0,0). Then, an equilibrium equa-
tion is defined by 

a 1 A u2+A° X=0(1.3.23) au1 - 2 111 1 1 

which leads to a parabolic equilibrium path near the origin 

   = - 21A°u(1.3.24) 

              1 

 It is shown in Fig. 1.4.1 at Q=Qc+u1 and A = Ac + X . This instability may be 
 realized in structural systems such as a shallow arch loaded laterally and a com-

 plete or oblate spherical shell under external pressure. Furthermore, it may be 
 possible to associate this point with the common behavior of imperfect structures 

 at the maximum-load point in elastic and elasto-plastic ranges. 

   [B] Bifurcation points  

   The system exchanges the stability at this point, which may be uncertain 
itself. The stability of the point itself can be determined from only characteris-
tics of the point itself. Moreover, these points are classified into the following 
three types: asymmetric point of bifurcation, stable symmetric point of bifurca-
tion and unstable symmetric point of bifurcation in terms of each geometrical 
feature of the point itself. 

   [A] Asymmetric point of bifurcation  

    The first approximation in the potential function of the perfect system is 
expressed near the critical origin (u 1,a )=(0,0) 

A(u1,A) =6A111u1+2A11u1A(1.3.25) 

 where each coefficient is a constant value evaluated at the origin, similarly to 
 the above case. Then, an equilibrium equation is defined by 

a 1A u2+A°ua=0(1.3.26) 
3u1=2 111 1111 

 It yields two solutions 

                       - -              uA111(1.3.27).    u1 =0 oro1 
                         2A11 

 which denotes the trivial fundamental equilibrium path or the linear postbuckling 
 one, respectively, as shown in Fig. 1.4.2 at q=u1 and A = Ac + A . 
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  This 

such as 

stiffened

 SI

bifurcation may 
a rigid frame, a 

plates in global

Stable s mmetric

be realized in buckling problems of 

spherical shell under external pressure 

modes under in-plane compression.

oint of bifurcation

of bifurcation

structural systems 

 and eccentrically

U] Unstable s mmetric oint

   The 

expressed

first 

 near

approximation in the 
the origin (ul, A)=(0,0)

potential function of the perfect system is

A(ul, A) = 1 

24
A1111u

4 + 
1 2 A''11u1A (1.3.28)

where each coefficient is constant. Then, an equilibrium equation is

BA 

3u1 6
A1111u 3 + 

1
A11u1 = 0 (1.3.29)

It leads to two solutions

ul = 0 orA=-A1111 u1(1.3.30) 
o6A

l1 

which denotes the fundamental equilibrium path or the parabolic postbuckling one, 

respectively. Since commonly Al <0, Figs. 1.4.3 and 1.4.4 draw such equilibrium 
paths for [S] when A1111'0 and tor [U] when A1111<0 at q=u1 and A =Ac + A . 

   These bifurcations may be realized in buckling problems of structural systems 
such as the well-known Euler column, compressed unstiffened plates and 
compressed symmetrically stiffened plates in global modes for the former bifur-
cation. The latter bifurcation point may appear in structural systems such as a 
laterally loaded shallow or deep arch, a column on elastic foundations, a rigid 
frame, a cylindrical or elliptic shell under pressure and/or axial load.

   Thompson and Hunt gave fine relationships between the structural potential 
function with either of these four distinct critical points and the catastrophe un-
folding for four cuspoids. Both the first[L] and the second [Al correspond to the 
fold catastrophes. The third[S] and the fourth[U] correspond to the cusp and the 
dual cusp catastrophes, respectively [54-64]. The remainder cuspoids of swallowtail 
and butterfly, involving the higher order terms of the essential state variables in 
the catastrophe theory, have been studied by Hui and Hansen in terms of 
Koiter's theory[891.

1.3.3 Two-fold compound critical points

   When m=2, it is well known that the two-fold compound instabilities appear 
at their simultaneous critical points. Supple investigated the coupled branchings 
for two-degree-of-freedom structural systems, and clarified the interactive buc-
kling phenomena within a framework of tracking the postbuckling equilibrium 
paths[16,46,47]. Also, Johns and Chilver presented the stability and the imperfec-
tion sensitivity of structures at coincident and/or near-coincident critical

12



points[48-50]. They investigated on the simultaneous buckling problems in terms 
of the elastic stability theory. On the other hand, using both the concepts of 
the general elastic stability theory and the catastrophe theory, Thompson, Hunt, 
Roorda and their colleagues have clarified the two-fold compound bifurcations of 
the "semi-symmetric" potential function, which is symmetric with respect to cer-
tain one state mode and unsymmetric with respect to another  mode[38-45,54,72-
77,90-93,99,100]. Recently, Gaspar proposed the concept of a "critical imperfec-
tion territory" instead of the imperfection sensitivity surface[94-96,101]. Huseyin 
and Mandadi made an independent investigation on similar classifications of the 
same form of potential functions through the catastrophe theory and their multi-

parameter stability theory[32,75-77]. Also, Hansen and Hui have applied the catas-
trophe theory to the single- and two-mode buckling problems in the Koiter's 
elastic stability theory[72-74,891. 

   From many researchers' attempts, the two-fold compound bifurcations have 
some umbilic characteristics of the semi-symmetric potential functions. The first 
approximation in the potential function of the perfect system is expressed in a 
neighborhood of the critical compound origin (ul,u2, X )=(0,0,0) 

A(ul,u2, X ) =-6-A111u1+2Al22u1u2+2(A11u1+A22u2 ) a 
                                         (1.3.31) 

where each coefficient is also constant. Then, simultaneous equilibrium equations 
are 

aA _1 Au2+1 Au2+A°uX= 
 au0(1.3.32a) 2111       1_2111 1 2 122 

aAo 
    3u2Al22u1u2+A22u2A=0(1.3.32b) 

The second equation yields 

                                   o    u2 = 0 or Al22u1 + A22= 0(1.3.33) 

If u2 = 0, the first equation leads to 

ul = 0 or2A111 u1 + A11A= 0(1.3.34) 
Eliminating A from Eq. (1.3.32a) and the second equation of Eq. (1.3.33), 

projected solutions into the (ul,u2) plane are determined as: 

 u2= a u1(1.3.35) 

where         2
A11A111  

a 
A22Al22 

Therefore, the following three types of equilibrium paths can be obtained, and 
they are 
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   (i) trivial fundamental equilibrium path 

  u1 = u2 = 0for all  A(1.3.36) 

   (ii) uncoupled postbuckling equilibrium path 

   u2 = 0 and2Aillul+1=A°0(1.3.37) 

 (iii) coupled postbuckling equilibrium paths 

   Al22u1+A22A=0and u2=dui(1.3.38) 

if a<0, then the third coupled paths never exist. Thus, the canonical aspects of 
the equilibrium paths are shown in Figs. 1.4.5, 1.4.6 and 1.4.7 at A = Ac + A 

[M] Monoclinal point of bifurcation  

   As shown in Fig. 1.4.5, there exist two paths of (1) and (ii) in a neighbor-
hood of the critical point when a<0. This may be realized in structural systems 
such as a column on elastic foundations and compressed stiffened plates with 
coincidence of local and global modes. If a>0, then the signs of A111 and 
Al22 estimate the possibility of the following two bifurcation points. 

[H] Homeoclinal point of bifurcation  

   If Al- A> 0, then there exist three paths of (i), (ii) and (iii) in Fig. 
1.4.6. The 1uncoupled path and the projection of the coupled paths onto the 
(u1, A )-plane have equal sign of slopes on the (up A )-plane. This may be real-
ized in simultaneous buckling problems such as infinitely wide stiffened plates 
under compression and complete spherical shells under external pressure. 

   [An] Anticlinal point of bifurcation  

   If A11111•Al22 < 0, then there exist also three paths of (i), (ii) and (iii) in 
Fig. 1.4.7. however, the uncoupled path and the projection of the coupled paths 
onto the (u1, A )-plane have opposite sign of slopes (u1, A )-plane. This may be 
realized in the similar simultaneous bifurcation problems. 

   Both the former [M] and [H] cor-
respond to the hyperbolic umbilic Table 1.3.1 Sub-classification of catastrophe

, while, in the latter case Semi-Symmetric Bifurcation Points . [ 42 [An]
, the elliptic umbilic catastrophe 

appears.* 
Aign & o122 

   Such a sub-classification of um- 
bilics was proposed by Thompson etsamesign opposite sign 
al. using several partial derivatives of a < 0 monoclinalvoid 
the Taylor expansion of potential 
function considered. Huseyin et al. 
led to the similar results using non- a > 0homeoclinalanticlinal 
linear perturbation process. The sub-
classification is listed in Table 
1.3.1[42,43,54,72-77].

 A111 Al22

same sign opposite sign

a 0 monoclinal void

a 0 homeoclinal  anticlinal

 . 54

*  If a>0
, 

A = Ac, and 

catastrophe

Ai11=O and Al220, then there 
 (hi)with the paraclinal point of 

neglecting its fourth-order term. 

                   14

exist three 

bifurcation
paths 

for the
of (i), (ii) u2.0 , 
parabolic ambilic



1.4 Imperfection Sensitivity 

   Consider a system with only a single loading parameter and several initial 
displacement ones, regarded as control parameters . Such an "imperfect" system is 
associated with the corresponding "perfect" system with only loading parameter 
and no other  initial displacements. The control parameters are designated as a 
vector (Ao,Al,...,AK _1), whose component A0 = A denotes the loading parameter 
and the remainders Ai(i=1,...,K-1) denote the initial displacement ones as men-
tioned above. 

   In this dissertation, an imperfect system will be considered to be a perturba-
tion of the corresponding perfect system. For this purpose, incremental control 

parameters can be defined by 

Ai = Ac+ki(i=0,1,...,K-1) (1.4.1) 

where 

A o= Ac , A i= 0(i=1,...,K-1) 

when A i denote initial displacements, and a = A indicates an incremental load- 
ing parameter from the critical value Ac.o 

   The imperfect system is defined such that it leads to the perfect system 
when there exist no initial displacements. Therefore, upon the procedures similar 
to Eq. (1.3.9) for the perfect system and from Eqs. (1.2.1), (1.3.2), (1.3.3), (1.3.7) 
and (1.4.1), the reduced potential function of the imperfect system is assumed to 
take the following form 

    D(ui,aj)=V(Q i + q1,A+j)-V(Qi, Ac.+Aj) (1.4.2) 

in a neighborhood of the critical origin (ui, X j)=(0,0). In which, 

qi = 4)ij(ao)u.(i=1,...,N; j=1,...,n; n«N) (1.4.3) 

for the imperfect system. In this paper, u•are assumed to be determined from 
the eigenvector matrix••(A) independently of initial displacement parameters 
A•(j=1,...K-1) except forlthe An) parameter A.This is the reason why dis- 
cussions on the instability behavior is completed if-mperfect systems are taken 
into account for only the essential eigenmodes of the corresponding perfect 
systems. It is obviously found that a perfect system is regarded as one when all 
the control parameters X j equal to be zero from Eqs. (1.3.9) and (1.4.2). 

   Moreover, another linear transform similar to Eq. (1.4.3) is adopted for initial 
displacement parameters A 1 (i=1,...,K-1), that is, 

ai = `Y ij( ao) E j(i=1,...K-1; j=1,...,k-1; k«K) (1.4.4) 

where the transformation matrix I' ij(A) is chosen so that the partial deriva- 
tives evaluated at the critical origin(ui, %,A )=(0,0,0) 

D1 =  32D(1=1,...,n; j=1,...,k-1) (1.4.5) 1 au
iaej 
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constructs a diagonalized matrix after reordering. If the form of initial 
ments is the same as that of the relevant buckling modes, then  `Y ii( Xo 
(1.4.4) can be taken to be•j( A0) in Eq. (1.4.3). Detail descrilitions 
will be provided in the chapter1 of PART II.

displace-
) in Eq. 

 on this

   Under Eqs. (1.3.15), 
tion of the inessential 
systems,

(1.3.16) and (1.3.17), 
state variables can be

the previous 

expanded in
procedure for 
the case of

elimina-

imperfect

DC 1 
(i=1 ..... n)

     OD C• =0and 
(i=1,...,m)

DC Dan 0 
( a =m+1,...,n) (1.4.6)

where the superscript "c" refers 
the critical origin (ui, A0, Ej)=(0,0,0) 
sumed to be

to the 
. Then,

evaluation 
(n-m) real

of each partial derivative 

single-value solutions are

at 

as-

which

ua=ua( ui, A0,

yield a resultant

£j)(i=1,...,m; a =m+1,...,n; 

potential function

j=1,...,k-1) (1.4.7)

     A(u•,ao,a j) = D[ui,u a (upAo,ek), A0, ck](1.4.8) 
   It is apparently shown that this potential function must be defined so that 

Eq. (1.4.8) when A 0= X £ •=0 is equivalent to Eq. (1.3.18) in a neighborhood of 
the critical origin (ui,k,cji=(0,0,0). An explicit form of the potential function of the imperfect system canbe determined from evaluation of its Taylor expansion 
near the critical origin (u•, A , £ •)=(0,0,0). That is, for prescribed control 
parameters (A0, e.) near (0,d), tieTaylor expansion of the imperfect system can 
be estimated similarly to Eq. (1.3.20) for the perfect system. Also, the form and 
the number k of the essential control parameters can be topologically proved 
from the concepts of the universal unfolding in the singularity theory of map-
pings [62,69,81,83].

   Using such an explicit expression of the potential function A(u
i, A 0,E .) in Eq. (1.4.8), a projection of a set of singular points on equilibrium surfacePinto the 

control-parameter space leads to the "bifurcation sets" , i.e., the imperfection 
sensitivity curves or surfaces in the stability problems of structural mechanics . 

   The imperfection sensitivity curves or surfaces mean that universal explicit 
expression of relation between the essential initial displacement parameters £ 
(j=1,...,k-1) and the loading parameter A provides the load-carrying capacity of 
the system. For examples, the "one-half power law" for asymmetric buckling and 
the "two-thirds power law" for unstable symmetric buckling are those of the 
well-known imperfection sensitivity of structures , which have been already inves-
tigated theoretically and experimentally [1,3,4,11,13, 18,25,32,97]. 

   Figs. 1.4.1, 1.4.2, 1.4.3 and 1.4.4 show the imperfection sensitivity 
curves for the typical four distinct instabilities when m=1 and k=1 . Figs. 1.4.5, 1.4.6 and 1.4.7 show the imperfection sensitivity surfaces for two -fold compound in-stabiliti

es when m=2 and k=2. The correlation between Thom's and Thom
pson' theories is summarized in Table 1.3.2[54,55](Also, see Table 2.5.1 in this PART) . 

   The significant relationships and meanings between the bifurcation set i
n the catastrophe theor

y and the imperfection sensitivity surface in the structural in -

16



Table 1.3.2 Relationships between Catastrophes and Instabilities.  [54,55]

CATASTROPHES (THOM) INSTABILITIES (THOMPSON & HUNT)

fold  V=x3+ux 6D111u1+ D1Au1 limit point

cusp V= ± x4+ux2+vx 24-1111u1+2A11xu1+AiElu1
stable sym. bifurcation

unstable sym. bifurcation

Iswallow tail V=x5+ux3+vx2+wx m = 1, k = 3 rare

butterfly v=±x6+ux4+vx3+wx2+tx m = 1, k = 4 rare

hyperbolic
umbilic

V=x3+y3+wxy-ux-vy u3+2Al22u1u22

+1X(A11u1+A22u2)
+ AlElu1 + A2E2u2

moniclinal bifurcation

homeoclinal bifurcation

elliptic
umbi1ic

V=x3-3xy2+w(x2+y2)-ux-vy anticlinal bifurcation

parabolic
umbi1ic

V=x2y±y4+wx2+ty2-ux-vy m=2, k=4 rare
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stability problems will be mentioned in 
the canonical procedure to evaluate it 
in the chapter 2 of the PART II using

the chapter 1 of PART II. Furthermore, 

qualitatively and quantitatively is proposed 
the singularity theory.

1.5 Conclusions 

   This chapter reviews on the general theory of elastic stability in a topologi-
cal sense using the catastrophe theory, and classifies the static instability pheno-
mena on the basis of the canonical form of the potential function in order to 

predict the imperfection sensitivity of structures. The main conclusions are:

(1)

(2)

(3)

(4)

A potential function of structural system can be defined by a function of 

the generalized internal state variables and several external control 

parameters. 

The generalized state variables correspond to the active and essential in-

stability modes, while the control parameters correspond to a single load-

ing parameter and the associated initial modes. 

An explicit form of the potential function of the imperfect system can be 

evaluated by only significant informations on partial derivatives at the 

critical point of the potential function of the associated perfect systems. 

An effect of the initial displacements on the load-carrying capacity of the 

system is obtained from the bifurcation set in the catastrophe theory, and 

its evaluation procedure will be explained in the chapter 2 of the next 

PART.
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CHAPTER 2

SINGULARITY THEORY AND CATASTROPHE THEORY

2.1 General Remarks

   Many phenomena in natural process may take place suddenly and disconti-

nuously as the relevant external control parameters change continuously: buckling 

and collapse of slender structures, the flutter of aircrafts, the onset of tur-

bulence in a fast-moving fluid, the phase transition of fluids, the fracture of a 

crystal lattice, the evolutionary stability of stars and planetary masses, the 

charged water drops of thunderstorms in an electric field, the heat conduction 

and fluid flow in thermodynamics, and so on. Such discontinuous phenomena can 

not be systematically interpreted by the classical Newton's mechanics in which 

any continuous phenomena can be specified as solutions of unified differential 

equations with any smooth changes of control parameters.

   Thom introduced the concept of the structural stability to understand some 
topological aspect of the sudden discontinuity in natural process. He also applied 
the concept of the transversality to a canonical form of mappings. Furthermore, 
he proposed such mathematical ideas of the catastrophe theory as fundamentals 
in biology, and published the well-known powerful paper, "Stabilite  Structurelle et 
Morphogeneses"(1972), which was translated into English, "Structural Stability and 
Morphogenesis"(1975) by Fowler[ 1 ].

   It may be very difficult for our engineers to understand completely the topo-
logical concepts of the catastrophe theory since the concepts are rigorously 
derived from the singularity theory of mappings in pure mathematics. Each in-
stability phenomenon may be regarded as one governed by a potential function of 
the system considered. The equilibrium states of the system may be those for 
which the corresponding potential function is locally minimized. Then, they can 

construct an equilibrium space, i.e., a set of critical points named in pure mathe-
matics. The potential function has almost multiple local minima, then there may 
exist more than one stable equilibria of the system. When the external control 

parameters vary continuously, the number of the local minima will change in a 
discontinuous way. As a result, the allowable stable state will be exchanged sud-
denly into other unknown states. Such discontinuous phenomena may occur at a 
singular point in the equilibrium space. One of several topological forms of the 

potential function in a neighborhood of the point locally determines the struc-
turally stable characteristics.

   The Thom's Theorem allows one to classify the structurally stable equilibria 
of the "gradient system" under a small number of control parameters and to des-
cribe how these equilibria change as the parameters vary. The theorem asserts 
that, for the number of state variables < 2 and the number of control para-
meters < 4, the typical form of potential function is just equivalent to either of 
the well-known seven elementary catastrophes: fold, cusp, swallowtail, butterfly, 
hyperbolic umbilic, elliptic umbilic and parabolic umbilic.

   The useful applications of the catastrophe theory have been accomplished in 

the problems of several disciplines of mechanical engineering, hydrodynamics, 

thermodynamics, crystallography, cosmology, meteorology, economics, social sci-

ences and biology as well as pure mathematics.
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   In this chapter, a historical review on the study of the catastrophe  theory 
within a frame of the singularity theory will be briefly discussed. Furthermore, 
the chapter presents a simple interpretation of the Thom's Theorem in a topo-
logical manner accessible to our engineers. The local forms both of potential 
functions and of families of potential functions will be considered herein through 
the concepts of the Implicit Function Theorem, the Morse Lemma, the Splitting 
Lemma and the Thom's Theorem. The main mathematical background is provided 
on brief items in APPENDIXof PART 1.

2.2 Historical Reviews

   The study on the qualitative properties of nonlinear ordinary differential 
equations in dynamical systems was firstly by Poincare just last century. He for-
mulated the fundamental ideas of structural stability, dynamic stability and criti-
cal set, which form the current necessarities of mathematical bifurcation theory. 
For examples, his achievements were surveyed by Gurel in concise expressions[2]. 
Liapunov provided the mathematical definitions of stability using the generalized 
energy functions with his name at the end of last century[3]. Then, the precise 
concept of structural stability was introduced by mathematicians Andronov and 
Pontryagin in 1930's. Smale translated the qualitative dynamics motivated by 
Poincare into the modern mathematical terminologies of the differential topology 
by Andronov et al., and systemized the topological theory in dynamical systems. 
Within a frame work of singularity of mappings, Morse developed the structures 
of some canonical forms of functions in a neighborhood of isolated critical point. 
Mather also made important contributions for the singularity of CcO -mappings. 
Furthermore, Whitney discussed on the typical forms of mappings of singularities. 

   Thus, as mentioned at the previous section in this chapter, at the beginning 
of 1970's, Thom introduced the concept of transversality in order to explain the 
structural stability, and applied the transversality to the canonical expressions of 
singularities, i.e., catastrophes, for families of potential functions[1]. He also as-
sociated the catastrophe theory with applied mathematics in terms of structural 
stability[4].

   The rapid growths of the catastrophe theory to applied mathematics, engi-
neerings, economics, biology and social sciences have recently been accomplished. 
Many introduction papers of the catastrophe theory to those who not pure math-
ematicians appeared in the middle of 1970's, e.g., by Zeeman[5], Sussmann[6], 
Chillingworth[8], Stewart[8], Sewell[9] and Golubitsky[10]. 

   Zeeman made the most significant contributions to the development of the 
catastrophe theory in pure and applied mathematics. He proposed a mechanical 
model to illustrate visually the catastrophes, then the model has been called the 
Zeeman's catastrophe machine[11,12,13]. Also, he classified some elementary catas-
trophes of small codimension in view of topology[14] , and graphically described a hi

gher-order catastrophe of the double cusp[15]. Moreover, he reviewed on re-
searches of the catastrophe theory in applied mathematics and sciences[16] . No 
one exists who applied the catastrophe theory to the buckling problem of Euler 
strut[17].

   While, in the middle of 1970's, the remarkable advances of the catastrophe 
theory were made within a topology of singularity theory by Lu[181 , Lander[191, 
and et al. Particularly, Poston and Stewart clarified the relationships between 
catastrophes and the Taylor expansions being unfolding germs in terms of brief
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and rigorous mathematical representations[20]. They surveyed on applied catas-
trophe theory[21]. Recently, Stewart discussed on its applications to physics, 
chemistry and fluid  mechanics[22]. Hilton edited the well-known Lecture Note 
series on the structural stability in the catastrophe theory[23]. Also, Gurel et al. 
published the proceedings of the mathematical bifurcation theory and the catas-
trophe theory in mathematics and sciences[24]. 

   Independently of these investigations, useful researches on mathematical bifur-
cations through the singularity theory have been made by Golubitsky and Schaef-
fer [25,26,27,49]. 

   In Japan, the journal of Mathematical Sciences made up special editions on 
the catastrophe theory just after Thom's book[28,29,30]. Noguchi has rigorously 
investigated the applied catastrophe theory through Japanese translations of 
Zeeman et al.[31,32,33]. Fujii and Yamaguchi examined the numerical realization 
of the structure of singularities by means of their group theory[34-38]. 

   Several applications of the catastrophe theory to the buckling of structures in 
mechanical engineering have been carried out since Zeeman's pioneer works of 
Euler column. Thompson and Hunt unified a bifurcation theory between catas-
trophe theory and elastic stability theory in order to evaluate the imperfection 
sensitivity of structures[39]. They explained the static instabilities in structural 
mechanics using the unified theory, and wrote many important introduction papers 
[40-46]. Using such theory, the imperfection sensitivity, i.e., the load-carrying 
capacity of structures can be expressed in the form of an explicit function of 
unavoidable imperfections. Recently, they summarized the applications of the 
catastrophe theory to engineering sciences in [47,48]. 

   A great number of researches on such structural instabilities in the light of 
the catastrophe theory has been reported by Thompson, Hunt and colleagues. 
Further, Hansen and Hui, Huseyin and Mandadi, Sewell, Niwa, Watanabe and Isami 
have been discussed on the imperfection sensitivity of structures. Also, Niwa et 
al. have attempted to expand the catastrophe theory in order to predict the 
strength of steel structures in the elasto-plastic range. These contributions will 
be explained in the following PART III.

2.3 Family of Potential Functions 

   Now, consider the mathematical system governed by a potential function 

Uc:RN_+R or Uc=Uc(x),xERN (2.3.1) 

when the external control parameters c E RK remain fixed. In which, RN repre-
sents the internal state space, described by the state variables x. Tlse tern 
inologies were firstly introduced by Thom, and also Zeeman called RN and R 
the state (or behavior) space and the control (qy parameter) space, respectively. 
Particularly, it is reasonably natural to nameRasKthe unfolding space in view 
of the topological meanings. Furthermore, Rand Rrefer to an N- and a K-
dimensional Euclidian space, respectively. In structural mechanics, the former cor-
respond to the so-called generalized coordinates, while the latter does the control 

parameters such as loads and unavoidable imperfections.
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   As the control parameters c  E RK vary continuously, a change in the poten-
tial function, Uc, leads to each state of the system itself. Then, for each point 
c , there exists a smooth map, i.e., continuous and differential map 

   U : RN x RK R or U = U(x,c)(2.3.2) 

The map constructs a family of potential functions on RN characterized by RK, 
and it is called an unfolding of Uc. Then, U may be regarded as a set of per-
turbations of U. 

    U = { Uc I c E RK } or U(x,c) = Uc(x), c E RK (2.3.3) 
Therefore, both a potential function Uc(x) for fixed c and a family of potential 
functions U(x,c) parameterized by c can be defined above. In other words, a fam-
ily of potential functions, U(x,c), may correspond to an unfolding of potential 
function Uc as mentioned below. 

   The system will possess more than one minimum or maximum of the poten-
tial function Uc for specified control parameters c. Several minima will be ac-
cessible to the stable states of the system. Therefore, a question arises: which 
one minimum of all should be chosen according to a prescribed certain rule ? 
The question can be answered under either of the following two conventions. 

[i] Maxwell's convention This convention specifies the state of the system to 
     be one where the potential function Uc reaches its absolute minimum for 

     given parameters c. 

[ii] Perfect-delay convention This convention insists that the state of the sys-
     tem is one determining the local minimum of the potential function Uc. 
     The chosen state follows a continuous family of minima until these minima 

     disappear or translate to other different minima as the control parameters 
      c changes continuously. 

   The so-called catastrophe takes place at the point c=c
o where the number of minima will alter. The catastrophe means that the stable state of the system 

may vary suddenly and discontinuously with the continuous change of the control 
parameters.

2.4 Thom's Theorem 

   If, for prescribed c E TRK, the gradient of a potential function, gradUc, is 
non-zero at a point x E R', then a new coordinate system near the point can be 
chosen so that the gradient has only one vanishing direction , denoted as the "1". Th

e Implicit Function Theorem asserts that there exists a smooth change of co-
ordinates such that 

 UcNy1(2 .4.1) 

for a new coordinate y=(y1,...,yN) E RN. 

   The stable or unstable equilibrium state of the system considered can be 
regarded as the one of the minimum or maximum of the potential function 
Uc(x), respectively, for fixed control parameters c . When the Perfect-delay con-
vention is adopted herein, the stable state corresponds to the local minimum of 
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 Uc(x). Then, gradUc=O at a particular point x for prescribed c. This defines a 
set of equilibrium point, surface or space 

MU = { (x,c) E RN x RK I gradUc= 0 } C RN x RK(2.4.2) 

which the zero-gradient gradUc4I means the equations of equilibrium 

au 

   axC (x) = 0(i=1,...,N)(2.4.3) 

   Now, the equilibrium point is non-degenerate if the Hessian matrix of the 

potential function with each component 

            a2U 

U ..=3x . ax.(x)(i,j=1,...,N)(2.4.4) 

           j is non-singular at a point x, that is, 

det[ Uij Jx * 0(2 .4.5) 

c 

                 /--—\/"transverse"      AB

   graph of zero 
 function 

" non-transverse" 

\\

 grad Uc

          Fig. 2.4.1 Graphs of Zero Function and grad U. [21] 

                                                         This condition means that the graph of gradUc meets that of the zero function 
transversely(See, Fig. 2.4.1; curves AC and BC, not including the point C). Then, 
the function Uc is non-degenerate at the point x. Therefore, through the Morse 
Lemma, there exists a smooth local change of coordinates such that the non- 
degenNrate function becomes a quadratic form in a neighborhood of the origin 
OER: 

    Uc - Y21---ys+Ys+l +•••+yN(2.4.6) 
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for a new coordinate y  E RN. In which , "s" denotes the index* being the number 
of the negative eigenvalues of the Hessian matrix U•• at the point x. The non-
degenerate equilibrium point is also called an isolated' or Morse point. Conversely, 
if the Hessian 

  det[ U..]x = 0(2.4.7) 

then the equilibrium point is called a degenerate, non-isolated or non-Morse point. 

   As the control parameters c vary, a family of potential functions, U, may 
have such a degenerate equilibrium point x. In other words, since the eigenvalues 
of the Hessian matrix depends on the control parameters c, more than one eigen-
values may vanish at a point x. The number of non-zero eigenvalues refers to as 
the rank of the Hessian matrix, while, that is not the case , is called its corank. 
Topologically speaking, at the point , the graph of gradUmeets that of the zero 
function non-transversally"(See, Fig. 2.4.1; the point C).Also, the number and the 
location of the minima of the potential function Uc changes discontinuously at this point. The one of main objectives of the catastrophe theory is to determine 
a canonical expression of a potential function at this point. 

   If Al eigenvalues of
Kthe Hessian matrix Ul•vanish simultaneously at x= x

oR"when c=co E RI", then a family of potential functions, U(x,c), can be 
split into a degenerate xpart f and a Morse part, using the Splitting Lemma , for 
a new coordinate yER". 

     U(x,c)=f(y1,...,yM,c)tyM+1 t...±yN(2.4 .8) 
in a neighbo

rhood of the corresponding degenerate point, transformed into the origin 0 ERby an appropriate chan
ge of coordinates. In which, yl,...,y as-

sociated with the corank M of the Hessian matrix are smooth functions at both 
the N state variables xi,...,xN and the k control parameters cl ,...,ck. The num-ber k is still unknown, but it may be determined from the concepts of the un-
folding. Of course, k « K. These coordinates y1,...,yM are called the essential variables. Whereas the remainders yM+i,...,yN are smooth functions of only the x
l,...,xN. They also are called the inessential variables, neglected in a catas-trophe investigation. 

   The Splitting Lemma provides no informations about the form of the degene-rate function f, but the function f has mo
rethat third order terms of the yi in the Taylor expansions at the origin 0 E Rcorresponding to the original point x=xowhen

kc=co. The resultant form is accessible in the neighborhood of (xo, co) E RNNxR . 

   Since the catastrophe is assumed to take place at the degenerate 
point (x, c,), the Hessian matrix Ulj vanishes at the point. That is, the Hessian matrix' 1J• (i,j=1,2,...,M) is singular at the point. While the remainder (N-M)x(N-M) matrix 

isinon-singular, or Morse. Thom insists that there exists a smooth chang

ke of co- ordinates so that the potential function Uc at the fixed value
.c=coERcan be expressed in the neighborhood of the transformed origin 0 ERinthe canonical 

form 

Uc (x) = g(y1,...,yM) ± yM+1t...tyN(2.4.9) 
where

* The index can be determined from th
e Sylvester's Law of Inertia. The 

ratic form in Eq. (2.4.6) is called the Morse s-saddle(See , APPENDIX PART). 
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 g  : RM -+ R

The yl are new coordinates after such a smooth differomorphism, and g refers 
to the catastrophe germ. This form is available in the neighborhood of x= 
xo E RN at fixed c=co E Rk. Therefore, the result of Eq. (2.4.9) provides only 
specific form of f when c=c0 in Eq. (2.4.8). 

   Thus, Thom introduced the concept of the universal unfolding. He resolved 
such insufficiencies of f and g, thinking that U(x,c) may be regarded as a per-
turbation of Uc (x) in the neighborhooc

.of (xo,co). A k-unfolding of g is equiv- alent to the form near the origin 0 E R

V(y,c) = g(y) + h(y,c) (2.4.10)

where

V(y,c0) = g(y) when c=c0 

and y=(y1,...,yM), c=(cl,...,ck) and h(y,c) may be associated with some mathemati-
cal concepts such as the truncated Taylor expansion, the jet, the determinancy, 
the transversality and the codimension. Furthermore, the unknown number k can 
be evaluated from the versality and universality of the unfolding, that is, V is 
universe if k is the smallest dimension for which a versal k-unfolding of g 
exists.

   Hence, 

point= 
0ERxR

U(x,c)

the ,9riginal potentialunction U(x,c) with the 
E Rwhen c=co E R can be transformed in 
into the following canonical form 

= V(y,c) ± yM±1 ± ... ± YN 
 = g(y) + h(y,c) ± y M+1 ± ... ± y N

degenerate equilibrium 

 the neighborhood of

(2.4.11)

where

U(x) = 
 co

U(x,co) = g(y) ± yM+1± ... ± yN when c=co E Rk

   Therefore, the catastrophe at the degenerate equilibrium point (xo,co) is equi-
valent to the one at the origin 

    0 = (0,0) = (yo,co) E RM x Rk = RN I x Rk 
YM+1=...=YN=O(2.4.12) 

Of course, a smooth change of parameters from the original c E Rk to the cor- 
responding c E Rnear the origin 0 ERmay be necessary to realize such an 

equivalence, but herein both are designated as the same small letter c.

   Now, as mentioned above, 
determine the form of h(y,c) 
[21,54]. Their details on proof 
this dissertation. The resultant 
parameters c

the compound, but exactly concise procedures to 
have been developed by Mather, Siersma et al. 
and derivation in pure mathematics are beyond 

 form of h(y,c) follows a linear combination of
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where 

space

h(y,c)

 bi(y) 
using

= c1b1(y) + ... + ckbk(y) 

are called the cobases, and can be obtained 
the germ g. Further, their order is one less

(2.4.13)

associating with the jet 
than that of g.

2.5 Thom's Elementary Catastrophes 

   All the typical forms of germs g(y) and unfoldings V(y,c) for k < 4, M=1 or 
2 are listed out in Table 2.5.1(Also, see Table I-1.3.2). The concept of both the 
catastrophe map and the bifurcation set are also under the Thom's Theorem. 
Now, as the control parameters c vary in a neighborhood of the point co, then 
consider a set of degenerate equilibrium points near the point (xo,co) 

SU = 4 (x,c) E RN x RK I gradUc = 0 and det[Vij]x= 0 1 C MU 
                                                          (2.5.1)

Further, consider a projection 

X : RN x RK RK(2.5.2) 

onto the parameter space, then the restriction of X on MU can be written as 

  XU•MU—> RK(2.5.3) 

Tls projection is called the catastrophe map. Particularly, a set of points on 
R projected by this of SU on MU is also called the bifurcation set , designated 
as BU. 

 BU= XU(SU)(2.5.4) 

The set can be defined for (x,c) in the neighborhood of the point (x
o,co), and forms a significant point

, surface or space in the parameter space. In structural 
mechanics, the set BU specifies the well-known imperfection sensitivity curve(s) 
or surface(s) as stated in the chapter II-2(See, Fig. 11-2.2.1). 

   Finally, for the canonical potential form, V(y,c), the catastrophe map and the 
bifurcation set will be analogously treated from the Thom's Theorem . Hence, 
the Thom's Theorem says that a family of potential functions 

  U(x,c) : RN x RK —> R(2 .5.5) 

with the degenerate equilibrium point (xo,co) is equivalent to either of seven 
elementary catastrophes 

  V(y,c) : RM x Rk —> R(2 .5.6) 

with the degenerate point being the origin 0 E RMxRk.

2.6 Conclusions

  This 
of the

chapter presents an introduction to the catastrophe theory in the 
singularity theory of mappings in pure mathematics. Then , broad,

light 

 but
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Table 2.5.1 Thom's Elementary Catastrophes

Name Germ g(y) h(y,c)  M  k

fold  x3 clx

M = 1

x = y1

1

cusp ±x4 cix2+c2x 2

swallow tail x5 c1x3+c2x2+c3x 3

butterfly +x6 clx4+c2x3+c3x2+c4x 4

hyperbolic

umbilic

x3+y3 clxy+c2x+c3y

M = 2

x = y1

Y = y2

3
elliptic

umbilic

x3-3xy2 c1(x2+Y2)+c2x+c3Y

parabolic
umbilic

x2y±y4 clx2+c2y2+c3x+c4Y 4

 V(y,c)=g(y)+h(y,c) is 
where y=(Y1,Y2,•••,YM)

equivalent to the 
and c=(cl,c2,...,ck).

Thom's unfolding(See, Table I-1.3.2),
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concise, historical reviews on the catastrophe theory and its applications in en-

gineering sciences are provided. The main conclusions are: 

 (1) The system is governed by a potential function, which is a function of in-
     ternal state variables for fixed value of external control parameters. 

 (2) There exists a family of potential functions characterized by the control 
     parameters as they vary smoothly. 

 (3) The stable state of the system corresponds to the one for which the po-
     tential function has its local minimum for prescribed control parameters 

     under the Perfect-delay convention. 

(4) The catastrophe may take place at a peculiar point where the number of 
     such minima changes suddenly. 

(5) The Thom's Theorem asserts that a family of potential functions can be 
     described locally in either typical form of the seven elementary catas-

    trophes or universal unfoldings when the state variables  < 2 and the con-
     trol parameters < 4. 

(6) The bifurcation set in the control-parameter space through the catastrophe 
    map of elementary catastrophe unfolding plays a significant role in order 

     to evaluate the imperfection sensitivity in structural mechanics .
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                     APPENDIX for PART I 

       MATHEMATICAL BACKGROUND TO SINGULARITY THEORY 

   The fundamental mathematical concepts to understand the topology of the 
singularity theory of mappings will be outlined with only short comments and 
notes, and their precise proof are referred to mathematical  papers[1-10]. 

A.1 Differential Calculus 

   The first step follows some basic principles of differential calculus of several 
variables: 

Derivative  

   A function f: Rn + Rm is differentiable at x E Rn if there exists a linear 
map a : Rn + Rm such that 

ftf(x+h)-f(x)-a(h)Il  = 0(A.1)  imII 
h 

wheredesignates the so-called norm. The linear map X iswhere 

uniquelyis called the derivative of f at x. It can be describeduniquely

as                                                                         as 

                                                    (A.2)

Partial 

   For 

     Z im 

h+ 0 

exists, 

    Di 

   Using i, 

Note:

     0 

     thesymbolII11 
       •determined

, 

     x 

Derivative  

Rn;R and x 

        f(x„,x

h(A.3) 

is called the i-th partial derivative of f at x. 

or 8 x I(A.4) 

           i Rn Rm is differentiable at x E Rn, then Difi I x exists for all 
has the matrix 

3f. 

x ] or [aX-]x(A.5) 

                 i derivative, the Jacobian determinant of f at x is defined by Jf I x 

non-singular if and only if the Jacobian determinant Jf Ix = 0. 
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E Rn, if the limit

:n it 

  Di fix 

      if f: 

j, and Df Ix 

i fj I 

 Using this 

t). 

   Df x is



Note: f is continuously differentiable such that Df  I  x exists if all Dif j I x exist 
and are continuous. 

Class co  

   If partial derivatives of a function f up to order r exist and are continuous, 
f is r-fold differentiable or of class r. A smooth function is of class C°° (k=°' ). 

Taylor Series  

   For any smooth function f: R } R, its Taylor series at the origin is defined 
to be the formal power series 

 LrDrfI0xr(A.6) 
    r=0 

k-jet  

   The k-jet of smooth function f: R + R is defined by truncating its Taylor 
series up to degree k at the origin 

             k 
    7kf (x)_=r,DrfI0 xr(A.7) 

r=0 

Note: A function f: R-> R has order k at the origin if 

f(0) = D f 10 = ... = Dk-1 fl 0 = 0(A.8)

Note: 

smooth

Apparently, its Taylor series and its k-jet can be also 
functions f: Rn -> Rm.

generalized for

A.2 Diffeomorphism 

   In the second step, the type of change of coordinates is restricted herein in 
order to hold some important informations of topology. 

Diffeomorphism 

   A change of coordinates is diffeomorphism if and only if it must be smooth 
- differentiable and continuous - and reversible . 

Inverse Function Theorem 

   Let f: U } Rm (U is an open set in Rn) be smooth, and let x e U. If the 
linear map Df Ix is non-singular, then f is a local diffeomorphism at x.
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Implicit Function Theorem

a set of

Rm  x Rn + Rn is 
solutions at (x,y)

smooth and f(x0,y0) = c at (xo,yo) E Rm x Rn, and if

is the

{ (x,y)

graph of

D f I (x,y) = 0 } 
(x0,y0) 

a function y=y(x) from Rm to Rn, then a set of

(A.9)

solutions

{ (x,y) f(x,y) = c } (A.10)

is also the graph of a

Equivalence of

smooth

Functions

function locally near (xo,yo).

   Two smooth functions f, g : Rn R are 
called to be equivalent around 0 E Rn if 
there exists a local diffeomorphism y: 
Rn } Rn around 0 E Rn and a constant ' 
such that

Rn 

~ y 1R 
Rn

around

Note: 

Rn x

g(x) = f(y(x)) + Y 

0 e Rn (See, Fig.

This 

Rr3

A.2.1).

concept can be also 
R(See, Fig. A.4.4).

(A.11)

expanded

Fig. A.2.1

in the case of a

Equivalence 

of Functions.

family of functions F:

A.3 Morse Lemma

   The third step 

the classification of 

real-valued function

and Splitting Lemma

follows that the 

types of critical 

vanishes.

main objective of the catastrophe 

points at which the derivative of

theory is 

a smooth

Critical Point

A point x ERn is a critical point of f: Rn+ R if

DfIx=0or of I =_ 
axex

of 
=0 8xnI x (A.12)

The value f(x) at a critical point is called the critical value of f.

Non-degenerate Critical Point 

   f: Rn+ R has a 
is a non-degenerate 
variables n. In other

non-degenerate critical point 

quadratic form,that is, its 
words, the Hessian matrix

at x if Df 

rank is equal to

0 and if D2f Ix 
the number of
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 8zf(A.13)      H f 
x' [ 9x . Bx~3 x 

is non-singular, so the Hessian determinant. 

det [ H f I x]# 0(A.14) 

Note: The number of the negative eigenvalues, including their duplications, of the 
Hessian matrix of f at x is called the index of f at x (See, Eq. (A.18)). 

Note: Let f: Rn + R be a smooth function, and let the origin 0 E Rn be a 
critical point, such that 

f(0)=Df lo=...=Dk-1 fl0=0(A.15) 

but 

 Dk f l 0 # 0(A.16) 

Then there exists a smooth local change of coordinates under which f takes the 
form 

xk (k : odd) , ± xk (k : even )(A.17) 

and in the latter case the sign is that of Dkf to . 

Morse Lemma  

   Let x be a non-degenerate critical point of a smooth function f: Rn -)- R with 
the index k . Then, there exists a local coordinate system (y1,...,yN) in a neigh-
borhood U of u with yi(x)=0 for all i such that 

    f = f(x) - y1 - ... - yQ + y11+ ... + y n(A.18) 
for all u 6 U C Rn. In which, the quadratic form of the right hand is called the 
Morse 9,-saddle. 

Note: The Hessian is degenerate at a non-Morse critical point. 
Note: If f is a quadratic form itself, the number i can be obtained by the 
Sylvester's Law of Inertia independently of the coordinate system y. 

Splitting Lemma  

   Let f: Rn - R be a smooth function, whose Hessian at 0 E Rn has rank m, 
i.e., corank (n-m). Then f is equivalent around 0 E Rn to a function of the form 

    ± x21± ... ± x           2+f
(xm±1,...,xn)(A.19) 

where
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ti 

 f:  Rn-In  ; R

is smooth.

Note: This lemma asserts that a smooth function at a degenerate critical point 
is split into the Morse part on one set of variables and a degenerate part on 
the remainder set. Thus, from the Morse part being non-degenerate, the behavior 
of the original function f near the degenerate critical point can be realized as 
that of the remainder function f with the number of variables equal to the 
corank of the Hessian at such a point.

Note: The 

cal point.

corank of the Hessian is also the corank of the function at the criti-

Note: The 

the case of

concepts 

a family

of 

of

the Morse 

functions

and Splitting 

F: Rn x Rr-+

Lemma 
R(See,

can be 

Section

 also 
A.5).

expanded in

A-4 Structural Stability and Transversality

Structural Stability

   A smooth function f: 
valent" after a suitable 
(See, for examples, Figs.

Rn +R is 
translation 
A.4.1).

 structurally 

of origin for

stable if f and f+p 

all sufficiently small

are "equi-

function p

Note: Any function near the Morse critical point is structurally stable.

Note: 

every

A critical 

degenerate
point is 

critical

 structurally stable 

point is structurally

if and only if it is 

unstable.

non-degenerate;

Transversality

   Two 

dimension 

dimension

spaces 

 is as 

is

U, V 
small

of 
as

Rn are 

possible.

transverse if 

If dim U = s

they meet in 

and dim V= t,

a subspace whose 

then this minimal

max(

Note: The 
be af fine 
transversely

O,s + t - n )

transversality 
subspaces of 

if either

(a) their intersection

(b)s+t> n and

Note: The condition 

singular leads to the

is 

R
generalized for n 

of dimensions

X(1Y is

dim

empty, or

affine 

 s and

X(1Y=s+t-n.

that the 

condition

Hessian 

that the

subspaces. Then, 
 t, respectively.

of a smooth 
Jacobian of

function f: 
the mapping

(A.20)

let X 

 They

and Y 

 meet

Rn + R is non-

  Df= (a 
          1 is non-singular.

n • 

In other words,

Rn

the

Rm

condition is equivalent to the

(A.21)

condition that
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 E  < 0 E = o e > 0

(a)

 E  <  0 E = 0 e > 0

(b)

Fig. A.4.1 
    (a) x

 Structural St 
a + E x (b) x

ility. 

+ Ex2
[7]
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the graph of Df meet that of the zero function transversely(See, Fig. A.4.2; 
curves AC and BC, not including the point C). 

Note: The derivative of the non-Morse function not being structurally stable has 
a graph which is typical in meeting the zero line non-transversely(See, Fig. 
A.4.2; the point C). 

Note: Several examples for the transversality are typically shown in Figs. A.4.3 
in the case of two manifolds X and Y. 

 c                                                                                     "transverse" 

lik..... 
        AB 

                                                                   graphof zero 

                                                             zfunction 

c
o \ "non-transverse 

\ \ 
\ \ 

N.\ 

x x 

0 
grad Uc 

 Fig. A.4.2 Transversality [7] 

A.5 Family of Functions 

   In the fifth step, the structural stability of families of functions is briefly 
described, and the Splitting Lemma for families can be expanded herein. 

Equivalence of Families  

   Two families of functions f, g : Rn x Rr + R are equivalent if there exist e, 
y, Y defined in a neighborhood of 0 E Rn such that 

     g(x,^) = f(ys(x),e(s)) + Y (s) (A.22) 

for all (x,^) E Rn x Rr in that neighbor- Rn x Rr
hood(See, 
follows 

  (a) a 

e 

  (b) a 

y 

   such

 Fig. A.4.4). In 

diffeomorphism 

: Rr-* Rr 

smooth map 

: Rn x Rr ; Rr 

that for each s

which, e, y,  andY 

     (A.23.a) 

     (A.23.b) 

E Rr the map

ys

Fig.

e

~R 

   g Equivalence of 
 s of Functions.

 Rn x Rr_ 

A.4.4 E 
 Families

Iv
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 X 
•  

.Y

(a) transverse 

---..., X

Y 

(e) non-transverse 

/Y1

(b) 

X

X

.Y

transverse 

/Y

X

Y 

(c) non-transverse 

r---Y

Laij 
(g) transverse(f) non-transverse

 X

(i) transverse

(d) transverse

 Y

 

'X 

(h) non-transverse

(j) non-transverse (k) transverse

Y 

(1) transverse

 X

 W 

(m) non-transverse

Fig. A.4.3 Some Examples for Transversality. [ 7 ]

48



                PART II 

CATASTROPHE ANALYSIS OF  ELASTIC STRUCTURES





 ys  : Rn +  Rn or ys(x) = y(x,^)(A.23.c) 

   is a diffeomorphism. 

   (c) a smooth map 

y : Rn; R(A.23.d) 

Structural Stability of Families  

   A family f: Rn x Rr R is structurally stable if f is equivalent to any 
family f+p, where p is a sufficiently small family Rn x Rr ; R. 

Morse Lemma for Families  

   Let F: Rn x Rr } R be smooth. Suppose that the Hessian 

[ ax2     .ax.(i,j=1,...,n)(A.24) 

is non-degenerate at (x,c)=0 a Rn x Rr. Then, F is equivalent to a family of the 
form 

± y1±...±yn(A.25) 

Splitting Lemma for Families  

   Let F: Rn x Rr + R be smooth. Suppose that the Hessian 

a2F 
H _[ax . ax.lx(i,j=l,...,n)                                                     (A.26) 

                 i has corank m at (x,c)=(xi,...,xn,ci,...,cr) E Rn x Rr. Then F is equivalent to a 
family of the form 

F(Y1(x,c),...,ym(x,c),c) ± Y m+l ± ... ± y n(A.27) 
where 

ti 
     F : Rm x Rr R 

In the form, y1,...,ym are called the essential variables, whereas the remainders 

ym+1,...,yn the inessential variables negligible on the study of topology of 
catastrophes. 

A.6 Determinancy and Unfolding 

   In the sixth step, the significant problem is outlined what beginnings of 
Taylor series will be typically necessary to realize the essential features of 
catastrophes of functions considered. From finite Taylor expansions, it can be ex-
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actly determined whether the relevant function is typical or not. 

k-Determinancy  

   If, for a smooth function f: Rn  } R and any g of order k+1, any function 
f+g is locallyequivalent by a smooth change of coordinates to the_k-jet of the 
function f, jkf at 0 E Rn, then, f is called k-determinate at 0 E Rn. 

r-Unfolding  

   An r-unfolding of a function f: Rr ; R is a function 

 F : Rn+r R(A.28) 

such that 

F(xl,...,xn,0,...,0) = f(x1,...,xn)(A.29) 

Note: Denote 

F(xi,...,xn,ci,...,cr) F(c c)(x1,...,xn)(A.30) 

the r-unfolding F is regarded as a family of functions Rn } R parameterized 
by (ci,...,cr). 

Note: The internal variables, the unfolding variables, the unfolding dimension and 
the unfolding space are named as x, c, r and Rr. 

Note: An r-unfolding of f is versal if all other unfoldings of f can be "induced" 
form it, that is, they are equivalent to it. Moreover, it is universal if r is the 
smallest dimension for which a versal r-unfolding of f exists. 
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 CHAPTER 1

CATASTROPHE ANALYSIS OF STRUCTURES BY 
DISCRETIZATION AND MODAL TRANSFORMS

1.1 General Remarks

   As the degree-of-freedom of structures increases, the possibility of various 
instability phenomena increases. From the analysists' view point, the instability 
can be classified into global, partial and local ones, as shown in Table 1.1.1 of 
the previous PART I[1]. At the same time, engineering structures may be classi-
fied in terms of the types of catastrophe or instability[2,3,4]. The purpose in this 
chapter is to show whether or not these marked items in the table are correct, 
and to find the most influential parameter in each of the items. In order for 
the structures to be accounted for by means of discretization methods, a ques-
tion must be answered regarding whether or not the structure of singularities 
can be realized numerically. To answer this question, either a mathematical ar-
gument or an engineering computation will be necessary.

   In the mathematical field, Poincare made significant contributions on such 
problems in view of qualitative interpretations of differential equations. These re-
searches performed by many investigators were briefly surveyed in the previous 
PART I[5,6]. Among them, recently, Fujii and Yamaguchi tried to answer the 
question through a nonlinear operator equation in the topological group theory, by 
use of the shallow arch and shell theory of von Karman, Donnell and Marguerre 
[7,8]. Then, a numerical approximation of the problem was performed in a class 
of finite element schemes with the approximate Hilbert space. As a concluding 
remark, it was made clear that the numerical realization of the cusp bifurcation 
in the Hilbert space reveals the imperfections resulting from the use of numeri-
cal schemes which are very non-degeneric, and thus can be avoided.

   In the engineering field, however, this equation may be equally answered by 
a comparison of the results such as eigenvalue, eigenmode and load-deflection 
curves from the discretization methods with those from the closed-form solutions, 
or with those from the experiments concerned. A great number of the theoreti-
cal and numerical analyses of static instability problems using the classical 
stability theory mainly initiated by Koiter have been developed by many re-
searchers as well as by such experimental investigations[9,10]. Furthermore, 
Thompson et al. have proposed a unified bifurcation theory between the classical 
stability theory and the catastrophe theory introduced by Thom and 
Zeeman[4,11,12]. These were also discussed in the previous PART I with short 
comments. Thus, in this chapter, further introductions to the objectives of the 
associated problems will not be provided.

   This chapter is also concerned with a catastrophe analysis of static instability 

problems of multi-degree-of-freedom structural system in the light of the Thom 
and Koiter-Thompson's theories. The proposed procedure makes use of discretiza-
tion methods, such as a finite element method and a simplified element method 
[13,14] through the Lagrangian formulation, and some diffeomorphic modal trans-
formations[15,161 upon the static condensation procedure. Also, this method 
formulates a numerical evaluation of catastrophe characteristics near the critical 
point. Furthermore, the applicability and the validity of the present analysis of 
numerical formulations will be discussed within the framework of the topological 
meanings. Several results as calculated in the subsequent chapters in this PART
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II for the normal and 
in general, legitimate 
ment method will be 
canonical prototypes of

unstable behavior of the engineering structures show 
use of the finite element method and the simplified 

surely realize the singularities and instabilities of 
catastrophe  instabilities[  15-19].

that, 

ele-

 the

1.2 Formulation by Discretization

   A method of approach to 
tion and modal transforms will 
[14]. Brief descriptions on this 
I-1. Herein, the applicability 
topological sense.

a catastrophe analysis of structures by discretiza-
 be summarized in the flow chart of Fig. 1.2.1 

 procedure are performed in the previous chapter 
and validity of this method is examined in a

1.2.1 Potential function V

   Consider a potential function of a discrete structural system with M+N de-
grees of freedoms[4,13,14,18] 

U : RMxRNxRK; R or U =U(ul,wj,Ak) (1.2.1) 

under K external control parameters . In which, RM x RN refers to an Euclidian 
behavior space of dimension M+N, representing a set of two types of generalized 
coordinates, ui(i=1,2,...M) and w-(j=1,2,...,N), respectively;Rrefers to a K-dimen- sional Euclidian space, representing conveniently a single loading parameter and 
several imperfection parameters, A k(k=0,1,...,K-1)( fl0 is a single loading para-meter). In the catastrophe theory, the former denotes the internal state vari-ables; while the latter the external control parameters . The potential function can be defined by a perturbation one from the fundamental equilibrium state as mentioned in the chapter I-1. Furthermore, as stated in the chapter I-2, this potential can be also regarded as a family of potential functions in a mathe-
matical sense if it is referred to as a set of potential functions when the con-trol 

parameters Ak change continuously. The concept will be applied in evaluation 
of the form of the universal unfolding[20,21,221.

The equilibrium surface MU of this system is given by:

     MU={(u1,wj,Ak)a
u.= 0 (i=1,...,M),3u.= 0 (j=1,...,N) } (1.2.2) 

   Now, consider a static instability phenomenon of slender structures such as columns, beams and plates, that is, mainly a bifurcation problem with respect to 
the generalized coordinates, w

]-(j=1,2,...,N). Then, this surface is assumed to have the trivial solution (u
l,w•,Ak)=tui3O,11,0) for the structure with no imperfections. Hence

,w-designates essjential variables from this solution, and inessential vari- ables u
lAiust be eliminated from the original potential function U in Eq. (1.2.1). This is called the static condensation procedure . 

   In general, the variables Ili can be determined from the fi
rst M equations in parentheses of E

q. (1.2.2) in the following from: 

ui = ui(wj, A k) for 
au.= 0 (i=1,...,M)(1.2.3) 

Under this condition, the original potential function U and its equilib
rium surface M

U can be rewritten as
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 Definition of Potential Function U

of Discrete Structural System

1

"Static Condensation"

Definition of Condensed Potential

Function V

Determination of

Structural Stability

"Modal Transform"

1

A

Definition of Transformed Potential

Function D

1

^

"Elimination of Inessentia]

Modes"

Definition of Reduced Potential

Function A
u

Classification of

Instabilities

"Equivalence by the

Thom's Theorem"

Seven Elementary Catastrophes F

by R.Thom

Fig. 1.2.1 Flow Chart of the Proposed Catastrophe Analysis.
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    V : RN x  RK R or V = V(w1, Aj)(1.2.4) 

such that 

     MV={(w1,Aj)a w.= 0 (i=1,...,N) } RN x RK 

                                     for au .= 0 (i=1.,,,,M) (1.2.5) 
   This potential function V is defined as a function whose associated original 

potential function U identically satisfies equations of equilibrium for u1 
(i=1,2,...,M). Discussions on the instability of the system will be made hereafter. 
It indicates the so-called fundamental equilibrium path, w1=0 for the "perfect" 
system with only the loading parameter Ao= A . In other words, the path com-
poses of a part of the section of equilibrium surface, cut by the plane A •=0 
(j=1,2,...,K-1). The section also involves the initial postbuckling path underthe 
similar condition. 

   The catastrophe on this surface MV can be represented by the bifurcation 
set Bif X V from the catastrophe map XV: 

X V : MV + RK(1.2.6) 

   Now, an instability phenomenon may occur at a peculiar point S . Then, at 
the point, the Hessian matrix of the potential function vanishes , that is, 

                                  2 det( V1j( Ak)js= det[aw.aw.( A k)ls = 0(1.2.7) 

                                    1 

   It is apparently found that, for the perfect system, Ao = A , A .=0 (j=1,2,..,K-1), the conditio c of Eq. (1.2.7) provides a critical point or a singular point (w
1, A , A .)=(0, A ,0) corresponding to some bifurcations as stated in the chapter I-1. Whereds, as a result, Eq. (1.2.7) under Eq. (1.2.5) commonly determines the 

well-known load-carrying capacity corresponding to the maximum value of loading parameter A for prescribed Aj(j=1,...,K-1) of the imperfect system. 

1.2.2 Potential function D 

   Discussions on the catastrophe characteristics using potential function V are not realistic since a large degree of freedoms is generally involved. Thus, an eigen equation satisfying Eq. (1.2.7) is given by 

   Vijwj= 0(i
,j=1,...,n) (1.2.8) 

for given control parameters A. near zero. This equation provides the eigen-vector matrix whose components' consist of n eigenvectors corresponding to n lower essential eigenvalues. The matrix is used for an Affine transformation h
1: 

h l : Rn -, RN 
v=(vl,...,vn) -, w=(w1,...,wN) (n«N)(1.2.9) 
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can 

and 

ing

With respect to the control parameters , another transformation b
e used for the imperfection parameters except for the loading 

a translation from the critical point to the origin may be used 
parameter: 

 h2•Rk  -} RK 

X =(Xo,El,...,Ek -1) } A =(Uo,'l,..., AK_ 1) (k«K) 

Thus, a potential function D can be defined such that

where

D : Rn x Rk > R

 the quadratic 

a2D  D
i;— av

iav~

terms

or

     a2D  

 1 av,BE, 
1 ]

D = D(vi, X , E ))

similar 

one  Xo 

for the

(1.2.10)

(1.2.11)

to h1 
=X 

, 
load-

are diagonalized at the point (v1, X, E •)=(0,0,0). In which, the imperfection 
parameters E]will be rewritten as Xinthe next section of this chapter. 

   Let the equilibrium surface be designated by MD. Then, the catastrophe map 

X D can be taken so that 

XD : MD 4- Rk(1.2.12) 

   If two transformations h1 and h2 are both diffeomorphism (See, APPENDIX in 
PART I), then the potential function V is equivalent to D in a mathematical 
sense. The equivalence can be proved using their explicit expression of transfor-
mations in the next section.

1.2.3 Potential function A

   Now, consider the buckling problems treated as structural instabilities. Then, 
they lead to an evaluation of m instability modes with respect to the essential 
lowest buckling load A0 =A , i.e., Xo = X = 0. In other words, it means that the 
Hessian matrix of the potential function D has m zero-eigenvalues at the critical 

point (v1, X , E ])=(0,0,0). 

   Suppose that the corank of the Hessian matrix at the point is

corank[D1]]_ corank[
920

1 ]
] = (1.2.13)

Under 

account

this situation, 
herein[23,24].

m-fold compound instability phenomena will be taken into

Since

Den

Did is 

= 0

+ 0

diagonal, it can be shown after

(i=1,...,m)

(a =m+1,...,n)

(i: not

(a: not

reordering,

summed)

summed) (1.2.14)
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   On the equilibrium surface MD,  (n-m) equations of equilibrium, D  =0, will 

yield the following diffeomorphisms through the theorem of the Implicit Function 
Theorem: 

va = g a(v.,X, e.) (a=m+1,...,n; i=1,...,m; j=1,...,k-1) (1.2.15) 

for prescribed control parameters ( X, a j) near zero (0,0). 

   Furthermore, consider a map It) such that 

: v=(v1,...,vn) } x=(v1,...,vm,vm+1-gm+1,...,vn gn) (1.2.16) 

in a neighborhood of the critical origin (vi, X , c •)=(0,0,0). Then, it can be easily 
shown that the potential function can be writtenIas[15,20,21,25]: 

     D(vi,A,Ej) (D ,-1)(x1, X , Ej) = A(x1,...,xm) +2Daa xa 
a=m+1 

                                                        (1.2.17) 

for prescribed ( X , cj). This relationship is known as the Splitting Lemma for a 
family of functions inEq. (I-2.4.9). A potential function A can be interpreted as: 

    A : Rm x Rk } R or A = A(xl, X, E j)(1.2.18) 

and A(xi,...,xm, X , e•) includes terms higher than the third order. Variables 
x1=v1 (i=1,2,...,m) aregalled the essential state variables, and variables va 
(a =m+l,...,n) are called the inessential state variables, and Thompson et al. 
called the former active and the latter passive. 

   An equivalence between two potential functions D and A can be proved from 
an existence of the diffeomorphic map P , i.e., from the Implicit Function 
Theorem and the Splitting Lemma. Also, the number of the essential control 
parameters among all k can be determined from the concept of unfoldings in the 
singularity theory of mappings as mentioned in the chapter I-2. The number is 
designated as Q. . This may be strengthened by diagonalization of the terms 
Aii(j#0) similarly to Eq. (1.2.11). Therefore, a potential function can be rewritten 
by 

  A : Rm x 112' R(1.2.19) 

   Let the equilibrium space be designated as MA. Then, the catastrophe map 
may be given by XA: 

      XA : MAR~     -(1.2.20) 

1.2.4 Thom's unfoldings 

     When 1< m< 2, 1< 9.< 4, the diffeomorphisms g1 and g2: 

gl • Rm -+ Rm and g2 : RQ RQ(1.2.21) 

will lead to either of the well-known seven elementary catastrophes by Thom[2, 12](See, APPENDIX B in this PART). 
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   The discussions may be graphically summarized in  Fig. 1.2.2. 

RN x RKRn x RkRm x RQRm x 
UUUU 
MVMD -1 MAMF h

1xh2g1 , g 2 

 XVXDXAXF 

  RK------------Rk--------------RR,---------------RQ 

        Fig. 1.2.2 Relationship among Four Potential Functions . 

1.3 Numerical Formulation 

1.3.1 General remarks 

   In the system, the generalized coordinates describing the state variables 
correspond to nodal displacements, and the external control parameters to a 
ing parameter and nodal initial displacements. That is, 

        no= n n j = wj+1(j=1,...,K-1)(N=K+1)(1.3.1) 

Let- ui, w•, Pu•( A ) and Pw( A ) denote the nodal in-plane and out-of-plane 
displacement, and the equivaldnt nodal in-plane and out-of-plane forces, respec-
tively. The latter two forces are assumed to be known as linear functions of a 
single loading parameter no = A in the fundamental case of instability problems 
in civil engineering. An explicit form of the potential function including implicit 
function of the loading parameter can be written as[14] 

      u = U(ui,w~, n,wk) 

    = 2KP7uiu7+2K..w•w~+Ki.uiw7+ KkB~ukwiw~+2KkB~ukwiwi 

+ Krikwiwjwk +2Kiikwiwiwk +2KBBkzwiwiwkwz 

      2KBBkiwiwJwk-Z +8KBBkqwiw~wkwj,- Pi( n )ui- Pi(n )wi

                                                               will 

load-

                                                           (1.3.2) 

Here, KPH , KB3 xs , Kssy , KM and KBBkk are constants determined in 
terms of the geometry of the structure and the mechanical properties. Their su-
perscripts "P" and "B" refer to the in-plane and out-of-plane stiffnesses, respec-
tively. Moreover, the superscript "S" refers to the asymmetric stiffnesses of ec-
centric stiffeners. The symmetric stiffnesses of the stiffeners are included in 
these stiffnesses with the superscripts P and B. 

   Using the principle of virtual work on Eq. (1.3.2), a set of basic equations of 
equilibrium can be derived considering the potential, U, in a form similar to the 
nonlinear equations:
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where

Kim = K~ Ku. w  in  = Kwu 
   ni

 Kinrwr+ Kin'

KHj'wn= K
B+ KBjngswgw ns

+Kink      SS w
k+Knjkwk

and

Qi - Kinrwnwr ' c243/ = Q~u+ Qww J'

QWU PB = 2 K
mjQumwQ

QWW= 3     BB wnwgws + ( Kink + 2 Knjk)wkwn '

c~= 3 KBBgswnwgws.

Moreover, 

plane and 
direction,

let Qu , Q"' 
out-ot plank 

respectively.

and C. 
directions,

refer 

 and

to 

the

the quadratic pseudo forces 

cubic pseudo-force in the

 in the in-

out-of-plane

   Whether or not the discretizationmethod is legitimate will depend on how 
and to what extent the singularities can be realized numerically. Then, the criti-
cal loads, the buckling modes and the load-displacement relationships will serve 
as good measures in this respect. Fujii and Yamaguchi have discussed mathe-
matically the numerical realization of the nonlinear behaviors in a Hilbert 
space[7,81. Also, for square plates in in-plane compression with and without initial 
deflections, the load-deflection curves provide good numerical realizations of the 
nonlinear buckling behaviors by Tateishi, Kageyama, Yamaki and Nomura[26-311.

1.3.2 Potential function V

   Here, in this dissertation, consider buckling problems of slender structures 
with respect to the out-of-plane nodal displacements under in-plane compressive 
loading controlled by only a single loading parameter Ro = A . Then, through the 
static condensation procedure as stated in the previous section, in other words, 
eliminating the in-plane displacements, u1.
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   For this purpose, firstly, the in-plane equilibrium equations in Eq. (1.3.3) lead 
to the in-plane displacement solutions expressed in terms of the out-of-plane dis-
placements and the loading parameter 

 uj = FjmPm(A) - FjmKmk`h'k-FjmKmkk"~'kv'Q-2FjmKmkRWk"'2 
                                                         (1.3.4) 

where 

         -(Kl
mj)-1  Fjm 

tlpt is, Fjm refers to the inverse matrix of the in-plane linear stiffness matrix 
 mj• 

   Now, two types of in-plane controls are taken into account in the post-
bifurcation range: (A) load-control and (B) displacement-control. For example, in 
case of buckling problem of axially compressed rectangular plate structures, the 
former control means that the resultant axial in-plane displacement components 
are linearly distributed in the axial direction; whereas the latter means that the 
axial in-plane displacement components on the loaded edges remain straightly 
with their prescribed amplitudes. 

   Then, the two control types are assigned by difference of evaluation of the 
in-plane nodal forces: The load-control is 

    (A) P m( A) = A P om(m=1,...,M) (1.3.5a) 

where P om refers to the mode of the in-plane nodal forces prescribed. While, 
the displacement-control is 

     (B) P m( A) = A P om + p m(m=1,...,M)(1.3.5b) 

where pm denotes the magnitude of the nodal forces due to the constrained in-
plane displacements whose number is designated as Mc, and 

p m # 0 (m= a=1,...,Mc) , p m= 0 (others) (1.3.5c) 

    Furthermore, A refers to the single loading parameter as stated above, and 
however each has significantly physical difference under condition of (A) or 
(B). In the case of the load-control type (A), the parameter A indicates the 
magnitude of uniform applied load itself. Whereas, under the displacement-control 
(B), the parameter A represents the magnitude of a part of uniform load in the 
response of constrained in-plane displacements. Also, in which, the equivalent out-
of-plane nodal force is assumed to be written as 

P m( A) = A Pom(m=1,...,N) (1.3.6)m 

for both control types of (A) and (B). 

   Apparently, it is found that the type (B) may involve the type (A) when 
Mc=0. Hence, hereafter, this numerical formulation will be accomplished for only 
the type (B). 

   Let the assigned condition of Mc constrained in-plane displacements be given 
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by

 ua = famum(a =1,•••,Mc; 

where Mb refers to the number of nodes 

   Upon substitution of Eqs. (1.3.4) and 
nodal forces pa are obtained as

a#m;

with

 m=1,...,Mb) 

known equivalent

(1.3.5b)

(1.3.7)

in-plane

into Eq. (1.3.7), the

forces.

constrained

       S p
a= GakKkk`NR

  1 + 2 Ga kKkBmWQ,~'m+ C&icKPk.2B Jtwm 

(a =1,. ..,Mc)

- A Ga kP ok 

(1.3.8)

where

Ga k= HaaH ak (a,a =1,...,Mc; k=1,...,M)

H as = (H13a)-1 (a,a =1,..,Mc)

Ham= Fa m-fapFpm ( a =1,...,Mc; m=1,...,M; a #p; p=1,...,Mb)

Using Eqs. (1.3.8) and (1.3.5b), Eq. (1.3.4) can be rewritten as

uj = F-*.mPom-FimKskwk-
 jm

             1 KmkQwkwQ - 2 F ]m 

      (1'=1,...,M)

KmB1cR v'kwiz, 

  (1.3.9)
where

F jm = Fjm - FjaGam (j,m=1,...,M; a=1,...,Mc)

It is apparently shown that the difference between the conditions of (A) and (B) 
results in that between the forms of F.in Eq. (1.3.4) and F*m in Eq. (1.3.9). 
Therefore, Eq. (1.3.9) includes Eq. (13.4) under the condition (A); P m=0 
(m=1,...,M) and M 0. The difference of the control types of (A) and (B) leads to 
that of the explicit expression of the potential function. This will be discussed in 
the subsequent chapter 4 of this PART II in details.

   Upon substitution of Eq. (1.3.9) into the out-of-plane equilibrium equations of 
Eq. (1.3.3), the static condensation procedure is completely accomplished. Then, a 
set of equations of equilibrium with only the out-of-plane nodal displacements, 
wi the loading parameter A and the initial out-of-plane nodal displacements, 
wi can be determined. Thus, the condensed potential function V(wi,A , w) can be 
defined as a function of solely the out-of-plane displacements, wi, for Prescribed 
A and wj such that its equilibrium equations are given by

V.=8v= 1 
aw. 

          1

-A K9 + c
 3.3 — Kip - A 

  7

K.. "w. 
  2.3
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+ (SS+ K SS _ K 
kij

SPB _ 
jik kiBj)wjwk

1 SS + 
2( K.. + 2 KSS - K kijSPB _ 2 K 

ijk
SPB )w •w kij

jk

+ K.( w
jwkwQ

  3 
+ 2

jw kwQ,

  1 
+ 2w

jw kwQ,

 BPB— -K
ijkQ(w jwkwQ

+';.wwjw
kwQ

+ wjwkWQ          +   1w 

  2 jwkwQ ) = 0 

(i=1,...,N) (1.3.10)
where

K1j= - KmBjF* mn  u P
on K• •= K Fmn S 

nj '

KSPBSF*  ijkKmimn PB K
njk '

BPB K
ijkQ=

PB F* 
 m13 mn

PB K
nkj,

and herein, the following condition is postulated:

Ri - Pof= 0 (i=1,..,N)

where

     S R.= K
miF mn

 u P 
on

For a symmetric structural systemwith respect to the essential out-of-plane dis-

placements, this assumption may be clearly identified since K=0 and Kl k=0. 
While, for an asymmetric system,the condition may play an in~portant roll, In 
other words, the latter case saysthat the associated instability may occur on 
the trivial equilibrium path (wi, A ,w•)=(0, A ,0) for any A , and furthermore, that 
the potential function V,'. whose derivative with respect to w• can be evaluated 
from Eq. (1.3.10), may be equivalent to a perturbation of -V of Eq. (I-1.3.4). 
Also, it is clearly found that the equilibrium surface MV as defined by Eq. 
(1.2.5) can be explicitly given by Eq. (1.3.10).

1.3.3 Potential function D

   Now, consider linear terms of Eq. (1.3.10) 

( KBD-KSP-A KGB)w~= 0 (i,j=1,...,N) (1.3.11) 
which present an eigenvalue problem on the lowest value Ac of the loading 
parameter A and the associated eigenvector being the lowest instability mode of 
the out-of-plane displacements. Let (1),,.• take the eigenvector matrix, composed 
of n eigenvectors corresponding to n lower essential eigenvalues[29). Then, a 
linear transformation is defined as •
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 wl=ij vj(i=1,...,N; j=1,...,n; n«N) (1.3.12) 

This is an explicit expression of the Affine transformation h1 in Eq. (1.2.9). The 
transformation is diffeomorphic, topologically derived from the mapping 
theory[15,32]. Then, the mapping h1 is shown to be one-to-one correspondent. 
Moreover, for the control parameters, another transformation h2 in Eq. (1.2.10) is 
taken into account similarly to hi in Eqs. (1.2.9) and (1.3.12). 

   Let A. designate the generalized initial displacement transformed through Eq. 
(1.3.12) f?om wi. Each Aicorresponds tov•,and was designated asEjin the 
previous section 1.4 in th6PART I. Then, the following transformationcan be 
made with respect to the control parameters: 

      h2 : A =(Ao, X1,...,Ak -1) -> A =(Ao,A1,...,AK-1) (1.3.13) 

where 

        Ao= Ac + A , Ai="i+1(i=1,...,K-1; K=N+1) 

       c_c     A
o-~Ao=A 

     wl = I ij A j (i=1,...,N; j=1,...,k-1; K=N+1; k=n+1) 

Now, let us define a new potential D so that 

D(vi, A) ' V(wi, A j)(1 .3.14) 

Through Eq. (1.3.12), the first partial differentiation of D with respect to 

yields: 

Di =8= v•jl= 0(i=1 ,...,n) (1.3.15) 
   The explicit form of Di is given by the product of the right hand side of 
Eq. (1.3.10) and (I)  where w[ has been expressed in terms of vb

y Eq. (1.3.12). That is, equations of equilibrium of the potential function D are written 
in the form similar to Eq. (1.3.10): 

aD Di =~
i=-(A+A).aj+ (1Z1:3j-id- (A c+a)Kij]vj 

     + [KSS+'"‘-'SS-'K~SPB-K~'SPB] •v       ilk kijilk kij 
3k 

1K+ 2K - K        SSSS‘'SPB   +- 2 KSPBiv.v 2[ijkkijijkkijjk 

'N-'BB3     + Kijk2ajvx,+2Ajvkvj+2vjvkV2, I 

•
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-KBPB 
  i jk2 ajakv2 +1 

 2 XjvkvQ+ vjXkv2 

       +

  1v
jv kvi

(i=1.....n) (1.3.16)
where

= Kmn (Dmi n •
,143

j=
Krn cl mi n •

K..= Kmn,,Dmionj Kijk- SS K
mnp mi n j pk '

SPB = 
ilk

Kmnp nj pk

BB _ ijk
i

K pq 1 ml nj pk q2 ,

K +BPB = 
 ijki KmnmB   pqmi nj cl)pk(I)g2 •

   Furthermore, 

evaluating them

more 

at the

than the 

critical

second 

point as

order derivatives are 

follows:

feasibly obtained by

The quadratic terms are

a2D

ay.ay. 
 1 ]

= K-   K.. KSP- (AC+X]Kj

+ [Kijk+ 'ASS 
Kjik

'RSPB 
Kijk Kpk]k

+ [Kijk + KSS kij +
  '‘ ,SS

ik

-SPB 

13k
KPB kij-KPk] vk

+KBBk2[ XkX2 + 3 a kv2 +3 
2

vkv2

PB K
ik12,Ak~`2

The cubic

1 

2

terms are

[2Kjk2+3
'.BPB 
Kitkj +K$kB2] akv2

(i,]=1,...,n) (1.3.17a)

   _ 33 _'-SS'-SS D
1jkay .ay.av-Kijk+Kkij     1k 

'-SPB 'LSPB'ISPB'BBB 
Kijkjik --Kkij-K+ 3Kijk2A2

Kjik

+3K..vi

_ 1 

  2
[2Kjk2 +3Kk;2 '-BPB 

+ Ki2jkl i
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— [ KB,1Q+KkBj9+K Qjk]vQ
 (i,  j,k=1,...n) (1.3.17b)

The quartic terms are 

                   4  Dijk9, aviavjavkavQ=3Kijjk9, —[KB~kQ+KikBj Q,+Kiijjkl

(i,j,k, Q=1,...,n) (1.3.17c)

1.3.4 Potential function A 

   Let the corank of the Hessian matrix Di;be m. In other words, let us as- 
sume an m-fold coincident buckling. Then,'from Eq. (1.2.13) and the Implicit 
Function Theorem, it has been shown that the inessential modes, va (a =m+1,...,n), 
can be expressed in terms of the control parameters and the essential modes, 
vi(i=1,...,m), after some reordering in the form of Eq. (1.2.14). 

   Upon substitution of these expressions into Eq. (1.3.15) or (1.3.16), a new 
potential A can be defined through the Implicit Function Theorem by the follow-
ing equation. 

A(v1, A) = D[vi,va(vj, k), XQ j(1.3.18) 

where the Roman and Greek subscripts on v refer to the essential and inessen-
tial modes, respectively. 

   The substitution of va ( a=m+1,...,n) into the equilibrium equations Da =0 will 
yield the identities: 

     Da[vi,v(vj,Ak),aQl= 0(a=m+l,...,n) (1.3.19) 
The left-hand side now represents a function of totally (m+k) independent vari-
ables. Thus, the relationships between two potential functions of D and A can be 
easily obtained in Eqs. (I-1.3.19) of the PART I. 

   As mentioned in the chapter 1 of the PART I, an explicit expression of the 
potential function A can be determined by the Taylor expansion about the criti-
cal point (v1, A , A •)=(0,0,0) For any small perturbations of control parameters 
( A, A1) in a neighborhood of the zero (0,0), the Taylor expansion of the potential 
function A(v•,A,A•) can be explicitly determined similarly to Eqs. (I-1.3.20), using the relationship between D and A as follows: 

A(v1, A , A1) = Ai( A,Aj)v1+ZA..(A ,Ak)vlvj 

             1 

         +
6Aijk(aR)vlvj`'k+24A( A, Xm)vivjvkvi,                                                         (1

.3.20)
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where each coefficient is evaluated at the origin  v1=0 in the following form:

Ai( A, Ai) =ay. 1= - (AC +X)Kijaj= 
         v.=0

a2 A

A1C aj (j#0)

    ay.aa.(j*0) 
            1 (v.,A,A.)=(o,0,0) 

      VA'AJG'tiSPCG A
,a) =ay .ay.I = Kij- Kij- (A+), )Kij 

             1 3
v.=0 

    + [Kijk+Kik-Kijk-KjPk]ak

(i=1 ..... m)

Ai](

+ [KBBk2-KBjk2 l Ak)'2
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 a4A            AijkQ(A,Aj)  =  aviav~3vkavQ I 

                                                     1 

           BB'~B'~'BPB`'BPB           = 3 IZ`1~kQ-[KijkPBQ+KiloQ+KiQ~kJ 

a4A  

            =  

                c               Aiiki= av
iav .3vkavQ 

)=(o,o,o) 

in which the superscript "C" denotes the critical point 

   This potential function forms a family of potential 
     and A. near the zero (0,0), and itself means an 

associated and when (A , A •)=(0,0) as briefly mentioned 
neglect more than the second order terms of control 

•, and for their fixed value near the origin ( 0, 0„ 
famill- of potential functions can be obtained as 

A(vi,A,A) =—A.4c•kQviv.vkvj+1p'.- viv~vkXQ 

+ 6A.„viv .vk+2A..viv~+2A°.,Aviv. 

+ 1 Akgv.v,A.+A7°v, A.

(i,],k,Q =1,...,m)

 vi,a,X .)=(0,0,0)• 

 functions by perturbing 
niversal unfolding of the 
in the chapter 1-2. Then, 
parameters of A and 

1. a canonical form of a

                                                        (1.3.21) 

where the terms A v• a • and •v•vkaQ disappear since they may be higher or- 
der than the remainder1termsinEq. (1.3.21), in other words, more than the 
second order terms of control parameters (7A~) areoneglected herein. From the quadratic terms Ail (a,a.) in Eq. (1.3.20)and Aii in Eq. (1.3.21), the 
following significant eigenvalue problem can be defined at the critical point (vi, A, 
a j)=(0,0,0): 

   det [ B]-12'SP-11ckg•l= 0(1.3.22) 
which presents peculiar eigenvalues I1c corresponding to the m-fold primary 
modes of bifurcation buckling. The lowest eigenvalue amongthem is called the 
primary buckling load of the structure considered, and it is rewritten as Ac 
hereafter. 

   Also, this typical form* of the potential function A can be derived from the 
universal unfolding of the singularity theory of mappings in the PART I-
2[20,21,25]. These concepts are briefly interpreted in the previous PART I. Some 
numerical illustrations using the numerical formulation of catastrophe analysis by 
discretization and modal transforms will be demonstrated in the subsequent chap-
ters.

* See
, APPENDIX B in 

between the structural 

diffeomrohisms.

this PART II. APPENDIX B 

potential function and the
 summerizes the 

Thom's unfolding

relationships 

using some
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1.4 Conclusions

   This chapter presents a numerical formulation of catastrophe analysis in order 
to evaluate static instabilities of multi-degree-of-freedom structural systems in 
civil engineering field. The main conclusions are:

(1) The present procedure makes use of discretization methods such as a finite 
element method and a simplified element method, and also of several 
modal transformations.

(2) The method finally leads to the determination of the canonical form of 

potential function by means of evaluating the Taylor coefficients at the 
critical point of the associated instability in the light of the Thom and 
Thompson's theories.

(3) The  instability phenomena for the original potential function with the mult-
iple state variables can be numerically 

Thom's seven elementary catastrophes 

through some diffeomorphisms.

realized as those for either of the 

with one or two state variables

(4)

(5)

(6)

The proposed procedure can be mainly applied to bifurcation problems 
having no prebuckling equilibrium solutions. Then, several features of 
bifurcation, postbuckling and imperfection sensitivity will be predicted 
herein. 

It is clearly found that this method will be also applicable to the common 
instability problems with linear or nonlinear prebuckling equilibrium solution, 
since the solution can be regarded as the fundamental one, that is, its 

potential function can be defined as a perturbation from the fundamental 
state. 

Some numerical demonstrations will be performed in the subsequent chap-
ters in this PART II on the typical civil engineering structures or struc-
tural elements such as columns, plates and stiffened plates.
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                         CHAPTER 2 

 EVALUATION ALGORITHM OF IMPERFECTION SENSITIVITY 

2.1 General Remarks 

    Several comprehensive studies on the relationship between the general elastic 
bifurcation theory and the catastrophe theory have been developed by Thompson 
and Hunt. They revealed that an elastic structural instability under conservative 
loading can be classified in the form of either of Thom's seven elementary 
catastrophes[ 1-6]. 

   According to the Thom's theorem , an instability near the prescribed critical 
point in the relevant space can be realized as that near the origin in the space 
after certain consistent transform. The consequent potential energy A near the 
critical origin can written by[7-12] 

A : Rm x Rk -+ R or A = A(vi, X,e]) 

where vi refers to the essential i-th instability mode , and (vi,...,vm) spans the 
state space Rm in the catastrophe theory. Also , a refers to the imperfection 
mode corresponding to v•;J~designates an assigne'd conservative loading para - 
meter. Then, the control'space is spanned by (A, e . l so that k=m+1. An explicit form of the potential energy can be defined by Taylor's expansion near the 
critical origin[7,8,I31. 

   Thompson and Hunt investigated the imperfection sensitivity surfaces of struc -
tures using a perturbation procedure with the discrete generalized coordi -
nates[3,6,14,151. Hunt proposed a perturbation algorithm for the compound in -
stabilities with the parabolic , hyperbolic and elliptic umbilic catastrophes[16-21]. S

uch umbilics were also illustrated by Gasper for simple strut models[22
,23,24]. Moreover

, the swallowtail and the butterfly catastrophes as well as the umbilics 
were examined by Hui and Hansen through Koiter's general stability th

eory for beam
, plate and shell models[25-28]. 

   This chapter discusses on a direct computational algorithm to e
valuate the effect of im

perfections on the elastic load-carrying capacity of structures through 
the singularity condition in the catastrophe theory without using a 

perturbation process. The bifurcation set representing such imperfection sensitivit
y is explained briefly with topological meanings. For some simple typical examples in structural 

engineering, the bifurcation sets will be spatially drawn in th
ree-dimensional load-imperfection

s space by the use of the proposed formulation . 

2.2 Imperfection Sensitivity 

   Let a potential energy of an elastic conservative structure b
e mathematically rewritten as: 

A:RmxRk R 
(v1, A , el) 4- A = A(vi, A , e j)(2 .2.1) 

Under the principle of the stationary potential energy
, the necessary and suffi-cient condition for 

equilibrium states of the structures can be described b
y 
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 MA= {(vi,X,C.)~av= 0 (i=1,2,...,n)} c  Rm x Rk 
                                                        (2.2.2) 

which constitutes the equilibrium surface in an (m+k)-dimensional Euclidian space 
Rm x Rk. 

   Then, on the surface MA, a set of singular points SA is obtained by means 
of the condition of the zero-determinant of the Hessian matrix of the potential 
energy: 

                                a2A={(vi,X,E~)1av= 0 and det[ ---------] = 0 }eMA 
                      1

(i,j=1,...,m) (2.2.3) 

These (m+1) equations may be resolved in terms of k=m+1 control variables being 
one loading parameter X and n imperfection parameters E j(j=1,...,m) for given 
state variables vi(=1,...,m). 

   On the other hand, in the singularity theory of mappings, the catastropl3e 
map XA is referred to as a projection of MA to the control space (A, E 

3) E R, that is, 

    MARk  X A
(viX,Ej)-*(X,Ej)(2.2.4) 

Then, the bifurcation set BA Rk is obtained as 

 BA = X A(SA)(2.2.5) 

   As the map is not one-to-one correspondent, assume a projection b to exist 
in the following form: 

: Rm+l } MA 
(vi, X) ; (vi,X,Ej)(2.2.6) 

such that the projection is one-to-one correspondent. It means that each imper-
fection E • can be solved for any prescribed values of vi and X . Thus, a chained 
map is determined by 

   XA4) Rm+l + Rk 
(vi, X ) (X , E j)(2.2.7) 

where k=m+1. The map becomes singular if and only if the Jacobian of XA4 is 
equal to be zero: 

3 3ax ! ax 
9v1 3v2 • • • a m a X 

                  ae1 Del --3E1 3E1 
                        3v1 av2 • a m ; a X 

J(XAcb) = det = 0 

                                                                       • 

             35 aE
maEm 35m (2.2.8)                          m

3v., 3v2 .•• a m aX 
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This relationship determines a set of singular points at which the one-to-one cor-
respondence of  XAct) vanishes(See, Fig. 2.2.1). Therefore, the bifurcation set BA 
can be appreciated to be the set of singular points on MA as follows: 

 BA = {(X,E7)I3 v1-=v 0 and J(XA~) = 0                     1 for a given (v1,v2,...,v)} Rk                                                         (2.2.9) 

   Meanings of two sets of SA and BA in Eqs. (2.2.3) and (2.2.9) are entirely 
idlentified, and indicate the imperfection sensitivity surfaces in the control space 
R R.

2.3 Distinct Instabilities 

2.3.1 Fold catastrophe 

   The first illustration is a typical fold catastrophe, which may be realized in 
a structural models such as a rigid frame and complete or oblate spherical shell 
under external pressure [3,11,15,29]. The mathematical form of the potential 
energy can be expressed for m=1 and k=2 from Eq. (2.2.1): 

A : RI x R2 R 
(v1, X . E1) ÷ A = A(v1, A. CO(2.3.1a) 

or in the Taylor's expansion 

    A(v1,X,E1) =6Alllvl+2Allvl+ A1v1E1 
(2.3.1b) 

whose coefficients are evaluated at the critical origin. The subscript "1" denotes 
the differentiation with respect to the instability mode v1; whereas the super-
script "o" and "1" refers to the differentiation with respect to the loading 
parameter X and the imperfection parameter E1 corresponding to v1, 
respectively. That is, 

     a3A oa3A 1 __ a2     A_111.a.,3i' A__llaviaaAl av
1aE1 

These notations will be adopted hereafter in this chapter. 

   Then,the equilibrium surface MA in Eq. (2.2.2) is given by 

  MA-{(v1'X' E1) I A1=a 
1 2A111v1+X11v1+ A1                                            E1 = 0 } c R1 x R2 

(2.3.2) 

Moreover, the set of singular points on MA is obtained from Eq. (2.2.3), and is 
written by 

                      a2A   S
A= {(v1,X,E1)I A1= 0 and A11=av2= A111v1+ XAi1=0} MA 

          1(2.3.3) 

     Now, let a projection in Eq. (2.2.6) defined explicitly as:
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 Rm+1

Vi 
 X

XAm

XA

A

V:

A

BA =  XA(SA)

Fig. 2.2.1 Catastrophe Map and Bifurcation Set. [10]
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 = (v1, A)  -> (v1, 

Hence, the zero-determinant 
given by 

aX as 
av1 ai 

  det aE aE= det 
11 
     av1ax 

Therefore, it is clear that 
and (2.3.5) is completely ide 
form of the bifurcation set 

(2A111A1c1 )r

 _  A111 V1 

                 - 

      2A11      2A1 

condition of the

t the 

identified 

t can

 O 

AlX v1 ) 
 1 Jacobian of

     0 

           0 

_ A111_A11 1vi1A 

AlAl 

urcation set in 

ified with the set 

I be determined by

XA43

1 

O 

_ A11 

  Alvl   A1 

Eq. (2.2.9) 
SA in Eq.

  (2.3.4) 

in Eq. (2.2.7) is

= 0 

     (2.3.5) 

through Eqs. 
(2.3.3). An

 (2.3.2) 
explicit

f_ o(2.3.6)             A
11 

which means that the imperfection sensitivity obeys the one-half power law. 

   The bifurcation set is drawn in two-dimensional control space (a, ci) . How-
ever, it can be drawn spatially in three-dimensional space (X, si, e2) adding another 
void parameter e2 as shown in Fig. 2.3.1[29]. The parameter c2 may be 
arbitrary, but must correspond to another mode v2 independently of the mode v1. 

2.3.2 Dual cusp catastrophe 

   The second example includes a typical dual cusp catastrophe, which may be 
realized in the models such as a laterally loaded arch, a column on an elastic 
foundation, a pony truss and a cylindrical or elliptic shell under external pressure 
and axial load [3,11,15,29]. Then, the potential energy in Eq. (2.2.1) for m=1 and 
k=2 leads to 

  A : R1 x R2 ; R 
(v1, X, c 1) - A = A(vl, A , e 1)(2.3.7a) 

or 

A(v1'X'e1) = 24`-'1111v1 +2A11v1+Alv1E1 
                                                        (2.3.7b) 

which characterizes a cusp or dual cusp catastrophe whether A is positive or 
negative.1111 

   In this case, the equilibrium surface MA yields 

   MA{ (v1'X'E1)IA1-av1 6A1111v1+AA11v1+A1E1=0 /- x R2 
(2.3.8) 

and the set of singular points on MA is 
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 SA=((v1 ,a,e1) IAl=0 and A=a?`a'- 1 A 
                       11-- - 2 

1

2O 

      11t 1111v1+~A° 0J
c MA 

   (2.3.9)

   Similarly to the case of the previous fold catastrophe,a projection 1) is 
defined as follows: 

                                         A0 (v,X)->(Vi ,X,-p'1111V-11av1) 
6AlAl(2.3.10) 

Therefore, from the zero-determinant condition in Eq. (2.2.8), the bifurcation set 
BA in Eq. (2.2.9) being equivalent to the set SA can be revealed apparently. 

   Thus, the imperfection sensitivity surface is expressed by the two-thirds 
power law: 

    iz 
         (A1111)3 (3A1e1 )3 

 d_ ±2 A~
1(2.3.11) 

   Assuming the null parameter E2 similar to the fold catastrophe, the bifur-
cation set is visually drawn in Fig. 2.3.2(291.

A  A

 Fig. 2.3.1 Bifurcation Set for 

Fold Catastrophe.
Fig. 2.3.2 Bifurcation Set for 

Cusp Catastrophe.
Dual

2.4 Compound Instabilities 

   The third illustrations have some umbilic characteristics 
ized in the compound instabilities such as struts on an 
stiffened plates subjected to in-plane loading. The typical 
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, which may be real-
elastic foundation and 
form of the potential



energy is assumed to be

 A  :  R2  x  R3 
(v1,v2, A , Cl,

given

R 
62)

for m=2 and k=3:

-> A = A(vi ,v2, A , E 1, E 2) (2.4 .1a)

or

A(v1,v2,X,E1,E2) =1A 
6 111

3 12 
°1+2Al22v1v2

+2(A11v1+ A22v2) + A1v1E1+ A2v2E2

(2.4.1b)

Then,

MA = 1(v

  The 

of the

 det(

the equilibrium

1iv2,X,e ,E2)

set of 
Hessian

a2A

singular 

matrix o

 surface MA is obtained by 

  _aA__12 12  A
l ayl2A111v1+2Al22v2 

         +AA11v1 + Al El 0 
     aA A

2 av2-Al22v1v2+a A22v2 + A2E2 = 0 
                                     (2.4.2) 

points can be defined from the zero-determinant condition 
 Eq. (2.4.2) in the following form:

av
iay.I= All-           11A22 

(A111v1

- (A

+ A A

  2 

12) 

11)(Al22v1 + A 22) - (A 122v2)2 =  0

(2.4.3)

Eqs. (2.4.2) and (2.4.3) provide

In the mapping theory, a  projection

: (v1,v2,X)

The 

ing

bifurcation 
Eqs. (2.4.2)

  (vl,vX         2,

set 

and

BA in 
(2.413)

 A111 2A 
- 

2A1v- - 1 

 Al22 

  A2vlv-         2    2

Eq. 

nto

the set of singular points SA in Eq. 

 .ojection (1) is obtained by 

                        0

122

Al  1 

0 

22 X 
22 

 A2       )   2

(2.2.9) can be 
Eq. (2.2.3):

2 
v_

All a vl 

 1

represented as

(2.2.3).

(2.4.4)

the set SA substitut-

SA = t(X,E1,E2)

was

Now, the 
shown to

form 

be

A1= A2= 0 and 

(A111v1 +AAll) (A122v1+ A A

of bifurcation sets 
definitely described

for the 
by Eq.

22) - (A

fold 
(2.3.6)

122
v2)2 = 0 (

2.4.5)

and dual cusp 
 and (2.3.11),

catastrophes 
respectively.
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However, it is very difficult to make an explicit expression of bifurcation set 
for the umbilics. Therefore, Thompson and Hunt clarified the umbilic charac-
teristics using a manipulative perturbation  algorithm[1,41. In this chapter, a non-
perturbing direct procedure will be presented in the following manner: 

   Firstly, some equilibrium paths on MA in Eq. (2.4.2) for perfect structures 
e 1= E2=0 are obtained as follows: 

v1 = v2 = 0for all a(2.4.6a) 

v2 = 0, 2A111v1+ a A11 = 0(2.4.6b) 
and 

1                  2AA 

    Al22v1+XA22=0,v2.=±.(olA111)2vl 
              A22122(2 .4.6c) 

if and only if 2Ali/A22 > A111/Al22 • Eq. (2.4.6a) provides a trivial fundamental 
path imbeded on the X -axis. Eq. (2.4.6b) shows an uncoupled secondary line on 
the plane representing the asymmetric postbuckling path with respect to only v1. 
Moreover, Eq. (2.4.6c) indicates two coupled secondary lines spread spatially in 
(v /,v9, A) space. This  case is previously discussed in details in the chapter 1 of 
PART I. 

    Secondly, consider imperfection sensitivity for imperfect structure E1#0, E2 
=0. Then, from Eq. (2.4.2), v2=0 is reasonably satisfied. The following two imper-
fection sensitivity surfaces can be easily calculated. 

            (2A111A1E1)2 
a=xQ =± o                                                               (2.4.7a)                 A

11 

and 

                (2Al22A1e)2         1  
A = Xb ± 

A(2A11-A111)2(2.4.7b) 
           22A

22Al22 

It is found that Eq. (2.4.7a) is identically equal to the imperfection sensitivity of 
 the fold catastrophe with respect to only v1 or E11 referring to Eq. (2.3.6). 

Subscript " 2 " refers to the set of limit points with fhe asymmetric bifurcation 
 point. Also, Eq. (2.4.7b) gives the imperfection sensitivity for the secondary 

bifurcation points with respect to v1 only, being designated by the subscript "b" 
if 2A11/A22> A111jAl22' 

    Finally, for computation of general imperfection sensitivity of imperfect 
 structures, e1: any, e2#0, three equations in Eq. (2.4.5) will be solved simul-

 taneously and directly. The consequent imperfection sensitivity surface can be ob-
 tained by 
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   _(Al22)3x4 - A111(A2)2C2   -a
u_ ±when             A

2(A111A22- Al22A11) x  E2 

where x designates an available real root of 

  A22(Al22)4(A111A22- 2 Al22A11) x8 

+ A (A2)2L 3(A )2(Ao )2- 2A A A    122 2 122 11 111 122 

  + 2 (A2)2A1(A111A22- Al22A11)2 E1622x2

0 

AoA   l  22

111

122

he following eighth

(2.4.8)

order

                                     1122+ (A111)2(A11)2)E2 x4 

                                        111(A11)2(A22= 0

equation:

(2.4.9)

If A11/A22 = A111/Al22 , that is, in the case of the spherical shell conditions 
named by Thompson and Hunt[151, then an alternative implicit expression for Eq. 
(2.4.8) leads to 

L1(Ao)2A a2                     (Al22)2A1]2= (Al22)3A111(A2)22E2   2 22 111 s112 

                            22(A)2A                                         1222                  for Xs>2ei(2.4.10)                                     (A0
22)A111 
   Hence, the umbilic imperfection sensitivity surfaces can be defined from Eqs. 

(2.4.7) and (2.4.8), or Eqs. (2.4.7) and (2.4.10). These results confirm the closed-
form solutions obtained by Thompson et al[15]. For evaluation without compli-
cated calculations, a polar coordinate (E, e) for the Cartesian ( E1,E 2) is adopted: 

E1= E cose , E2 =Esine for 0=e < 27T(2.4.11) 

   Then, Eqs. (2.4.7), (2.4.8) and (2.4.10) can be rewritten explicitly for a given
E

aQ _ T

on the line of a =constant: 

       • 2 
    (2A111A1E)

b

All

        1 
    • 2 

(2Al22A1E)

 1 

) 2

for

for

e = 0 or 7f

 0 A

22(

e = 0 or 7f

(2.4.12)

2A0  11 A111

+ (Al22

 0 A

22 

)3x4 -

Al22

A111(A2)2E2

when

  All

#A 

AoA 22 

0<e<

111

(2.4.13)

u   00 A

2(A111A22- A122A11)x E

where x is a proper real root of the

for

following

122

_.f,

equation

e~

from Eq.

(2.4.14)

(2.4.9):
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and

A22(A

 +  A

   4 

122) (A111
A22 - 2 A

   • 2 

122(A2)[3 (Al22

+ 2A1(A2)2(A 

furthermore,

X
s=±

  08 

122A11) x

2 )(All)2 - 2 A
    0 

111A22- A

        2• 2(A

122)Al

122

111

0 A

l22A11A

A° ) 2E3x2 - A

(Al22)3A

111

111(A2)

° + (A 

22 111

2 )(A22)2]E2x4

(Al244 
  l)(A2)E = 0

1 A 

2 111
(A22)2

  1 

2 2 1 

— E ]2

(2.4.15)

for 0 < e < 2Tr, e # Tf (2.4.16)

in these equations 

       • 

   Al= Alcos e

Also, 

radius

and
• 2 
A2 = A2

the superscript " • " 

imperfection parameter

sin e

designates 

E on each

for 0 < e < 27

the differentiation 

e ray.

(2.4.17)

with respect to the

   Some illustrated drawings of the bifurcation sets for the hyperbolic umbilics 
are performed in such manner. The first example as shown in Figs. 2.4.1 cor-
responds to the imperfection sensitivity with the monoclinal point of 
bifurcation[111. The instability has two equilibrium paths in Eqs. (2.4.6a) and 
(2.4.6b) for the perfect structure, and the bifurcation sets can be expressed in 
terms of XQ, Xb and au.

   The second illustration represents the imperfection 
homeoclinal point of bifurcation, including three equilibrium 
for the perfect structure. The bifurcation sets are drawn in 

Ab , and X
u[11]. 

X

 E2

sensitivity with the 
paths in Eqs. (2.4.6) 

 Figs. 2.4.2 for At ,

Fig. 2.4.1 Bifurcation Set 
 for Hyperbolic Umbilic 

 Catastrophe with Mono-
 clinal Bifurcation.



 £2

Fig. 2.4.2 Bifurcation Set 
 for Hyperbolic Umbilic 

 Catastrophe with Homeo-
 clinal Bifurcation.

El

2.5 Conclusions 

   A direct computational approach for evaluating the imperfection sensitivity of 
structures was presented in terms of the bifurcation set through the catastrophe 
theory. The main conclusions are: 

 (1) The singularity condition on the equilibrium surface is definitely consistent 
     with the zero-determinant condition of the associated map. XA4. 

 (2) The bifurcation set for a typical fold catastrophe can be explicitly realized 
     by the 1/2-power rule X. 

 (3) The bifurcation set for a typical dual cusp catastrophe can be realized by 
     the 2/3-power rule Ad. 

 (4) The bifurcation sets for typical hyperbolic umbilic catastrophes can be 
     consequently composed of A A

b, Au(or As) and their combinations. 

 (5) Each bifurcation set may be visually drawn in the three-dimensional load-
     imperfections space, and may confirm Thompson's results. 
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CHAPTER 3

APPLICATIONS TO ELASTIC COLUMN  STRUCTURES

3.1 General Remarks

   The load-carrying capacity of structures is generally adversely affected by 
imperfections such as initial deformations, eccentricities and residual stresses. 
This is what is called the imperfection sensitivity of structures. 

   It is general practice to solve the elasto-plastic and geometrically nonlinear 
equilibrium equations for evaluating the load-carrying capacity . For this purpose, 
such numerical procedures as Newton-Raphson's, perturbation , incremental and h

omotopy continuation methods are commonly used. Consequently , the load-carry-i
ng capacity of structures can be plotted against the initial imperfections . H
owever, these results can only be obtained in a discrete numerical form and 

are generally time-consuming. 

   In this respect, an application of the catastrophe theory to the strength pre-
diction of structures may be found to be useful as stated in the previous PART 
I. The load-carrying capacity of structures can be evaluated explicitly by means 
of the bifurcation set of the catastrophe map. The catastrophe map, herein, is 
defined to be a map of singular points of equilibrium surface on the control 
space, spanned by a loading parameter and several imperfection parameters. The 
mapped surface is called the bifurcation set, designating the adverse effects of 
the initial imperfections. It can be evaluated without resorting to the solution 

process of the nonlinear simultaneous equations. 

   This chapter provides a comparative study on the continuous analyses and dis-
crete analyses for column models in relation to the models by Thompson et al. 
and Niwa et al[1-51. The first symmetric buckling model corresponds to an Elas-
tica model, normal simple struts and rings, struts on an elastic foundation and 
normal thin plates subjected to in-plane loading. The stability of such models has 
been analyzed by Thompson in terms of the differential equation, continuous 
method and finite element method[6]. The second unstable symmetric buckling 
model corresponds to a laterally loaded shallow arch, a column on an elastic 
foundation, pony truss and a cylindrical or elliptic shell subjected to an external 

pressure and the axial load. Furthermore, the third asymmetric buckling model 
corresponds to a rigid frame in the well-known Roorda's experiments[7,8], and in 
Britvec's analysis[91, to a complete spherical or oblate spheroidal shell under ex-
ternal pressure. 

   All proposed models are assumed to be elastic conservative systems. 
Therefore, the necessary and sufficient condition of the equilibrium of the sys-
tems is the total potential energy being stationary, whereas the condition of the 
stability of the equilibrium systems is the second variation of the total potential 
energy being positive definite[10]. Furthermore, these column models are assumed 
to be inextensible along their neutral axis. The load is assumed to act conserva-
tively in the axial direction, being controlled by a single loading parameter. 
Thus, the total potential energy of a column structure can be expressed in terms 
of a single loading parameter, the lateral deflections and prescribed initial 
deflections. The initial deflections are assumed in the same modes as the con-
sidered buckling ones. The other imperfection parameters such as load ec-
centricities and residual stresses are not considered herein.
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   Thus, several interesting comparisons can be among those three catastrophe 
analyses: the two-degree-of-freedom analysis, the continuous analysis and the dis-
crete analysis. The applicability and the feasibility of the proposed method are 
discussed in the later section. 

3.2 Continuous Analysis 

3.2.1 General remarks 

   A continuous analysis on stable symmetric, unstable symmetric and asym-
metric buckling models will be presented. The discussions will be made as brief 
as possible here, and detailed descriptions may be provided in references by 
Niwa, Watanabe and  Isami[3,4,5]. 

   Let W(X) and W(X) designate the lateral additional and initial deflection of 
column structures, respectively, where X refers to the coordinate taken along 
the deformed neutral axis of the column. Fig. 3.2.1 illustrates a simply supported 
column, referred to as the stable symmetric buckling model[1,6]. 

_L _

  71(___IVAX)                                          Fig. 3.2.1 Simply Supported 

 AColumn  Model. 
   In the inextensible column, a curvature Kr at the coordinate X can be 

designated as: 

Xs= W, [l —(W,s+Wo,:)Z]-:4 

      = W, + —2- W, W, ~2 

                                                        (3.2.1) 
where W,r=dW/dX and W,,r,==d2W/dX2 

   Also, a shortening d at the right end as shown in Fig. 3.2 .1 can be shown 
as: 

d= J[1—{1—(W,s+W0,.)Z)%4] dx 

    JL(1 W,Z+WW14)             :,o,s+g W,:dx 
 0 2                                                         (3.2.2) 

where L is the constant total length of the column structure . In Eqs. (3.2.1) and (
3.2.2), the terms of (W,, ,)z and the higher order terms of W, s are assumed to b
e negligible. 

   Let us introduce the following non-dimensionalized parameters: 

                                  X'm=L_,14'0=Lo,d=-----El(3.2.3) 
where EI refers to the constant flexural rigidity of the column structure

, and P refers to the axial load 
applying at the right end.
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Table 3.2.1 Various Approximations of  Flexural 

Curvatures and Edge Shortening.

 Approx-
imation Curvature xx Shortening d Remarks

Wxi J o(2W'x2+w,xW,x)dx
Linear
Eigen-Value
Problem

2 W,u'i2 W sxW x'- l o Z Wx2+Wxw,x)dx
3 W.. J o ̀- w - w, Wo,x+ S W:")dx
4W, 4_W,txWr2 f: l 2 W,x +W,xW ,x+ W,r')dxPresent Analysis,

Eqs. (3.2.1) & (3.2.2)

   Then, the non-dimensionalized total 
the sum of the flexural strain energy  and              

1 '     V(w, A, wo) =J(w, I.cfw,?..w,i)dx 

                         0 

           —dJo\2,iI~v>:wo,~+$w,r)dx 
where. w,s=clw/dx, wo,.r=dwo/dx, and w,„=d2w/d. 

   Usually, however, both the second terr 
term of 6 in Eq. (3.2.2) are not take 
problems. Table 3.2.1 shows several possi 
curvature and edge shortening. It can be sh 
based on Approximation 1 leads only to 
the potential energy based on Approximat 
evaluating rigorously either the flexural str 

potential energy on Approximation 4 in tl 
ciently rigorous, and is adopted herein in 
nonlinearity. 

3.2.2 Stable symmetric buckling model 

   Fig. 3.2.1 illustrates an arbitrary def 
dimensionalized total potential energy is g: 
be interpreted as the map with a lateral d 
the load A and the lateral initial deflector 

   The perfect column model without ani 
distinct bifurcation buckling points. The pri 
wave. Therefore, the modal transforms h1 

h1: w(x)=v, sin rx, and h2: wo(x)=e, sinax 

can be adopted to transform directly the 
potential A. In Eq. (3.2.5), v1 and el 
magnitude of the buckling mode and that 
mode, respectively.

can be obtained by 

under the axial load:

(3.2.4)

 wo,,=dwo/dx, and w,, —dew/dx2. 

per, both the second term of Kx in Eq. (3.2.1) and the third 
Eq. (3.2.2) are not taken into account for linear bifurcation 
3.2.1 shows several possible combinations of approximations of 

 shortening. It can be shown, firstly, that the potential energy 
mation 1 leads only to a linear eigenvalue problem. Secondly, 
gy based on Approximation 2 or 3 can be shown to fail in 
;ly either the flexural strain or the external work. Finally, the 
n Approximation 4 in the last row is considered to be suffi 
and is adopted herein in order to approximate the geometrical

:rary deformed state of the model. The non-
rgy is given by Eq. (3.2.4). This equation may 
lateral deflection w as the state variable, and 
deflection wo being the control parameters. 

thout any initial imperfections has, in general, 
 The primary buckling mode is of a half sine 

)rms h1 x h2 given by 

=e, sinax(3.2 .5) 

;ctly the total potential energy V into a new 
nd E1refer to the parameters indicating the 
and that of the initial deflection of the same
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   Upon transformation through Eq. (3.2.5), the 
fect total potential energy A around the critical 
perfect system, leads  to[  11,12,13] 

A(vi, A, e1)=4 Aiuiv1-1- 2 All(A—A) vi+Arviel 

where

Aini= 3 7e, 

ir4 
Ai=-2,

71.2 
A°°---

Taylor 

point

expansion 

 (vi, A, e0=

of 
(0, 7r2

the 
, 0)

(3.2.6)

imper-

of the

     Then, an equilibrium equation is

1 

     8<A=6`A1111v3oc +Al 1av1 +AlcE1 = 0 

This provides the fundamental solution v1=0 for E 1 =0 

equilibrium path 

E 

    n= 1 +C4v1+CEVl 
whereclc 

     -A
1111-Al     C

4=6AocAcCEAocAc 

   1111

and the

  (3.2.7) 

typical nonlinear

(3.2.8)

   Since A 1111 > 0, Eq. (3.2.6) indicates the stable symmetric bifurcation 
buckling corresponding to Thom's typical cusp catastrophe[14,15]. It is well-known, 
however, that the bifurcation set of the cusp catastrophe does not provide any 
realistic meaning on the stability problems in structural mechanics. In such case, 
the load-carrying capacity of the model should be evaluated using a certain yield 
criterion of the material in the elasto-plastic range. However, such elasto-plastic 
characteristics are beyond the scope of this chapter, and will be investigated in 
the subsequent PART III of this dissertation. 

3.2.3 Unstable symmetric buckling model 

   Let us consider a column similar to the stable symmetric model , but with an 
elastic foundation at the right end as shown in Fig. 3.2.2. Then, the non-
dimensionalized total potential energy of the model is given by 

                        ~ 

                              xx    I~(W, A, wo)—2JfO(w,+w,sx w,,.) dx 
—j(1         -1',2H-w,xwo,x+8w,^) dx+2wi 

                                                        (3.2.9) 

where wL=WL/L, k=KL3/EI and K refers to the spring constant of the elastic 
foundation.
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Fig. 3.2.2 Unstable Symmetric 

 Buckling Model.

   Then, the following three typical instability phenomena can be shown to take 

place depending upon the magnitude of the non-dimensionalized spring rigidity k 
of the elastic foundation. 

   (i) when  k>7r2 

   A distinct bifurcation with the mode 2: 

w(x)=v2 sin rzx 

may occur at the critical point (v2, A, Ez)=(0, R2, 0) . The mode corresponds to a 
half sine waveform for the column buckling configuration. 

   Then, the non-dimensionalized total potential energy of the imperfect model 
near the critical point can be expanded to the following form: 

A(v2,Z,E2)=2442211+  2A:s(A-Ac) 4+A2'v2e2,(3.2.10) 

where

A2222= 8 n°, 

7r'  J' -

Z2 
 z2— 2

   Eq. (3.2.10) predicts the stable symmetric bifurcation buckling corresponding 
to Thom's cusp catastrophe. This model can behave similarly to the simply sup-
ported column without any significant effect due to the elastic foundation. Also, 
the nonlinear equilibrium solution is expressed in the form similar to Eq. (3.2.8) 
by replacing the subscript "1" for the "2". 

   (ii) when  k  <ir2 

   A distinct bifurcation with the mode 1: 

w(x)=V1 x 

may occur at the critical point (P,, A, et)=(0, k, 0) . The mode corresponds to a 
rigid-body straight line configuration for the elastic foundation. 
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   The non-dimensionalized total 

the critical point can be expanded
potential energy 
to the following

of the 

form:

imperfect model near

 A(vi, A, el)
1 

=24A1111 vi+ 2 Aii(~—de) vi+Ai°vlet, (3.2.11)

where

A;111=-3k, 

A"= —k,

A;;=-1 

x,=k. i

   Since A 1111 < 0, Eq. (3.2.11) predicts the unstable symmetric bifurcation 
buckling corresponding to Thom's typical dual cusp catastrophe. Then, the non-
linear equilibrium solution completely equals to Eq. (3.2.8). The sign of A'1111 
plays an important role to predict the strength of the model. The load-carrying 
capacity A,n of the model can be identified as the bifurcation set corresponding 
to the imperfection sensitivity surface. The surface can be expressed by the fol-
lowing non-dimensionalized form[16](See, Eq. (II-2.3.1)) 

L— —1±----1 2A1I d~(411)`'(3Ai`ei)~'(3 .2.12) 

near the critical point (v1, A, e,)=(0, k, 0) . This sensitivity is usually referred to 
the two-thirds power law. 

   (iii) when k=n2 

   The bifurcations of (i) and (ii) may occur simultaneously. Near the two-fold 
critical point (v1, v2, A, et, e2)=(0, 0, k, 0, 0) , the non-dimensionalized total potential 
energy of the model can be expanded to the following form: 

      A(vt,v2, A, el, e2)=24Aiulvi+24/;`s222v`2 
1 -F-T(44+ 4)1)  (A-1 e) 

   +Arvlet+Ai°v2e2,(3.2.13)
where

3         Ai
u1=-3n2, A9222= -8- n",422=0, 

       Aii=-1,Aii=-1n2 ,A,°= 

1 Az =—  n4 4=72 . 

   Eq. (3.2.11) predicts the co 
metric and the unstable symmetric 
catastrophe, not indicated in Thom's 
nonlinear equilibrium solution is clearly obtai 
equilibrium, whose forms are both similar to 
be discussed any further in this

mpound bifurcation buckling of the stable sym-
                           :ric buckling to the double cusp 

iom's seven elementary catastrophes. Then, the 
                           clearly obtained by two independent equations of 

-1 similar to Eq . (3.2.8). This catastrophe will not 
                             dissert at 71.
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W( X)

El  

 A

Fig. 3.2.3 Asymmeric Buckling 

 Model.

3.2.4 Asymmetric buckling model 

   The third model is a column similar to the unstable symmetric buckling 
model, but having an asymmetric elastic foundation at the right end as shown in 
Fig. 3.2.3. Then, the non-dimensionalized total potential energy of the model can 
be obtained as 

         ff~      V(w, A, wo)2 Jo(w, L. w,L. w,i)dx 

   r    —Aft       ziJ (w,1-kwwo18w,1) dx 
  kkkkk      1

4w2L8w°L—64wL4fiE —2wLG8wi, 

where 

 (//(3.2.14)       fi(2,z~w,xwo,spw,i)dx. 

   Let us consider the modal transform h1 x h2: 

    h1: w(x)=vix+v2sinrzx h2: wo(x)=eix+e2sin1rx.(3 .2.15) 

   Upon substitution of Eq. (3.2.15) into Eq. (3.2.14), the potential energy V can 
be rewritten as D:
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                                   /  D(v2, v2, A, el, 62)=T1(3k-2)vl-l-4z(n2-2-^-k\Iv1va 
   r4t2kkn2`/      + 16(n2—42m4)v2—8v1—8k/V' } 

n2n2 

    ±--4-062-41)v;-2vle1— 22v2e2.(3.2.16) 

   The following three typical instability phenomena can be shown to take place 
depending upon the magnitude of the spring constant k: 

   (i) when k>2n2 

   A distinct bifurcation with the mode 2: 

     w(x)= v2sinnx 

may occur at the critical point (v2, A, ez)=(0, n2, 0) . Taking into account the 
interaction term v1 v; , the non-dimensionalized total potential energy of the im-
perfect model near the critical point can be expanded to the form 

      A(v2, 2, e2)=24A2222vi 

                                                        (3.2.17) 
          -F2A2(2-2,) v2±A; v2e2, 

where 

                                  — 3n'(2n' -}-n2k)  
         A2222=D4222-3(Di22)2/Du= k<0, 

                       16(2—n2) 
    2 ~ 

          Az==D27=— 2 , A,°=D; =—  , 2c=n2- 

   Since A 2222 < 0, Eq. (3.2.17)predicts the unstable symmetric bifurcation 
buckling corresponding to Thom's dual cusp catastrophe , similar to Eq. (3.2.11). Th

en, the bifurcation set near the critical point is in the form similar to Eq . (
3.2.12), and is given by 

    _ —_1     2m2m1f 2AITI,(Al222) (3A;e2)                          22 

                                                        (3.2.18) 

   (ii) when k<2n2 

   A distinct bifurcation with the mode 1: 

w(x)= v1x 

may occur at the critical point (v1, 2, e1)=(0, k/2, 0) . The non-dimensionalized to-
tal potential energy of the imperfect model near the critical point can be ex -
panded to the form 

A(v1, 2, el)=6Aiuvi 
 (3.2.19)           -F--1/P.-GI— 4) 0 A"vle, , 

where 
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 Ain=Diu=—  4k, Ax=-1, A,c=— 2 , 

    Since Ake/ 11  # 0, Eq. (3.2.19) predicts the symmetric bifurcation buckling 
corresponding to Thorn's typical fold catastrophe. Then, an equilibrium equation is 

    8v=2A111v1A11av1 + A1cE1 = 0(3.2.20) 
This yields the fundamental solution v1 = 0 for E1 = 0 and the typical nonlinear 

equilibrium path 

E 

  nc= 1 +C3v1+ Ccvl(3.2.21) 
 where 

c1c 

C3
2AocAcCEAOCAC 1111 

 includes the primary postbuckling straight line when E1 = 0. The bifurcation set 
 is referred to as the one-half power law(See, Eq. (II-2.3.6)) 

                     ,n 

  d 

  zi„, ==1±~(2AinAi`ci)'2•(3 .2.22) 
      eIl c 

where, since AiC11 < 0 and A11c < 0 in general, Eq. (3.2.22) is valid only if 
el<0 for A 111 < 0. 

    (iii) when k=2a2 

    The bifurcations of (i) and (ii) may occur simultaneously. Near this critical 
 point (v,, v2, A, el, e2)=(0, 0, k/2, 0, 0) , the total potential energy of the imperfect 

 model can be expanded to the form of 

A(vi, v2, 2, el, ez)=6Aiuvi-4.M 

      +2(A1v~--A2zv~(A-4)(3 .2.23) 
-+A1`vield-A,`v2ez 

 where 

                                                        a 

      e=c2le              A
„1—Din=—~,29.%2=D122=— 2 

                                                 z 

            Aii=D„=-1, As =D°E2=—2, Ai`=Dic=—nz, 

                              ~4 

           Ai =D, =-2, 4c=Ira.
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Since

 3 Ai
it • Aizs= 4 RB  >  0,

Eq. (3.2.23) predicts 
Thompson's homeoclinal 
umbilic catastrophe[18].

aA _ 1 c a
v1 2 Al 1 1

V1 +

 Aii --Aiii  =1 2-A 
i Aizz~z

>0,

the semi-symmetric bifurcation buckling, that 
bifurcation buckling, corresponding to Thom's 

Then, equations of equilibrium are

2—122v2
oc A

11Av1
+ Alc£1 = 0

 is, the 

hyperbolic

aA 
_ A a

v2 122v1v2 + A

oc 

22Av2
+ A2cE2 = 0

(3.2.24)

   The fundamental path whenE1= £2 = 0 is solved in the chapter I-1.3 in 
details. Moreover, the typical nonlinear equilibrium solutions are obtained from 
the above simultaneous nonlinear : equations using a particular nonlinear procedure. 
However, this dissertation aims to estimate the strength of slender structures 
without solving such nonlinear equations, so that this purpose follows the 
catastrophe theory in the form of the bifurcation set(See, Section 2.4 in this 
PART). Detailed discussions on the bifurcation sets for each model just men-
tioned will be described in the section 4 of this chapter.

3.3 Discrete Analysis

3.3.1 General remarks

   A catastrophe analysis by discretization methods will be presented herein. The 
discretizations adopted herein are both the finite element method (abbreviated as 
FEM) using the ACM cubic shape function and the simplified element method 
(SEM), idealizing the column to consist of chains of rigid bars and a flexural 
spring using the linear shape function, first introduced by Watanabe et al[19] . These di

screte numerical analyses are compared with the continuous analyses . All 
of the assumptions made for the continuous analysis are also adopted herein . M

oreover, the D.O.F. at each nodal point is two for FEM and one for SEM
, respectively. The total D.O.F. in the SEM is much less than that in the FEM.

   The discrete total potential energy 
expressed 

1 1 V(w,, 2, ),vo,)= 2 K,fw,ws-} 2 K,w,w,wkwI 

        A —2Kjw~w3-8Kj .jwwJwkw, 

      —A K j wiwo,

where K] and K Mkt refer to the 
matrices, respectively, whereas , K j and 
geometrical matrices, respectively. Each 
convention upto the total D.O.F.= N.

corresponding to

 linear and 
KilkL refer 

subscript i,

Eq. (3.2.4) can be

(3.3.1)

 nonlinear flexural stiffness 
 to the linear and nonlinear 

j, k, I obeys the summation
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3.3.2 Stable symmetric buckling model 

   For the perfect model  woj=0 (j=1,...,N), the characteristic equation at the 
critical point: 

  det (Kp'-1K;)=0(i,j=1 ..... N) (3.3.2) 

provides n eigenvector matrices, cij (i=1,...N; j=1,...n) where n eigenvectors are 
chosen corresponding to their smaller n eigenvalues. 

   Then, the following modal transform is adopted: 

WL=SIJVJ(i=1 ,...,N; j=1,...,n; 1< n«N) (3.3.3) 

This transform diagonalizes the Hessian matrix of the total potential energy in 
Eq. (3.3.1) at the critical point. Upon substitution of Eq. (3.3.3) into Eq. (3.3.1), 
the diagonalized potential energy D can be defined as: 

    D(vi,d, ej)=2Kviv2KjL.IViVJVkvt 
— 2 Z/1 VLVJ —TA >,VIV 
—AKii'V16J                                                            (3.3.4) 

    Furthermore, herein, the transform similar to Eq. (3.3.3) is adopted for the 
initial deflection wol (i=1,...,N), that is, 

WoL=Osiej(i=1,...,N; j=1,...,n; 1< n«N) (3.3.5) 

where eJ corresponds to vi (j=1,...,n) and 

     KH'—K°1fi        4Jmnm4 nJ> 

      Kcl--Kci,L         IJ n'Ymi~n1+ 

Kr„            =KB'''RR,,LL,LL tfkL>nppq'^m1WfI`t'pkcbqt, 

KQ2 —K°'2,L,L [JAL—inpq~mLYnl'(/pkWgL• 

                                                         (3.3.6) 

   Table 3.3.1 shows the numerical results by the discrete analyses of the 
model, with those through the continuous analysis and one degree-of-freedom 
analysis. The convergence of the buckling load ,t, and the 4th derivatives 
Ac11 1 with respect to the number of discrete elements is illustrated in Fig. 
3.3.1. It may be seen that the discretization method can surely realize the in-
stability phenomena of the continuous model.
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3.3.3 Unstable symmetric buckling model 

   The discrete total potential energy corresponding to Eq. (3.2.9) is given by 

V(wt, x, wor)=2(Km+Ki)wtwi-f w{WJwkwt 

— 

           A K 
wtw~— g K, kt WjWJwkw, 

—AK fi'w{wo,(3
.3.7) 

where Kft=kSTrss:, superscript "S" refers to the spring stiffness, whereas subscript 
"s" refers to the nodal point on the elastic foundation , and oti designates 
Kronecker's delta. 

   For simplicity, a new stiffness parameter K will be introduced: 
 23    nEI'~2 k =KL(3.3.8) KL3—k 'El 

instead of the non-dimensionalized spring stiffness k. 

   Similarly to the continuous analysis, the following typical three instability 
phenomena may be found to occur, depending on the magnitude of K : 

0 < K < 1: stable symmetric bifurcation (cusp catastrophe) 

K = 1: double cusp catastrophe 

K > 1: unstable symmetric bifurcation (dual cusp catastrophe) 
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   Tables 3.3.2(a), (b) and (c) show the numerical results with those of the 
degree-of-freedom analysis and the continuous analysis. As an example, the 
cation set for K =1.5 in the continuous analysis is illustrated in Fig. 3.3.2. 

 Am

two-

bifur-

Fig. 3.3.2 Imperfection Sensi-
  tivity for Dual Cusp 

  Catastrophe of Unstable 
  Symmetric  Model. K = 1.5

3.3.4 Asymmetric buckling model 

   The discrete total potential energy corresponding to Eq. (3.2.14) is given 

V(WA, A, WoJ)=2-(K d--KV)W:W,--2 K W;W,—AK, Wiw'ol 

+-2 (K +1Q,.)W;WJWk— -K{jA.~IY{WJWkwI 
      +-2(K`c+10'Aj~KAe+K~t) WjWJWkw 

                                                           (3.3.9) 
where 

   Kfk,=gkKKV,KS~~=—ZkSA,Kf, 

1 K 1=  ko;,65,KV, K '= 2 k8{,SJ, 

    K!k=4ko„oJ.ok.,Kkc=—32ko~,oJ,ok.o1„ 

and subscript "s” corresponds to the nodal point on the elastic foundation. 

   Then, the following typical three instability phenomena may be found 
cur depending on the magnitude of K introduced in Eq. (3.3.8): 
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Table 3.3.1 Stable Symmetric Buckling. - Cusp  Catastrophe -

 DISCRETIZATION METHODS
CONTINUOUS

METHOD
1-0.O.F. Finite Element MethodjSimplified Element Method

Elements 2 4816 3264 4 816 32 64

D.O.E.
8 16 32 64 128

(3,5) (7,9) (15,17) (31,32) (63,65)
37 15 31 63

A1C1

Aoc11

cA

1111

9.870

-48.705

-4 .935

360.521

(1.000)

8.000

-32.000

-4.000

128.000
(0.355)

9.875 9.870 9.870 9.870 9.870

-48 .684 -48.699 -48.708 -48.708 -48.708

-4.930 -4.934 -4.935 -4.935 -4.935

360.118 360.986 362.554 568.596 392.834
(0.999) (1.001) (1.006) (1.022) (1.090)

9.373 9.743 9.838 9.862 9.868

-43.922 -47.468 -48.593 -48.630 -48.689

-4.686 -4.872 -4.919 -4.931 -4.934

127.889 294.062 343.340 356.190 359.436
(0.355) (0.816) (0.952) (0.988) (0.997)

Table 3.3.2(a) Unstable Symmetric 

  K =,r2EI/(KL3) =0.5

Buckling. - Cusp Catastrophe -

CONTINUOUS DISCRETIZATION  METHODS

METHOD
2-D.O.F.i Finite Element Method Simplified Element Method

Elements 2 4 16 32 64 4 8 16 32 64

D.O.F.
2 17 33 65 129 4 8 16 32 64

(4,5) (8,9) (16 ,17) (32 ,33) (64,65)

1 9.870 8.000 9.870 9.870 .870 9 .870 9.870 9.373 9.743 9.838 9.862 .868

Mode 2 2 2 2 2 2 2 2 2 2 .2 2

Atez -48.705 -32 .000 -48.684 -48.699 -48 .708-48 .708 -48.708 -43 .922 -47.468 -48.393 -48.630 -48 .689
OC

A22 -4.935 -4 .000 -4.930 -4.934 -4 .935 .935 -4.935 -4.686 -4 .872 -4.919 -4.931 -4 .934

Acx2222 360.521
(1.000)

128.000
(0.355)

360.118

(0.999)

360.987
(1.001)

362

(1

.534 368

.006) (1
.596
.022)

392.834
(1.090)

127.889
(0.355)

294.062 343.340
(0.816) (0.952)

356.190
(0.988)

359
(0

.436

.997)
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Table 3.3.2(b) Unstable Symmetric 

 K  =  72E/I(kL3)=1.0

Buckling. - Double Cusp Catastrophe -

CONTINUOUS
 SCRETIZATION METHODS

METHOD
2-D.O.F. Finite Element Method Simplified Element Method

Elements 2 4 16 32 64 16 32 64

D.O.F.
2 9

(4,5)
17

(8,9)

33

(16,17)

65

(32,33)

129

(64,65)

4 16 32 64

lcl 9.870 8.000 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 .870

c2
9.870 8.000 9.875 9.870 9.870 9.870 9.870 9.373 9.743 9.838 9.862 9 .868

Mode 1 , 2 1 , 2 1 , 2 1 , 2 1 , 2 1 , 2 1 , 2 1 2 1 2 1 2 1 , 2 , 2

Alc -9.870 -8.000 -9.870 -9.870 -m.870 -9.870 -9.870 -9.870 -9.870 -9 .870 -9.870 -9 .870

A22 -48 .705 -32 .000 -48 .684 -48 .699 -48 .708 -48 .708 -48.708 -43.922 -47.468 -48.393 -48.630 -48 .689

ocA

11
-1 .000 -1 .000 -1.000 -1.000 -1 .000 -1.000 -1.000 -1.000 -1:000 -1 .000 -1 .000 .000

oc

22
-4.935 -4.000 -4.930 -4.934 -4.935 -4.935 -4.935 -4.686 -4 .872 -4.919 -4.931 -4 .934

AcA1111 -29.609

(1.000)

-29 .610

(1.000)

-29.605

(1.000)

-29 .595

(1.000)

-29 .553
(0.999)

-29 .388
(0.993)

-28.724

(0.970)

-28.118

(0.950)

-29.230

(0.987)

-29.514
(0.997)

-29 .585

(0.999)

-29

(1

.603

.000)

AcA2222 360.521

(1.000)

128.000

(0.355)

360.671
(1.0001

361.022
(1.001)

362.535

(1.006)

368.596

(1.022)

392.784

(1.090)

127.889

(0.355)

294.062
(0.816)

343.340
(0.952)

356.190
(0.988)

359

(0

.437

.997)

Table 3.3.2(c) Unstable Symmetric 

 K  z  2E//(KL3)=1.5

Buckling. - Dual Cusp Catastrophe -

CONTINUOUS
METHOD

 DI SCRETI OATI ON METHODSDS

2-0.0.F. Finite Element Method Simplified Element Method

Elements 2 4 8 16 32 64 4 16 32 64

D.O.F.
2 9

(4,5)
17

(8,9)
33

(16,17)
65

(32,33)
129

(64,65)
4 16 32 64

A
c

Mode

AlcL

Aoc11

cA
1111

6.580

1

-6.580

-1.000

-19.739
(1.000)

6.580

1

-6.580

-1.000

-19 .740
(1.000)

6.580

1

-6 .580

-1.000

19.736

(1.000)

6.580

1

-6.580

-1.000

-19 .725
(0.999)

6.580

1

-6.580

-1 .000

-19.684
(0.997)

6.580

-6.580

-1.000

-19 .5l8
(0.989)

6.580

1

-6.580

-1.000

-18.854
(0.955)

6

-6

-1

-19

(1

.580

1

.580

.000

.739

.000)

6

-6

-1

-19

(1

.580

1

.580

.000

.739

.000)

6.580

1

-6.580

-1 .000

-l9.739

(1.000)

6.580

1

-6.580

-1.000

-19.739

(1.000)

6

-6

-1

-19

(1

.580

1

.580

.000

.739

.000)
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 0<x<0.5 . unstable symmetric bifurcation 
  (dual cusp catastrophe)

x = 0.5 : homeoclinal bifurcation 
                         (hyperbolic umbilic catastrophe) 

x > 0.5 : asymmetric bifurcation (fold catastrophe) 

  Tables 3.3.3(a), (b) and (c) show the numerical results with those of 
degree-of-freedom analysis and the continuous analysis. The bifurcation 
the continuous analysis are illustrated in Figs. 3.3.3, 3.3.4 and 3.3.5 for 
0.5 and 0.75, respectively[5,20,21].

the two-
 sets in 

x =0.25,

E

N

Fig. 3.3.3 Imperfection Sensi-
  tivity for Dual Cusp 

  Catastrophe of Asym-
  metric Model. K = 0.25

Fig. 3.3.4(a) Imperfection 
  Sensitivity for Hyperbolic 

  Umbilic Catastrophe of 
  Asymmetric Model. 

 - All Sheets - K = 0.5
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Table 3.3.3(a) Asymmetric  Buckling. -

K = 72E1/(KL3) = 0.25

Dual Cusp Catastrophe -

 CONTINUOUS
METHOD

DISCRETIZATION METHODS

2-D.O.F. Finite Element Method Simplified Element Method

Elements 2 4 816 32 64 4 8 16 32 64

D.O.F.
2 9

(4,5)
1733

(8,9) (16,17)
65 129

(32,33) (64,65)
4 8 16 32 64

Ac

Mode

A2c2

OcA

22
c0
11

q.22
c 02222

AcA2222

9.870

2

-48.705

-4.935

9.870

-97.409

1802.605

-1081.563

(1.000)

8.000

2

-32.000

-4 .000

11.739

-78.957

1075.480

-517 .724
(0.479)

9.875

2

-48.684

-4.930

9.865

-97 . 307

1799.186

-1080.282
(0.999)

9.8709.870

22

-48 .699 -48.708

-4.934 -4 .935

s.870 9.870

-97.403 -97.409

1802.880 1804.604

-1080.811 -1079 .442
(0.999) (0.998)

9.870 9.870

2 2

-48.708 -48 .708

-4.935 -4.935

9.870 9.870

-97 .409 -97.409

1810.678 1834.916

-1073.442 -1049.131
(0.992) (0.970)

9.373

2

-43.922

-4 .686

10.367

-92.504

1428.387

-1047.833

(0.969)

9.743

2

-47.468

-4.872

9.996

-96.164

1699.504

-1075 .861

(0.994)

9.838

2

-48.393

-4.919

9.901

-97.096

1776.166

-1080 .404

(0.999)

9.862

2

-48 .630

-4.931

9.878

-97 .331

1795.938

-1081.160
(1.000)

9

-48

-4

9

-97

1800

-1081

(1.

.868

2

.689

.934

.872

.390

.941

.397
000)

Table 3.3.3(b) Asymmetric Buckling. -

K  2E1/(KL3)= 0.5

Hyperbolic Umbilic Catastrophe -

CONTINUOUS
 METHOD

DISCRETIZATION METHODS

2-0.0.F. Finite Element MethodSimplified Element Method

Elements 2 48 16 32 64 48163264

D.O.E. 2 9 17 33 65 129
(4.5) (8,9) (16,17) (32,33) (64,65)

48163264

c1

1c2

Mode

Alc1

A2c2

An
11

ocA
22

A111A111

AcAl22

9.870

9.870

1 , 2

-9 .870

-48.705

-1.000

-4.935

-14.804
(1.000)

-48.705
(1.000)

8.000

8.000

1 , 2

-8.000

-32 .000

-1.000

-4.000

-12.000
(0.811)

-32.000
(0.657)

9.870 9.870 9.870 9.870 9.870

9.875 9.870 9.870 9.870 9.870

1 , 2 1 , 2 1 , 2 1 , 2 1 , 2

-9.870 -9.870 -9.870 -9.870 -9.870

-48.684 -48.699 -48.708 -48.708 -48.708

-1 .000 -1.000 -1.000 -1.000 -1.000

-4.930 -4 .934 -4.935 -4.935 -4.935

-14.804 -14 .804 -14.804 -14.804 -14.804
(1.000) (1.000) (1.000) (1.000) (1.000)

-48.654 -48.701 -48.704 -48 .705 -48.713
(0.999) (1.000) (1.000) (1.000) (1.000)

9.870 9.870 9.870 9.870 9.870

9.373 9.743 9.838 9.862 9.868

1 , 2 1 , 2 1 , 2 1 , 2 1 , 2

-9.870 -9.870 -9 .870 -9.870 -9.870

-43.922 -47.468 -48.393 -48.630 -48.689

-1.000 -1.000 -1.000 -1.000 -1.000

-4.686 -4.872 -4.919 -4.931 -4.934

-14.804 -14.804 -14.804 -14.804 -14.804
(1.000) (1.000) (1.000) (1.000) (1.000)

-46.252 -48.082 -48.584 -48.665 -48.695

(0.950) (0.987) (0.997) (0.999) (1.000)
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Table 3.3.3(c) Asymmetric Buckling.

 x  = r.2EI/(KL3) = 0.75

- Fold Catastrophe -

CONTINUOUS
 METHOD

DISCRETI ZATION METHODS

2-D.O.F. Finite Element Method Simplified Element Method

Elements 2 4 16 3264 4 16 32 64

D.O.F.
2 9

(4,5)

17

(8,9)

33

(16,17)

65 129
(32,33) (64,65)

4 16 32 64

1

Mode

Alc

eaAll

cA

111

6.580

I

-6.580

-1.000

-9.870
(1.000)

6.580

1

-6.580

-1.000

-9 .870
(1.000)

6.580

1

-6.580

-1.000

-9 .870
(1.000)

6.580

1

-6 .580

-1.000

-9 .870
(1,000)

6.580

1

-6 .580

-1.000

-9.870

(1.000)

6.580 6.580

1 1

-6 .580 -0.580

-1.000 -1.000

-9.870 -9.870
(1.000) (1.000)

6.580

1

-6.580

-1 .000

-9.870

(1.000)

6.580

1

-6.580

-1.000

-9 .870
(1.000)

6.580

1

-6.580

-1.000

-9.870

(1.000)

6

-6

-1

-g

(1

.580

1

.580

.000

.870
.000)

6.58(

1

-6.581

-1.001

-9 .87(
(1.001

 Am

1.0

 1.0

E2 

100

Fig. 3.3.4(b) Imperfection 
  Sensitivity for Hyperbolic 

  Umbilic Catastrophe of 
  Asymmetric Model. K = 0.5 

- Only the Lowest Sheet -

Fig. 3.3.5 Imperfection Sensi-
  tivity for Fold Catas-

trophe with 

Model. K =
Asymmetric 
0.75



 3.4 Discussions 

   Detailed discussions will be presented herein based on Tables 3.2.1 , 3.3.1, 3
.3.2 and 3.3.3, and Figs. 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5, comparing the 

numerical results of both the continuous and discrete analyses. 

   Table 3.2.1 shows how the degree of the order of the approximation for 
either a curvature x, or a shortening d may affect the form of the total 
potential energy. The first order approximations in the first row give a linear 
eigenvalue problem, from which only the critical bifurcation buckling load and its 
buckling mode can be evaluated. The fourth order approximations in the last row 
are found to describe the geometrical nonlinearity with sufficient accuracy. The 
second and third rows in the table indicate that the potential energies fail to 
evaluate rigorously either the flexural strain energy or the external work. 

   Three tables in the previous section 3 provide a complete comparison among 
the numerical results of stability coefficients as Al11 , Al111 for the one-degree-
of-freedom, two-degree-of-freedom, continuous and discrete analyses. Furthermore, 
in these tables, the two figures in parentheses in the second row, pertaining to 
the FEM, refer to the D.O.F. of the lateral deflection and that of the rotation, 
respectively. The value in parentheses in the rows of stability coefficients such 
as A;,, , A7111 indicate the ratio of the value of each coefficient through 
discrete analyses to the value of the corresponding coefficient through the con-
tinuous analyses. 

   Table 3.3.1 shows the numerical results for the stable symmetric buckling 
model. Fig. 3.3.1 illustrates the convergence of the buckling loads and the 4th 
order stability coefficients Ai111 with respect to the number of finite elements. 
Obviously, the discrete analyses can be shown to realize the instability 
phenomena, predicted by the continuous analysis. TheFEM used herein, however, 
may seem to tend to estimate the values of A1111 slightly larger than the SEM, 
with an increase of the number of elements. 

   The numerical results are shown in Table 3.3.2 for the unstable symmetric 
buckling model. In this case, the discrete analysis can be also shown to realize 
the continuous model. Similarly, the FEM will tend to overestimate slightly the 
values of A1111, , '4;222 etc., in comparison with the SEM. 

   Fig. 3.3.2 illustrates a bifurcation set for K =1.5 in the continuous analysis. 
The surface of the bifurcation set represents the dual cusp catastrophe with 
respect to the buckling model 1, i.e., the mode for the buckling of the column 
structure. It is symmetric with respect to the plane of e1=0 . Furthermore, it 
has no dependence on the value of ez , which is called the two-thirds power law. 
For example, if el = 1/1000, e2 = 0, then im = 0.985. The load-carrying 
capacity will thus be reduced by 1.5 %, compared to the buckling load. 

   Table 3.3.3 shows the numerical results for the asymmetric buckling model. 
The bifurcation sets in the continuous analysis are illustrated in Figs. 3.3.3, 3.3.4 
and 3.3.5 for ,c =0.25, 0.5 and 0.75, respectively. 

   The bifurcation set for ,c =0.25 is shown in Fig. 3.3.3. The surface of the 
bifurcation set corresponds to the dual cusp catastrophe with respect to the buc-
kling mode 2, i.e., the straight line rigid-body mode. It is . symmetric with 
respect to the plane e2=0 independent of el . For example, if e1=0 , ez = 
1/1000. then tm = 0.971, so that the load-carrying capacity will be reduced by 
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2.9 % compared to the buckling load. 

   Fig. 3.3.4 illustrates the bifurcation sets of a typical hyperbolic umbilic 
catastrophe for  iv =0.5. The bifurcation point has been called the homeoclinal 
bifurcation point of the semi-symmetric buckling by Thompson. For example, if 

 el = 0, e2 = 1/1000, then tm = 0.851, and if e, = 1/1000, e2 = 0, then 2„, = 
0.937. Thus, the load-carrying capacity will be reduced by 14.9 % and 6.4 %, 
respectively, from the buckling load. 

   Fig. 3.3.5 illustrates the bifurcation set of a fold catastrophe with respect to 
the buckling mode 1 for iv =0.75. It will exist only if e, 0 independently on 

e2 . For example, if e, = 1/1000, ez = 0, then ),n = 0.923, whereby the load-
carrying capacity will be reduced by 7.7 % from the buckling load. 

   From three numerical results, the effects of the initial imperfections on the 
load-carrying capacity may be found to be significantly sensitive for the asym-
metric buckling model. The imperfection sensitivity to the mode 2, ez of the 
compound buckling for x =0.5, may seem to be much greater than that of a dis-
tinct buckling of the mode 2 for =0.25. 

   Next, several discussions on the error and convergence of each stability coef-
ficient may be made. The values of the stability coefficients calculated by a 
discrete analysis may converge to those in a continuous analysis, as the number 
of discretized elements increases. Especially, the stability coefficients through the 
SEM may converge rapidly to the value through the continuous analysis. The 
value by the FEM, on the other hand, may have a tendency to overestimate 
slightly, as the number of elements becomes larger as mentioned previously. The 
FEM provides a very accurate value of the buckling loads regardless of any 
kinds of models and any buckling modes. 

   The values of the stability coefficients for the rigid buckling mode 1 of the 
elastic foundation can be evaluated precisely for any modes, and in any analyses. 
Those for the mode 2 of the column structures, however, may contain slight er-
rors depending on the degree of approximation of the mode shape.

3.5 Conclusions

   For several simple elastic conservative column structures, both continuous and 
discrete analyses were performed. The numerical results were compared with the 
two-degree-of-freedom analyses. The main conclusions are: 

 (1) The discrete analysis can be shown to realize the instability phenomena, 
     predicted by the continuous analysis. The results of the discrete analysis 

     are shown to converge to those of the continuous analysis generally, as 
     the number of discrete finite elements increases.

(2)

(3)

The imperfection sensitivity of structures can 
and quantitatively by means of the bifurcation 
through the catastrophe theory. 

For a legitimate evaluation of the cusp and dual 
order terms of the buckling mode in the total 
considered rigorously in expressions for both the 
ternal work.

be 
set

evaluated 

in the
 qualitatively 
control space

cusp catastrophe, 

potential energy 
strain energy and

the 

must 

the

4th 
be 

ex-
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(4)

(5)

(6)

(7)

(8)

(9)

The stable symmetric buckling model  is shown to indicate the typical cusp 
catastrophe. 

The unstable symmetric buckling model can be shown to indicate the typi-
cal dual cusp catastrophe for a relatively small stiffness of the elastic 
foundation, the cusp catastrophe for a relatively large stiffness , and the 
compound double cusp catastrophe at a certain critical stiffness value . 

The asymmetric buckling model can be shown to indicate the typical fold 
catastrophe for a relatively small stiffness of the inclined elastic foun-
dation, the dual cusp catastrophe for a relatively large stiffness , and the 
compound hyperbolic umbilic catastrophe at a certain critical stiffness 
value. 

The value of each stability coefficient calculated by discretization methods 
may generally converge to that by the continuous analyses. 

The value of each stability coefficient calculated by the FEM may tend to 
overestimate slightly in comparison with the SEM, as the number of dis-
crete finite elements increases. 

The true load-carrying capacity of the column structures should be investi-

gated, taking into account such things as the extensibility, the elasto-
plasticity of the material and the residual stresses of the cross section.
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 CHAPTER 4 

APPLICATIONS TO ELASTIC COLUMN AND PLATE STRUCTURES 
      THROUGH STATIC CONDENSATION PROCEDURE

4.1 General Remarks 

   This chapter is concerned with applications of the catastrophe analysis 
proposed in the previous chapter II-1 to evaluating elastic initial postbuckling 
characteristics of several structural models such as columns, unstiffened plates 
and stiffened plates. The numerical formulation is made through discretization 
and modal transforms[1,2]. Then, it includes the static condensation procedure and 
the load- and displacement-control types as previously stated in, the chapter II-1 
if these strategies are necessary. 

   Firstly, the three prototypes of structural buckling models in the chapter II-3 
are also adopted herein[3-71. However, each model in this chapter differs from 
the original one with an inextensible column, that is, it consists of an extensible 
column and an elastic spring representing an elastic foundation. Such an ex-
tensibility of column is commonly neglected to estimate its Euler buckling load 
[8,9]. Based on both the theoretical and numerical results, an effect of extensi-
bility of column on its stability characteristics at the critical point will be 
investigated briefly. Furthermore, the imperfection sensitivity surfaces of the 
model are drawn spatially in terms of the bifurcation sets[4,10-12]. 

   Secondly, the . primary buckling of compressed rectangular plates will be 
studied, using the proposed catastrophe analysis under the two control types of 
load and displacement[1,2]. Especially, the obtained initial postbuckling and the 
typical nonlinear equilibrium solutions are compared with those by Timoshenko, 
Coan, Yamaki, Williams and Rhodes for compressed square plates under various 
supporting conditions[8,13-18] and control types as mentioned in the chapter II-1. 
Then, a validity and an applicability will be made clear of the present catas-
trophe analysis. 

   Finally, such applications of the present catastrophe analysis lead to com-
pound bifurcation problems when compressed stiffened plate, buckles simultaneously 
in both modes of an Euler-type column for a stiffener and of an isolated local 
plate between stiffeners[1,19-24]. Moreover, the imperfection sensitivity surfaces 
of the stiffened plate for the simultaneous bifurcations as well as a distinct 
asymmetric bifurcation one with only the primary global mode are shown spa-
tially in the form of three-dimensional surfaces[ 10,12,19,25].

4.2 Elastic Extensible Columns 

   The three typical buckling models of compressed columns in the chapter II-3 
are also considered herein. In the previous chapter, it is assumed that the 
column is inextensible on the neutral axis, neglecting the axial deformations. 
Then, the prototypes of catastrophes such as cusp, fold and umbilics are inves-
tigated in order to evaluate their imperfection sensitivity surfaces[3,4,51. 
However, the column models considered in this chapter is assumed to be exten-
sible in the neutral-axis direction. Therefore, an effect of the extensibility of 
column on its stability will be briefly studied in view of the analytical and 
numerical interpretations.
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   Figs. 4.2.1, 4.2.2 and 4.2.3 show the stable symmetric, the unstable sym-
metric and the asymmetric buckling models corresponding to Figs. 3.2.1, 3.2.2 
and 3.2.3 in the chapter  II-3, respectively. Also, Tables 4.2.1, 4.2.2 and 4.2.3 list 
the numerical results by the present analyses of the three extensible column 
models. In which, the two computations of a finite element method (abbreviated 
as FEM) and a simplified element method (SEM) in APPENDIX[26-29] are com-
pared each other. They are performed for column models having the number of 
discrete elements of 32 with the maximum number of out-of-plane deflections of 
65 and 32 by the FEM and the SEM, respectively. Note that all the proposed 
results are obtained with respect to the buckling deflection modes whose ampli-
tudes are non-dimensionalized by the undeformed column-span length L. 

   From these calculations, it is found that, for the asymmetric buckling (fold). 
and the semi-symmetric compound buckling (umbilic) associated with the cubic 
terms of the potential function, some instabilities of the extensible column 
models can be similarly realized into those in the case of the inextensible 
models in the chapter II-3. Then, all the numerical results are identical, regard-
less of the procedures of the FEM and the SEM with increase of the number 
of discrete elements. The asymmetric and the semi-symmetric bucklings are both 
related to evaluations of the cubic terms of the potential function at the criti-
cal point[30,31]. The cubic terms are defined by directly deriving from the 
changes of large geometrical configurations of the model, and they never depend 
on whether the column is extensible or not. 

   However, it is shown that, for the extensible columns, the symmetric bifurca-
tions obtained from the quartic terms of the potential function can not be com-
pletely realized similarly to those of the inextensible models in the chapter II-3. 
Then, the numerical computations by the SEM provide no postbuckling strength of 
column models with respect to the symmetric buckling except in the case of the 
unstable symmetric bifurcation of the asymmetric models in Fig. 4.2.3. Also, all 
FEM's results give the stable symmetric buckling characteristics. In order to 
clarify the reason of such inconsistencies, an analytical discussion will be carried 
out as follows: 

   Let U(X) and W(X) denote the in-plane axial displacement and the out-of-
plane lateral deflection at the axial point X, where X refers to the axial coor-
dinate of the original perfect column model, differently from the inextensible 
neutral axis X in the previous chapter II-3. Then, an axial strain E

x at the point X is given by

EX - EOX- Z Kx 

where 

12=     E
OX=U'x+2W'X'KX-W'XX 

and 

                                             2 
    __dudW dw      U' x dX'w'x dX' w'xxdX 

In which, E oX and Kx represent the well-known Green's 
and the first approximation of its curvature in Table II-
the coordinate perpendicular to the axis X is designate 
coincides with that of the deflection W. An accurate ex 
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 Cireen's strain tensor of column 
Table II-3.2.1, respectively. Also, 
designated as Z, whose direction 
irate expression of the curvature
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Table  4.2.1 Stable Symmetric Buckling ModeL

Continuous
 Method*

Di scretizati on Methods

Finite El ement Method Simplified El enact Method

Elements 4 8 16 32 48 16 32

0.0.F. 12
(4.8)

24
(8,16)

48
(16,32)

96
(32,64)

715
(4,3) (8,7)

31
(16.15)

63
(32,31)

Mode 1 1 1 1 1 11 1 1

Ac 9.870 9.870 9.870 9.870 9.870 9.372 9.7.43 9.838 9.870

Alc1

Aoc11

-48.705

-4.935

-48.699

-4 .934

-48.699

-4.934

-48 .699

-4.934

-48 .699

-4.934

-43.927 -47.458

-4.687 -4.871

-48 .393

-4.919

-48.551

-4.919

AcA1111 360.521 130329.36 35669.76 11109.12 10884.48 order ( 10-74 — 10-12

Co• 7.234 445.733 122.077 38.020 37.251 order ( 10-74 — 10-12

• 

1.

Results for 

 Stability

"inextensible" columns
. 

curvature C A7iii/(6A71Ac)

Table 4.2.2(a) Unstable Symmetric 

K = Tr2EI/kL3 = 0.75

Buckling ModeL

 Continuous
Method*

Dl screti zation Methods

Finite Element Method Simplified El ement Method

Elements 4 8 16 32 48 16 32

0.0.F. 13
(4.9)

25
(8,17)

49 97
(16.33) (32.65)

816
(4,4) (8.8)

32
(16,16)

64
(32.32)

Mode 2 2 2 2 2 22 2 2

Ac 9.870 9.870 9.870 9.870 9.870 9.372 9.743 9.838 9.870

A2c2

Aoc22

-48.705

-4.935

-48.699

-4 .934

-48.699

-4.934

-48.699 -48 .699

-4.934 -4 .934

-43.927 -47 .458

-4.687 -4.871

-48.393

-4.919

-48.551

.919

cA
2222 360.521 130329.36 35669.76 11109.12 10884.48 order ( 10-14 _ 10-12

C ** 1.234 445.733 122.077 38.020 37.251 order ( 10.14 - 10-12

*Results for "inextent ible" columns

 ''R Stability curvature C —Ac2222/(6A22Ac)
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Table 4.2.2(b) Unstable Symmetric 

 K  = 7r2EI/kL3 = 1 .0

Buckling Model.

 Continuous

Method*

Discretization Methods

Finite Element Method Simplified Element Method

Elements 4 8 16 32 4 8 16 32

D.O. F. 13 25 49 97
(4,9) (8.17) (16,33) (32,65)

8 16 32 64
(4,4) (8,8) (16,16) (32,32)

Mode 1.2 1,2 1.2 1,2 1.2 1.2 1,2 1,2 1.2

Ac

A2
9.870

9.870

9.874 9.870 9.870 9.870

9.870 9.870 9.870 9.870

9.870 9.870, 9.870 9.870

9.372 9.743 9.838 9.870

Alc1

A2c2

AllA11

Aoc22

-9.870

-48 .705

-1.000

-4.935

-9.864 -9.860 -9 .860 -9.860

-48.699 -48.699 -48.699 -48.699

-0.999 -0.999 -0 .999 -0.999

-4.934 -4.934 -4.934 -4.934

-9.860 -9.860 -9.860 -9.860

-43.927 -47.458 -48.393 -48.551

-0.999 -0.999 -0.999 -0.999

-4.587 -4.871 -4.919 -4 .919

ACA1111

ACA2222

-29.609

360.521

49.267 319.104 2227.20 16475.52

130239.36 35667.84 11111.04 1089.408

order ( 10-13- 10-12 )

order ( 10-13- 10-12 )

C **1

C2

-0.500

1.234

0.832 5.394 37.647 278.487

445.733 122.077 38.020 37.251

order ( 10-13- 10-12 )

order ( 10-13- 10-12 )

 • Results for  "inextensible" 

Stability curvatures C1 

   Table 4.2.2(c)

columns. 

-A1111/(6A114) . C2 - -A2222/(6A22A2) 

  Unstable Symmetric Buckling 

  K = 7f2EI/kL3= 1.25

ModeL

 Continuous
Method•

Discretizatic Methods

Finite Element Method Simplified Element Method

Elements 4 8 16 32 48 16 32

D.O.F. 13
(4,.9)

25
(8,17)

49
(16,33)

97
(32.65) (4

816
.4) (8.8)

32
(16,16)

64
(32,32)

Mode 1 1 1 1 1 1 1 1 1

Ac 7.896 7.896 7.896 7.896 7.896 7. 896 7.896 7.896 7.896

Alc1

ocA

ll
LA

1111

-7.896

-1.000

-23.687

-7.896

-0.999

49.267

-7.896

-0 .999

319.296

-7.896

-0.999

2227.20

-7.896

-0.999

16477.44

-7.

-0.

-7.896

-0 .999

order ( 10-13

-7.896

-0.999

_ 10-12

-7.896

-0.999

C*' -0.500 0.832 5.394 37.647 278.487 order ( 10-13 - 10-12

 *Results for 

** Stability

"inextensible" 

curvature C - -

columns.
oc  
11Ac)
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Table 4.2.3(a) Asymmetric Buckling 

K =  Tr2EI/kL3 = 0.25

ModeL 

- Dual Cusp Catastrophe -

Continuous
 Method*

Di scretizatio Methods

Finite Element Method Simplified Element Method

Elements 4 8 16 32 4 8 16 32

D.O.F. 13
(4,9)

25
(8,17)

49
(16.33)

97
(32,65)

8
(4,4)

16
(8,8)

32
(16,16)

64
(32,32)

Mode 2 2 2 2 2 2 2 2 2

Ac 9.870 9.884 9.880 9.880 9.880 9.382 9.753 9.848 9.872

Alc1

ocA1
1

-48.705

-4.935

-48.679

-4.924

-48.703

-4.929

-48.704

-4.930

-48.704

-4.930

-43.923

-4.681

-47.469

-4.867

-48.392

-4.914

-48.626

-4.926

D11

Dc0122

DcD2222

AcA2222

9.870

-97.409

1802.605

-1081.563

9.849

-97.208

131679.09

128800.81

9.854

-97.302

37108.90

34226.52

9.853

-97.308

12550.97

9667.93

9.830

•97.309

12324.62

9434.78

10.351

-92.409

1301.081

-1173.875

9.980

-96.065

1402.942

-1371.151

9.887

-96.996

1433.487

-1421.239

9.815

-97.231

1438.508

-1451.110

C.* -3.701 -4.454 -4.814 -4.894 -4 .974

 r Results for 

Stability

"inextensible" 

curvature C =

columns. 

—RC

Table 4.2.3(b) Asymmetric Buckling Model. 

           K = 7.2EI/kL3 = 0.5 
  - Hyperbolic Umbilic Catastrophe -

Continuous
 Method t

Discretization Methods

Finite Element Method Simplified Element Method

Elements 4 8 16 32 4 8 16 32

D.O. F. 13 25 49 97
(4.9) (8,17) (16.33) (32,65)

8 16 32 64
(4,4) (8.8) (16,16) (32,32)

Mode 1.2 1,2 1,2 1,2 1.2 1,2 1,2 1,2 1 ,2

A'

A2
9.870

9.870

9.872 9.872 9.872 9.872

9.880 9.875 9.875 9.877

9.872 9.872 9.872 9.872

9.377 9.748 9.843 9.867

Alc1

A2c2

Aoc11

Aoc22

—9.870

—48.705

—1.000

—4.935

—9.864 —9.864 —9.864 —9.864

—48.690 —48.578 —48.704 —48.704

—0.999 —0.999 —0.999 —0.999

—4.927 —4.932 —4
.932 —4.932

—9.864 —9.864 —9.864 —9.864

—43.922 —47.467 —48.392 —48.626

—0.999 —0.999 —0.999 —0.999

—4.684 —4.869 —4.916 —4.928

AcA111

A'Al22

—14.804
(1.000)

—48.705
(1.000)

—14.778 —14.778 —14.778 —14.778
(0.998) (0.998) (0.998) (0.998)

—48.629 —48.676 —48.679 —48.679
(0.998) (0.999) (0.999) (0.999)

—14.778 —14.778 —14.778 —14.778(
0.998) (0.998) (0.998) (0.998)

—45.364 —48.057 —48.523 —48.640(
0.931) (0.987) (0.996) (0.999)

 • Results for  "inextensible"
columns.
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Table 4.2.3(c) Asymmetric Buckling 

K  = 1T2EI/kL3 = 0.75

ModeL

- Fold Catastrophe -

Continuous
 Method *

Discretization Methods

Finite Element Method Simplified Element Method

Elements 4 8 16 32 4 8 16 32

D.O. F. 13 25 49 97
(4,9) (8,17) (16.33) (32.65)

8 16 32 64
(4,4) (8.8) (16,16) (32.32)

Mode 1 11 1 1 11 1

Ac 6.580 6.581 6.581 6.581 6.581 6.581 6.581 6.581 6.581

A11

Aoc11

-6.580

-1.000

-6 .577 -6.577 ' -6.577 -6.577

-0.999 -0.999 -0.999 -0.999

-6 .577 -6.577 -6.577 -6.577

-0.999 -0.999 -0.999 -0.999

ACA111 -9.870
(1.000)

-9.858 -9.858 -9.858 -9.858

(0.999) (0.999) (0.999) (0.999)

-9.858 -9.858 -9.858 -9.858
(0.999) (0.999) (0.999) (0.999)

 *  Results for "inextensible"
columns.
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can be written in the Lagrangian description: 
 3 

     Kx=W,xx[ 1+W2x1z 

Note its Eulerian representationis previously expressed by 
dissertation, both the FEM and the SEM make use of the 
tion of the curvature in Eq. (4.2.1). Then, the axial stress 
related to  Ex in terms of the Young's modulus E.

The

ox=EEx

material of column models behave elastically alone.

 Eq. 

above 

cx

(4.2.2)

(II-3.2.1). In this 
 first approxima-

is assumed to be

(4.2.3)

be 

to

Then, the total 

obtained by the 

the applied load

potential 
sum of 

n:

energy function V 

the internal strain

of perfectly straight column 

energy and the external work

can 

due

V(U,W, A) = EA

EI 

2

1L ( U,x
1 

2
W2,x )2 dX

fL W2xx dX + AIL U,xdX (4.2.4)

   Under 

brium and

the variational 

some boundary
principle 

conditions

in the 

can be

elasticity 

obtained

theory, equations of 

as follows:

equili-

Equations of 

1 ( U
,x + 2

equilibrium for 0 < X < L 

 W?x),x=0 (4.2.5a)

and

EI W'Xxxx - EA [( U,x +2W 

                       2  

                             'x)W,x 1'x = 0 

Boundary conditions at X = 0 and X = L 

A+EA( U, x +  W2,x)=0 or U: 
        1 2 EA ( U

,x + 2 W ,x) W'x-EI W,xxx= 0 or

specified

W : specified

(4.2.5b)

(4.2.5c)

(4.2.5d)

and

EI W,xx= 0

   Now, the 

with respect
 axial 

to the

or W,x specified

force N on the 
axis in the cross

neutral 
section

h/2 

Nx=bfoxdZ=EA(U ,x+ -h/2

1 

2

 axis and 

are easily
the bending 

represented

W2x)=EA Eox

(4.2.5e)

 moment Mx 

by

(4.2.6a)

and

h/ 2 
Mx = b f Z ox dZ = - EI W,xx= - EIKx -h/2 (4.2.6b)
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where b 
tion for 

 (4.2.5a,b)

and h refer 

simplicity. 

lead to

to the 

Using

width 
these

and the height of the 

expression, equations
 rectangular cross 

of equilibrium in

sec-

Eqs.

Nx,x= 0 (4.2.7a)

EI W 'xxxx
- N

x W,xx = 0

   In the case of simply 
boundary conditions in Eqs. 
condition of Eq. (4.2.5c) and 
X=L:

supported column as shown 
(4.2.5c,d,e) are completely 
that of the constant axial

 in Fig. 

satisfied. 

force Nx

(4.2.7b)

4.2.1, all the 

Thus, the left 

are specified at

Nx = — A (4.2.8)

and Eq. (4.2.7) say that the axial force Nis always kept constant value of the 
compressive applied load--A along the neutral axis X, and also that from Eq. 
(4.2.6a) the Green's strain tensor E ox remain constant along the axis throughout 
deformations. Such a peculiar property plays an important role in an evaluation 
of extensibility of column.

Therefore, the resultant governing equilibrium equation

under

EI W 'xxxx

1 
(U,x+

yields only an 
of column[8].

+ A W,xx = 0

W?x ),x = 0

eigenvalue problem with respect to the well-known

(4.2.9)

Euler buckling

   On the other hand, Eq. (4.2.9) can be also 

proximation in Eq.  (II-3.2.4) of Table II-3.2.1 in 
extensible property of the neutral axis[4].

obtained 

the case

from the first order 

of columns with the

ap-

in-

V(W, n) = El 

2

IL 

0

 z W 
,xx dX-A1L 

0

2W2dX 

  x

(4.2.10)

   Hence, for the elastic extensible column, the total potential function of Eq. 
(4.2.4) under the in-plane condition of Eq. (4.2.5a) is equivalent to that of Eq. 
(4.2.10) for the elastic inextensible column. Of course, if the condition of inex-
tensibility of column 

 Eox=U,+-2(4.2.11) 

is substituted into Eq. (4.2.4), then it is apparently that Eq. (4.2.10) can be also 
obtained. 

   The use of the strainEoxandthe curvature Kin Eq. (4.2.1) provides 
only the characteristic eigenvalue equation of Eq. (4.2.9), and nonlinear postbuc-
kling equilibrium paths can never be solved from this equation. This aspect is 
confirmed by the proposed catastrophe analysis specially by the SEM such that 
the constant A leads to no postbuckling reservation in Eq. (4.2.9). Then, in or-
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der to precisely evaluate the nonlinear behavior of the extensible columns, it is 
necessary to formulate the higher order axial strain from geometrical configura-
tions and to use the accurate definition of curvature in Eq. (4.2.2).

   In the SEM analyses, the shape functions are adopted to be linear functions 
of the axis coordinate X for both the in-plane displacement U and the out-of-
plane deflection W. Then,' the condition Eq. (4.2.5a) of such constant axial force 
Nx,i.e.,the constant Green's strain tensor Ealong the axis X may be always 
satisfied for the SEM analyses. Hence, the Svl's results provide no postbuckling 
prediction for the symmetric bifurcation bucklings. However, in the FEM analyses, 
one of the adopted shape functions is a linear function for the displacement U 
and another is a cubic function for the deflection W. So, it is apparently dif-
ficult to satisfy completely the in-plane condition of Eq. (4.2.5a) in large deflec-
tion range. Especially, the quartic terms of the potential function may be over-
estimated for the postbuckling which is stable or not. 

 However, it seems that the present numerical results are almost reasonable 
within practical large deflection allowing the column to behave elastically. The 
explicit postbuckling expressions by the FEM are predicted by remarkable small 
values of the associated postbuckling modes non-dimensionalized by very large 
column-span length L. Furthermore, it is found that, if necessary , the higher or-d
er analyses in Table 11-3.2.1 will be required so as to predict the elastic large 

deformations of inextensible columns or struts in comparison with the results of 
the Elastica problem, Koiter, Thompson, Zeeman[8 ,32-341.

4.3 Compressed Plates

4.3.1 General remarks

   The fundamental equations for the large deflection of thin flat plate were 
first derived by von Karman, and were modified for plates with small initial 
curvatures by Marguerre. Timoshenko provided the classical mathematical solutions 
by means of double Fourier series for the deflection and Airy's stress function[8] . Th

e numerical solutions for Marguerre's equations were developed by Coan
, Yamaki for vari

ous supporting conditions[13,14]. Moreover , Williams and Walker proposed s
ome explicit solutions using a perturbation approach and a finite dif-

ference for design purpose[15,16]. Also , Harvey and Fok determined similar simple f
ormula by an energy method[17,18]. 

   The present section is concerned with an application of the catastrophe theo -
ry to such initial postbuckling characteristics of thin plate models . In the catas-tr

ophe theory, the large deflection nonlinear behavior of the plate either perfect 
or imperfect can be predicted by knowing the stability characteristics of th

e critical buckling 
point without recourse to solving nonlinear equations[1 ,2]. 

4.3.2 Formulation of potential function A 

   Consider a distinct primary bifurcation problem of the compressed recta
ngular plates. Thus, m=1 and Z =1+1=2 in Eq. (II-1.2.19), so that the essential state 

variable representing the primary buckling mode of the plate i
s designated as v1, and the co

ntrol parameters consist of both the deviation )
o= A of the loading parameter A from the critical val

ue A c and the initial imperfection parameter 
c  = £ in the same mode of buckling , respectively.

* From the FEM res ults with 32 elements(Table 4 .2.1), A/ Ac =1,0037 and =1.0931 at w/L=1/100 and 1/20 , respectively, on the postbuckling parabolic lib
rium path. 
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   Particularly, in the case of compressed rectangular unstiffened plates, all 
asymmetric cubic terms may disappear in the original form of the potential func-
tion considered in Eq.  (I-1.2.1), (II-1.2.4) or (II-1.3.10) since K?.= 0 and KR= 
0. The reduced potential function can be explicitly defined bythe Taylor extan-
sion about the distinct critical origin (v1, X , E )=(0,0,0) from Eq. (II-1.3.21):

A(vi, X, E) =24Ac 
1111

v1+6Alc 
111

Evl+6Ac 
111

v3 1

1 c + 

2 All
v2 1 +1All 

  211 Avi+2AilEvi + ACE vi
(4.3.1)

where

Ac p' 1111
BBB 

_ = 3 ( K1111K1111) = A  1111
lc 
111 '

Ac A111
%SS 

= 3 ( K111 -K11)=0,

Alc  11
ASS 

= 2 ( K111 -K11)=0 ,

Aoc 11 =-K11 , Alc  1 _- AcK1.

Ac p' 11 = = K11 - Ac Kil = 0 ( Kip = 0 )

Then, the last equation 

buckling v1. Moreover,

provides the 
it is rewritten

critical 

 as

load Ac for the primary bifurcation

A(v1, A, E ) = 24Ac 
1111

v1+6 Alc E v3 
111 1

Now, in order

X = v1 + E

is introduced

+ Aoc 11 Xvi + Aic

to eliminate the

herein. Then,

Evi

term

Eq. (4.3.2)

Evi, a

leads to

linear transform

(4.3.2)

(4.3.3)

A(x, A, E ) =24 Ac 
1111

x4 +12 Aoc x 11 x2   + AEx

(4.3.4)

in which, such terms as E 2 and Ac with respect to the control parameters are 
neglected as mentioned in the chapter II-1. Of course, each Taylor coefficient is 
evaluated at the critical point (x, A , c )=(0,0,0). As a result, the variable x in 
Eq. (4.3.3) denotes the "total" amplitude of the deflection mode of the plate 
considered.
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   Here, an equilibrium equation in a neighborhood of the critical point for a 
compressed plate is obtained from Eq. (4.3.4) 

    ax 6 Acllllx3 + Aoc Ax+AlcE=  o111(4.3.5) 

This equation yields both the trivial equilibrium solution for the perfect plate 
( E = 0) and the typical nonlinear large deflection equilibrium solution for the 
imperfect plate ( E # 0). The latter solution includes the canonical parabolic 

postbuckling equilibrium solution in the particular case of the perfect plate. 
That is, 

   x = 0 ornc= 1 + C Q, x2 + CX(4.3.6) 
where 

  clc 

C-A1111_ -A1  Q6AcAcEAcnc 
1111 

The equations provide the common nonlinear equilibrium solution for a compressed 
rectangular plate under the load-control as discussed in the previous chapter II-1. 

4.3.3 Formulation for plate edge conditions 

   In this dissertation, the two controls are mainly discussed on by the exist-
ence of the equivalent nodal forces due to some constrained in-plane displace-
ments as mentioned in Eqs. (11-1.3.5) and (11-1.3.8). Then, the total load on the 
compressed edge under the displacement-control type can be determined by sum-
mation of reaction nodal forces on the constrained edge. Let P designate as the 
total load in the compressive axial direction. It is apparently shown that physical 
meanings of the total load P for both the load control(A) and the displacement 
control(B) have significant difference as follows. The total load on the compres-
sive edge is obtained by either of 

 P = n A(4 .3.7a) 

for the load-control type (A) or 

   MbM
c 

   P =-
mlA Pom-a~lPa(A)(4.3.7b) 

for the displacement-control type (B) as discussed in the chapter II-1. In which, 
n refers to the number of partition of the plate in the y-direction as shown in 
Fig. 4.3.1 below. In the latter case, as a result, the compressive total load P is d
etermined from Eqs. (II-1.3.5) and (11-1.3.8). 

MbM
c 

P 
m°1APoma1GamPom 
 MM       c

PB-C,cPB        -2
a=1Ga,kKkQm`'aZwmaC1GakKkimWQwm                                                          (4.3.8) 
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Then, upon adopting the modal transforms of Eq.  (II-1.3.12) and (II-1.3.13), and 
writing as E 1 = E and v1 + E = x, the first term in the above equation is 
reasonably equivalent to A in the theoretical and numerical manners. This condi-
tion is satisfied at the critical point (x, X , E )=(0,0,0). Thus,

where

P = n A

     1 
Cd-2

-Cdx2+CdE2

Mc 

Gak 

a=1

PB K
kQ, m 22 ~ ml

In which, upon elimination of the higher term E 
the resultant nonlinear equilibrium path including 
bolic one can be expressed in terms of both the 
tial imperfection E. 

F° = 1 + C x2 + CE x 
where

Pc=n A c

C = C2 ,
 -Cd,

C' 

Cd  d
n11c

(4.3.9)

2 from Eqs . (4.3.6) and (4.3.9), 
the complete postbuckling para-
total deflection x and the  ini-

(4.3.10)

   The path represents a typical equilibrium solution for the displacement-control 
type (B), and furthermore, the same form of solutions in the case of another 
load-control type (A) can be given by replacing F.in Eqs.  (II-1.3.9) and (II- 
1.3.10) forFi'•m. Also, this solution can be determinefrom denoting A and Ac 
in Eq. (4.3.6) as P and Pc, and letting Cd = 0 in Eq. (4.3.10). Therefore, finally, 
Eq. (4.3.10) involves both types of controls of (A) and (B). 

   Then, in the displacement-control type(B), the potential function A in Eq. 
(4.3.4) should be also modified as follows: Substituting directly Eq. (4.3.9) into 
Eq. (4.3.5) and eliminating A , the modified equilibrium equation corresponding to 
Eq. (4.3.5) can be obtained by

1_ 
6

   c (
111

+ 6A11Ca)vi+ Aoc v1(P Pc) + nA1C El = 0

(4.3.11)

Therefore, the 
displacements

 modified potential 

may be written as

function due to the control of the constrained

B(v1,P, El)
1 

24
BC B1111vi+2Bllvl(P - Pc) + Blcvi E 1

(4.3.12)

where

 C B
1111

    c -X1111 + 6AiiC'a ,  ococ B
11--21/21'

Biclc B1= Al
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and, P and  Pc refer to the total load on the constrained edge and its critical 
buckling value, respectively. From this potential function, the equilibrium equation 
can be obtained identically to be Eq. (4.3.10). Of course, in the case of the 
load-control type, Eq. (4.3.12) leads to Eq. (4.3.4). 

   However, the difference of the type of controls of (A) and (B) as discussed 
above may be found to be insignificant in view of the numerical realization. 
Hence, several demonstrations of computations will be made under mainly the 
load-control type(A) as discussed in the section 4.3.5. 

4.3.4 Numerical illustrations 

   The numerical procedure formulated as stated above is applied to predict the 
postbuckling behavior of compressed steel rectangular flat plates. Fig. 4.3.1 il-
lustrates the compressed plate model and its Cartesian coordinate system con-
sidered herein. The model is assumed to behave only in the elastic range. The 
applied compressive load is assumed to be in the longitudinal and uniaxial direc-
tion under the two types of (A) load and (B) displacement controls for the in-

plane displacements on loaded edges. Also, the in-plane transverse displacements 
on unloaded edges are assumed to be freely deformable throughout. Moreover, the 
following four types of the out-of-plane supporting conditions are considered: (i) 
all edges simply supported, (ii) loaded edges simply supported and unloaded edges 
clamped, (iii) loaded edges clamped and unloaded edges simply supported, and (iv) 
all edges clamped. Then, the geometrical and material properties considered here-
after in some numerical illustrations are constants as follow (See, Fig. 4.3.1): 

Z,W 

a =b= 1 : aspect ratio , 
X,U 

v=3: Poisson's ratio ,s" 

a 

       == 100 : width-thickness ratio,/ 

       = 6 = 875 : ratio of Young'sFig. 4.3.1 Plate Model 
                      modulus to yield stress ,in Compression. 

and 

               20      R=b12 (2-v) E = 1.757 ( k=4 ) : generalized width-        Trkthickness ratio 
                                                      (4.3.13) 

   The calculations are performed for the plates using the non-dimensionalized 
potential function in Eq. (4.3.1) through the FEM with the ACM cubic shape 
function and the SEM developed by Watanabe et al.in APPENDIX [26-29). 

   The parabolic postbuckling equilibrium paths for the perfect plate ( E = 0) 
and the canonical general nonlinear large deflection equilibrium solutions for the 
imperfect plate ( c # 0 ) can be evaluated under four supporting conditions .
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4.3.5 Discussions

   Tables 4.3.1, 4.3.2, 4.3.3 and 4.3.4 show the numerical results by the FEM 
analysis for square plates in the cases of four supporting conditions. Each table 
includes two results of (a) and (b) under the load-control type(A) and the dis-
placement-control type(B), respectively. In these tables, the  first row refers to 
the mesh of discrete elements of the plates. The FEM analyses are calculated 
from 3x3=9 elements to 8x8=64 elements. Also, the similar results using the SEM 
are summarized in Tables 4.3.5, 4.3.6, 4.3.7 and 4.3.8. The analyses for the SEM 
are computed up to 10x10=100 elements.

   From these sixteen tables, the convergence of the elastic buckling coefficient 
k and the 4th stability curvature C with respect to the number of elements will 
be discussed firstly. Figs. 4.3.2, 4.3.3, 4.3.4 and 4.3.5 show such convergence for 
square plates in the case of (i), (ii), (iii) and (iv), respectively, under the dis-
placement control(B). In each figure, the abscissa denotes the number of ele-
ments; the left and the right ordinates represent the stability curvature C in Eq. 
(4.3.10) and the ratio of the obtained buckling coefficient k to the Timoshenko's 
elastic buckling coefficient kc, respectively. Furthermore, under the load-control 
type(B), the similar characteristics of the convergence of the buckling coefficient 
k and the stability curvature C are also realized in above tables.

   It is found that for any supported conditions the calculated buckling coeffi-
cients tend to converge asymptotically to Timoshenko's results as if they are up-
per bound values, with increase of the number of elements. For comparison of 
the SEM results with the FEM ones, the former have slower convergence than 
the latter except for the case of (i). In the case of (i), the former provide 
more accurate values than the latter regardless of the number of elements. For 
any supporting conditions, all the coefficients calculated by both the SEM and 
the FEM lie in the range of error of about 8 percent to Timoshenko's results 
for the maximum number of elements.

   Furthermore, it is also shown that each stability curvature C may approach 
to certain appropriate lower-bound value for each • supporting condition. For any 
supporting conditions, the SEM provides more rapid convergence of the stability 
curvatures than the FEM. Each stability curvature is calculated for the primary 
buckling mode v1, which is added to the initial deflection wo/t, and whose total 
is rewritten as w/t. In which, t refers to the plate-thickness considered. In all 
the computations, herein, the maximum amplitude of the corresponding general-
ized out-of-plane nodal displacement is assumed to be unity. Similarly, the initial 
deflection mode is redesignated as wo/t. Here, Coan and Yamaki postulated the 
maximum amplitude of the out-of-plane deflection to be unity, so that the pre-
sent results hereafter may correspond to Coan's and Yamaki's works only for 
even number partitions of the discrete elements of the plate. Finally, the con-
vergence of the stability curvatures can be clarified more excellently.

   The postbuckling parabolic and the general nonlinear large deflection equi-
librium paths using Eqs. (4.3.6) and (4.3.10) will be compared with the previous 
investigations by Coan, Yamaki, Williams and Rhodes et al. Figs. 4.3.6, 4.3.7, 
4.3.8 and 4.3.9 illustrate the nonlinear solutions of compressed square plates with 
the supporting conditions of (i), (ii), (iii) and (iv), respectively. Here, the initial 
out-of-plane deflection is assumed to be the same mode that the primary buckl-
ing mode calculated, and the maximum amplitude is given by wo/t = 0.1, In 
these figures, Coan's and Yamaki's works include the first order solutions consist-
ing of only the primary buckling mode and the second order solutions involving
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Table 4.3.1(a)  Stability 
(i) All

Curvatures

Edges Simply

of Compressed Square Plates. 
Supported. Load Control using the FENL

 3X3 454 5 X 5 656 7 X 7 8 X 8

D.O.F. 47
(27,20)

83
(44,39)

129
(65.64)

185
(90,95)

251
(119,132) (15

327
.175)

29.188 30.421 31.072 31.450 31.612 31. 840
cr

A 9.729 7.605 6.214 5.243 4.527 3. 980
cr

k 3.605 3.757 3.838 3.884 3.914 3. 933

mode (1,1) (1,1) (1.1) (1.1) (1,1) (1 .1)

Aoc11 -0.129 -0.098 -0.150 -0.148 -0.191 -0. 197

Alc1 -1.257 -0.750 -0 .934 -0.774 -0.864 -0. 785

AcA 1111 5.674 1.473 1.999 1.304 1.657 1. 491

CE -1.000 -1.000 -1.000 -1 .000 -1.000 -1. 000

C 0.752 0.329 0.357 0.280 0.319 0. 317

Table 4.3.1(b)  Stability Curvatures of Compressed Square 
(i) All Edges Simply Supported. 
Displacement Control using the FEM.

Plates.

 

3  X  3 44 5 X 5 6 X 6 7 X 7 8 X 8

D.O.F. 47 83 129 185 251 327

(27.20) (44,39) (65,64) (90.95) (119.132) (152,175)

Pcr 29.188 30.421 31.072 31.450 31.686 31.834

Acr 9.729 7.605 6.214 5.242 4.527 3.979

3.605 3.757 3.838 3.884 3.914 3.932

mode (1,1) (1.1) (1,1) (1,1) (1,1) (1,1)

Aoc11 -0.129 -0.098 -0 .150 -0.148 -0.191 -0.197

Alc1 -1.257 -0.750 -0.934 -0.774 -0.864 -0.785

ACA 1111 7.344 2.133 3.005 1.959 2.427 2.093

Cp 0.974 0.477 0.536 0.421 0.468 0.444

Cd 0.204 0.129 0.152 0.116 0.120 0.101

CE -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

0.770 0.348 0.384 0.305 0.348 0.343
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Table 4.3.2(a) Stability Curvatures of Compressed Square Plates .  (ii) L
oaded Edges Simply Supported and Unloaded 

Clamped. Load Control using the FEM .
Edges

 303 404 505 606 7 0 7 808

0.0.F. 43
(27,16)

77
(44,33)

121
(65,56)

175
(90.85)

239
(119.120)

313
(152.161)

Cr
52.221 54.737 56.746 58.130 59.083 59.752

ACr 17.407 13.684 11.349 9.688 8.440 7.469

6.450 6.761 7.009 7.180 7.298 7.380

mode (2,1) (2,1) (2.1) (2.1) (2.1) (2.1)

AOC11 -0 .476 -0.322 -0 .526 -0.661 -0.658 -0.664

AlC1 -8.286 -4 .409 -5 .971 -6.407 -5 .554 -4.960
CA 

1111 99.219 24.143 27.710 27.174 18.258 13.484

CE -1.000 -1 .000 -1 .000 -1.000 -1 .000 -1.000

1.996 0.913 0.773 0.707 0.548 0.453

Table 4.3.2(b) Stability Curvatures of Compressed Square Plates. 
 (H) Loaded Edges Simply Supported and Unloaded 

Clamped. Displacement Control using the FEM.
Edges

 3X3 404 5 X 5 6 X 6 7 X 7 8 X 8

0.0.F. 43 77 121 175 239 313

(27,16) (44,33) (65,56) (90.85) (119.120) (152,161)

Pcr 52.221 54.738 56.748 58.130 59.082 59.748

Acr 17.407 13.684 11.350 9.688 8.440 7.469

6.450 6.761 7.009 7. 180 7.297 7.380

mode (2,1) (2,1) (2,1) (2.1) (2,1) (2.1)

Aoc11 -0.476 -0.322 -0.526 -0.661 -0.658 -0.664

Alc1 -8.286 -4.409 -5.971 -6.407 -5 .554 -4.961

AcA 1111 160.866 44.712 63.061 65.464 45.739 34.651

CE 3.236 1.690 1.760 1.703 1.373 1.164

Cd 1.029 0.638 0.799 0.799 0.657 0.563

Cc -1 .000 -1 .000 -1 .000 -1.000 -1.000 -1.000

C 2.206 1.052 0.961 0.904 0.716 0.601
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Table 4.3.3(a) Stability Curvatures of Compressed Square 
 (iii) Loaded Edges Clamped and Unloaded 

Simply Supported. Load Control using the

 Plates. 

Edges 

FEM.

 303 404 5 X 5 606 7 X 7 80 8

D.O.F. 43
Y27.16)

77
(44,33)

121
(65.56)

175
(90,85)

239
(119,120) (15

313
',161)

Pcr 49.289 50.658 51.752 52.484 52.983 53. 321

A
r. 16.430 12.664 10.350 8. 747 7.569 6. 665

k 6.088 6.257 6.392 6.483 6.544 6. 586

mode (1,1) (1,1) (1,1) (1.1) (1,1) (1 ,1)

Aoc11 -0.161 -0.096 -0.166 -0 .148 -0.202 -0. 198

Alc1 -2.641 -1.214 -1.722 -1.292 -1.529 -1. 319

Aim 13.598 2.618 3.744 1.933 2.594 1. 941

CE -1.000 -1.000 -1.000 -1 .000 -1.000 -1. 000

C 0.858 0.359 0.362 0.249 0.283 0. 245

Table 4.3.3(b) Stability Curvatures of Compressed Square Plates. 
 (iii) Loaded Edges Clamped and Unloaded Edges 

Simply Supported. Displacement Control using the FELL

 

3  X  3 4 0 4 5 X 5 6X6 7 X 7 808

0.0.F. 43 77 121 175 239 313
(27,16) (44,33) (65,56) (90.85) (119.120) (152,161)

PCr 49.289 50.658 51.752 52.484 52.979 53.316

16.430 12.664 10.350 8.747 7.568 6.664

k 6.088 6.257 6.392 6.483 6.544 6.585

mode (1,1) (1.1) (1,1) (1,1) (1,1) (1,1)

AOC11 -0.161 -0 .096 -0.166 -0.148 -0 .202 -0.198

AlC1 -2 .641 -1.214 -1.722 -1.292 -1.529 -1 .319

Aim 15.775 3.010 4.639 2.466 3.359 2.516

CE 0.996 0.413 0.582 0.318 0.366 0.318

Cd 0.128 0.048 0.077 0.061 0.073 0.064

Cc -1.000 -1 .000 -1.000 -1 .000 -1.000 -1.000

C 0.868 0.365 0.504 0.257 0.259 0.254
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Table 4.3.4(a) Stability 
(iv) All

Curvatures of 
Edges Clamped.

Compressed Square 
Load Control using

Plates. 

 the  FEM.

 3  X  3 4 X 4 5X5 6 X 6 7 X 7 8 X 8

D.O.F. 39
(27.12)

71
(44.27)

113
(65.48)

165
(90.75)

227
(119,108) (15

299
'.147)

pGr 73.884 74.603 76.250 77.494 78.390 79. 029

Acr 24.628 18.651 15.250 12.916 11. 199 9. 879

k 9.126 9.214 9.418 9.572 9.682 9. 761

mode (1.1) (1.1) (1,1) (1.1) (1,1) (1 .1)

Aoc11 -0.172 -0.081 -0.156 -0.126 -0 .181 -0. 169

A7lc -4 .244 -1.506 -2.382 -1.625 -2.028 -1. 668
CA
1111 30.077 3.494 6.155 2.714 3.929 2. 581

C -1.000 -1.000 -1.000 -1 .000 -1.000 -1. 000

C 1.181 0.387 0.431 0.278 0.323 0. 258

Table 4.3.4(b) Stability 
(iv) All

Curvatures of 
Edges Clamped.

Compressed Square Plates. 
Displacement Control using the  FEM.

 3  X  3 4 X 4 5 X 5 6 0 6 7 X 1 8 X 8

D.O.F. 39 71 113 165 227 299
(27.12) (44.27) (65,48) (90.15) (119.108) (152,147)

Pcr 73.884 74.604 76.250 77.494 78.385 79.023

4cr 24.628 18.651 15.250 12.916 11.198 9.878

k 9.126 9.214 9.418 9.572 9.682 9.761

mode (1,1) (1,1) (1,1) (1.1) (1.1) (1,1)

ocA
11

-0.172 -0.081 -0.156 -0.126 -0.181 -0.169

Alc1 -4.244 -1.506 -2.382 -1.625 -2.028 -1.668

Aim 34.316 3.872 7.107 3.133 4.550 2.984

Ci 1.348 0.429 0.497 0.321 0.374 0.298

Cd 0.149 0.038 0.060 0.038 0.044 0.035

C -1.000 -1 .000 -1.000 -1 .000 -1.000 -1.000
C

C 1.199 0.391 0.437 0.283 0.329 0.263
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Table 4.3.5(a) Stability 
 (i) All

Curvatures

Edges Simply

of Compressed Square Plates. 
Supported. Load Control using the SEM.

 3  X  3 4 X 4 5 X 5 6X6 7 X 7 8 5 8 909 10 X 10

0.0.F. 31 53 81 115 155 201 253 311

(27,4) (44.9) (65.16) (90.25) (119.36) (152.49) (189,64) (220,81)

P 31.008 31.585 31.864 32.021 32.117 32.183 32.228 32.257
cr

A, 10.336 7.896 6.373 5.337 4.588 4.023 3.581 3.226

k 3.830 3.901 3.936 3.955 3.967 3.975 3.980 3.984

mode (1.1) (1.1) (1,1) (1,1) (1,1) (1.1) (1,1) (1,1)

oAc
ll

-0.100 -0.084 -0.137 -0.138 -0.182 -0.190 -0.229 -0.241

Ai7 -1.034 -0 .668 -0 .871 -0 .738 -0 .834 -0 .764 -0.820 -0 .776

cA
1111

2.996 0.938 1.412 0.951 1.170 0.957 1.080 0.955

C„ -1.000 -1 .000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

C 0.483 0.234 0.270 0.214 0.234 0.209 0.220 0.205

Table 4.3.5(b) Stability Curvatures of Compressed Square 
 (i) All Edges Simply Supported. 

Displacement Control using the SEM.

Plates.

 3  X  3 44 5 0 5 6 X 6 7 X 7 8X8 9 X 9 10 X 10

D.O. F. 31 53 81 115 155 201 253 311

(27.4) (44,9) (65,16) (90.25) (119,36) (152,49) 189,64) (220.81)

Pcr 31.008 31.585 31.864 32.021 32.117 32.179 32.264 32.248

Acr 10.336 7.896 6.373 5.337 4.588 4.022 3.580 3.224

3.830 3.902 3.936 3.955 3.967 3.974 3.979 3.983

mode (1,1) (1,1) (1,1) (1.1) (1.1) (1,1) (1,1) (1,1)

Aoc11 -0 .100 -0.084 -0.137 -0 .138 -0 .182 -0.190 -0.229 -0.241

Alc1 -1.034 -0.668 -0 .871 -0.738 -0.834 -0.764 -0.820 -0 .776

AcA 1111 4.189 1.476 2.293 1.548 1.890 1.527 1.707 1.491

Cp 0.675 0.368 0.439 0.350 0.378 0.333 0.347 0.320

Cd 0.171 0.116 0.141 0.110 0.115 0.098 0.099 0.088

CE -1 .000 -1.000 -1.000 -1 .000 -1.000 -1.000 -1.000 -1 .000

C 0.500 0.252 0.298 0.239 0.262 0.235 0.249 0.232
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Table 4.3.6(a) Stability Curvatures of Compressed Square  Plates . (ii) L
oaded Edges Simply Supported and Unloaded 

Clamped. Load Control using the SEM.
Edges

 303 4 0 4 5 X 5 606 7X7 8X8 9 X 9 10 X 10

0.0. F. 31 53 81 115 155 201 253 311
(27,4) (44,9) (65,16) (90.25) (119,36) (152.49) (189,64) (220.81)

CrP
39.867 46.651 50.881 53.657 55.564 56.921 57.917 58.666

Acr 13.289 11.663 10.176 8.943 7.938 7.115 6.435 5.867

4.924 5.762 6.284 6.627 6.863 7.031 7.154 7.246

mode (2,1) (2.1) (2,1) (2.1) (2.1) (2,1) (2,1) (2.1)

Aoc11 -0.300 -0.273 -0.465 -0 .619 -0.624 -0.642 -0.783 -0.899

Alc1 -3.987 -3 .184 -4.732 -5.540 -4 .949 -4.564 -5 .037 -5.273

ACA 1111 18.541 6.542 11.006 13.711 10.270 8.579 10.238 11.060

CE -1 .000 -1.000 -1.000 -1.000 -1.000 -1 .000 -1 .000 -1.000

C 0.775 0.342 0.388 0.413 0.350 0.313 0.339 0.350

Table 4.3.6(b) Stability Curvatures of Compressed Square Plates. 
 (ii) Loaded Edges Simply Supported and Unloaded 

Clamped. Displacement Control using the SEM.
Edges

 3  X  3 4 X 4 5 X 5 6 0 6 7 X 7 8 X 8 9 X 9 10X 10

D.O.F. 31 53 81 115 155 201 253 311
(27,4) (44,9) (65,16) (90.25) (119.36) (152.49) (189,64) (220,81)

Pcr 39.867 46.651 50.880 53.656 55.562 56.916 57.943 58.653

Acr 13.289 11.663 10.176 8.943 7.937 7.114 6.434 5.865

k 4.924 5.762 6.284 6.627 6.863 7.030 7.152 7.244

mode (2,1) (2.1) (2.1) (2.1) (2,1) (2,1) (2.1) (2.1)

A"11 -0.300 -0 .273 -0.465 -0.619 -0.624 -0.642 -0 .783 -0.899

Alc1 -3.936 -3.184 -4.732 -5.540 -4 .949 -4 . 564 -5.036 -5.274

AcA1111 36.538 18.864 35.284 44.276 33.359 27.252 32.204 34.520

CO 1.528 0.988 1.243 1.332 1.123 0.995 1.066 1.091

Cd 0.651 0.540 0.706 0.751 0.625 0.547 0.580 0.588

CE -1 .000 -1 .000 -1.000 -1.000 -1.000 -1.000 -1 .000 -1 .000

C 0.877 0.447 0.537 0.582 0.498 0.448 0.486 0.503
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Table 4.3.7(a) Stability Curvatures of Compressed Square 
 (iii) Loaded Edges Clamped and Unloaded 

Simply Supported. Load Control using the

 Plates. 

Edges 

SEM.

 3  X  3 404 5 X 5 606 7x7 8 X8 9X9 10 X 10

D.O.F. 31
(27.4)

53
(44.9)

81
(65.16)

115
(90.25)

155
(119.36) (15.

201
.49)

253
(189.64)

311
(220.81)

Pcr 42.821 47.800 50.044 51.358 52.183 52 .736 53.120 53.394

Acr 14.274 11.950 10.009 8.560 7.454 6 .592 5.902 5.339

5.289 5.904 6.181 6.344 6.446 6 .514 6.561 6.595

mode (2,1) (1.1) (1.1) (1,1) (1.1) (1 .1) (1.1) (1.1)

ocA
ll

-0.300 -0.073 -0.142 -0.131 -0 .185 -0 .184 -0.232 -0.237

Alc -4.282 -0.876 -1.421 -1.122 -1.382 -1 .218 -1 .369 -1.265

cA
1111 18.539 1.159 2.252 1.242 1.757 1.304 1.596 1.332

CE -1.000 -1.000 -1.000 -1 .000 -1.000 -1 .000 -1.000 -1.000

C 0.722 0.221 0.264 0.184 0.212 0 .178 0.194 0.175

Table 4.3.7(b) Stability Curvatures of Compressed Square Plates. 
 (iii) Loaded Edges Clamped and Unloaded Edges 

Simply Supported. Displacement Control using the SEM.

303  4  X  4 5 X 5 606 7 X 7 8X 8 9 X 9 10 X 10

D.O.F. 31 53 81 115 155 201 253 311

(27,4) (44,9) (65,16) (90.25) (119,36) (152.49) (189.64) ^ (220,81)

P 42.820 47.800 50.043 51.358 52.183 52.730 53.101 53.382

A 14.273 11.950 10.009 8.560 7.454 6.591 5.901 5.338
cr

k 5.289 5.904 6.181 6.343 6.445 6.513 6.560 6.594

mode (2.1) (1.1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

AoC11 -0.300 -0.073 -0.142 -0.131 -0.185 -0.184 -0.232 -0.237

41c1 -4.281 -0.876 -1.421 -1.122 -1.382 -1.218 -1.369 -1.265

ACA1111 36.526 1.450 3.039 1.724 2.474 1.851 2.278 1.906

CQ 1.422 0.276 0.354 0.256 0.298 0.253 0.277 0.251

Cd 0.606 0.050 0.083 0.063 0.077 0.066 0.073 0.066

CC -1.000 -1.000 -1.000 -1.000 -1.000 -1 .000 -1.000 -1.000

C 0.817 0.226 0.271 0.192 0.222 0.187 0.204 0.185
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Table 4.3.8(a) Stability 
(iv) All

Curvatures of 
Edges Clamped.

Compressed Square Plates. 
Load Control using the SEM.

 

3  X  3 4 X 4 5X5 606 7 X 7 8 X 8 9 X 9 10 X 10

0.0.F. 31 53 81 115 155 201 253 311

(27,4) (44,9) (65.16) (90.25) (119.36) (152.49) (189,64) (220,81)

Pcr 44.297 58.470 65.467 69.650 72.411 74.332 75.717 76.744

Acr 14.766 14.617 13.093 11.608 10.344 9.291 8.413 7.674

5.471 7.222 8.086 8.603 8.944 9.180 9.352 9.479

mode (2,1) (1.1) (1,1) (1,1) (1,1) (1.1) (1.1) (1,1)

Aoc11 -0.300 -0.101 -0.174 -0 .130 -0.185 -0.171 -0.217 -0.212

Alc -4 .430 -1.483 -2.284 -1.504 -1.915 -1.584 -1.824 -1.629

AcA 1111 18.541 2.276 3.988 1.692 2.677 1.802 2.362 1.867

GE -1.000 -1 .000 -1 .000 -1.000 -1.000 -1.000 -1.000 -1.000

C 0.698 0.256 0.291 0.188 0.233 0.190 0.216 0.191

Table 4.3.8(b)  Stability 
(iv) All

Curvatures

Edges

of

Clamped.
Compressed Square Plates. 

Displacement Control using the SEM.

 3  X  3 4 X 4 5 X 5 6 X 6 7 X 7 8 X 8 9X9 10 X 10

0.0.F. 31
(27,4)

53
(44,9)

81
(65,16)

115
(90,25)

155
(119,36)

201
(152,49)

253
(189,64)

311
(220,81)

44.297 58.470 65.467 69.450 72.409 74.324 75.702 76.727

cr

A 14.765 14.617 13.093 11.608 10.344 9.291 8.411 7.673

Cr

5.471 7.223 8.086 8.603 8.944 9.180 9.350 9.477

mode (2.1) (1.1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

oCA
ll

-0.300 -0.101 -0.174 -0.130 -0.185 -0.171 -0.217 -0.212

Alc1 -4.430 -1.483 -2.284 -1.504 -1.915 -1.584 -1.824 -1 .629

cA
1111

36.541 3.096 5.571 2.254 3.468 2.290 2.960 2.314

C2. 1.374 0.348 0.407 0.250 0.302 0.241 0.270 0.237

Cd 0.586 0.084 0.105 0.056 0.062 0.046 0.048 0.040

C -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1 .000

C

C 0.789 0.264 0.301 0.193 0.240 0.195 0.222 0.197
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the higher order buckling modes.

   For smaller out-of-plane deflection  w/t < 1.5, the proposed solutions are 
shown to be in good agreement with Coan, Yamaki, Williams, Rhodes et al. 
Throughout larger deflection, the results obtained by the SEM may be in more 
excellent agreement with the above previous investigations than those by the 
FEM. The latter method may be found to slightly overestimate the stability cur-
vatures in comparison with the former because the latter results are in the mid-
dle of convergence as shown in Figs. 4.3.2-4.3.5, previously. This tendency con-
firmed the catastrophe analysis of column structures in the chapter II-3.

   The main objective of the proposed catastrophe analysis is to predict a non-
linear behavior of slender structure in terms of evaluation of only the stability 
characteristics at the associated critical point. So far at the critical point, the 
in-plane displacements constrained on loaded edges satisfy their condition to 
remain straight, regardless of control types of (A) and (B). The load-control type 
(A) says that all the axial in-plane displacement components are linearly dis-
tributed in the axial direction at the critical point, and that the resultant formu-
lation provides the first order approximation to actual postbuckling behavior of 
the compressed plate. Of course, the displacement-control type (B) should give 
more accurate values of the stability curvatures.

   Then, it is found that the proposed results under the two control types of 
(A) and (B) approximate the Yamaki's solutions for larger deflection w/t > 1.5 
and for smaller deflection w/t < 1.5, respectively. This is satisfied for any out-
of-plane supporting condition except for the second one (ii) in Fig. 4.3.7. 
Especially, in the case of condition (ii), the results under the type (B) may ap-
proach to the Yamaki's ones in the whole deflection field. Also, for the plate 
with all edges simply supported (i), the results by the load-control type (A) are 
shown to be rather slightly reasonable than those by the displacement one (B). 
Both the control types of (A) and (B) may approximate the previous works with 
an appropriate accuracy for smaller deflection considered herein. That is, in en-
gineering practice, a difference between two control types may become little 
significant quantitatively and qualitatively within the range of deflection allowing 
to apply the elastic theory of stability to such problems. Therefore, the effect 
of control types on the stability of structural members may be secondary since 
the difference of controls never change the essential characteristics of the in-
stability phenomena. 

   Thus, in the proceeding section, some numerical illustrations for compressed 
rectangular stiffened plates will be performed under mainly the load-control type 
(A) because of a simple expression of numerical formulation.

4.4 Compressed Stiffened Plates

4.4.1 General remarks 

   Instability phenomena of rectangular stiffened plates with longitudinal stiff-
eners under uniaxial in-plane compression involve the following prototypes of 
bifurcation problems. One of them is a global instability when the stiffened plate 
overally buckles with an Euler-type mode of a stiffener like a simple column. 
Another type is a local buckling of an isolated plate panel between stiffeners 
which form nodal lines of the associated buckling mode. The former type of 
buckling may appear in general for a compressed stiffened plate with smaller
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flexural rigidities of its stiffeners. Whereas, the latter type of buckling may oc-
cur for the stiffened plate with the larger flexural rigidities. Then, there exist 
their simultaneous bucklings with the two-fold bifurcation. The compound buckling 
point may be characterized by the complex umbilic catastrophes identified by 
Thompson, Hunt and Tvergaard [7,12,  19,21,221 Also, the distinct or the com-
pound bifurcations are characterized by the symmetry of the stiffener itself with 
respect to the plate panel of stiffened plate.

4.4.2 Numerical illustrations

   Figs. 4.4.1 show square plates subjected to in-plane uniaxial compression. 
Each stiffened plate has only one longitudinal stiffener on the center line at 
equal distance from both unloaded edges. All edges of the stiffened plate are 
simply supported with respect to the out-of-plane deflections under the load-
control type (A) or the displacement-control type(B) as discussed previously. The 
geometrical and material properties are similar to those of the unstiffened plates 
in Fig. 4.3.1 as follows:

a =a— = 1 b
' V =1 3 ' R=b = 200 ,  = 6= 875 , 

Y

and

b R 
_ t = 1 .757

 

(  ki = 16  ) (4.4.1)

Moreover, the major parameters of a stiffener are

Y =
EsIs

bD

      A 
, S = bt, D = Eta

12(1-U ) (4.4.2)

Z,W 
1

 y  ,V

b

t, 2-

X,U

y

Z,W

b
 -Y

t‘ 2,

X,U

Fig. 4.4.1 Compressed Stiffened Plate Models. 
 (a) Symmetric Stiffener (b) Eccentric Stiffener
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where y and 6 refer to the ratios of the flexural rigidities and of the cross-
sectional areas between a stiffener and its plate panel, respectively. Also,  Es, Is 
and As denote the Young's modulus, the moment of inertia and the are of the 
stiffener, respectively. The torsional rigidities of the stiffener are assumed to be 
negligible in this dissertation. It seems that the first parameter ' is superior to 
the second one 6 on effects of the stability properties of stiffened plates. 
Thus, the numerical calculations are performed for several values of the flexural 
rigidity Y under a constant cross-sectional ratio of 6 = 0.1. Then, the typical 
bifurcation bucklings may appear discontinuously as the parameter Y changes 
smoothly. Herein, all the numerical calculations are illustrated through the SEM 
analyses for several partitions of their discrete elements.

4.4.3 Discussions

Stiffened plate with symmetric stiffener

   This model as shown in Fig. 4.4.1(a) is called a symmetric-stiffened plate 
only in the dissertation. Tables 4.4.1, 4.4.2, 4.4.3 and 4.4.4 show the results and 
relations of some coefficients for the prototypes of bucklings of square sym-
metric-stiffened plates with the number of the discrete elements of 4x4=16, 
6x6=36, 8x8=64 and 10x10=100, respectively. Their total degrees of freedom are 
(44,9), (90,25), (152,49) and (220,81), respectively, where each has summation of 
the in-plane displacement components and the out-of-plane deflections. The com-
putations are performed under the displacement control (B) for all partitions. In 
these .tables, the subscripts of "1" and "2" correspond to the first and the second 
bucklings of the parameterized stiffened plates by the flexural rigidity y . Thus, 
case by case, each buckling mode of v1 or v2 may have either of the global or 
the local one.

  The symbols of G(m,n) and L(m,n) on the rows of the mode 1 and 2 in each 
table are designated as follows: G(m,n) denotes the Euler-column mode of a 
central stiffener for the global buckling of stiffened plate with m and n half-
wave numbers in the longitudinal and transverse directions. Also, L(m,n) denotes 
the local-plate mode of overall stiffened plates for the local buckling of stiff-
ened plates with m and n half-wave forms. 

   The primary instability has the stable symmetric bifurcation point, character-
ized by the cups catastrophe, without regard to values of the flexural rigidities. 
The symmetric-stiffened plate at a smaller flexural rigidity buckles with the 
global mode; while it buckles with the local mode of the plate panel at a larger 
flexural rigidity. This is shown in above four tables. In the case of 4x4 
elements, however, the local mode is different from that in other cases of the 

greater elements. The results of 4x4 elements may be unreasonable in comparison 
with those of other elements because of insufficient partition of the stiffened 
plate. The forms of buckling modes are referred to the next type of the 
stiffened plate as shown in Fig. 4.4.1(b). 

   It is clearly found that the buckling coefficient and the stability curvature 
may converge to the well-known value of 16 by Timoshenko and an unknown ap-
propriate value, respectively, as the number of discrete elements increases. The 
characteristics of such convergence may be drawn similarly to the unstiffened 
plates as shown in the previous section.
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 01

Stability 

Stiffened

            Table 4.4.1 

Curvatures of Compressed Square Symmetric-

Plates. Displacement Control using the SEM4x4.

Case 1234

 Y 5.0 10.0 15.0 20.0

 Ac 1

Ac2

kl

k2

85.990 115.140 115.737 115.737

111.800 115.737 115.904 116.285

10.621 14.222 14.295 14.295

13.809 14.295 14.316 14.363

mode 1

mode 2

G(1,1) L(3,3) L(3,2) L(3,2)

L(3,2) L(3,2) L(3,3) L(3,3)

Aoc11

Aoc

Alc1

A2c2

-0.142 -0.372 -0.363 -0.364

-0.243 -0.364 -0.368 -0.368

-12.222 -42.822 -41.992 -42.108

-20.905 -41.891 -42.597 -42.558

AcA1111 11.436 184.592 183.947 185.020

CR
.

Cd

CE

0.156 0.718 0.730 0.732

0.0545 0.0138 0.0034 0.0044

-1.000 -1.000 -1.000 -1.000

C 0.101 0.704 0.726 0.728

Type

Catastrophe

STABLE SYMMETRIC BUCKLING

CUSP CATASTROPHE

Stability 

Stiffened

          Table 4.4.2 

Curvatures of Compressed Square Symmetric-

Plates. Displacement Control using the SEM6x6.

Case 1 2 3 4

 Y 5.0 10.0 15.0 20.0

 A~ 58.199 82.686 82.686 82.686

A2 82.686 88.094 88.593 88.593

kl 10.783 15.320 15.320 15.320

k2 15.320 16.321 16.414 16.414

mode 1 G(1,1) L(2,2) L(2,2) L(2.2)

mode 2 L(2,2) G(1,1) L(3,2) L(3,2)

OC

11
-0.201 -0.800 -0 .800 -0.800

OC
A22 -0.799 -0.188 -1.199 -1 .199

lc
Al -9 .169 -66.118 -66.121 -66.122

A2c2 -46.509 -15 .517 -99.134 -99.144

CA
1111 8.728 288.668 288.696 288.710

CR 0.124 0.728 0.728 0.728

Cd 0.0528 0.139 0.139 0.139

CC -1.000 -1 .000 -1.000 -1.000

0.0716 0.588 0.588 0.588

Type STABLE SYMMETRIC BUCKLING

Catastrophe CUSP CATASTROPHE



Stability 
Stiffened

           Table 4.4.3 

Curvatures of Compressed Square Symmetric-
Plates. Displacement Control using the SEM8x8.

Case 1 23 4

5.0 10.0 15.0 20.0

 Ac 44.042 63.167 63.167 63.168

Ac2 63.167 67.564 70.323 70.324

k1 10.880 15.604 15.604 15.604

k2 15.604 16.690 17.372 17.372

mode 1 G(1,1) L(2,2) L(2,2) L(2,2)

mode 2 L(2,2) G(1,1) G(1,1) L(3,2)

A11 -0 .270 -0.676 -0.676 -0.676

A22 -0.676 -0.279 -1 .426 -1.426

Ai1 -11 .911 -42.716 -42.714 -42.716

A2c2 -29.770 -17.632 -90 .063 -90.067

C
A1111 8.211 103.265 103.261 103.276

Ct 0.115 0.403 0.403 0.403

Cd 0.0475 0.0915 0.0915 0.0915

CE -1.000 -1 .000 -1.000 -1.000

C 0.0674 0.311 0.311 0.311

Type STABLE SYMMETRIC BUCKLING

Catastrophe CUSP CATASTROPHE

Stability 

 Stiffened

           Table 4.4.4 

Curvatures of Compressed Square Symmetric-
Plates. Displacement Control using the SEM10a10.

Case 1 2 3 4

 Y 5.0 10.0 15.0 20.0

 A`

Ac2

kl

k2

35.390 50.978 50.978 50.978

50.978 54.698 57.820 57.820

10.928 15.742 15.742 15.742

15.742 16.890 17.854 17.854

mode 1

mode 2

G(1,1) L(2,2) L(2,2) L(2,2)

L(2,2) G(1,1) G(1.1) L(3,2)

All

ocA
22

Alc1

A2c2

-0 .342 -1.092 -1.092 -1.092

-1.092 -0 .349 -2.133 -2.134

-13.209 -55.660 -55 .660 -55.660

-38.622 -17 .797 -108.758 -108.767

AcA1111 7.913 161.194 161.199 161.206

CR

Cd

Cc

0.109 0.483 0.483 0.483

0.0426 0.107 0.107 0.107

-1.000 -1 .000 -1.000 -1.000

C- 0.0664 0.376 0.376 0.376

Type

Catastrophe

STABLE SYMMETRIC BUCKLING

CUSP CATASTROPHE



Stiffened plate with eccentric stiffener  

   This model as shown in Fig. 4.4.1(b) is called an eccentric-stiffened plate 
only in the dissertation. Tables 4.4.5, 4.4.6, 4.4.7 and 4.4.8 show the numerical 
results of compressed square eccentric-stiffened plates with  the number of the 
discrete elements of 4x4=16, 6x6=36, 8x8=64 and 10x10=100, respectively. All the 
computations are demonstrated under the load-control type (A). The same nota-
tions in the symmetric-stiffened plate are also used herein. Then, for smaller 
flexural rigidity Y , the global buckling tends to occur with the asymmetric 
point of bifurcation. Adversely, for larger rigidity Y , the local-plate buckling 
may appear with the symmetric bifurcation point. Of course, there exist the 
simultaneous bifurcations at a particular value of Y . 

   Firstly, the case 1 in the first column shows the results of a distinct pri-
mary global buckling v1 prior to the local buckling v2. The typical buckling 
mode of Table 4.4.8 is drawn spatially for the SEM10x10 in Fig. 4.4.2. It is 
found that the instability has an asymmetric point of bifurcation, i.e., the fold 
catastrophe characteristics since A111 0. The global buckling mode v1 is sym-
metric with respect to the stiffener in an opposite meaning of the asymmetric 
buckling due to eccentricity of the stiffener. Then, the form of the total poten-
tial function can be expressed in Eq. (II-3.2.19), and the nonlinear equilibrium 
solutions are obtained from Eqs. (II-3.2.20) and (II-3.2.21). Furthermore, its sig-
nificant imperfection sensitivity curve can be explicitly expanded by Eq. (II-
3.2.22), and also the detail algorithm to evaluate the bifurcation set of the im-
perfection sensitivity was presented in the chapter II-2. Fig. 4.4.3 shows the im-
perfection sensitivity of the fold catastrophe in the case 1 of Table 4.4.8 by the 
SEM. When the stiffened plate with the eccentric stiffener in the upper side as 
shown in Fig. 4.4.1(b) has the downward global buckling mode in Fig . 4.4.2, the 
stability coefficient A111 is negative. Then, it is reasonable to be e > 0 for 
evaluating the load-carrying capacity. Therefore, the eccentric-stiffened plate is 
sensitive to the downward global initial deflection since the corresponding buc-
kling mode is negative itself. While the stiffened plate may be rather stable for 
the upward global initial deflection. Herein, the plus sign of el says that the 
global initial deflection is in the downward direction as shown in Fig. 4.4.2. For 
example, the numerical results of 10x10 elements are illustrated herein . If the d

ownward global initial . deflection non-dimensionalized by the plate-panel thickness 
is prescribed as a=0.1, then the load-carrying capacity will be reduced by 15% 
from the bucklingload; A/Ac =0.850. 

   Secondly, the case 4 on the last column in each table shows the results of a 
distinct primary local buckling v1 of isolated plates prior to the previous global 
buckling v9. The typical buckling mode is drawn spatially for the SEM10x10 in 
Fig. 4.4.4: This bifurcation is identical with that for the unstiffened plates as 
discussed in the previous section, and indicates a stable symmetric point of bifur-
ation as the cusp catastrophe since Act 11  0 and A 1111  0. The local buckl-
ing mode v1 is asymmetric with respect to the stiffener in an opposite meaning 
of the symmetric buckling as the local-plate panel . So far as the local buckling 
mode of L(2,2) is concerned, the stability may be regarded to realize the equi -
valent behavior of the simply supported one-fourth plate panel of the overall 
stiffened plate. Then, the nonlinear solutions can be presented similarly by Eqs . (II-3 .2.6-8). Since equilibrium paths are essential stable in such cases within the 
elastic range, the prediction of strength of stiffened plates requires further 
elasto-plastic analyses. They are beyond in this chapter , but one of them will be 
proposed to be a simple prediction approach of elasto-plastic strength of 
stiffened plates in the proceeding chapters of PART III. 
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Table 4.4.5 Stability 
Stiffened

Curvatures of 
Plates. Load

Compressed 
Control using

Square Eccentric-

 the  SEM4x4.

Case 1 2 3 4

 Y 10.0 14.2 15.0 20.0

 A` 1 94.498 115.657 115.737 115 .737

Ac2 114.747 115.737 115.763 116.210

k1 11.672 14.285 14.295 14 .295

k2 14.173 14.295 14.590 14.354

mode 1 G(1,1) L(3,1) L(3,2) L(3,2)

mode 2 L(3,2) L(3,2) L(3,1) L(3,1)

ocA
11

-0.133 -0.334 -0.348 -0 .363

A22 -0.343 -0.359 -0.333 -0 .362

Alc1 -12.606 -38 .579 -40.272 -42.054

A2c2 -32.389 -41.552 -38.597 -41 .873

cA
lll

-0.291 -0.736 -0.0098 -0 .000068

c
A112 0.143 -0.0019 -0.136 -0.0130

AcAl22 -8.147 -0.240 -0 .0042 -0.000031

AcA222 0.0354 -0.0046 -0.438 -0.0571

a* -1.216

a' * -1.310

Ac.Ac111 122 0.177

Ac .Ac222 112 0.060

AcA1111 7.334 151.436 167.702 182.471

C XXII 0.0115 0.0095 0.00012 0.00000081
s

C 0.0970 0.654 0.694 0.723

Type of ASYMM. MONO- MONO- STABLE
Buckling CLINAL CLINAL SYMM.

Catastrophe FOLD HYPERB. HYPERB. CUSP
UMBILIC UMBILIC

  2A 
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Table 4.4.6  Stability 

Stiffened

Curvatures of 

Plates. Load

Compressed 
Control ueing

Square Eccentric-
 the SEM6x6.

Case 1 2 3 4

 Y 10.0 13.8 14.2 20.0

 Ac 1 58.534 82.448 82.688 82.688

Ac2 81.888 82.688 84.513 88.595

k1 10.845 15.275 15.320 15.320

k2 15.172 15.320 15.658 16.414

mode 1 G(1,1) G(1,1) L(2,2) L(2,2)

mode 2 G(2,1) L(2,2) G(1,1) L(3,2)

(1 C

A11 -0 .203 -0.199 -0.799 -0.799

Aoc -0 .490 -0.791 -0.200 -1.198

Alc1 -11 .906 -16.390 -66.040 -66.103

A22 -37 .442 -65.249 -16.556 -99.058

AcA111 -0.550 -2.233 0.0142 -0.00028

A112 -3 .307 0.0116 -8.051 -0.0010

Al22 6.306 -8.227 -0.00032 -0.0016

A222 -5.277 -0.144 -2 .694 0.00071

a a 0.231

a' * 0.167

A111Al22 18.371

Ac .Ac222 112 21.689

Ac 4.797 6.187 226.990 227 .426

C 0.0113 0.0681 0.00011 0.0000021

C 0.0671 0.0629 0.573 0.573

Type of
Buckling

ASYMM. HOMED- HOMED- STABLE
CLINAL CLINAL SYMM.

Catastrophe FOLD HYPERB. HYPERB. CUSP

UMBILIC UMBILIC

  2A 
 a= — 
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oc 

11 
oc 

22

A111 

Al22

2Aoc 
a' = 22 -
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Table 4.4.7 Stability 
Stiffened

Curvatures of 
Plates. Load

Compressed 
Control using

Square Eccentric-

 the SEM8x8.

Case 1 2 3 4

 Y 10.0 13.8 14.4 20.0

 A?

 1

41.674 61.559 63.173 63.173

Ac2 59.634 63.173 64.209 70.329

k1 10.294 15.207 15.606 15.606

k2 14.732 15.606 15.862 17.373

mode 1 G(1,1) G(1,1) L(2,2) L(2,2)

mode 2 G(2,1) L(2,2) G(1,1) L(3,2)

ocA
11

-0.277 -0 .283 -0.674 -0.676

Aoc -0.664 -0.674 -0.288 -1.424

Alc1 -11.554 -17.391 -42.602 -42.698

A2c2 -27.679 -41.537 -18.162 -89.958

AcA111 -0.891 -1.469 -0.0028 -0.00021

AcA112 -3 .488 -0.0052 -5.582 -0.0011

ACAl22 5.569 -5.664 0.0041 0.0023

A2c22 2.998 0.0241 -1.964 0.0019

a # 0.578

A** -- - 0.501

A111Al22 8.320 0.000011

A222A112 0.00013 10.963

AcA1111 4.540 5.237 76.082 76.236

C tt-x------x 0.0389 0.151 0.00032 0.0000025
s

C 0.0654 0.0502 0.298 0.298

Type of
Buckling

ASYMM. HOMED- HOMED- STABLE
CLINAL CLINAL SYMM.

Catastrophe FOLD HYPERB. HYPERB. CUSP
UMBILIC UMBILIC

   2A 
 a  =  — 

    A

oc 
11 

oc 
22

A111 

Al22

 2A22oc 
 a•= 

Aoc 11

A222 
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Table 4.4.8 Stability 
Stiffened

Curvatures of 
Plates. Load

Compressed 
Control using

Square  Eccentric-

 the SEM10a10.

Case  1 2 3 4

10.0 14.2 14.4 20.0

 Ac  32.091 50.622 50.987 50.987

A`2 42.856 50.987 51.360 57.830

k1 9.909 15.632 15.744 15.744

k2 13.233 15.744 15.859 17.857

mode 1 G(1,1) G(1,1) L(2,2) L(2,2)

mode 2 G(2,1) L(2,2) G(1,1) L(3,2)

Aoc11 -0.337 -0.350 -1.080 -1 .091

Aoc22 -0 .913 -1.081 -0.349 -2 .130

Alc1 -10.802 -17.742 -55.059 -55.633

A22 -29.309 -54.722 -17.777 -108 .586

AcA111 -0 .950 -1.247 0.133 -0.00030

AcA112 -3.074 0.0243 -7.164 0.0019

cA
l22

5.180 -7.231 -0.0197 -0.0054

AcA222 -2.912 -0.150 -1.362 -0 .0053

a'' 0.476

a' *'* 0.456

Ac111~Al22 9.017 -0.0026

A222"112 -0.0036 9.757

AcA1111 4.141 4.747 116.377 118.817

Cs*** 0.0440 0.0351 0.0012 2.702x10-10

C 0.0639 0.0446 0.352 0.356

Type of ASYMM. HOMEO- HOMEO- STABLE
Buckling CLINAL CLINAL SYMM.

Catastrophe FOLD HYPERB. HYPERB. CUSP
UMBILIC UMBILIC

* OC 

a2A11 
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 A111 
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      2Aoc 
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Fig. 4.4.2 Typical Global Buckling Mode  G(1 ,1). SEM 10 x 10 (Case 1).

Cl

Fig. 4.4.3 Imperfection Sensitivity of FOLD 
for Global  Buckling. SEM 10 a 10
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Fig. 4.4.4 Typical Local Buckling Mode L(2,2).  SEM10 x 10 (Case 4).

el 

global

 A_AC 

 Ac

(a) Front View

£2 

local

(b) Back

A-A 

 Ac

C

View

Fig. 4.4.5 Imperfection Sensitivity of 
for Homeodinal Buckling.

HYPERBOLIC UMBILIC 
SEM10 x 10 (Case 2). 
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Fig. 4.4.6 Symmetric Local Buckling Mode  L(3,1). SEM4x4.

Fig. 4.4.7 Asymmetric Local  Buckling Mode L(3,2). SEM4x4. 
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View
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(b) Back View

Fig. 4.4.8 Imperfection Sensitivity of HYPERBOLIC  UMBILIC 
for Monociinal Buckling. SEM4x4 (Case 2). 
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   Finally, the cases 2 and 3 in the middle two columns of each table show 
the results of near-coincident bucklings between the global and the local modes 
as mentioned and drawn in Figs. 4.4.2 and 4.4.4. In a numerical sense , it is 
rather difficult to realize the complete coincidence of above two bifurcations, 
so that the near-compound cases are considered in the present dissertation. The 
simultaneous bucklings are characterized by the hyperbolic umbilic catastrophe 
with the homeoclinal point of bifurcation proposed by Thompson and Hunt from 
relationships between the coefficients of the potential function. Then, the total 
potential function is expressed in the form similar to Eq.  (II-3.2.23). The non-
linear equilibrium solutions of Eqs. (II-3.2.24) can not be easily analyzed with the 
aid of any nonlinear process of calculations, but the imperfection sensitivity sur-
faces can be obtained as the bifurcation sets in the catastrophe theory, using a 
powerful manipulation as stated in the chapter I1-2. Figs. 4.4.5(a) and (b) show 
the imperfection sensitivity surfaces and their back views of the hyperbolic urn-
bilic catastrophe.

   For example, the numerical results in the case 2 of 10x10 elements are 

demonstrated herein. When the initial deflections non-dimensionalized by the 

plate-panel thickness are prescribed, the elastic load-carrying capacity can be 
determined from the lowest cusp-type sheet with respect to the local initial 

deflection E2, as shown in Fig. 4.4.5. The imperfection surfaces are symmetric 

with respect to the E0 plane, and the sign of the local initial deflection mode 

will never affect the-load-carrying capacity. Of course, since A111 < 0, the plus 
sign of the global initial deflection E 1 is downward similarly to the distinct 
asymmetric case 1. If there exists only the downward global initial deflection, 
i.e., 61=0.1 and E2=0, then the load-carrying capacity will be reduced by 13.4% 
as A 7 f° =0.866. Also, if there exists only the local initial deflection; E 1=0, 
E 2=0.1, then the capacity will be reduced by 21.1% as A / AC =0.783. Moreover, 
if there exist both the downward global and local initial deflections; E=E2=0.1, 
then A / AC =0.783 by 21.7%. At the compound bifurcation, the load-carrying 
capacity is more sensitive to the local initial deflection E 2 than to the global 
mode e 1 for their magnitudes being the same. While, as shown in Fig. 4.4.5(b), 
the upward global initial deflection with E 1<0 may also reduce the capacity, dif-
ferently from the case 1 of the distinct asymmetric buckling. 

   In the special case of 4x4 elements, it is found that, as the flexural rigidity 
changes continuously,  two  typical buckling modes of vl and v2 may approach 
each other under keeping the symmetry and asymmetry of each mode. Therefore, 
the coincidence of two local modes in Figs. 4.4.6 and 4.4.7 lead to the similar 
hyperbolic umbilic catastrophe but with the monoclinal point of bifurcation(See, 
Figs. 4.4.8). It seems that the numerical results of 4x4 elements may be more 
unreasonable than those of other partitions of elements. This may provide an ex-
ample at the coincidence of two local buckling modes of stiffened plates.

4.5 Conclusions 

   Several applications of the catastrophe analysis were made in order to pre-
dict the nonlinear behavior of structural models such as columns and compressed 

plates with or without stiffeners by discretization and modal transforms. This 
chapter particularly asserts that the catastrophe analysis accompanies with the 
static condensation procedure under the certain control types of loads and dis-

placements in the initial postbuckling range. The main conclusions are:
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 (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

For an extensible column with the first-order approximations of theaxial 
strain and the curvature, the 4th order terms of the buckling modein the 
total potential function always disappear, and the potential function leads 
to only an eigenvalue problem for the ideal buckling load. Then, the 
column model has no postbuckling strength. 

The present numerical results analyzed by the SEM confirm such a theo-
retical prediction of the first-order approximate extensible column. How-
ever, the results by the FEM may tend to slightly overestimate the non-
linear characteristics. This quantitative difference depends on the kind of 
the shape function adopted in each discrete method. 

An extensibility of the neutral axis of column will not affect the cubic 
terms of the potential function, and the terms completely equal to those 
in the case of the inextensible column as the number of the discrete ele-
ments increases. Thus, the dual cusp, hyperbolic umbilic and fold catas-
trophes for the asymmetric buckling model can be realized, and the imper-
fection sensitivity surfaces of extensible columns are drawn spatially as the 
bifurcation sets in the catastrophe theory. 

The nonlinear solutions of elastic large deflection for compressed rectan-

gular plates are predicted by the proposed numerical formulation. In the 
case of square unstiffened plates, the numerical results are found to be in 
excellent agreement with those by Timoshenko, Coan, Yamaki, Williams and 
Rhodes under various supporting conditions and the two control types. 

From the numerical results of compressed square plates, the difference bet-
ween two control types of load and displacement may become little sig-
nificant quantitatively and qualitatively within the accessible range of elas-
tic large deflection. 

The compressed stiffened plate with the symmetric stiffener has the stable 
symmetric bifurcation point, cusp, for both the global and the local buc-
kling modes at smaller and larger flexural rigidities, respectively. 

The present analysis is applied to both distinct and simultaneous bifurcation 

phenomena between the global and the local bucklings of compressed rec-
tangular stiffened plate with the eccentric stiffener. For the distinct global 
buckling, the load-carrying capacity can be determined from the asym-
metric buckling, fold, for the downward mode of the global initial 
deflection. 

Whereas, the distinct local buckling of the stiffened plate has the stable 
symmetric point of bifurcation, cusp, and the load-carrying capacity can 
never predicted in the stability and the catastrophe theories of elastic 
structures. 

At their coincident bifurcation for the stiffened plate
, the imperfection 

sensitivity surfaces are expressed in the form of the hyperbolic umbilic 
catastrophe with the homeoclinal bifurcation . The load-carrying capacity is 
commonly more sensitive to the global initial mode than to the local ini -
tial mode for the same magnitudes .
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(10) However, an insufficient partition of elements by the SEM may lead to 

the coincident of symmetric and asymmetric local modes
, and its imperfec-tion sensitivit

y is in the hyperbolic umbilic catastrophe with the monoclinal 
bifurcation.
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APPENDIX A for

 SIMPLIFIED

PART II

ELEMENT METHODS

   A simplified element method (abbreviated as SEM) was firstly proposed by 
Yamada and Watanabe in order to reduce degrees of freedom of deformations at 
each discrete nodal point[1-41. The adopted shape functions in each discrete ele -
ment are linear or bi-linear ones of the reference coordinates . Then, the total 
strain energy stored in an element can be divided into two parts; one is the 
membrane strain energy due to stretching deformations of the element itself as -
sociated with the so-called Green's strain tensors; and another is the flexural 
strain energy due to bending deformations associated with the curvatures . Using 
some constitutive equation in the elastic range of the material , the former is d

erived from integration throughout an element , while the latter is replaced for 
the bending and twisting strain energies of equivalent flexural and twisting linear 
springs about the relevant coordinates between two adjacent elements . 

   A brief introduction of such a manipulation of the simplified element method 
will be provided for a discrete column or rectangular isotropic plate model[5-111: 

A.1 Column Model

Element coordinates

   Fig. A.1.1 shows the Cartesian coordinate system (x,z) defined locally in an 
discrete element with four nodal generalized displacements; u1 and u2 are in-

plane nodal displacements, w1 and w2 are out-of-plane nodal displacements. Each 
node has two degrees of freedom of deformations.

Shape function

   The deformation of the column element can be described in terms of the 
displacement vector (u,w,w), which denotes the axial displacement, the lateral 
deflection and the initial lateral deflection on the neutral axis z=0, respectively. 
Then, geometry of the column element is defined by 

u(E ) = aij E1-lui w( ) =aijH. x = L E (i,j=1,2) 
                                                           (A.1.1)

using four nodal 

of the element,

displacements (u1,u 
and components of

 i\ 7 1 2

1

2

1

0

-1

1

Strain-dis lacement relationshi

 2,w  1,w2). In 
coefficient

1

which, L denotes the axial 
alj(i,j=1,2) are listed: 

Z

length

W
Ui

W2

-I U2
II

 I-- L ------- 2

 iX

£ x° Eox

where

      dU + E

ox-dx

- Z K
x

2(dx~

2 dw dw  +
dxddx'

(A.1.2)

K =d?w 
x dx         2

Fig. A.1.1 Column Model.
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   Furthermore, Eq.  (A.1.2) is written in terms of the shape function of Eq. 
(A.1.1). 

     Eox= BP ui+2BBBwiwj+ BBBwiwj•(A .1.3) 

where BPandBBBdenote difference operators easily derived from Eq.                  lj (A
.1.2). 

Constitutive equation  

o   x=E Ex(A.1.4) 

where 6x and E refer to the Euler's stress in the axial x-direction and the con-
stant Young's modulus, respectively. This PART II treats with only the material 
to behave elastically. 

Total strain energy  

    Ue =f f ox E x d Ex dV =2fE ExdV(A.1.5) 
V EV 

is stored in one element, and it can be clearly divided into two parts: 

Ue=UM+UB(A.1.6) 

where 

U M= f E ox dV ,UB=2f E Z2 KXdV 

V using Eq. (A.1.2). The symbol f means the integral on the total volume of the 
element.V 

Total membrane strain energy due to stretching deformation  

   The membrane part of the total stored in one element is expressed by 

    UM=2KPjuiuj+ KkBjukwiwj+2KkBjukwiwj 

      2KBB+1KBBBB                                          iwjwkwZ+1Kkiwiwjwkw2, 

(A.1.7) 
where 

     B=P     Kij-f EBiBPdV(i,j=1,2) 

   PB=PBB     K.-f E BPBBBdV(i,j,k=1,2) 
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KBBk,= f 

         V

E BBB Bks, dV Ii.J.k,i =1,2)

Then, the total membrane strain energy due to stretching deformations throughout 
the column model can be determined by

   UM = L UM 

where denotes the summation over all discrete elements . 

Total bending strain energy due to flexural snrinE

(A.1.8)

   Consider a linear flexural spring 
elements as shown in Fig. A.1.2 and 
the second part of Eq. (A.1.6) for 
flexural spring. The bending moment

where 

tween

Mx=-kd6

k and de 
two adjacent

indicate 

elements.

the

with the constant k 

replace the bending 

an equivalent strain 

Mx at the node 2 is

spring constant

 between two adjacent 
strain energy stored in 

 energy stored in one

and the relative

(A.1.9)

rotation be-

d e=iBBw• (i=1,2,3) (A.1.10)

where

{ BB } = ( 1 -2 1 )

On the 
expressed

other hand, 
in the finite

d2 w ", de _ _ Mx 

dx2 LEI

where EI 

constant

the well-known 

difference form.

 denotes the flexural 
can be defined by 

W1

Z

rigidity

differential equation

of the column

for elastic

model.

beams is

(A.I.11)

Then, the

2 k

W3

3

spring

Fig.  A.1.2 Flexural Spring between Two Adjacent Elements for Column Model.
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 so 

to 

the

  k - EI L 

that the moment of 
the bending moment 
second part U B of 

  UB=2k (d6)2

the flexural spring in Eq. (A.1.9) 
 in Eq. (A.1.11). Therefore, the 

Eq. (A.1.6) stored in one element 

  2KijWiWj

(A.1 .12)

is completely equivalent 

flexural strain energy in 

can be determined as

(A.1.13)

where

KBj EI B = 
L3 —k•j.

( kB ) =

1 
   -2 

1

-2 1 

 4 -2 
-2 1

kBj = BBBB (i,j=1,2,3)

This can be evaluated directly without integration process over one element, dif-
fering from other stiffness matrices in Eq. (A.1.7). Then, the total bending strain 
energy throughout the column model can be determined by 

 UB = U B(A.1.14) 

where refers to the summation over all flexural springs. 
s 
   Therefore, the total strain energy stored in the column model is obtained by 

the sum of UM and UB in Eqs. (A.1.8) and (A.1.14).

A.2 Rectangular

Element

Plate

coordinates

Model

   Fig. A.2.1 shows the Cartesian coordinate system (x,y,z) defined locally in an 
discrete element with twelve nodal generalized displacements; ui (i=1,2,3,4) and 
v1 (i=1,2,3,4) are in-plane nodal displacements in the x- and y-directions, respec-
tively, and wi (i=1,2,3,4) are out-of-plane nodal displacements. Each node has 
three degrees of freedom of deformations.

Shane functions

   The deformation of the rectangular plate element can be described 
displacement vector (u,v,w,w), which denotes the in-plane displacements in 
and y-directions, the lateral deflection in the z-direction, and the initial 
deflection, respectively. This vector is defined on the neutral plane z=0 
coordinate (x,y). Then, the geometry of the plate element is expressed by 

    u( E , n ) =bkiji-1nHuk , v(E ,n) =bkijE i-1 njuk+4

by the 
the x-
lateral 
at any

w( E ,n)=bkij0-1 Ti j-lwk (k=1,2,3,4) (A.2.1)
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and, 
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bkij (k=1,2,3,4; i,j=1,2) are listed: k=1 k=2 k= 
kll 1 00 

                      k12 -1 00 
                      k21 -1 10 
                      k22 1 -1 1 

z 
                   4 W3

which, 

2,3,4) 

the rectangular

 k=1 k=2 k=3 k=4

kll 1 0 0 0

ki2 -1 0 0 1

k21 -1 1 0 0

k22 1 -1 1 -1

Strain-dis

 -ua 

~ b 

              Fig. 

lacement relationshii

3 

W1

U5 U1 
   1 

A.2.1 Plate Model. 

 (i=1,2,3)

Ug

W2 

2

E Z K

x

Ei 

where

 E 

 E 

E 

K 

K 

K

of 

o2 

o3

1 

2 

3

=

 01 

 ox 

 oy 

E 
 oxy 

K 

K 
x 

K   xy

 1 

 au 

ax 

By 

By 

Du av 

By + ax 

_ a2w -       

axe 

_ a2w 1 

  a22   Y 

_a2w 

axay

 + 1  2

~aw~2  By 

~aw~2  Ty- 

w 2aaw 
 ax By

 KT aw 
ax ax 

aw aw 
ay ay 

aW aw + 
ax ay

(A.2.2)

155

 aW aW 

ax ay



Furthermore, Eq. (A.2.2) is rewritten in terms of the shape functions

 E of= B. .u.+2BBB..k 

where BP,and BBBdenote 
13 17k 

Constitutive equations

  k+ BBBkwjwk

difference operators easily derived from

(A.2.3) 

Eq. (A.2.1).

where

i=D.•E•

[  D~] = E  DiJ. 
 - V2

in the case of a plane 

model. In which,  .V refers 
are redesignated as xl, x 

strains are subscripted by 

Total strain energy

1 V 0 

V 1 0 

0 01-V            2 

stress parallel tc 

 to the Poisson's 

2 and x3. Herea 1
, 2 and 3 in t

(A.2.4)

 [lel to the x-y plane of the isotropic plate 
isson's ration, and the coordinates x, y and z 
Hereafter, the quantities such as stresses and 
3 in the x-, y- and z-directions, respectively.

Ue= f f 0•1E•1d{dV=2 
V {E} 

is stored in one element, and it can be 

Ue = UM + UB 

where

         •f DidE•dV 
         E V

clearly divided into two

(A.2.5)

parts: 

  (A.2.6)

UM 1 

2

using Eq. (A.2.2). 
the element. 

Total membrane

I Did E ofEo]dV , 

V

The

strain

symbol I 

V

ener

UB

denotes the

due to stretchin

1 

2

integral

t Did Z2 K iK • dV

on the

deformations

total volume of

   The membrane 
redescribed by

part of the total strain energy stored in one element can be

Ue=1K M 2 Pjuiuj+ Kkijukwiwj+2K
PB 
kijuk wiw

  1 + 2 BB
wiw

jwkwQ
 1 

+ 

  2
KBBkQwiw

jw kW Q
+ —8 KBBkkwiw jwkw k 

   (A.2.7)
where
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 KPj=fD BPBnjdV(i ,j=1,...,8; m,n=1,2,3) 

   PBfPBB       K
kij=J

VDmnBmkBnijdV(k=1,...,8; i.j=1,...,4; m,n=1,2,3) 

BB _DBBBB 
                   mnBBBBBBdVm,n=1,2,3) 

                V Then, the total membrane strain energy due to stretching deformations throughout 
the plate model can be determined by 

UM = U M(A .2.8) 
e where denotes the summation over all discrete elements . 

e 

Total bending and twisting strain energies of springs 

   Under Eqs. (A.2.2) and (A.2.4), the energy can be further divided into three 
sub-parts: 

   'JB =UB1+U B2 + U B3(A .2.9) 
where 

         Da b     uBl=2I I (K 2+ K2 ) dx dy 
0 0 

                 ab 

    uB2=2I 1 2 KXydx dy 
00 

D a b      UB 3=21 J[ 2 ( KxKy-Kxy)1dx dy 
0 0 

            E t3        D = 
12(1-v2) 

in which, D, t, a and b indicate the flexural rigidity, the constant thickness, the 
longitudinal length and the width of the isotropic rectangular plate element, 
respectively, as shown in Fig. A.2.1. The energy can not be measured so far as 
the shape functions of Eqs. (A.2.1) are used herein. Hence, the following con-
cepts of two types of elastic linear spring will be introduced: 

(a) Flexural spring 

   Consider a linear flexural spring between two adjacent elements, and assume 
the spring to have both flexural and twisting rigidities. For instance, such a 
spring at the center on the boundary between elements in the x-direction as 
shown in Fig. A.2.2. Then, using the finite difference process, the bending mo-
ment m about the y-direction per unit length acting perpendicular to the bound-
ary 25 is replaced as follows: 

                                            dex 
    mx=D (Kx+VKy)^=DKx'='Da(A.2.10) 
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Fig. A.2.2

4

 Flexural/Torsional 
in x-direction for

Spring 

Plate

t5

between 

ModeL

W3 

i3

Two Adjacent Elements

where the 

direction

relative rotation d 8 between two adjacent elements in the x-

        1 de
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where

=(1
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-2 1
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Mx about the

Mx = b mx= kxd ex
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y-axis

kx leads to

on the boundary 25 is

(A.2.11)

k=
aD

In a 

two

 similar 
adjacent

manner, 

elements

y=1t1d6Y

the total bending 

in the y-direction

 moment 
can be finally

about the 

obtained

 x-axis 

as

between

(A.2.12)

where

a D 
b

and d e denotes the relative rotation in the y-direction

d6y =12b B" •  wi (i=1,..,6)
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{  B" =( 1 -2 1 1 -2 1)

(b) Torsional Spring 

   The twisting moment mxy per unit length acting on the boundary 25 in 
Fig. A.2.2 is replaced by 

    mxy=D ( 1- v)Kxy=DKxyD d(t)xy(A.2.13) 

where 

d xy=b( w 1 - w2 + w5 - w4 ) 

is equivalently computed by the shape function of Eq. (A.2.1) in one element. 
Then, the torsional strain energy stored is defined in one element and can be 
determined as the sum of equal four torsional springs on four element boundaries 

   UB2=4x2ktab(dxy)2(A.2.14) 

where the torsional spring constant is 

D      k
t = 2 

The energy is equivalently proposed by the definition of a twisting moment mxy 
per unit length for one torsional spring on a boundary in one element 

  mxy = —2 dxy(A.2.15) 

For convenience, the torsional spring is rewritten 

tx = 2b d x in the x-direction(A.2.16) 

where 

     d x=aB'X1w1(i=1,...,4) 

   { BX } = ( 1 -1 1 -1 ) 

and 

   t=Dd1in the y-direction(A.2.17) y2ay 
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where 

    d~y=
     1Byiw

i  (i=1,...,4)

(B"t} Y = ( 1 -1 1 -1 )

(c) Total strain energy due to flexural and torsional springs

   Fig. A.2.3 shows the 
typical adjacent two ele-
ments and the flexural/ tor-
sional spring on their bound-
ary in the x-direction 
similarly to Fig. A.2.2. In 
which, the symbols "L" and 
"R" denote the left and 

right elements with respect 
to the relevant spring. Then, 
as discussed above, the bend-
ing and the twisting mo-
ments per unit length on the 
boundary 25 are rewritten in 
terms of six nodal out-of-
plane displacements

4

y

5 6

Fig.

x

 A.2.3

1

L

2

R

3

 a a ,1
IE E

Two Adjacent 
in x-direction.

Elements

 mx= Dd ~x , 

 a

tL=D x 2b dux , tR=Dd~R x 2b x

(A.2.18)
where

.d ex = ( BX ){ w} ,
        1 

( BX ) = 2a ( 1 -2 1 1 -2 1 )

dux= (BXL){w} , ( BXL ) = 1
a( 1 -1 0 -1 1 0)

dex = ( Be ) { w } , ( BXR ) = 1 ( 0 

a

1 -1 0 -1 1 )

{ w } T = ( wl w2 w3 w4 w5 w6 )

The total bending and twisting moments are

Mx=bmx= (a D ) dex=
aD ) ( Bx)

{ w)

TX = b tX = ( 2 D ) dux = (      1 
 2D )(

BXL ) {w}
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 TT  =  b  tR  = ( 2D ) a)X= (2 D )( B'R ) { w )
(A.2.19)

Therefore, the 

obtained from

bending strain energy 
Eqs. (A.2.10), (A.2.11)

of 

and

the flexural 
(A.2.19)

spring in the x-direction is

UBx -1
2

  D )(d 6x)2 

a

= 1 {w}T [ ( 

2

aD )( B' )T ( B' ) ] { w )

where the

   1 

= bending

KBjwiwj 

 stiffness matrix is explicitly presented

(A.2.20)

KB.= 1 

  4a2 a D ) kBj (i,j=1,...,6)
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 found that the energy is equivalent 
 Eq. (A.2.9). Furthermore, the twisting 

defined in each element, that is, in the

to the first 

strain energy 

left element

term 

of

 of 

the

the 

tor-

UxtL= 2
D )(d~,)2

= 2 { w}T [ ( 2 )( B,L)T( BXL)1{w}

= 2Kt~L wiwj
(A.2.21)

where

KtxL  1]  a`(2) kij (i,j=1.....6)
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where

KtxR 1 

a2

[ k•xR ] _

The above two energies 
Using the spring 
spring between adjacent 
similar manner. Finally, 
are provided by the eqi 
the first sub-part

() ki~R 

• O 0 0 0 0 0 
O 1 -1 I 0 -1 1 
O -1 1 I 0 1 -1 
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mergies are equivalent to t 
•nts 

ijacent two 
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the equivalent 
and the second sub-part in 1

   It is apparently found 

throughout the rectangular 

clamped, and this part is

..,6)

       are equivalent to he second sub-part in Eq. (A.2.9). 
                        and (A.2.13), the flexural/torsional 

wo elements in the y-direction can be defined in the 
e total strain energies of the spring in the y-direction 
ralent forms to the sum of both the second term of 

        second sub-part in Eq. (A.2.9). 

       that the third sub-part U B3 in Eq. (A.2.9) may vanish 
        plate model when its four edges simply supported or 

       neglected in the SEM analysis.

Therefore, the total bending and twisting strain energy can be obtained by

   UB =( UBx + U xR + U xL ) + 
               sx 

where sxand/refer to the summations 
x- and y-direction, respectively. Then, 
matrix is defined as

  ( UBy+UyR+utL ) 
sy (A.2.23)

of 

the

the flexural/torsional springs in the 
 overall bending/torsional stiffness

     1 U

B = 2
KBjwiwj (A.2.24)
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  As a 

form of

result, the 

the sum of

total 

two

strain energy stored in the plate model is given in the 
parts (A.2.8) and (A.2.24).
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                     APPENDIX B for PART II 

       STANDARD FORM OF STRUCTURAL  POTENTIAL FUNCTION 

   The canonical form of the structural potential function defined by the 
Taylor's expansion near the distinct or compound critical point can be trans-
formed to the Thom's unfolding of the corresponding elementary catastrophe. The 
diffeomorphic transformation is briefly discussed for the fold, cusp and umbilics 
in this dissertation. Hereafter, the notations of A and F refer to the structural 
potential function and the Thom's unfolding, respectively. 

B.1 Fold Catastrophe 

A(v1,A,E1) =-6-A111v1 +A11v1A + Alcv
1E1 

F(x,a) = x3 +a x 

Then, 

F(x,a) = A(v11X,E1) + G(X,E1) 

under the diffeomorphic transformations: (v
1,A,E1) + (x,a) 

Ac 1 A c 2 
    x = (111)v+-(---)311 63     616 

                         A111 

              oc24 

a = Alc(6)3E_(A11) ( 6)3\2      1
Ac1 12 Ac     111

111 

where 

AocAlc (Aoc)3 
G(A,E ) _ ( 11 1 ) E_ 11  X3        1 

A1111 3(A1
11)2 

B.2 Cusp or Dual Cusp Catastrophe 

     A(v1.X.E1) =
24A1111 1+2Allvlllc1                                        ~ + Ave1 

F(x,a, 13) = ±x4 + ax2 + Sx
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Then, 

 F(x,a,(3) = A(v1,X,E1) 

under the diffeomorphic transformations: 

Ac 1Aoc 
    x = 1111114__11  24       24v1 ' 

2  c                                A
1111 

B.3 Umbilic Catastrophes

(v1,X,£1)->, 

 1 

12X , =A

  a,13)
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1

 24  

Ac A1111

1 

14 

1

A(v
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    __1c ,E
2)6Ac 

              = x3 ± ax y2

3 

1
+ 2A 

a(x2

122 

+ y

v 

2

1

2aoc v2+2(A
ll 

+(3x+Yy

vl+ A22v2) + A1cv1E1 + A2cv2E2

Then, 

F(x,y,a,(3,Y) = A(v1,v2,X,£1,E2) 

under the diffeomorphic transformations: (v1,v2,A E1,£2) 
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                           A11 
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CATASTROPHE ANALYSIS

PART  III 

OF ELASTO-PLASTIC STRUCTURES





CHAPTER 1

A NEW UNIFIED APPROACH TO PREDICT THE 
    STRENGTH OF  STEEL STRUCTURES

1.1 General Remarks

   The stability and the strength of steel slender members in the elasto-plastic 
range have been among the most important research interests in the field of 
civil engineering. A great number of investigations have been performed through 
analytical and numerical procedures on their initial bucklings, the postbucklings 
and the load-carrying capacities. Recently, the incremental materially and 
geometrically nonlinear numerical calculations are being increasingly adopted 
within the framework of discretization methods such as finite differences, finite 
element methods and boundary element methods. Their main objective is to pre-
dict the elasto-plastic strength of slender structural members for certain set of 
parameters such as the material properties, the geometrical dimensions and the 
imperfections[ 1-4].

   Niwa, Watanabe and Isami have been concerned with a unified approach to 
evaluate the load-carrying capacity of structural members in the elasto-plastic 
range[5-10]. The effects of above parameters on the elasto-plastic strength can 
be explicitly expressed in terms of the bifurcation set in a closed-form expres-
sion without resort to solving the nonlinear simultaneous equilibrium equations. 

   This chapter unifies an evaluation of the elasto-plastic buckling load, the 

postbuckling equilibrium path, the plastic failure mechanism curve and the imper-
fection sensitivity curve. Herein, the proposed approach is demonstrated in detail 
to predict the elasto-plastic ultimate strength of axially compressed columns. 
Furthermore, applications of the approach to other types of members such as 
laterally unsupported beam-columns, compressed rectangular plates with or without 
stiffeners, and compressed cylindrical shells will be discussed in the subsequent 
chapters of this PART.

1.2. Basic Formulations

1.2.1 Elasto-plastic buckling strength 

   An appropriate presence of residual stress distribution is considered in the 
cross section of the perfect structural model without any geometrical imper-
fections. The distribution of residual stress is assumed to be assigned in a proper 
form satisfying the initial self- equilibrium. Then, the strength can be obtained 
directly from the reduction ratio k of the elastic portion to the total cross 
section[ 11,12]. 

   For each prescribed form of residual stress distribution and its maximum 
magnitude er , the effective ratio k of the elastic portion to the total 
cross section is defined by the tangent modulus Et and the secant modulus Es[9]: 

 E,=dE= kE and Es=a(1.2.1)
where
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 =  a(k) and E = E(k),

E : Young's modulus,

a : generalized stress, e : generalized strain.

Two functions of G(k) and c(k) depend on the type and the magnitude of 
distribution of residual stress for each member.

the

   The associated buckling mode and its corresponding initial imperfection mode 
in the elasto-plastic range are assumed reasonably for given boundary conditions. 
Their magnitudes are designated as the generalized displacements of w and wo, 
non-dimensionalized by the column-span length Q or the thickness t. Then, on 
the basis of the ordinary differential equations of equilibrium, a modified eigen-
value equation is obtained in a neighborhood of the critical buckling point[9]

foEw—vw=0 (1.2.2)

where aE denotes the well-known elastic Euler buckling strength, which is a 
deterministic function of the capital symbol "R", designating as the generalized 
slenderness ratio for columns, the generalized width-thickness ratio for plated 
structures or the generalized radius-thickness ratio of cylindrical shells. Also, f 
represents the coefficient due to the elasto-plasticity. Since it is quite difficult 
to estimate the coefficient f exactly, it is approximated by a simple function of 
k using the elasto-plastic moment-curvature relation or the nonlinear equilibrium 
equations for each member considered. Herein, f is assumed to be invariant to 
prescribed geometrical initial imperfection wo[5J. 

   For columns and unstiffened plates, only the primary elasto-plastic buckling 
mode corresponding to the least elasto-plastic buckling strength is taken into ac-
count as the generalized displacement w. In the case of stiffened plates , two primary modes of their global and local bucklings are treated independently. M

oreover, for cylindrical shells, two types of interactive analyses are provided: 
one-mode analysis with only an asymmetric buckling mode and two-mode analysis 
with both an asymmetric and an axi-symmetric buckling modes. 

   Therefore, for given generalized slenderness R and several parameters , the elasto-plastic buckling strength o can be determined as[9] 

°cr=f `aE(1 .2.3) 

where fc designates the critical value of f when the perfect member buckles 
elasto-plastically, and is expressed by an explicit function of the critical value 
k, of the ratio k. When kc=1,i.e.,fc=1,Eq.(I.2.3) of course leads to the elas- 
tic Euler strength of .

1.2.2 Postbuckling path

   It is well known that the plated members generally have the stable post -
buckling strength in the elastic range[12 ,131. However, an exact prediction of 
such significant post-bifurcation equilibrium path in the closed form is extremely 
difficult in the elasto-plastic range as well as in the elastic range . Herein, a 
modification of the von Karman's equations will result in the following path[7

,10]
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 v = acr - Csw + Cpw2(1 .2.4) 

where Cs and Cdesignates coefficients depending on the generalized slenderness 
R, the criticalMastic factor kc and the secant modulus defined by E

s= a/ E in Eq. (1.2.1). If Cs=0 and C 0 as in the case of columns, Eq. (1.2.4) becomes a 
horizontal line a =a r in tie 0 -w space, with no postbuckling strength. If C

$=0 and C>0 for platedmembers, the equation leads to a normal stable postbuckling 
in the parabolic form. Moreover, shell members have an unstable asymmetric 
postbuckling when C>0 and C=0, using the one-mode analysis. In the case of 
the shells' two-modeanalysis; the initial postbuckling path can be obtained 
directly from solving two nonlinear equilibrium equations with no consideration of 
the failure mechanism. 

1.2.3 Failure mechanism 

   Load-carrying capacity of the actual slender members can not be determined 
by evaluating only the elasto-plastic buckling strength due to the residual stress. 
It is not only affected by the elasto-plastic postbuckling behavior, but by the 
initial geometrical imperfection and the plastic failure mechanism[ 14,15,16]. 

   A pathological plastic failure mechanism curve corresponding to the ultimate 
state of each member can be defined approximately by 

a = v(w) or w = w(Q)(1.2.5) 

where GPand wp refer to explicit functions derived from the failure mechanism 
and theinteraction criterion adopted ; for example, a relationship between axial 
stress and the corresponding bending moment. 

1.2.4 Ultimate strength 

   Now, consider an equivalent bifurcation point as the intersection of the 
elasto-plastic postbuckling path AC, Eq. (1.2.4), with the plastic failure 
mechanism curve BCD, Eq. (1.2.5) in Fig. 1.2.1. The point is designated as the 
point C(w*, Q*). In a neighborhood of the point C, a pseudo-potential function, 
V, is assumed to exist so that its equilibrium equation near the point C is[9] 

        apostbuckling 

                    path 

1.0 B 
                        imperfection 

                    —.masensitivity 

         crAi0failure 
                                  curve

            cr 

         0 

             Fig.

 wo 

1.2.1

w'w 

Equivalent Bifurcation Point. 
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       _ av (1.2.6)       V -5__gGEwd -  Q(wd+wo)= 0 

where 

    g(wd)=gc+tcwd , wdw -WO -W* 

and when wo=0 and wd=0, 

 Q* = gc6E(1.2.7) 

in which, the factors on g are analogous to those on f. However, as shown in 
Fig. 1.2.1, g is evaluated at the equivalent bifurcation point C(w ;Q* ), f is not 
at the elasto-plastic buckling point A(0, am). The spatial drawings of the equi-
librium surface from Eq. (1.2.6) and its projections to three orthogonal planes 
are shown in Fig. 1.2.2. 

w-w *
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. B                                     s,r
b~ singular I 

                          I map/ 

bifurcation set 

Wo 

          Fig. 1.2.2 Equilibrium Surface 

   Then, the ultimate strength am of ti 
predicted by the imperfection sensitivity c 
one projecting vertically the set AC of sink 
MV.It takes the form[9]: 

cr. 

  ~*=1+a*wo—2a*wo(1+2a*wo) 
where 

,c          g
t a* _ - 

gc

                   *  ^

 equilibrium 
surface

Surface and Bifurcation Set. 

  of the general imperfect member can be 
tivity curve. The curve a2c2 is regarded as 

of singular points on the equilibrium surface

(1.2.8)
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A precise determination of  g'tc may be quite difficult, so the factor a* is ap-
proximated by the slope of the plastic unloading curve at the equivalent bifurca-
tion point C: 

    do p(dw t a* _ o* dwIora* -_./)                   O* dQ~(1.2.9) (w*,Q*)(w*,a*) 

This asserts that the general nonlinear equilibrium path of the imperfect member 
may reach the local maximum of the strength on the plastic failure mechanism 
curve BCD in Fig. 1.2.1 as if the curve is a set of singular points, AC, in 
Fig. 1.2.2. For column and plate structures, the ultimate strength can be pre-
dicted by Eq. (1.2.8). However, for cylindrical shells, the equivalent bifurcation 
point C is taken to be the normal elasto-plastic bifurcation point A since the 
point A is unstable itself. Then, the ultimate strength can be obtained in the 
chapter 3 of this PART. 

1.2.5 Modification of imperfection 

   Furthermore, the equivalent initial imperfection is introduced so as to 
describe the actual strength behavior of the member concerned 

wo =,u(R)wo(1.2.10) 

where 

                      a 

   p(R)=,1c(R,) 
and R refers to the slenderness value R at which the ordinary buckling point 

changes from elasto-plastic to elastic. The value and the form of Pc and ,B can 
be determined so that the effect of the imperfection w*o may diminish for two 
limits of R — 0 and R -* co , i.e., for extremely stocky and extremely slender 

 members. Furthermore, this takes into account observations on many previous 
 strength curves in design practice[ 11,12]. 

    Finally, the imperfection sensitivity on the load-carrying capacity for column 
 and plate members can be determined by Eq. (1.2.8); however, with the slope a* 

 of Eq. (1.2.9) and the equivalent imperfection w*o of Eq. (1.2.10). 

 1.3. Applicability 

    The proposed unified approach will be applied to the strength prediction for 
 such axially compressed members as columns, rectangular plates, rectangular 

 stiffened plates and cylindrical shells, and its flow chart is illustrated in Fig. 
 1.3.1. Table 1.3.1 summarizes applicability of the approach to such structures. 

    In this table, the generalized stress o is taken to be the average axial 
 stress, which is non-dimensionalized by the yielding stress of the material. Also, 
 the generalized displacement w is the magnitude of the assumed buckling mode, 

 non-dimensionalized by the column-span length Q of column or the thickness t of 

 plate/shell members.
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Table 1.3.1 Applications of the Present Approach to Structural Members.

COLUMN

(Weak Axis)

PLATE

PANEL & ST. PLATE

SHELL

 1-MODE 2-MODE

APPLIED LOAD axial compression

GENERALIZED
STRENGTH

0
(B:  average axial stress, QY yielding stress )

GENERALIZED
DISPLACEMENT

w

w/2

2: column length

wit
t : plate-t: shell-thickness

thickness

EULER BUCKLING
STRENGTH

QE

1

R2
Sr generalized Sr generalizedSr generalized radius-

slenderness ratio width-thicknessthickness ratio

ratio

ELASTO-PLASTIC
BUCKLING STRENGTH
ac~fc0Efc

Ike)3
c

aymmetric

1/7.+lE

2

- axi-symmetric

Es

kcE

POSTBUCKLING
PATH

no postbuckling

a = a
Cr

stable parabola

0= 0 +C w2
cr p

asym. line

0 =0 -Cw
cr s

solutions of

equilibrium in

2-mode analysis

FAILURE
CONDITION m=c2(1-0)(2-c2(1-0)) m * 02 = 1

FAILURE
MECHANISM CURVE w=Ap1Q(2-c'(1-0))w=A 1-02P 0

SLOPE
a*

A'0*
P 

2-c2(1-0*)
Q*

A (

* shell; direct

evaluation from

pseudo-potential

INITIAL DEFLECTION
wo

JSHB: 2/1000 JSHB: b/150 , a/1000

b: width, a: length

ECCS: 2
r/100i

r: gauge length

MODIFICATION

u(R)=u,(R)B
u=1c2 U: 8 tic1

B = 2( 1 - R )
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Table 1.4.1 Buckling Parameters for Numerical Demonstrations of 
           Compreesed Steel Columns.

 S AA.
 ,

orw

Or

Res.

Stress

Initial

Def.w./1

Rp Strength Curves
ParabolicTriangular

Residual Stress Residual Stress

Strong-Axis
0.5

1.0 0.2

1/1000

1.118
Fig. 1.4.3 Fig. 1.4.4

1.0 Fig. 1.4.5 Fig. 1.4.6

0.5
1.0 0.4 1.291

Fig. 1.4.7 Fig. 1.4.8

1.0 Fig. 1.4.9 Fig. 1.4.10

   Furthermore, two interaction criteria are adopted herein, and their cor-

responding plastic failure mechanism curves are obtained respectively in the 

table. Herein, m designates the bending moment along the fold-line of the failure 

mechanism considered. Given a coefficient Afor each member, the slopes  a* 

can be explicitly at the equivalent bifurcation point C(w*, Cr*) for column and 
plate members. Whereas, for cylindrical shells, the slope can be determined 
directly from evaluating the elasto-plastic postbuckling equilibrium near the 
elasto-plastic bifurcation point being equal to the equivalent bifurcation point. 

   Finally, the factor / is identically taken to be a linear form of the 
generalized slenderness R without regard to a type of members. While, the form 

Pc is explicitly provided in the table. It must be stated that proposed bifurca-
tion sets of Eq. (1.2.8) are found to have good correlation with several design 
strength curves and those by many researchers.b 

1.4 Numerical Illustrationsy                                   L---~---~- t f 
   This chapter provides numerical results oftW 
axially compressed steel columns using the—^ +— 
proposed approach. Their detailed descriptions 
have been discussed in references[5-10]. For h X--------X d 
all computations, the maximum magnitude in 
compression of each residual stress is 
restricted to be 0.4 ay and 0.2 Sy. Also, each 
initial deflection is the allowable value of 
tolerance in the JRA Highway Specifi--------{—±t 
cations[ 19].yf 

   Table 1.4.1 summarizes typical values of Fig. 1.4.1 I-Sectional buckling parameters for numerical computa-Steel Column Model. tions of axi-symmetric I-sectional steel 
compressed columns(See, Fig.1.4.1). When both 
the material properties 

E/o yf=875, cry,/ r =1 oY and o-Yw : yielding stress of 
                            the flange plate and of the web(1.4.1) 

remain constant, eight numerical demonstrations will be illustrated in two cases 
of web-flanges area-ratios 8 and two forms of residual stress distributions for 
two types of strong- and weak-axis bucklings. 
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   The present elasto-plastic load-carrying capacity curves are obtained from the 
bifurcation sets in Eq. (1.2.8) using Eqs. (1.2.9), and (1.2.10). The results are 
shown as the relationship between the non-dimensionalized strength on the or-
dinate and the generalized slenderness ratio on the abscissa. Herein, several 
strength curves such as the beam-column interaction  curve[1,11,12,19,25-27], the 
Perry-Robertson curve, the IRA Specification basic column strength curve[19] and 
the ECCS column curves[1,11,12,28-31] are compared with the proposed numerical 
results. These curves were provided in details as explicit forms in the 
references[5,61. 

   Considering these analytical and experimental investigations, the equivalent 
imperfection in Eq. (1.2.10) is taken to be 

 pc=2=2(1R P)(1.4.2)* 
in which, the form of i.(R) is also taken into account further test data[34]: 
Fig. 1.4.2(a) shows the column test results reviewed by L.Tall in the CRC and 
SSRC; Fig. 1.4.2(b) provides the envelopes of 112 experimental maximum strength 
curves when the initial deflections at the center span is prescribed by 
wo/l =1/1000. 

    Figs. 1.4.3 to 1.4.10 shows the numerical demonstrations corresponding to 
eight column types in Table 1.4.1. It is found that the bifurcation sets with the 
equivalent imperfection give appropriate strength predictions within the inter-
mediate elasto-plastic range of R. So far as the slenderness ratio R and the 
area-ratio 3 are concerned in this dissertation, the present strength curves may 
be insignificantly affected by the area-ratio 8 and the type of residual stress 
distributions with respect to the strong- and weak-axis. For given slenderness 
ratios, the proposed strength by Eq. (1.2.8) can be explicitly drawn as the imper-
fection sensitivity curves. Figs. 1.4.11 and 1.4.12 illustrate families of imperfec-
tion sensitivity curves corresponding to the case of Figs. 1.4.3 and 1.4.7, 
respectively. It is apparently shown that the maximum load-carrying capacity is 
remarkably sensitive to the initial imperfection within the slenderness ratio R 
ranging 0.75 to 1.25, including the critical slenderness ratio R. Moreover, such 
sensitivities can be clarified by the following reduction rater of the proposed 
strength to the equivalent bifurcation 6* as shown in Figs. 1.4.13 and 1.4.14 

 for the strong and weak axis. The former is more imperfection-sensitive than the 
 latter, without regard to the invariant forms of the equivalent imperfection. 

    Through some numerical demonstrations of compressed columns, it was made 
 apparent that the proposed method of approach does not rely on the nonlinear 

 numerical analysis, but is based on the explicit representation of the imperfection 
 sensitivity formula in the light of the catastrophe theory. That is, the unified 

 expression of compressed strength of steel columns can be made in terms of Eq. 
 (1.2.8) using Eqs. (1.2.9) and (1.2.10). In other words, Eq. (1.2.8) presents an ex-
 plicit representation of the imperfection sensitivity for specified generalized 

 slenderness ratio R.

* The generalized slenderness ratio R 

iTY    R = Q Trr E about strong axis 

where rN and rrefers to the radius 

weak axis, respectively.

for columns is chosen as

           1711or RTfr Eabout weak axis 
y of gyration with respect to the strong

and
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1.5 Conclusions 

   This chapter unifies a new simplified approach for evaluation of the strength 
of slender steel structural members such as columns, plates and shells. The main 
conclusions are: 

 (1) The residual stresses and the initial deflections may affect the evaluation 
     of the elasto-plastic buckling stress and the form of the explicit imperfec-
      tion sensitivity formula, respectively. 

 (2) The inelastic strength prediction of the members may be explicitly 
     evaluated in terms of the bifurcation sets or the imperfection sensitivity 

       curves. 

 (3) The bifurcation set can be defined explicitly near the equivalent bifurca-
     tion point being the intersection point of the elasto-plastic postbuckling 

     path with the plastic failure mechanism curve for typical members with 
     neutral and stable postbuckling equilibria. 

 (4) In the case  of members with unstable postbuckling equilibria like cylindri-
     cal shells, their normal elasto-plastic bifurcation point is taken to be the 

     equivalent bifurcation point. Then, the bifurcation set can be determined 
      from evaluating stability characteristics at the point. 

 (5) The actual initial geometrical imperfections are modified in the form of 
      the proposed equivalent imperfections. The equivalent imperfection can be 
     determined in a unified form on the basis of the previous strength curves 

      and practical design curves. 

 (6) All the computations can be easily performed using a small microcomputer. 

 (7) Several numerical illustrations for axially compressed columns are calcu-
      lated using appropriate form of the equivalent initial deflections. The 

      results are compared with some design curves and analytical results. 

 (8) The demonstrations are found to be in good correlation with those by such 
      various investigations and experimental results. 

 (9) The form of distribution of residual stress assumed herein may insig-
      nificantly affect the present results. 

(10) The proposed unified approach may be applicable to other types of steel 
      structures such as beams, rigid frames and trusses in civil engineering 

      field. 
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CHAPTER 2

APPLICATIONS TO ELASTO-PLASTIC PLATE STRUCTURES

2.1 General Remarks

   The stability and the strength of steel plates and stiffened plates in the 
elasto-plastic range have been one of the subjects of the greatest concern of 
civil engineers[1-4]. They are being used for such members as plate and box 

girders, chords of trusses and arches, bridge piers and towers. Each member is 
known to buckle locally and may fail prematurely before reaching the yielding 
point. However, they do not generally fail by the elastic buckling strength but 
have significant reservation of the postbuckling strength. This is known as one of 
the major differences between plates and bars. 

   The early attempts of the elasto-plastic buckling analysis of plates have been 
seemingly made by Bijlaard,  IIyushin, Stowell, Pearson and Bleich[5-8]. They have 
derived the fundamental differential equations of the plates, and obtained ex-
plicitly the closed-form solutions under various edge conditions and various load-
ing conditions. These classical methods of approach are summarized by Okumura 
et al.[9].

   Recently, in both the elastic and inelastic ranges, the prime research inter-
ests are shifting to the evaluation of the elasto-plastic strengths of imperfect 
plates with different width-thickness ratios by means of discretization methods 
and the procedures of solving sets of nonlinear simultaneous equations[10-23] . 

   This chapter especially concentrates on the problems of ultimate strength of 
stiffened plates: Several theoretical and numerical procedures have been proposed 
so far on problems of the initial buckling, the postbuckling and the ultimate 
strength of stiffened plates[24]. They can be classified with respect to the 
method of approach: firstly, the orthotropic plate approach; secondly , the beam-
column analysis using the concept of the "effective width"; thirdly , discretization meth

ods such as finite strip method, finite difference method , finite element ad
opting the incremental energy-approach; and, finally , the nonlinear bifurcation 

approach based on the hypoelasticity and the topological considerations . 

   The first or orthotropic approach for stiffened plates was initiated by Huf-
fington et al.[25]. They determined four orthogonal rigidities of equivalent elastic 
homogeneous orthotropic plates. Improvements of the procedure for flat plates in 
the inelastic region beyond elastic limit were made by Stowe11[26] and Bleich [27] 
using some reduction factors of orthogonal rigidities . Attempts have been made 
to evaluate the elasto-plastic buckling stress of stiffened plates . Mikami et 
al.[24] studied the inelastic buckling stress of continuous orthogonal stiffened 
plates through the Bleich's factors. 

   The second beam-column approach have been developed by Faulkner[28]
, Little [29]

, Carlsen[30], Horne et al.[31] and Rhodes[21] . They derived fundamental 
relationships between the average axial stress and the corresponding strain in the 
theoretical and numerical form , and compared the results with available experi-
mental results. Also , Moolani et al.[32] discussed on the parametric study of the b
ehavior of eccentrically stiffened plates .
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   The third approach of  discretization is now being widely accepted as reason-
ably accurate. The early researches in Japanese civil engineering field on the 
numerical elasto-plastic buckling stress of stiffened plates were accomplished by 
Usami[33], Hasegawa et al.[341 and Yoshida et al.[35] using finite strip methods. 
Furthermore, the large-deflection elasto-plastic analyses of compressed stiffened 
plates have been developed by many researchers in the world such as Crisfield 
[11], Komatsu et al.[36], Marchesi[37] and Webb et al.[38] through finite element 
methods and finite difference methods in order to solve the relevant nonlinear 
simultaneous equations. 

   The final group of approach is based on the concept of nonlinear bifurcation. 
Tvergaard et al.[17,39] investigated the elasto-plastic bifurcation behavior, the 
initial postbuckling behavior and the imperfection sensitivity of eccentrically 
stiffened plates. They employed an incremental linearized Rayleigh-Ritz method 
for the stiffened plates regarding as hypoelastic plates neglecting the effect of 
elastic unloading. They also discussed the stability and the imperfection sen-
sitivity of the elastic simultaneous interaction among the global buckling of the 
panels as a wide Euler column and the local buckling of the plates between the 
stiffeners[40]. Some powerful contributions on such interaction problems of 
stiffened plates have been also provided by Koiter[41] and van der Neut[421. 

   These theoretical and numerical analyses allow for the maximum ultimate 
strength of stiffened plate models to be determined in an isolated form for a 
selected set of geometrical and material parameters. 

   Niwa, Watanabe and Isami have proposed a new simplified approach to evalu-
ate the ultimate strength of slender steel structures such as columns, beam-
columns and unstiffened plates in the elasto-plastic range[43-49]. The approach 
does not require a nonlinear process of simultaneous equations concerned, and 
means a simplified prediction of the imperfection sensitivity of structures in view 
of the singular bifurcation set through the catastrophe theory. This chapter form-
ulates the procedure for the elasto-plastic strength of compressed rectangular 
plates with longitudinal stiffeners. Both their global and local bucklings are taken 
into account herein. 

   Other applications of the approach to compressed plates are discussed and 
demonstrated in detail[44,48,491. Especially, this chapter also provides comparative 
investigations of the present procedure in the case of both unstiffened and 
stiffened plates. 

2.2 Basic Formulations 

2.2.1 Residual stress distributions 

   A rectangular stiffened plate with four edges simply supported under uniaxial 
compression as shown in Fig. 2.2.1 is analyzed as a typical basic model. The 
stiffened plate has only several longitudinal stiffeners with equal areaand equal 
flexural rigidity arranged in certain equal distance. The residual stressis assumed 
to be distributed in an appropriate form in the local plate panel, with the mag- 
nitude Qr and art in compression and tension, respectively, and to be uniform 
in the stiffener cross section with the magnitude ars in tension.
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Fig. 2.2.1 Distributions of Residual Stresses of 
                       Compressed Rectangular Stiffened Plates. 
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   In view of the self-equilibrium of the residual stress distribution over the en-
tire stiffened plate, the equivalent tensile residual stress ors may be assumed 
to be distributed uniformly in the global orthotropic plate in addition to the 
residual stress distribution of the plate panel alone. Hence, the magnitudes of or 
and art can be replaced for the corresponding "prime" value, respectively: 

ar= or— ors and arc= ort+TIrs'(2.2.1) 

where 

Ns  T
ITS=1+NS ors 

and 8 refers to the ratio of a stiffener area Ato the plate panel area bt , 
and N denotes the number of stiffeners definedloelow. The relationship between 
ar and art can be determined from the initial self-equilibrium condition of each 

distribution of residual stress. 

   The distribution of residual stress with the maximum compressive stress or is assumed to be in either parabolic, triangular or trapezoidal form as shown in 
Figs. 2.2.1(a)-(c)[43,44,47]. The relationships among the tangent modulus Et, the secant modulus E

5,the average axial strain E and the average axial stressocan be obtained as: 

  Ec=dE= kE and Es-=— 
                                                        (2.2.2a) 

and for parabolic distribution ( 0 < k < 1 ), 

o=oY—(3-2 k)kWar 

  E=E [or+3(1—k)2ar—ar](
2.2.2b) 

for triangle distribution ( 0 < k < 1 ), 

o= ay— le air 

 E_~[a—(2k-1)or](2 .2.2c)
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and, for trapezoidal distribution ( 0  < k <2 °T 
aT+ C7y             

2  (OT+Qy)Z 
   Q=Oy 

           4 a; 

    Ea T+o)1=Ey— 2 or J(2.2.2d) 
where E and ay refers to the Young's modulus and the yielding stress of the 
material, respectively. Furthermore, k denotes the ratio of the elastic portion of 
the cross section to the total section of the plate, namely, it indicates the 
global tangent modulus factor of the orthotropic plate section. 

   In the case of unstiffened plates, that is, when the cross-sectional ratio 
8 =0, o .=0, analogous equations to Eq. (2.2.2) are obtained for appropriate 

distribution of residual stress[441. 

2.2.2 Elasto-plastic buckling strength 

   From the boundary condition, the buckling mode and the initial imperfection 
mode of the equivalent global orthotropic plate are assumed in both elastic and 
elasto-plastic ranges as follows: 

   W=wY(y)sin-max,Wo=woY(y)sinmax,Y(y)=sin----- (2.2.3) 
for all edges simply supported. 

in the coordinate system as shown in Figs. 2.2.1. In which, w, wo, Y(y), m and 
n designate the magnitude of the total out-of-plane deflection, that of initial 
out-of-plane deflection, mode of deflection in y-direction, number of the half 
waves in x- and y-direction, respectively. 

   Consider the compressed rectangular stiffened plates with N longitudinal stiff-
eners with stiffener parameters[65]: 

EIS  
 8— b~ and Y= bD

e(2.2.4) 

where b, t and Drefer to the total width, the net thickness and the elastic 
flexural rigidity or the plate panel, respectively. Also, As and Is denote the 
cross-sectional area and the moment of inertia of a stiffener, respectively. The 
torsional rigidity of stiffener itself is not considered in this dissertation. Through 
the classical orthotropic approach using partial differential equations, the basic 
equation of equilibrium of the stiffened plate can be written as[24,651: 

DeV pW+o to----ax (2.2.5) 

where 

De=E~' 12(1—v2),t[1+(N+1)s], 
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       a4  4=k 
 °— `ax' +2(k2+2 k4)

 a4

ax2ay2

a' + k
3 a

y'

in which, y , tandk•(j=1,2,3,4) refer to the 
thickness and thoe constjants to designate flexural 
orthotropic plate in the elasto-plastic range.

Poisson's ratio, 
and torsional

 the equivalent 

rigidities of the

   Upon 
Galerkin's 
[44,47]:

cr=

substitution 

method, the

DeIb

of W in Eq. (2.2.3) into 
critical stress a, can be

YY,dy

Eq. (2.2.5) 
defined in

 and through 
the following

 the 
form 

F

lb to 

   0

m7r )2Y2dy 

a

(2.2.6)

where

YI(Y) k,(m 7r 

a YY(y)-2(k2+2 k4) (Q'r )2
d2Y

The

+ k3
d' Y

buckling

    Q 

KS=CT— 
      Qo

coefficient Ks can be given by

dye dy4

(2.2.7)

where

7r2De
Qo =

bet

thus, Ks can be obtained as

K=

ncb 

m

1+(N+1)s
------l' k'(n~+2(k2+2 k,) (--n-j

 2 + k,, (2.2.8)

where

aspect ratio

Let us define a 

_Ks 
KSE

where KSE

factor f by

refers to the minimum elastic buckling coefficient. Thus,

(2.2.9)

Co

1

KSE

acT 

QE
(2.2.10)

where
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                    7r2De 
    QE=KSEUO=KsE------- b2 

t 

 2[1+,/1+(N+1)y  K
sE= 1+(N+1)8 

that is, 6 refers to the elastic Euler buckling stress for the global buckling of 
the stiffened plate. 

   Then, the non-dimensionalized equation of equilibrium in the elasto-plastic 
range can be written as[44,47]: 

fOEw— Qw=O(2.2.11) 

where 

    of 1 wob/12(1— v2)Qr 
  QE- -pS E,w°Ta=aY, RSE=vE   0it7r2KSE 

in which, the symbol designates the non-dimensionalization in terms of the 
yielding strength cry and the thickness t for the stress and the displacement, 
respectively. RSE and KSE refer to the generalized width-thickness ratio for the 
buckling of the global stiffened plate and the corresponding elastic buckling 
coefficient, respectively. 

   In this chapter, however, numerical examples are demonstrated using only the 
Bleich's approach[27] to evaluate the elasto-plastic buckling stress. Therefore, 
using the Bleich's factor r , the coefficients kj in Eq. (2.2.5) are defined in the 
elasto-plastic range as follows[24-28]: 

k,=r[1+(N+1)y], k2=vvT,k,=1,k,=1------—v^z                       2(2 .2.12) 

   In order to take into account the effects of residual stress on the elasto-
plastic buckling stress, the factor T is set to be equal to the tangent modulus 
k in Eq. (2.2.2). Upon substitution of Eq. (2.2.12) into Eqs. (2.2.8) and (2.2.9), the 
factor f can be obtained by 

                                               1 f[1+(N+1)S]n2KSE[AfF,,/1+(N+1)y ()_fl2()]2 
                                              Table 2.2.1 Comparison of+2 n2 VT, [1+1/1 -F( +1)yJJ (2.2.13) 

where kc refers to the value of the factor 
k in Eq. (2.2.2) at the elasto-plastic buckling 
point. Table 2.2.1 provides several possible 
classical expressions for the factor f, based 
on the methods by Bleich, Chwalla, Stowell, 
Bijlaard and Pearson for compressed plates. 
In this dissertation, numerical examples are 
demonstrated using only Bleich's method so 
as to evaluate the elasto-plastic buckling 
stress as stated above.
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Buckling Coefficients of 

Elasto-Plastic Plates.

Type Theory
Buckling  Coefficient: K

K f KE Comments

Elastic Hooke

Plastic

Bleich 4./7•
analogous
to elastic

Chwalla Orr •'

Stowell 4e.Z+,/+~_ \.. Deforma-
tion
Theory

Biilaard 2(l—.^)(k+ka+2k4)"'

Pearson 2[1+Z 1T]. Flow
Theory

  

•  rsEt/E: tangent modulus factor 
•' rtaE ./E: secant modulus factor 

•'• kt=(I+3(1+e)rl/d . ks=(2—(2-4r)r]/d, ks=4/d, 
    k4=l/d'; ds5-4r—(1-202r+3e, d's2+2r+3e, 

esl/r,-1. r: Poisson's ratio 
•••• srs4r/(l+s z)s: reduced modulus factor



   Now, by evaluating the minimum value of  Ks, the value of f can be obtained 
simply as 

 f =f `=kc(2.2.14) 

since, for the elasto-plastic buckling, 

2 kc [1+1/1+(N+1)y  
(Ks)min= 1+(N+1)8(2.2.15) 

at 

  n=1 and O=m Vkc[1+(N+1)y] 

Thus, using Eqs. (2.2.7), (2.2.8), (2.2.11), (2.2.14) and (2.2.15), the elasto-plastic 
buckling stress o, can be given by 

ocT= aE                                                         (2.2.16) 

where 
acr 

aCT— ay 
It implies that the elasto-plastic buckling stress of the stiffened plates can be 
expressed in the unified formsimilar to that of columns, beam-columns and 
compressed plates. Of course,acr=aE with fc=1 and kc=1. 

2.2.3 Postbuckling path 

   The rigorous prediction of the significant postbuckling behavior of stiffened 
plate in a closed form is entirely difficult even in the elastic range. Thus, for 
simplicity, a modification on the von Karman's equations is made in order to 
evaluate such postbuckling reservation using the analogous orthotropic plate 
approach. The modified von Karman's equations for such orthotropic plates in the 
elasto-plastic range lead to the following postbuckling path[47]: 

o= pi-v2(2.2.17) 
at 

   n=1 and=m VIcc[1+(N+1)y] 

where 

     _3(1—v2) 1  Es  1+kc[1+(N+1)y]     C
° 4 KsE RSE E Vkc[1+(N+1)y] 

   RsE—R K R- 612(1—v2)or         ~KsE't 71-Z1( E ' Km4(N+1)2 
and R denotes the generalized width-thickness ratio for the local buckling of the 

plate-panel. It is clear seen that Eq. (2.2.17) provides the elastic postbuckling 
path if Es = E and kc = 1. 

                             192



2.2.4 Ultimate  strength

   Ultimate strength of the actual stiffened plates can not be determined by 
evaluating only the elasto-plastic buckling strength. It is further affected by the 
initial lateral deflection and the plastic unloading curve as well as by both the 
residual stress and the elasto-plastic postbuckling path. The plastic unloading 
curve is obtained from the failure mechanism corresponding the ultimate state of 
the stiffened plate. Many investigations have been performed on the failure 
mechanism curve in the last two decades. Their mechanism curves for com-

pressed square plates are compared in Fig. 2.2.2. Detailed discussions on the 
plastic unloading curve have been made by Sherbourne, Murray, Fujita and 
Davies[57-621, but here in this chapter, the following intersection formula is as-
sumed for simplicity between the in-plane axial compressive load and the bending 
moment[47]. The failure mechanism of the plate under uniaxial pure compression 
is assumed to consist of fold lines for the global buckling mode as shown in Fig. 
2.2.4.

02-~-7It=1 . (2.2.18)

where

Tit =
M 

Mp

in which M and Mp refers 

responding fold line and the 

comparison of the interaction 

plates.

to the bending moment perpendicular to the cor-
full plastic moment, respectively. Fig. 2.2.3 shows a 

curves by many researchers for compressed square 
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where, for  q5*=c/7n?cot 0, 

11+0* cot 0+N6s A=2------------------

 A 

for

1

I+--------N+1 

1+0* cot 0+ N6

 2 1+(N+1)6 

95*<cot 0s1,

(N : even)

(N : odd)

Ii 
                 cot 0+ N6--------------------------------------- 

 A= 2(N c
ot 0(N=N,+N„) 2-95* tan 0+2 N,B+----

N+1-------a~* 

in which 0 denotes the angle of the yielding fold line as shown in Fig. 2.2.4. 
In the second types in Fig. 2.2.4(b), Ni and N11 refers to the numbers of longi-
tudinal stiffeners on the fold lines of (I) and (II), respectively. Moreover, hs 
designates the height of a stiffener from the surface of the plate panel, and the 
factor hs/t can be given as a function of the stiffener parameters. 

   Now, let us consider the equivalent bifurcation point as the intersection of 
the elasto-plastic postbuckling path, Eq. (2.2.17), with the plastic unloading curve, 
Eq. (2.2.19). The point can be obtained by solving the following quartic polyno-
mial equation: 

CpA2 4—a'—(2 C„A2—ocr)o2+ CA' =O(2.2.20) 

   Let Q* and w* designates a proper real root of the equation and the cor-
responding deflection calculated by Eq. (2.2.17) or (2.2.19). Hence, the equivalent 
bifurcation point can be given by the point C(w*, o*) in Fig. 2.2.5.

U a
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   In order to evaluate the ultimate strength of the  imperfect plate , a pseudo-
potential may also be defined near the equivalent bifurcation point C. Then, the 
ultimate strength am of the imperfect stiffened plate can be predicted in terms 
of the bifurcation set through the catastrophe theory. It can be defined by a set 
of singular points[43-49]: 

    Qm 

  a*=1 +a*wo— 2 a*2vo(1+2a*wo) 
                                                        (2.2.21) 

where 

        Qm 
am=— 
         ay 

and a* can be approximated by the slope of the plastic unloading curve at the 
equivalent bifurcation . point C, that , is,

a—     1
1

dwp/da a= i• A(1 + a*2) (2.2.22)

2.2.5 Modification of imperfection 

   Furthermore, the concept of the equivalent initial imperfection is adopted 

herein in order to describe the actual strength behavior of the plates considered: 

wo =,u(R)wo(2.2.23) 

where 

  ,u(R)=-=-,u (—R la 
Pc is a constant specified below, and Rrefers to the value of the generalized 

width-thickness ratio, R, for the localp-late buckling between stiffeners, at which 
the buckling point changes from the elasto-plastic to purely elastic, and R is al-
ternatively used as the generalized width-thickness ratio RSE for the global 
stiffened plate buckling. 

   Explicit forms of u and (3 will be presented below in the numerical 
demonstrations with some design curves and the numerical results by many in-
vestigators. Their determination takes into reasonable account the unified expres-
sion for both unstiffened and stiffened plates. As a result, the form of 11(R) can 
be presented to be 

 u~= 2, /9=2(1R)(2 .2.24) 
This form has been also applied to a unified formulation of strength prediction 
for both local and global bucklings of stiffened plates. Finally, the imperfection 
sensitivity or the load-carrying capacity can be determined by Eq. (2.2.21); how-
ever, with the slope a* of Eq. (2.2.22) and the equivalent imperfection of Eq. 
(2.2.23) and (2.2.24)[43-49].

195



   On the other hand, the ultimate strength for the local buckling 
panel between stiffeners may be also evaluated as four edges simply 
rectangular plate with the width spacing  stiffeners[44,471. 

   It is apparently shown that discussions in this section are identically 
those for unstiffened plates when the stiffener's parameter N=0, 6 =0 
i.e., t=to, R=RSE and K=KSE[44] for n=1 and 0= m' .

of plate 
supported

equal to 

and Y =0,

2.3 Compressed Plates 

   Now, as the first numerical illustrations, let us examine the simply supported 
plates under uniaxial compression. The type of the distribution of the residual 
stress considered herein is either of a parabola, a triangle or a trapezoid as 
shown in Figs. 2.3.1(a)-(c), respectively. The magnitude of the maximum compres-
sive residual stress is restricted for practical reason to 0.4 c'r, for all types. 
Also, the magnitude of the initial deflections of the plates considered herein is 
taken to be whether b/200 or b/150, with consideration of the tolerance of b/150 
as allowed by the JRA Specification for Highway Bridges[50], where b represents 
the width of the loaded edge of the plate. 

   In order to make a comparison with the present numerical illustrations, the 
following four types of strength curves are used herein: Fig. 2.3.2 shows the 
basic design strength curves adopted in Japan, USA and Europe[1,3,4,50] and 
several "effective width formula" by von Karman, Winter, Lind, Yoshiki, Grave 
Smith, Komatsu and Fukumoto[51,52]; Fig. 2.3.3 shows the numerical computations 
by Crisfield, Little, Harding, Dawson and Horne[11-16,20]; Fig. 2.3.4 provides the 
typical test data[531, including repetitive loading results by automated microcom-
puter testing at Kyoto University in 1981-84 with reference to [54-57]; and Fig. 
2.3.5 also shows the design curves by Fokumoto-Itoh data-base approach[64], who 
summarize a great number of experimental data for buckling steel plates in the 
world. 

   The numerical results of plates are illustrated in Figs. 2.3.6(a)-(c) for the 
residual stress distribution of the parabola , the triangle and the trapezoid, 
respectively. The abscissa indicates the generalized width-thickness ratio ratio R 
and the ordinate indicates the non-dimensionalized ultimate strength with respect 
to the yield stress. It must be mentioned that all of the bifurcation sets for the 
rectangular plates are obtained for such aspect ratio 0 that the least buckling 
coefficients are obtained both in the elastic and in the elasto-plastic range, that is, for n=1 and 0= m 'kc. Then, all the calculations are made taking into ac-
count the basic ultimate strength formula, the theoretical/numerical results and 
experimental curves. Therefore, the form of p(R) is also given by Eq. (2.2.24) , 
similarly to the case of stiffened plates.
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   The proposed bifurcation sets are compared with six ultimate strength curves 
herein: by von  Karman, Crisfield's finite element large deflection elasto-plastic 
buckling analysis[11], Little's energy minimization[16], Harding's finite difference 
analysis with a dynamic relaxation[12], Dawson's simplified elastic large deflection 
perturbation analysis[58] and by Horne's effective width approach [13,14,15]. These 
strength curves were drawn for simply supported rectangular plates with 0 = 
0.7 x-1.0, wo/b = 1/200 and the rectangular band width at 3t of the residual 
yield tensile stress[20]. 

   The ultimate strength curves in the elastic range for the slender plates are 
throughout the same regardless of the residual stress types. But, in the elasto-

plastic range for intermediate values of R, the ultimate strengths in the case of 
the trapezoidal distribution are found to be the lowest, and those of the trian-
gular distribution are the highest, independently of the magnitude of the imper-
fections. However, the present ultimate strength curves are found to be affected 
insignificantly by the difference of the types of residual stress distributions, 
similarly to the case of compressed columns. Of course, the unified bifurcation 
set with the equivalent imperfection gives the unified ultimate strength curve to 
be excellent correlation with many strength curves as mentioned above. 

   For given width-thickness ratios, the present strength can be explicitly drawn 
as the imperfection sensitivity curve. Fig. 2.3.7 illustrates a family of imperfec-
tion sensitivity curves in the case of compressed plates with the parabolic resi-
dual stress distribution. The ultimate strength may be shown to be remarkably 
sensitive to the initial imperfection especially at the intermediate width-thickness 
ratios.

   Bradfield reviewed the numerical evaluation of strength curves of compressed 
plates by Crisfield, Little, Harding, Dawson and Horne[20]. In order to compare 
the present curves with his results, the imperfection sensitivity curve is replaced 
for the change in the non-dimensionalized strength am between smaller and 
larger magnitudes of the initial deflections, i.e., w/b = 1/1000 and 1/200 ( b is 
the plate-edge width). Fig. 2.3.8 shows the relationship between the change in 
the ultimate strength and the generalized width-thickness ratio. It is seemed that 
the present reductions provide relatively middle strength among other investiga-
tions except for the case of elastic buckling region. Within large width-thickness 
R corresponding to the purely elastic buckling, the proposed results may over-
estimate the imperfection sensitivity greater than the others. This is caused by 
the form of the equivalent imperfection ,u(R) using peculiar limit condition of 
R-~oo.

  2.4 Compressed Stiffened Plates 

     Several numerical illustrations are provided on the strength of the simply 
  supported stiffened plates under in-plane uniaxial compression. A single lon-

  gitudinal stiffener is assumed to be spliced with equal interval and can be 
  characterized by the geometrical and material parameters such as N, 8 and y , E / 

ay . Moreover, torsional rigidities of the stiffener are assumed to be 
neglected: The type of residual stress distribution of the local plate panel is as-

  sumed to be either of a parabola , a triangle or a trapezoid as shown in Figs. 2
.2.1(a)-(c), and that of the stiffener to be tensile uniformly distributed in its 

 cross section. For all the distribution types , the magnitude of the maximum com-
  pressive residual stress at in the local plate panel and that of the uniform ten-
  sile residual stress ars in the stiffener are restricted to 0.4 ay and 0.2 ay, 
  respectively. Moreover, the magnitude of initial deflection of the stiffened plates
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are assumed to be a/1000 and b/300 with its global and local  modes, respec-
tively. The values are prescribed on the basis of the tolerances allowed by the 
JRA Specifications for Highway Bridges[50], which "a" denotes the half-wave 
length of the stiffened plate for the global buckling and "b/2" indicates the 
width of the loaded edge of the plate panel for the local buckling . 

   For given parameters such as N , 8, y and E / vy, all of the bifurcation sets 
or the ultimate strength curves can be calculated under the following condition: 
the equivalent orthotropic plates have such aspect ratio 0 to take the least 
buckling strengths in the elasto-plastic ranges. That is, 

   n=1 and 0=m \/kA1+(N+1)y](2.4.1) 

   Herein, for a comparison with the difference of residual stress types, the 
numerical results are presented for three types of distributions of residual 
stresses: parabola, triangle and trapezoid for the buckling. Figs. 2.4.1(a), (b), (c) 
illustrate the proposed bifurcation sets of compressed stiffened plates with para-
bolic, triangular and trapezoidal distributions of residual stresses for the global 
buckling. In these figures, the generalized width-thickness ratio R of the local 
plate panel is chosen as the abscissa without regard to the types of bucklings; 
whereas the ordinate designates the non-dimensionalized ultimate strength with 
respect to the yielding stress ay . The ultimate strength curves of stiffened 
plates are found to be affected only insignificantly by the difference of the 
types of distribution of the residual stress, similarly to the cases of compressed 
columns and plates as discussed previously. Hereafter, the numerical results are 
provided for only the parabolic residual stress distribution. On the other hand, 
for the local buckling of the plate panel, Fig. 2.4.2 typically shows the present 
results of the compressed stiffened plate. 

   For a comparison with the proposed strength prediction, the following ul-
timate strength curves and some test results are presented herein: von Karman, 
Fukumoto's data-base approach[64], Komatsu's large-deflection elasto-plastic finite 
element analysis[11,36], and practical design formulations such as JRA, DASt and 
ONORM[63]. Fig. 2.4.3 shows several Japanese experimental results of stiffened 
plates[63,64], including the test data by automated microcomputer testing at 
Kyoto University in 1981-84[54-57]. 

   The present ultimate strength curves in the elastic range for the slender 
stiffened plates are throughout the same without regard of the residual stress 
types. However, in the intermediate width-thickness ratio of R, the ultimate 
strength curve for the trapezoidal distribution of residual stress is found to be 
the lowest, and that in the case of the triangular is the highest, not related 
with the magnitudes of initial deflections. 

   Especially, in the case of the local buckling corresponding to Fig. 2.4.2, Fig. 
2.4.4 compares the same results with the numerical calculations by Crisfield, 
Little, Harding, Dawson, Home and the JRA Specifications for compressed unstif-
fened plate panels[44,47]. 

   For both the global buckling of the stiffened plate as a wide Euler column 
and the local buckling of the local plate, it may be found that the present im-
perfection sensitivity curve in Eq. (2.2.21) using Eqs. (2.2.22), (2.2.23) and (2.2.24) 
gives a unified strength prediction of the stiffened plate. Moreover, this unified 
equation has been applicable to the cases of columns, beams and compressed 
unstiffened plates as well[43-49].
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   In this chapter, all the calculations on the ultimate strength of  stiffened 
plates are made for only typical values of parameters; N, 6, y and E/ ay as 
shown in these figures. For various values of such parameters, the similar 
strength prediction may be explicitly determined by Eq. (2.2.21) through Eqs. 
(2.2.22), (2.2.23) and (2.2.24). For example, Fig. 2.4.5 shows the results of the 
stiffened plates with the parabolic residual stress and the area-parameter 

  6 =0.05. Then, the effect of such area-parameter 6 on the ultimate strength 
may be shown to be insignificant, so far as the values are considered herein, 
similarly to the effect of the types of residual stress distributions.

2.5 Application to Statistical Simulations 

2.5.1 General remarks

   The present approach allows us to predict the unified ultimate strength for-
mula of steel structures in elasto-plastic range. Especially, the effects of the 
residual stresses and the initial displacements on the strength are explicitly 
expressed in Eq. (2.2.21). This formula is so effective that it can be used in or-
der to evaluate the statistical strengths of steel rectangular plate members with 
or without stiffeners. Through a great number of statistical surveys on the initial 
imperfections of the actual structural members and typical tested specimens, a 
Monte Carlo simulation is performed herein. In this section, the imperfections are 
taken to be the initial displacements and the residual stresses, and are generated 
from their proper statistical form of probability density functions. The distribu-
tions of the initial displacements and of the residual stresses are normalized into 
two-way normal distributions, and their three-dimensional view is visually drawn 
with the contour lines representing constant strength levels. Hence, the most 
frequent combinations of such imperfections are determined with respect to the 
5%-fractile strengths for a prescribed generalized slenderness. 

2.5.2 Statistical distributions of initial imperfections 

   Initial deflections The statistical distribution of initial deflections is well 
known to follow the Weibull or the Erlang(Gamma) distribution from many ex-
perimental data for compressed plates with the plate-bending mode(I)[63]. Then, 
herein, the magnitude of initial deflections non-dimensionalized by the total width "b" of plate member is assumed to be the Erlang distribution with the mean 
value of 5.97x10-and the standard deviation of 8.76x10-.

Residual 

mum compressive 

the mean value of

2.5.3 Monte Carl                o            stressesisThe statistical                 residual stress is                0.23 ay and the  simulations

distribution of the magnitude of the maxi-
assumed to be the normal distribution with 
standard deviation of 0.145 a y[66].

   For each specified generalized width-thickness ratio R for 0.6 to 1.4 with in-
terval 0.2, a Monte Carlo simulation is made: 

[i] Generate random numbers following the normal and the Erlang distributions 
     for the residual stresses and the initial deflections , respectively. Their 

     methods of generations are briefly discussed in the papers[49,67]. 

[ii] Substitute the pair of these values of imperfections into the imperfection 
     sensitivity formula in Eq. (2.2.21). Then, the ultimate strengths are scat-

     tered in an unknown form of distribution. 

[iii] Repeat steps [i] to [ii] as many times if necessary. 
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 [iv] Normalize the variables in order to take two-way normal distribution with 
     both the residual stresses and the initial deflections[49,67]. 

[v] Plot the contour lines representing the constant strength levels. 

[vi] Find the most frequent combinations of the imperfections with respect to 
     the 5%-fractile ultimate strengths in Eq. (2.2.21). 

Herein, the simulation tests are made for compressed plates with typical three 
types of residual stress distributions[44,47]. Also, in the case of stiffened plates 
with only the parabolic distribution of residual stress, the tests are performed 
for three prototypes of flexural rigidities,/Y*=0.5, 0.75 and 1.0 in the global buc-
kling modes.

Fredueney

132.11

 Ulf

/b

 or/ay

Fig. 2.5.1 Joint Probability Density Function of Residual Stresses 
and Initial Deflections.

2.5.4 Numerical illustrations 

   Assume two variables of the residual stresses and the initial deflections to 
be independent one another, their joint distribution can be obtained easily. Figs. 
2.5.1 show a 3-dimensional drawing of the joint probability density function and 
the contour lines in the imperfection space. 

   In order to search for the most frequent combination of the residual stresses 
and the initial deflections for prescribed generalized width-thickness ratio R, 
their variables are transformed to take the two-way normal distribution. The 
transformation procedure is confirmed in the papers[49,67]. 

   Compressed plates The generalized width-thickness ratio R is chosen as 

    _ b /12(1—v2)o'YICE : Euler buckling coefficient R— 
art KEE(2.5.1)

209



                                                                               v°-Uv°                                                                                                                                                                          "0-I~v°  NON-DIMENSIONALIZED INITIAL DEFLECTIONSNON-OIMENSIONALIZED INITIAL DEFLECTIONSo 
     ow

.u° 
    -3.0 -2.0 _1.0 0.0 1.0 2.0 3.0 -3.0 -2.0 -I.0 0.0 1.0 2.0 

-3.0 -----------------------------------------------------------------------------------------------3.0 -------------------------------------------------------------------------0) 

     U°E U 
•2.0-2.0--------'0                       1-.w U,Meta~wIL
JJ=_h~

_,OONNcc           0.0¢ 0.0 

     ~~ 

   La~ 1.00w1iI  2.0i2.0 
 ,a.f 0

asZ                           as 

3.o -----------------------------------------------------------------------------------E I3.0i 

   Fig. 2.5.2 Contour Lines of Strength Fig. 2.5.3Contour Lines of Strength 
           for Compressed Plates:for Compressed Plates: 

    R=0.8R=1.4 

   The discrete value of R varies from 0.6to 1.4 with interval 0.2. For instance, 
   Fig. 2.5.2 presents the 2-dimensional contour lines of the joint probability density 

   function, together with each constant level of ultimate strengths. The broken line 
   and the thick solid line denotes the mean and the 5%-fractile values of streng-

   ths, respectively. A foot of the perpendicular from the origin of the joint func-
   tion to the 5%-fractile strength level specifies the pair of the most frequent 

   combination of the residual stresses and the initial deflections, denoted as an in-
   dex a . Also, Fig. 2.5.3 shows the results for R=1.4, and the similar figures are 
   obtained for each generalized width-thickness ratio R and for each type of dis-
    tribution of residual stress. 

-u„W„va NON-DIMENSIONALIZEO INITIAL DEFLECTIONSow.°NON-DIMENSIONRLIZEO INITIRL DEFLECTIONS° 
     -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 

3.0 ----------------------------------------------------------------------------------------------3.0 ------------------------------------------------------------ ..-d .' I 1 °°d,o•° 
0 °

a,-2.0L°,-2.0 -----------------------------------------------------------r 
WW 
  N                                                          N 

s -I.o.••,.:41~_ I.rA 0OEllir ..        7 1MVP0.0 

  0 

    ',NVIIIIII. 
    ¢I z~.oa 1.0~rAiSr,/                    1mcm,92/ 

02.0 -------•~ Ic 2.0=we 
OOC0C 11 z

wtlz3,   dIasI, i 
3.0 ----------------------------------------------------------------------------------------------EI.3.0 ----------------------------------------------------------------------------------------E,,t• 

  Fig. 2.5.4 Contour Lines of Strength Fig. 2.5.5Contour Lines of Strength 
           for Compressed Stiffenedfor Compressed Stiffened 

            Plates: R=0.6, Y/ y* =0.5Plates: R=1.4, y / y * =0.5 

                               210

 d

 U
b
i

i

LnLn
•

ai

 1

i

•

1+1 I II'C 

I
d)

. I IEI I

 m

i

4-
~

.I ^ , I /.

1'I l \T
t--------------------------------------------------------------I1 1 I

pi I IFl
4) I I\I

I I E I I \i

 3.{..

v

Q4.;
v Ev

 L

771
^  s

I 1

2

 "

^

u

// ^^^^/
^

^^'
^ ^

^

^^ '~

//8,/
,

=
.

W

/



   Compressed stiffened plates The generalized width-thickness ratio R is 
selected for the local-plate panel of  stiffened plate, similarly to Eq. (2.5.1). Figs. 
2.5.4 and 2.5.5 show the results of models with the rigidities 'di* =0.5 at R=0.6 
and R=1.4, respectively, in the global buckling mode. The residual stress distribu-
tion is restricted to be parabola for all the computations. 

   Fig. 2.5.6 provides the numerical results of compressed plates with parabolic 
distribution of residual stress. For discrete values of R from 0.6 to 1.4, this 
figure shows the changes of the most frequent combinations of the residual 
stresses, the initial deflections and the index /3 of the corresponding probability 
of appearance. They are designated as the chain line, the thin broken line and 
the solid line, respectively. Also, an another broken line indicates the 5%-fractile 
value of initial deflections. The effect of the residual stresses decreases as R 
increases upto 1.2, since the allowance of the residual stresses increases. While 
the opposite tendency appears for R>1.2. Furthermore, the effect of the initial 
deflections slightly increases for R<1.2, since the allowance of the initial deflec-
tions decreases. For R>1.2, however, the effect decreases. In other words, it may 
be found that the ultimate strength is relatively sensitive to the initial deflec-
tions for R<1.2, and is more sensitive to the residual stresses for R>1.2. In the 
other hand, the index Q is not scattered throughout the whole ranges of R, so 
that the probability of the most frequent combination of the residual stresses 
and the initial deflections is approximately constant with slight tendency to 
decrease as R increases. 

   Fig. 2.5.7 shows the similar results of stiffened plates with Y/7* =0.5 for their 

global bucklings. The effect of the residual stresses slightly decrease with in-
crease of R; While that of the initial deflections slightly increases as R in-
creases. Also, the index /9 becomes the minimum for R=1.2, representing the 
maximum value of the joint probability. 

2.6 Conclusions 

   A simple unified approach to the ultimate strength of compressed steel 
plates with and without stiffeners is presented on the basis of the concept of 
the catastrophe theory. The main conclusions are: 

 (1) The residual stresses and the initial deflections may affect the evaluation 
      of the elasto-plastic buckling stress and the form of the explicit imperfec-
      tion sensitivity formula, respectively. 

 (2) The inelastic strength prediction of the plate members may be explicitly 
      determined in the form of the bifurcation sets or the imperfection sen-

     sitivity curves for both global and local bucklings. 

 (3) The bifurcation sets can be defined explicitly near the equivalent bifur-
      cation point being the intersection point of the elasto-plastic postbuckling 

      path with the plastic mechanism curve. 

 (4) The initial imperfections are modified and replaced by the equivalent im-
      perfections proposed herein. 
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(5)

(6)

(7)

(8)

(9)

The proposed approach can be applied to the strength prediction of  un-
stiffened and stiffened plates in in-plane compression, and these numerical 
results are demonstrated for typical plate models. 

Using the proposed strength formula expressed as the imperfection 
sensitivity, a Monte Carlo simulation is performed on appropriate statistical 
distributions of the residual stresses and the initial deflections for 
compressed plates and stiffened plates. Then, the most frequent combina-
tions of such imperfections can be explicitly determined from both their 
joint probability density function and the 5%-fractile ultimate strengths. 

All the calculations herein can be made using mainly a microcomputer 
with small memory storage. 

The form of distribution of residual stress assumed herein may insignifi-
cantly affect the present results. 

The general philosophy adopted in this chapter may also be applicable to 
other type of engineering structures such as rigid frames, arches, trusses 
and shells as well as columns, beam-columns and compressed plate panels.
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 CHAPTER 3 

APPLICATIONS TO COMPRESSED CYLINDRICAL SHELLS

3.1 General Remarks 

   Nowadays, cylindrical shells have been used in many civil engineering struc-
tures such as offshore constructions, nuclear power supplies, pipe lines and stor-
age oil tanks. These cylindrical shell members are often subjected to uniaxial 
compression as independent or combined loadings together with hydraulic pressure 
or torsion. Then, the load-carrying capacity of the compressed shell is known to 
be very sensitive to even a few initial imperfections, and they may yield the 

global collapse of the cylinder. Therefore, problems on the stability and the 
strength of cylindrical shells are significantly important for our civil engineers to 
analyze and evaluate them. 

   Studies on the strength of cylindrical shells were initiated in the later nine-
teenth century[1]. Lorenz, von Krman and Fliige obtained the buckling loads of 
cylinders, subjected to axially compression, uniform external pressure and their 
combinations, respectively[2]. Especially, Donnell derived the fundamental equations 
of equilibrium for shell structures under torsion(3]. However, the analytical or 
theoretical investigations had been remarkably inconsistent with the corresponding 
experimental results by Fliige, Donnell and et al.[4] These inconsistency between 
theory and experiments was tried to clearly interpret using the so-called imper-
fection sensitivity by von K6rm6n and Tsien, who solved the nonlinear equilibrium 
equations[5]. Moreover, Donnell and Wan clarified the post-bifurcation and the 
general equilibrium paths of compressed cylindrical shells[6]. 

   Koiter discussed the stability and the imperfection sensitivity of cylinders on 
the basis of the potential energy function using his general theory of elastic 
stability[7]. He also analyzed the imperfection sensitivity curves of compressed 
cylindrical shells with axi-symmetric modes of initial deflections[8]. Arbocz and 
Babcock reported on relationships between initial deflection modes and the buc-
kling configuration modes from many test data[9]. Similarly, Hutchinson, Hansen 
and Croll focused on the imperfection sensitivity of axially loaded cylindrical 
shells[ 10-12]. 

   The shell members are being designed so that they may fail commonly in the 
elasto-plastic range. Then, in order to examine their inelastic strengths, the in-
cremental materially and geometrically nonlinear numerical procedures are per-
formed in recent trends. These time-consuming analyses of compressed cylindrical 
shells may provide us the ultimate strength, which is determined in an isolated 
form for a specified set of material and geometrical several parameters. On the 
other hand, advanced studies on the inelastic strength of cylinders have been 
vigorously performed by Batterman, Hutchinson and Croll[13-15]. 

   This chapter formulates the unified approach of the elasto-plastic ultimate 
strength for compressed cylindrical shell members. Then, the effects of initial 
imperfections such as residual stresses and initial deflections are explicitly 
defined by a unified strength formula[16-20]. The cylindrical shells are known to 
have unstable postbuckling characteristics with asymmetries, which yield the sen-
sitivity of initial imperfections on the ultimate strength. This is generally dif-
ferent from the cases of columns, beams and plates with neutral or stable sym-
metric postbuckling reservations. Therefore, from the instability of the elastic
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and the similar elasto-plastic buckling points, a strength prediction of the 

compressed cylinders is proposed by the direct evaluation of an elastic pseudo-

potential energy, considering the elasto-plastic behaviors near the elasto-plastic 
buckling point. Then, the equivalent bifurcation point introduced in the previous 

chapter of this PART is the ordinal elasto-plastic buckling point itself, what is 

summarized in the chapter  III-1.

3.2 Basic Formulations 

3.2.1 Residual stress distributions 

   A cylindrical shell model under uniaxial compression as shown in Figs. 3.2.1 
is analyzed herein. The cylinder behavior is commonly affected by the end condi-
tions in Fig. 3.2.1 since the out-of-plane deflections in the radius direction are 
constrained on both edges. However, neglecting the effects of the end con-
straints, the center part of the cylinder model with the length "L" is treated 
hereafter. 

   As shown in Figs. 3.2.2, the cylinder is welded on a longitudinal line and 
possesses an appropriate form of residual stress distribution uniformly in the lon-
gitudinal direction. The form of residual stress distribution with the maximum 
compressive stress 0 r is assumed to be either a parabola, a triangle or a trape-
zoid in the circumferential direction as shown in Figs. 3.2.2(a)-(c), respectively. 
These figures develop the distributions of residual stresses in the half-circum-
ferential direction. Then, the relationships among the tangent modulus Et, the 
Secant modulus Es, the average axial stress a and the average axial stress E 
can be obtained as[21]: 

   Et =dEa = k and ES=Q (3.2.1a) 

and, for parabolic distribution, 

0 = QY + ( 2k - 3 ) k2 a
r 

    E=[0Y -0 +3(1 - k)2 ] 

( o < k< 1 ) (3.2.1 b ) 

for triangular distribution,

6=6-1 aaYar  
  Y 2 r[ 6 +

a + a

E =1 [ 20
Y

Y

( aY+a
r) (

Y r k2 ] 
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Y

aY - a
r ar

+ Q- k ) ] 
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 0  +o 
     =6-1a Y r k2 

     Y 2 Y 0 
r 

E=E[ 20, - 6Y---------Qk ] 

                                        ( 0 <k<6+6 
                                      YOr 

(3.2.1c) 

and for trapezoidal distribution, 

            (0r+6)2 
6 =QY4 0k2 

(Q +0 )2 
 E=E[20-Y rk]26    E 2 0 

( o<k<6+6) 
                                          Y(3.2.1d) 

where E and ay refer to the elastic Young's modulus and the yielding stress of 
the material considered, respectively. Also, the factor k indicates the ratio of 
the elastic portion of the cross section to the total section of the compressed 
cylindrical shell, that is, it clearly denotes the so-called tangent modulus factor 
of the global axial behavior of the cylinder. 

3.2.2 Elasto-plastic buckling strength 

   As mentioned above, the effects of supporting conditions of compressed cylin-
ders are not taken into account in this dissertation. Then, two types of analyti-
cal procedures are performed with respect to the numbers of associated buckling 
modes. The buckling modes are assumed in the elastic and the elasto-plastic 
ranges as follows[8,91: 

   1-mode analysis: only an asymmetric buckling mode 

W = wsinmLXcosLI 
                                                           (3.2.2a) 

   2-mode analysis: both an asymmetric and an axi-symmetric buckling modes 

   W = wlsinmLX cos r + w2 cos QLx 
                                                        (3.2.2b) 

in the coordinate system as shown in Fig. 3.2.1. Herein, W, L and r refer to 
the magnitude of the total out-of-plane deflection, the longitudinal length and 
the radius of the cylinder considered, respectively. Also, w1 means the magnitude 
of the asymmetric buckling mode with m- and n-half wave numbers in the lon-
gitudinal and the circumferential directions, respectively, in both analyses. In the 
latter analysis, an axi-symmetric buckling mode is further considered, and the 
magnitude is designated as w2 with Q -half wave number uniformly in the longi-
tudinal axial direction. Moreover, the magnitudes of the corresponding initial out-
of-plane deflections to W, w1 and w2 are denoted as Wo, wo1 and w

02, respectively.
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   From the classical Donnell's equations of equilibrium and the classical ortho-
tropic theory, modified fundamental equations of equilibrium in the elasto-plastic 
range can be written as 

 1a2Wa2w 32wa2w)2 
               s V4 F +Et [ r2+22- (axa)          axaxayY 

a2w a2waeWo a2w a2w a2w                                               o  

axe aye axeaye axay ax ay 

(3.2.3a) 

and 

   D 
v4W —1[1a2r+32Fa2(W + Wo) 

   t p t r ax2 ax2 ay2 

               32F 32(W+W0) a2F a2(W+Wo) - 2 ------ +
axay ax Byay2x 2] = 0 

                                                        (3.2.3b) 

where 

v4F= 34F + 2 34----+a4F,DeEt32  
ax4 ax2ay2 ay4e12( 1 -v2) 

  444    V4W = k1aXa+ 2 ( k2+ 2k4)a2W+ k3ayy                       axay2a 

and F, v , t and k•(j=1,2,3,4) refer to a proper stress function, the Poisson's 
ratio, the thicknessAnd the constants to designate flexural and torsional rigidities 
of the cylinder in the elasto-plastic range. For examples, using the Bleich's theo-
ry[221, the factors kJ follow 

k i =-r,  k2 = v~, k3 = 1 and k4=12v /T (3.2.4) 

where T refer to the tangent modulus of the cylinder. 

    Upon substitution of W in Eq. (3.2.2a) or (3.2.2b) into Eqs. (3.2.3) and 
through the Galerkin's method, the elasto-plastic buckling stress c cr can be ob-
tained in each analysis: 

    1-mode analysis: The elasto-plastic buckling stress is 

 a=f°QE(3.2.5a) 
    a cr1 

 where 

  n =acrlL- QE _ 1Q=E  t           a --  acrl aY'E ay R2 E /3l_'2) ri 

    

a ---------F+ 1E
_f°k°2,IE gr Y~3(1-IV.V 
         t E 
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and

ti 
 a
 Cr

- a
crl

with the square asymmetric buckling mode:

    (mTf)2= (n)2= ^3(1-v2)1  Es 
L rtr + 1E 

                                                        (3.2.5b) 

in which, a and R refer to the fundamental Euler buckling stress and the 
generalized radius-thickness ratio for the compressed cylindrical shell, respectively. 

   In order to consider the effect of residual stress on the elasto-plastic buc-
kling stress a , the Bleich's factor T in Eq. (3.2.4) is herein taken to be 
equal to the tangent modulus k in Eq. (3.2.1). Then, in Eq. (3.2.5a), kc means 
the critical value of the factor k, evaluated at the elasto-plastic buckling point. 
Moreover, fc refer to the factor being the ratio of the elasto-plastic buckling 
stress to the elastic Euler buckling stress, so as to provide the unified expression 
of a cr, similarly to the cases of columns, beams and plates. 

   2-mode analysis: The elasto-plastic buckling stress ?Cr for the asymmetric 
mode of buckling can be previously obtained by Eq. (3.2.5?. Furthermore, for the 
axi-symmetric mode of buckling, the elasto-plastic buckling stress cr2is inde- 

pendently determined by

ti 
a

cr2

where

   c = f
2 GE

fc=~2c
Es 

E

ti 
a

acr2 

aY

(3.2.6a)

cr2

with the axi-symmetric buckling mode:

and 

to

9ir 2 ( =  2^3(1-V2)

t r

However, taking into 

axi-sym metric modes, 

be

rg Eat-= 2 (L)ZIT 
                                    (3.2.6b) 

 account the interactive behaviors of both asymmetric 
 the form of the elasto-plastic buckling mode is taken

This 
wi

(Q-R)2 =
2^3(1-V2)

V "- t r

ES 

E

 buckling mode means 
and the axi-symmetric

the 

mode

andQli=2(L)=2(•r) 
                               (3.2.6c) 

interaction of both the square asymmetric 
w2 with twice as half-wave lengths as w1.

mode
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  Therefore, the 
metric and the 
rewritten as

 elasto-plastic buckling stresses,6 c
r1andccr2, for the asym- axi-symmetric bucklings of  compressed cylindrical shells

, can be

              c            ti     a

crl_- f1aE 

where

q,  acrl 
a

crl aY 

f = 2

and

  ES 

E

    _c          ti a
cr2- f2 aE

ti 
a

cr2

=

a
cr2 

c c+1 )2
C

f = 1

8k

+ 
 2

12, f2 

 ti 
a

crl 

= acr 2

(3.2.7)

Then, since 0 < kc < 1, Q > 1. In this chapter, the least elasto-plastic buckling 
stress 6uris taken to beacr2for the axi-symmetric mode w2 of buckling, 
considering the compound characteristics together with the asymmetric mode w1. 
It is needless to say that in Eq. (3.2.7)6cr2is equaltoacrlwhenQ= I, 
i.e., kc = 1 in the purely elastic range. Then, the complete compound bifurca-
tions for two modes may occur at the elastic buckling point. 

3.2.3 Postbuckling path 

   Furthermore, substituting the elasto-plastic buckling modes in Eq. (3.2.2) into 
the fundamental equations in Eq. (3.2.3), the elasto-plastic postbuckling equili-
brium paths can be also obtained: 

   1-mode analysis: The elasto-plastic postbuckling equilibrium equation is 

             et  
          -zsx2+(1 -X) x - A E1= 0                                                           (

3.2.8) 
where 
                                            ti                                                      ti 

 as-3ok4+1^3 (1-v2)E,=6~a=--~cr
ti _ 

 Cra-acrl

W1 
X = t

     wol 

E1=

Herein, an elastic pseudo-potential energy A near the elasto-plastic buckling point 
can be defined so that its equilibrium is determined by Eq. (3.2.8): 

    A = -6sx3+2( 1 -A) x2 - A Elx(3.2.9) 

It is clearly found that the potential is topologically equivalent to the universal 
unfolding of the fold catastrophe by Thom, and Eq. (3.2.8) or (3.2.9) presents the 
imperfection sensitivity curve characterized by the well-known 1/2-power rule[23]. 

   2-mode analysis: An elastic pseudo-potential energy A, defining two fundamen-
tal equilibrium equations with respect to two modes from Eq. (3.2.3), is written
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as 

   A = 16 (S-a ).x2- 8AxE1 +2(1-A) y2-AyE2 + asx2y 
 (3.2.10a) 

and equilibrium equations 

—8 - A) x - 8 A E1 + 2a'sx y = 0(3.2.10b) 

(1-A)y-XE2+asx2=0 (3 .2.10c) 

where 

6 = 0 
   6 cr8 k2Ocrcr cr2 

                         c 

   =3/3( 1 -v2)EswlWolw2Wo2   a s 32~Ex=tE1=ty=tE2=t 

and the corresponding buckling mode is given by Eq. (3.2.6c). The potential is 
trancated up to the 3rd-order terms of the modes, and yields the incomplete 
parabolic umbilic catastrophe with the paraclinal bifurcation between the hyper-
bolic umbilic catastrophe with the homeoclinal bifurcation and the elliptic umbilic 
catastrophe with the anticlinal bifurcation. The elasto- plastic and the elastic 
bucklings correspond to the near-coincident and completely simultaneous bifurca-
tions concerened, respectively. 

3.2.4 Ultimate strength 

   The elasto-plastic ultimate strength of compressed cylindrical shells is ob-
tained directly from the singularity of the "Hessian" matrix of the elastic 
pseudo-potential energy with considerations of the elasto-plastic characteristics. 

   1-mode analysis: Both Eq. (3.2.8) and its derivative with respect to x leads 
to the singular condition of equilibrium surface, and then the load-carrying capa-
city X m in the elasto-plastic range can be explicitly expressed by 

Am = 1 +asE1-t/2asE1(1 +Zas1)     /(3.2.11) 

where 
  tia 
_ Om _m 

m -'Qm 6 a
cr 

The significant factor as is specified in Eq. (3.2.8), and corresponds to the slope 
factor a* of the similar expression of ultimate strength previously in Eq. (1.2.8) 
or (2.2.21) of this PART III. 
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   2-mode analysis: Solving simultaneously the nonlinear process 
b,c) and the Hessian (their derivatives with respect to the x and 
plastic ultimate strength formula  Am can be obtained as: 

                                        3       16 
1[ 2a'SAE2+$(1-A)(13-Am)] 2 = xm(1-Am)E 31aS

where

   _ 

m

As special

ti 
a 
 m 

a cr

cases,

ti a 
a =  

m a

of Eqs. (3.2.10 
y), the elasto-

1

(3.2.12a)

1
E1 

6 17-50(

((3-Am )^(1-A )(S- A

Am
( E2 = 0 ) (3.2.12b)

            -1 (1-Am)(R-Am) 
 E_( E = 0 )  2

16a$Am1 (
3.2.12c) 

In the purely elastic range, apparently, Eq. (3.2.12c) is identically equal to the 
Koiter's imperfection sensitivity formula with finite axi-symmetric mode of initial 
deflections for compressed cylinders[8](See, Fig. 3.2.3). 

   Hence, for a prescribed generalized radius-thickness ratio R, the elasto-plastic 
ultimate strength can be obtained by Eq. (3.2.11) with the asymmetric mode of 
buckling, or by Eq. (3.2.12) with both the asymmetric and axi-symmetric modes. 

3.2.5 Modification of imperfection 

   The concept of the equivalent initial imperfection is also adopted herein, 
similarly to the cases of columns, beams, plate panels and stiffened plates[16-20]. 
The form is the unified expression as 

E* = u(R) E.(i=1 or i=1,2)  1~(3.2.13) 

where Et and Ei denote the equivalent and the original initial deflections, non-
dimensionalized by the shell-thickness. Taking into account many experimental 
results and the ECCS strength design curves, the form of u (R) may be ex-

pressed by 

  u(R)=uc(R)(3.2.14) 
where 

P = 1= 2 (1 - R ) 
cP
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and R, refers 
from

 to 

the

the slenderness 

elasto-plastic to

value 

purely

R at which the 

elastic.

ordinary buckling point

   Finally, 
determined 
Eq. (3.2.13)

 the imperfection 
by Eq. (3.2.11) or 
and  (3.2.14)[16-20].

sensitivity or the 
Eqs. (3.2.12) with

load-carrying 

the equivalent

capacity can be 

imperfections of

3.3 Numerical Illustrations

3.3.1 General remarks

   Several numerical demonstrations are provided on the elasto-plastic strength 
of the compressed cylindrical shells. The type of residual stress distribution in 
the circumferential direction of the cylinder is assumed to be in either parabolic, 
triangle or trapezoidal form as shown in Figs. 3.2.2(a)-(c). The magnitude of ini-
tial out-of-plane deflection is also assumed to be Q r/100 with both asymmetric 
and axi-symmetric modes. The value is prescribed on the basis of the maximum 
limitation allowed by the ECCS Recommendations, where Zrrefers to the gauge 
length specified as Q r = 4 T[24]. Therefore, the magnitues of the non-dimen-
sionalized initial deflections can be obtained by a constant Emax as follows: 

    =woi=woiQr=,r= E( i=1 or i=1,2) E.E Q t-max V tmax 
(3.3.1)

where

      = 0 .04 
 max

     w . 
of 

and  =
1 

100
( i=1 or i=1,2 )

3.3.2 One-mode analysis

   Figs. 3.3.1(a), (b) and (c) show the present ultimate strength curves in Eq. 
(3.2.11) with the maximum compressive residual stress or = 0.4 o y with the 
parabolic, triangle and trapezoidal distributions, respectively. In these figures, the 
abscissa is the generalized radius-thickness ratio R; while the non-dimensionalized 
ultimate strength by the yielding stress 6 y is chosen as the ordinate. As shown 
herein, the results of the strength predictions by the present analysis is compar-
ed with the well-known ECCS Recommendation curves: the upper curve at the 
factor a =1, and the lower at a = ao for purely compressed cylinders, where the 
factor a is specified by the ECCS in terms of the generalized radius-thickness 
ratio R[241. These notations are adopted in the 2-mode analysis as below. Espe-
cially, in the 1-mode analysis, the initial deflection half of the ECCS limiting 
value is also demonstrated in these figures. 

   Herein, at about R=0.66 in Figs. 3.3.1, the present results may suddenly dis-
appear since the corresponding elasto-plastic buckling stress 6 r reaches the 
yielding stress a X. For smaller R of the minimum value, the elasto-plastic ul-
timate strength fails to be predicted in the 1-mode analysis. However, it is 
needless to say that the results are in good correlation with the lower ECCS 
curve for the larger values of R in the elasto-plastic and the elastic bucklings. 
The effect of types of residual stress distributions assumed herein may be found 
to be insignificant quantitatively throughout the ranges of the generalized radius-
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thickness ratio R, similarly to the cases of columns, beams, plate panels and stiffened plates. 

   Also, Fig. 3.3.2 shows the similar results with the parabolic residual stress 
 ar= 0.2 0 y, and the results become unreasonable in the smaller values of R 

than0.7 . 

3.3.3 Two-mode analysis 

   Figs. 3.3.3 show the present ultimate strength curves in Eq. (3.3.12), with the 
maximum compressive residual stress a r = 0.4 0  y of parabolic distribution. Fig. 
3.3.3(a), (b) and (c) illustrate the results for  three types of initial deflection 
modes; (a) 61=  max, E 2=0 (only asymmetric mode), (b) E 1=0, E 2= E m (only axi-symmetric mode) and (c) E 1= E 2= E max (both modes), respectively.Tn which, a max=0.04 in Eq. (3.3.1). 

   In the cases of other distributions of residual stresses, the similar results can 
be obtained. For examples, Fig. 3.3.4 shows the results for the triangle residual 
stress ar = 0.4 ay and the axi-symmetric initial deflection: E 1=0 and E 2= 

E max.Of course, the difference of types of residual stress distributions may 
affect insignificantly the ultimate strength so far as they are assumed herein. 

    From these results, it seems that, for intermediate values of the generalized 
radius-thickness ratio R in the elasto-plastic range, the ultimate strength is sig-
nificantly more sensitive to the axi-symmetric mode E  of initial deflections 
than to the asymmetric mode £ 1. Then, this sensitivity is visually confirmed by 
three-dimensional drawings of imperfection sensitivity surfaces. In the load-carry-
ing capacity a m initial deflections ( E1, E 2) space, the ultimate strength can 
be easily represented in terms of the bifurcation sets of the trancated parabolic 
umbilic catastrophe in Eq. (3.2.12) from Eq. (3.2.10)(See, Figs. 3.3.5). Further-
more, Fig. 3.3.6 shows the similar results with the parabolic residual stress a r 
= 0.2 a y and the axi-symmetric initial deflections: E 1=0, E 2= Emax. 

3.4 Conclusions 

   A simplified unified approach to the ultimate strength of compressed cylindri-
cal shells is proposed in the light of the catastrophe theory. The main conclu-
sions are: 

 (1) The residual stresses and the initial deflections may affect the evaluation 
      of the elasto-plastic buckling stress and the form of the explicit imperfec-
      tion sensitivity formula, respectively. 

 (2) The inelastic ultimate strength of the cylinders may be explicitly deter-
      mined in the form of the bifurcation sets, i.e., the imperfection sensitivity 

      curves for the initial deflections considered. 

 (3) The imperfection sensitivity of compressed cylindrical shell can be directly 
      derived from the singularity condition on the equilibrium surfaces through 
      the elastic pseudo-potential energy with considerations of elasto-plasticity 

      of the material, which is defined near the elasto-plastic buckling point.
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(4)

(5)

(6)

(7)

(8)

(9)

(10)

The initial deflections are modified and replaced by the equivalent imper-
fections proposed herein. 

The present approach involves two types of analyses; the one-mode analysis 
(only asymmetric mode) and the two-mode analysis (asymmetric and axi-
symmetric modes). 

The 2-mode analysis considers the interaction of both modes, and is more 
sufficiently practice than the 1-mode analysis. 

The elasto-plastic buckling may occur for the axi-symmetric buckling mode 
with the square asymmetric mode, and provides the near-coincident bifur-
cation for the trancated parabolic  umbilic catastrophe. In the elastic range, 
the present formula identically gives the complete simultaneous bucklings, 
and the imperfection sensitivity for the axi-symmetric mode is just equal 
to the Koiter's formula. 

The reduction of the strength is more greatly affected by the axi-sym-
metric mode of initial deflections than the asymmetric initial mode, so far 
as the buckling modes are concerned .herein. 

The form of distribution of residual stress assumed herein may insignifi-
cantly affect the present results. 

The general philosophy adopted herein may also be applicable to other 
types of engineering structures such as rigid frames, arches and trusses as 
well as columns, beams, plate panels and stiffened plates.
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APPENDIX for PART  III

AUTOMATED TESTING OF THIN-WALLED STEEL STRUCTURES 
UNDER REPETITIVE LOADING BY MICROCOMPUTER SYSTEM

A.1 General Remarks

   Structural engineers have been facing many intricate problems like geometri-
cally and materially nonlinear structural behaviors. For instance, the strength, 
stability and the ductility of structures under repetitive loadings have great 
attentions, especially from the aseismic view point. The ultimate strength of 
slender members, in particular, depends on the geometrical and material para-
meters of the members, and may be thought to be predicted in a unified manner 
if the magnitudes of initial imperfections are known[1,2,31. The measurement of 
the initial imperfections is thus very important, and several studies on their dis-
tributions have been reported on the prototype members during the temporary as-
sembly of bridge superstructures at workshops and experimental structural models. 
Moreover, these imperfections may grow progressively through elasto-plastic large 
deflections, and gradual adverse deterioration may result in during the stochastic 
loading process in the lifetime of structures. This is partly a reason why the ex-
perimental investigations are called for attention on the strength of structures 
under repeated loadings.

   This APPENDIX presents a servo-controlled testing system using a single or 
plural microcomputer(s) as its core, and a technique is reported on the precise 
detection of the load-carrying capacity and the deteriorating properties of thin-
walled steel structures under repetitive loading causing large elasto-plastic 
deformations. The system will be named as CATS: Computer Aided Testing 
System [4, 51.

   The testing system provided herein can be illustrated in Fig. A.1.1 and can 

be characterized by the following capabilities:

(a) easy and efficient measurement of initial and residual deflections on the 
   faces of the test specimen using movable displacement transducers, 

(b) quick real-time acquisition and processing of large quantities of test data 
   the swift decision making on the continuously varying state of the 
   specimens,

sur-

for 

test

(c) digital feedback control of the servo-controlled testing machine, 

(d) real-time display of the performance of the specimen, 

(e) efficient storage of the acquired data, 

(f) transmission of data to a large computer center for further large-scale com-
   putation via intelligent TSS terminal, 

(g) cooperative task carried by multi-computer system, namely, plural number of 
   microcomputers connected by the GP-IB(General Purpose Interface Bus) , and 

(h) applications of independent loadings in bi-axial conditions.
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   From this figure, the system is seen to consist of three groups of SERVO 
TESTING MACHINE GROUP, DATA  ACQUISITION GROUP and MICROCOMPUTER 
GROUP. Several interfaces on microcomputers are controlled independently in the 
BASIC language. The software includes the method for detecting the ultimate 
strength of the specimen, generation of pulse signals to the function generator of 
the servo testing machine for its digital feedback control, and the data acqui-
sition.

A.2 Hardware of Testing System 

A.2.1 Servo testing machine group 

   This group is a servo-controlled electrohydraulic closed-loop system applicable 
to bi-axial test of repetitive bending and uniaxial compression (See, Fig. A.2.1). 
It mainly consists of the power pack, hydraulic actuator and servo controllers. 
The actuator is operated through the servo controller according to the prescribed 
voltage from the function generator: It accepts two inputs, one being the com-
mand signal from the function generator, and the other being a system analog 
feedback signal of either load or stroke; while it generates one principle output, 
the control signal to the servovalve. 

   The function generator on the servo testing machine is an 8-bit microcom-
puter independently programmable up to 16 steps. In each step, either of the 
sine, triangle, ramp, or hold wave form can be selected. On the other hand, the 
function generator can be controlled externally by the microcomputer named as 
the master controller through the digital input-output interface. 

A.2.2 Data acquisition group 

   The response of the specimen subjected to the servo-controlled load or stroke 
displacement is detected by the devices of this group. These data are processed 
in real time so that they can be used as the digital feedback data, recorded on 
the floppy disks, and displayed by each microcomputer. The group mainly consists 
of the following: displacement transducers, digital strain amplifiers, dynamic 
strain amplifiers, normal switch box, hold-type switch box, pen strip chart 
recorder, and oscilloscope. 

   The readings of strains and displacements of the specimen under loading are 
censored and amplified by some dynamic strain amplifiers and a digital strain 
amplifier. For a successful digital feedback control, the real time and continuous 
data acquisition is necessary, and thus the dynamic strain amplifiers are suited 
for this purpose. Whereas the digital strain amplifier is used to obtain the spa-
tial distribution of the displacements and the stain readings of the test 
specimen. The amplifier is connected by two microcomputers through the GP-IB 
[4-71. 

A.2.3 Microcomputer group 

   This group has two microcomputers as its core, and plays the key role as 
the master and the slave system controllers of the testing system. Fig. A.2.2 
shows the control relationship of two microcomputers and their main flow charts. 
Both microcomputers are independently executed by appropriate softwares as dis-
cussed in the next section.
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   One microcomputer is used as the master system controller so as to make a 
real-time, on-line control of servo-controlled testing system and is equipped with 
several interfaces: the Analog Input /Output  (AIO) interface for the analog to 
digital transform, or vice versa; the Digital Input /Output (DIO) interface for the 
real-time control of the programmable function generator of the servo-controlled 
testing machine, and finally, the GP-IB for the digital data, its transmission and 
the control command to a slave microcomputer. 

   Another microcomputer is controlled as the slave system by the master con-
troller through the GP-IB, and can be interrupted just before the execution of 
the subroutines: START, DISP, KLOAD and END, depending on each command 
signal as shown Fig. A.2.2. Then, the slave will execute the corresponding sub-
routine according to each command signal. At the same time, the master system 
controller independently controls the whole testing system. Also, the slave micro-
computer stores a large amount of significant test data transmitted from the 
master controller through the GP-IB. Moreover, it also transmits a large amount 
of data to a large computer center via intelligent TSS terminal. 

A.3 Software of Testing System 

A.3.1 Testing procedures 

   Test specimens include stub columns with the cross sections of cruciforms, 
channels, cylindrical shells, and boxes with or without longitudinal stiffeners, 
which are subjected to uniform axial compression and tension. Furthermore, the 
box beam-columns are tested in repetitive bending under combined uniform axial 
compression as shown in Fig. A.3.1. Herein, details of the main softwares of 
these microcomputers are discussed on such box beam-columns for demonstrative 

purposes. Fig. A.3.2 gives the setup of the software of the present testing 
system. 

   For a series of buckling tests of the box beam-columns under repetitive 
loadings, a single loading cycle corresponds to a sequence of a positive and a 
negative bending after measuring the initial deflections. The proposed testing pro-
cedures consists of (a) arrangement of the specimen, (b) adjustment and initializa-
tion of testing equipments, (c) application of uniaxial compression if necessary, 
(d) independent executions of both the master and the slave microcomputers in 
each BASIC language, (e) input several testing parameters to the master micro-
computer, and (f) start of loading and a halt of loading after a half-loading 
cycle to get ready for (g) measuring the residual deflections. 

A.3.2 Details of software 

BASIC programs  

   Five BASIC programs: MAIN, START, DISP, PLOT and KLOAD are con-
tinuously executed on the master microcomputer, making use of the "CHAIN" 
command in Extended BASIC language, as its flow charts illustrated in Fig. 
A.2.2. Also, on the slave microcomputer, another testing program: BOX is inde-

pendently executed and interrupted by the master system controller. 

MAIN 

   This program is to form the trunk flow chart of the test and is chained 
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with the others: START, DISP, PLOT and KLOAD. The right hand side of Fig. 
A.2.2 or Fig. A.3.3 shows the flow chart of the program. 

START  

   This program is to input and initialize parameters after some confirmation to 
be ready for the test performance. The flow chart of the program is shown in 
Fig. A.3.4. In this figure, the "predicted maximum load" refers to the ideal load-
carrying capacity of the specimen. The "control mode" refers to the type of 
control either by the load or the stroke displacement of the servo testing 
machine. Moreover, parameters for analog or digital data refer to those of  AIO, 
or DIO, GP-IB interfaces, respectively. 

   The master system microcomputer interrupts the slave computer by the com-
mand "START" through the GP-IB. Then, these input data in the master micro-
computer are transmitted to the slave computer through the GP-IB, and are 
stored in the floppy disks on the slave. 

DISP 

   This program is to measure the displacements of the surfaces of the 
specimen, and the flow chart is illustrated in Fig. A.3.5. Several displacement 
transducers on the horizontally movable rig especially manufactured are connected 
with two microcomputers through the GP-IB of the digital strain amplifier and 
the hold-type switch box. 

   The master system microcomputer interrupts the slave computer by the com-
mand "DISP" through the GP-IB. Then, the measured digital data are transmitted 
from the master to the slave, and are stored in the floppy disks on the slave. 

PLOT 

   This program is to draw two-dimensional distributions of the normalized dis-

placements on the X-Y plotter. The flow chart is omitted. 

KLOAD 

   This program is to select either loading or unloading, and to get both the 
analog and digital data through the AIO and GP-IB. The flow chart is il-
lustrated in Fig. A.3.6. 

   In order to detect experimentally and automatically the ultimate strength of 
stub columns under compression and/or tension, two criteria of recognizing un-
loading is established: one being for sudden decrease of reaction load except for 
a causal erroneous reduction due to the action of the servo testing machine and 
the A/D converter on the AIO interface on the master system microcomputer in 
the lower range of the load; while another being for rapid and gradual change of 
the slope of the load-displacement curve considered[4]. If either of these criteria 
is satisfied during a test, then the servo testing machine is controlled and un-
loaded by the function generator through the DIO interface on the master system 
microcomputer. 

   On the other hand, in the case of the earthquake simulating tests of steel 
box beam-columns in repetitive bendings under uniform axial compression, the fol-
lowing unloading criterion is proposed[5]: The stroke displacement is controlled to 
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conform the ramp wave form so that its peak value increases gradually in a 
linear form as shown in Fig. A.3.7. That is, the unloading criterion is repre-
sented as the limiting condition of the maximum deflection of the beam-column 
specimen: 

 do  =  ( 1 + ( n 1 ) 4) do 

where do and do refer to the maximum vertical deflections in the n-th loading 
cycle and the prescribed first loading cycle, respectively. Also, A is specified 
from preliminary tests. The vertical deflection of the test specimen is con-
tinuously obtained as the analog data through the AIO interface on the master 
system microcomputer under loading (positive or negative bending). Then, the 
measured deflection is immediately compared with the specified deflection d in 
the above equation. If the unloading criterion for the maximum vertical deflec-
tion is satisfied, then the servo testing machine is controlled by the function 
generator through the DIO Interface on the master system microcomputer. 
Herein, another actuator is maintained to yield the constant horizontal thrust 
load during a test for uniaxial compression of the beam-column. 

A.4 Experimental Displays 

   Fig. A.4.1 shows an example of the displays of the initial and residual out-
of-plane deflections of the beam-column specimens. 

   Fig. A.4.2 shows another example of the moment curvature relationship of 
the beam-column specimens obtained by the reading of the load cell of the servo 
machine and the curvature gauge. Whereas Fig. A.4.3 illustrates the similar 
relationship of strain gauges and the curvatures gauge. The load distribution by 
the structural components, namely, the bending moments carried by the webs and 
the flanges are also indicated herein. 

A.5 Conclusions 

   In this APPENDIX, a new automated structural testing system is presented. 
This system is especially named as the CATS, Computer Aided Testing System. 
The main conclusions are: 

 (1) The system is found to work precisely and quickly. The plural microcom-
     puters connected by the GP-IB as the controllers of the testing system is 

      also found to be very efficient. 

 (2) The testing system is mainly composed of three groups: Servo testing 
      machine group, Data acquisition group, and Microcomputer group. 

 (3) Several series of buckling tests have been conducted on the specimens: 
      steel stub columns and box beam-columns under repetitive loading. 

 (4) The testing system has the following advantages: (a) easy and efficient 
      measurement of initial and residual deflections of the surfaces of the 

      specimen, (b) quick real-time acquisition and computation of large quantity 
     of data for the swift decision making on the continuously varying state of 

     the specimen, (c) quick digital feedback control of the servo testing 
     machine, (d) real-time display of the performance of the specimen, (e) 
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CONCLUDING REMARKS

   This dissertation is concerned with applications of the catastrophe theory to 

evaluation procedures of the ultimate strength of typical structural members in 

both elastic and elasto-plastic ranges. Firstly, a numerical method of elastic 

catastrophe analysis is proposed for discrete structural systems, and its flow 

chart is illustrated in Fig. 1.2.1 of the PART II. Secondly, a new method of  ap-

proach to predict the elasto-plastic strength of steel members is unified in 
details, and its flow chart is illustrated in Fig. 1.3.1 of the PART III. The 

present formulations do not involve the so-called nonlinear process to trace the 
relevant equilibrium paths up to the ultimate strength of the members in the 

elastic or elasto-plastic range.

The main conclusions in the PART I are summarized as follows: 

   The chapter 1 reviews on the general theory of elastic stability in a topo-

logical sense using the catastrophe theory. The potential function of structural 

system can be defined by a function of the generalized internal state variables 

and several external control parameters. Then, an explicit form of the potential 

function of the imperfect system can be determined by the Taylor's expansion at 

the critical point of the potential function of the associated perfect system. 

Herein, the generalized state variables correspond to the essential instability 

modes, while the control parameters correspond to a single loading parameter and 

the associated initial modes. Moreover, an effect of the initial displacements on 

the load-carrying capacity of the system is obtained from the bifurcation set in 

the catastrophe theory. 

   The chapter 2 presents an introduction to the catastrophe theory in the light 

of the singularity theory of mappings in pure mathematics. Then, broad, but con-

cise, historical reviews on the catastrophe theory and its applications in engineer-

ing sciences are provided. There exists a family of potential functions charac-

terized by the control parameters as they vary smoothly. This family is thought 

as the common potential function in the engineering sciences. Also, the stable 

state of the system corresponds to that at which the potential function has its 

local minimum for prescribed control parameters under the Perfect-delay conven-

tion. Thus, the catastrophe may take place at a peculiar point where the number 

of such minima changes suddenly. The Thom's Theorem asserts that a family of 

potential functions can be described locally in either typical form of the seven 
elementary catastrophes or universal unfoldings under the state variables < 2 and 

the control parameters < 4. The bifurcation set in the control-parameter space 

through the catastrophe map of elementary catastrophe unfolding plays a signifi-

cant role in order to evaluate the imperfection sensitivity in structural mecha-

nics.

The main conclusions in the PART II are: 

   The chapter 1 proposes a numerical formulation of catastrophe analysis for 
static instabilities of multi-degree-of-freedom structural systems in civil engineer-
ing field. The present procedure makes use of discretization methods such as a 
finite element method(FEM) and a simplified element method(SEM: See, APPEN-
DIX A), and also of several modal transformations in the light of the Thom and 
Thompson's theories. Thus, the instability phenomena for the original potential
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function with the multiple state variables can be numerically realized as those 
for either of the Thom's seven elementary catastrophes with one or two state 
variables through some diffeomorphisms in the APPENDIX B. The present formula 
will be applicable to the common instability problems with no, linear or nonlinear 
prebuckling equilibrium paths for engineering structures. 

   The chapter 2 presents a direct computational approach to determine the im-
perfection sensitivity of structures in terms of the bifurcation set through the 
catastrophe theory. The singularity condition on the equilibrium surface is 
definitely consistent with the zero-determinant condition of the associated map. 
The bifurcation set for a typical fold catastrophe can be explicitly realized by 
the 1/2-power rule. Also, the bifurcation set for a typical dual cusp catastrophe 
can be realized by the 2/3-power rule. Furthermore, the bifurcation sets for typi-
cal hyperbolic umbilic catastrophes can be consequently composed of three ex-
plicit imperfection sensitivity surfaces and their combinations. Then, each bifurca-
tion set may be visually drawn in the three-dimensional load-imperfections space, 
and may confirm Thompson's results. 

   The chapter 3 provides a comparative study on the numerical results among 
three catastrophe analyses for the two-degree-of-freedom, continuous and discrete 
inextensible column models neglecting the axial deformations. The results of the 
discrete analysis are shown to converge to those of the continuous analysis, as 
the number of discrete finite elements increases. For a legitimate evaluation of 
the cusp and dual cusp catastrophe, the 4th order terms of the buckling mode in 
the total potential function must be considered rigorously in expressions for both 
the strain energy and the external work of the potential function. Thus, the 
catastrophes of fold, cusp, dual cusp and umbilics can be shown to be realized 
numerically for each column model. Herein, the value of each stability coeffi-
cient calculated herein may converge to that by the continuous analyses; also the 
results by the FEM may tend to overestimate slightly in comparison with the 
SEM, as the number of discrete finite elements increases. 

   The chapter 4 presents several applications of the discrete catastrophe analy-
sis in order to predict the nonlinear behavior of structural models such as 
columns and compressed plates with or without stiffeners. In this chapter, the 
catastrophe analysis accompanies with the static condensation procedure under the 
certain control types of loads and displacements in the initial postbuckling range . 

   The first application is made to extensible column models considering the 
axial deformations. So far as the first-order approximations of the axial strain 
and the curvature are considered, the 4th order terms of the buckling mode in 
the potential function always disappear, and the potential function leads to only 
an eigenvalue problem for the ideal buckling load in an analytical sense . Then, 
the column model has no postbuckling strength. The present numerical results 
analyzed by the SEM confirm the first-order approximate extensible column . How-
ever, the results by the FEM may tend to slightly overestimate the nonlinear 
characteristics. This quantitative difference depends on the kind of the shape 
function adopted in each discrete method. Herein, an extensibility of the neutral 
axis of column will not affect the cubic terms of the potential function , and the terms e

qual to those in the case of the inextensible column as the number of 
the discrete elements increases. 

   Secondly, the nonlinear solutions of elastic large deflection for compressed 
rectangular plates are predicted by the proposed numerical formulation without re-
course to solving the nonlinear simultaneous equilibrium equations . In the case of
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square unstiffened plates, the numerical results are found to be in excellent 

agreement with those by Timoshenko, Coan, Yamaki, Williams and Rhodes under 

various supporting conditions and the two control types. Herein, from the results, 

the difference between two control types of load and displacement may become 

little significant quantitatively and qualitatively within the accessible range of 

elastic large deflection. 

   Moreover, the present analysis is applied to the compressed rectangular stiff-

ened plates with the symmetric and eccentric stiffeners for the global and local 

bucklings. The compressed stiffened plate with the symmetric stiffener has the 

stable symmetric bifurcation point, cusp, for both the global and the local buc-

kling modes at smaller and larger flexural rigidities, respectively. Further applica-

tions to the compressed stiffened plates with the eccentric stiffener are made 

herein. For the distinct global buckling with the asymmetric bifurcation point, 

the load-carrying capacity can be determined from the fold in terms of the 

downward mode of the global initial deflection. Whereas, the distinct local buckl-

ing has the stable symmetric point of bifurcation, cusp, and the load-carrying 

capacity can never be predicted in the stability and the catastrophe theories of 

elastic structures. At their coincident bifurcation, the imperfection sensitivity sur-

faces are expressed in the form of the hyperbolic umbilic catastrophe with the 

homeoclinal bifurcation. The load-carrying capacity is commonly more sensitive to 

the global initial mode than to the local initial mode for their magnitudes being 

the same. 

The PART III is summarized as follows: 

   The chapter  1 unifies a new simplified approach for evaluation of the streng-

th of slender steel structural members such as columns, plates and shells. The 

residual stresses and the initial displacements may affect the evaluation of the 

elasto-plastic buckling strength and the form of the explicit imperfection sensi-

tivity formula, respectively. Therefore, the inelastic strength prediction of the 

members may be explicitly evaluated in terms of the bifurcation sets or the im-

perfection sensitivity curves. Herein, the bifurcation set can be defined explicitly 
near the equivalent bifurcation point being the intersection point of the elasto-

plastic postbuckling path with the plastic failure mechanism curve for typical 
members with neutral and stable postbuckling equilibria. While, in the case of 

members with unstable postbuckling equilibria like cylindrical shells, their normal 

elasto-plastic bifurcation point is taken to be the equivalent bifurcation point. 

Then, the bifurcation set can be directly determined from evaluating stability 

characteristics at the point. However, in the proposed approach, the actual initial 

geometrical imperfections are modified in the form of the proposed equivalent 
imperfections. The equivalent imperfection can be determined in a unified form 

on the basis of the previous strength curves and practical design curves. 

   In this chapter, several numerical illustrations for axially compressed columns 

are calculated using appropriate form of the equivalent initial deflections. The 

results are compared with some design curves and analytical results. The demon-

strations are found to be in good correlation with those by such various inves-

tigations and experimental results, and the form of distribution of residual stress 

assumed herein may insignificantly affect the present results. 

   The chapter 2 formulates the simple unified approach of the elasto-plastic ul-

timate strength for the compressed steel plates with and without stiffeners. The 

inelastic strength prediction of the plate members may be explicitly determined 
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from the bifurcation sets for both global and local bucklings. Herein, the bifurca-
tion sets can be defined explicitly near the equivalent bifurcation point being the 
intersection point of the elasto-plastic parabolic postbuckling path with the plas-
tic mechanism curve. Also, the initial imperfections are modified and replaced by 
the equivalent imperfections proposed herein. The present ultimate strength curves 
are numerically shown to be in good correlation with some design specification 
curves and several test data. 

   Furthermore, using the proposed strength formula expressed as the imperfec-
tion sensitivity, a Monte Carlo simulation is performed on appropriate statistical 
distributions of the residual stresses and the initial deflections for compressed 
plates and stiffened plates. Then, the most frequent combinations of such imper-
fections can be explicitly determined from both their joint probability density 
function and the 5%-fractile ultimate strengths. 

   The final chapter 3 formulates the simplified unified approach of the elasto-
plastic ultimate strength for the compressed cylindrical shells. The inelastic ult-
imate strength of the cylinders may be explicitly determined in the form of the 
bifurcation sets. Herein, the imperfection sensitivity of compressed cylindrical 
shell can be directly derived from the singularity condition on the equilibrium 
surfaces through the elastic pseudo-potential energy with considerations of  elasto-
plasticity of the material, which is defined near the elasto-plastic buckling point. 
Also, the initial deflections are modified and replaced by the equivalent imper-
fections proposed herein. The present approach involves two types of analyses; 
the one-mode analysis (only asymmetric mode) and the two-mode analysis (asym-
metric and axi-symmetric modes). The two-mode analysis treats with the interac-
tion of both modes, and is more sufficiently practice than the one-mode analysis. 
Then, the imperfection sensitivity can be predicted by the incomplete parabolic 
umbilic catastrophe with the paraclinal bifurcation, and the potential is trancated 
up to the 3rd-order terms. The elasto-plastic buckling provides the near-coinci-
dent bifurcation; whereas, in the elastic range, the present result identically 
gives the complete simultaneous bucklings. Particularly, the elastic imperfection 
sensitivity for the axi-symmetric mode is just equal to the Koiter's formula. 
Also, the formula is in good correlation with the ECCS strength curve for the 
compressed cylinder. The reduction of the strength is more greatly affected by 
the axi-symmetric initial mode than the asymmetric initial mode in the two-mode 
analysis. 

   In this PART III, all the calculations can be made using mainly a microcom-
puter with small memory storage. The general philosophy adopted herein may also 
be applicable to other types of engineering structures such as rigid frames , 
arches and trusses as well as columns, beams, plate panels, stiffened plates and 
cylindrical shells.
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