$\frac{\text { STUDIES }}{\text { ON }}$
 京大附図
 MULTIGOMMODITY FLOWS IN DIRECTED NFTWORKS

HPCSHI NAGAMOCHI

MARCH， 1988

STUDIES ON

MULTICOMMODITY FLOWS IN DIRECTED NETWORKS

HIROSHI NAGAMOCHI

KYOTO UNIVERSITY
KYOTO, 606 JAPAN
MARCH, 1988

STUDIES

ON

MULTICOMMODITY FLOWS IN DIRECTED NETWORKS

by
HIROSHI NAGAMOCHI

Submitted in partial fulfillment of the requirement for the degree of
DOCTOR OF ENGINEERING
(Applied Mathematics and Physics)

KYOTO UNIVERSITY KYOTO, 606 JAPAN MARCH, 1988

PREFACE

Network optimization is one of the most important practical branches of mathematical programming, and is encountered in various engineering fields, especially information processing and operations research. Among various network optimization problems, the multicommodity flow problem often arises when more than one commodity shares each arc in a network. This problem can represent many important problems encountered in a wide variety of applications such as traffic assignment in road or communication networks, production scheduling and routing in VLSI design. From theoretical view point, the multicommodity flow problem may be classified into two categories, linear and nonlinear, according to the types of the cost function to be optimized.

The linear model can be formulated as a specially structured linear program, and can be solved in strongly polynomial time, as recently shown by E.Tardos (1986). In practice, the codes based on the simplex method appear to be faster than others and are currently used, but they are not efficient enough to solve large scale problems encountered in practice. It is therefore desirable to develop efficient
network theoretic algorithms.
The nonlinear network models also have been extensively studied in connection with urban traffic systems, communication systems, and many other practical applications. Some algorithms for the general nonlinear programming problems have been specialized to solve nonlinear network problems.

The objective of this thesis is to develop efficient algorithms for the multicommodity flow problem in directed networks, linear and nonlinear models. The main contribution of this thesis may be classified into the following two categories.

The first category contains graph theoretic algorithms for testing feasibility of the multicommodity flow problem in certain planar directed networks. Tree polynomial time algorithms for classes $C B, C S$ and $C U$ of such networks are developed. Furthermore, the integrality of flows and the max-flow min-cut property are investigated: Classes CB, CS and CU all have integral flow property, but only classes CB and CS have the max-flow min-cut property.

In the second category, the minimization of a nonlinear cost function of the multicommodity flow problem in a general directed network is studied. Relaxation
methods of various types for obtaining optimal solutions are proposed, and compared on the basis of computational experiment.

Importance of efficient algorithms in these areas will be increasing. The author hopes that the work contained in this thesis is helpful for further study in this growing field.

March, 1988
Hiroshi Nagamochi

ACKNOWLEDGEMENTS

The author is heartily grateful to Professor Toshihide Ibaraki of Kyoto University for his enthusiastic guidance, discussion and persistent encouragement. Without his support, none of this work would have been possible. He would also like to thank him for his careful reading of this manuscript and accurate comments.

The author would like to express his sincere appreciation to Professor Toshiharu Hasegawa of Kyoto University for his supervision of this work and continuous encouragement.

The author is also high1y indebted to Associate Professor Masao Fukushima of Kyoto University for his invaluable discussion and constant encouragement.

Thanks are in order to Assistant Professor Shigeru Masuyama, Assistant Professor Masamitsu Ohnishi and all his friends and colleagues in Professor Ibaraki's laboratory for their encouragement.

Finally, but not least, the author would like to express his heartiest gratitude to his family for their heartfe1t cooperation and encouragement.

CONTENTS

PREFACE iii
ACKNOWLEDGEMENTS vi
CHAPTER 1 INTRODUCTION 1
1.1 INTRODUCTION 1
1.2 COMPUTATIONAL COMPLEXITY 4
1.3 HISTORICAL BACKGROUND 7
1.4 OUTLINE OF THE THESIS 15
CHAPTER 2 PROPERTIES OF DIRECTED PLANAR NETWORKS 17
2.1 INTRODUCTION 17
2.2 DEFINITIONS FOR A DIRECTED GRAPH 17
2.3 ASSUMPTION A AND SOME LEMMAS 23
2.4 CUT CONDITION AND UNILATERAL CUT 33
CHAPTER 3 ALGORITHM ASSIGN FOR TESTING FEASIBILITY
OF A CB NETWORK 38
3.1 INTRODUCTION 38
3.2 CAPACITY BALANCED NETWORKS 39
3.3 ALGORITHM ASSIGN 41
3.4 CORRECTNESS OF ASSIGN 46
3.5 TERMINATION CONDITION OF ASSIGN 52
3.6 COMPUTATIONAL COMPLEXITY OF ASSIGN 60
3.7 CONCLUSION 64
CHAPTER 4 ALGORITHM MATE1 FOR TESTING FEASIBILITY OF A CS NETWORK 65
4.1 INTRODUCTION 65
4.2 DEFINITION OF DUMMY FLOW 65
4.3 CS NETWORKS 68
4.4 ALGORITHM MATE1 74
4.5 CONCLUSION 78
CHAPTER 5 ALGORITHM MATE2 FOR TESTING FEASIBILITY OF A CU NETWORK 79
5.1 INTRODUCTION 79
5.2 CU NETWORKS 82
5.3 A POLE OF DUMMY FLOWS 86
5.4 STRUCTURE OF A CU NETWORK 90
5.5α-CUT AND β-CUT 96
5.6 ALGORITHM MATE2 106
5.7 ON THE CONDITIONS DEFINING A CU NETWORK 114
5.8 CONCLUSION 120
CHAPTER 6 MAX-FLOW MIN-CUT THEOREM
FOR CLASSES CB AND CS 121
6.1 INTRODUCTION 121
6.2 MAX-FLOW MIN-CUT PROPERTY 121
6.3 PROPERTIES OF AN INFEASIBLE NETWORK 125
6.4 ALGORITHM FIND-CUT 150
6.5 MAX-FLOW MIN-CUT THEOREM FOR CB AND CS NETWORKS 168
6.6 CONCLUSION 173
CHAPTER 7 ALGORITHM FTEST FOR TESTING FEASIBILITY OF A CB OR CS NETWORK 174
7.1 INTRODUCTION 174
7.2 ASSUMPTION D AND SOME LEMMAS 175
7.3 USE OF A DUAL GRAPH 179
7.4 COMPUTATION OF $\mathrm{g}(\mathrm{VB}[\mathrm{x}, \mathrm{y})$) 184
7.5 FEASIBILITY TESTING 188
7.6 CONCLUSION 190
CHAPTER 8 RELAXATION METHODS FOR A DIRECTED NONLINEAR NETWORK 191
8.1 INTRODUCTION 191
8.2 DEFINITIONS 194
8.3 OPTIMALITY CONDITIONS 199
8.4 ALGORITHMS 202
8.5 NUMERICAL RESULTS 209
8.5 NUMERICAL RESULTS 209
8.6 CONVERGENCE 222
8.7 CONCLUSION 225
CHAPTER 9 CONCLUSION 226
APPENDIX 229
REFERENCES 250

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Network optimization is one of the most important practical branches of mathematical programming, and is encountered in various engineering fields, especially information processing and operations research. It may be classified into two categories, linear and nonlinear, according to the types of the cost function to be optimized. The linear model can be formulated as a specially structured linear program. The special structure exhibits a useful property that it always possesses an optimal integer solution. This integer property permits a number of important combinatorial problems to be formulated and solved as network flow problems [PAPA 82].

In dealing with combinatorial optimization, we should note that, even if the problems usually have finitely many feasible solutions, the straightforward enumeration of all feasible solutions often requires a prohibitively large amount of computation time. Even problems of moderate sizes often become intractable in the sense of practical computer computation. This necessitates the development of efficient
combinatorial optimization algorithms.
It is difficult, however, to develop an algorithm that always works efficiently for all types of combinatorial optimization problems. Some general solution techniques are known, i.e., integer programming [NEMH 72], dynamic programming [BELL 57, DREY 77] and branch-and-bound methods [LAWL 66, IBAR 76a, IBAR 76b, IBAR 77, IBAR 78]. However, these general techniques are not always effective, i.e., there are certain classes of combinatorial optimization problems that become computationally intractable as the problem size increases. Usually, general purpose techniques are less efficient than special purpose algorithms that are designed for only one class of combinatorial optimization problems.

From this viewpoint, therefore, it is advisable to develop a special purpose algorithm suited for the given problem by exploiting its specific structure. Much effort to develop such algorithms has been made in these two or three decades. Efficient algorithms are now available for some classes of combinatorial optimization problems. It is often the case that such tractable classes of problems are formulated as network flow problems in linear model
[PAPA 82]. Therefore it is important to develop special purpose graph theoretic algorithms, which can be more efficient than the general purpose simplex method for linear programming.

The nonlinear network models also have been extensively studied in connection with urban traffic systems, communication systems, and many other practical applications. Some algorithms for the general nonlinear programming problems are specialized to solve nonlinear network problems. For example, based on the convexity of the objective function, theory of monotropic programming [ROCK 81,84] has been developed.

1.2 COMPUTATIONAL COMPLEXITY

In the theory of combinatorial optimization, performance of an algorithm is evaluated by the amount of computation required to solve given problem instances. To analyze this, we shall formalize the size L of each problem instance, and describe the amount of computation as a function of L. The size of a prob1em instance is usually measured by the length of the input data which is required for its specification. For example, consider a graph $G=(V, E)$. To input G, the set of nodes and the set of edges can be encoded in length $O(|V|+|E|)$, where $|V|$ is the number of nodes and $|E|$ is the number of edges. Here $O(f(x))$, reading order $f(x)$, denotes that it is bounded from above by $c f(x)$ where c is a constant. This notation will be often used in the subsequent discussion. If length $d\left(v_{i}, v_{j}\right)$ is attached to each edge $\left(v_{i}, v_{j}\right)$, the length of the input data becomes $O(|E|+|V|)+O(|E| \log d)=O(|V|+|E|$ logd $)$, where $d=\max \left\{\left|d\left(v_{i}, v_{j}\right)\right| \mid\left(v_{i}, v_{j}\right) \in E\right\}$. The term logd comes from the fact that $\log _{2}$ d bits are required to represent an integer d in binary expression [AHO 74, AHO 86].

The time complexity $T(L)$ is a practically important and widely accepted measure of the amount of computation, which is the number of steps required in the computation. The
number of additions, multiplications and comparisons are typical unit operations to count the number of steps. Since it is very difficult to estimate the exact number of steps, its order is mostly discussed.

It should be noted that, in order to determine function $T(L)$ for a given problem size L, we have to consider an infinite number of problem instances with size L. As global measures for these problem instances, the following two have been proposed: average time complexity and worst-case time complexity. The worst-case time complexity guarantees that any problem instance can be solved within that bound. However, it sometimes provides a bound which is too large for most problem instances. The average time complexity is therefore practically more important. However, it is usually very difficult to derive the time complexity averaged over all the possible problem instances. It is also not easy to know the probability distribution of problem instances in the real world. For this reason, this thesis concentrates on the worst-case time complexity.

By an efficient algorithm we mean one whose worst-case time complexity is bounded by a polynomial function of the
input size. The reason for this is that polynomial time complexity increases more slowly with the sizes of problem instances than nonpolynomial, e.g., exponential, time complexity. Recently, the concept of strong polynomiality has been introduced in connection with an open problem related to the minimum cost flow problem. An algorithm is strongly polynomial [TARD 86], if it consists of the (elementary) arithmetic operations, e.g., additions, comparisons, multiplications and divisions, the number of which is polynomially bounded in the dimension of the input. Here the dimension of input is defined to be the number of data items in the input, e.g., the number of arcs and that of nodes in the underlying graph, and the dimension of the matrix in the underlying linear program.

1.3 HISTORICAL BACKGROUND

Efficient algorithms for solving the maximum flow problem, the minimum cost flow problem and the multicommodity flow problem has been extensively studied, from both theoretical and practical viewpoints.

We start with the description of the maximum flow problem of a single commodity. It is formulated as follows, where the network considered is a directed graph (although it can also be defined for an undirected graph [BERG 73]).
$N=(G, c): A$ network.
$G=(V, A): A$ finite directed graph, where V is a set of nodes, and A is a set of arcs. $a(x, y)$: A directed arc from node x to node y OUT(x): The set of arcs whose initial node is x . IN(x): The set of arcs whose terminal node is x. c: $A \rightarrow Z^{+}$is a capacity function, where Z^{+}is the set of nonnegative integers.

Given a pair of source node s and sink node t in V, it is asked to find a flow f maximizing the flow value g. A flow is a function $f: A \rightarrow R$ that satisfies the following conditions (1.1) and (1.2), where $f(a)$ denotes the flow value in arc a.

Flow conservation: For all $x \in V$

$$
\underset{a \in \operatorname{OUT}(x)}{\sum_{b}(a)-\sum_{b \in \operatorname{IN}(x)}^{f(b)}}=\left\{\begin{align*}
g, & \text { if } x=s \tag{1.1}\\
0, & \text { if } x \neq s, x \neq t \\
-g, & \text { if } x=t .
\end{align*}\right.
$$

Capacity constraint: For all $a \in A$

$$
\begin{equation*}
0 \leq f(a) \leq c(a) \tag{1.2}
\end{equation*}
$$

Let \tilde{g} denote the $|V|$ dimensional vector such that the entry corresponding to node s (t) is $g(-g)$, and 0 otherwise. Since constraints (1.1) and (1.2) are linear, we can formulate the maximum flow problem as the following linear program.

$$
\begin{array}{ll}
\text { maximize: } g \\
\text { subject to } & A x=\tilde{g} \\
& 0 \leq x \leq c
\end{array}
$$

where $A=\left(a_{i u}\right)$, $i \in V, u \in A$, is called the node-arc incidence matrix of the graph with size $|V| *|A|\left(a_{i u}=+1\right.$ if i is the initial node of arc $u, a_{i u}=-1$ if i is the terminal node of $\operatorname{arc} \mathrm{u})$.

Ford and Fulkerson in their seminal book [FORD 62] developed an algorithm for the maximum flow problem and presented the max-flow min-cut theorem. The first
polynomial algorithm for the maximum flow problem was given by Dinic [DINI 70]. After a number of improvements of the time complexity in the past decade, $O\left(|V|^{3}\right)$ and $O(|A||V| \log |V|)$ are currently known as the best bounds [KARZ 74, SLEA 80, TARJ 83], where $|V|$ is the number of nodes and $|\mathrm{A}|$ is the number of arcs in a network.

The following problem is called the minimum cost circulation problem: Find a flow f that minimizes cost $\sum d(a) f(a)$, where $d(a)$ denotes the cost given to the unit $a \in A$
amount of flow in arc a. As in the above case, a flow f satisfies the following conditions (1.3) and (1.4).

Flow conservation:

$$
\begin{equation*}
\sum_{a \in \operatorname{OUT}(x)}^{f(a)-\sum_{b \in \operatorname{IN}(x)} f(b)=0, \text { for all } x \in V, ~} \tag{1.3}
\end{equation*}
$$

Capacity constraint:

$$
\underline{c}(a) \leq f(a) \leq \bar{c}(a), \quad \text { for all } a \in A,
$$

where $\underline{c}(a)$ and $\tilde{c}(a)$ are lower and upper bounds on the flow in arc a. Obviously, the minimum cost flow problem can also be written as an LP problem in a similar manner [KENN 80].

Edomonds and Karp developed a scaling technique to solve the minimum cost flow problem in polynomial time [EDMO 72]. However, the number of arithmetic operations
required by their algorithm depends on the size of the bounds. Therefore, it is not strongly polynomial. Finding a strongly polynomial algorithm for the minimum cost flow problem has been an open problem for about ten years, until Tardos [TARD 85] answered it affirmatively. Currently, the dual version of the Tardos algorithm and the simplex like method are also known [FUJI 86, ORLI 86, GALI 86].

Since the coefficient matrix in the formulation of the maximum flow problem or the minimum cost flow problem is totally unimodular [BERG 73], all extreme points of the polyhedron defined by the constraint are integers provided that all capacities are integers [HOFF 56].

Multicommodity flow problems arise when more than one commodity share each arc in a network. This problem can represent many important problems encountered in a wide variety of applications such as traffic assignment in roads or communication networks, production scheduling problems and routing in VLSI design.

P: The set of source-sink pairs $\left(s^{k}, t^{k}\right), k=1,2, \ldots, k$, where K is the number of commodities. We assume that each commodity k has exactly one source s^{k} and one sink t^{k}. Let, $S=\left\{s^{k} \mid k=1, \ldots, K\right\}$ and $T=\left\{\mathrm{t}^{\mathrm{k}} \mid \mathrm{k}=1, \ldots, \mathrm{~K}\right\}$

$$
\begin{aligned}
& \text { (possibly } \mathrm{s}^{\mathrm{k} 1}=\mathrm{s}^{\mathrm{k} 2} \text { or } \mathrm{t}^{\mathrm{k} 1}=\mathrm{t}^{\mathrm{k} 2} \text { for } \mathrm{k} 1 \neq \mathrm{k} 2 \text {), } \\
& \mathrm{g}: \quad\{1,2, \ldots, \mathrm{~K}\} \rightarrow Z^{+} \text {, where } Z^{+} \text {denotes the set of } \\
& \text { positive integers. Let } \mathrm{g}^{\mathrm{k}} \text { denote } \mathrm{g}(\mathrm{k}) \text {, the amount } \\
& \text { of supply (=the amount of demand) of commodity } \mathrm{k} \text {. }
\end{aligned}
$$

The multicommodity flow problem in a directed network is feasible if there exists a set of $f(a, k), a \in A$, $\mathrm{k} \in\{1, \ldots, \mathrm{~K}\}$, which satisfies the following conditions (1.5) and (1.6). Here $f(a, k)$ denotes the flow value of commodity k in arc a.

Flow conservation: For all $\mathrm{x} \in \mathrm{V}$ and all k

$$
\sum_{a \in \operatorname{OUT}(x)}^{f(a, k)-\sum_{b \in \operatorname{IN}(x)}^{f(b, k)=\{ }\left\{\begin{array}{ll}
g^{k}, & \text { if } x=s^{k} \\
0, & \text { if } x \neq s^{k}, x \neq t^{k} \\
-g^{k}, & \text { if } x=t^{k} .
\end{array}\right. \text { (1.5) }}
$$

Capacity constraint: For all $\mathrm{a} \in \mathrm{A}$

$$
\begin{align*}
& \sum_{k=1}^{K} f(a, k) \leq c(a), \\
& f(a, k) \geq 0, \quad k=1,2, \ldots, K . \tag{1.6}
\end{align*}
$$

Since the maximum flow problem, the minimum cost flow problem and the multicommodity flow problem can generally be formulated as specially structured linear programming
problems, they can be solved by polynomial time algorithms devised for LP [KHAC 79, KARM 84]. Furthermore, [ORLI 84, TARD 86] showed that if all sizes of entries in the coefficient matrix are bounded by a constant in LP formulation, such LP can be solved in strongly polynomial time. Therefore, we see that the multicommodity flow problem can be solved in strongly polynomial time, though the degree of polynpmial is still very high. In practice, the codes based on the simplex method appear to be faster than others and are currently used. However, the LP formulation often involves a large number of variables and conditions, and such codes based on the simplex method are not efficient enough in many cases. It is therefore desirable to develop efficient network theoretic algorithms [LOMO 85].

Efficient graph theoretic algorithms are known only for very limited classes of undirected networks [HU 69, OKAM 81, OKAM 83, TANG 64]. This perhaps comes from the fact that most of the properties useful for developing efficient algorithms for the single commodity flow problem such as the unimodularity and the max-flow min-cut property can not be directly generalized to the multicommodity flow problem, except for some special cases [FORD 62].

In an undirected network with $K=2$ commodities, the maxflow min-cut theorem still holds [HU 69] and a polynomial time graph theoretic algorithm is known. Okamura and Seymour [OKAM 81, OKAM 83] have shown that if all sources and sinks are placed only on the boundary of the outer face of a given planar undirected graph, the max-flow min-cut theorem holds for general K . It is known that the minimum cut in a planar network can be obtained by computing the shortest path in the dual network [HASS 81]. Based on these properties, [MATS 85, SUZU 85] developed an efficient algorithm to check its feasibility. The max-flow min-cut theorem is extended for the multicommodity flow in general undirected networks [IRI 70, ONAG 71]. Unfortunately, this extension involves infinite number of conditions.

Contrary to the above results, the max-flow min-cut theorem does not hold for the multicommodity flow problem even with $\mathrm{K}=2$ for directed networks [KENN 78]. Accordingly, not many tractable classes have been known for directed networks in the sence of efficient graph theoretic algorithms. An exception is [DIAZ 72], in which a planar directed network is considered under the assumption that all sources are on the left side of the boundary while all sinks
are on the right side, and furthermore the order of commodities of sources and the order of commodities of sinks appear in the same order.

1.4 OUTLINE OF THE THESIS

In this thesis, we concentrate on the multicommodity flow problem in a directed network. In Chapter 2, we describe basic properties of a directed network, and present notations and definitions necessary for the subsequent discussion. In Chapter 3, we first introduce class CB (capacity balanced networks) of directed planar networks for which it is possible to develop a polynomial time graph theoretic algorithm. Its running time is $O(K|V|)$ for a $C B$ network with K commodities and $|V|$ nodes. It can also be shown that the integral flow property holds for CB. In Chapter 4, we generalize class CB to class CS (capacity semi-balanced networks), and show that CS can be reduced to $C B$ by an $O(|V|)$ time algorithm. Therefore, CS also has a polynomial time graph theoretic algorithm and the integral flow property. In Chapter 5, we introduce class CU (capacity semi-balanced unilateral networks) as another class that is reducible to $C B$, and developed an $O\left(|V|^{3}\right)$ time algorithm. These classes CS and CU contain certain multiitem multi-stage production scheduling problem [IBAR 82] as a special case, indicating their importance in practical applications. In Chapter 6, we show that the max-flow mincut theorem holds for classes CB and CS. For this purpose,
we develop an $O(K|V|)$ time algorithm for finding the minimum cut not satisfying the cut-condition if the network is infeasible. In Chapter 7, based on the max-flow min-cut property for classes $C B$ and $C S$, we present an $0\left(S(|V|)+\left|V_{B}\right| T(|V|)\right)$ time algorithm for testing feasibility of a problem in $C B$ and $C U$, where $T(|V|)$ is the time required to obtain the shortest path tree in a planar network with $|\mathrm{V}|$ nodes and $\mathrm{S}(|\mathrm{V}|)$ is its preprocessing time. This algorithm is faster than the one developed in Chapters 3 and 4, when the number of commodities K is large. In Chapter 8, we study the nonlinear multicommodity flow problem that minimizes a strictly convex cost function. Each arc in the network can have lower and upper capacities on individual commodities and on the sum of commodities. By making use of its dual, we formulate the problem as a nonlinear unconstrained optimization problem and propose relaxation methods of various types. Some computational results are also included for various problem instances.

CHAPTER 2

PROPERTTES OF DIRECTED PLANAR NETWORKS

2.1 INTRODUCTION

In this chaper, we describe the basic properties of a directed (planar) network and present notations and definitions necessary for the subsequent discussion in which graph theoretic algorithms are constructed. See [BERG 73] as to other basic terminology in graph theory.

2.2 DEFINITIONS FOR A DIRECTED GRAPH

A node is called a divergent node if it has no entering arc, a convergent node if it has no outgoing arc. When we discuss the connectivity of a graph G, we consider the undirected graph resulting by disregarding the orientation of every arc in A. We define for a pair of sets of nodes X and Y with $\mathrm{X} \cap \mathrm{Y}=\varnothing$,

$$
\begin{aligned}
& A(X ; Y) \triangleq\{a(x, y) \mid x \in X \text { and } y \in Y\}, \\
& \text { in paticular } A(X) \triangleq A(X ; V-X) .
\end{aligned}
$$

A set of arcs C A is called a cut if it is given as $C=\{a(x, y) \in A \mid x \in X$ and $y \in V-X$ or $x \in V-X$ and $y \in X\}$
$(=A(X) \cup A(V-X))$ for some X such that $X \neq \emptyset$ and $X \neq V$. A cut C is simple if it does not properly contain any other cut.

Fig. 2.1 Arcs a and b are immediate neighbours each other.

Fig. 2.2 Definition of $\mathrm{IN}_{\mathrm{i}}(\mathrm{x})$ and $\operatorname{OUT}_{\mathrm{i}}(\mathrm{x})$.

Thus removing all arcs in a simple cut C decomposes a connected graph G into exactly two components. A set of nodes $X \subseteq V$ is called divergent if there is no arc from $V-X$ to X. Similarly X is called convergent if there is no arc from X to $V-X$. A cut $A(X)$ is called unilateral if X and $V-X$ are divergent and convergent, respectively. A set of nodes X is called connected if the subgraph induced by X is connected.

Let $\Pi(x, y)$ denote the set of all directed paths from x to y. For a $\pi \in \Pi(x, y), V(\pi)$ denotes the set of nodes in π, and $A(\pi)$ denotes the set of arcs in π. We say that a node y is reachable from a node x (i.e., x is reachable to $y)$ if $\Pi(x, y) \neq \emptyset$. If a directed path from x to y and arc $a(y, x)$ exist for some nodes x and y, they consists closed directed path which is called a directed cycle. A directed path (cycle) without repeated nodes is called simple.

Here we consider a planar directed graph G. In subsequent discussion, G is embeded in the plane and we fix it. In G, a cycle which is obtained by ignoring the arc orientation, divides the plane into two areas. A window of G is a simple cycle in G such that one of the resulting two areas contains no arc of G. The boundary B of G is clearly a window. Arcs $\mathrm{a}, \mathrm{b} \in \operatorname{IN}(\mathrm{x}) \cup \operatorname{OUT}(\mathrm{x})$, are called immediate

Fig. 2.3 Definition of unilateral chain circuit.

Fig. 2.4 Proof of Lemma 2.5.
neighbours if both a and b are contained in a window which is not the boundary. See Figure 2.1. For each node x, we partition $\operatorname{IN}(x)$ and $\operatorname{OUT}(x)$ into $I N_{i}(x)$ and $\operatorname{OUT}_{j}(x)$ respectively as follows. Each of the $I N_{i}(x)=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$, $i=1,2, \ldots, i_{x}$, is a maximal subset of $I N(x)$ with the property that $a_{k-1}, a_{k} \in I N_{i}(x)$ iff a_{k-1} and a_{k} are immediate neighbours for $k=1,2, \ldots$, m. Similarly for $\operatorname{OUT}_{j}(x)$, $j=1, \ldots, j_{x}$. See Figure 2.2.

A sequence $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ of arcs is cutting, if each pair of a_{i} and $a_{i+1}(i=1, \ldots, m-1)$ is contained in a window W_{i}, and all W_{i} 's are distinct. Note that one of the windows W_{i} 's may be the boundary B. A cutting sequence $\left[a_{1}\right.$, $\left.a_{2}, \ldots, a_{m}\right]$ is called a cutting circuit, if a_{m} and a_{1} are contained in a window W_{m}, and all $W_{i}(i=1, \ldots, m)$ are distinct. A cutting sequence $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ is called unilateral, if the direction of each arc $a_{i}(i=1, \ldots, m-1)$ is the same as that of window W_{i} when we go round W_{i} in the clockwise manner. See Figure.2.3. The above definitions are easily understandable in terms of the directed dual graph $G^{*}=\left(V^{*}, A^{*}\right)$ corresponding to G. Each node $v_{i}^{*} \in V^{*}$ corresponds to window W_{i} in G (boundary B corresponds to $\mathrm{v}_{\mathrm{B}}^{*}$), and every arc $\mathrm{a}_{\mathrm{k}} \in \mathrm{A}$ corresponds to exactly one arc $a_{k}^{*}=a\left(v_{i}^{*}, v_{j}^{*}\right)$ such that the two distinct windows W_{i} and W_{j}
corresponding to $\mathrm{v}_{\mathrm{i}}^{*}$ and $\mathrm{v}_{\mathrm{j}}^{*}$ have common arc a_{k} in G and the direction of a_{k} is the same as that of window W_{i} when we go round W_{i} in the clockwise manner (counterclockwisely if W_{i} is the boundary). Then cutting sequences and cutting circuits in G correspond simple paths and simple ciruits (neglecting the orientations) in G^{*} respectively. It is also clear from definition that if a cutting sequence and a cutting circuit are unilateral, they correspond to a simple directed path and a simple directed circuit in G^{*} respectively.

2.3 ASSUMPTION A AND SOME LEMMAS

The following Assumption A is important, because all classes CB, CS and CU discussed in Chapters 5-8 satisfy this assumption. we show some properties of a graph G satisfying Assumption A .

Assumption A: (1) $G=(V, A)$ is planar, acyclic (i.e., has no directed circuit). G has no articulation points (i.e., G is 2-connected), where a node is called an articulation point if the number of components in G increases at least by one after deleting the node. Furthermore, we fix a drawing of G in the plane, and define

B: the boundary of the outer face of G,
V_{B} : the set of nodes in B,
A_{B} : the set of arcs whose both end-nodes are in V_{B}.
(2) Any divergent or convergent node belongs to V_{B}.
(3) $T \subseteq V_{B}$. (Recall that sink nodes are not necessarily convergent. The subsequent discussion can be easily modified for the case in which condition (3) is changed to $S \subseteq V_{B}$. We assume this (3) for simplicity.)

Lemma 2.1 If $\Pi(x, y)=\emptyset$ for nodes x and y in G, then there are two connected node sets $X^{-}, X^{+} \subseteq V$ such that $\mathrm{x} \in \mathrm{X}^{-}, \mathrm{y} \in \mathrm{X}^{+}, \mathrm{X}^{-} \cup \mathrm{X}^{+}=V, \mathrm{X}^{-} \cap \mathrm{X}^{+}=\emptyset, \mathrm{X}^{-}$is convergent and
X^{+}is divergent.
Proof. Let $X_{T}{ }^{-}$be the set of all nodes (including x) reachable from x (i.e., $X_{T}{ }^{-}$is the node set of maximal directed tree T with root x). This $X_{T}{ }^{-}$does not include y, and the direction of every arc between $\mathrm{X}_{\mathrm{T}}{ }^{-}$and $\mathrm{V}-\mathrm{X}_{\mathrm{T}}{ }^{-}$is from $V-X_{T}{ }^{-}$to $X_{T}{ }^{-}$. Remove the subgraph spanned by $X_{T}{ }^{-}$ together with these arcs from $\mathrm{V}-\mathrm{X}_{\mathrm{T}}{ }^{-}$to $\mathrm{X}_{\mathrm{T}}{ }^{-}$, and we obtain connected components $X_{k}, k=1,2, \ldots, p$ each of which is divergent. Clearly each X_{k} is connected to $X_{T}{ }^{-}$(since G is connected) and there are no arcs between X_{k} and X_{k} ' with $\mathrm{k} \neq \mathrm{k}^{\prime}$. Name the component X_{k} containing y by X^{+}, and let $\mathrm{X}^{-}=\mathrm{V}-\mathrm{X}^{+}$. This X^{-}is therefore connected and convergent. Consequently X^{+}and X^{-}satisfy the lemma's statement.

Lemma 2.2 In a planar graph G, a set of arcs
$\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subseteq A$ is a simple cut if and only if there is a cutting circuit $\left[a_{i 1}, a_{i 2}, \ldots, a_{i m}\right]$ such that $\left\{a_{i 1}, a_{i 2}, \ldots, a_{i m}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} . \quad$ Further, a cutting circuit $\left[a_{i 1}, a_{i 2}, \ldots, a_{i m}\right]$ is unilateral if and on1y if the corresponding simple cut $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is unilateral.

Proof. Let G^{*} be the directed gragh dual to G. Obviously a simple cut $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ in G corresponds a simple cycle (disregarding arc orientation) in G^{*}. The
lemma follows from the above discussion, because a simple cycle in G^{*} corresponds to a cutting circuit in G. Unilaterality is clear from definition.

Lemma 2.3 Assume that G satisfies Assumption A (1) and (2). If a set of nodes X in G is divergent or convergent, then $\mathrm{X} \cap \mathrm{V}_{\mathrm{B}} \neq \emptyset$.

Proof. Assume that X is divergent. X contains at least one divergent node x_{0}, otherwise a directed cycle exists in X. Therefore, by (2) of Assumption $A, X \cap V_{B} \neq \emptyset$ follows. The case of a convergent X is similar

Lemma 2.4 Assume that G satisfies Assumption A (1) and (2). Every unilateral cutting circuit C contains exactly two arcs in A_{B}.

Proof. By lemma 2.2, C divides V into a connected divergent X set and a connected convergent set $V-X$. By Lemma 2.3, $\mathrm{X} \cap \mathrm{V}_{\mathrm{B}} \neq \emptyset$ and $(\mathrm{V}-\mathrm{X}) \cap \mathrm{V}_{\mathrm{B}} \neq \emptyset$. Therefore, $\mathrm{C}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots\right.$, a_{m}] has a_{i} and a_{i+1}, where window W_{i} containing a_{i} and a_{i+1} is the window of the boundary. Since all window W_{i}, i=1,2,...,m are distinct in cutting circuit C, any other $\operatorname{arcs} a_{j}, j \neq i, i+1$ are not in A_{B}.

Lemma 2.5 Corresponding to arc sets $\mathrm{IN}_{\mathrm{i}}(\mathrm{x}) \quad\left(\mathrm{i}=1, \ldots, \mathrm{i}_{\mathrm{x}}\right)$, and $\operatorname{OUT}_{j}(x) \quad\left(j=1, \ldots, j_{x}\right)$ of a node x in G, there is a partition of V into $X_{i}{ }^{+}\left(i=1, \ldots, i_{x}\right), X_{j}{ }^{-}\left(j=1, \ldots, j_{x}\right)$ and $X_{0}=\{x\}$ such that all X_{i}^{+}are connected divergent sets, and all X_{j}^{-}are connected convergent sets. The set of the terminal nodes of arcs in $\operatorname{OUT}_{j}(x)$ (the set of the initial nodes of arcs in $\mathrm{IN}_{\mathrm{i}}(\mathrm{x})$) is contained in $\mathrm{X}_{\mathrm{j}}{ }^{-}\left(\mathrm{X}_{\mathrm{i}}{ }^{+}\right)$.

Proof. From the definition of i_{x} and j_{x}, we have $i_{x}=j_{x}$ if
(a) $x \notin V_{B}$ or
(b) $x \in V_{B}, a\left(z_{1}, x\right), a\left(x, z_{2}\right) \in A_{B}$ for some $z_{1}, z_{2} \in V_{B}$. We have $i_{x}=j_{x}+1$ (or $i_{x}=j_{x}-1$) if $x \in V_{B}$ and $a\left(z_{1}, x\right), \quad a\left(z_{2}, x\right) \in A_{B} \quad\left(\right.$ or $\left.a\left(x, z_{1}\right), a\left(x, z_{2}\right) \in A_{B}\right)$ for some $z_{1} \neq z_{2}$. We shall consider only the case of $x \notin V_{B}$, since the other case can be treated in a similar manner. Replace node x by the set of node $x_{0}, u_{i}\left(i=1, \ldots, i_{x}\right)$ and v_{i} $\left(i=1, \ldots, i_{x}\right)$, and make u_{i} the terminal node of the arcs in $I N_{i}(x)$, and v_{i} the initial node of the arcs in $\operatorname{OUT}_{i}(x)$. We then add arcs $a\left(u_{i}, x_{0}\right) \quad\left(i=1, \ldots, i_{x}\right)$ and $a\left(x_{0}, v_{i}\right)$ $\left(i=1, \ldots, i_{x}\right)$. Let $\hat{G}=(\hat{V}, \hat{A})$ be the obtained graph (see Figure 2.4), which still satisfies Assumption A. Now there exists a cutting circuit $\left[a\left(u_{1}, x_{0}\right), a\left(x_{0}, v_{1}\right), \ldots\right.$, $\left.a\left(u_{i}, x_{0}\right), a\left(x_{0}, v_{i}\right), \ldots, a\left(u_{i x}, x_{0}\right), a\left(x_{0}, v_{i x}\right)\right]$, where we denote the window containing $a\left(u_{i}, x_{0}\right)$ and $a\left(x_{0}, v_{i}\right)$ by WU_{i}

Fig. 2.5 Proof of Lemma 2.5.
and the window containing $a\left(x_{0}, v_{i}\right)$ and $a\left(u_{i+1}, x_{0}\right)$ by $W V_{i}$ (with the convention $i_{x}+1=1$). By $\pi\left(x_{0}, u_{i}\right)=\emptyset$ (by the acyclicity of \hat{G}) and Lemma 2.1, there exists for each i a divergent set $\hat{X}_{i}{ }^{+}$containing all y such that $a\left(y, u_{i}\right) \in \hat{A}$. Let $\mathrm{A}\left(\hat{\mathrm{X}}_{\mathrm{i}}{ }^{+}\right)$be the arcs between $\hat{X}_{i}{ }^{+}$and $\mathrm{V}-\hat{\mathrm{X}}_{\mathrm{i}}{ }^{+}$. We show that these $A\left(X_{i}{ }^{+}\right), i=1,2, \ldots, i_{x}$ are disjoint as shown in Figure 2.5 (as the result, it follows that $\hat{X}_{i}^{+}, i=1,2, \ldots, i_{x}$ are disjoint). By (2) of Assumption 2.1, there exist for each i a node $w_{i} \in \hat{V}_{B}$ and a path $\pi_{i}{ }^{+} \in \Pi\left(w_{i}, x_{0}\right)$ with $a\left(u_{i}, x_{0}\right) \in A\left(\pi_{i}{ }^{+}\right) \quad\left(\right.$ similarly a node $w^{\prime}{ }_{i} \in \hat{V}_{B}$ and a path $\pi_{i}{ }^{-}$ $\in \Pi\left(x_{0}, w^{\prime}{ }_{i}\right)$ with $\left.a\left(x_{0}, v_{i}\right) \in A\left(\pi_{i}{ }^{-}\right)\right)$. Clearly, by the acyclicity of \hat{G}, each $\pi_{i}{ }^{-}\left(i=1,2, \ldots, i_{x}\right)$ are node disjoint to any of $\pi_{i}{ }^{+}\left(i=1,2, \ldots, i_{x}\right)$ except node x_{0}. Since each \hat{X}_{i}^{+}is contained in the area bordered by $\pi_{i-1}{ }^{-}$and $\pi_{i}{ }^{-}$ (with the convention that $i-1=i_{x}$ for $i=1$), and $A\left(\hat{X}_{i}{ }^{+}\right)$does not contain any arcs of paths $\pi_{i-1}{ }^{-}$or $\pi_{i}{ }^{-}$(by the divergency of $\left.\hat{X}_{i}^{+}\right)$, all $A\left(\hat{X}_{i}^{+}\right), i=1,2, \ldots, i_{x}$ have no common arc and all $\hat{X}_{i}+$ are node disjoint.

Note that each $\hat{\mathrm{V}}-\hat{X}_{i}^{+}$is connected (from Lemma 2.1 and construction of \hat{X}_{i}^{+}), then we have unilateral cutting circuits $\left[a_{1}, \ldots, a_{m}\right]$ and $\left[b_{1}, \ldots, b_{n}\right]$ such that $A\left(\hat{X}_{i}{ }^{+}\right)=$ $\left\{a_{1}, \ldots, a_{m}\right\}, \quad A\left(\hat{X}_{i+1}^{+}\right)=\left\{b_{1}, \ldots, b_{n}\right\}$ and $a_{1}, a_{m}, b_{1}, b_{n} \in \hat{A}_{B}$ $\left(=A_{B}\right)$ (by Lemma 2.4). Recall that $a_{p}=a\left(u_{i}, x_{0}\right) \in A\left(\hat{X}_{i}{ }^{+}\right)$

Fig. 2.6 Proof of Lemma 2.5.
and $\mathrm{b}_{\mathrm{q}}=\mathrm{a}\left(\mathrm{u}_{\mathrm{i}+1}, \mathrm{x}_{0}\right) \in \mathrm{A}\left(\hat{X}_{i+1}{ }^{+}\right)$for some p and q . We can assume that window WU_{i} contains $\mathrm{a}\left(\mathrm{x}_{0}, \mathrm{v}_{\mathrm{i}}\right), \mathrm{a}_{\mathrm{p}}$ and $\mathrm{a}_{\mathrm{p}-1}$, and WV_{i} contains $\mathrm{a}\left(\mathrm{x}_{0}, \mathrm{v}_{\mathrm{i}}\right), \mathrm{b}_{\mathrm{q}}$ and $\mathrm{b}_{\mathrm{q}+1}$, without loss of generality. Here, no window contains $a_{i}, a_{i+1}(i+1 \leq p-1)$ and $b_{j}, b_{j+1}(j \leq q+1)$. Otherwise,

$$
\left[a_{i+1}, a_{i+2}, \ldots, a_{p-1}, a\left(x_{0}, v_{i}\right), b_{q+1}, b_{q+2}, \ldots, b_{j}\right]
$$

corresponds a directed cycle in graph \hat{G}^{*} dual to \hat{G}, and a simple directed cycle contained in this directed cycle corresponds a unilateral cutting circiut in \hat{G}. However, since this unilateral cutting circuit does not contain arc $\left(\mathrm{a}_{1}, \mathrm{~b}_{\mathrm{n}}\right)$ in the boundary, this contradicts Lemma 2.3. Therefore,

$$
\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{p}-1}, \mathrm{a}\left(\mathrm{x}_{0}, \mathrm{v}_{\mathrm{i}}\right), \mathrm{b}_{\mathrm{q}+1}, \mathrm{~b}_{\mathrm{q}+2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right]
$$

is a unilateral cutting circuit. Apply Lemma 2.2 to this cutting circuit, and denote the component containing v_{i} by $\hat{X}_{i}{ }^{-}$as shown in Figure 2.6. In this way, the node set of \hat{G} is partitioned into $\left\{x_{0}\right\}$, connected divergent sets $\hat{X}_{i}{ }^{+} \quad\left(i=1, \ldots, i_{x}\right)$ and connected convergent sets $\hat{X}_{i}-$ $\left(i=1, \ldots, i_{x}\right)$.

Finally it is easy to see that this partition of \hat{G} gives the stated partition of G, i.e., let $X_{i}{ }^{+}=\hat{X}_{i}{ }^{+}-\left\{u_{i}\right\}$ and
$X_{i}{ }^{-}=\hat{X}_{i}{ }^{-}-\left\{v_{i}\right\}$. Each of the resulting $X_{i}{ }^{+}\left(X_{i}{ }^{-}\right)$is connected because if some $\hat{X}_{i}{ }^{+}\left(\hat{X}_{i}{ }^{-}\right)$becomes unconnected by deleting u_{i} $\left(v_{i}\right)$ then G becomes unconnected by deleting x_{0}, contradicting the 2-connectivity of G. Therefore the resulting family of node sets is the partition of G. \square

Lemma 2.6 In a graph satisfying (1) and (2) of Assumption A, let $\mathrm{G}^{\prime \prime}$ be the graph obtained by shrinking X^{+}(or $\mathrm{V}-\mathrm{X}^{+}$) into node x_{0} for any unilateral simple cut $A\left(X^{+}\right)$. Then
(i) $G^{\prime \prime}$ still satisfies (1) and (2) of Assumption A.
(ii) For any nodes $x, y\left(\neq x_{0}\right)$ in $G^{\prime \prime}, \quad \Pi(x, y) \neq \emptyset$ in G implies $\Pi(x, y) \neq \emptyset$ in $G^{\prime \prime}$.
(iii) Any simple cut in $G^{\prime \prime}$ is a simple cut in G.

Proof. We consider the case X^{+}is shrunken into node x_{0} (similarly for $\mathrm{V}-\mathrm{X}^{-}$). First we show (i). The planarity of G is obvious. If $G^{\prime \prime}$ has a directed cycle C, then C does not contain any arc incident to divergent node x_{0} and therefore the C exists in G. By the acyclicity of G, this means that $G^{\prime \prime}$ is acyclic, a contradiction. The 2connectivity of $G^{\prime \prime}$ is shown as follows. G is clearly connected. Then if $G^{\prime \prime}$ is not 2-connected, then $G^{\prime \prime}$ has an articulation point z. By the 2-connectivity of G, there exist two node-disjoint undirected paths $\mathrm{p}_{1}, \mathrm{P}_{2}$ between any
two nodes $x, y \notin X^{+}$. Since there still exist two nodedisjont undirected paths between x and y if one of p_{1} and p_{2} contain no node in $X^{+}, \quad z=x_{0}$ must hold. However, by definition, $A\left(X^{+}\right)$is a uniulateral simple cut, and therefore the resulting graph obtained by removing x_{0} from $\mathrm{G}^{\prime \prime}$ is connected. This contradicts that x_{0} is an articulation point.

Next for any $x, y \in X^{+}$, there is no path $\pi \in \Pi(x, y)$ through X^{+}or x_{0} in G or $G^{\prime \prime}$, respectively. Therefore we obtain (ii). (iii) is also obvious from the definition of G".

2.4 CUT CONDITION AND UNILATERAL CUT

For two sets of nodes X and Y with $X \cap Y=\emptyset$ in $N=(G, P, g, c)$, we define

$$
\begin{aligned}
& c(X ; Y) \triangleq \sum_{a \in A(X ; Y)} c(a), \text { in particular } c(X) \triangleq_{c}(X ; V-X) \\
& K(X ; Y) \triangleq \triangleq_{\left\{k \mid s^{k} \in X, t^{k} \in Y\right\}, \text { in paticular } K(X) \triangleq}^{\triangleq_{K}(X ; V-X),} \\
& g(X ; Y) \triangleq \sum_{k \in K(X ; Y)} g^{k}, \text { in particular } g(X) \triangleq g(X ; V-X), \\
& r(X ; Y) \triangleq c(X ; Y)-g(X ; Y), \text { in particular } r(X) \triangleq_{r}(X ; V-X) .
\end{aligned}
$$

Here the cut-condition for the multicommodity flow problem:

$$
\begin{equation*}
r(X) \geq 0 \quad \text { for all } X \subseteq V \tag{2.1}
\end{equation*}
$$

is cleary a necessary condition for a network to be feasible. In general, however, the cut-condition is not sufficient to guarantee the feasibility of the multicommodity flow problem. If the cut-condition is a sufficient condition for a network in some class to be feasible, we call the max-f1ow min-cut theorem holds for the class (or the class has the max-flow min-cut property).

If a network $N=(G, P, g, c)$ satisfying Assumption A has a pair $\left(s^{k l}, t^{k l}\right) \in P$ with $\Pi\left(s^{k l}, t^{k l}\right)=\emptyset$, then N is clearly infeasible (by assumption $\mathrm{g}^{\mathrm{k}}>0$). In this case, Lemma 2.1

Fig. 2.7 Proof of Lemma 2.7.
implies that N has a connected convergent set X^{-}and a connected divergent set $V-X^{-}$such that $s^{k l} \in X^{-}$and $t^{k 1} \in V-X^{-}$. Then

$$
\mathrm{r}\left(\mathrm{X}^{-}\right)=\mathrm{c}\left(\mathrm{X}^{-}\right)-\mathrm{g}\left(\mathrm{X}^{-}\right)=-\mathrm{g}\left(\mathrm{X}^{-}\right) \leq-\mathrm{g}^{\mathrm{kl}}<0
$$

holds, i.e., $A\left(V-X^{-}\right)$is a unilateral simple cut not satisfying the cut-condition. Therefore, the max-flow mincut theorem holds.

Based on this, we concentrate in the subsequent discussion on a network that satisfies the following Assumption B.

Assumption B: $\Pi\left(s^{k}, t^{k}\right) \neq \emptyset$ for every $\left(s^{k}, t^{k}\right) \in P$.

Now we introduce the following capacity balance function $\Delta c(x)$ and Assumption C.

$$
\begin{aligned}
\Delta c(x) & \triangleq \sum c(a)+\sum_{a \in \operatorname{OUT}(x)}^{\triangleq} \quad \mathrm{t}^{k}=x \quad \sum c(b)-\sum_{b}^{k} \in \operatorname{IN}(x) \quad g^{k} .
\end{aligned}
$$

Assumption C: $\quad \Delta c(x)=0$ for every node $x \in V$.

Under this assumption, the following lemma tells that any unilateral cut $A\left(X^{+}\right)$satisfies the cut-condition (2.1).

Lemma 2.7 In a network N,

$$
\sum_{y \in X} \Delta c(y)=r(X)-r(V-X) \quad \text { for } X \subseteq V
$$

Proof. For $X=\{x\}$,

$$
r(X)=\sum c(a)-\sum g^{k} \text { and } r(V-X)=\sum c(a)-\sum g^{k}
$$

$$
a \in \operatorname{OUT}(x) \quad s^{k}=x \quad a \in \operatorname{IN}(x) \quad t^{k}=x
$$

hold, i.e., $r(X)-r(V-X)=\Delta c(x)$ satisfying the lemma's statement. Now, we show that $X^{\prime}=X \cup\{x\}$ satisfies $r\left(X^{\prime}\right)-$ $r\left(V-X^{\prime}\right)=\sum_{y \in X^{\prime}} \Delta c(y)$ for any $x \in V-X$, if $r(X)-r(V-X)=\sum_{y \in X} \Delta c(y)$
for some X. See Figure 2.7.

$$
\begin{aligned}
& c\left(X^{\prime}\right)=c\left(X ; V-X^{\prime}\right)+c\left(\{x\} ; V-X^{\prime}\right) \\
& =c(X)-c(X ;\{x\})+c\left(\{x\} ; V-X^{\prime}\right) \\
& c\left(V-X^{\prime}\right)=c\left(V-X^{\prime} ; X\right)+c\left(V-X^{\prime} ;\{x\}\right) \\
& \\
& =c(V-X)-c(\{x\} ; X)+c\left(V-X^{\prime}+\{x\}\right) .
\end{aligned}
$$

Hence,

$$
c\left(X^{\prime}\right)-c\left(V-X^{\prime}\right)=c(X)-c(V-X)+\underset{a \operatorname{OUT}(X)}{\sum} c(a)-\sum_{a \operatorname{IN}(x)} c(a) .
$$

Similarly we have

$$
g\left(X^{\prime}\right)-g\left(V-X^{\prime}\right)=g(X)-g(V-X)+\quad t^{k}=x \quad g^{k}-\quad{ }_{s^{k}=x}^{\sum} g^{k} .
$$

Then

$$
\begin{aligned}
r\left(X^{\prime}\right)-r\left(V-X^{\prime}\right) & =c\left(X^{\prime}\right)-c\left(V-X^{\prime}\right)-g\left(X^{\prime}\right)+g\left(V-X^{\prime}\right) \\
& =r(X)-r(V-X)+\Delta c(x)
\end{aligned}
$$

holds. Therefore by induction, we obtain $r(X)-r(V-X)=$
$\sum \Delta c(y)$ for any $X \subseteq V$. $y \in X$

By this lemma, if N satisfies Assumption C, then $r(X)-$ $r(V-X)=0 \quad$ for a11 $X \subseteq V$.

Lemma 2.8 If a network satisfies Assumption B and C, then any divergent set X^{+}(unilateral cut $A\left(X^{+}\right)$) satisfies $r\left(X^{+}\right)=r\left(V-X^{+}\right)=0$ (i.e., satisfying the cut condition (2.1)).

Proof. Take a unilateral cut $\mathrm{A}\left(\mathrm{X}^{+}\right)$with $\mathrm{r}\left(\mathrm{X}^{+}\right)<0$. By Lemma 2.7 and Assumption $C, r\left(X^{+}\right)=r\left(V-X^{+}\right)$, and then $r\left(X^{+}\right)<0$ implies $r\left(V-X^{+}\right)<0$. From divergency of $X^{+}, \quad c\left(V-X^{+}\right)=0$. Hence

$$
r\left(V-X^{+}\right)=c\left(V-X^{+}\right)-g\left(V-X^{+}\right)=-g\left(V-X^{+}\right)<0
$$

holds, and this means $K\left(V-X^{+}\right) \neq \emptyset$. For $k \in K\left(V-X^{+}\right)$, however $\Pi\left(s^{k}, t^{k}\right)=\emptyset$ from convergency of $V-X^{+}$. This contradicts Assumption B, and we obtain $r\left(X^{+}\right) \geq 0$. Here assume $r\left(X^{+}\right)>0$, then we have $g\left(V-X^{+}\right)<0$ in the same manner. This contradicts the assumption $\mathrm{g}^{\mathrm{k}}>0$. Therefore we obtain $\mathrm{r}\left(\mathrm{X}^{+}\right)=\mathrm{r}\left(\mathrm{V}-\mathrm{X}^{+}\right)=0$.

CHAPTER 3

ALGORITHM ASSIGN FOR TESTING

FEASIBILITY OF A CB NETWORK

3.1 INTRODUCTION

In this chapter, we introduce class CB (capacity balanced networks) of directed planar networks for which it is possible to develop a polynomial time graph theoretic algorithm. Its running time is $O(\mathrm{~K}|\mathrm{~V}|)$ for a CB network with K commodities and $|\mathrm{V}|$ nodes. It is also be shown that integral flow property holds for CB, i.e., an integral feasible flow exists if the network is feasible and capacities of arcs are all integers [NAGA 87a].

3.2 CAPACITY BALANCED NETWORKS

A network $N=(G, P, g, c)$ is called capacity balanced if it satisfies Assumption A and C, and the class of capacity balanced networks is denoted by CB.

In order to present algorithm ASSIGN that tests the feasiblity of the multicommodity flow problem of (1.5) and (1.6) for a capacity balanced network $N=(G, P, g, c)$, we prepare the following notations.

By the acyclicity of G, the level of each node x can be defined as follows.

$$
\begin{aligned}
& \text { level }(x) \triangleq \begin{cases}0, & \text { if } x \text { is a divergent node } \\
\max L\left(\pi_{v x}\right), & \text { where } v \text { runs over all } \\
\text { divergent nodes such that } \Pi(v, x) \neq \emptyset,\end{cases} \\
& \text { and } L\left(\pi_{v x}\right) \text { is the number of arcs in a } \\
& \\
& \text { simple longest path } \pi_{v x} \in \Pi(x, v) .
\end{aligned}
$$

For each $\operatorname{OUT}_{j}(x)$, there is a unilateral cutting sequence $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ such that $\operatorname{OUT}_{j}(x)=\left\{a_{i} \mid i=1,2, \ldots, m\right\}$. We define that a_{i} is to the 1 eft of a_{j} for $1 \leq i<j \leq m$. Given the connected convergent set X_{j}^{-}obtained for $\operatorname{OUT}_{j}(x)$ by Lemma 2.5, we define the left-right relation between sinks in $X_{j}{ }^{-} \cap V_{B}$ as follows: Sink $t^{k 1}$ is to the 1eft of sink $t^{k 2}$
if we visit $t^{k 1}$ before $t^{k 2}$ when we go round the part of boundary contained in $X_{j}{ }^{-n} V_{B}$ in the clockwise manner. In this case, we also say that commodity kl is to the left of commodity $k 2$. For $k 1$ and $k 2$ with $t^{k 1}=t^{k 2}$, we define that commodity k1 is to the left of commodity k2, if index k1 is smaller than k 2 .

3.3 ALGORITHM ASSIGN

We first describe the outline of algorithm ASSIGN. Clearly, a network not satisfying Assumption B is infeasible. ASSIGN chooses nodes x in the nondecreasing order of their levels, and, for each of the chosen nodes, it determines the flows in the arcs in OUT(x). When a node x is chosen, the flows on $\operatorname{IN}(x)$ are already known, since the flows on OUT(y) of all nodes y with level(y)<level(x) have already been determined. For each of $j=1, \ldots, j_{x}$, Lemma 2.5 asserts that there exists a connected convergent set $X_{j}{ }^{-}$ corresponding to $\operatorname{OUT}_{j}(x)$. Let

$$
\begin{aligned}
& K_{j}(x) \triangleq\left\{k \mid t^{k} \text { is reachable from } x\right. \\
& \text { via some arcs in OUT } \left.{ }_{j}(x)\right\}
\end{aligned}
$$

Clearly $\left\{\mathrm{t}^{\mathrm{k}} \mid \mathrm{k} \in \mathrm{K}_{j}(\mathrm{x})\right\} \subseteq \mathrm{V}_{\mathrm{B}} \mathrm{n}_{\mathrm{j}} \mathrm{X}^{-}$, and all $\mathrm{K}_{\mathrm{j}}(\mathrm{x})$, $j=1,2, \ldots, j_{x}$, are disjoint. For each j, ASSIGN chooses the arcs in $\operatorname{OUT}_{j}(x)$ from left to right, and, to each of the chosen arcs, assigns the commodities in the left-to-right order of their sinks $t^{k}, k \in K_{j}(x)$.

We shall show below after the description of ASSIGN that N is feasible if and only if ASSIGN succeeds, i.e., all arcs in G are assigned their flows within their capacities. In the following, $f(a, k)$ denotes the flow value of commodity
k on arc a, and $f_{x}{ }^{k}$ denotes the flow value of commodity k which must go out of x. A node x is called scanned if flow assignment to all the arcs in $\operatorname{OUT}(x)$ has been completed.

Procedure ASSIGN

Input: A capacity balanced network $N=(G, P, g, c)$ satisfying Assumption A, B and C.

Output: Flow values $f(a, k)$ for $a 11 a \in A$ and $k \in\{1, \ldots, K\}$ (if N is feasible), or an indication of infeasibility.
0. $f(a, k):=0, f_{x}{ }^{k}:=0$ for all $a \in A, x \in V, k \in\{1, \ldots, K\}$. A11 nodes are "unscanned". Compute $\mathrm{IN}_{\mathrm{j}}(\mathrm{x})$, OUT $\mathrm{J}_{\mathrm{j}}(\mathrm{x})$ and $K_{j}(x) j=1, \ldots, j_{x}$, for all nodes x.

1. If all nodes are scanned, halt; a feasible flow assignment has been made. Otherwise take an unscanned node x in the minimum level. Let

$$
f_{x}^{k}:= \begin{cases}\sum_{a \in \operatorname{IN}(x)} f(a, k)+g^{k}, & \text { if } x=s^{k} \\ \sum_{a \in \operatorname{IN}(x)} f(a, k)-g^{k}, & \text { if } x=t^{k} \\ \sum_{a \in \operatorname{IN}(x)} f(a, k), & \text { otherwise. }\end{cases}
$$

If the following (T-1) or (T-2) hold, then halt by concluding infeasibility.
($\mathrm{T}-1$) $\operatorname{OUT}(\mathrm{x})=\emptyset$ and $\mathrm{f}_{\mathrm{x}}^{\mathrm{k}}>0$ for some k .
(T-2) $f_{x}^{k}<0$ for some k.
Otherwise, if $\operatorname{OUT}(x)=\emptyset$ and $f_{x}^{k}=0$ for all k, then let x be "scanned" and return to 1. E1se if $\operatorname{OUT}(x) \neq \emptyset$ and $\mathrm{f}_{\mathrm{x}}^{\mathrm{k}} \geq 0$
for all k, then let

$$
\begin{aligned}
& \qquad K_{j}:=K_{j}(x) \cap\left\{k \mid f_{x}^{k}>0\right\}, j=1,2, \ldots, j_{x} \\
& 0_{j}:=\operatorname{OUT}_{j}(x), j=1,2, \ldots, j_{x}, \\
& \text { and go to 2. }
\end{aligned}
$$

2. Repeat the following procedure for each $j=1, \ldots, j_{x}$ (in this order):

Until $O_{j}=\emptyset$ and $K_{j}=\emptyset$ holds, take the leftmost $a \in O_{j}$ and the leftmost commodity $\mathrm{k} \in \mathrm{K}_{\mathrm{j}}(\mathrm{x})$ and let

$$
\begin{aligned}
& f(a, k):=c(a), f_{x}^{k}:=f_{x}^{k}-c(a), 0_{j}:=0_{j}-\{a\} \text { if } c(a)\left\langle f_{x}{ }^{k},\right. \\
& \left.f(a, k):=f_{x}^{k}, c(a):=c(a)-f_{x}^{k}, K_{j}:=K_{j}-\{k\} \text { if } c(a)\right\rangle f_{x}^{k}, \\
& f(a, k):=c(a), O_{j}:=0_{j}-\{a\}, K_{j}:=K_{j}-\{k\} \text { if } c(a)=f_{x}{ }^{k} .
\end{aligned}
$$

Whenever the following case (T-3) occurs, halt by concluding infeasibility.
(T-3) $K_{j} \neq \emptyset$ and $0_{j}=\varnothing$, or $0_{j}=\emptyset$ and $K_{j}=\emptyset$.
3. (It holds $0_{j}=K_{j}=\varnothing$ for $j=1,2, \ldots, j_{x}$.) If the following
(T-4) holds, then halt by concluding infeasibility.
(T-4) $f(a(x, v), k)>0$ and $\Pi\left(v, t^{k}\right) \neq \emptyset$ for some $a(x, v) \in \operatorname{OUT}(x)$ and k.

Otherwise let x be "scanned" and return to $1 . \quad \square$

A1though ASSIGN described in [NAGA 87a] does not contain the condition (T-4) terminating the procedure, the

```
validity of (T-4) is obvious ((T-4) may terminate the
procedure earlier).
```


Fig. 3.1 Proof of Lemma 3.1.

3.4 CORRECTNESS OF ASSIGN

To prove the correctness of algorithm ASSIGN, we first prove the following Lemma 3.1. If N has more than one feasible solution, call the feasible solution $\{\tilde{f}(a, k) \mid a \epsilon$ A, $k=1, \ldots, K\}$ with the following property standard: If $\tilde{f}(a, k)>0$ for some arc $a \in \operatorname{OUT}_{j}(x)$ and $k \in K_{j}(x)$, then $f\left(a^{\prime}, k^{\prime}\right)=0$ holds if $a^{\prime} \in \operatorname{OUT}_{j}(x)$ is to the right of arc a and $k \in K_{j}(x)$ is to the left of commodity k.

Lemma 3.1 If $N=(G, P, c)$ is feasible, there exists a standard feasible solution.

Proof. We first consider a divergent node x. Clearly $j_{x}=1$ (i.e., $\operatorname{OUT}_{1}(x)=\operatorname{OUT}(x)$). Assume that a given feasible solution \bar{f} is not standard on x, i.e., there exist $b, c \in \operatorname{OUT}_{1}(x)$ and $p, q \in K_{1}(x)$ such that b is to the left of c, p is to the left of $q, \tilde{f}(b, q)>0$ and $\tilde{f}(c, p)>0$ (see Figure 3.1). Since N is capacity-balanced, all arcs $a \in A$ are saturated, i.e.,

$$
c(a)=\sum_{k=1}^{K} \tilde{f}(a, k) .
$$

Define

$$
\begin{aligned}
& \Pi_{b}\left(x, t^{q}, \tilde{f}\right) \\
& \quad \triangleq\left\{\pi \in \Pi\left(x, t^{q}\right) \mid b \in A(\pi), \tilde{f}(a, q)>0 \text { for all } a \in A(\pi)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{C}\left(x, t^{p}, \tilde{f}\right) \\
& \quad \triangleq\left\{\pi \in \Pi\left(x, t^{p}\right) \mid c \in A(\pi), \tilde{f}(a, p)>0 \text { for all } a \in A(\pi)\right\}
\end{aligned}
$$

Obviously these sets are not empty, and any $\pi_{b}{ }^{\epsilon} \Pi_{b}\left(x, t^{q}, \tilde{f}\right)$ and $\pi_{c} \epsilon \Pi_{c}\left(x, t^{p}, \tilde{f}\right)$ have a common node by the planarity of N. Let z be the common node nearest to x, and let $\pi_{b}{ }^{*}$ ($\pi_{c}{ }^{*}$) be the part of $\pi_{b}\left(\pi_{c}\right)$ from x to z. We assume that π_{b} and π_{c} are chosen so that the area surrounded by π_{b}^{*} and π_{c}^{*} does not contain in its interrior any node of a path in $\pi_{b}\left(x, t^{q}, \tilde{f}\right) \cup \pi_{c}\left(x, t^{p}, \tilde{f}\right)$. Then we modify the flows \tilde{f} on $\pi_{b}{ }^{*}$ and $\pi_{c}{ }^{*}$ as follows:

$$
\begin{aligned}
& \tilde{f}^{\prime}(a, q): \tilde{f}(a, q)-e, \tilde{f}^{\prime}(a, p):=\tilde{f}(a, p)+e, \text { for } a \in A\left(\pi_{b}^{*}\right), \\
& \tilde{f}^{\prime}(a, p):=\tilde{f}(a, p)-e, \tilde{f}^{\prime}(a, q):=\tilde{f}(a, q)+e, \text { for } a \in A\left(\pi_{c}^{*}\right),
\end{aligned}
$$

where $e=\min \left[\min \left\{\tilde{f}(a, q) \mid a \in A\left(\pi_{b}{ }^{*}\right)\right\}, \min \left\{\tilde{f}(a, p) \mid a \in A\left(\pi_{c}{ }^{*}\right)\right\}\right]$.
The resulting flow $\overline{\mathrm{f}}$ ' is clearly feasible. Furthermore $\Pi_{b}\left(x, t^{q}, \tilde{f}^{\prime}\right) \cup \Pi_{c}\left(x, t^{p}, \tilde{f}^{\prime}\right) \varsubsetneqq \Pi_{b}\left(x, t^{q}, \tilde{f}\right) \cup \Pi_{c}\left(x, t^{p}, \tilde{f}\right) \quad h o l d s$, since at least one of $\tilde{f}^{\prime}(a, q)\left(a \in A\left(\pi_{b}^{*}\right)\right)$ or $\tilde{f}^{\prime}(a, p)$ ($\mathrm{a} \in \mathrm{A}\left(\pi_{c}{ }^{*}\right)$) becomes 0 by the above modification, and no new path in $\pi_{b}\left(x, t^{q}, \tilde{f}^{\prime}\right) \cup \pi_{c}\left(x, t^{p}, \tilde{f}^{\prime}\right)$ is created as obvious from the assumption on π_{b} and π_{c}. Therefore after finite repetition of such modifications, we obtain a feasible solution \tilde{f} for which either $\Pi_{b}\left(x, t^{q}, \tilde{f}{ }^{\prime}\right)=\emptyset$ or $\Pi_{c}\left(x, t^{p}, \tilde{f}^{\prime}\right)=\emptyset$
holds.
Now if \bar{f} is not standard on $\operatorname{OUT}(x)$, we apply the above operation to the nonstandard pair of arcs $b, c \in \operatorname{OUT}(x)$, which is leftmost in the lexicographical sense of (b, c). Repeating this, we eventually obtain a feasible flow \tilde{f} that is standard on x, because once a pair (b, c) becomes standard, it will never become nonstandard again, as easily shown.

This procedure is then applied to all nodes x in the increasing order of their levels. A nondivergent node x may have $j_{\mathrm{x}}>1$, but it is obvious that the above procedure can be applied to $j=1,2, \ldots, j_{x}$ separately. Once \tilde{f} becomes standard on x, it remains to be standard on x even if the above modification is applied to the nodes of larger levels. Therefore, we eventually obtain a feasible solution \tilde{f} that is standard on all nodes.

Lemma 3.2 If $N=(G, P, g, c)$ is feasible, the standard feasible solution is unique.

Proof. Assume two distinct standard feasible solutions f and \tilde{f}, and take a node x such that $f(a, k)=\tilde{f}(a, k)$ for al1 k and $a \in \operatorname{OUT}(y)$ with leve1 $(y)<$ leve1 (x), but $f\left(a^{\prime}, k^{\prime}\right) \neq \tilde{f}\left(a^{\prime}, k^{\prime}\right) \quad$ for some $a^{\prime} \in \operatorname{OUT}_{j}(x)$ and k^{\prime}. Assume
without loss of generality that a^{\prime} is the leftmost arc in $\operatorname{OUT}_{j}(\mathrm{x})$ with this property, and that

$$
\begin{equation*}
0 \leq \bar{f}\left(a^{\prime}, k^{\prime}\right)<f\left(a^{\prime}, k^{\prime}\right) . \tag{3.1}
\end{equation*}
$$

To satisfy the capacity constraint of a^{\prime}, there exists $a \mathrm{k}^{\prime \prime}$ such that

$$
\begin{equation*}
0 \leq f\left(a^{\prime}, k^{\prime \prime}\right)<\tilde{f}\left(a^{\prime}, k^{\prime \prime}\right) . \tag{3.2}
\end{equation*}
$$

(3.1) and (3.2) then imply that some arcs $b, c \in$ OUT $_{j}(x)$ (possibly $b=c$), located to the right of a^{\prime}, satisfy

$$
\begin{align*}
& 0 \leq f\left(b, k^{\prime}\right)<\tilde{f}\left(b, k^{\prime}\right) \tag{3.3}\\
& 0 \leq \tilde{f}\left(c, k^{\prime \prime}\right)<f\left(c, k^{\prime \prime}\right) . \tag{3.4}
\end{align*}
$$

If k^{\prime} is to the left of $k^{\prime \prime}$, (3.2) and (3.3) imply that \tilde{f} is not standard, while if $\mathrm{k}^{\prime \prime}$ is to the left of k^{\prime}, (3.1) and (3.4) imply that f is not standard. In either case, this is a contradiction.

Lemma 3.3 If a capacity balanced network $N=(G, P, g, c)$ is feasible, ASSIGN finds the standard feasible solution. On the other hand, if N is infeasible, ASSIGN indicates the infeasibility by halting at (T-1), (T-2), (T-3) or (T-4).

Proof. If N is feasible, Lemma 3.1 says that it has the standard feasible solution. First, consider a node x with level $(x)=0$. As easily proved from the order of selections of arcs a and commodities k in Step 2 of ASSIGN, the flows given to the arcs in OUT(x) by ASSIGN are standard, and this is the only way to have standard flows on OUT(x) under the condition that all arcs in $\operatorname{OUT}(x)$ are saturated. Since we assume that N is feasible, and the standard feasible flows on OUT(x) are unique by Lemma 3.2, ASSIGN realizes on OUT(x) exactly the same flows as the standard feasible flows. To use induction, take a node x and assume that the flows realized by ASSIGN on $\operatorname{OUT}(y)$ of all y with leve1 $(y)<$ leve1 (x) are the only ones that is both feasible and standard. These flows uniquely determine the flows on IN(x). Given the flows on IN(x), it is also easly to see that the flows on OUT(x) realized by ASSIGN are the only ones that are feasible and standard at x. This shows that ASSIGN gives the standard feasible flow if N is feasible.

Finally we consider the case in which N is infeasible. Assume that ASSIGN has scanned all nodes x in N successfully, then it is easily seen that the flow realized by ASSIGN is feasible since it satisfies the constraints of
flow conservation and capacity. This is a contradiction. The only way not to reach this conclusion is to halt at one of (T-1)-(T-4).

3.5 TERMINATION CONDITION OF ASSIGN

As described in Lemma 3.3, ASSIGN halts only at (T-1)-(T-4) when an infeasible network is input. In this section, we show that ($\mathrm{T}-4$) always occurs earlier than ($\mathrm{T}-1$)-($\mathrm{T}-3$). That is, (T-4) in Step 3 is sufficient to terminate ASSIGN if a given network is infeasible.

For a node x and a node set $\mathrm{X} \subseteq \mathrm{V}$ define

$$
\begin{aligned}
& \operatorname{REACH}(x)=\{v \in V \mid \Pi(v, x) \neq \emptyset\} \cup\{x\}, \\
& \operatorname{OUT}(X)=\sum_{x \in X} \operatorname{OUT}(x)
\end{aligned}
$$

Let $\operatorname{SCAN}(x)$ denote the set of nodes already scanned when an unscanned node x is chosen in Step 1 of ASSIGN (in particular $x \notin \operatorname{SCAN}(x))$. At this instant, all arcs in $\operatorname{OUT}(\operatorname{SCAN}(x))$ are already assigned flows to their capacities. Since ASSIGN chooses each node x in the nondecreasing order of level(x),

$$
\operatorname{REACH}(x) \subseteq \operatorname{SCAN}(x) \cup\{x\}
$$

always holds.
For an infeasible CB network, ASSIGN halts by one of (T-1)-(T-4). We have the following properties.

Lemma 3.4 For an infeasible CB network satisfying Assumption B, ASSIGN does not halt by (T-1) or (T-2).

Proof. First assume that $\operatorname{OUT}(x)=\emptyset$ but $f_{x}^{k} \neq 0$ for some k. Since this x is a convergent node, we have $x \notin S$ holds by Assumption, and

$$
c(x)=\sum_{t^{k}=x}^{\sum} g^{k}-\sum_{a \in \operatorname{IN}(x)} c(a)=0
$$

holds. As flow values in $\operatorname{IN}(x)$ have already been determined by ASSIGN, this means

$$
\sum_{k} \sum_{a} \sum_{\operatorname{IN}(x)} f(a, k)=t_{t^{k}=x}^{\sum} g^{k} .
$$

and hence

$$
\begin{array}{ll}
\sum & \mathrm{f}_{\mathrm{x}}^{\mathrm{k}}=0 \\
\mathrm{k}
\end{array}
$$

as obvious from Step 1 of ASSIGN. Therefore, if $f_{x}^{k} \neq 0$ for

Now we assume $\mathrm{f}_{\mathrm{x}}^{\mathrm{k}}<0$ for some k and derive a contradiction. By Step $1, f_{x}^{k}<0$ is possible only if $x=t^{k}$. Also we have $\Pi\left(\mathrm{s}^{\mathrm{k}}, \mathrm{t}^{\mathrm{k}}\right) \neq \emptyset$ by Assumption B and $s^{k} \in \operatorname{REACH}(x)-\{x\} \subseteq \operatorname{SCAN}(x)$. By the mechanism of ASSIGN, all flows in $\operatorname{OUT}(\operatorname{SCAN}(x)$) have already been determined. If $f(a(u, v), k)>0$ for some $a(u, v) \in A(\operatorname{REACH}(x)-\{x\})$, this implies $\Pi\left(v, t^{k^{\prime}}\right)=\emptyset$, and ASSIGN must have halted in Step 3 by (T-4) when it has scanned node $u \in \operatorname{SCAN}(x)$. Therefore commodity k from source s^{k} passes through only nodes in REACH(x) and reaches $\operatorname{sink} t^{k}=x$. This and flow conservation imply $f_{x}^{k}=0$,
contradicting the assumption.

For two nodes x and y such that $\Pi(x, y) \neq \emptyset$, we define two directed paths from x to $y \pi_{R}(x, y)$ and $\pi_{L}(x, y)$ as follows.

$$
\begin{aligned}
\pi_{R}(x, y): & \text { Any } \operatorname{arc} a(u, v) \in \operatorname{OUT}_{j}(u) \text { in } \pi_{R}(x, y) \text { satisfies } \\
& \text { that if an arc } a(u, w) \in \operatorname{OUT}_{j}(u) \text { is to the right } \\
& \text { of } a(u, v) \text {, then } \Pi(w, y)=\emptyset .
\end{aligned}
$$

$\pi_{\mathrm{L}}(\mathrm{x}, \mathrm{y})$: Defined similarly as above by replacing "right" with "left".

Lemma 3.5 For an infeasible CB network N satisfying Assumption B , ASSIGN halts by (T-4).

Proof. If ASSIGN does not halt by (T-4), it terminate by (T-3) from Lemma 3.4. Assume (T-3) holds at $x=x^{*}$ in Step 2 of ASSIGN. From $\Delta \mathrm{c}\left(\mathrm{x}^{*}\right)=0$,

$$
\begin{equation*}
\sum_{\mathrm{k}} \mathrm{f}_{\mathrm{x}}^{\mathrm{k}}=\sum_{\mathrm{a} \in \operatorname{OUT}\left(\mathrm{x}^{*}\right)} \mathrm{c}(\mathrm{a}) \tag{3.5}
\end{equation*}
$$

holds before Step 2 is performed. First we show $j_{x} \geq 2$ for $\operatorname{OUT}_{j}(x), j=1,2, \ldots, j_{x}$. Since Step 2 is performed only if $\operatorname{OUT}\left(x^{*}\right) \neq \emptyset, \quad j_{x} * \geq 1 \quad$ clear1y holds. Assume $j_{x} *=1$. Then the condition $\mathrm{O}_{1}=\emptyset$ and $\mathrm{H}_{1} \neq \emptyset$ in (T-3) is impossible. Therefore assume $0_{1} \neq \emptyset$ and $K_{1}=\emptyset$. If $f_{x^{*}}^{k 1}>0$ for some $k l \in K_{1}$ by $H_{1} \neq \emptyset$, then $\mathrm{f}_{\mathrm{x}^{*}}^{\mathrm{k} 2}<0$ for some k 2 by $\mathrm{O}_{1} \neq \emptyset$ and (3.5). This means that

Fig. 3.2 Proof of Lemma 3.5.

ASSIGN has halted before choosing x^{*}, a contradiction. Therefore, assume $f_{x^{*}}{ }^{k}=0$ for all $k \in K_{1}$. Then $f_{x^{*}}{ }^{k 1}>0$ for some $\mathrm{k} 1 \notin \mathrm{~K}_{1}\left(\mathrm{x}^{*}\right)$ by (3.5). As $\Pi\left(\mathrm{x}^{*}, \mathrm{t}^{\mathrm{k} 1}\right)=\varnothing$, we have $\mathrm{x}^{*} \neq \mathrm{s}^{\mathrm{k} 1}$. At this instant, there exists a node v satisfying $a\left(v, x^{*}\right) \in \operatorname{IN}\left(x^{*}\right)$ and $f\left(a\left(v, x^{*}\right), k 1\right)>0$, i.e., (T-4) holds. Again ASSIGN must have halted before choosing x^{*}, a contradiction. Therefore we obtain $j_{x} * \geq 2$.

To prove the 1emma, assume that we continue Step 2 of ASSIGN for all $j=1,2, \ldots, j_{x^{*}}$ even if some j satisfying (T-3) are found. By flow conservation constrained for node x, we have some j satisfying $0_{j}=\emptyset$ and $K_{j} \neq \emptyset$ and other j satisfying $0_{j} \neq \emptyset$ and $K_{j}=\emptyset$. Assume $0_{j}=\emptyset$ and $K_{j} \neq \emptyset$ for $j=p$. See Figure 3.2. Since all flows in $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ have already been determined, $\operatorname{OUT}_{p}\left(x^{*}\right)$ is saturated and $f_{x^{*}}^{k 1}>0$ for $k 1 \in K_{p}\left(x^{*}\right)$. Here we show that source $s^{k 1}$ and sink $t^{k 1}$ are separated by an unilateral simple cut not satisfying the cut-condition. Let $a\left(x^{*}, w\right)$ and $a\left(x^{*}, z\right)$ be the leftmost and the rightmost arcs in $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$, respectively. Further 1et $a\left(w^{\prime}, x^{*}\right)$ and $a\left(z^{\prime}, x^{*}\right)$ be the arcs next to $a\left(x^{*}, w\right)$ and $a\left(x^{*}, z\right)$ in $\operatorname{IN}\left(x^{*}\right)$, respectively. (Similar argument holds even if $a\left(w^{\prime}, x^{*}\right)$ or $a\left(z^{\prime}, x^{*}\right)$ does not exist.) By Lemma 2.5, there are connected divergent sets X_{i}^{+}, $i=1,2, \ldots, i_{x^{*}}$. Without loss of generality, assume
$a\left(w^{\prime}, x^{*}\right) \in \operatorname{IN}_{\mathrm{q}}\left(\mathrm{x}^{*}\right)$ and $\mathrm{a}\left(\mathrm{z}^{\prime}, \mathrm{x}^{*}\right) \in \mathrm{IN}_{\mathrm{q}+1}\left(\mathrm{x}^{*}\right)$. Since set $\mathrm{X}_{\mathrm{q}}^{+}$is divergent, it contains $\operatorname{REACH}\left(x^{*}\right)$. Let $w^{\prime \prime} \in \operatorname{REACH}\left(w^{\prime}\right) \cap V_{B}$ be the rightmost node in the part of the boundary contained in X_{q}^{+}. Similarly, let $z^{\prime \prime} \in \operatorname{REACH}\left(z^{\prime}\right) \cap V_{B}$ be the leftmost node in the part of the boundary contained in $X_{q+1}+$. We consider the undirected path C consisting of $\pi_{L}\left(w^{\prime \prime}, x^{*}\right)$ and $\pi_{R}\left(z^{\prime \prime}, x^{*}\right)$. $\quad C$ separates the graph into two parts. Let Z^{+} denote the set consisting of the nodes in C and the nodes in the part (divided by C) not containing the end nodes of $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$. Further let $\mathrm{Z}^{-}=\mathrm{V}-\mathrm{Z}^{+}$. By the selection rule of $\mathrm{w}^{\prime \prime}$ and $z^{\prime \prime}$, there is no directed path from a node in Z^{-}to a node in C, i.e., Z^{+}is divergent. As each initial node of arc in $A\left(Z^{+}\right)$belongs to path C, we have $\left|A\left(Z^{+}\right) \cap A_{B}\right|=2$. Let $Z_{i}^{+}, \quad i=1,2, \ldots, m$, denote components of Z^{+}. By Lemma 2.4, $\left|A\left(Z_{i}^{+}\right) \cap A_{B}\right| \geq 2$ for $i=1,2, \ldots, m$. Since no arc exists between Z_{i}^{+}and $Z_{i}^{\dagger}\left(i \neq i^{\prime}\right)$, i.e., $A\left(Z_{i}^{+}\right)$and $A\left(Z_{i}^{\dagger}\right)$ are disjoint, it holds $\left|A\left(Z^{+}\right) \cap A_{B}\right| \geq 2 m$. Therefore $m=1$ and Z^{+}is connected. Similarly we may obtain from $\left|A\left(V-Z^{-}\right) \cap A_{B}\right|=\left|A\left(Z^{+}\right) \cap A_{B}\right|=2$ that Z^{-}is connected.

Now we consider the cut $\mathrm{A}\left(\mathrm{Z}^{+}\right)$. This is a unilateral simple cut as obvious from the connectivity of Z^{+}and Z^{-}. Since all initial nodes of arcs in $A\left(Z^{+}\right)$are in path C,
they are scanned and flow is already assigned to each arc in $\mathrm{A}\left(\mathrm{Z}^{+}\right)$. Here we show, for any $\mathrm{a} \in \mathrm{A}\left(\mathrm{Z}^{+}\right)$, that

$$
\begin{equation*}
f(a, k)>0 \text { then } t^{k} \in Z^{-} \tag{3.6}
\end{equation*}
$$

holds. In the case that $a \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$, we have a connected convergent set X_{p}^{-}by applying Lemma 2.5 to $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$. $\mathrm{X}_{\mathrm{p}}^{-}$ satisfies $\left\{t^{k} \mid k \in K_{p}\left(x^{*}\right)\right\} \subseteq X_{p}^{-} \cap V_{B}$ and further $X_{p}^{-} \subseteq Z^{-}$from its convergency. Then $\left\{\mathrm{t}^{\mathrm{k}} \mid \mathrm{k} \in \mathrm{K}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)\right\} \subseteq \mathrm{Z}^{-}$and (3.6) holds for $a \in \operatorname{OUT}_{p}\left(x^{*}\right)$ by the assumption $O_{p}=\emptyset$. Take $a(u, v) \in A\left(Z^{+}\right)-$ $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$, and assume $\mathrm{f}(\mathrm{a}(\mathrm{u}, \mathrm{v}), \mathrm{k})>0$ with $\mathrm{t}^{\mathrm{k}} \notin \mathrm{Z}^{-}$. Then $\Pi\left(\mathrm{v}, \mathrm{t}^{\mathrm{k}}\right)=\emptyset$ holds from $\mathrm{v} \in \mathrm{Z}^{-}, \mathrm{t}^{\mathrm{k}} \notin \mathrm{Z}^{-}$and convergency of Z^{-}, and this means that ASSIGN halts by ($\mathrm{T}-4$) when node u is chosen, contradicting that u is scanned. Therefore we obtain (3.6).

Now we show that $A\left(Z^{+}\right)$separates $\left(s^{k 1}, t^{k 1}\right)$ and does not satisfy the cut-condition. Since $A\left(Z^{+}\right)$is saturated, we have

$$
\begin{array}{cc}
\sum & \sum \tag{3.7}\\
k & a \in A\left(Z^{+}\right)
\end{array} f(a, k)=c(a)
$$

At this instant, flow $f_{x^{*}} k 1$ is not yet assigned to any arc from node x^{*}. Since no flow passes through a unilateral cut twice, we have the following from (3.6) and the definition of $f_{x^{*}}^{k 1}$.

$$
\begin{array}{lc}
\sum & \sum \tag{3.8}\\
k & a \in A\left(Z^{+}\right)
\end{array} f(a, k)+f_{x^{*}}^{k 1} \leq g\left(Z^{+}\right)
$$

By (3.7) and (3.8),

$$
r\left(Z^{+}\right)=c\left(Z^{+}\right)-g\left(Z^{+}\right) \leq-f_{x^{*}}^{\mathrm{k}}<0
$$

This shows that a unilateral simple cut $A\left(Z^{+}\right)$does not satisfy the cut-condition under the assumption that ASSIGN halts by (T-3). This, however, contradicts Lemma 2.8, and the lemma is proved.

From the above argument, we see that (T-4) in Step 3 is sufficient to terminate procedure ASSIGN if a given network is infeasible.

3.6 COMPUTATIONAL COMPLEXITY OF ASSIGN

In ASSIGN, all major operations are additions or subtractions. This implies that the integral property holds for the standard feasible flow realized by ASSIGN, i.e., flows $f(a, k)$ are always integer if all capacities $c(a)$ are nonnegative integers.

The preprocessing to check whether a CB network satisfies Assumption B or not requires $O(K|A|)$ time. The computation of $K_{j}(x)$ in Step 0 of ASSIGN is done by tracing all nodes in the decreasing order of levels (i.e., from sinks to sources). This is done in $O(K|A|)$ time. The number of operations required in Steps 1 and 2 of ASSIGN for each node x is $O(|\operatorname{OUT}(x)|+K)$. Since $\sum_{x \in V}|\operatorname{OUT}(x)|=|A|$, ASSIGN requires $O(\mathrm{~K}|\mathrm{~A}|+\mathrm{K}|\mathrm{V}|)$ time in total. Furthermore $O(|A|)=O(|V|)$ holds by the planarity of N, and the time becomes $O(K|V|)$. The required memory space is $O(K|V|)$ for storing the flows in arcs. Consequently we obtain the next theorem.

Theorem 3.1 The integral flow property holds for a capacity blanced network $N=(G=(V, E), P, g, c)$ satisfying Assumption B. Procedure ASSIGN decides whether N is feasible or not, and gives the standard feasible flow if N is feasible. The time
and space required by ASSIGN are $O(K|V|)$.

Fig. 3.3 Example of a CB network.

Example 3.1 In Figure 3.3 and Table 3.1, an example of $C B$ network with $K=7$ and its numerical results are given. ASSIGN scans the nodes in the order of $x_{1}, x_{2}, \ldots, x_{9}$ and assigns flows to arcs in the order of $a_{1}, a_{2}, \ldots, a_{14}$. The values $f(a, k), a \in A, k=1,2, \ldots, K$, in Table 3.1 are the standard feasible flows obtained by ASSIGN and $f_{x}{ }^{k}$ is the values observed immediately after Step 1 of ASSIGN. In Table 3.1, commodities in $\left\}\right.$ of $K_{j}(x)$ are ordered from left to right.

To compare the computation speeds of the simplex method for general linear programming and algorithm ASSIGN, [ITO 85] solved randomly generated CB networks. The size of problems, $\mathrm{L}=\mathrm{K}|\mathrm{A}|$, varies from 30 to 60 . The computational results confirm that ASSIGN works much faster than the simplex method. The speed of ASSIGN is roughly $0.009 * \mathrm{~L}^{2}$ times faster than the simplex method.

Talbe 3.1 Values of $K_{j}(x), f_{x}^{k}$ and $f(a, k)$.

3.7 CONCLUSION

In this chapter, we introduced the concept of capacity balance. Based on it, we defined class CB of multicommodity flow problems for class $C B$ in directed networks, and presented an efficient graph theoretic algorithm for it. In the following chapter, we will discuss an extension of class CB to a class of networks with capacity unbalanced nodes.

CHAPTER 4

ALGORITHM MATE1 FOR TESTING

FEASIBLLITY OF A CS NETWORK

4.1 INTRODUCTION

In this chapter, we introduce class CS (capacity semibalanced networks), an extension of $C B$, and show that a $C S$ network can be reduced to a CB network. Therefore, CS also has a polynomial time graph theoretic algorithm and the integral flow property [NAGA 87a]. This class contains certain multi-item multi-stage production scheduling problem [IBAR 82] as a special case, indicating its importance in practical applications.

4.2 DEFINITION OF DUMMY FLOW

When there is some node x with $\Delta c(x) \neq 0$, algorithm ASSIGN does not work correctly. To handle such nodes, we first remove all capacity unbalanced nodes by supplying a flow of the new commodity d to each unbalanced node, the amount of which is equal to the residue of capacity. This defines the multicommodity flow problem with $K+1$ commodoties (i.e., $k=1, \ldots, \mathrm{~K}, \mathrm{~d}$) by. adding sources and sinks of commodity d to the capacity unbalanced nodes in N .

Definition 4.1 For a network N, we call the following flows of new commodity d, dummy flows. If $\Delta c(x)>0$, then we put a dummy source s_{x}^{d} at node x (i.e., $s_{x}^{d}=x$), and let $g_{x}^{d}=\Delta c(x)>0$ denote the supply amount of s_{x}^{d}. Similarly if $\Delta c(x)<0$, then we put a dummy sink t_{x}^{d} at node x, and let $g_{x}^{d}=-\Delta c(x)>0$. Let
g^{d} : the set of g_{x}^{d}.
S^{d} : the set of all s_{x}^{d} 's. T^{d} : the set of all t_{x}^{d} 's
$P^{d}:=\left(S^{d}, T^{d}\right), N^{d}:=\left(G, P, P^{d}, g, g^{d}, c\right)$.
The flows of d in N also satisfy constraints (1.5) and (1.6).

Lemma 4.1 The multicommodity flow problem in N^{d} with commodities $k=1, \ldots, k, d$ is feasible if and only if the original problem in N with commodities $k=1, \ldots, K$ is feasible.

Proof. Obvious from (1.5),(1.6) and Definition 4.1.

It is obvious that the capacity constraint is satisfied on1y if

$$
\sum_{k=1, \ldots, k, d} f(a, k)=c(a)
$$

holds. In other words, $\Delta c(x)=0$ holds for all $x \in V$ in
the resulting network N^{d}. Note that commmodity d may have more than one source and/or one sink, and (3) of Assumption A does not generally hold.

If a feasible solution f to N^{d} has a positive e such that $f(a, d) \geq e(>0)$, $a \in A(\pi)$, for some $\pi \in \Pi\left(s_{x}^{d}, t_{y}^{d}\right)$, then this flow from s_{x}^{d} to t_{y}^{d} may be regarded as the flow of a new $\mathrm{K}+1$-th commodity. If all dummy flows can be decomposed into new commodities by repeating this operation, then the resulting network becomes CB. The feasibility of the resulting network may be tested by ASSIGN. As such a reducible class, we consider the following CS (capacity semibalanced networks).

4.3 CS NETWORKS

Definition 4.2 We call that a multicommodity flow problem $N=(G, P, g, c)$ belongs to class $C S$ if N satisfies the following conditions.
(1) N satisfies (1)-(3) of Assumption A.
(2) Let $S^{d}=\{x \mid \Delta c(x)>0\}, T^{d}=\{x \mid \Delta c(x)<0\}$. Then V can be divided into two connected sets X and $V-X$ such that $S^{d} \subseteq X \cap V_{B}$ and $T^{d} \subseteq(V-X) \cap V_{B}$ (see Figure 4.1).

As an example of CS, we present a certain multi-item multi-stage production scheduling problem in Figure 4.2. In this network, a slanting arc that advances one stage in each period represents the production in the corresponding stage. Such an arc is given a capacity with finite value. A vertical arc that advances one period represents the inventory and its capacity is considered to be infinite. From the nodes marked with "s", materials of item k are supplied, and finished items k are shipped from the nodes marked with " t ". Since the source-sink pair of each product is specified, this may be reguarded as a multicommodity flow problem. This network does not satisfy the condition of capacity balance. We can, nevertheless, make all node except nodes marked "s" or " t " balanced without loss of

Fig. 4.1 Illustration of a CS network.

Fig. 4.2 Multi-item multi-stage production scheduling problem.
feasibility, by replacing (infinite valued) capacities of all inventory arcs with some capacities of sufficiently large finite values. As a result, a node x with $\Delta c(x) \neq 0$ exists only on the boundary and it is easily shown that a node x with $\Delta c(x)>0(\Delta c(x)<0)$ must be a node marked " s " ("t"), i.e., (2) of Definition 4.2 holds. Thus the network in Figure 4.2 may be considered as CS.

In order to construct an algorithm for solving a CS network, we shall derive some properties of a network in class CS.

From the definition of $\Delta c(x)$, any CS network clearly satisfies

$$
\sum_{x \in S^{d}} g_{x}^{d}-\sum_{x \in T^{d}} g_{x}^{d}=0
$$

We define the left-right relation between nodes in $S^{d}\left(T^{d}\right)$ on the basis of (2) of Definition 4.2 as follows: For the set X in (2) of Definition 4.2, $s_{x}{ }_{1}^{d}$ is to the left of $s_{x}{ }_{2}^{d}$ if we visit $s_{x}{ }_{1}^{d}$ before $s_{x}{ }^{d}$ when we go round the boundary of the part contained in $X \cap V_{B}$ in the clockwise manner. See Figure 4.1. Similarly we define for T^{d} by using $(V-X) \cap V_{B}$. In Figure 4.1, $t_{y}{ }_{1}^{d}$ is to the left of $t_{y} \frac{d}{2}$.

Lemma 4.2 Let N^{d} be the network constructed from a CS network by Definition 4.2. If N^{d} is feasible, the
rightmost node (say $\mathrm{s}_{\mathrm{x}}^{\mathrm{d}}$) in S^{d} and the leftmost node (say $\mathrm{t}_{\mathrm{y}}^{\mathrm{d}}$) satisfy the following: $\Pi\left(s_{x}^{d}, t_{y}^{d}\right) \neq \emptyset$ and there exist $\pi_{1}, \pi_{2}, \ldots, \pi_{m} \in \Pi\left(s_{x}^{d}, t_{y}^{d}\right)$ and $e_{i}(i=1,2, \ldots, m)$ such that

$$
\begin{aligned}
& \sum_{i=1}^{m} e_{i}=\min \left\{g_{x}^{d}, g_{y}^{d}\right\} \text {, for each arc } a \in A\left(\pi_{i}\right), \\
& \sum_{i \mid a}^{\sum} A\left(\pi_{i}\right) \\
& \text { (summation runs over all } i \text { satisfying } a \in A\left(\pi_{i}\right) \text {) }
\end{aligned}
$$

Proof. For any feasiblbe solution f to N^{d}, let

$$
\Pi^{d}(x, y)=\{\pi \in \Pi(x, y) \mid f(a, d)>0 \text { for } a \in A(\pi)\}
$$

For each s_{x}^{d} and t_{y}^{d}, there exist some $t_{v}^{d} \in T^{d}$ and $s_{w}^{d} \in S^{d}$ satisfying $\Pi\left(\mathrm{s}_{\mathrm{x}}^{\mathrm{d}}, \mathrm{t}_{\mathrm{v}}^{\mathrm{d}}\right) \neq \emptyset$ and $\Pi\left(\mathrm{s}_{\mathrm{w}}^{\mathrm{d}}, \mathrm{t}_{\mathrm{y}}^{\mathrm{d}}\right) \neq \emptyset$. First, $\mathrm{t}_{\mathrm{v}}^{\mathrm{d}}=\mathrm{t}_{\mathrm{y}}^{\mathrm{d}}$ or $s_{w}^{d}=s_{x}^{d}$ implies $\Pi^{d}\left(s_{x}^{d}, t_{y}^{d}\right) \neq \emptyset$. On the other hand, if $\mathrm{t}_{\mathrm{v}}^{\mathrm{d}} \neq \mathrm{t}_{\mathrm{y}}^{\mathrm{d}}$ and $s_{w}^{d} \neq s_{x}^{d}$, then since t_{v}^{d} is to the right of t_{y}^{d} and s_{w}^{d} is to the left of s_{x}^{d}, any $\pi_{a} \in \Pi^{d}\left(s_{x}^{d}, t_{v}^{d}\right) \neq \emptyset$ and $\pi_{b} \in \Pi^{d}\left(s_{w}^{d}, t_{y}^{d}\right) \neq \emptyset$ have a common node z by the planarity of G. Thus, from $\Pi\left(s_{x}^{d}, z\right) \neq \emptyset$ and $\Pi\left(z, t_{y}^{d}\right) \neq \emptyset, \quad \Pi^{d}\left(s_{x}^{d}, t_{y}^{d}\right) \neq \emptyset$ follows.

Here we choose a $\pi_{1} \in \Pi^{d}\left(s_{x}^{d}, t_{y}^{d}\right)$ and 1et $e_{1}=\min \left\{f(a, d) \mid a \in A\left(\pi_{1}\right)\right\} . \quad$ Clearly $\quad e_{1} \leq \min \left\{g_{x}^{d}, g_{y}^{d}\right\} . \quad$ If $e_{1}=\min \left\{g_{x}^{d}, g_{y}^{d}\right\}$ then the lemma is shown. If $e_{1}<\min \left\{g_{x}^{d}, g_{y}^{d}\right\}$ then we consider the network $\tilde{N}^{d}=\left(G, P, P^{d}, g, \tilde{g}^{d}, \tilde{c}\right)$ defined by

$$
\begin{array}{ll}
\tilde{c}(a):=c(a)-e_{1}, & a \in A\left(\pi_{1}\right) \\
\tilde{c}(a):=c(a), & a \in A\left(\pi_{1}\right) \\
\tilde{f}(a, d):=f(a, d)-e_{1}, & a \in A\left(\pi_{1}\right) \\
\tilde{f}(a, d):=f(a, d), & a \notin A\left(\pi_{1}\right) \\
\tilde{g}_{X}^{d}:=g_{X}^{d}-e_{1}, \tilde{g}_{y}^{d}:=g_{y}^{d}-e_{1}, \\
\tilde{g}_{W}^{d}:=g_{W}^{d} \quad w \neq x, y .
\end{array}
$$

Obviously \tilde{f} is feasible to $\tilde{\mathrm{N}}^{\mathrm{d}}$. Then for $\tilde{\Pi}^{d}(x, y) \triangleq\{\pi \in \Pi(x, y) \mid \tilde{f}(a, d)>0$ for $a \in A(\pi)\}$, we get $\tilde{\Pi}^{d}\left(s_{x}^{d}, t_{y}^{d}\right) \neq \emptyset$ from $\min \left\{\tilde{g}_{x}^{d}, \tilde{g}_{y}^{d}\right\}>0$ in the same manner as above. Now we choose a $\pi_{2} \in \tilde{\Pi}^{d}\left(s_{x}^{d}, t_{y}^{d}\right)$ and repeat the same operation. As long as min $\left\{\tilde{\mathrm{g}}_{\mathrm{x}}^{\mathrm{d}}, \tilde{g}_{y}^{d}\right\}>0$, this repetition can be continued. Since $\min \left\{\tilde{g}_{x}^{d}, \tilde{g}_{y}^{d}\right\}$ must be reduced at least by I at each iteration. $\tilde{g}_{\mathrm{x}}^{\mathrm{d}}$ or $\tilde{g}_{\mathrm{y}}^{\mathrm{d}}$ must becomes 0 after $m(<\infty)$ iterations, and we obtain $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$ and $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{m}}$ satisfying the lemma's statement. $\quad \square$

4.4 ALGORITHM MATE1

For a CS network $\mathrm{N}^{\mathrm{d}}=\left(\mathrm{G}, \mathrm{P}, \mathrm{P}^{\mathrm{d}}, \mathrm{g}, \mathrm{g}^{\mathrm{d}}, \mathrm{c}\right)$ with commodities $k=1,2, \ldots, \mathrm{~K}$ and d, Lemma 4.2 asserts that N^{d} can be reduced to a CB network by applying the following procedure NEW$\operatorname{ITEM}\left(s_{x}^{d}, t_{y}^{d}\right)$ to the the rightmost node s_{x}^{d} in S^{d} and the leftmost node $\mathrm{t}_{\mathrm{y}}^{\mathrm{d}}$ in T^{d}.

Procedure NEW-TTEM ($s_{\mathbf{x}}^{\mathrm{d}}, \mathrm{t}_{\mathbf{y}}^{\mathrm{d}}$)

$$
\begin{aligned}
& \mathrm{e}:=\min \left\{s_{x}^{d}, \mathrm{t}_{y}^{\mathrm{d}}\right\} ; \\
& \mathrm{s}^{\mathrm{K}+1}:=s_{\mathrm{x}}^{\mathrm{d}} ; \mathrm{t}^{\mathrm{K}+1}:=\mathrm{t}_{\mathrm{y}}^{\mathrm{d}} ; \mathrm{g}^{\mathrm{K}+1}:=\mathrm{e} ; \\
& \mathrm{S}:=\mathrm{S} \cup\left\{\mathrm{~s}^{\mathrm{K}+1}\right\} ; \mathrm{T}:=\mathrm{T} \cup\left\{\mathrm{t}^{\mathrm{K}+1}\right\} ; \\
& \mathrm{P}:=\mathrm{P} \cup\left(\mathrm{~s}^{\mathrm{K}+1}, \mathrm{t}^{\mathrm{K}+1}\right) ; \\
& \mathrm{g}_{\mathrm{x}}^{\mathrm{d}}:=\mathrm{g}_{\mathrm{x}}^{\mathrm{d}}-\mathrm{e} ; \quad \mathrm{g}_{\mathrm{y}}^{\mathrm{d}}:=\mathrm{g}_{\mathrm{y}}^{\mathrm{d}}-\mathrm{e} ; \\
& \mathrm{S}^{\mathrm{d}}:=\mathrm{S}^{\mathrm{d}}-\left\{\mathrm{s}_{\mathrm{x}}{ }^{d}\right\}, \text { if } \mathrm{g}_{\mathrm{x}}^{\mathrm{d}}=0 ; \\
& \mathrm{T}^{\mathrm{d}}:=T^{\mathrm{d}}-\left\{\mathrm{t}_{\mathrm{y}}{ }^{d}\right\}, \text { if } \mathrm{g}_{\mathrm{y}}^{\mathrm{d}}=0 .
\end{aligned}
$$

By repeating this procedure, a CS network can be reduced to a CB network.

Procedure MATE1

Input: A CS network $\mathrm{N}=(\mathrm{G}, \mathrm{P}, \mathrm{g}, \mathrm{c})$ satisfying Definition 4.2, where $g=\left\{g^{1}, g^{2}, \ldots, g^{K}\right\}$.
Output: A CB network $\tilde{N}=(G, \tilde{P}, \tilde{g}, c)$ that is feasible if and only if so is N, where $\overline{\mathrm{g}}=\left\{\mathrm{g}^{1}, \mathrm{~g}^{2}, \ldots, \mathrm{~g}^{\mathrm{K}}, \ldots, \mathrm{g}^{\tilde{\mathrm{K}}}\right.$.

0 . Construct the network $N^{d}=\left(G, P, P^{d}, g, g^{d}, c\right)$ with commodities $\mathrm{k}=1,2, \ldots, \mathrm{~K}, \mathrm{~d}$ according to Definition 4.1.

1. If $\mathrm{P}^{\mathrm{d}}=\emptyset$, then let $\tilde{\mathrm{P}}:=\mathrm{P} \tilde{\mathrm{K}}:=\mathrm{K}$ and halt.
2. Apply procedure $\operatorname{NEW}-\operatorname{ITEM}\left(\mathrm{s}_{\mathrm{x}}^{\mathrm{d}}, \mathrm{t}_{\mathrm{y}}^{\mathrm{d}}\right)$ to the rightmost node $\mathrm{s}_{\mathrm{x}}^{\mathrm{d}}$ in S^{d} and the leftmost node t_{y}^{d} in T^{d}. Let $K:=K+1$ and return to 1 .

Since iterations of Step 2 in MATE1 is at most $\left|S^{d}\right|$ $+\left|\mathrm{T}^{\mathrm{d}}\right|\left(\leq\left|\mathrm{V}_{\mathrm{B}}\right|\right)$, the required time of MATE1 is $O\left(\left|\mathrm{~V}_{\mathrm{B}}\right|\right)$. The number of commodities generated by MATEl is also $O\left(\left|V_{B}\right|\right)$.

Theorem 4.1 If a CS network $N=(G, P, g, c)$ satisfying Definition 4.2 is feasible, then N has a feasible flow with integral property. Procedure MATE1 and ASSIGN test its feasibility correct1y. The time and space required by MATE1 and ASSIGN are $O\left(\left(K+\left|V_{B}\right|\right)|V|\right)$.

Proof. To show the theorem, reduce N to a CB network by MATE1 and app1y ASSIGN. Because this calculation needs on1y addition and subtraction, the integral flow property holds.

The resulting $C B$ network with $O\left(K+\left|V_{B}\right|\right)$ commodities clearly shows the required time and space of the theorem. \square

Example 4.1 We present a CS network in Figure 4.3. Here, $S^{d}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}, \mathrm{T}^{\mathrm{d}}=\left\{\mathrm{x}_{7}, \mathrm{x}_{8}\right\}$. Applying MATE1 to this network, dummy sources $s_{x} \frac{d}{1}, s_{x} \frac{d}{3}, s_{x} \frac{d}{5}$ and dummy sinks $t_{x} \frac{d}{7}, t_{x 8}{ }^{d}$ are first created by Definition 4.1 (where $g_{x}{ }^{d}=g_{x}{ }_{3}^{d}=g_{x}{ }_{5}^{d}=g_{x} \frac{d}{7}=10$, $g_{x}{ }_{8}^{d}=20$), and P^{d} is decomposed into source-sink pairs $\left(x_{5}, x_{7}\right),\left(x_{3}, x_{8}\right),\left(x_{1}, x_{8}\right)$ of new commodities. This completes the reducton to $C B$ network. The obtained $C B$ network is shown in Figure 3.3, and its feasibility can be tested by ASSIGN.

$$
\begin{aligned}
& g^{1}=20, g^{k}=10(k=2,3,4,5,6,7) \\
& \text { capacity: c }\left(a_{1}\right)=20(i=3,6,9,13) \\
& c\left(a_{i}\right)=10(i=1,2,4,5,7,8,10,11, \\
& 12,14)
\end{aligned}
$$

Fig. 4.3 Example of a CS network.

4.5 CONCLUSION

In this chapter, by introducing the concept of dummy flows, we showed that a network in class CS can be reduced to a network in class CB, and develpoed an efficient graph theoretic algorithm for CS. Another class that is also reducible to class CB by a similar method will be discussed in the next chapter.

CHAPTER 5

ALGORITHM MATE2 FOR TESTING

FEASIBILITY OF A CU NEIWORK

5.1 INTRODUCTION

In this chapter, we introduce class CU (capacity semibalanced unilateral networks) as another class reducible to $C B$, and develop $O\left(|V|^{3}\right)$ time algorithm that reduces $C U$ to CB. In the next chapter, it will be shown that the max-flow min-cut theorem holds for class CB and CS, but CU does not have this property. In this sence, class CU is theoretically interesting because it can still be solved graph theoretically in polynomial time [NAGA 87b]. The multi-item multi-stage production scheduling problem [IBAR 82] is also a special case of class CU , and it indicates its importance in practical applications.

In the subsequent discussion, we solve two examples of CU network N_{A} and N_{B}, i11ustrated in Figure 5.1 and 5.2, respectively. The network N_{B} is presented by Kennington [KENN 78] as a counterexample to the max-f1ow min-cut theorem.

Fig. 5.1 CU network N_{A}.

Fig. 5.2 CU מetwork N_{B}.

5.2 CU NETWORKS

We define the unilaterality of a node in a network satisfying Assumption A as follows. Consider $I N_{i}(x), i=1$, $2, \ldots, i_{x}$, and $\operatorname{OUT}_{j}(x), j=1,2, \ldots, j_{x}$ defined in Chapter 2. Here, a node x is called unilateral if $i_{x} \leq 1$ and $j_{x} \leq 1$, and semi-unilateral if $i_{x}{ }^{*} j_{x}=2$. Note that $i_{x} \neq j_{x}$ occurs only for node x in the boundary. In Figure 5.1, node s^{6} is semiunilateral and other nodes are all unilateral. Further, if arcs in $\operatorname{OUT}_{j}(x)$ are $a_{1}, a_{2}, \ldots, a_{m}$ (aranged in the clockwise manner), we say that a_{i} is to the left of a_{j} for $i<j$.

Definition 5.1 Multicommodity flow problem $N=(G, P, g, c)$ belongs to class $C U$ if N satisfies the following conditions.
(1) N satisfies Assumption A.
(2) A11 node in G are unilateral or semi-unilateral.
(3) Let $S^{d}=\{x \mid \Delta c(x)>0\}, T^{d}=\{x \mid \Delta c(x)<0\}$. Then all nodes in $S^{d} \cup T^{d} \subseteq V_{B}$ are unilateral.
(4) $\mathrm{S}^{\mathrm{d}} \cup \mathrm{T}^{\mathrm{d}} \subseteq \mathrm{V}_{\mathrm{B}} . \quad \square$

For example, N_{A} in Figure 5.1 and N_{B} in Figure 5.2 are CU networks.

To test the feasiblity of a CU network and to find a
feasible flow if the network is feasible, we try to reduce a CU network to a CB network. For this purpose, we introduce dummy flow according to Definition 4.1. For N_{A} in Figure 5.1 , we get $S^{d}=\left\{s^{1}, t^{9}, s^{2}, s^{3}, s^{4}, s^{5}\right\}$, $T^{d}=\left\{t^{4}, t^{5}, t^{7}, t^{1}, s^{7}\right\}$. In Figure 5.1, (O) and repersent a dummy source and a dummy sink, respectively.

By Lemma 4.1, the multicommodity flow problem in $\mathrm{N}^{\mathrm{d}}=$ ($G, \mathrm{P}, \mathrm{P}^{\mathrm{d}}, \mathrm{g}, \mathrm{g}^{\mathrm{d}}, \mathrm{c}$), with commodities $\mathrm{k}=1, \ldots, \mathrm{~K}, \mathrm{~d}$, is feasible if and only if the original problem in $N=(G, P, g, c)$ with commodities $k=1, \ldots, K$ is feasible.

Note that commmodity d may have more than one source and/or one sink, and hence (3) of Assumption A does not generally hold.

If a feasible solution f to N^{d} has a positive e such that $f(a, d) \geq e(>0), a \in A(\pi)$, for some $\pi \in \Pi\left(s_{x}^{d}, t_{y}^{d}\right)$, then this flow from s_{x}^{d} to t_{y}^{d} may be regarded as the flow of a new K+1-th commodity. If all dummy flows can be decomposed to new commodities by repeating this operation, then the resulting network becomes CB. The feasibility of the resulting network may be tested by ASSIGN. It will be shown that CU (capacity semi-balanced unilateral networks) is also such a reducible class.

Here, we introduce a unilateral simple cut. For nodes $x, y \in V$ with $\Pi(x, y)=\emptyset$, 1et X^{\prime} be the set of nodes reachab1e from x. Clearly X^{\prime} may be obtained by computing a maximal directed tree with root x. Time required for this computaton is $O(|A|)$. $V-X^{\prime}$ is composed of connected divergent sets $X_{k}, k=1,2, \ldots, m$. No arcs exist between distinct sets X_{k}, and some arcs from X_{k} to X^{\prime} exist between X_{k} and X^{\prime}. Let X_{k}, denote the X_{k} including y, and $X^{-}(x ; y)$ denote the connected convergent set $\mathrm{V}-\mathrm{X}_{\mathrm{k}}$. . Similarly let $\mathrm{X}^{\prime \prime}$ be the set of nodes reachable to y, where $\Pi(x, y)=\varnothing$. Among the components in $\mathrm{V}-\mathrm{X}^{\prime \prime}$, 1et $\mathrm{X}^{\prime \prime}{ }_{\mathrm{k}}$ be the connected convergent set containing y, and $X^{+}(y ; x)$ denote $V-X_{k}{ }_{k}$.

For example, if $\mathrm{x}=\mathrm{s}^{1}, \mathrm{y}=\mathrm{s}^{4}$ in Figure 5.1, then we get

$$
\begin{aligned}
& X^{\prime}=\left\{s^{1}, t^{4}, t^{9}, t^{5}, t^{2}, t^{7}, t^{1}, s^{6}, s^{7}, s^{8}, s^{9}, s^{10}, x^{\prime}, y^{\prime}, z^{\prime}\right\}, \\
& X_{1}=\left\{s^{2}\right\}, X_{2}=\left\{s^{3}\right\}, X_{3}=\left\{s^{4}, w^{\prime}\right\}, X_{4}=\left\{s^{5}\right\}, X^{-}\left(s^{1} ; s^{4}\right)=V-X_{3} .
\end{aligned}
$$

If $\mathrm{y}=\mathrm{t}^{7}, \mathrm{x}=\mathrm{s}^{2}$ in Figure 5.1, then we have

$$
\begin{aligned}
& X^{\prime \prime}=\left\{t^{7}, s^{3}, s^{4}, s^{5}, s^{6}, s^{7}, s^{1}, x^{\prime}, y^{\prime}, w^{\prime}, s^{9}, s^{10}\right\}, \\
& X^{\prime \prime}{ }_{1}=\left\{t^{4}, t^{9}, t^{5}, s^{2}, t^{2}, s^{8}\right\}, X^{\prime \prime}=\left\{t^{1}, z^{\prime}\right\} \\
& X^{+}\left(t^{7} ; s^{2}\right)=V-X_{1}^{\prime \prime} .
\end{aligned}
$$

Lemma 5.1 If a directed graph is connected (neglecting the directions of arcs), then for any pair of nodes $x, y \in V$ with $\Pi(x, y)=\emptyset$, the above sets $X^{-}(x ; y)$ and $X^{+}(y ; x)$ satisfy the
following.
$\Pi(x, v) \neq \emptyset$ for all nodes v with $a(u, v) \in A\left(V-X^{-}(x ; y)\right)$.
II $(u, y) \neq \emptyset$ for all nodes u with $a(u, v) \in A\left(X^{+}(y ; x)\right)$.
Furthermore, $A\left(V-X^{-}(x ; y)\right)$ and $A\left(X^{+}(y ; x)\right)$ are unilateral simple cuts respectively.

Proof. Obvious from the definition of $\mathrm{X}^{+}(\mathrm{y} ; \mathrm{x})$ and $X^{-}(x ; y) . \square$

In Sections 5.3-5.5, we clarify the properties of CU. Then in Section 5.6 , we show that CU can be reduced to CB by algorithm MATE2.

5.3 A POLE OF DUMMY FLOWS

For two sets of nodes X and Y with $X \cap Y=\emptyset$, we define

$$
\begin{equation*}
d(X)=\quad \sum_{s_{x}^{d} \in X} g_{x}^{d}-\quad \sum_{y}^{d} \in g_{y}^{d} \tag{5.1}
\end{equation*}
$$

If a network is feasible, the cut-condition:

$$
r(X) \geq 0 \quad \text { for } \quad \text { all } X \subseteq V
$$

clearly holds. Furthermore, for any connected divergent set X , the following condition holds.

$$
d(X) \geq 0
$$

A boundary line refers to an undirected path representing a part of the boundary. A boundary line from node x to node y refers to the undirected path when we go around the boundary from x to y in the clockwise manner. Note that $S^{d} 1 T^{d} \subseteq V_{B}$ holds by Definition 5.1. Then N^{d} with $S^{d} \cup T^{d} \neq \emptyset$ has two nodes $x=s_{x}^{d} \in S^{d}$ and $y=t_{y}^{d} \in T^{d}$, such that no other dummy sources and sinks exist in the boundary line from x to y (or y to x). We call such (s_{x}^{d}, t_{y}^{d}) a neighbouring pair. If a neighbouring pair (x, y) satisfies $\Pi(x, y) \neq \emptyset$, then (x, y) is called a pole. In Figure 5.1, (s^{1}, s^{7}) is a pole, and $\left(s^{5}, s^{7}\right)$ is a neighbouring pair (but not a pole).

Lemma 5.2 If G of $N^{d}=\left(G, P, P^{d}, g, g^{d}, c\right)$ is a connected (neglecting the directions of arcs) planar directed graph and $\emptyset \neq S^{d} \cup T^{d} \subseteq V_{B}$, then a feasible N^{d} has at least one pole.

Proof. Assume that N^{d} has no pole. From $\left|S^{d}\right| \geq 1$ and $\left|\mathrm{T}^{\mathrm{d}}\right| \geq 1$, there exists a neighbouring pair $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with $\mathrm{x}_{1} \in \mathrm{~S}^{\mathrm{d}}, \mathrm{y}_{1} \in \mathrm{~T}^{\mathrm{d}}$. Without loss of generality, we assume that there are no dummy sources and sinks in the boundary line from x to y. Since $\Pi\left(x_{1}, y_{1}\right)=\emptyset$ from the assumption, $V_{1}^{*}=X^{+}\left(y_{1} ; x_{1}\right)$ exists by Lemma 5.1, where $y_{1} \in V_{1}^{*}$ and $x_{1} \notin V_{1}^{*}$. From the feasibility of $N^{d}, d\left(V_{1}^{*}\right) \geq 0$ holds, and this means $V_{1}^{*} \cap S^{d} \not \ddagger \emptyset$. Here, let x_{2} be the node in $V_{1}^{*} \cap S^{d}$ nearest to y_{1} in the boundary line. If there exsits another dummy sink in the boundary line from y_{1} to x_{2}, let y_{2} be the dummy sink nearest to x_{2}. Ohterwise, let $y_{2}=y_{1}$. See Figure 5.3. Here $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is a neighbouring pair, and $\pi\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\varnothing$ holds by assumption. Then $V_{2}^{*}=X^{-}\left(x_{2} ; y_{2}\right)$ exists by Lemma 5.1, where $x_{2} \in V_{2}^{*}, y_{2} \notin V_{2}^{*}$. Now we show $V_{2}^{*} \subsetneq V_{1}^{*}$ as follows. Assume $V_{2}^{*}-V_{1}^{*} \not \emptyset$, then there exists an arc $a(u, v) \in A\left(V_{1}^{*}\right)$ satisfying $u \in V_{1}^{*} \cap V_{2}^{*}$ and $v \in V_{1}^{*}-V_{2}^{*}$ from the divergency of V_{1}^{*}. Apply Lemma 5.1 to V_{1}^{*}, and we have $\Pi\left(u, y_{1}\right) \neq \emptyset$ for the above node u. This, however, contradicts the convergency of V_{2}^{*} by $u \in V_{2}^{*}$. Then we get $V_{2}^{*}-V_{1}^{*}=\emptyset$, and $V_{2}^{*} \varsubsetneqq V_{1}^{*}$ holds from $y_{2} \in V_{1}^{*}, y_{2} \notin V_{2}^{*}$. We may define the neighbouring pair

Fig. 5.3 Proof of Lemma 5.2.
$\left(x_{i}, y_{i}\right)$ in the same way. This argument cannot be repeated indefinitely, however, because V is finite and $V_{i+1}^{*} \varsubsetneqq V_{i}^{*}$ always holds. This proves the lemma. \square

Since the proof of Lemma 5.2 does not need (2) of Assumption A, we obtain the following corollary.

Corollary 5.1 Even if G has divergent and/or convergent nodes outside of the boundary in Lemma 5.2, a feasible N^{d} has at least one pole.

5.4 STRUCTURE OF A CU NETWORK

Take two directed paths from x to $y, \pi_{R}(x, y)$ and $\pi_{L}(x, y)$, defined in Section 3.5. In Figure 5.1, for example, we get $\pi_{R}\left(s^{1}, t^{4}\right): s^{1} \rightarrow x^{\prime} \rightarrow y^{\prime} \rightarrow s^{9} \rightarrow s^{8} \rightarrow t^{4}$, and $\pi_{L}\left(s^{4}, t^{7}\right): s^{4} \rightarrow w^{\prime} \rightarrow y^{\prime} \rightarrow s^{9} \rightarrow s^{10} \rightarrow t^{7}$.

If four nodes x, y, w, z are located in the boundary clockwisely in this order and they satisfy $\Pi(x, y) \neq \emptyset$, $\Pi(\mathrm{x}, \mathrm{z}) \neq \emptyset, \quad \Pi(\mathrm{w}, \mathrm{y}) \neq \emptyset, \quad \Pi(\mathrm{w}, \mathrm{z}) \neq \emptyset, \quad$ as illustrated in Figure 5.4, then we call these node are 4 -reachable. For example, $s^{1}, t^{4}, s^{4}, t^{1}$ in Figure 5.1 are 4 -reachable.

Lemma 5.3 In a CU network, if four unilateral nodes x, y, w, z are 4-reachable, then $\pi_{R}(x, y)$ and $\pi_{R}(w, z)$ have no node in common. Similarly for $\pi_{L}(x, z)$ and $\pi_{L}(w, y)$. Let x^{\prime} be the node farthest from x among the nodes common to $\pi_{R}(x, y)$ and $\pi_{L}(x, z)$. We define $y^{\prime}, w^{\prime}, z^{\prime}$ similarly. See Figure 5.4. Then the cycle C (neglecting the directions of arcs) consisting of $\pi_{R}\left(x^{\prime}, y^{\prime}\right), \quad \pi_{R}\left(w^{\prime}, z^{\prime}\right), \pi_{L}\left(x^{\prime}, z^{\prime}\right)$ and $\pi_{L}\left(w^{\prime}, y^{\prime}\right)$ is a window in G. Furthermore, V can be divided into two connected divergent sets $\mathrm{X}^{+}, \mathrm{W}^{+}$and two connected convergent sets Y^{-}, Z^{-}satsfying $x \in X^{+}, y \in Y^{-}, w \in W^{+}, z \in Z^{-}$.

Proof. Assume that a path $\pi_{1} \in \Pi(x, y)$ and a path $\pi_{2} \in \Pi(w, z)$ have a common node u. This node u is unique,

Fig. 5.4 Definition of 4-alternating partition.
since otherwise a directed cycle exists. Node u satisfies $i_{u} \geq 2$ and $j_{u} \geq 2$ as shown in Figure 5.4 contradicting the unilaterality of the graph. Therefore $\pi_{R}(x, y)$ and $\pi_{R}(w, z)$ have no nodes in common (similarly for $\pi_{L}(x, z)$ and $\left.\pi_{\mathrm{L}}(\mathrm{w}, \mathrm{y})\right)$. The cycle C (neglecting the directions of arcs) consisting of $\pi_{R}\left(x^{\prime}, y^{\prime}\right), \pi_{\left.R^{(} w^{\prime}, z^{\prime}\right),} \pi_{L}\left(x^{\prime}, z^{\prime}\right)$ and $\pi_{L}\left(w^{\prime}, y^{\prime}\right)$ is simple by the selection rule of $x^{\prime}, y^{\prime}, w^{\prime}$ and z^{\prime}. We show that cycle C is a window in G. If C is not a window, then the area surrounded by C contains an arc $a\left(u_{0}, v_{0}\right)$. This node v_{0} is reachable to a node u_{1} in V_{B}, otherwise the set of nodes reachable from v_{0} is a connected convergent set with no nodes in V_{B} and contradicts Lemma 2.3. Similarly u_{0} is reachable from a node u_{2} in V_{B}. The path from u_{2} to u_{1} through $a\left(u_{0}, v_{0}\right)$ has nodes $u^{\prime}{ }_{1}$ and $u^{\prime}{ }_{2}$ that belong to C, by planarity of G. Therefore there exists a simple path π_{0} from $u^{\prime} 2$ to $u^{\prime}{ }_{1}$ through $a\left(u_{0}, v_{0}\right)$. Without loss of generality, we assume that $u^{\prime} 2$ is in $\pi_{L}\left(x^{\prime}, z^{\prime}\right)$ (similarly for the case $u^{\prime} I_{1}$ is in the other path except $\left.\pi_{L}\left(x^{\prime}, z^{\prime}\right)\right)$. If $u^{\prime}{ }_{1}$ is in $\pi_{L}\left(w^{\prime}, y^{\prime}\right)$, then the path consisting of $\left.\pi_{L}\left(x, u^{\prime}\right)^{\prime}\right), \pi_{0}$ and $\pi_{L}\left(u^{\prime}{ }_{1}, y^{\prime}\right)$ contains an arc located to the right of the first arc in $\pi_{R}\left(x^{\prime}, y^{\prime}\right)$. This contradicts the definition of $\pi_{R}\left(x^{\prime}, y^{\prime}\right)$ 。

Now add a node v_{0} and four arcs $\mathrm{a}\left(\mathrm{x}^{\prime}, \mathrm{v}_{0}\right), \mathrm{a}\left(\mathrm{v}_{0}, \mathrm{y}^{\prime}\right)$,
$a\left(w^{\prime}, v_{0}\right), a\left(v_{0}, z^{\prime}\right)$ in the area surrounded by C. The resulting graph $G^{\prime \prime}$ still satisfies Assumption A (1)-(3). By Lemma 2.5, $\mathrm{Vu}\left\{\mathrm{v}_{0}\right\}$ is divided into two connected divergent sets X^{+}, W^{+}, two connected convergent sets Y^{-}, Z^{-}and $\left\{\mathrm{v}_{0}\right\}$, such that $x \in X^{+}, y \in Y^{-}, w \in W^{+}, z \in Z^{-}$. These $X^{+}, Y^{-}, W^{+}, Z^{-}$ also satisfy the condition of the lemma in G.

We call the above $\mathrm{X}^{+}, \mathrm{Y}^{-}, \mathrm{W}^{+}, \mathrm{Z}^{-}$a 4-alternating partition and call the window C satisfying Lemma 5.3 a partition window. Furhter $A\left(X^{+} ; Y^{-}\right)$is called a unilateral semi-cut. For example, in Figure 5.1, the partition window C is the cycle containing $x^{\prime}, y^{\prime}, w^{\prime}, z^{\prime}$ and the 4-alternating partition is given by $X^{+}=\left\{s^{1}, s^{7}, s^{6}, s^{5}, x^{1}\right\}$, $Y^{-}=\left\{t^{4}, t^{9}, t^{5}, s^{2}, t^{2}, s^{3}, t^{7}, s^{8}, s^{9}, s^{10}, y^{\prime}\right\}, W^{+}=\left\{s^{4}, w^{1}\right\}$ and $Z^{-}=\left\{t^{1}, z^{\prime}\right\}$.

A feasible $C U$ network with $S^{d} \cup T^{d} \neq \emptyset$ has a pole (x, y) by Lemma 5.2. Since $\Pi(x, y) \neq \emptyset$ implies $\Pi(y, x)=\emptyset$, there exists a unilateral simple cut $A\left(X^{+}\right)$with $x \in X^{+}, y \in V-X^{+}$by Lemma 2.1. If $r\left(X^{+}\right)=0$ for this connected divergent set X^{+}, there is no dummy flow from $x \in S^{d}$ to $y \in T^{d}$. Similarly, if a 4-alternating partition $\mathrm{X}^{+}, \mathrm{Y}^{-}, \mathrm{W}^{+}, \mathrm{Z}^{-}$with $\mathrm{x} \in \mathrm{X}^{+}, \mathrm{y} \in \mathrm{Y}^{-}$ exists for a pole (x, y) and furthermore $r\left(X^{+} ; Y^{-}\right)=0$ holds, then no dummy flow from x to y exists. Here we call a pole
not satisfying these conditions a non-trivial pole. Namely a non-trivial pole (x, y) satisfies the following conditions (i),(ii).
(i) $r\left(X^{+}\right)>0$ for any unilateral simple cut $A\left(X^{+}\right)$with $x \in X^{+}, y \in V-X^{+}$.
(ii) $r\left(\mathrm{X}^{+} ; \mathrm{Y}^{-}\right)>0$ for any 4-alternating partition X^{+}, $\mathrm{Y}^{-}, \mathrm{W}^{+}, \mathrm{Z}^{-}$with $\mathrm{x} \in \mathrm{X}^{+}, \mathrm{y} \in \mathrm{Y}^{-}$.

For the pole $\left(v_{1}, v_{2}\right)$ in Figure 5.2, $A\left(X^{+}\right)$with $X^{+}=\left\{v_{1}, v_{6}\right\}$ is a unilateral simple cut, and $v_{1} \in X^{+}, v_{2} \in V_{-}$ $\mathrm{X}^{+}, \mathrm{r}\left(\mathrm{X}^{+}\right)=2-\left(\mathrm{g}^{1}+\mathrm{g}^{2}\right)=0$. Therefore $\quad\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is a trivial pole.

Lemma 5.4 If a $C U$ network $N=(G, P, g, c)$ with $S^{d} \cup T^{d} \neq \emptyset$ is feasible, then $N^{d}=\left(G, P, P^{d}, g, g^{d}, c\right)$ has at least one nontrivial pole.

Proof. See Appendix.

Here we describe an outline of algorithm MATE2 to be disccussed in Section 5.6. We first construct the set Q of all poles in N^{d}. If Q contains no non-trivial pole, then N^{d} is infeasible. Otherwise, there is a positive some amount e of dummy flow from x to y, as will be shown in Section 5.5.

Therefore we create a new commodity K+1 with source sink pair (x, y) and $g^{K+1}=e$. As a result of this, (x, y) is removed from Q. By repeating this until $Q=\varnothing$ holds, we complete the reduction of CU to CB .

5.5α-CUT AND β-CUT

In this section, we test whether a pole $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is trivial or not. We also describe some lemmas necessary for determining the amount $e(>0)$ of dummy flow from x to y. Without loss of generality, we assume that no other dummy source or sink exist in the boundary line from x_{1} to y_{1}. When we go around the boundary clockwisely starting from x_{1}, we define $\operatorname{rank}\left(x_{1}\right)=0$, and $\operatorname{rank}(z)=i$ for the i-th node $z \in V_{B}$. Further let

$$
\mathrm{T}^{\mathrm{d}}\left(\mathrm{x}_{1}\right) \triangleq\left\{\mathrm{y} \in \mathrm{~T}^{\mathrm{d}} \mid \Pi\left(\mathrm{x}_{1}, \mathrm{y}\right) \neq \emptyset\right\}
$$

If $\left|T^{d}\left(x_{1}\right)\right|=1$ (i.e., $T^{d}\left(x_{1}\right)=\left\{y_{1}\right\}$), then obviously there exists a dummy flow of amount $g_{x}{ }_{1}$ from x_{1} to y_{1}. In the subsequent discussion, we consider the case $q=\left|T^{d}\left(x_{1}\right)\right| \geq 2$. Without loss of generality, assume that $T^{d}\left(x_{1}\right)=\left\{y_{1}, y_{2}, \ldots\right.$, y_{q}) satisfies $\operatorname{rank}\left(\mathrm{y}_{1}\right)<\operatorname{rank}\left(\mathrm{y}_{2}\right)<\ldots<\operatorname{rank}\left(\mathrm{y}_{\mathrm{q}}\right)$, as illustrated in Figure 5.5. We further divide V into the following sets.

$$
\begin{aligned}
& \mathrm{VB}_{0} \triangleq\left\{z \in \mathrm{~V}_{\mathrm{B}} \mid \operatorname{rank}\left(\mathrm{x}_{1}\right)(=0) \leq \operatorname{rank}(\mathrm{z})<\operatorname{rank}\left(\mathrm{y}_{1}\right)\right\}, \\
& \mathrm{VB}_{\mathrm{i}} \triangleq\left\{\mathrm{z} \in \mathrm{~V}_{\mathrm{B}} \mid \operatorname{rank}\left(\mathrm{y}_{\mathrm{i}}\right) \leq \operatorname{rank}(\mathrm{z})<\operatorname{rank}\left(\mathrm{y}_{\mathrm{i}+1}\right)\right\}, \\
& \quad i=1,2, \ldots, \mathrm{q}-1, \\
& \mathrm{VB}_{\mathrm{q}} \triangleq\left\{\mathrm{z} \in \mathrm{~V}_{\mathrm{B}} \mid \operatorname{rank}\left(\mathrm{y}_{\mathrm{q}}\right) \leq \operatorname{rank}(\mathrm{z})\right\} .
\end{aligned}
$$

Fig. 5.5 Explanation of Definition of $V B_{i}, \tilde{x}_{i}$ and \hat{x}_{i}.

In each VB_{i}, $i=1,2, \ldots, q-1$, we define the following sets of dummy sources.

$$
\begin{align*}
& \tilde{S}_{i}^{d} \triangleq\left\{x \in S^{d} \mid x \in V B_{i}, \quad \Pi\left(x, y_{1}\right) \neq \emptyset\right\} \tag{5.2}\\
& \hat{S}_{i}^{d} \triangleq\left\{x \in S^{d} \mid x \in V B_{i}, \quad \Pi\left(x, y_{i+1}\right) \neq \emptyset\right\} \tag{5.3}\\
& \tilde{I} \triangleq\left\{i \mid \widetilde{S}_{i}^{d} \neq \emptyset, \quad i=1,2, \ldots, q-1\right\}
\end{align*}
$$

If $\tilde{S}_{i}^{d} \neq \emptyset$, then let \tilde{x}_{i} denote the node with the maximum rank in $\tilde{S}_{i}^{d} \neq \emptyset$. If $\hat{S}_{i}^{d} \neq \emptyset$, the let \hat{x}_{i} denote the node with the minimum rank in \hat{S}_{i}^{d}. These are also illustrated in Figure 5.5. For example, interpreting pole $\left(s^{1}, t^{4}\right)$ as $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in Figure 5.1, we get $\mathrm{y}_{2}=\mathrm{t}^{5}, \mathrm{y}_{3}=\mathrm{t}^{7}, \mathrm{y}_{4}=\mathrm{t}^{1}, \mathrm{y}_{5}=\mathrm{s}^{4}$ (i.e., $q=5$), and $\tilde{x}_{1}=t^{9}, \tilde{x}_{2}=s^{2}, \hat{x}_{2}=s^{3}, \quad \tilde{x}_{3}=\hat{x}_{3}=s^{4}, \quad \tilde{x}_{4}=s^{5}$, $\tilde{I}=\{1,2,3,4\}$.

Furthermore, we classify VB_{i}, $\mathrm{i}=1,2, \ldots, \mathrm{q}-1$, as follows. Case-1: $\tilde{S}_{i}^{\mathrm{d}}=\emptyset$.
Case-2: $\tilde{S}_{i}^{\mathrm{d}} \neq \emptyset$ and $\Pi\left(\mathrm{x}_{1}, \overline{\mathrm{x}}_{\mathrm{i}}\right) \neq \emptyset$.
Case-3: $\tilde{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \tilde{x}_{i}\right)=\emptyset$ and $\hat{S}_{i}^{d}=\emptyset$.
Case-4: $\vec{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \tilde{x}_{i}\right)=\varnothing, \quad \hat{S}_{i}^{d} \neq \emptyset$ and $\Pi\left(x_{1}, \hat{x}_{i}\right) \neq \emptyset$. There still remains the case of $\tilde{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \tilde{x}_{i}\right)=\varnothing, \hat{S}_{i}^{d} \neq \emptyset$ and $\Pi\left(x_{1}, \hat{x}_{i}\right)=\emptyset$. In this case, there exists $X^{-}\left(x_{1} ; \tilde{x}_{i}\right)$ and $X^{-}\left(x_{1} ; \hat{x}_{i}\right)$. Let

$$
V_{i}^{+} \triangleq\left(V-X^{-}\left(x_{1} ; \tilde{x}_{i}\right)\right) \cup\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right)
$$

Based on this V_{i}^{+}, we add the following cases.

Case-5: $\tilde{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \tilde{x}_{i}\right)=\emptyset, \quad \hat{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \hat{x}_{i}\right)=\emptyset$ and $V_{i}^{+}=\emptyset$. Case-6: $\tilde{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \tilde{x}_{i}\right)=\emptyset, \quad \hat{S}_{i}^{d} \neq \emptyset, \quad \Pi\left(x_{1}, \hat{x}_{i}\right)=\emptyset$ and $V_{i}^{+} \neq \emptyset$.

Now a unilateral simple cut $A\left(X_{i}^{+}\right)$satisfying the following condition is called α-cut.
$y_{i+1}, y_{i+2}, \ldots, y_{q}, x_{1} \in X_{i}^{+}, y_{1}, y_{2}, \ldots, y_{i}, \tilde{x}_{i} \in V-X_{i}^{+}$, and there are no $x^{\prime} \in S^{d}, y^{\prime} \in T^{d}$ such that $x^{\prime} \in V B_{i} \cap X_{i}^{+}, y^{\prime} \in V-X_{i}^{+}$and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$.

Here, if $r\left(X_{i}^{+}\right)=0$, then any feasible solution f to N^{d} has no dummy flow from x_{1} to y_{1} by the definition of r, and therefore $\left(x_{1}, y_{1}\right)$ is a trivial pole. If $r\left(X_{i}^{+}\right)>0$, f has the amount $r\left(X_{i}^{+}\right)$of dummy flow through this α-cut, as obvious from the unilateraliy of the cut.

In each of Cases $-2,4,5$, there always exists an α-cut as shown in the following lemmas.

Lemma 5.5 In Case-2, 1et $X_{i}^{+}=V-X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right)$. Then $A\left(X_{i}^{+}\right)$is an α-cut.

Proof. This is illustrated in Figure 5.6. See Appendix for details.

Fig. 5.6 α-cut for Case-2.

Lemma 5.6 In Cases-3,4, let $X_{i}^{+}=X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$. Then $A\left(X_{i}^{+}\right)$ is an α-cut.

Proof. This is illustrated in Figure 5.7. See Appendix for details. \square

Fig. 5.7α-cut for Case-3 and 4.

Lemma 5.7 In Case-5, let $X_{i}^{+}=X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right) \cup\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right.$. Then $A\left(X_{i}^{+}\right)$is an α-cut.

Proof. This is illustrated in Figure 5.8. See Appendix for details.

Fig. $5.8 \quad \alpha$-cut for Case-5.

For example, let $\left(x_{1}, y_{1}\right)=\left(s_{1}, t_{4}\right)$ in Figure 5.1. Then Cases-2,5,3 hold for $i=1,2,4$, respectively. For $i=1,2,4$ we obtain

$$
\begin{aligned}
& X_{1}^{+}=V-X^{-}\left(\tilde{x}_{1} ; y_{2}\right)=V-\left\{t^{4}, t^{9}\right\}, \\
& X_{2}^{+}=X^{+}\left(y_{3} ; \tilde{x}_{2}\right) \cup\left(V-X^{-}\left(x_{1} ; \hat{x}_{2}\right)\right)=\left\{s^{1}, x^{\prime}, y^{\prime}, s^{9}, s^{10}, s^{3}, t^{7},\right. \\
& \left.s^{4}, t^{1}, s^{5}, s^{6}, s^{7}, z^{\prime}, w^{1}\right\} \cup\left\{s^{3}\right\} \\
& X_{4}^{+}=X^{+}\left(y_{5} ; \tilde{x}_{4}\right)=\left\{s^{1}, s^{7}\right\}
\end{aligned}
$$

The α-cuts defined for these sets have the following properties.

$$
\begin{aligned}
& r\left(X_{1}^{+}\right)=6-\left(g^{4}+g^{8}+g^{9}\right)=3 \\
& r\left(X_{2}^{+}\right)=7-\left(g^{3}+g^{4}+g^{5}+g^{6}+g^{9}\right)=2, \\
& r\left(X_{4}^{+}\right)=5-\left(g^{1}+g^{7}\right)=3
\end{aligned}
$$

In Case-6, there may not be any α-cut. However, there exists a 4-alternating partition $X_{i}^{+}, Y_{i}^{-}, W_{i}^{+}, Z_{i}^{+}$satisfying the following conditions.

$$
\begin{array}{ll}
x_{1} \in X_{i}^{+}, & y_{1}, y_{2}, \ldots, y_{i} \in Y_{i}^{-} \\
\tilde{x}_{i}, \hat{x}_{i} \in W_{i}^{+}, & y_{i+1} \in Z_{i}^{-} .
\end{array}
$$

We call such a 4-alternating partition of $V X_{i}^{+}, Y_{i}^{-}$, $W_{i}^{+}, \quad Z_{i}^{+}$a $\underline{\beta-p a r t i t i o n ~ f o r ~} i$, and $A\left(X_{i}^{+} ; Y_{i}^{-}\right)$is called a $B-$ semi-cut for i.

Lemma 5.8 Case-6 always has a β-partition for i.
Proof. This is illustrated in Figure 5.10. See Appendix for details. \square

Fig. 5.9 β-partition for Case-6.

Let $\left(x_{1}, y_{1}\right)=\left(s^{1}, t^{4}\right)$ in Figure 5.1. Case-6 holds for $\mathbf{i}=3$. A method to construct a β-partition is given in the proofs of Lemmas 5.3 and 5.8. According to them, we obtain

$$
\begin{aligned}
& X_{3}^{+}=\left\{s^{1}, s^{7}, s^{6}, s^{5}, x^{\prime}\right\}, \\
& Y_{3}^{-}=\left\{t^{4}, t^{9}, t^{5}, s^{2}, t^{2}, s^{3}, t^{7}, s^{8}, s^{9}, s^{10}, y^{\prime}\right\}, \\
& W_{3}^{+}=\left\{s^{4}, w^{\prime}\right\}, \quad Z_{3}^{-}=\left\{t^{1}, z^{\prime}\right\} .
\end{aligned}
$$

The resulting β-semi-cut is as follows.

$$
\begin{aligned}
& A\left(X_{3}^{+} ; Y_{3}^{-}\right)=\left\{a\left(s^{1}, t^{4}\right), a\left(x^{\prime}, t^{4}\right), a\left(x^{\prime}, s^{8}\right), a\left(x^{\prime}, y^{\prime}\right)\right\} \\
& r\left(X_{3}^{+} ; Y_{3}^{-}\right)=5-\left(g^{5}+g^{6}+g^{7}\right)=2 .
\end{aligned}
$$

5.6 ALGORITHM MATE2

In this section, we first describe a method for testing the triviality of a pole $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and for computing the amount $\mathrm{e}>0$ of dummy flow from x_{1} to y_{1} in case $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a non-trivial pole. Using this, we then present algorithm MATE2 that determines the assignment of dummy flows.

By the definition, $X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right), X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ and $\mathrm{X}^{-}\left(\mathrm{x}_{1} ; \hat{\mathrm{x}}_{\mathrm{i}}\right)$ are obtained by computing a maximal directed (or reversely directed) tree with an appropriate root. The corresponding α-cuts can be computed from these. We compute a β-semi-cut defined by a β-partition $X_{i}^{+}, Y_{i}^{-}, W_{i}^{+}$, Z_{i}^{-}as follows. We first obtain $A\left(X_{i}^{+}\right)$and compute the B-semi-cut from it as follows. Let x ' be the node nearest to y_{1} among the nodes contained in both $\pi_{R}\left(x_{1}, y_{1}\right)$ and $\pi_{L}\left(x_{1}, y_{i+1}\right)$ (in Figure 5.4, for example, we consider $x=x_{1}$, $\left.y=y_{1}, z=y_{i+1}, x^{\prime}=x^{\prime}\right)$. Here $X^{+}\left(x^{\prime} ; y_{1}\right)$ is a cut $A\left(X_{i}^{+}\right)$as its 4-reachability can be easily shown. $X^{+}\left(x^{\prime} ; y_{1}\right)$ can be obtained by computing a maximal directed tree. Let C be the partition window providing the β-partition. There exists an arc a with $\{a\}=C \cap A\left(X_{i}^{+} ; Y_{i}^{-}\right)$, which can be computed from $A\left(\pi_{R}\left(x_{1}, y_{1}\right)\right) \cap A\left(X_{i}^{+}\right)$. The β-semi-cut $A\left(X_{i}^{+} ; Y_{i}^{-}\right)$can then be constructed from $A\left(X_{i}^{+}\right)$and the arc a.

Lemma 5.9 Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a pole in a CU network N^{d}. There are α or β-cuts $A\left(X_{i}^{+}\right)$for $i \in \tilde{I}$, such that $X_{i}^{+} \supseteq X_{j}^{+}$holds for every $i<j$. There α, β-cuts for all $i \in \tilde{I}$ of a given pole can be computed in $O\left(|V|^{2}\right)$ time.

Proof. See Appendix.

In fact, pole $\left(x_{1}, y_{1}\right)=\left(s^{1}, t^{4}\right)$ in Figure 5.1 has α-cuts satisfying $X_{4}^{+} \varsubsetneqq X_{3}^{+} \varsubsetneqq X_{2}^{+} \varsubsetneqq X_{1}^{+}$。

Let A_{i} denote the α-cut or β-semi-cut satisfying Lemma 5.9, and let r_{i} be its r-value.

Lemma 5.10 Take i.j $\in \tilde{I}$ such that $k \notin \tilde{I}$ holds for any k with $i<k<j$. Let e_{j} denote the amount of dummy flow that goes out of x_{1} and passes through cut A_{j} in a feasible solution. Then the feasible solution has the amount e_{i} of dummy flow that goes out of x_{1} and passes through A_{i}, where $e_{i}=\min \left\{e_{j}, r_{i}\right\}$.

Proof. See Appendix.

For pole $\left(x_{1}, y_{1}\right)=\left(s^{1}, t^{4}\right)$ in Figure 5.1, let $j=4, i=3$. Then we obtain $e_{4}=r_{4}=3, \quad r_{3}=2, \quad e_{3}=\min \left\{e_{4}, r_{3}\right\}=2$ from Lemma 5.10.

Since there exists no α-cut or β-semi-cut for each $i \in\{1,2, \ldots, q-1\}-\tilde{I}, \quad A_{i}$ is undefined for such i. Here, we
assume that the r value of such i is infinite (i.e., let $r_{i}=+\infty$) for convenience. The amount of any dummy flow from x_{1} to y_{1} does not clearly exceed the value e determined by

$$
\mathrm{e}=\min \left\{\mathrm{g}_{\mathrm{x}}{ }_{1}^{\mathrm{d}}, \mathrm{r}_{\mathrm{q}-1}, \mathrm{r}_{\mathrm{q}-2}, \ldots, \mathrm{r}_{1}, \mathrm{~g}_{\mathrm{y}}{ }_{1}^{\mathrm{d}}\right\}
$$

The following lemma claims that this amount e of dummy flow from x_{1} to y_{1} in fact exists.

Lemma 5.11 For a pole $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in a feasible CU network N^{d}, assume $\mathrm{q}=\left|\mathrm{T}^{\mathrm{d}}\left(\mathrm{x}_{1}\right)\right| \geq 2$, and let

$$
\mathrm{e}=\min \left\{\mathrm{g}_{\mathrm{x}}{ }_{1}^{\mathrm{d}}, \mathrm{r}_{\mathrm{q}-1}, \mathrm{r}_{\mathrm{q}-2}, \ldots, \mathrm{r}_{1}, \mathrm{~g}_{\mathrm{y}}{ }_{1}^{\mathrm{d}}\right\}
$$

Then a feasible solution in N^{d} has the amount e of dummy flow from x_{1} to y_{1}.

Proof. Apply Lemma 5.10 in the order of $i=q-1$, q-2,..., 1. See Appendix for details.

For pole $\left(x_{1}, y_{1}\right)=\left(s^{1}, t^{4}\right)$ in Figure 5.1, we obtain $e=4$ from $g_{x}{ }_{1}^{d}=4, g_{y}{ }_{1}^{d}=4, r_{4}=3, r_{3}=2, r_{2}=2, r_{1}=3$.

Lemma 5.12 A pole $\left(x_{1}, y_{1}\right)$ in a feasible CU network N^{d} is non-trivial if and only if $e>0$.

Proof. If $e=0$, it is clearly trivial. If $e>0$, there exists a positive dummy flow from x_{1} to y_{1} by Lemma 5.11. Therefore conditions (i), (ii) for being a non-trivial pole (described prior to Lemma 5.4) are satisfied. \square

In the following algorithm for reducing a CU network N^{d} to a CB network, we compute the e of Lemma 5.11 for each pole $\left(x_{1}, y_{1}\right)$. If $e<0$ holds for some pole $\left(x_{1}, y_{1}\right)$, then N^{d} is infeasible and we terminate the procedure. If $e=0$, then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a trivial pole and we remove it from the set of poles Q. If $e>0$, then the amount e of dummy flow from x_{1} to y_{1} is replaced by a new commodity $\mathrm{K}+1$ applying the following procedure NEWITEM.

Procedure NEWITEM ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{e}, \mathrm{K}\right)$

$$
\begin{aligned}
& s^{K+1}:=x_{1}, t^{K+1}:=y_{1}, g^{K+1}:=e, \\
& S:=S \cup\left\{s^{K+1}\right\}, T:=T \cup\left\{t^{K+1}\right\}, P:=P \cup\left\{\left(s^{K+1}, t^{K+1}\right)\right\}, \\
& g_{x}{ }_{1}^{d}:=g_{x}{ }_{1}^{d}-e, g_{y}{ }^{d}:=g_{y}{ }_{1}^{d}-e, \\
& S^{d}:=S^{d}-\left\{s_{x}{ }_{1}^{d}\right\}, \text { if } g_{x}{ }_{1}^{d}=0 . \\
& T^{d}:=T^{d}-\left\{t_{y} \frac{d}{1}\right\}, \text { if } g_{y}{ }_{1}^{d}=0 .
\end{aligned}
$$

For pole $\left(x_{1}, y_{1}\right)=\left(s^{1}, t^{4}\right)$ in Figure 5.1, the 11-th commodity with $\left(s^{11}, \mathrm{t}^{11}\right)=\left(\mathrm{s}^{1}, \mathrm{t}^{4}\right), \mathrm{g}^{11}=2$ is created by $\operatorname{NEWITEM}\left(s^{1}, \mathrm{t}^{4}, 2,10\right)$.

As a result of this, if there exists an i with $e=r_{i}$, then the updated r_{i} becomes 0 . Therefore pole $\left(x_{1}, y_{1}\right)$ is removed from Q. If $e=g_{x}{ }^{d}$ (or $\left.e=g_{y}{ }_{1}\right)$, then $x_{1} \notin S^{d}\left(y_{1} \notin T^{d}\right)$ implies that $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is not a pole any longer, and it is
removed from Q. At this time, it is possible that a new neighbouring pair $\left(x^{\prime}, y_{1}\right)$ (or $\left.\left(x_{1}, y^{\prime}\right),\left(x^{\prime}, y^{\prime}\right)\right)$ is generated; we add such a pole to Q. From the above discussion, we obtain the following algorithm MATE2 in order to reduce CU networks to CB networks.

Procedure MATE2

Input: $C U$ network $N=(G, P, g, c)$, where $g^{k}=\left(g^{1}, g^{2}, \ldots, g^{K}\right)$.
Output: $C B$ network $\tilde{N}=(G, \tilde{P}, \tilde{g}, c)$ that is feasible if and only if so is N, where $\tilde{g}^{k}=\left(g^{1}, g^{2}, \ldots, g^{K}, \ldots, g^{\tilde{K}}\right)$.
0. Construct $N^{d}=\left(G, P, P^{d}, g, g^{d}, c\right)$ with commodities $\mathrm{k}=1,2, \ldots, \mathrm{~K}, \mathrm{~d}$. and compute the reachiability $\Pi(\mathrm{x}, \mathrm{y})$ between every pair of $x \in S^{d}$ and $y \in T^{d}$. The set of all such $\Pi(x, y)$ is denoted $\Pi\left(S^{d} ; T^{d}\right)$. From $\Pi\left(S^{d} ; T^{d}\right)$, compute the set of poles Q in N^{d}.

1. If $\mathrm{Q}=\emptyset$ and $\mathrm{S}^{\mathrm{d}} \cup \mathrm{T}^{\mathrm{d}} \neq \emptyset$, halt by concluding infeasibility. If $Q=\emptyset$ and $S^{d} \cup T^{d}=\emptyset$ (CB network is obtained), let $\tilde{P}:=P$, $\tilde{K}:=\mathrm{K}$ and halt.
2. IF $\mathrm{Q} \not \not \emptyset \emptyset$, then choose a pole $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in Q and compute $T^{d}\left(x_{1}\right), \quad q=\left|T^{d}\left(x_{1}\right)\right|$. If $q=1$, let $e:=\min \left\{g_{x}{ }_{1}, g_{y}{ }_{1}{ }_{1}\right\}$ and proceed to 3 . If $q \geq 2$, compute $\tilde{\mathrm{S}}_{\mathrm{i}}^{\mathrm{d}}, \hat{\mathrm{S}}_{\mathrm{i}}^{\mathrm{d}} \quad(\mathrm{i}=1,2, \ldots, \mathrm{q}-1)$ from $\Pi\left(S^{d} ; T^{d}\right)$. Then compute α-cuts or β-semi-cuts A_{i} for $i \in \tilde{I}$, as well as thier values r_{i}. Let

$$
\mathrm{e}:=\min \left\{\mathrm{g}_{\mathrm{x}}{ }_{1}^{\mathrm{d}}, \mathrm{r}_{\mathrm{q}-1}, \mathrm{r}_{\mathrm{q}-2}, \ldots, \mathrm{r}_{1}, \mathrm{~g}_{\mathrm{y}}{ }_{1}^{\mathrm{d}}\right\}
$$

If $e=0$, proceed to 4. If $e<0$, then halt by concluding infeasibility.
3. Create a new commodity by calling $\operatorname{NEWITEM}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{e}, \mathrm{K}\right)$.
4. $\mathrm{Q}:=\mathrm{Q}-\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right\}$. If a new neighbouring pair $\left(\mathrm{x}^{\prime}, \mathrm{y}_{1}\right)$ (or $\left.\left(x_{1}, y^{\prime}\right),\left(x^{\prime}, y^{\prime}\right)\right)$ is generated, check whether the neighbouring pair is a pole or not by using $\Pi\left(S^{d} ; T^{d}\right)$. Add it to Q if it is a pole. Return to $1 . \quad \square$

The initial cardinality of Q is at most $\min \left\{\left|S^{d}\right|,\left|T^{d}\right|\right\} * 2$ because each dummy sorce (sink) is in V_{B} and contained in at most two poles. This cadinality decreases by one at Step 4, or does not change when a new pole is created in Step 4. If $|Q|$ does not change, however, the cardinality of $S^{d} \cup T^{d}$ decreases at least by one. This means that the number of iterations until $Q=\emptyset$ is at most the sum of the initial cardinality of Q and $\left|S^{d} \cup T^{d}\right|$, which is $O\left(\left|V_{B}\right|\right)$. Since the amount e of Lemma 5.11 can be determined in $O\left(|V|^{2}\right)$ time for a pole $\left(x_{1}, y_{1}\right) \in Q$ by Lemma 5.9, the time required in one cycle of Steps $1-4$ is also $0\left(|\mathrm{~V}|^{2}\right)$. $\Pi\left(\mathrm{S}^{\mathrm{d}} ; \mathrm{T}^{\mathrm{d}}\right)$ in Step 0 can be computed in $O\left(|\mathrm{~V}|^{2}\right)$ time. Therefore the entire time of MATE2 is bounded from above by $O\left(|V|^{3}\right)$. The required space is $O\left(|V|^{2}\right)$ which
is necessary to store $\Pi\left(\mathrm{S}^{\mathrm{d}} ; \mathrm{T}^{\mathrm{d}}\right)$ and other data. Fainally we consider the number of new commodities created by MATE2. Since the source sink pair of any new commodity is a neighbouring pair when it is created by MATE2, no two paths from sources to sinks of new commodities cross each other. Thus the number of the created commodities is bounded from above by $\left|V_{B}\right|$. This proves the following theorem.

Theorem 5.1 If a CU network $N=(G, P, g, c)$ of Definition 5.1 is feasible, then a feasible solution to N satisfies the integral flow property. The procedure MATE2 and ASSIGN test the feasibility of a CU network correctly. The required time and space are $O\left(K|V|+|V|^{3}\right), O\left(K|V|+|V|^{2}\right)$ respectively. \square

For the network N_{A} in Figure 5.1, we obtain the initial set of poles $Q=\left\{\left(s^{1}, t^{4}\right),\left(t^{9}, t^{4}\right),\left(s^{2}, t^{5}\right),\left(s^{3}, t^{7}\right),\left(s^{4}, t^{7}\right)\right.$. $\left.\left(s^{4}, t^{1}\right),\left(s^{5}, t^{1}\right),\left(s^{1}, s^{7}\right)\right\}$. We illustrate the process of MATE2 applied to N_{A} in Table 5.1. New commodities $k=11-20$ are created.

Table 5.1 Application of MATE2 to N_{A}.

Selected pole $\left(x_{1}, y_{1}\right)$	$3_{x 1}{ }^{\text {d }}, \mathrm{g}_{\mathrm{y} 1}{ }^{\text {d }}$	q	Case and r_{i} for each i	e	New item		$\begin{aligned} & \text { from } \\ & T^{d} \end{aligned}$	Trivial pole after modification	Pole added $\text { to } Q$
$\left(s^{1}, t^{4}\right)$	4, 4	5	$\begin{aligned} & i=1: \text { Case- } 2, \\ & i=2: \text { Case }-5, \\ & r_{1}=3 \\ & i=3: \text { Case- } 6, \\ & i=4: \text { Case }-3, \\ & \\ & i \end{aligned}$	2	$\mathrm{K}=11$			(s^{1}, t^{4})	
$\left(t^{9}, t^{4}\right)$	1, 2	1		1	K=12	t^{9}			
$\left(s^{2}, t^{5}\right)$	2, 1	2	$\mathrm{i}=1$:Case $-1, \mathrm{r}_{1}=+\infty$	1	$K=13$		t^{5}		$\left(s^{2}, t^{4}\right)$
$\left(s^{2}, t^{4}\right)$	1, 1	1		1	$\mathrm{K}=14$	s^{2}	t^{4}		
$\left(s^{3}, t^{7}\right)$	2, 4	1		2	$\mathrm{K}=15$	s^{3}			$\left(s^{1}, t^{7}\right)$
$\left(s^{1}, t^{7}\right)$	2, 2	2	$\mathrm{i}=1: \text { Case }-6, \mathrm{r}_{1}=0$	0				$\left(s^{1}, t^{7}\right)$	
$\left(s^{4}, t^{7}\right)$	4, 2	2	$i=1: \text { Case-6, }, \begin{array}{r} ※ 1 \\ r_{1}=2 \end{array}$	2	$\mathrm{K}=16$		t^{7}		
$\left(s^{4}, t^{1}\right)$		1		2	K=17	s^{4}			$\left(s^{1}, t^{1}\right)$
$\left(s^{1}, t^{1}\right)$	2, 3	2	$\mathrm{i}=1 \text { :Case }-3, \mathrm{r}_{1}=1$	1	$\mathrm{K}=18$			$\left(s^{1}, t^{1}\right)$	
$\left(s^{5}, t^{1}\right)$	2, 2	1		2	$\mathrm{K}=19$	s^{5}	t^{1}		
$\left(s^{1}, s^{7}\right)$	1, 1	1		1	K=20				

※1: $A\left(X_{1}{ }^{+} ; Y_{1}{ }^{-}\right)=\left\{a\left(s^{1}, t^{4}\right), a\left(x^{\prime}, t^{4}\right), a\left(x^{\prime}, s^{8}\right), a\left(x^{\prime}, y^{\prime}\right)\right\}$
※2: $A\left(X_{1}{ }^{+} ; Y_{1}{ }^{-}\right)=\left\{a\left(w^{\prime}, y^{\prime}\right), a\left(w^{\prime}, s^{10}\right), a\left(s^{4}, t^{7}\right)\right\}$
※3: $A\left(X_{1}^{+}\right)=\left\{a\left(s^{1}, t^{4}\right), a\left(s^{1}, x^{\prime}\right), a\left(s^{7}, x^{\prime}\right), a\left(s^{7}, s^{6}\right)\right\}$

5.7 ON THE CONDITIONS DEFINING CU NETWORKS

If we remove the conditions (3) and (4) of Definition 5.1, the network in Figure 5.10 serves as a counterexample to the integral flow property. This suggests the difficulty to generalize the method discussed in this chapter to such networks.

For any positive rational number $k / n(n$ and k are positive integers such that $1 \leq k \leq n$), we can construct a network that has the unique feasible flow with its flow value of a commodity being equal to k / n, as shown in Figure 5.10. This network has $2 n^{2}+4$ nodes, $3 n^{2}+2 n$ arcs and 2 commodities, and all capacities of arcs are 1 and $g^{1}=k$ and $\mathrm{g}^{2}=\mathrm{n}-\mathrm{k}$. Furthermore, the network is planar and acyclic, and all sources and sinks are located in the boundary, that is, Assumption A is satisfied. The feasible solution f of the network is given as follows, where only non-zero flows are described.

$$
\begin{array}{lr}
f\left(a\left(s^{1}, u_{i 1}\right), 1\right)=k / n & \text { for } i=1,2, \ldots, n, \\
f\left(a\left(v_{i n}, t^{1}\right), 1\right)=k / n & \text { for } i=1,2, \ldots, n \\
f\left(a\left(u_{i j}, v_{i j}\right), 1\right)=k / n & \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n, \\
f\left(a\left(v_{i j}, u_{i j+1}\right), 1\right)=k / n & \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n-1, \\
f\left(a\left(s^{2}, u_{1 i}\right), 2\right)=(n-k) / n & \text { for } i=1,2, \ldots, n, \\
f\left(a\left(v_{n i}, t^{2}\right), 2\right)=(n-k) / n & \text { for } i=1,2, \ldots, n
\end{array}
$$

$$
\begin{aligned}
& f\left(a\left(u_{i j}, v_{i j}\right), 2\right)=(n-k) / n \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n, \\
& f\left(a\left(v_{i j}, u_{i+1 j}\right), 2\right)=(n-k) / n \quad \text { for } i=1,2, \ldots, n-1 .
\end{aligned}
$$

Fig. 5.10 A counterexample to integral flow property.

The uniqueness of the feasible flow is proved as follows. Assume the existence of a feasible flow f^{\prime} through paths $\pi_{1}, \pi_{2}, \ldots, \pi_{p} \in \Pi\left(s^{1}, t^{1}\right)$, and $\pi^{\prime}{ }_{1}, \pi^{\prime}{ }_{2}, \ldots, \pi^{\prime}{ }_{q} \in \Pi\left(s^{2}, t^{2}\right)$ and nonnegative real values $e_{1}, e_{2}, \ldots, e_{p}$, and $e^{\prime}{ }_{1}, e^{\prime}{ }_{2}, \ldots, e^{\prime}{ }_{q}$ such that

$$
\begin{aligned}
& f^{\prime}(a, 1)=\sum\left\{e_{i} \mid A\left(\pi_{i}\right) \text { contains arc } a\right\} \\
& f^{\prime}(a, 2)=\sum\left\{e_{i}^{\prime} \mid A\left(\pi_{i}^{\prime}\right) \text { contains arc } a\right\}, \\
& \quad \sum\left\{e_{i} \mid i=1,2, \ldots, p\right\}=k \\
& \quad \sum\left\{e_{i}^{\prime} \mid i=1,2, \ldots, q\right\}=n-k .
\end{aligned}
$$

Here, let $A_{k}^{1}=\left\{a\left(u_{i k}, v_{i k}\right) \mid i=1,2, \ldots, n\right\}$ and
$A_{k}^{2}=\left\{a\left(u_{k i}, v_{k i}\right) \mid i=1,2, \ldots, n\right\}$ for $k=1,2, \ldots, n$. For any k, if we remove the set of arcs A_{k}^{1} from the network, then source s^{1} becomes unreachable to sink t^{1}. Therefore, any path π in $\pi\left(s^{1}, t^{1}\right)$ satisfies $A(\pi) \cap A_{k}^{1} \neq \emptyset$ for $k=1,2, \ldots, n$, and hence $\left|A\left(\pi_{i}\right) \cap A_{k}^{1}\right| \geq 1$ holds for $i=1,2, \ldots, p, k=1,2, \ldots, n$. Similarly we have $\left|A\left(\pi^{\prime}{ }_{i}\right) \cap A_{k}^{2}\right| \geq 1$ for $i=1,2, \ldots, q$, $k=1,2, \ldots, n$. Since the sum of flows of commodity 1 in A_{k}^{l} cannot exceed the sum of capacities in A_{k}^{1}, properties $\left|A\left(\pi_{i}\right) \cap A_{k}^{1}\right| \geq 1, \quad i=1,2, \ldots, p, \quad k=1,2, \ldots, n, \quad$ gives the following,

$$
n \geq \sum_{i=1}^{p}\left|A\left(\pi_{i}\right) \cap A_{k}^{1}\right| e_{i} \geq \sum_{i=1}^{p} e_{i}=k \quad \text { for } k=1,2, \ldots, n .
$$

Similarly we obtain

$$
n \geq \sum_{i=1}^{q}\left|A\left(\pi^{\prime}{ }_{i}\right) \cap A_{k}^{2}\right| e^{\prime}{ }_{i} \geq \sum_{i=1}^{q} e^{\prime}{ }_{i}=n-k \quad \text { for } k=1,2, \ldots, n \text {. }
$$

Since the sum of flows of commodities 1 and 2 in $\left.\left\{a\left(u_{i j}, v_{i j}\right) \mid i=1,2, \ldots, n, j=1,2, \ldots, n\right\} \quad \underset{k=1}{p} A_{k}^{1} \cup \underset{k=1}{q} A_{k}^{2}\right)$ does not exceed the sum of capacities of $\left\{a\left(u_{i j}, v_{i j}\right) \mid i=1,2, \ldots, n, j=1,2, \ldots, n\right\}$, we have

$$
\begin{aligned}
& n^{2} \geq \sum_{k=1}^{n} \sum_{i=1}^{p}\left|A\left(\pi_{i}\right) \cap A_{k}^{1}\right| e_{i}+\sum_{k=1}^{n} \sum_{i=1}^{q}\left|A\left(\pi_{i}^{\prime}\right) \cap A_{k}^{2}\right| e_{i}^{\prime} \\
& \geq n \sum_{i=1}^{p} e_{i}+n \sum_{i=1}^{q} e_{i}^{\prime}=n k+n(n-k)=n^{2} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \left|A\left(\pi_{i}\right) \cap A_{k}^{1}\right|=1 \text { for } i=1,2, \ldots, p, k=1,2, \ldots, n, \\
& \left|A\left(\pi_{i}\right) \cap A_{k}^{2}\right|=1 \text { for } i=1,2, \ldots, q, k=1,2, \ldots, n .
\end{aligned}
$$

Without loss of generality, we can assume $p=q=n$. In this case, $\pi_{i}, i=1,2, \ldots, n$ can be written as

$$
s^{1} \rightarrow u_{i 1} \rightarrow v_{i 1} \rightarrow u_{i 2} \rightarrow v_{i 2} \rightarrow \ldots \rightarrow u_{i n} \rightarrow v_{i n} \rightarrow t^{1}, i=1,2, \ldots, n
$$

and $\pi^{\prime}{ }_{i}, i=1,2, \ldots, n$ can be written as

$$
s^{2} \rightarrow u_{1 i} \rightarrow v_{1 i} \rightarrow u_{2 i} \rightarrow v_{2 i} \rightarrow \ldots \rightarrow u_{n i} \rightarrow v_{n i} \rightarrow t^{2}, i=1,2, \ldots, n
$$

Here, since the flow of commodities 1 and 2 in each arc $a\left(u_{1 i}, v_{1 i}\right) \in A_{1}^{2}$ cannot exceed its capacity 1 , we have

$$
1 \geq e_{1}+e_{i}^{\prime} \text { for } i=1,2, \ldots, n
$$

which then implies

$$
n \geq n e_{1}+\sum_{i=1}^{n} e_{i}^{\prime}=n e_{1}+n-k .
$$

This proves $e_{1} \leq k / n$. Similarly we get $e_{i} \leq k / n, i=1,2, \ldots, n$. That is, by $\sum\left\{e_{i} \mid i=1,2, \ldots, p\right\}=k$, we obtain

$$
f\left(a\left(u_{i j}, v_{i j}\right), 1\right)=k / n \quad \text { for } i=1,2, \ldots, n, j=1,2, \ldots, n .
$$

The uniqueness of the values of other flows can be shown similarly. This proves that the solution is unique.

Lastly we show that the max-flow min-cut theorem does not hold for CU networks. The counterexample to the maxflow min-cut theorem presented by Kennington [KENN 78] is shown in Figure 5.2. This network N_{B} happens to be a $C U$ network as easily verified. A1though this network satisfies the cut condition, it is infeasible. In fact, MATE2 and ASSIGN reveal its infeasibiliy as follows. MATE2 decomposes dummy flows from S^{d} to T^{d} in N_{B} into new commodities $k=3-5$ such that $\mathrm{g}^{3}=\mathrm{g}^{4}=\mathrm{g}^{5}=1, \quad\left(\mathrm{~s}^{3}, \mathrm{t}^{3}\right)=\left(\mathrm{v}_{1}, \mathrm{v}_{6}\right), \quad\left(\mathrm{s}^{4}, \mathrm{t}^{4}\right)=\left(\mathrm{v}_{5}, \mathrm{v}_{2}\right)$, $\left(s^{5}, t^{5}\right)=\left(v_{3}, v_{4}\right)$. When ASSIGN is applied to the resulting CB network N_{B}, ASSIGN halts at node v_{5} by concluding infeasibility. This infeasibility may be explained as follows. The minimum cut to $\tilde{\mathrm{N}}_{\mathrm{B}}$ is $\mathrm{C}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\}$. By removing C, node set V is divided into $X=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\mathrm{V}-\mathrm{X}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and

$$
\bar{r}(X)=c(X)-\quad \sum g^{k}=2-\left(g^{2}+g^{3}+g^{5}\right)=-1<0
$$

holds. Thus \tilde{N}_{B} does not satisfy the cut condition. Among the commodities 2,3 and 5 that indicate infeasibility here, commodities $\mathrm{k}=3,5$ are created from dummy flows by MATE2. This cut satisfies the cut-condition (2.1) in the original network N_{B},

$$
r(X)=\tilde{r}(X)+g^{3}+g^{5}=-1+2=1>0
$$

In other words, testing the cut condition can not find the infeasibilty before specifying a one-to-one correspondence between all dummy sources and sinks.

Abstract

5.8 CONCLUSION

Among the known classes of multicommodity flow problems in directed networks for which it is possible to develop efficient graph theoretic algorithms, the class of CU networks possesses a unique characteristic that it does not satisfy the max-flow min-cut theorem. It should also be noted that class CU does not contain class CS, because CU must satisfy the unilaterality property which is not imposed on CS. In the next section, we show the max-flow min-cut theorem holds for classes CB and CS.

CHAPTER 6

MAX-FLOW MIN-CUT THEOREM
 FOR CLASSES CB AND CS

6.1 INTRODUCTION

In this chapter, we first show that the max-flow mincut theorem holds for class CB. For this purpose, an $O(\mathrm{~K}|\mathrm{~V}|)$ time algorithm is constructed to find a minimum cut not satisfying the cut condition for an infeasible CB network. This result is then extended to class CS. Class CU, however, does not have this property [NAGA 88a].

6.2 MAX-FLOW MIN-CUT PROPERTY

Let $V B[x, y]$ denote the set of nodes in $B(x, y)$ (where we assume $x, y \in V B[x, y]$). If nodes $v, z \in V_{B}$ appear along $B(x, y)$

Fig. 6.1 Definition of left-right relation among the nodes in $\mathrm{VB}[\mathrm{x}, \mathrm{y})$.
in the order of x, v, z, y, then v is to the left of z in $B(x, y)$ (see Figure 6.1). Further we introduce notations $\operatorname{VB}(x, y]=\operatorname{VB}[x, y]-\{x\}, \operatorname{VB}[x, y)=V B[x, y]-\{y\}$, and $\operatorname{VB}(\mathrm{x}, \mathrm{y})=\operatorname{VB}[\mathrm{x}, \mathrm{y}]-\{\mathrm{x}, \mathrm{y}\}$.

It is clear that the cut-condition (2.1) for the multicommodity flow problem is nescessary for a network to be feasible, as described in Section 2.4. In general, however, the cut-condition alone is not sufficient to guarantee the feasibility of the multicommodity flow problem. For example, the networks in Figure 6.2 and 6.3 satisfy the cut-condition, but they are infeasible. Note that the networks in Figure 6.2 and 6.3 satisfy Assumption C (i.e., $\Delta c(x)=0$ for all $x \in V$) and have the unique source and sink for each commodity. Furthermore, the network in Figure 6.2 is acyclic.

Fig. 6.2 A counterexample to max-flow min-cut property.

Fig. 6.3 A counterexample to max-flow min-cut property.

If the cut-condition is a sufficient condition that a network in some class is feasible, we call the max-flow mincut theorem holds for the class (or the class has the maxflow min-cut property). In this chapter, we show the following theorems.

Theorem 6.1 The max-flow min-cut theorem holds for class CB. \square

Theorem 6.2 The max-flow min-cut theorem holds for class CS. \square

6.3 PROPERTIES OF AN INFEASIBLE NETWORK

Given an infeasible network $N^{\prime \prime}=\left(G^{\prime \prime}, P^{\prime \prime}, g^{\prime \prime}, c^{\prime \prime}\right)$, assume that ASSIGN halts at node x^{*} by (T-4) in Step 3 since $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right) \in \operatorname{CUT} \mathrm{p}_{\mathrm{p}}\left(\mathrm{x}^{*}\right), \mathrm{f}\left(\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right), \mathrm{k}^{*}\right)>0$, $\Pi\left(\mathrm{v}^{*}, \mathrm{t}^{\mathrm{k}^{*}}\right)=\varnothing$. Based on this information, we now clarify some properties of $\mathrm{N}^{\prime \prime}$ in this section. These will be used in the subsequent discussion to show that there is a cut which does not satisfy the cut-condition. A concrete method to construct such a cut will be developed in the next section.

Let f denote the flow assigned in $\mathrm{N}^{\prime \prime}$ at the time when ASSIGN halts as described above. Clearly f is assigned to the arcs in $\operatorname{OUT}\left(\operatorname{SCAN}\left(\mathrm{x}^{*}\right)\right) \operatorname{UOUT}\left(\mathrm{x}^{*}\right)$. (The flow in $\operatorname{OUT}\left(\mathrm{x}^{*}\right)$ is also available because ASSIGN has already passed through Step 2 for x^{*}.) Now we define $\mathrm{w}, \mathrm{z}, \mathrm{w}^{\prime}, \mathrm{z}^{\prime}, \mathrm{w}^{\prime \prime}, \mathrm{z}^{\prime \prime}, \mathrm{z}^{+}, \mathrm{z}^{-}$for x^{*} in a manner similar to the proof of Lemma 3.5 as shown in Figure 3.2 (we consider $\mathrm{X}_{\mathrm{q}}^{+}=\mathrm{X}_{\mathrm{q}+1}+$ for $\operatorname{IN}\left(\mathrm{x}^{*}\right)=\mathrm{IN}_{1}\left(\mathrm{x}^{*}\right)$).

For simplicity, we transform the $C B$ network $N^{\prime \prime}=$ ($G^{\prime \prime}, P^{\prime \prime}, g^{\prime \prime}, c^{\prime \prime}$) into the following network.

Definition 6.1 $\operatorname{REACH}\left(x^{*}\right)$ is the set of nodes in a maximal directed tree with root x^{*} in $G^{\prime \prime}=\left(V^{\prime \prime}, A^{\prime \prime}\right)$. Obviously $\operatorname{REACH}\left(\mathrm{x}^{*}\right)$ is a connected divergent set. The set $\mathrm{V}^{\prime \prime}-\operatorname{REACH}\left(\mathrm{x}^{*}\right)$ consists of connected convergent sets $\hat{X}_{i}^{-}, i=1,2, \ldots, q$, where

Fig. 6.4 CB network N_{1}.

Table 6.1 Flows f obtained by ASSIGN for N_{1}

k	1	2	3	4	5	6	78	8		k		2	3	4	5		7	8	9
e_{1}	3									e_{14}		1							
e_{2}						4				${ }^{\text {e }} 15$			2						
e_{3}									2	e_{16}							2		
e_{4}									1	${ }^{17}$								1	
e_{5}	1									e_{18}			1						
e_{6}	2									e_{19}			2						
e_{7}	1									e_{20}						1			
${ }^{8} 8$	1									e_{21}								1	1
e_{9}					1					e_{22}									1
e_{10}						1				e_{23}			1		1				
${ }^{1} 11$								1		e_{24}						2			
e_{12}			3					1		e_{25}						2			
e_{13}			2				2												

some \hat{X}_{i} is equal to Z^{-}(we assume $\hat{X}_{q}^{-}=Z^{-}$without loss of generality). Let $G=(V, A)$ be the resulting graph obtained by shrinking each set $\hat{X}_{i}^{-}, i=1,2, \ldots, q-1$, to node x_{i}^{-}, except Z^{-}. That is, $Z^{+}=\left\{x_{1}^{-}, x_{2}^{-}, \ldots, x_{q-\overline{1}}^{-}\right\} \cup \operatorname{REACH}\left(x^{*}\right)$ holds in G. Let $P=P^{\prime \prime}$ and $g=g^{\prime \prime}$ and $c(a)=c^{\prime \prime}(a)$ for $a \in A$. We put all sources and sinks contained in \hat{X}_{i} on x_{i}^{-}, i.e., for $i=1,2, \ldots, q-1$. Let $s^{k}=x_{i} \quad\left(t^{k}=x_{i}^{-}\right)$in N if $s^{k} \in \hat{X}_{i}^{-} \quad\left(t^{k} \in \hat{X}_{i}\right)$ in $N^{\prime \prime}$. In particular, let $P=P-\left(s^{k}, t^{k}\right)$ and $g^{k}=0$ for each k with $s^{k}=t^{k}=x_{i}^{-}$. Let $N=(G, P, g, c)$ denote the resulting network. Then N is also a CB network by Lemma 2.6. We may consider the case in which flow in $\operatorname{OUT}\left(x^{\prime \prime}\right)$ has already been assigned for some $x^{\prime \prime}$ before ASSIGN scans x^{*}, where $x^{\prime \prime}$ is a node in Z^{-}. Here, obviously $x^{\prime \prime}$ is not reachable to x^{*} and the level of $x^{\prime \prime}$ should be lower than that of x^{*}. In this case, no flow in Z^{-}is necessary to determine the flow in $\operatorname{OUT}\left(\operatorname{REACH}\left(\mathrm{x}^{*}\right)\right)$. For simplicity, therefore, we assume that all node in Z^{-}are unscanned. That is, in network N , flow in an arc a is not determined $(f(a, k)=0)$ if and only if the initial node of a is in $Z^{-}\left(=\hat{X}_{q}^{-}\right)$. Let (N, f) be the pair of the resulting network N and the flow f in N. We define

$$
\begin{aligned}
& K(a)=\{k \mid f(a, k)>0\}, a \in A \\
& \operatorname{TK}(a)=\left\{t^{k} \mid f(a, k)>0\right\}, \quad a \in A
\end{aligned}
$$

For example, apply ASSIGN to the network in Figure 6.4. The arcs in each $\operatorname{OUT}\left(y_{i}\right), i=1,4,11, \ldots$ are assigned flows in the order of $e_{1}, e_{2}, \ldots, e_{25}$. When ASSIGN chooses node y_{8}, it halts by concluding infeasibility because $f\left(a\left(y_{8}, y_{15}\right), 5\right)>0$ and $\pi\left(y_{15}, \mathrm{t}^{5}\right)=\varnothing$ hold in Step 3. Table 6.1 shows the flows assigned before ASSIGN chooses node y_{8}. According to the above definition, we have

$$
\begin{aligned}
& \operatorname{REACH}\left(\mathrm{x}^{*}\right)=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{8}\right\}, \\
& \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)=\left\{\mathrm{e}_{23}, \mathrm{e}_{24}, \mathrm{e}_{25}\right\}, \\
& \mathrm{x}^{*}=\mathrm{y}_{8}, \mathrm{v}^{*}=\mathrm{y}_{15}, \mathrm{k}^{*}=5, \mathrm{w}^{\prime \prime}=\mathrm{y}_{2}, \mathrm{w}^{\prime}=\mathrm{y}_{3}, \mathrm{z}^{\prime \prime}=\mathrm{y}_{5}, \mathrm{z}^{\prime}=\mathrm{y}_{6}, \\
& \mathrm{Z}^{+}=\left\{\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{7}, \mathrm{y}_{8}, \mathrm{y}_{17}, \mathrm{y}_{18}\right\},\right. \\
& \mathrm{Z}^{-}=\left\{\mathrm{y}_{9}, \mathrm{y}_{10}, \mathrm{y}_{11}, \mathrm{y}_{12}, \mathrm{y}_{13}, \mathrm{y}_{14}, \mathrm{y}_{15}, \mathrm{y}_{16}\right\}, \\
& V^{\prime \prime}-\operatorname{REACH}\left(\mathrm{x}^{*}\right)=\hat{\mathrm{X}}_{1} \hat{u}_{2}^{-}, \\
& \hat{\mathrm{X}}_{1}^{-}=\left\{\mathrm{y}_{17}, \mathrm{y}_{18}\right\} \quad\left(\hat{\mathrm{X}}_{1} \text { wi11 be shrunk into node } \mathrm{x}_{1}^{-}\right), \\
& \hat{\mathrm{X}}_{2}^{-}=\mathrm{Z}^{-} .
\end{aligned}
$$

Lemma 6.1 In (N,f), $T K(a(u, v))=\emptyset$ (i.e., $K(a(u, v))=\emptyset)$ holds if and only if $u \notin \operatorname{REACH}\left(x^{*}\right)$.

Proof. Obvious from $c(a)>0, a \in A$ and Definition 6.1. \square By applying Lemma 2.6 to $i=1,2, \ldots, q-1$ repeatedly, we see that Assumption A also holds in G. Furthermore, divergent nodes $x_{i}^{-}, i=1,2, \ldots, q-1$, are located on the
boundary of G.
Since ASSIGN halts by (T-4) at x^{*} in $\mathrm{N}^{\prime \prime}$, we have $\mathrm{v}^{*}, \mathrm{k}^{*}$ and p for which $a\left(x^{*}, v^{*}\right) \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right), \mathrm{k}^{*} \in \mathrm{~K}\left(\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right)\right)$ and $\Pi\left(v^{*}, t^{k *}\right)=\emptyset$ hold in N. See Figure 6.5. Let X be the set of nodes reachable from v^{*}. By applying the same argument in the proof of Lemma 2.1 to $\Pi\left(v^{*}, t^{k^{*}}\right)=\varnothing$, we have a connected divergent set X^{+}such that $\mathrm{t}^{\mathrm{k}^{*} \in \mathrm{X}^{+} \subseteq V-X \text { holds and }}$ set $X^{-}=V-X^{+}$is connected. X^{-}contains v_{0}, but not x^{*}. Therefore $\mathrm{X}^{-} \subseteq \mathrm{Z}^{-}$.

In (N, f), a cut $A(X) \cup A(V-X)$ dividing V into X and $V-X$ is called commodity disjoint if the following conditions hold.

$$
A(X) \subseteq \operatorname{OUT}\left(\operatorname{REACH}\left(x^{*}\right)\right) \text { (i.e., flow in } A(X) \text { has already }
$$

determined.)

$$
\begin{align*}
& K(a) \cap K(b)=\emptyset \text { for } a \in A(X) \text { and } b \in A(V-X) \text {. } \tag{6.2}\\
& T K(a) \subseteq V-X \text { for } a \in A(X) \text {. }
\end{align*}
$$

Let $A(X) \cup A(V-X)$ be a commodity disjoint cut. Since all arcs in $A(X)$ are saturated, we have,

$$
c(X)=\sum_{k \in K(a)} \sum_{a \in A(X)} f(a, k)
$$

From (6.3),

$$
g(X) \geq \sum_{k \in K(a)} \sum_{a \in A(X)}^{f(a, k)}
$$

holds, and hence

$$
r(X)=c(X)-g(X)=\sum_{k \in K(a)} \sum_{a \in A} f(a, k)-g(X) \leq 0 .
$$

Therefore unless $r(X)=0$, the cut-condition (2.1) is not satisfied. Algorithm FIND-CUT described in the subsequent discussion is a procedure to find out such a commodity disjoint cut not satisfying the cut-condition.

Definition 6.2 All devergent nodes reachable to $\mathrm{s}^{\mathrm{k}^{*}}$ are contained in $V B\left[z^{\prime \prime}, w^{\prime \prime}\right]\left(=Z^{+} \cap V_{B}\right)$. Let $\operatorname{DIV}\left(Z^{+}\right)$denote the set of divergent nodes in Z^{+}. Let the unilateral simple cut $A\left(V-X^{-}\right)$be denoted by $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ as shown in Figure 6.5, where $A\left(V-X^{-}\right) \cap A_{B}=\left\{b_{1}, b_{m}\right\}$ and the direction of arc $\mathrm{b}_{1}=\mathrm{a}(\tilde{\mathrm{u}}, \tilde{\mathrm{v}})$ is counterclockwise along the boundary.

For example, let $\mathrm{x}^{*}=\mathrm{y}_{8}, \mathrm{v}^{*}=\mathrm{y}_{15}$ in Figure 6.4. Then we have $X^{-}=\left\{y_{15}, y_{16}\right\}, \quad b_{1}=a\left(y_{11}, y_{15}\right), \quad b_{2}=a\left(y_{14}, y_{15}\right), \quad b_{3}=e_{23}$, $b_{4}=e_{8}, b_{5}=e_{7}, b_{6}\left(=b_{m}\right)=e_{5}, \tilde{u}=y_{11}, \tilde{v}=y_{15}$.

Lemma 6.2 For a given (N, f), we define k^{*}, Z^{-}and X^{-}as described in the above. Then $\mathrm{t}^{\mathrm{k}^{*} \in \mathrm{Z}^{-}-\mathrm{X}^{-} \text {holds, as shown in }}$ Figure 6.5.
 ASSIGN has passed Step 2 when x^{*} is chosen, $k^{*} \in H_{p} \subset K_{p}\left(x^{*}\right)$ holds. Note that $K_{p}\left(x^{*}\right)$ is the set of commodities k whose
sinks $\mathrm{t}^{\mathrm{k}}\left(\neq \mathrm{x}^{*}\right)$ are reachable from x^{*} via $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$. Therefore such sinks t^{k} are contained in Z^{-}by divergency of Z^{+}. This implies $\mathrm{t}^{\mathrm{k}^{*}} \in \mathrm{Z}^{-} . \square$

Fig. 6.5 Proof of Lemma 6.2.

Assumption 6.1 (a) By Lemma 6.2 , we have $t^{k^{*}} \in\left(Z^{-}-X^{-}\right) \cap V_{B}$. The $w^{\prime \prime}$ and $z^{\prime \prime}$ defined as above satisfy $t^{k^{*}} \in V B\left(w^{\prime \prime}, \tilde{u}\right)$ or $\mathrm{t}^{\mathrm{k}^{*}} \in \mathrm{VB}\left[\tilde{u}, z^{\prime \prime}\right)$, as illustrated in Figure 6.5. In subsequent sections $6.4,6.5$ and 6.6 , we assume $t^{k^{*}} \in V B\left[\tilde{u}, z^{\prime \prime}\right)$ without loss of generality, because the other case $t^{k^{*}} \in V B\left(w^{\prime \prime}, \tilde{u}\right)$ can be treated similarly by reversing the left-right relation.
(b) (T-4) holds for some $a\left(x^{*}, v^{*}\right) \in \operatorname{OUT}_{p}\left(x^{*}\right) . \quad$ Now we select the arc $a\left(x^{*}, v^{*}\right)$ such that any $\operatorname{arc}\left(i n \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)\right.$) to the right of $a\left(x^{*}, v^{*}\right)$ does not satisfy (T-4). That is, the rightmost arc a' in the set of arcs satisfying (T-4) can be chosen as such $a\left(x^{*}, v^{*}\right)$. (If a pair of arc a^{\prime} and commodity k^{\prime}, and a pair of arc $\mathrm{a}^{\prime \prime}$ and $\mathrm{k}^{\prime \prime}$ both satisfy (T 4), we see that if a^{\prime} is to the right of $a^{\prime \prime}$ then $t^{k^{\prime}}$ is also to the right of $t^{k^{\prime \prime}}$ by the rule of flow assignment used in ASSIGN. Therefore this definition of $a\left(x^{*}, v^{*}\right)$ does not contradict assumption (a)). \square

Assumption 6.1 is made throughout this chapter.

Lemma 6.3 In (N, f), these exists an arc $a\left(x^{*}, z_{0}\right) \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ that is located to the right of $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right)$ and satisfies $\Pi\left(z_{0}, \mathrm{t}^{\mathrm{k} *}\right) \neq \emptyset$. This is illustrated in Figure 6.5.

Proof. If $x^{*} \neq s^{k^{*}}, k^{*} \in K\left(a\left(u, x^{*}\right)\right)$ holds for some $a\left(u, x^{*}\right) \in \operatorname{IN}\left(x^{*}\right)$. $\Pi\left(x^{*}, t^{k^{*}}\right) \neq \emptyset$ holds because u is scanned
(i.e., (T-4) is not satisfied). On the other hand, if $\mathrm{x}^{*}=\mathrm{s}^{\mathrm{k}^{*}}$, we obtain $\Pi\left(\mathrm{x}^{*}, \mathrm{t}^{\mathrm{k}^{*}}\right) \neq \emptyset$ immediately from

$\Pi\left(x^{*}, t^{k *}\right)$ contains some $a\left(x^{*}, z_{0}\right) \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ and $\mathrm{z}_{0} \notin \mathrm{X}^{-}$by definition of Z^{-}and X^{-}. If such $a\left(x^{*}, z_{0}\right)$ is to the left of $a\left(x^{*}, v^{*}\right)$, this contradicts the planarity of N by Assumption 6.1 (a). Therefore $a\left(x^{*}, z_{0}\right)$ is located to the right of $a\left(x^{*}, v^{*}\right)$.

Lemma 6.4 For $\mathrm{v} \in \operatorname{DIV}\left(\mathrm{Z}^{+}\right)$and $\mathrm{y} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ with $\Pi(\mathrm{v}, \mathrm{y}) \neq \emptyset$ in (N, f), choose two $\operatorname{arcs} a, b \in \operatorname{OUT}_{j}(y)$ such that a is immediately to the left of b, as illustrated in Figure 6.6. Then $T K(a) \subseteq V B(v, \tilde{v}]$ or $T K(b) \subseteq V B[\tilde{u}, v)$ hold.

Proof. Since $y \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ has already passed Step 2, all commodities of the flow in $\operatorname{OUT}_{j}(y)$ are contained in $K_{j}(y)$. Let X_{j} denote a connected convergent set obtained by applying Lemma 2.5 to $\operatorname{OUT}_{\mathrm{j}}(\mathrm{y})$. Then $\mathrm{v} k \mathrm{X}_{\mathrm{j}}^{-}$by the convergency of X_{j}^{-}. ASSIGN has assigned the commodities in $K_{j}(y)$ in the left-right order to the arcs in $\operatorname{OUT}_{j}(y)$ chosen in the left-right order. Therefore each commodity in b is equal to or to the right of any commodity of flow in a. Therefore, if $T K(a) \cap \operatorname{VB}[\tilde{u}, v) \neq \emptyset$ holds, then any sink in $T K(b)$ is not to left to any sink $t^{k^{\prime}} \in T K(a) \cap V B[\tilde{u}, v)$, i.e.,
$T K(b) \subseteq V B[\tilde{u}, v)$ holds. In case $T K(a) \cap V B[\tilde{u}, v)=\emptyset$ holds, we obtain $\mathrm{TK}(\mathrm{a}) \subseteq \mathrm{VB}(\mathrm{v}, \tilde{\mathrm{v}}]$ immediately.

Fig. 6.6 Proof of Lemma 6.4.

In (N, f), take a window that contains an arc already assigned flow. Let W_{B} denote the window corresponding to the boundary. An arc in W is called forward (backward) arc in W if the arc direction is clockwise (counterclockwise) along W. From acyclicity of G, we see that any window W has at least one forward arc and one backward arc.

Definition 6.3 For a window $W\left(\neq W_{B}\right)$ and an arc a in W, we define arcs $a^{+}(W, a)$ and $a^{-}(W, a)$ as follows.
(1) If arc a is a backward arc in W, let $\mathrm{a}^{+}(\mathrm{W}, \mathrm{a})$ be the first forward arc encountered when we go around from the initial node of a in the clockwise manner along W. Let a^{-} (W,a) be the backward arc whose initial node is common to $a^{+}(W, a), \quad\left(p o s s i b l y ~ a=a^{-}(W, a)\right) . ~ S e e ~ F i g u r e ~ 6.7 . ~$

(a)

(b)

Fig. 6.7 Explanation of Definition 6.3.
(2) If arc a is a forward arc in W, let $a^{-}(W, a)$ be the first backward arc encountered when we go around from the initial node of a in the counterclockwise manner along W . Let $a^{+}(W, a)$ be the forward arc whose initial node is common to $a^{-}(W, a), \quad\left(p o s s i b l y ~ a=a^{+}(W, a)\right)$. See Figure 6.7.

Consider window W_{6} and arc e_{17} shown in Figure 6.4. e_{17} is backward in W_{6}. Therefore and then $a^{+}\left(W_{6}, e_{17}\right)=e_{11}$ and $a^{-}\left(W_{6}, e_{17}\right)=e_{12}$.

In each of (a) and (b), if arc a has already been assigned flow by ASSIGN then flow in $\mathrm{a}^{+}(\mathrm{W}, \mathrm{a})$ and $\mathrm{a}^{-}(\mathrm{W}, \mathrm{a})$ have been determined, because the initial node of $a^{+}(W, a)$ is reachable to the initial node of arc a.
$\operatorname{DIV}\left(\mathrm{Z}^{+}\right) \subseteq \mathrm{VB}\left[\mathrm{z}^{\prime \prime}, \mathrm{w}^{\prime \prime}\right]$ was already stated. Let $u_{1}, u_{2} \in \operatorname{VB}\left[z^{\prime \prime}, w^{\prime \prime}\right]$. If u_{1} is to the left of u_{2} in VB[$\left.z^{\prime \prime}, w^{\prime \prime}\right]$ (i.e., $\left.u_{2} \in \operatorname{VB}\left(u_{1}, w^{\prime \prime}\right]\right)$, this is denoted by $u_{1}>u_{2}$. The case $u_{1}=u_{2}$ or $u_{1}>u_{2}$ is denoted by $u_{1} \geq u_{1}$. For each $u \operatorname{REACH}\left(x^{*}\right)$, let $v_{R}(u)$ and $v_{L}(u)$ be the rightmost divergent node and the leftmost divergent node, respectively, among these nodes in $\operatorname{DIV}\left(Z^{+}\right)$which are reachable to u. See Figure 6.8.

Fig. 6.8 Definition of $v_{L}(u)$ and $v_{R}(u)$.

Fig. 6.9 Illustration of Lemma 6.5(1).

Lemma 6.5 Under the above notation, a window $W\left(\neq W_{B}\right)$ and an arc a in W satisfy the following, where u and u^{\prime} are the initial nodes of arc a and arc $a^{+}(W, a)$, respectively.
(1) If arc a is backward in $W, u \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ and $\operatorname{TK}(a) \subseteq \operatorname{VB}\left(v_{R}(u), \tilde{v}\right]$, then $u^{\prime} \in \operatorname{REACH}\left(x^{*}\right)$ and $v_{L}(u) \geq v_{L}\left(u^{\prime}\right)$ $\geq v_{R}\left(u^{\prime}\right) \geq v_{R}(u)$ hold. Furthermore one of the following (i) and (ii) holds, as illustrated in Figure 6.9.
(i) $\operatorname{TK}\left(\mathrm{a}^{+}(\mathrm{W}, \mathrm{a})\right) \subseteq \mathrm{VB}\left(\mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right), \tilde{\mathrm{v}}\right]$ and $\mathrm{a}^{+}(\mathrm{W}, \mathrm{a}) \neq \mathrm{a}$.
(ii) $\operatorname{TK}\left(\mathrm{a}^{-}(\mathrm{W}, \mathrm{a})\right) \subseteq \mathrm{VB}\left[\tilde{\mathrm{u}}, \mathrm{v}_{\mathrm{L}}\left(\mathrm{u}^{\prime}\right)\right)$ and $\mathrm{a}^{-}(\mathrm{W}, \mathrm{a}) \neq \mathrm{a}$.
(2) If arc a is forward in $W, u \in \operatorname{REACH}\left(x^{*}\right)$ and $T K(a) \subseteq \operatorname{VB}\left[\tilde{u}, v_{L}(u)\right)$, then $u^{\prime} \in \operatorname{REACH}\left(x^{*}\right)$ and $v_{L}(u) \geq v_{L}\left(u^{\prime}\right)$ $\geq v_{R}\left(u^{\prime}\right) \geq v_{R}(u)$ hold. Furthermore one of the following and (ii) holds.
(i) $T K\left(a^{+}(W, a)\right) \subseteq V B\left(v_{R}\left(u^{\prime}\right), \tilde{v}\right]$ and $a^{+}(W, a) \neq a$.
(ii) $\operatorname{TK}\left(\mathrm{a}^{-}(\mathrm{W}, \mathrm{a})\right) \subseteq \mathrm{VB}\left[\tilde{\mathrm{u}}, \mathrm{v}_{\mathrm{L}}\left(\mathrm{u}^{\prime}\right)\right)$ and $\mathrm{a}^{-}(\mathrm{W}, \mathrm{a}) \neq \mathrm{a}$.

Proof. We prove only (1), as (2) is similar. First we show $v_{L}(u) \geq v_{L}\left(u^{\prime}\right) \geq v_{R}\left(u^{\prime}\right) \geq v_{R}(u)$. Take a divergent node \hat{v} with $\Pi\left(\hat{v}, u^{\prime}\right) \neq \emptyset$ (i.e., $\left.v_{L}\left(u^{\prime}\right) \geq \hat{v} \geq v_{R}\left(u^{\prime}\right)\right)$. Then, since $v_{L}(u) \geq \hat{v} \geq v_{R}(u)$ holds from $\Pi\left(u^{\prime}, u\right) \neq \emptyset$, we have $v_{L}(u) \geq v_{L}\left(u^{\prime}\right)$ $\geq v_{R}\left(u^{\prime}\right) \geq v_{R}(u)$.

Now we show that (i) or (ii) always holds. For the ternimal node v of arc a, let $Y[v]$ denote the set of nodes $y \in V_{B}$ with $\Pi(v, y) \neq \emptyset$ (for $v \in V_{B}$, assume $v \in Y[v]$). Since V_{B} contains a convergent node which is reachable from $v \notin V_{B}$, $Y[v] \neq \emptyset$ always holds. Here we consider the following three cases.

Case-1: $\mathrm{Y}[\mathrm{v}] \cap \operatorname{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right) \neq \emptyset, \quad \mathrm{Y}[\mathrm{v}]-\mathrm{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right) \neq \emptyset$, Case-2: $Y[v] \subseteq \operatorname{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right)$, Case-3: $\mathrm{Y}[\mathrm{v}] \cap \mathrm{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right)=\varnothing$.

Fig. 6.10 Proof of Lemma 6.5.

In Case-1, we choose y and y^{\prime} such that $y \in Y[v] \cap V B\left(v_{L}(u), v_{R}(u)\right)$ and $y^{\prime} \in Y[v]-V B\left(v_{L}(u), v_{R}(u)\right)$, as shown in Figure 6.10. Clearly $v_{L}(u) \in V B\left(y^{\prime}, y\right)$. From the planarity, any path $\pi_{1} \in \Pi\left(v_{L}(u), u\right)$ has a node common to either $\pi_{2} \in \Pi(v, y)$ or $\pi_{3} \in \Pi\left(v, y^{\prime}\right)$, contradicting the acyclicity of G. Therefore Case-1 is impossible.

In Case-2, we first show that $T K(a) \subseteq V B\left(v_{L}(u), v_{R}(u)\right)$ holds. Consider the case $u \neq x^{*}$. This $u \in \operatorname{REACH}\left(x^{*}\right)$ has already passed Steps 2 and 3 , and therefore $\Pi\left(\mathrm{v}, \mathrm{t}^{\mathrm{k}}\right) \neq \emptyset$ for any sink $t^{k} \in T K(a)$. That is, we have $T K(a) \subseteq Y[v] \subseteq$ $\operatorname{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right)$. On the contrary, if $\mathrm{u}=\mathrm{x}^{*}$, x^{*} has passed Step 2, and therefore all sinks of the commodities in flow in $\operatorname{OUT}_{j}\left(\mathrm{x}^{*}\right)$ (containing arc a) are located in X_{j}, which is obtained by Lemma 2.5. See Figure 6.11. From $u=x^{*} \notin X_{j}^{-}$and convergency of X_{j}^{-}, set X_{j} contains no node reachable to x. Hence, $\quad v_{L}(u), v_{R}(u) \notin X_{j}^{-}$. From $Y[v] \subseteq X_{j}^{-}$and the assumption of Case-2, we have $X_{j}^{-} \cap V B\left(v_{L}(u), v_{R}(u)\right) \neq \emptyset$, that is, $(T K(a) \subseteq) X_{j}^{-} \subseteq V B\left(v_{L}(u), v_{R}(u)\right)$. The result
$T K(a){ }^{\subset} \mathrm{VB}\left(\mathrm{v}_{\mathrm{L}}(\mathrm{u}), \mathrm{v}_{\mathrm{R}}(\mathrm{u})\right)$ however means
 holds by definition of \tilde{v}, where \tilde{v} is the terminal node of b_{1} in Definition 6.2. This contradicts the condition of the lemma, $\quad T K(a) \subseteq V B\left(v_{R}(u), \tilde{v}\right]$. Therefore Case-2 is also
impossible.

Fig. 6.11 Proof of Lemma 6.5.

In Case-3, by applying Lemma 6.4 to $\mathrm{a}_{\mathrm{a}} \mathrm{a}^{+}(\mathrm{W}, \mathrm{a})$, $b=a^{-}(W, a), y=u^{\prime}$ and $v=v_{R}(u)$, we have $T K\left(a^{+}(W, a)\right) \subseteq$ $\operatorname{VB}\left(v_{R}\left(u^{\prime}\right), \tilde{v}\right]$ or $\operatorname{TK}\left(a^{-}(W, a)\right) \subseteq V B\left[\tilde{u}, v_{R}\left(u^{\prime}\right)\right)$. Since the former satisfies the lemma's statement (obviously backward arc a differs from $\left.a^{+}(W, a)\right)$, we assume the latter. For the terminal node v^{\prime} of arc $a^{-}(W, a)$, let $Y\left[v^{\prime}\right]$ denote the set of nodes $y \in V_{B}$ with $\Pi\left(v^{\prime}, y\right) \neq \emptyset$. For $v^{\prime} \in V_{B}$, let $v^{\prime} \in Y[v]$. Hence, $\quad Y[v] \subseteq Y\left[v^{\prime}\right] \neq \emptyset \quad$ from $\quad \Pi\left(v^{\prime}, v\right) \neq \emptyset$, and $Y[v] \cap V B\left(v_{L}\left(u^{\prime}\right), v_{R}\left(u^{\prime}\right)\right)=\emptyset$ from the assumption $Y[v] \cap \operatorname{VB}\left(v_{L}(u), v_{R}(u)\right)=\emptyset$. Here if we assume $Y\left[v^{\prime}\right] \cap V B\left(v_{L}\left(u^{\prime}\right), v_{R}\left(u^{\prime}\right)\right) \neq \emptyset$, then
$Y\left[v^{\prime}\right]-V B\left(v_{L}\left(u^{\prime}\right), v_{R}\left(u^{\prime}\right)\right) \supseteq Y[v] \neq \emptyset$. In this case, since $\mathrm{Y}\left[\mathrm{v}^{\prime}\right] \cap \operatorname{VB}\left(\mathrm{v}_{\mathrm{L}}\left(\mathrm{u}^{\prime}\right), \mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right)\right) \neq \emptyset$ and $\quad \mathrm{Y}\left[\mathrm{v}^{\prime}\right]-\mathrm{VB}\left(\mathrm{v}_{\mathrm{L}}\left(\mathrm{u}^{\prime}\right), \mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right)\right) \neq \emptyset$, we can derive a contradiction from the acyclicity of G in a manner similar to Case-1. Therefore we obtain $Y\left[v^{\prime}\right] \cap \operatorname{VB}\left(v_{L}\left(u^{\prime}\right), v_{R}\left(u^{\prime}\right)\right)=\emptyset$. See Figure 6.12. This u^{\prime} is satisfies $u^{\prime} \in \operatorname{REACH}\left(x^{*}\right)$ by $u \in \operatorname{REACH}\left(x^{*}\right)$ and Π ($\left.u^{\prime}, u\right) \neq \emptyset$. Furthermore $u^{\prime} \neq x^{*}$ can be shown as follows. If $u=x^{*}$ holds, $u^{\prime} \neq x^{*}$ is obvious from $u^{\prime} \neq u$. If $u \neq x^{*}$ holds, we have $\Pi\left(u^{\prime}, u\right) \neq \emptyset$ and hence $u^{\prime} \neq x^{*}$ by the acyclicity of G and $\Pi\left(u, x^{*}\right) \neq \emptyset$. Therefore $\left(\mathrm{x}^{*} \neq\right) \mathrm{u}^{\prime} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ has passed Steps 2 and 3 of ASSIGN, and $\Pi\left(v^{\prime}, t^{k}\right) \neq \emptyset$ holds for any $t^{k} \epsilon$ $\operatorname{TK}\left(\mathrm{a}^{-}(\mathrm{W}, \mathrm{a})\right)$. Then we obtain
$\operatorname{TK}\left(a^{-}(W, a)\right) \subseteq Y\left[v^{\prime}\right] \subseteq V_{B}-V B\left(v_{L}\left(u^{\prime}\right), v_{R}\left(u^{\prime}\right)\right)$. Therefore, the assumption $\quad T K\left(a^{-}(W, a)\right) \subseteq \operatorname{VB}\left[\tilde{u}, v_{R}\left(u^{\prime}\right)\right)$ implies $T K\left(a^{-}\right.$ $(W, a)) \subseteq V B\left[\bar{u}, v_{R}\left(u^{\prime}\right)\right)$. Consequently we have TK $\left(a^{-}\right.$ $(W, a)) \cap T K(a)=\emptyset$ (i.e., $\left.a^{-}(W, a) \neq a\right)$ by the condition of the lemma, $\operatorname{TK}(a) \subseteq V B\left(v_{R}(u), \tilde{v}\right]$. Hence (ii) holds. \square

Fig. 6.12 Proof of Lemma 6.5.

In (N, f), let W_{i}^{\prime} denote the window containing arcs b_{i} and $b_{i+1}\left(b_{1}\right.$ and b_{m} are the arcs contained in $\left.W_{B}\right)$, where $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ is the unilateral simple cut $A\left(V-X^{-}\right)$in Definition 6.2. There exists the r-th arc b_{r} in $A\left(V-X^{-}\right)$ such that the initial node of b_{r} differs from x^{*} and the initial node of $\mathrm{b}_{\mathrm{r}+1}$ is equal to x^{*}, as shown in Figure 6.13.

Fig. 6.13 Illustration of arc a_{r}.

In Figure 6.4, we obtain $\mathrm{b}_{\mathrm{r}}=\mathrm{b}_{2}=\mathrm{a}\left(\mathrm{y}_{14}, \mathrm{y}_{15}\right)$ and $\mathrm{b}_{\mathrm{r}+1}=\mathrm{b}_{3}=\mathrm{e}_{23}$.

Lemma 6.6 Let $b_{i}=a\left(u_{i}^{\prime}, v_{i}^{\prime}\right), i=1,2, \ldots, r$. Then any $u^{\prime}{ }_{i}$ satisfies $u_{i}^{\prime} \notin \operatorname{REACH}\left(x^{*}\right)$, i.e., flows in $b_{i}(i=1,2, \ldots, r)$ are not determined yet in (N, f).

Proof. Assume that $u_{1}^{\prime} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ holds for some $b_{i}(1 \leq i \leq r)$. Then a simple path $\pi_{1} \in \Pi\left(u_{i}^{\prime}, x^{*}\right)$ exists. Here we consider the graph obtained by shrinking the connected convergent set X^{-}into a convergent node x^{-}, as shown in Figure 6.14. By Lemma 2.6, G^{\prime} is also planar and acyclic. In $G^{\prime}, a\left(x^{*}, x^{-}\right), b_{i}$ and π_{1} form a simple undirected cycle C. In $\mathrm{G}^{\prime}, \mathrm{a}\left(\mathrm{x}^{*}, \mathrm{z}_{0}\right)$ is located to the right of $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{x}^{-}\right)$, and therefore $a\left(x^{*}, z_{0}\right)$ is contained in the area surrounded by C, where $a\left(x^{*}, z_{0}\right)$ is the arc defined in Lemma 6.3 such that $\mathrm{II}\left(\mathrm{z}_{0}, \mathrm{t}^{\mathrm{k}^{*}}\right) \neq \emptyset$ and $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{z}_{0}\right) \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$. From $\mathrm{t}^{\mathrm{k}^{*}} \in \mathrm{~V}_{\mathrm{B}}, \mathrm{t}^{\mathrm{k}^{*}}\left(\neq \mathrm{x}^{-}\right)$ is located in C or in the outside of the area surrounded by C. This means that π_{1} and $\pi_{2} \in \Pi\left(z_{0}, \mathrm{t}^{\mathrm{k}^{*}}\right)$ consist of a directed cycle, contradicting the acyclicity of G^{\prime}.

Lemma 6.7 For the index r in Lemma $6.6, W_{r}^{\prime}$ contains a node z_{1} such that $b_{r+1} \neq a\left(x^{*}, z_{1}\right) \in A$ and $T K\left(a\left(x^{*}, z_{1}\right)\right) \subseteq V B\left[t^{k^{*}}, z^{\prime \prime}\right)$ hold. This is illustrated in Figure 6.13.

Proof. If $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ contains no arc located to the

Fig. 6.14 Proof of Lemma 6.7
right of b_{r+1}, then this contradicts the existence of $a\left(x^{*}, z_{0}\right)$ satisfying Lemma 6.3. Therefore we can choose an arc $a\left(x^{*}, z_{1}\right)$ located to the right of b_{r+1}. Clearly $a\left(x^{*}, z_{1}\right)$ is contained in W_{r}^{\prime}. Since x^{*} has passed Step 2 of ASSIGN, flow has already been assigned to each arc in $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ and $T K(a) \subseteq Z^{-} \cap V_{B}$ holds for each $a \in \operatorname{OUT}_{p}\left(x^{*}\right)$. Now consider $\mathrm{TK}\left(\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{z}_{1}\right)\right)$. As $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{z}_{1}\right)$ is to the right of $\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right)$ in

Assumption 6.1, $\mathrm{t}^{\mathrm{k}^{*}} \in \mathrm{TK}\left(\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{v}^{*}\right)\right)$ means that any commodity of flow in $a\left(x^{*}, z_{1}\right)$ is to the right of k^{*}. That is, $\operatorname{TK}\left(a\left(x^{*}, z_{1}\right) \subsetneq V B\left[t^{k^{*}}, z^{\prime \prime}\right)\right.$ holds.

In Figure 6.4, we obtain $W^{\prime}{ }_{r}=W_{2}, a\left(x^{*}, z_{1}\right)=e_{24}$ and $z_{1}=y_{10}$.

6.4 ALGORITHM FIND-CUT

Assume that ASSIGN has found $a\left(x^{*}, v^{*}\right) \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ satisfying (T-4) and then halted. Given the (N,f) of Definition 6.1, the following procedure constructs a simple cut C^{*} not satisfying the cut-condition (2,1). In this section, after presenting the procedure, we clarify some properties.

Procedure FIND-CUT

0. For the unilateral simple cut $A\left(V-X^{-}\right)=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ constructed in Section 6.3, obtain the set of arcs $\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$ defined prior to Lemma 6.6. Let $a_{i}:=b_{i}$ ($i=1,2, \ldots, r$). Let $a_{r+1}:=a\left(x^{*}, z_{1}\right)$, where $a\left(x^{*}, z_{1}\right)$ is the arc satisfying Lemma 6.7. Based on window W_{B} and windows W_{i} containing a_{i} and a_{i+1} (i.e., equal to those W_{i}^{\prime} defined prior to Lemma 6.6) ($i=1,2, \ldots, r$), we define a set of windows $Q=\left\{W_{0}, W_{1}, W_{2}, \ldots, W_{r}\right\}$. Further let $C^{-}:=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}, C^{+}:=\left\{a_{r+1}\right\}$ and $i:=r+1$.
1. Let W_{i} be the other window (distinct from W_{i-1}) containing a_{i}. If $W_{i} \in Q$ then proceed to 5. Otherwise, let $Q:=Q \cup\left\{W_{i}\right\}$ and proceed to 2 .
2. If $a_{i} \in C^{-}$(i.e., a_{i} is a backward arc in W_{i}), the initial node u of a_{i} satisfies $u \in \operatorname{REACH}\left(x^{*}\right)$ and
$T K(a) \subseteq V B\left(v_{R}(u), \tilde{v}\right]$. In this case, (i) or (ii) of Lemma 6.5 (1) holds. (The validity is proved in the following Lemma 6.10.)

If $a_{i} \in C^{+}$(i.e., a_{i} is a forward arc in W_{i}), the initial node u of a_{i} satisfies $u \in \operatorname{REACH}\left(x^{*}\right)$ and $T K(a) \subseteq V B\left[\tilde{u}, v_{L}(u)\right)$. In this case, (i) or (ii) of Lemma 6.5 (2) holds, i.e.,
(i) $\operatorname{TK}\left(\mathrm{a}^{+}\left(\mathrm{W}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right)\right) \subseteq \operatorname{VB}\left(\mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right), \tilde{\mathrm{v}}\right]$ and $\mathrm{a}^{+}\left(\mathrm{W}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right) \neq \mathrm{a}_{\mathrm{i}}$,
(ii) $\operatorname{TK}\left(a^{-}\left(W_{i}, a_{i}\right)\right) \subseteq \operatorname{VB}\left[\tilde{u}, v_{L}\left(u^{\prime}\right)\right)$ and $a^{-}\left(W_{i}, a_{i}\right) \neq a_{i}$, where u^{\prime} is the node common to $a^{+}\left(W_{i}, a_{i}\right)$ and $a^{-}\left(W_{i}, a_{i}\right)$. Proceed to 3 if (i) holds. Otherwise, proceed to 4.
3. Let $a_{i+1}:=a^{+}\left(W_{i}, a_{i}\right), C^{-}:=C^{-} \cup\left\{a_{i+1}\right\}\left(a_{i+1}\right.$ is a backward arc in W_{i+1}) and $i:=i+1$. Return to 1 .
4. Let $a_{i+1}:=a^{-}\left(W_{i}, a_{i}\right), C^{-}:=C^{-} \cup\left\{a_{i+1}\right\}\left(a_{i+1}\right.$ is a forward arc in W_{i+1}) and $i:=i+1$. Return to 1 .
5. Let $C^{*}:=C^{+} \cup C^{-}$and halt. This situation is illustrated in Figure 6.15.

Since the number of updating $\mathrm{Q}:=\mathrm{Q} \cup\left\{\mathrm{W}_{\mathrm{i}}\right\}$ in Step 1 of FIND-CUT is at most the number of all windows in G, FIND-CUT halts after finite number of operations. Here we estimate the time complexity of FIND-CUT. To obtain $a^{+}\left(W_{i}, a_{i}\right)$ and $a^{-}\left(W_{i}, a_{i}\right)$ for some a_{i} in Step 2, we go around the cycle W_{i}

Fig. 6.15 Cut C* obtained by algorithm FIND-CUT.
from the initial node u_{i} of a_{i} to the node u^{\prime} common to $a^{+}\left(W_{i}, a_{i}\right)$ and $a^{-}\left(W_{i}, a_{i}\right)$. Since FIND-CUT does not search a window more than twice and furthermore an arc is contained in exactly two distinct windows, any arc is not searched by FIND-CUT more than three times. Therefore, the total of the time required to obtain $a^{+}\left(W_{i}, a_{i}\right)$ and $a^{-}\left(W_{i}, a_{i}\right)$ for $a 11$ i is bounded from above by $O(|A|)$ (i.e., $O(|V|)$ by the planarity). Now we consider the time required to determine whether (i) holds or not in Step 2. Here we make use of the preprocessing by which $v_{R}\left(u^{\prime}\right)$ and $V B\left(v_{R}\left(u^{\prime}\right), \tilde{v}\right] \cap T$ are computed for each $u^{\prime} \in \operatorname{REACH}\left(x^{*}\right)$. That is, to obtain $v_{R}\left(u^{\prime}\right)$ for each $u^{\prime} \in \operatorname{REACH}(x)$, we scan a divergent node (say \hat{v}) from right to left among $\operatorname{VB}\left[z^{\prime \prime}, w^{\prime \prime}\right]$ and set $v_{R}\left(u^{\prime}\right)=\hat{v}$ for all $u^{\prime} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ such that u^{\prime} is reachable from \hat{v} but $v_{R}\left(u^{\prime}\right)$ is not yet set. In this process, no arc is searched more than twice, and therefore the required time is bounded from above by $O(|A|+|V|)$, i.e., $O(|V|)$. A1so the time required to obtain $\mathrm{VB}\left(\mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right), \tilde{v}\right] \cap T$ from the set of all $\mathrm{v}_{\mathrm{R}}\left(\mathrm{u}^{\prime}\right)$ is bounded from above by $O(\mathrm{~K}|\mathrm{~V}|)$, because the set of the searched nodes is located on1y in the boundary. Based on the data obtained by preprocessing, we can determine whether (i) of Step 2 holds or not in $O(|K|)$ time. Since the number of iterations in Step 2 is $O(|Q|)(=O(|V|))$, the total time of

FIND-CUT and the preprocessing is bounded from above by $O(K|V|)$.

Applying FIND-CUT to the network in Figure 6.4, we obtain

$$
\begin{aligned}
& \mathrm{v}^{*}=\tilde{v}_{=} \mathrm{y}_{15}, \quad \tilde{u}=\mathrm{y}_{11}, \quad \mathrm{t}^{\mathrm{k} *}=\mathrm{y}_{12}, \quad \mathrm{z}_{0}=\mathrm{z}_{1}=\mathrm{y}_{10}, \\
& a_{1}=b_{1}=a\left(y_{11}, y_{15}\right), a_{2}=b_{2}=b_{r}=a\left(y_{14}, y_{15}\right), a_{3}=e_{24} \text {, } \\
& a_{4}=e_{25}, a_{5}=e_{18}, a_{6}=e_{17}, a_{7}=a_{n}=e_{11}, \\
& C^{+}=\left\{a_{3}, a_{4}\right\}, C^{-}=\left\{a_{1}, a_{2}, a_{5}, a_{6}, a_{7}\right\}, \\
& \mathrm{X}_{1}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{7}, \mathrm{y}_{8}, \mathrm{y}_{15}, \mathrm{y}_{16}, \mathrm{x}_{1}^{-}\left(=\left\{\mathrm{y}_{17}, \mathrm{y}_{18}\right\}\right)\right\} \text {, } \\
& \mathrm{x}_{2}=\left\{\mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{y}_{6}, \mathrm{y}_{9}, \mathrm{y}_{10}, \mathrm{y}_{11}, \mathrm{y}_{12}, \mathrm{y}_{13}, \mathrm{y}_{14}\right\} \text {, }
\end{aligned}
$$

where X_{1} and X_{2} are the sets of nodes obtained after removing cut $C^{*}=C^{+} \cup C$. Windows $W_{i}, i=1,2, \ldots, 6$ are shown in Figure 6.4. Here,

$$
c\left(X_{1}\right)=c\left(e_{24}\right)+c\left(e_{25}\right)=f\left(e_{24}, 6\right)+f\left(e_{25}, 6\right)=4
$$

holds. However, $f\left(e_{23}, 5\right)=1>0$ for $a\left(x^{*}, v^{*}\right)=e_{23}$, and hence

$$
r\left(X_{1}\right)=c\left(X_{1}\right)-g\left(X_{1}\right) \leq c\left(X_{1}\right)-\left(g^{5}+g^{6}\right)=4-(4+1)<0
$$

holds, indicating that C^{*} does not satisfy the cut-condition (2.1).

The validity of Step 2 of FIND-CUT is shown by the following 1emma.

Lemma 6.8 Let $a_{i}=a\left(u_{i}, v_{i}\right)$ denote the $a_{i}(i \geq r+1)$ obtained by FIND-CUT. Then $T K\left(a_{i}\right) \neq \emptyset$ and $u_{i} \in \operatorname{REACH}\left(x^{*}\right)$ always hold.

Furthermore, $T K\left(a_{i}\right) \subseteq V B\left(v_{R}\left(u_{i}\right), \tilde{v}\right]$ holds if a_{i} is a backward arc in W_{i} (i.e., $a_{i} \in C^{-}$), and $T K\left(a_{i}\right) \subseteq V B\left[\tilde{u}, v_{L}\left(u_{i}\right)\right.$) holds if a_{i} is a forward arc in W_{i} (i.e., $a_{i} \in C^{+}$).

Proof. We show by induction on $i(i \geq r+1)$.
(I) For $i=r+1$, we have $a_{r+1}=a\left(x^{*}, z_{1}\right) \in C^{+}$and $u_{r+1}=x^{*} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$. Here $\operatorname{TK}\left(\mathrm{a}\left(\mathrm{x}^{*}, \mathrm{z}_{1}\right)\right) \subseteq \operatorname{VB}\left[\mathrm{t}^{\mathrm{k}^{*}}, \mathrm{z}^{\prime \prime}\right)$ by Lemma 6.7, and then $T K\left(a_{r+1}\right) \subseteq V B\left[t^{k^{*}}, z^{\prime \prime}\right) \subseteq V B\left[\tilde{u}, z^{\prime \prime}\right)$ by $t^{k^{*}} \in V B\left[\tilde{u}, z^{\prime \prime}\right)$ of Assumption 6.1 (a). Furthermor, since $v_{L}\left(u_{r+1}\right) \in V B\left[z^{\prime \prime}, w^{\prime \prime}\right]$ from the definition of v_{L}, we have $\operatorname{TK}\left(a_{r+1}\right) \subseteq \operatorname{VB}\left[\tilde{u}, z^{\prime \prime}\right) \subseteq \operatorname{VB}\left[\tilde{u}, v_{L}\left(u_{r+1}\right)\right]$.
(II) For $i=k(k \geq r+1)$, we assume that the lemma holds (i.e., the condition of Lemma 6.5 holds). Since a_{k+1} is equal to $a^{+}\left(W_{k}, a_{k}\right)$ or $a^{-}\left(W_{k}, a_{k}\right), \quad \Pi\left(u_{k+1}, u_{k}\right) \neq \varnothing$ by Definition 6.3. Here a_{k} satisfies the condition of Lemma 6.5, and then we have $u_{k} \in \operatorname{REACH}\left(x^{*}\right)$ and furthermore $u_{k+1} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ (i.e., $\operatorname{TK}\left(\mathrm{a}_{\mathrm{k}+1}\right) \neq \emptyset$ by Lemma 6.1). If (i) of Lemma 6.5 holds for $i=k$, then $a_{k+1}=a^{+}\left(W_{k}, a_{k}\right)$ implies that $a_{k+1} \in C^{-}$and $T K\left(a^{+}\left(W_{k}, a_{k}\right)\right) \subseteq V B\left(v_{R}\left(u_{k+1}\right), \tilde{v}\right]$. If (ii) of Lemma 6.5 holds for $i=k$, then $a_{k+1}=a^{-}\left(W_{k}, a_{k}\right)$ implies that $\mathrm{a}_{\mathrm{k}+1} \in \mathrm{C}^{+}$and $\operatorname{TK}\left(\mathrm{a}^{-}\left(\mathrm{W}_{\mathrm{k}}, \mathrm{a}_{\mathrm{k}}\right)\right) \subseteq \mathrm{VB}\left[\tilde{\mathrm{u}}, \mathrm{v}_{\mathrm{L}}\left(\mathrm{u}_{\mathrm{k}+1}\right)\right)$.

Lemma 6.9 Let C^{-}and C^{+}be the sets of arcs obtained by FIND-CUT. Then $T K\left(a_{i}\right) \cap T K\left(a_{j}\right)=\emptyset$ always holds for $a_{i} \in C^{-}$
and $a_{j} \in C^{+}$.
Proof. For the set of arcs $C^{*}=C^{+} \cup C^{-}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, let $a_{i}=a\left(u_{i}, v_{i}\right), i=1,2, \ldots, n$. Lemma 6.6 and Lemma 6.8 assert that

$$
\begin{aligned}
& a_{i} \in C^{-} \text {and } T K\left(a_{i}\right)=\emptyset \text { for } i \leq r, \\
& \emptyset \neq T K\left(a_{i}\right) \subseteq \operatorname{VB}\left[\tilde{u}, v_{L}\left(u_{i}\right)\right) \text { if } i \geq r+1 \text { and } a_{i} \epsilon C^{+}, \\
& \emptyset \neq T K\left(a_{i}\right) \subseteq V B\left(v_{R}\left(u_{i}\right), \tilde{v}\right] \text { if } i \geq r+1 \text { and } a_{i} \in C^{-} .
\end{aligned}
$$

Therefore, to prove the lemma, we show $\mathrm{VB}\left(\mathrm{v}_{\mathrm{R}}\left(\mathrm{u}_{\mathrm{i}}\right), \tilde{\mathrm{v}}\right]$ and $\operatorname{VB}\left[\tilde{u}, v_{L}\left(u_{j}\right)\right)$ are always disjoint for $a_{i} \in C^{+}$and $a_{j} \in C^{-}$with $i, j \geq r+1$. That is, we shall prove that $v_{L}\left(u_{j}\right) \geq v_{R}\left(u_{i}\right)$ holds.

By Lemma 6.5 and the way of constructing a_{i}, we have

$$
\begin{equation*}
v_{L}\left(u_{i}\right) \geq v_{L}\left(u_{i+1}\right) \geq v_{R}\left(u_{i+1}\right) \geq v_{R}\left(u_{i}\right) \quad(r+1 \leq i \leq n-1) \tag{6.4}
\end{equation*}
$$

Hence, for $r+1 \leq p<q<n-1$, we obtain

$$
\begin{equation*}
v_{L}\left(u_{p}\right) \geq v_{L}\left(u_{q}\right) \text { and } v_{R}\left(u_{q}\right) \geq v_{R}\left(u_{p}\right) \tag{6.5}
\end{equation*}
$$

Assume that $v_{L}\left(u_{j}\right)<v_{R}\left(u_{i}\right)$ holds for some i and j. From the definition of $v_{R}(u)$ and $v_{L}(u), v_{R}\left(u_{i}\right) \leq v_{L}\left(u_{i}\right)$ always holds. As $i \neq j$ holds obviously, we have $v_{R}\left(u_{i}\right)>v_{L}\left(u_{j}\right) \geq v_{R}\left(u_{j}\right)$ for $j<i$. This, however, contradicts the latter condition of (6.5). Otherwise, $v_{L}\left(u_{j}\right) \geq v_{R}\left(u_{i}\right)>v_{L}\left(u_{j}\right)$ holds for $j<i$, contradicting the former condition of (6.5). Therefore we obtain $v_{L}\left(u_{j}\right) \geq v_{R}\left(u_{i}\right)$.

Lemma 6.10 Let C^{*} be the set of arcs obtained by FIND-CUT. Then C^{*} contains no arc located to the left of $a\left(x^{*}, z_{1}\right)$ in $\operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$.

Proof. From Step 0 of FIND-CUT, $a\left(x^{*}, z_{1}\right)=a_{r+1} \in C^{+}$ holds. Assume that $C^{+} \cup C^{-}$contains some arc $\mathrm{a}_{\mathrm{q}} \in \operatorname{OUT}_{\mathrm{p}}\left(\mathrm{x}^{*}\right)$ to the left of a_{r+1}. Clearly $q>r+1$. By the proof of Lemma 6.8, $\Pi\left(u_{j}, u_{i}\right) \neq \emptyset$ holds for any pair of i and j with $r+1 \leq i<j \leq q$. Here we show $u_{i}=x^{*}$ for all i with $r+1 \leq i \leq q$. If $u_{i} \neq x^{*}$ for some i with $r+1<i<q$, then $u_{r+1}=u_{q}=x^{*}$ implies that $\Pi\left(u_{q}, u_{i}\right) \neq \emptyset$ and $\pi\left(u_{i}, u_{r+1}\right) \neq \emptyset$. That is, there exists a directed cycle containing x and u_{i}, contradicting the acyclicity. Then we have $u_{i}=x^{*}$ for i with $r+1 \leq i \leq q$. Window W_{i} containing a_{i} and a_{i+1} satisfies $W_{i} \neq W_{B}$ for i with $\mathrm{r}+1 \leq \mathrm{i}<\mathrm{q}$, because FIND-CUT has constructed Q for $\mathrm{i}=\mathrm{q}$. This means that a_{i} and a_{i+1} for $r+1 \leq i<q$ are immediate neighbour each other and a_{i+1} is to the right of a_{i}. This contradicts the assumption that a_{q} is to the left of $\mathrm{a}_{\mathrm{r}+1} \cdot \square$

By the simplicity of cut $A\left(V-X^{-}\right)$, all windows W_{i} ($0 \leq i \leq r$) in Q at Step 0 are distinct each other. By the termination condition in Step 1, no window is searched by FIND-CUT more than tiwce. Assume that the termination condition holds for $W_{n} \in Q$ with $i=n$ and FIND-CUT has
halted. Note that this is the first time when the set of windows in Q contains a simlpe cycle in the graph dual to G, because a simple cut in a planar graph corresponds to a simple cycle in the dual graph, as described in Lemma 2.2. This means that the set of $\operatorname{arcs} C^{*}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ obtained by FIND-CUT contains exactly one simple cut (say C'). Since a simple cut can be written as a cutting circiut by Lemma 2.2, this simple cut C^{\prime} should be represented as $C^{\prime}=\left\{\mathrm{a}_{\mathrm{q}}, \mathrm{a}_{\mathrm{q}+1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ for some q with $1 \leq \mathrm{q} \leq \mathrm{n}$ and $\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{q}-1}$. Let X_{1} and X_{2} be the partitions obtained by removing C^{\prime}, where $A\left(X_{1}\right) \subseteq C^{+}$and $A\left(X_{2}\right) \subseteq C^{-}$. Here we define by $\Pi^{\mathrm{k}}(\mathrm{v}, \mathrm{y})$ the set of flow paths of commodity k in (N, f), as follows.

$$
\Pi^{k}(v, y) \triangleq\{\pi \in \Pi(v, y) \mid f(a, k)>0 \text { for all } a \in A(\pi)\}
$$

Lemma 6.11 Let $a(u, v)$ be an arc in ($N, f)$, where u is being scanned by ASSIGN.
(a) If $\mathrm{t}^{\mathrm{k}} \in \mathrm{TK}(\mathrm{a}(\mathrm{u}, \mathrm{v}))$ holds for some commodity k with $s^{k} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ and $\mathrm{t}^{\mathrm{k}} \in \mathrm{Z}^{+}$, then $\Pi^{\mathrm{k}}\left(\mathrm{v}, \mathrm{t}^{\mathrm{k}}\right) \neq \emptyset$.
(b) If $t^{k} \in T K(a(u, v))$ holds for some commodity k with $s^{k} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ and $\mathrm{t}^{\mathrm{k}} \in \mathrm{Z}^{-}$, then $\Pi^{\mathrm{k}}\left(\mathrm{v}, \mathrm{z}^{*}\right) \neq \emptyset$ for some node $z^{*} \in Z^{-}$.

Proof. (a) Note that the connected convergent sets in

Fig. 6.16 Proof of Lemma 6.11 (a).
$\mathrm{V}-\operatorname{REACH}\left(\mathrm{x}^{*}\right)$ are already shrunk except the set Z^{-}of Definition 6.1. Assume that $\pi^{k}\left(v, t^{k}\right)=\emptyset$ holds for v and t^{k} satisfying (a) of the lemma. Since flow of commodity k from source s^{k} satisfies the flow conservation at any node in $\operatorname{REACH}\left(\mathrm{x}^{*}\right)$, this flow reaches a convergent node $\mathrm{w}^{*}\left(\neq \mathrm{t}^{\mathrm{k}}\right)$ or a node $w^{*}\left(\neq x^{*} \notin \mathrm{Z}^{-}\right)$in Z^{-}, as shown in Figure 6.16. This, however, means that $\Pi\left(w^{*}, t^{k}\right)=\emptyset$ and then ASSIGN must halt by (T-4) before x^{*} is scanned. This is a contradiction.

Fig. 6.17 Proof of Lemma 6.11 (b).
(b) Assume that $\Pi^{k}(v, z)=\emptyset$ holds for all $z \in Z^{-}$. Since the flow of commodity k from source s^{k} satisfies the flow conservation at any node in $\operatorname{REACH}\left(\mathrm{x}^{*}\right), \quad \pi \mathrm{k}\left(\mathrm{v}, \mathrm{w}^{*}\right) \neq \emptyset$ holds for some convergent node $w^{*} \in Z^{+} \cap V_{B}$. See Figure 6.17. Since w^{*} (or a subgraph shrunk into ${ }^{*}{ }^{*}$) does not contain t^{k}, ASSIGN must halt by ($\mathrm{T}-4$) before x^{*} is scanned. This is a contradiction.

Lemma 6.12 Let $C^{*}=C^{+} \cup C^{-}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be the set of arcs obtained by FIND-CUT, and let $C^{\prime}=\left\{a_{q}, a_{q-1}, \ldots, a_{n}\right\}$ be the simple cut contained in C^{*}. Then $q=1$ holds (i.e., $C^{\prime}=C^{*}$).

Proof. Since Q contains $W_{0}\left(=W_{B}\right)$ in Step 0 , every a_{i} ($2 \leq i \leq n-1$) is not contained in W_{B}. (Otherwise FIND-CUT must have halted earlier.) Since all windows in Q are always distinct each other, $C^{\prime} \cap A_{B} \neq \emptyset$ implies that $\left|C^{\prime} \cap A_{B}\right|=2$, i.e., $C^{\prime} \cap A_{B}=\left\{a_{1}, a_{n}\right\}$, and hence $q=1$ holds. In the subsequent discussion, therefore, we will derive a contradiction under the assumption that $C^{\prime} \cap A_{B}=\emptyset$ and $q \geq 2$. This assumption implies that $X_{1} \cap V_{B}=\emptyset$ or $X_{2} \cap V_{B}=\emptyset$ holds, where the partitions into X_{1} and $X_{2}\left(=V-X_{1}\right)$ obtained by removing C^{\prime} satisfies as $A\left(X_{1}\right) \subseteq C^{+}$and $A\left(X_{2}\right) \subseteq C^{-}$. See Figure 6.15. We consider the following three cases.
(i) Case of $2 \leq q \leq r$ and $X_{1} \cap V_{B}=\emptyset$. Let $a_{q}=a\left(u_{q}, v_{q}\right)$. Then $\mathrm{u}_{\mathrm{q}} \in \mathrm{Z}^{-}$and $\mathrm{v}_{\mathrm{q}} \in \mathrm{X}_{1}$ hold. As all convergent nodes are contained in $\mathrm{V}_{\mathrm{B}} \subseteq \mathrm{X}_{2}$, node v_{q} is not convergent. By the acyclicity of G, there exists a convergent node $w^{*} \in V_{B} \subseteq X_{2}$ with $\Pi\left(\mathrm{v}_{\mathrm{q}}, \mathrm{w}^{*}\right) \neq \emptyset$. As cut C^{\prime} separates v_{q} and w^{*} as shown in Figure 6.18, C^{\prime} and $\pi \in \Pi\left(\mathrm{v}_{\mathrm{q}}, \mathrm{w}^{*}\right)$ have a common arc (say a_{j}). By $a_{j} \in A\left(X_{1}\right), a_{j} \in C^{+}$holds. Since $u_{q} \notin \operatorname{REACH}\left(x^{*}\right)$ holds by Lemma 6.6, $u_{j} \notin \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ holds for the initial

Fig. 6.18 Proof (i) of Lemma 6.12.
node u_{j} of arc a_{j}. This arc $a_{j} \epsilon C^{+}$, however, satisfies $j \geq r+1$ and this contradicts Lemma 6.8 .
(ii) Case of $2 \leq q \leq r$ and $X_{2} \cap V_{B}=\emptyset$. Since $W_{i}(0 \leq i \leq r)$ are
all distinct by the simplicity of cut $A\left(V-X^{-}\right), n \geq r+1$ holds for $C^{\prime}=\left\{a_{q}, a_{q+1}, \ldots, a_{n}\right\}$, i.e., $a_{r+1}=a\left(x^{*}, z_{1}\right) \in C^{\prime} \cap C^{+}$, where $z_{1} \in Z^{-}$is the node in Lemma 6.7. Clearly $x^{*} \in X_{1}$ and $z_{1} \in X_{2}$ hold. Since all convergent nodes are contained in $\mathrm{V}_{\mathrm{B}} \subseteq \mathrm{X}_{1}$, node z_{1} is not convergent. By acyclicity, there exists a convergent node $w^{*} \in V_{B} \subseteq X_{1}$ with $\Pi\left(z_{1}, w^{*}\right) \neq \emptyset$. Since cut C^{\prime} separates z_{1} and w^{*}, C^{\prime} and $\pi \in \Pi\left(z_{1}, w^{*}\right)$ have a common arc

Fig. 6.19 Proof of (ii) of Lemma 6.12.
(say a_{j}), as shown in Figure 6.19. By $a_{j} \in A\left(X_{2}\right)$, $a_{j} \in C^{-}$ holds, and $\Pi\left(z_{1}, x\right)=\emptyset$ by $z_{1} \in Z^{-}$. Then $\Pi\left(u_{j}, x\right)=\emptyset$ holds for the initial node u_{j} of a_{j}. Hence, $u_{j} \in \operatorname{REACH}\left(x^{*}\right)$ holds and we have $\operatorname{TK}\left(a_{j}\right)=\emptyset$ by Lemma 6.1. By Step 0 of FIND-CUT, $j \leq r$ holds if $a_{j} \in C^{-}$satisfies $\operatorname{TK}\left(a_{j}\right)=\emptyset$. (That is, $a_{j}=b_{j} \in$ $\left.\mathrm{A}\left(\mathrm{V}-\mathrm{X}^{-}\right).\right)$Therefore, without using an arc in $\mathrm{A}\left(\mathrm{V}-\mathrm{X}^{-}\right)$, node z_{1} cannot be reachable to any sink. Since $\operatorname{TK}\left(a\left(x^{*}, z_{1}\right)\right) \subseteq V B\left[t^{k^{*}}, z^{\prime \prime}\right) \subseteq V-X^{-}$by Lemma 6.7, $a\left(x^{*}, z_{1}\right)$ satisfies (T-4). This, however, contradicts Assumption 6.1 (b), because $a\left(x^{*}, z_{1}\right)$ is to the right of $a\left(x^{*}, v^{*}\right)$.

Fig. 6.20 Proof (iii) of Lemma 6.12.
(iii) Case of $r<q \leq n$. Assume $X_{1} \cap V_{B}=\emptyset$ (the case of $\mathrm{X}_{2} \cap \mathrm{~V}_{\mathrm{B}}=\emptyset$ is similar). If $\mathrm{C}^{+} \cap \mathrm{C}^{\prime}=\emptyset$ or $\mathrm{C}^{-} \cap \mathrm{C}^{\prime}=\emptyset$ holds, then X_{1} becomes a connected convergent set or a connected divergent set. By Lemma 2.3, $X_{1} \cap V_{B} \nsubseteq \emptyset$ holds, but this contradicts the assumption. Therefore we have $C^{+} \cap C^{\prime} \neq \emptyset$ or $C^{-} \cap C^{\prime} \neq \emptyset$. Then take an arc $a_{j} a\left(u_{j}, v_{j}\right) \in C^{-} \cap C^{\prime}\left(=A\left(X_{2}\right)\right)$ and a commodity $\mathrm{k}^{\prime} \in \mathrm{K}\left(\mathrm{a}_{\mathrm{j}}\right)$ going out of $\mathrm{v}_{\mathrm{j}} \in \mathrm{X}_{1}$, as shown in

Figure 6.20. By Lemma 6.9, $\mathrm{k}^{\prime} \notin \mathrm{K}\left(\mathrm{a}_{\mathrm{i}}\right)$ holds for any
 By $s^{k^{\prime}} \in \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ and Lemma 6.11 (a), commodity k^{\prime} must satisfy $t^{k^{\prime}} \in \mathrm{Z}^{-}$. There exists a node $\mathrm{z}^{*} \in \mathrm{Z}^{-}$with $\pi^{k^{\prime}}\left(v_{j}, z^{*}\right) \neq \emptyset$ by Lemma 6.11 (b), and $z^{*} \in X_{1}$ holds by the reachability of $\pi \mathrm{k}^{\prime}$. As all convergent nodes are contained in V_{B}, node z^{*} is not convergent. By the acyclicity of G, we have a convergent node $\mathrm{w}^{*} \in \mathrm{~V}_{\mathrm{B}} \subseteq \mathrm{X}_{2}$ with $\Pi\left(\mathrm{z}^{*}, \mathrm{w}^{*}\right) \neq \varnothing$. As cut C^{\prime} separates z^{*} and w^{*}, C^{\prime} and $\pi \in \Pi\left(z^{*}, w^{*}\right)$ have a common $\operatorname{arc}\left(\right.$ say $\left.a_{h}=a\left(u_{h}, v_{h}\right)\right) . \quad B y z^{*} \in Z^{-}, z^{*} \notin \operatorname{REACH}\left(x^{*}\right)$ holds, i.e., $u_{h} \notin \operatorname{REACH}\left(\mathrm{x}^{*}\right)$ and $\operatorname{TK}\left(\mathrm{a}_{\mathrm{h}}\right)=\emptyset$ hold by Lemma 6.1. Since $r<q$, i.e., $C^{\prime} \cap\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\emptyset$, we obtain $h \geq r+1$. This, however, contradicts the property that $T K\left(a_{i}\right) \neq \emptyset$ for all $a_{i} \in C^{\prime}(i \geq r+1)$.

Lemma 6.13 For $\mathrm{C}^{*}=\mathrm{C}^{+} \cup \mathrm{C}^{-}$obtained by FIND-CUT,
(a) $T K\left(a_{i}\right) \subseteq X_{1}$ for $a_{i} \in C^{-}$,
(b) $T K\left(a_{i}\right) \subseteq X_{2}$ for $a_{i} \in C^{+}$.

Proof. We denote C^{*} by $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. By Lemma 6.8, the initial node u_{n} of arc a_{n} satisfies $u_{n} \in \operatorname{REACH}\left(x^{*}\right)$. By Lemma 6.12, a_{n} is contained in W_{B}. Then, considering the partition of the boundary defined by $C^{*}, \quad \mathrm{VB}\left[\tilde{u}, z^{\prime \prime}\right) \subseteq X_{2}$ and $\mathrm{VB}\left(\mathrm{w}^{\prime \prime}, \tilde{\mathrm{v}}\right] \subseteq \mathrm{X}_{1}$ hold, where $\mathrm{a}_{1}=\mathrm{b}_{1}=\mathrm{a}(\tilde{\mathrm{u}}, \tilde{\mathrm{v}}) \in \mathrm{A}\left(\mathrm{V}-\mathrm{X}^{-}\right)$.
(a) Assume that there is some sink $\mathrm{t}^{\mathrm{k}^{\prime}}$ with
 Lemma 6.8, we have $t^{k^{\prime}} \in \operatorname{TK}\left(a_{i}\right) \subseteq \operatorname{VB}\left(v_{R}\left(u_{i}\right), \tilde{v}\right] \subseteq \operatorname{VB}\left(z^{\prime \prime}, \tilde{v}\right]$.
 $\Pi^{k^{\prime}}\left(v_{i}, t^{k^{\prime}}\right)=\emptyset$ holds. Then $t^{k^{\prime}} \in Z^{-}$must hold by Lemma 6.11 (a). This means $t^{k^{\prime}} \in \operatorname{VB}\left[\bar{u}, z^{\prime \prime}\right)$ by the assumption $\mathrm{t}^{\mathrm{k}^{\prime}} \in \mathrm{X}_{2}$. This, however, contradicts $\mathrm{t}^{\mathrm{k}^{\prime}} \in \mathrm{VB}\left(\mathrm{z}^{\prime \prime}, \tilde{\mathrm{v}}\right]$.
(b) Assume that there is some sink $\mathrm{t}^{\mathrm{k}^{\prime}}$ with $t^{k^{\prime}} \in \operatorname{TK}\left(a_{i}\right) \cap X_{1}$ for some $a_{i}=a\left(u_{i}, v_{i}\right) \in C^{+}$. By $a_{i} \in C^{+}$and Lemma 6.8, we have $t^{k^{\prime}} \in T K\left(a_{i}\right) \subseteq \operatorname{VB}\left[\tilde{u}, v_{L}\left(u_{i}\right)\right) \subseteq V B\left[\tilde{u}, w^{\prime \prime}\right)$. Since no $a_{j} \in C^{-}$satisfies $t^{k^{\prime}} \in \operatorname{TK}\left(a_{j}\right)$ by Lemma 6.9, we get $\Pi^{k^{\prime}}\left(v_{i}, t^{k^{\prime}}\right)=\emptyset$. Then $t^{k^{\prime}} \in \mathrm{Z}^{-}$must hold by Lemma 6.11 (a). This meams $t^{k^{\prime}} \in \operatorname{VB}\left(w^{\prime \prime}, \tilde{v}\right]$ by the assumption $t^{k^{\prime}} \in X_{1}$. This, however contradicts $\mathrm{t}^{\mathrm{k}^{\prime}} \in \mathrm{VB}\left[\tilde{\mathrm{u}}, \mathrm{w}^{\prime \prime}\right)$. \square

Lemma 6.14 Let C^{*} be the set of arcs obtained by FIND-CUT. Then C^{*} is a simple cut, but not unilateral. Furthermore, C^{*} is a commodity disjoint cut and satisfies $\left|C^{*} \cap A_{B}\right|=2$.

Proof. By Lemma 6.12, C^{*} is a simple cut and $C^{*} \cap A_{B}=\left\{a_{1}, a_{n}\right\}$ holds. C^{*} is not unilateral, since $a_{1} \in C^{-}$ and $a_{r+1} \in C^{+}$hold. By Lemmas 6.8 and 6.9 , flows are assigned to all the arcs in $A\left(X_{1}\right)=C^{+}$, and $\operatorname{TK}\left(a_{i}\right) \cap T K\left(a_{j}\right)=\emptyset$ holds for $a_{i} \in C^{-}$and $a_{j} \in C^{+}$. By Lemma 6.13 (b),
$T K(a) \subseteq V-X_{1}$ for all $a \in A\left(X_{1}\right)$. As a result of this, cut C^{*} satisfies (6.1)-(6.2), and then is commodity disjoint. \square

6.5 MAX-FLOW MIN-CUT THEOREM FOR CB AND CS NETWORKS

Based on the results in the previous sections, we shall prove Theorems 6.1 and 6.2 stated in Section 6.2, i.e., the max-flow min-cut theorem for $C B$ and CS networks.

Lemma 6.15 An infeasible CB network $\mathrm{N}^{\prime \prime}$ satsfying Assumption B has the following simple cut C^{*}.
(i) C^{*} is not unilateral, and $\left|C^{*} \cap A_{B}\right|=2$.
(ii) C^{*} does not satisfy the cut-condition (2.1).

Proof. When ASSIGN halts in $N^{\prime \prime}$, we construct (N, f) according to Definition 6.1. In N, FIND-CUT finds a simple cut C^{*} which is not unilateral. C^{*} partitions V into X_{1} and $X_{2}\left(=V-X_{1}\right)$ such that $A\left(X_{1}\right)=C^{+}$and $A\left(X_{2}\right)=C^{-}$. By Lemma $6.13, C^{*}$ is a commodity disjoint cut and satisfies (i) of the lemma's statement. We now show that C^{*} does not satisfy the cut-condition (2.1). Since all arcs in $A\left(X_{1}\right)$ are saturated,

$$
c\left(X_{1}\right)=\sum_{k \in K(a)} \sum_{a \in A\left(X_{1}\right)} f(a, k)
$$

holds. As $T K(a) \subseteq V-X_{1}$ for $a \in A\left(X_{1}\right)$ by Lemma 6.12, clearly

$$
g\left(X_{1}\right) \geq \sum_{k \in K(a)} \sum_{a \in A\left(X_{1}\right)} f(a, k)
$$

holds. Here $a\left(x^{*}, v^{*}\right)$ is located to the left of $a\left(x^{*}, z_{1}\right)$ by the definition of $a_{r+1}=a\left(x^{*}, z_{1}\right)$, and therefore C^{*} does not contain $a\left(x^{*}, v^{*}\right)$ by Lemma 6.10. That is, $v^{*} \in X_{1}$ holds. Since $f\left(a\left(x^{*}, v^{*}\right)\right)>0$ holds for commodity k^{*} that satisfies the termination condition (T-4), this flow does not outgo from node $\mathrm{v}^{*} \in \mathrm{Z}^{-}$. Therefore, by considering $\mathrm{t}^{\mathrm{k} *} \in \mathrm{X}_{2}$, $\mathrm{g}\left(\mathrm{X}_{1}\right)$ can be estimated as follows.

$$
g\left(X_{1}\right) \geq \sum_{k \in K(a)} \sum_{a \in A\left(X_{1}\right)} f^{f(a, k)+f\left(a\left(x^{*} \cdot v^{*}\right), k^{*}\right) .}
$$

Here, the r-value of X_{1} becomes

$$
\begin{aligned}
r\left(X_{1}\right)=c\left(X_{1}\right)-g\left(X_{1}\right) & =\sum_{k \in K(a)}^{\sum} \sum_{a \in A\left(X_{1}\right)} f(a, k)-g\left(X_{1}\right) \\
& \leq-f\left(a\left(x^{*}, v^{*}\right), k^{*}\right)<0
\end{aligned}
$$

That is, C^{*} does not satisfy the cut-condition. By Lemma 2.6, C^{*} also satisfies (i) in $N^{\prime \prime}$. Each commodity whose source and sink are separated by C^{*} in N remains still in $N^{\prime \prime}$. Therefore, C^{*} does not satisfy the cut-condition (2.1) in $\mathrm{N}^{\prime \prime}$.

Theorem 6.1 follows immediately from Lemma 6.15. Now we prove Theorem 6.2 for CS networks.

Lemma 6.16 If a CS network N^{\prime} does not satisfy Assumption B, then N^{\prime} has a unilateral simple cut not satisfying the cut-condition (2.1).

Proof. Obvious from the argument prior to Assumption B in Section 2.4.

Lemma 6.17 An infeasible CS network N^{\prime} satisfying Assumption B has a simple cut not satisfying the cutcondition (2.1).

Proof. In Chapter 4, we presented algorithm MATE1 that reduces a CS network to a CB network. Let $\mathrm{N}^{\prime \prime}$ be the $C B$ network reduced from N^{\prime} according to MATE1, and let K^{*} denote the set of commodities created by MATE1 in $\mathrm{N}^{\prime \prime}$. If $\mathrm{N}^{\prime \prime}$ does not satisfy Assumption $B, N^{\prime \prime}$ has a unilateral simple cut not satisfying the cut-condition as described in Section 2.4. Otherwise, if $\mathrm{N}^{\prime \prime}$ satisfies Assumption B, then, by Lemma 6.15, $\mathrm{N}^{\prime \prime}$ has a non-unilateral simple cut $C^{*}=A\left(X_{1}\right) \cup A\left(X_{2}\right)$ not satisfying the cut-condition (2.1). Here, by Lemma 2.8, we have $r\left(X_{1}\right)=r\left(X_{2}\right)<0$. If $K\left(X_{1} ; X_{2}\right) \cap K^{*}=\emptyset$ holds, then C^{*} is also a simple cut not satisfying the cut-condition since the value of $r\left(X_{1}\right)$ does not change in N^{\prime}. Since case $\mathrm{K}\left(\mathrm{X}_{2} ; \mathrm{X}_{1}\right) \cap \mathrm{K}^{*}=\emptyset$ can be treated similarly, assume that $K\left(X_{1} ; X_{2}\right) \cap K^{*} \neq \emptyset$ and $K\left(X_{2} ; X_{1}\right) \cap K^{*} \neq \emptyset$,

Fig. 6.21 Proof of Lemma 6.17.
and take $\mathrm{k} 1 \in \mathrm{~K}\left(\mathrm{X}_{1} ; \mathrm{X}_{2}\right) \cap \mathrm{K}^{*}$ and $\mathrm{k} 2 \in \mathrm{~K}\left(\mathrm{X}_{2} ; \mathrm{X}_{1}\right) \cap \mathrm{K}^{*}$. In a CS network, the boundary line can be divided into two parts such that all dummy sources are located in one part while all dummy sinks are located in the other part. Source-sink pair of each commodity in K^{*} was a neighbouring pair before
its commodity is created by MATE1. This implies that a path between source and sink of a new commdity $k l \in K^{*}$ does not cross a path between source-sink pair of other new commdity $\mathrm{k} 2 \in \mathrm{~K}^{*}$. That is, $\mathrm{s}^{\mathrm{k} 1}, \mathrm{t}^{\mathrm{k} 1}, \mathrm{~s}^{\mathrm{k} 2}$ and $\mathrm{t}^{\mathrm{k} 2}$ must be located in the boundary as shown in Figure 6.21. Then we have $\left|C^{*} \cap A_{B}\right| \geq 4$ from $s^{k 1}, t^{k 2} \in X_{1}$. This, however contradicts $\left|C^{*} \cap A_{B}\right|=2$ of Lemma 6.15 (i). Therefore we obtain $K\left(X_{1} ; X_{2}\right) \cap K^{*}=\emptyset$ and $K\left(X_{2} ; X_{1}\right) \cap K^{*}=\varnothing$.

Lemmas 6.16 and 6.17 give Theorem 6.2.

6.6 CONCLUSION

In this chapter, we showed that $C B$ and $C S$ are classes of multicommodity flow problems, for which the max-flow min-cut theorem holds. It should be noted that algorithm ASSIGN for $C B$ does not employ the max-flow min-cut property. Based on the max-flow min-cut property, the feasibility of CB can be tested by computing the minimum cut immediately. In the next chapter, we construct this type of algorithm for classes $C B$ and CS.

CHAPTER 7

ALGORITHM FTEST FOR TESTING

FEASIBILITY OF A CB OR CS NEIWORK

7.1 INTRODUCTION

It was shown in the previous chapter that the max-flow min-cut theorem holds for classes CB and CS. Based on the max-flow min-cut property, we shall present in this chapter an $O\left(S(|V|)+\left|V_{B}\right| T(|V|)\right)$ time algorithm for testing feasibility of the multicommodity flow problem for classes $C B$ and $C S$, where $|V|$ is the number of nodes, $\left|V_{B}\right|$ is the number of nodes in the boundary, $S(|V|)$ is the time required for preprocessing and $T(|V|)$ is the time to compute a shortest path tree. The best bounds currently known are $S(|V|)=0(1), \quad T(|V|)=0(|V| \sqrt{\log |V|})$ and $\quad S(|V|)=0(|V| \log |V|)$, $\mathrm{T}(|\mathrm{V}|)=0\left(|\mathrm{~V}| \log ^{*}|\mathrm{~V}|\right)$, which respectively give $O\left(\left|V_{B}\right||V| \sqrt{\log |V|}\right)$ and $O\left(|V| \log |V|+\left|V_{B}\right||V| \log { }^{*}|V|\right) \quad$ time bounds for our problem. These are better than the bound $O(\mathrm{~K}|\mathrm{~V}|)$ obtained in Chapter 3, when the number of commodities K is large [NAGA 88b].

7.2 ASSUMPTION D AND SOME LEMMAS

In the subsequent discussion, we consider $C B$ and $C S$ networks satisfying the following assumption.

Assumption D: $\quad \mathrm{S} \cup \mathrm{T} \subseteq \mathrm{V}_{\mathrm{B}} . \quad \square$

Under this assumption, $g(X)=0$ clearly holds for an arbitrary set $X \subseteq V-V_{B}$. That is, such set of nodes X satisfies cut-condition (2.1) $(r(X)=c(X) \geq 0)$. Therefore, to examine condition (2.1), we concentrate on X with $X \cap V_{B} \neq \emptyset$. Furthermore, we make use of the following property.

Lemma 7.1 In a connected graph $G, r(X) \geq 0$ holds for every $X \subseteq V$, if and only if $r(X) \geq 0$ holds for those $X \subseteq V$ such that X and V-X are connected, respectively.

Proof. As necessity is obvious, we show sufficiency. First, we show that $r(Y) \geq 0$ and $r(Z) \geq 0$ imply $r(Y \cup Z) \geq 0$ for any $\mathrm{Y}, \mathrm{Z} \subseteq \mathrm{V}$ with $\mathrm{Y} \cap \mathrm{Z}=\emptyset$ and $\mathrm{A}(\mathrm{Y} ; \mathrm{Z})=\mathrm{A}(\mathrm{Z} ; \mathrm{Y})=\emptyset$. Now

$$
\begin{aligned}
r(Y \cup Z) & =c(Y \cup Z)-g(Y \cup Z) \\
& =c(Y)+c(Z)-\{g(Y)+g(Z)-g(Y ; Z)-g(Z ; Y)\} \\
& =r(Y)+r(Z)+g(Y ; Z)+g(Z ; Y) \\
& \geq r(Y)+r(Z) \geq 0 .
\end{aligned}
$$

If a set $\mathrm{X} \subseteq \mathrm{V}$ is composed of some number of connected sets, repeat the above argument. It shows that if $r(X) \geq 0$ holds
for any connected set X then $r(X) \geq 0$ for every $X \subseteq V$.
Now we assume that X is connected, but $V-X$ is not connected. Then V-X may be divided into disjoint connected components. For convenience, we assume that the number of such components are two (say sets Y and Z). That is, $X \cap Y=X \cap Z=Y \cap Z=\emptyset, X \cup Y \cup Z=V$ and $A(Y ; Z)=A(Z ; Y)=\emptyset$. For these, we obtain $A(X ; Y) \cup A(Y ; X) \subseteq A(X) \cup A(V-X)$ and
$\{A(Z ; X) \cup A(X ; Z)\} \cap\{A(X ; Y) \cup A(Y ; X)\}=\emptyset$. This means that $V-Y$ is connected, because $A(Z ; X) \cup A(X ; Z) \neq \emptyset$ holds since G is connected. Similarly we can show that V-Z is connected. Since these sets satisfy the condition of the lemma, we can assume $r(V-Y) \geq 0$ and $r(V-Z) \geq 0$. Then we have

$$
\begin{aligned}
r(X) & =r(V-(Y \cup Z))=c(V-(Y \cup Z))-g(V-(Y \cup Z)) \\
& =c(V-Y)+c(V-Z)-\{g(V-Y)+g(V-Z)-g(Y ; Z)-g(Z ; Y)\} \\
& =r(V-Y)+r(V-Z)+g(Y ; Z)+g(Z ; Y) \\
& \geq r(V-Y)+r(V-Z) \geq 0 .
\end{aligned}
$$

Therefore, we obtain that if $r(X) \geq 0$ for $X \subseteq V$ such that X and V-X are both connected, then $r(X) \geq 0$ holds for any $X \subseteq V$.

By combining this result and Assumption D, we conclude the following. To test feasibility, it is sufficient to examine (2.1) only for connected sets $X \subseteq V$ with $X \cap V_{B}=$
$V B[x, y)$ for some $x, y \in V_{B}$. Here, we consider the case in which $x, y \in V_{B}$ are fixed. Then, for any X with $X \cap V_{B}=$ VB[x,y), we have

$$
r(X)=c(X)-g(X)=c(X)-g(V B[x, y)) \quad(\text { see Figure 7.1). }
$$

Fig. 7.1 Illustration of $\operatorname{VB}[x, y)$.

Therefore, to test $r(X) \geq 0$, we consider that X minimizes $c(X)$. Let $c^{0}[x, y)$ denote the minimum value of $c(X)$, then we obtain the following lemma.

Lemma 7.2 A CB (or CS) network is feasible, if and only if

$$
\begin{equation*}
c^{0}[x, y)-g(V B[x, y)) \geq 0 \quad \text { for all } x, y \in V_{B}, x \neq y \tag{7.1}
\end{equation*}
$$

holds.

7.3 USE OF A DUAL GRAPH

In this section, we consider the use of a dual graph in order to test condition (7.1) efficiently.

Definition 7.1 For a CB or CS network $N=(G, P, g, c)$ satifying Assumption D, we define directed dual graphs G^{*}, H^{*} and directed networks N^{*} as follows. Each node v_{i}^{*} in the dual graph corresponds to a window W_{i} in G (in particular, node $\mathrm{v}_{\mathrm{B}}^{*}$ corresponds to the outer face of G). For each directed $\operatorname{arc} \mathrm{a}_{\mathrm{k}}$ in G , a directed $\operatorname{arc} \mathrm{a}_{\mathrm{k}}^{+}$is introduced between nodes $\mathrm{v}_{\mathrm{i}}^{*}$ and $\mathrm{v}_{\mathrm{j}}^{*}$ corresponding to the windows W_{i} and W_{j} which contain a_{k} commonly. Here, direction of a_{k}^{+}is defined by the orientation when we turn $a_{k} 90$ degrees in the clockwise

Fig. 7.2 Explanation of Definition 7.1.
manner (see Figure 7.2). Let V^{*} and A^{+}denote the resulting set of nodes and set of arcs, respectively. Further, let $\mathrm{a}_{\mathrm{k}}^{-}$ be the arc obtained by reversing the orientaion of $\mathrm{a}_{\mathrm{k}}^{+}$, and let A^{-}be the set of $\operatorname{arcs} a_{k}^{-}$. We denote dual graphs $\left(V^{*}, A^{+} \cup A^{-}\right)$by G^{*}. Furthermore, let H^{*} denote the resulting graph obtained by removing $\mathrm{v}_{\mathrm{B}}^{*}$ and all arcs incident to $\mathrm{v}_{\mathrm{B}}^{*}$ from G^{*}. By introducing the length of $\operatorname{arcs} d: A^{+} \cup A^{-} \rightarrow R^{+}$, we define directed dual networks $N^{*}=\left(H^{*}, d\right)$, where d is defined by

$$
\begin{array}{ll}
d\left(a_{i}^{+}\right)=c\left(a_{i}\right) & \text { for } a_{i}^{+} \in A^{+}, \\
d\left(a_{i}^{-}\right)=0 & \text { for } a_{i}^{-} \in A^{-} .
\end{array}
$$

Assume that we know the information about the incidence relation of arcs, which is necessary to embed a planar graph into the plane. Then, since $0\left(\left|V^{*}\right|\right)=0\left(\left|A^{+}\right|\right)=$ $O\left(\left|A^{-}\right|\right)=O(|A|)=O(|V|)$ holds in a planar graph, we can find all windows in G and construct G^{*} according to Definition 7.1 in $O(|V|)$ time.

We take a simple directed cycle C in G^{*} and consider the set of arcs in G corresponding to the arcs in C. The obtained set is a simple cut in G, and from definition of d, the length of the directed cycle is equal to the sum of capacities of arcs in the simple cut. Since any cut
necessary for examining (7.1) contains an arc in the boundary, we shall concentrate on, in particular, directed cycles containing $\mathrm{v}_{\mathrm{B}}^{*}$ among all simple directed cycles in G^{*}. As shown in Figure 7.3, let $x_{1}, x_{2}, \ldots, x_{m} \quad\left(m=\left|V_{B}\right|\right)$ denote the nodes which appear in this order when we go around the boundary in the clockwise manner. Further, we denote the directed arc between x_{i} and x_{i+1} by a_{i} with convention $m+1=1$. Let $v_{i}, i=1,2, \ldots, m$ denote the node adjecent to v_{B}^{*} in G^{*} via $a_{i}^{+} \in A^{+}, i=1,2, \ldots, m$, where a_{i}^{+}, $i=1,2, \ldots, m$ in G^{*} correspond to the above $a_{i} \in A$, $i=1,2, \ldots, m$. Let V_{B}^{*} be the set of $v_{i}^{*}, i=1,2, \ldots, m\left(v_{i}^{*}=v_{j}^{*}\right.$ is possible for $i \neq j$, but similar argument also applies).

Lemma 7.3 Let $d^{o}\left(v_{j}^{*}, v_{i}^{*}\right)$ be the length of the shortest directed path from $\mathrm{v}_{\mathrm{j}}^{*}$ to $\mathrm{v}_{\mathrm{i}}^{*}$ in N^{*}. Then

$$
c^{0}\left[x_{i+1}, x_{j+1}\right)=d^{o}\left(v_{j}^{*}, v_{i}^{*}\right)+d\left(a\left(v_{B}^{*}, v_{j}^{*}\right)\right)+d\left(a\left(v_{i}^{*}, v_{B}^{*}\right)\right)
$$

holds, where $m+1=1$ is assumed for convenience.
Proof. In ($\left.G^{*}, d\right)$, consider a directed cycle C such that the sum of arc lengths in C is 0 . Then all arcs in C are in A^{-}. Since C is a directed cycle in graph (V^{*}, A^{-}), this means that C corresponds to a cut $A(X)$ between a divergent set X and a convergent set $V-X$ in G. Therefore $A(X) \cap A_{B} \not \emptyset \emptyset$ by Lemma 2.4, that is, any directed cycle in

Fig. 7.3 Definition of $\mathrm{v}_{1}^{*}, \mathrm{v}_{2}^{*}, \ldots, \mathrm{v}_{\mathrm{m}}^{*}$.
graph $\left(G^{*}, d\right)$ with length 0 must contain v_{B}^{*}. Hence, if a directed cycle does not contain $\mathrm{v}_{\mathrm{B}}^{*}$, then this cycle has a positive sum of lengths. Thus, this implies that the shortest path (with $\mathrm{d}^{\circ}\left(\mathrm{v}_{\mathrm{j}}^{*}, \mathrm{v}_{\mathrm{i}}^{*}\right)$ in length) described in the lemma is simple. Therefore, the shortest path $\operatorname{from} \mathrm{v}_{\mathrm{j}}^{*}$ to $\mathrm{v}_{\mathrm{i}}^{*}$ and two $\operatorname{arcs} a\left(v_{B}^{*}, v_{j}^{*}\right), a\left(v_{i}^{*}, v_{B}^{*}\right)$ give a directed cycle in G^{*}, and there is a simple cut in N with its cost $c^{0}\left[x_{i+1}, v_{j+1}\right)$
corresponding to the directed cycle. By Definition 7.1, C^{0} contains $\operatorname{arcs} a\left(v_{B}^{*}, v_{j}^{*}\right)$ and $a\left(v_{i}^{*}, v_{B}^{*}\right)$. Thus, C^{0} contains subgraph $\mathrm{v}_{\mathrm{B}}^{*} \rightarrow \mathrm{v}_{\mathrm{j}}^{*} \rightarrow \mathrm{v}_{\mathrm{i}}^{*} \rightarrow \mathrm{v}_{\mathrm{B}}{ }^{*}$. Therefore, by the minimumity of $c^{0}\left[x_{i+1}, x_{j+1}\right), \quad C^{0}$ and C^{\prime} have the same cost value and we have the lemma's statement.

Lemma 7.3 asserts that we can compute $c^{\circ}[x, y)$, by constructing the shortest path tree $\operatorname{ST}\left(v_{i}^{*}\right)$ in N^{*} for each of $i=1,2, \ldots, m$, where $\operatorname{ST}\left(v_{i}^{*}\right)$ is the shortest path tree from root $\mathrm{v}_{\mathrm{i}}^{*}$ to all other $\mathrm{v}_{\mathrm{j}}^{*}$. As N^{*} is strongly connected by the definition, each $\operatorname{ST}\left(\mathrm{v}_{\mathrm{i}}^{*}\right)$ contains all nodes in N^{*}, where a graph $G=(V, A)$ is strongly connected if $\Pi(x, y) \neq \emptyset$ holds for any pair $x, y \in V, x \neq y$. Let $T(|V|)$ and $S(|V|)$ denote the time required to compute a shortest path tree and the preprocessing time for it, repectively. We can obtain all shortest path trees $\operatorname{ST}\left(v_{i}^{*}\right), i=1,2, \ldots,\left|V_{B}\right|$, in $O\left(S(|V|)+\left|V_{B}\right| T(|V|)\right)$ time.

7.4 COMPUTATION OF $g(V B[x, y))$

To obtain all $g(\operatorname{VB}[x, y))$, we first compute $g\left(V B\left[x_{1}, x_{i}\right)\right), \quad i=2,3, \ldots, m$ for $x_{1} \in V_{B}$ in $O\left(K+\left|V_{B}\right|\right)$ time as follows. Introduce $0-1$ variables $\delta(k)$ for commodities $k=1,2, \ldots, k$, and 1 et

$$
K_{S}(x) \stackrel{\Delta}{=}\left\{k \mid s^{k}=x\right\}, \quad K_{t}(x) \stackrel{\Delta}{=}\left\{k \mid t^{k}=x\right\} \quad \text { for each } x \in V_{B} .
$$

Procedure SETG(x_{1})

0. $\delta(k):=1$ for $k=1,2, \ldots, k$;

$$
g\left(V B\left[x_{1}, x_{1}\right)\right):=0 ; \quad i:=1
$$

1. $g\left(V B\left[x_{1}, x_{i+1}\right)\right):=g\left(\operatorname{VB}\left[x_{1}, x_{i}\right)\right)$

$$
\begin{aligned}
& +\sum_{k \in K_{S}\left(x_{i}\right)}(k) g^{k}-\sum_{k \in K_{t}\left(x_{i}\right)}(1-\delta(k)) g^{k} ; \\
& \delta(k):=1-\delta(k) \text { for a11 } k \in K_{s}\left(x_{i}\right) \cup K_{t}\left(x_{i}\right) .
\end{aligned}
$$

2. If $i=m-1$ then halt the procedure. Otherwise let $i:=i+1$ and return to Step 1. \square

This procedure is executed from x_{1} to x_{m} along the boundary in the clockwise manner. We first consider the case in which source and sink of some commodity k are located in the order of $x_{1}, \ldots, x_{p}=s^{k}, \ldots, x_{q}=t^{k}, \ldots, x_{m}$. Since $\delta(k)$ is set to 1 in Step 0 and changes only when x_{p} or x_{q} is scanned, the value of g^{k} is added only to
$g\left(\operatorname{VB}\left[x_{1}, x_{i}\right)\right), \quad i=p+1, \ldots, q$. In case the source and sink of some commodity k are located in the order of $x_{1}, \ldots, x_{p}=t^{k}, \ldots, x_{q}=s^{k}, \ldots, x_{m}$, the value of $\delta(k)=1$ changes to 0 (1) when $x_{p}\left(x_{q}\right)$ is scanned, and the value of g^{k} is not added to any $g\left(\operatorname{VB}\left[x_{1}, x_{i}\right)\right), i=2,3, \ldots, q$. Therefore, the procedure $\operatorname{SET}\left(\mathrm{x}_{1}\right)$ computes $\mathrm{g}\left(\mathrm{VB}\left[\mathrm{x}_{1}, \mathrm{x}_{\mathrm{i}}\right)\right), \quad \mathrm{i}=2,3, \ldots, \mathrm{q}$, correctly. By storing $K_{s}\left(x_{i}\right)$ and $K_{t}\left(x_{i}\right)$ for each $x_{i} \in V_{B}$ in advance and referring the data as required, the total time of procedure $\operatorname{SETG}\left(\mathrm{x}_{1}\right)$ is $0\left(\mathrm{~K}+\left|\mathrm{V}_{\mathrm{B}}\right|\right)$.

If $g\left(\operatorname{VB}\left[x_{1}, x_{i}\right)\right), i=2,3, \ldots, m$ for $x_{1} \in V_{B}$ is known, we can obtain $g\left(V B\left[x_{2}, x_{i}\right)\right), i=3,4, \ldots, m, 1$ for $x_{2} \in V_{B}$ as follows.

Procedure UPDATEG(x_{2})

0. $\mathrm{g}\left(\mathrm{VB}\left[\mathrm{x}_{2}, \mathrm{x}_{1}\right)\right):=$

$$
\underset{k \in \mathrm{~K}_{\mathrm{t}}}{\sum \mathrm{~g}_{\mathrm{k}}^{\mathrm{k}} ;}
$$

$\Delta_{2}:=-\sum_{k \in K_{S}\left(x_{1}\right)} \mathrm{g}^{\mathrm{k}}$;
$i:=3$.

1. $\Delta_{i}:=\Delta_{i-1}+{ }_{k^{\prime} \in K_{t}\left(x_{1}\right) \cap K_{s}\left(x_{i-1}\right)}^{g^{k^{\prime}}}+{ }_{k \in K_{s}\left(x_{1}\right) \cap K_{t}\left(x_{i-1}\right)}^{g^{k} ;}$
$g\left(V B\left[x_{2}, x_{i}\right)\right):=g\left(V B\left[x_{1}, x_{i}\right)\right)+\Delta_{i}$.
2. If $i=m$ then halt the procedure. Otherwise let $i:=i+1$ and return to Step 1.

Fig. 7.4 Explanation of procedure UPDATEG(x_{2}).

For $i=3,4, \ldots, m, 1$, we clearly have

$$
\begin{aligned}
g\left(V B\left[x_{2}, x_{i}\right)\right)= & g\left(\operatorname{VB}\left[x_{1}, x_{i}\right)\right) \\
& +k_{k^{\prime} \in K_{t}\left(x_{1}\right) \cap\left\{K_{s}\left(x_{2}\right)^{k^{\prime}} \ldots K_{s}\left(x_{i-1}\right)\right\}} \quad \sum_{k \in K_{s}\left(x_{1}\right) \cap\left\{K_{t}\left(x_{i}\right)^{g^{k}} \ldots \quad K_{t}\left(x_{m}\right)\right\}}^{\sum}
\end{aligned}
$$

See Figure 7.4. Since $K_{s}\left(x_{1}\right) \cap\left\{K_{t}\left(x_{i}\right) \cup \ldots \cup K_{t}\left(x_{m}\right)\right\}$ can be rewritten as $K_{s}\left(x_{1}\right)-K_{s}\left(x_{1}\right) \cap\left\{K_{t}\left(x_{i}\right) \cup \ldots \cup K_{t}\left(x_{m}\right)\right\}$, each increment Δ_{i} of $g\left(V B\left[x_{2}, x_{i}\right)\right)-g\left(V B\left[x_{1}, x_{i}\right)\right)$ satisfies the relation in Steps 0 and 1. This shows the validity of procedure UPDATEG. Since we may find x_{i} with $\mathrm{k} \in \mathrm{K}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{i}}\right)$ ($K_{s}\left(x_{i}\right)$) in $0(1)$ time for each $k \in K_{s}\left(x_{1}\right)\left(K_{t}\left(x_{1}\right)\right)$ by using appropriate data structure, the required time of UPDATEG is bounded from above by $0\left(\left|K_{s}\left(x_{1}\right)\right|+\left|K_{t}\left(x_{1}\right)\right|+\left|V_{B}\right|\right)$.

By repeating this procedure UPDATEG for $x_{3}, x_{4}, \ldots, x_{m}$, therefore we can obtain all $\mathrm{g}(\mathrm{VB}[\mathrm{x}, \mathrm{y})$) within $0\left(K+\left|K_{s}\left(x_{1}\right)\right|+\ldots+\left|K_{s}\left(x_{m-1}\right)\right|+\left|K_{t}\left(x_{1}\right)\right|+\ldots+\left|K_{t}\left(x_{m-1}\right)\right|+\left|V_{B}\right|^{2}\right)$ $=0\left(K+\left|V_{B}\right|^{2}\right)$ time.

7.5 FEASIBILITY TESTING

By the following procedure FTEST, which is based on the procedures in the previous section, we can test feasibilities of a CB network or a CS network $N=(G, P, g, c)$.

Procedure FTEST

Input: $A \quad C B$ or $C S$ network $N=(G, P, g, c)$ satisfying Assumption D.

Output: Feasibility of N.
0. Construct dual networks $N^{*}=\left(H^{*}, d\right)$ and according to Definition 7.1.

1. Obtain the shortest path trees $S T\left(v_{i}^{*}\right)$ with root $v_{i}^{*}, i=1,2, \ldots, m$ in N^{*}.
2. Compute all $g(V B[x, y)), x, y \in V_{B}(x \neq y)$ by SETG and UPDATEG.
3. For each pair $x_{i+1}, x_{j+1} \in V_{B}$ in N, compute $c^{0}\left[x_{i+1}, x_{j+1}\right)$ by Lemma 7.3 and $\operatorname{ST}\left(\mathrm{v}_{\mathrm{i}}^{*}\right)$, and test

$$
c^{0}\left[x_{i+1}, x_{j+1}\right)-g\left(V B\left[x_{i+1}, x_{j+1}\right)\right) \geq 0
$$

If this holds for all $\left[x_{i+1}, x_{j+1}\right)$, then output "feasible" and halt. Otherwise, output "infeasible" and halt.

The required time of the above computation is $O(|V|)+$ $O\left(S(|V|)+\left|V_{B}\right| T(|V|)\right)+O\left(K+\left|V_{B}\right|^{2}\right)$ as obvious from the results
in Sections 7.3-7.4. Here, if we do not distinguish the commodities with the same source-sink pair, we have

$$
K \leq\left|V_{B}\right|^{2} .
$$

In addition, suppose $T(|V|) \geq 0(|V|)$. Then the entire time then becomes $\mathrm{O}\left(\mathrm{S}(|\mathrm{V}|)+\left|\mathrm{V}_{\mathrm{B}}\right| \mathrm{T}(|\mathrm{V}|)\right)$.

Theorem 7.1 Feasibility of a CB (CS) network N can be tested in $O\left(S(|V|)+\left|V_{B}\right| T(|V|)\right)$ time, where $|V|$ is the number of nodes, $\left|V_{B}\right|$ is the number of nodes in the boundary, $T(|V|)$ and $S(|V|)$ are the time required to compute a shortest path tree and the preprocessing time for it. \quad

As N^{*} is a planar graph with nonnegative arc lengths, Frederickson's two algorithms [FRED 83] have running times $S(|V|)=0(1), \quad T(|V|)=0(|V| \sqrt{\log |V|})$ and $\quad S(|V|)=0(|V| \log |V|)$, $T(|V|)=O\left(|V| 10{ }^{*}|V|\right)$, where $\log ^{*} n$ is the minimum integer P satisfying $\log ^{\left(P_{h}\right.} \leq 1$, assuming that $\log ^{(i)}{ }_{n}$ is defined as $\log ^{(0)}{ }_{n=1} \log n$ and $\left.\operatorname{lon}^{(i)}{ }_{n=1} \log \left(\log ^{(i-1)}\right)_{n}\right)$, $i \geq 1$. As described in Section 7.1, the time complexities obtained from these results of $S(|V|)$ and $T(|V|)$ become advantageous when the number of commodities K is large.

Finally, consider the scheduling network in Figure 4.2 and apply FTEST. Since $\left|V_{B}\right|=0(I+J)$ and $|V|=0(I J)$. the
latter of Frederickson's gives the time complexity $O\left((I+J) I J l o{ }^{*} I J\right)$ of FTEST. For large K, this new time bound becomes smaller if compared with the $O(I J K)$ time bound of the algorithm developed exclusively for this sheduling problem in [IBAR 85], and the $O\left(K|V|+\left|V_{B}\right||V|\right)=0((K+I+J) I J)$ time bound of the algorithms ASSIGN and MATE1 developed in Chapters 3 and 4 for CS.

7.6 CONCLUSION

We showed that the feasibility of a network in class CB or CS of the multicommodity flow problem in directed planar graphs can be tested efficiently by computing the shortest path trees in their dual graphs. This result is based on the max-flow min-cut property that holds for these classes. If the number of commodities K is large, the proposed method FTEST is more efficient than the methods based on ASSIGN and MATE1. It should be noted, however, that FTEST answers only whether the network is feasible or not, and does not output the values of feasible flow $f(a, k)$ even if it is feasible. This point differs from the algorithm based on ASSIGN and MATE1.

CHAPTER 8

RELLAXATION METHODS

FOR A DIRECTED NONLINEAR NETWORK

8.1 INTRODUCTION

As described in Chapter 1, the multicommodity flow problem can be formulated as a linear programming (LP) problem if its objective function is linear. Some graph theoretic algorithms are also developed in Chapters 3-7 of this thesis. If the objective function is not linear, these algorithms for the LP formulation can no longer be applied.

In case of nonlinear objective functions, Bertsekas [BERT 85,87] considers the dual problem for the minimum cost single commodity flow problem with strictly convex objective function, which is based on the dual formulation [ROCK 81]. As to the multicommodity flow problem, some methods have been developed for the case where the capacity restriction is imposed only on the total flow of commodities in each arc. (See, for example, the dual approach by Fukushima [FUKU 84] and the relaxation approaches by Gallager [GALL 77] and Stern [STER 77].) Fukushima's alogorithm [FUKU 84] obtains an optimal solution of the dual problem by repeatedly solving the shortest path
problems.
In this chapter, we propose relaxation methods for the multicommodity flow problem with a strictly convex objective function. Associated with each arc in the network are capacity constraints not only on the total flow of commodities but also on the flow of each commodity. Capacity constraints for individual commodities are often required, for example, in order to represent a selection of particular commodities in an arc of the network for multistage multi-item production scheduling problem [ZAHO 84]. The methods proposed in this chapter are extensions of the methods proposed by Bertsekas [BERT 85,87] for the sing1e commodity case, and are efficient enough to practically solve problem instances of moderate sizes with several commodities. Typical computational results show that problem instances with up to 100 nodes, 1000 arcs and 7 commodities can be solved in about 60 seconds on a FACOM M382 machine [NAGA 87c].

It is noted here that the previous formulations such as those considered in [FUKU 84, GALL 77, STER 77] are different from ours because they do not have capacity bounds on individual commodities, and their objective functions
contain as arguments only the total flows of commodities on arcs. In this sense, our formulation is more general. However, their formualtions are not special cases of ours because the deletion of the objective function of individual commodities (i.e., to assume that it is constant) violates the assumption of strict convexity, which is vital to the proposed methods.

8.2 DEFINITIONS

We consider the following network $N=(G, \underline{c}, \bar{c})$.
$G=(V, A)$: a directed graph, where V is the set of nodes and A is the set of arcs. $(i, j) \in A$ denotes a directed arc from node i to node j.
c: a vector of lower capacities. $c_{i}{ }_{j}^{k}$ denotes the lower bound for commodity k in $\operatorname{arc}(i, j)$, and $c_{i j}$ denotes the lower bound for the sum of all commodities in arc (i,j). (Elements of c are allowed to be $-\infty$)
\tilde{c} : a vector of upper capacities. $\tilde{c}_{i j}{ }_{j}$ denotes the upper bound for commodity k in arc (i, j), and $\tilde{c}_{i j}$ denotes the upper bound for the sum of all commodities in arc (i,j). (Elements of \tilde{c} are allowed to be $+\infty$)

Let K be the set of commodities, and let $f_{i j}{ }_{j}$ denote the flow of commodity $k \in K$ in arc (i,j). The multicommodity flow circulation problem we consider is stated as follows.
$\hat{P}: \operatorname{minimize} \quad(i, j) \in A \quad \sum_{k \in K} \hat{F}_{i j}^{k}\left(f_{i j}^{k}\right)+\sum_{(i, j) \in A_{i j}} \hat{G}_{i j}\left(s_{i j}\right)$
subject to

$$
\begin{array}{ll}
(i, m) \in A \\
\sum_{i j} f_{i m}^{k}-\sum_{(m, i) \in A}^{\sum f_{m i}^{k}=0} & \text { for } k \in K, i \in V \tag{8.2}\\
f_{i} k & \text { for }(i, j) \in A
\end{array}
$$

$$
\begin{array}{ll}
c_{i j}^{k} \leq f_{i j}^{k} \leq \tilde{c}_{i j}^{k} & \text { for } k \in K,(i, j) \in A, \\
c_{i j} \leq s_{i j} \leq \tilde{c}_{i j} & \text { for }(i, j) \in A, \tag{8.4}
\end{array}
$$

where

$$
\hat{F}_{i j}^{k}: R \rightarrow(-\infty,+\infty) \quad \text { and } \quad \hat{G}_{i j}: R \rightarrow(-\infty,+\infty) \quad \text { are }
$$ (everywhere finite) strictly convex functions. Further, we assume

$$
\begin{align*}
& \lim _{x \rightarrow-\infty} \hat{F}_{i j}^{k}(x) / x=-\infty \text { if } c_{i j}^{k}=-\infty, \\
& \lim _{x \rightarrow-\infty} \hat{G}_{i j}(x) / x=-\infty \text { if } c_{i j}=-\infty, \\
& \lim _{x \rightarrow+\infty} \hat{F}_{i j}^{k}(x) / x=+\infty \text { if } \tilde{c}_{i j}^{k}=+\infty, \\
& \lim _{x \rightarrow+\infty} \hat{G}_{i j}(x) / x=+\infty \text { if } \tilde{c}_{i j}=+\infty . \tag{8.5}
\end{align*}
$$

Strict convexity and assumption (8.5) on $\hat{F}_{i j}^{k}$ and $\hat{G}_{i j}$ are necessary to guarantee that their conjugate functions are finite everywhere and continuously differentiable. Constraint (8.1) is the flow conservation of commodity k at node i. Note that the ordinary multicommodity flow problem, in which some nodes are specified as sources or sinks, is reducible to this formulation \hat{P} by introducing return arcs with appropriate lower capacities from sinks to sources.

Let f denote the $|\mathrm{K}||\mathrm{A}|+|\mathrm{A}|$ dimensional vector with components $f_{i j} k(k \in K,(i, j) \in A)$ and $s_{i j}((i, j) \in A)$. Problem \hat{P} may then be rewritten as follows.

P: $\operatorname{minimize} \phi(f) \stackrel{\triangleq}{(i, j) \in A} \sum_{k \in K} F_{i j}^{k}\left(f_{i j}^{k}\right)+\underset{(i, j) \in \mathbb{A}}{\sum G_{i j}\left(s_{i j}\right)}$
subject to

$$
\begin{array}{ll}
\sum_{(i, m) \in A} f_{i m}^{k}-\sum_{(m, i) \in A}^{f_{m i}^{k}=0} & \text { for } k \in K, i \in V \\
s_{i j}=\sum_{k \in K} f_{i j}^{k} & \text { for }(i, j) \in A \tag{8.8}
\end{array}
$$

where $F_{i j}{ }_{j}^{k}: R \rightarrow(-\infty,+\infty]$ and $G_{i j}: R \rightarrow(-\infty,+\infty]$ are defined by

$$
\begin{aligned}
& F_{i j}^{k}(x)= \begin{cases}\hat{F}_{i j}^{k}(x), & x \in\left[\underline{c}_{i j}{ }_{j}, \tilde{c}_{i j}{ }_{j}\right] \\
+\infty, & x \notin\left[\underline{c}_{i j}^{k},\right. \\
\left.\tilde{c}_{i j}{ }_{j}\right]\end{cases} \\
& G_{i j}(x)= \begin{cases}\hat{G}_{i j}(x), & x \in\left[\underline{c}_{i j}, \tilde{c}_{i j}\right] \\
+\infty, & x \notin\left[\underline{c}_{i j}, \tilde{c}_{i j}\right]\end{cases}
\end{aligned}
$$

Let p denote the $|K||V|+|A|$ dimensional vector with components $p_{i}^{k}(k \in K, i \in V)$ and $p_{i j}((i, j) \in A)$. We then derive the dual D of problem P as follows. Consider the Lagrangean of P and its inf:

$$
\begin{aligned}
L_{0}(f, p)= & \phi(f) \\
& +(i, j) \in A \sum_{k \in K} p_{i}^{k}\left(-\sum_{(i, m)} \sum_{\in A} f_{i m^{k}}^{k^{k}}(m, i) \in A \sum_{m i}\right) \\
& +(i, j) \in A P_{i j}\left(-s_{i j}+\sum_{k \in K} f_{i j}^{k}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \underset{f}{\inf } L_{0}(f, p) \\
& =\sum_{(i, j) \in A}^{\sum} \sum_{k \in K} \inf _{f_{i j}^{k}}\left\{F_{i j}^{k}\left(f_{i j}^{k}\right)+\left(-p_{i}^{k}+p_{j}^{k}+p_{i j}\right) f_{i j}^{k}\right\} \\
& +{ }_{(i, j) \in A}^{\sum} \quad \begin{array}{ll}
\inf ^{s_{i j}}
\end{array}\left\{G_{i j}\left(s_{i j}\right)-p_{i j} s_{i j}\right\} \\
& =-\sum_{(i, j) \in A} \sum_{k \in K} F_{i j}^{*} k\left(p_{i}^{k}-p_{j}^{k}-p_{i j}\right)-\sum_{(i, j) \in A}\left\{G^{*}{ }_{i j}\left(p_{i j}\right)\right\} \text {. }
\end{aligned}
$$

Here $\quad F_{i j}^{* k}$ and $G_{i j}^{*}$ are the functions conjugate to $F_{i j}^{k}$ and $G_{i j}$, respectively. By the theory of nonlinear programming, therefore, D can be written as follows.

D: minimize $\underset{(i, j) \in A}{\sum} \sum_{k \in K} F_{i j}^{* k}\left(t_{i j}^{k}\right)+\sum_{(i, j) \in A}^{\sum} G_{i j}^{*}\left(p_{i j}\right)$
subject to

$$
\begin{equation*}
t_{i j}^{k}=p_{i}^{k}-p_{j}^{k}-p_{i j} \quad \text { for } k \in K,(i, j) \in A \tag{8.10}
\end{equation*}
$$

One may consider the variable p_{i}^{k} as representing the potential of commodity k at node i, as in the case of the single commodity flow problem [ROCK 84]. The variable p_{ij} correponding to constraint (8.2) is unique to the multicommodity flow problem. Here we shall call variables $P_{i j}$ the potential of arc (i, j). We also call variables $t_{i j}{ }_{j}$ satisfying (8.10) the tension of $\operatorname{arc}(i, j)$.

Substituting (8.10) into the objective function, problem D becomes an unconstrained minimization problem with
variables p_{i}^{k} and $p_{i j}$:
$\operatorname{minimize} \xi(p) \triangleq \sum_{(i, j) \in A} \sum_{k \in K} F_{i j}^{* k}\left(p_{i}^{k}-p_{j}^{k}-p_{i j}\right)+\sum_{(i, j) \in A} G_{i j}^{*}\left(p_{i j}\right)$.

It is known [ROCK 70; Corollary 13.3.1, Corollary 25.5.1 and Theorem 26.3] that assumption (8.5) implies that $F_{i j}^{*} k$ and $G_{i j}^{*}$ are continuously differentiable convex functions which take finite values everywhere. In the convergence proof of the alogorithms to be presented in Section 8.4 , we shall also assume that the first derivatives of the functions are Lipschitz continuous.

8.3 OPTIMALITY CONDITIONS

Let (t, p) denote the vector of all variables $t_{i j}{ }_{j}^{k}, p_{i}^{k}$ and $p_{i j}$ of D. By the duality theory of nonlinear programming, a solution f of P and a solution (t, p) of D are both optimal if

$$
\begin{array}{ll}
t_{i j}^{k}=p_{i}^{k}-p_{j}^{k}-p_{i j} & \text { for } k \in K,(i, j) \in A, \\
d F_{i j}^{* k}\left(t_{i j}^{k}\right) / d t_{i j}^{k}-f_{i j}^{k}=0 & \text { for } k \in K,(i, j) \in A, \\
\sum_{(i, m) \in A}^{f_{i m}^{k}}{ }_{(m, i) \in A^{k}}^{\sum f_{m i}^{k}=0} & \text { for } k \in K, i \in V, \\
d G_{i j}^{*}\left(p_{i j}\right) / d p_{i j}-\sum_{k \in K} f_{i j}^{k}=0 & \text { for }(i, j) \in A, \tag{8.15}
\end{array}
$$

hold. In particular, conditions (8.12) and (8.13) imply that t of D and f of P can both be determined from an optimal potential vector p of D. That is, if the vectors t and f obtained from a given potential vector p by (8.12) and (8.13) satisfy conditions (8.14) and (8.15), then f and (p, t) are optimal to P and D, respectively.

To find such p, we try in the following to minimize the objective function $\xi(p)$ of (8.11). Note that the derivatives of $\xi(\mathrm{p})$ are given by

$$
\begin{align*}
& \partial \xi(p) / \partial p_{i}^{k}=\sum_{(u, v)}^{\sum} \sum_{k \in \mathbb{K}} \partial F_{u v}^{* k}\left(p_{u}^{k}-p_{v}^{k}-p_{u v}\right) / \partial p_{i}^{k} \\
& =(i, m) \sum_{\in A}^{\sum \mathrm{AF}_{i m}^{* k}\left(\mathrm{t}_{\mathrm{im}}^{\mathrm{k}}\right) / \mathrm{dt} \mathrm{t}_{\mathrm{im}}^{\mathrm{k}}, ~} \\
& -{ }_{(m, i) \in A} \sum_{A} \mathrm{AF}_{\mathrm{mi}}^{* \mathrm{k}}\left(\mathrm{t}_{\mathrm{mi}}^{\mathrm{k}}\right) / \mathrm{dt} \mathrm{t}_{\mathrm{mi}}^{\mathrm{k}} \\
& =\sum_{(i, m) \in A}^{\sum} f_{i m}^{k}-\sum_{(m, i) \in A}^{\sum} f_{m i}^{k}, \tag{8.16}\\
& \partial \xi(p) / \partial p_{i j}=\sum_{(u, v) \in A} \sum_{k \in K} \partial F_{u v}^{* k}\left(p_{u}^{k}-p_{v}^{k}-p_{u v}\right) / \partial p_{i j} \\
& +\underset{(u, v) \in A}{\sum} \partial G_{u v}^{*}\left(p_{u v}\right) / \partial p_{i j} \\
& =-\sum_{k \in K} d F_{i j}^{* k}\left(t_{i j}^{k}\right) / d t_{i j}^{k}+d G_{i j}^{*}\left(p_{i j}\right) / d p_{i j} \\
& =-\sum_{k \in K} f_{i j}^{k}+d G_{i j}^{*}\left(p_{i j}\right) / d p_{i j}, \tag{8.17}
\end{align*}
$$

provided that we determine $t_{i j} k$ and $f_{i j} k$ by (8.12) and (8.13), respectively. We see that (8.16) and represent the deviations from equalities (8.14) and (8.15), respectively. Denote these deviations by

$$
\begin{align*}
& d_{i}^{k}(p) \triangleq \underset{(i, m) \in A}{\sum f_{i m}^{k}}(m, i) \in A \sum_{m i}^{k}\left(=\partial \xi(p) / \partial p_{i}^{k}\right), \tag{8.18}\\
& d_{i j}(p) \stackrel{\Delta}{=}-\sum_{k \in K} f_{i j}^{k}+d G_{i j}^{*}\left(p_{i j}\right) / d p_{i j}\left(=\partial \xi(p) / \partial p_{i j}\right) . \tag{8.19}
\end{align*}
$$

If $d_{i}^{k}(p)$ is negative (positive) for some k and i, condition (8.16) implies that $\xi(\mathrm{p})$ decreases by increasing (decreasing) the corresponding potential p_{i}^{k}. Similarly if $d_{i j}(p)$ is positive (negative) for some (i, j), (8.17) implies that $\xi(p)$ decreases by decreasing (increasing) $p_{i j}$. In particular, if $d_{i}^{k}(p)$ and $d_{i j}(p)$ all become 0 , the obtained f and (t, p) satisfy (8.12)-(8.15), and are optimal to P and D respectively. Based on this observation, we propose in the next section a framework of descent algorithms for minimizing $\xi(p)$. By specifying the details, various algorithms for solving P and D will result.

8.4 ALGORITHMS

Let e_{i}^{k} and $e_{i j}$ be the $|K||V|+|A|$ dimensional unit vectors such that $p \cdot e_{i}^{k}=p_{i}^{k}$ and $p \cdot e_{i j}=p_{i j}$, respectively. Also let $\delta>0$ and $\varepsilon \geq 0$ be parameters, where ε is the accuracy with which the procedure halts after finite iterations, and ε is the margin of deviations that restrict the candidates of p_{i}^{k} and $p_{i j}$ updated in each iteration. For $\beta \geq 0$, denote

$$
\begin{aligned}
& V_{-}^{k}(\beta) \triangleq\left\{i \in V \mid d_{i}^{k}(p) \leq-\beta\right\}, \quad V_{+}^{k}(\beta) \triangleq\left\{i \in V \mid d_{i}^{k}(p) \geq \beta\right\} \text { for } k \in K, \\
& A_{-}(\beta) \triangleq\left\{(i, j) \in A \mid d_{i j}(p) \leq-\beta\right\}, \quad A_{+}(\beta) \triangleq\left\{(i, j) \in A \mid d_{i j}(p) \geq \beta\right\} .
\end{aligned}
$$

Procedure MULTIFLOW

Input: A network with upper and lower capacities $N=(G(V, A), \underline{c}, \tilde{c})$, cost functions $F_{i j}{ }_{j}$ and $G_{i j}$ (or their conjugates $F_{i j}^{*} k$ and $\left.G_{i j}^{*}\right)$, and real numbers $\delta>0$, $\varepsilon \geq 0$.

Output: Approximate optimal solutions f of P and (t, p) of D.

Step O(initialization): Choose an initial potential vector p and compute the corresponding $t_{i j}{ }_{j}$ and $f_{i j}{ }_{j}$ by (8.12) and (8.13), for $k \in K,(i, j) \in A$, as well as d_{i}^{k} and $d_{i j}$ of (8.18) and (8.19), for $k \in K$, $i \in V$, $(i, j) \in A$. Let $k^{\prime}:=0$.

Step 1 (checking of the current solution): If $V_{-}^{k}(\varepsilon)=V_{+}^{k}(\varepsilon)=\emptyset$ for all $k \in K$ and $A_{-}(\varepsilon)=A_{+}(\varepsilon)=\emptyset$ (convergence check), then output the current f and (t, p) as approximate optimal solutions of P and D , respectively, and halt. Step 2(updating δ): Choose a real number $\delta^{\prime} \geq 0$ and update by $\delta:=\delta^{\prime}$ according to an appropriate rule. Let $k^{\prime}:=k^{\prime}+1$ and go to Step 3.

Step 3(updating p): If $k^{\prime}=K+1$ then let $k^{\prime}:=0$ and go to (b). Otherwise, go to (a).
(a) If $V_{-}^{k^{\prime}}(\delta) \cup V_{+}^{k^{\prime}}(\delta)=\emptyset$, return to Step 1. Otherwise, execute the following procedure. Choose a nonempty set $S \subseteq V_{-}^{k^{\prime}}(\delta) \cup V_{+}^{k^{\prime}}(\delta)$, and obtain $\Delta>0$ and \tilde{p} such that

$$
\begin{equation*}
\tilde{p}=p+\sum_{i \in S \cap V_{-}^{k^{\prime}}(\delta)}^{e_{i}^{k^{\prime}}-} \sum_{i \in S \cap V_{+}^{k^{\prime}}(\delta)} e_{i}^{k^{\prime}}, \tag{8.20}
\end{equation*}
$$

$\sum_{i \in S} d_{i}^{k^{\prime}}(\tilde{p})=0$.
Update p by $p:=\tilde{p}$ and return to Step 1.
(b) If $A_{-}(\delta) \cup A_{+}(\delta)=\varnothing$, return to Step 1 . Otherwise, choose a nonempty set $S_{\subseteq} A_{-}(\delta) \cup A_{+}(\delta)$, and obtain $\Delta>0$ and \tilde{p} such that

$$
\begin{equation*}
\tilde{p}=p+\sum_{(i, j) \in S \cap A_{-}(\delta)}^{\sum \Delta} e_{i j}^{-} \sum_{(i, j) \in S \cap A_{+}(\delta)} e_{i j} \tag{8.21}
\end{equation*}
$$

$(i, j)^{\Sigma} \in S d_{i j}(\tilde{p})=0$.
Update p by $p:=\tilde{p}$ and return to Step 1. \square

The conditions (8.20) and (8.21) in Step 3 intend to decrease $\xi(\mathrm{p})$ by modifying some components of the current potential vector p , as discussed in the last paragraph of Section 8.3. As the second condition in (8.20) or (8.21) indicates, the step size Δ is determined so that ξ ($\mathrm{p}+\Delta \cdot \mathrm{e}_{\mathrm{S}}$) is minimized in the direction of

$$
\begin{aligned}
& e_{S}=\quad \sum \quad e_{i}^{k^{\prime}}-\quad \sum \quad e_{i}^{k^{\prime}} \text { or } \\
& i \in S \cap V_{-}^{k^{\prime}}(\delta) \quad i \in S \cap v_{+}^{k^{\prime}}(\delta) \\
& e_{S}={ }_{(i, j) \in S^{\sum} A_{-}(\delta)} e_{i j}{ }_{(i, j) \in S^{\sum} A_{+}(\delta)} e_{i j},
\end{aligned}
$$

respectively. The Δ may be computed by applying an appropriate one-dimensional search technique. The purpose of introducing δ and S is to faciliate the computation of each iteration by restricting the target potentials only to those that are important and easily computed. If $S=V_{-}^{k}(0) \cup V_{+}^{k}(0)$ and $S=A_{-}(0) \cup A_{+}(0)$ are used in Steps 3(a) and (b), respectively, the potential vector p is modified in the direction of steepest descent. This method, however, requires a considerable amount of computation because all $\mathrm{p}_{\mathrm{i}}^{\mathrm{k}}$ and $p_{i j}$ take part in the computation of Δ and \tilde{p}. For the
single commodity flow problem, Bertsekas [BERT 85,87] compared the following two cases: the case $|S|=1$ and the case $S=\left\{i \in V \mid \quad d_{i}(p)<0\right\}$ (or $\left\{i \in V \mid d_{i}(p)>0\right\}$), where $d_{i}(p)$ is defined in a manner similar to (8.18). Note that the procedure using the former S corresponds to the coordinate descent method. The multicommodity versions of these cases, i.e., $|S|=1$ and $S=\left\{i \in V \mid d_{i}^{k}(p)<0\right\} \quad\left(o r \quad\left\{i \in V \mid d_{i}{ }^{k}(p)>0\right\}\right.$), are considered in [GALL 77] and [STER 77] respectively, though lower and upper capacities for individual commodities are not explicitly introduced therein. S in the latter case gives the maximal descent direction of $\xi(p)$ when $p_{i}^{k}, i \in V$ are. modified, but much time is required for constructing the S and for updating the corresponding potentials. In fact, [BERT 85,87, STER 77] report that the former is a better selection method of S than the latter. By introducing δ, we can define a set S which lies between the above two extreme cases. To guarantee the convergence of the resulting procedures, as proved in Section 8.6, S must satisfy the condition that S always contain at least one (i,k) with $\left|d_{i}^{k}(p)\right|>\varepsilon \quad\left((i, j)\right.$ with $\left.\left|d_{i j}(p)\right|>\varepsilon\right)$. The selection rule of δ must also satisfy the condition that it must eventually become $\delta \leq \varepsilon$ after finite iterations.

As described above, Procedure MULTIFLOW has much freedom as to how to determine the set S in Step 3, and as to how to update the controlling parameter δ in Step 2. We describe below some typical rules, which are used in the subsequent computational experiments.

Determination of S The following two rules are tested.
(S-1) In Step 3(a), use

$$
S=V_{-}^{k}(\delta) \text { and } S=V_{+}^{k}(\delta)
$$

alternately for the selected $k \in K$, and in Step 3(b), use

$$
\mathrm{S}=\mathrm{A}_{-}(\delta) \text { and } \mathrm{S}=\mathrm{A}_{+}(\delta)
$$

alternately.
(S-2) In Step 3(a), use $S=\{i\}$ such that $i \in V_{-}^{k}(\delta) U_{U} V_{+}^{k}(\delta)$, and in Step 3(b), use $S=\{(i, j)\}$ such that $(i, j) \in A_{-}(\delta) \cup A_{+}(\delta)$, where the selection of i (or (i,j)) is done simply by taking the first one found during the course of checking $V_{-}^{k}(\delta) \cup V_{+}^{k}(\delta)$ (or $\left.A_{-}(\delta) \cup A_{+}(\delta)\right)$.

Note that (S-2) gives rise to the coordinate descent method.

Determination of δ The following three rules are tested. $(\delta-1) \delta=$ a nonnegative constant $(\leq \varepsilon)$, throughout the computation.

$$
(\delta-2) \quad \delta=\max _{i, k,(i, j)}\left\{\left|\mathrm{d}_{\mathrm{i}}^{\mathrm{k}}(\mathrm{p})\right|,\left|\mathrm{d}_{\mathrm{i} j}(\mathrm{p})\right|\right\} \text {. This rule forces }
$$ to choose in Step 3 the potential p_{i}^{k} or $p_{i j}$ with the largest deviation $\left|d_{i}^{k}(p)\right|$ or $\left|d_{i j}(p)\right|$, respectively. It is noted that if commodity kl uniquely attains the maximum, i.e., $\left|d_{i}{ }^{k} 1(p)\right|=\max _{i, k,(i, j)}\left\{\left|d_{i}^{k}(p)\right|,\left|d_{i j}(p)\right|\right\}$, then $\mathrm{V}_{-}^{\mathrm{k}^{\prime}}(\delta)=\mathrm{V}_{+}^{\mathrm{k}^{\prime}}(\delta)=\emptyset$ for $\mathrm{k}^{\prime} \neq \mathrm{k} 1$ and $\mathrm{A}_{-}(\delta)=\mathrm{A}_{+}(\delta)=\emptyset$ holds in Step 3(a) and (b). That is, in this case, Steps 3(a) and 3(b) are skipped until k^{\prime} becomes kl. However, the computation time required for skipping Step 3 is usually negligible.

($\delta-3$) In Step 0, set δ initially to some $\delta_{0}>\varepsilon$. We update δ only when $V_{-}^{\mathrm{k}}(\delta)=\mathrm{V}_{+}^{\mathrm{k}}(\delta)=\emptyset$ for all $\mathrm{k} \in \mathrm{K}$ and $A_{-}(\delta)=A_{+}(\delta)=\emptyset$ hold in Step 2 (margin check). At the (i+1)-th iteration of updating in Step 2, $\delta^{\prime}\left(=\delta_{i+1}\right)$ is determind by

$$
\delta_{i+1}:= \begin{cases}0.7 \delta_{i}+0.3 \tilde{d}, & \text { if } \varepsilon \leq 0.7 \delta_{i}+0.3 \tilde{d} \tag{8.22}\\ \varepsilon, & \text { otherwise }\end{cases}
$$

where

$$
\tilde{d}=\left\{\sum_{k \in K} \sum_{i \in V}\left|d_{i}^{k}(p)\right|+\sum_{(i, j) \in A}\left|d_{i j}(p)\right|\right\} /(|K||V|+|A|),
$$

(i.e., the average deviation).

The constants 0.7 and 0.3 in ($\delta-3$) have been empirically selected on the basis of computational experiments in Section 8.5.

Combining these, we test the following six cases of MULTIFLOW in the experiments reported in the next section.

A: $(S-1),(\delta-1), \delta=0.0$.
B: $(S-1),(\delta-1), \delta=\varepsilon$.
$C:(S-1),(\delta-3)$.
D: $(S-2),(\delta-1), \delta=\varepsilon$.
E: $(S-2),(\delta-2)$.
F: $(\mathrm{S}-2),(\delta-3)$.
Algorithm A may be regarded as a faithful approximation of the method of steepest descent, while B and C deviate from A in that those p_{i}^{k} and $p_{i j}$ with $\operatorname{small}\left|d_{i}^{k}(p)\right|$ and $\left|d_{i j}(p)\right|$ are neglected in choosing the potentials to be modified. Algorithms D, E and F are coordinate descent methods. Among these, E has a special property that it always chooses the potential p_{i}^{k} or $p_{i j}$ corresponding to the largest deviation among $\left|d_{i}^{k}\right|$ and $\left|d_{i j}\right|$.

8.5 NUMERICAL RESULTS

Computation was carried out with the following test data. To obtain a feasible network with given numbers of nodes and arcs, a strongly connected network and a flow satisfying the flow conservation constraints are first generated. For this purpose, we first construct a directed Hamiltonian cycle through all given nodes, and then generate arcs between some pairs of nodes, which are selected randomly, until the network has a specified number of arcs. On the resulting graph, we construct a feasible flow for each commodity k by randomly selecting cycles in the graph, to which commodity k of the amount chosen from interval [0.0, 100.0] is assigned. The assignment to cycles is repeated until every arc has a positive flow of commodity k. After completing this procedure for all commodities k, the capacities $\tilde{c}_{i j}^{k}$ and $c_{i j}^{k}$ are selected randomly from intervals $\left[f_{i j}^{k}, f_{i j}^{k}+100.0\right]$ and $\left[0.0, f_{i j}^{k}\right]$, respectively. The numbers of $c_{i j}$ and $\tilde{c}_{i j}$ are then randomly selected from intervals $\left[\Sigma_{k} c_{i j}^{k}, ~ \Sigma f_{i j}^{k}\right]$ and $\left[\max \left\{\Sigma_{k} f_{i j}^{k}, \max _{k} \tilde{c}_{i j}^{k}\right\}\right.$, $\left.\sum_{\mathrm{k}} \tilde{\mathrm{c}}_{\mathrm{ij}}^{\mathrm{k}}\right]$, respectively. Finally all flows and capacities are scaled so that

$$
\max _{\mathrm{m},(\mathrm{i}, j} \tilde{f}_{\mathrm{i} j}^{\mathrm{k}}=100
$$

holds.

A11 the strictly convex functions $F_{i j}{ }_{j}$ and $G_{i j}$ in the objective function are assumed to be quadratic. Figure 1 illustrates a quadratic functions $\mathrm{F}_{\mathrm{i} j} \mathrm{k}_{\mathrm{j}}$ and its conjugate $F_{i j}^{*}$, i.e.,

$$
\begin{aligned}
& \mathrm{F}_{i j}^{k}(x)= \begin{cases}a x^{2}+b x+d, & x \in[\underline{c}, \tilde{c}] \\
+\infty, & x \in[\underline{c}, \tilde{c}],\end{cases} \\
& F_{i j}^{*} k(y)= \begin{cases}\tilde{c}(y-b)-a \tilde{c}^{2}-d, & y \in[2 a \tilde{c}+b,+\infty] \\
(y-b)^{2} / 4 a-d, & y \in[2 a \underline{c}+b, 2 a \tilde{c}+b] \\
\underline{c}(y-b)-a \underline{c}^{2}-d, & y \in[-\infty, 2 a c+b] .\end{cases}
\end{aligned}
$$

Each $\mathrm{F}_{\mathrm{i} j}^{\mathrm{k}}$ is defined by

$$
F_{i j}^{k}=a\left(f_{i j}^{k}-h\right)^{2}
$$

where a is randomly chosen from interval [0.1, 10.0] and $h=\left(\left(\underline{c}_{i j}{ }_{j}-\tilde{c}_{i j}^{k}\right) / 2\right)+\alpha$, where α is ramdomly chosen from interval $\left[-\left(\tilde{c}_{i j}^{k}-\underline{c}_{i}{ }_{j}^{k}\right),\left(\tilde{c}_{i j}^{k}-c_{i j}^{k}\right)\right]$. Functions $G_{i j}$ are similarly defined. In the case of quadratic functions, the step size Δ in (8.20) and (8.21) can be obtained analytically without resorting to line search techniques.

The parameter ε used in Procedure MULTIFLOW is always set to $\varepsilon=0.1$ in Figures 8.2-8.7.

The procedure MULIFLOW was coded in FORTRAN77, and run on the FACOM M-382 machine of Kyoto University Data Processing Center. Figure 8.2 shows the computation time of

(a) Primal cost function

Fig.. 8.1 A quadratic convex function and its conjugate.
all algorithms A-F, described in the previous section. Since it has been found that algorithm A performs much worse than others, only the results for small problems are shown. One may conclude that algorithm F is most efficient among these, and the computation time of algorithm F increases only linearly with $|A|$.

To explain the reasons for these, we illustrate in Figure 8.3 the total number of inner iterations (Step 3) for the coordinate descent methods D, E and F. (Recall that most of the computational time is spent in Step 3.) Since algorithm E always updates the potential with the largest absolute deviation, it is expected that E achieves the largest gain in one iteration, among all the coordinate descent methods. This suggests that algorithm E is most efficient if measured only by the number of iterations. This point is clearly observed in Figure 8.3. However, the computation time required for one iteration of E is much larger than others because it is quite expensive to find the potential with the largest deviation.

Figure 8.3 also indicates that the number of iterations required by E and F are almost the same. Since the computation time per iteration of F is much smaller than that of E, this explains why F is faster than E. This

Fig. 8.2 CPU time for obtaining optimal solutions. (Each point represents the average of ten samples with $|\mathrm{A}|=2|\mathrm{~V}|,|\mathrm{K}|=4$.
desirable aspect of F concerning the number of iterations may be explained as follows. When we update δ_{i} by rule ($\delta-3$), absolute values of all deviations are smaller than δ_{i}. In most cases, it is expected that δ_{i} is only slightly larger than the maximum absolute deviation. As the new threshold δ_{i+1} is determined by taking into account the average \bar{d} of all deviations, it is usually close to the maximum absolute deviation. For this reason, $(\delta-3)$ well simulates the behavior of $(\delta-2)$.

The constants in (8.22) are empirically selected on the basis of computational experiments as shown in Figure 8.4. We see that the optimal α in $\delta_{i+1}:=\alpha \delta_{i}+(1-\alpha) \bar{d}$ is 0.7.

Algorithms C and F, which both adopt rule ($\delta-3$), spend some computation time to update δ_{i} in Step 2. In our computational experiments, however, the total number of updating δ_{i} in Step 2 was always between 32 and 40 , independently of the problem size. As this number is rather small compared with the number of executing Step 3, the time required for updating δ_{i} is usually neg1igible.

Figure 8.2 also shows that algorithm C gives better performance than the coordinate descent methods D and E. This means that the computational efficiency depends more on the δ-rule than on the S-rule.

Fig. 8.3 The number of inner iterations (Step 3) (Each point represents the average of ten samples with $|\mathrm{A}|=2|\mathrm{~V}|,|\mathrm{K}|=4$.

Fig. 8.4 CPU time of method F with respect to the coefficient α in(8.22). (Each point represents the average of nine samples with $|\mathrm{A}|=150,|\mathrm{~V}|=50$ and $|\mathrm{K}|=4$.)

As F appears to be most promising, we carried out further numerical tests with various network parameters $|V|$ and $|\mathrm{A}|$. Figure 8.5 is the results for larger networks, exhibiting the behavior similar to Figure 8.2. We see that the computation time increases approximately linearly with |A|. Figure 8.6 shows the results of F for rather dense networks, i.e., $|\mathrm{A}|=0.1 *|\mathrm{~V}|^{2}$ and $|\mathrm{K}|=7$. Even in this case, the required computation time seems to increase only linearly with $|A|$. As typical examples, F could solve problems with $|\mathrm{K}|=7,|\mathrm{~V}|=100$ and $|\mathrm{A}|=1000$ in about 60 seconds. Figure 8.7 illustrates the behavior of algorithm F for various values of the number of commodities $|K|$. Unfortunately, it is observed that the computation time increases rapidly with $|K|$. Finally we show in Figure 8.8 the CPU time of algorithm F versus precision ε. The convergence rate of F seems to be linear, since the computation time is approximately proportional to the inverse of $\log \varepsilon$.

Fig. 8.5 CPU time of method F for large scale problems with $|\mathrm{A}|=2|\mathrm{~V}|,|\mathrm{K}|=4$ ([.]: the number of samples).

Fig. 8.6 CPU time of method F for large scale problems with $|\mathrm{A}|=0.1|\mathrm{~V}|^{2},|\mathrm{~K}|=7$ ([.]: the number of samples).

Fig. 8.7 CPU time of method F with respect to the number of commodities $|K|$ for networks with $|A|=80,|V|=20$ ([.]: the number of samples).

Fig. 8.8 CPU time of method F versus the precision ε. (Each point represents the average of ten samples with $|A|=150,|V|=50,|K|=4$.)

8.6 CONVERGENCE

Before concluding this chapter, we give a proof that, for a given $\varepsilon>0$, each of the algorithms $B-F$ finitly terminates at an approximate optimal solution satisfying $V_{-}^{k}(\varepsilon)=V_{+}^{k}(\varepsilon)=\emptyset$ for all $k \in K$ and $A_{-}(\varepsilon)=A_{+}(\varepsilon)=\varnothing$, then output the current f, provided that the dual problem D has an optimal solution.

As noted in the last paragraph of Section $2, \quad F_{i j}^{* k}$ and $G_{i j}^{*}$ are continuously differentiable. We assume in addition that the first derivatives of $\xi(p)$ are also Lipschitz continuous, i.e., there exists a positive real number L such that

$$
\begin{equation*}
\| \nabla \xi\left(\mathrm{p}_{1}\right)-\nabla \xi\left(\mathrm{p}_{2}\right)| | \leq \mathrm{L}| | \mathrm{p}_{1}-\mathrm{p}_{2}| | \tag{8.23}
\end{equation*}
$$

where $\|x\|$ is the Euclidian norm of vector x.

First let us consider the case in which a set $S \subseteq V_{-}^{k}(\delta)$ has been chosen in Step 3(a). Let vector e_{S} denote ${ }_{i}{ }^{\Sigma} \in S e_{i}^{k}$. Let $\Delta(>0)$ denote the step size determined by (8.20), i.e., $d_{i}^{k}\left(p+\Delta e_{S}\right)=0$. We shall estimate the amount of reduction in the dual cost $\xi(\mathrm{p})-\xi\left(\mathrm{p}+\Delta \cdot \mathrm{e}_{\mathrm{s}}\right)$. For any $z \geq 0$, we have

$$
\xi\left(p+z \cdot e_{S}\right)-\xi(p)
$$

$$
\begin{aligned}
& \leq \int_{0}^{z} \nabla \xi\left(p+t \cdot e_{S}\right)^{T} \cdot e_{S} d t \quad(\text { by the convexity of } \xi) \\
& =\int_{0}^{z}\left[\nabla \xi(p)^{T} \cdot e_{S}+\left(\nabla \xi\left(p+t \cdot e_{S}\right)-\nabla \xi(p)\right)^{T} \cdot e_{S}\right] d t \\
& \leq z \cdot \xi(p)^{T} \cdot e_{S}+\int_{0}^{z} \nabla \xi\left(p+t \cdot e_{S}\right)-\nabla \xi(p)\|\cdot\| e_{S} \| d t \\
& \leq z \cdot \xi(p)^{T} \cdot e_{S}+L \int_{0}^{z} t \mid e_{S} \|^{2} d t
\end{aligned}
$$

where the last inequality follows from (8.23). Therefore, since $\left|\left|e_{S}\right|\right| \leq|V|$ and

$$
\xi(p)^{T} \cdot e_{S}=\sum_{i \in S} d_{i}^{k}(p)
$$

by (8.16), we obtain

$$
\begin{equation*}
\xi(p)-\xi\left(p+z \cdot e_{S}\right) \geq-z \quad \sum_{i \in S} d_{i}^{k}(p)-L|V| z^{2} / 2 \tag{8.24}
\end{equation*}
$$

Moreover, since the step size Δ is determined so that the minimum of $\xi\left(\mathrm{p}+\mathrm{z} \cdot \mathrm{e}_{\mathrm{S}}\right)$ is attained at $\mathrm{z}=\Delta$, it follows from (8.24) that

$$
\xi(p)-\xi\left(p+\Delta \cdot e_{S}\right)=\max _{z}\left\{\xi(p)-\xi\left(p+z \cdot e_{S}\right)\right\}
$$

$$
\begin{align*}
& \geq \max _{z}\left\{-z \sum_{i} S d_{i}^{k}(p)-L|V| z^{2} / 2\right\} \\
& =\left|i \sum_{\epsilon} S d_{i}^{k}(p)\right|^{2} /(2 L|V|) \tag{8.25}
\end{align*}
$$

Similar argument applies to the other cases $S \subseteq V_{+}^{k}(\delta)$, $S \subseteq A_{-}(\delta)$ and $S \subseteq A_{+}(\delta)$ of Step 2.

Now observe that algorithms B-F are constrainted in such a way that a nonempty set S satisfying

$$
\begin{equation*}
\left|i \sum_{\varepsilon} S d_{i}^{k}(p)\right| \geq \varepsilon \text { or }\left|(i, j) \sum_{\varepsilon} S d_{i j}(p)\right| \geq \varepsilon \tag{8.26}
\end{equation*}
$$

is always selected in Step 3, by the property $\delta \geq \varepsilon$.
Under condition (8.26), the dual cost decreases at least by $\varepsilon^{2} /(2 \mathrm{~L}|\mathrm{~V}|)(>0)$ as shown in (8.25). Therefore, if the dual problem D has an optimal solution, i.e., its optimal cost is finite, the decrease by $\varepsilon^{2} /(2 L|V|)$ can occur only finite times. Combining this with the above argument, we conclude that algorithms $B-F$ halt in Step 1 after a finite number of iterations, if D has an optimal solution (i.e., P has an optimal solution).

With algorithm A, however, it is not possible to guarantee (8.26), and it appears difficult to prove its finite convergence.

8.7 CONCLUSION

A framework of relaxation methods for the minimum cost multicommodity flow problem with a strictly convex objective function is presented. By specifying the rules for determining S and δ, this framework can genarate various types of procedures including the steepest descent methods and the coordinate descent methods. Limited computational experiments for the cases in which the objective function is separable and quadratic indicate that method F has the best performance among the six tested methods. The computation time of F appears to grow only linearly with the number of arcs, but grows rapidly with the number of commodities. Therefore, it is one of the future directions to develop an algorithm that is efficient for problems with many commodities.

CHAPTER 9

CONCLUSION

Throughout this thesis, we have developed efficient algorithms for the multicommodity flow problem in directed networks. The main theoretical contribution of this thesis may be classified into the following two categories.

The first category contains graph theoretic algorithms for testing feasibility of the multicommodity flow problem in certain planar directed network. Three polynomial time algorithms for classes $C B, C S$ and $C U$ are developed in Chapters 3, 4 and 5. Furthermore, we have shown some important properties in the network theory, e.g., the integrality of flows and the max-flow min-cut theorem: Classes CB, CS and CU have the integral flow property, and furthermore classes $C B$ and $C S$ have the max-flow min-cut property, while class CU does not have the latter property. We illustrate the inclusion relations among these classes in Figure 9.1. Among the known classes of the multicommodity flow problem in directed or undirected networks for which it is possible to develop efficient graph theoretic algorithms, the class of CU networks possesses a unique characteristic that it does not have the max-flow min-cut property. This

The class of a network with the max-flow min-cut property

Multi-item multi-stage production scheduling network in Figure 4.2 .

Fig. 9.1 Illustration of the inclusion relations among classes CB, CS and CU.
may suggest that the concept of capacity balance and dummy flow introduced for defining these classes will play an important role, different from the max-flow min-cut theorem, in the theory of directed networks.

In the second category, we have studied the mathematical programming approach for minimizing a nonlinear cost function of the multicommodity flow problem in a general directed network. Relaxation methods of various types for obtaining optimal solutions are proposed. Computational experiments indicate that the best one among the six tested methods can practically solve those problem which contain, for example, up to 100 nodes, 1000 arcs and 7 commodities.

The efficient algorithms proposed in the above categories would be useful and important from both theoretical and practical point of views, as many of the problems in various engineering fields can be formulated as network optimization problems. Importance of efficient algorithms in these areas will be increasing. The auther hopes that the work contained in this thesis is he1pful to forward the status of network optimization techniques one step ahead.

APPENDIX

Proof of Lemma 5.4 By Lemma 5.2, N^{d} has a pole. Suppose that all poles of $N^{d},\left(x_{i}, y_{i}\right), i=1,2, \ldots, q$, are trivial. Without loss of generality, we assume that $\mathrm{N}^{\text {d }}$ has 4alternating partitions $X_{i}^{+}, Y_{i}^{-}, W_{i}^{+}, Z_{i}^{-}$with $x_{i} \in X_{i}^{+}, y_{i} \in Y_{i}^{-}$and $r\left(X_{i}^{+} ; Y_{i}^{-}\right)=0$ for $i=1,2, \ldots, r$, and has unilateral simple cuts $A\left(X_{i}^{+}\right)$with $x_{i} \in X_{i}^{+}, y_{i} \in Y_{i}^{-}$and $r\left(X_{i}^{+}\right)=0$ for $i=r+1, r+2, \ldots, q$ ($\mathrm{r}=\mathrm{q}$ or $\mathrm{r}+1=1$ are allowed).

Let f be a feasible solution of N^{d}. Remove all flows of the given commodities except dummy flows, i.e., for each arc $a \in A$

$$
\begin{aligned}
& \tilde{c}(a):=c(a)-\sum_{k=1}^{K} f(a, k)(=f(a, d)) \\
& \tilde{P}:=\emptyset, \quad \tilde{g}^{k}:=0, k=1,2, \ldots, K
\end{aligned}
$$

The resulting network $\widetilde{N}^{d}=\left(G, \tilde{P}, P^{d}, \tilde{g}, g^{d}, \tilde{c}\right)$ is feasible. We consider the following set of arcs in \widetilde{N}^{d}, as shown in Figure Al.

From $r\left(X_{i}^{+} ; Y_{i}^{-}\right)=0$ and $r\left(X_{i}^{+}\right)=0$, we have $\tilde{c}\left(b_{j}\right)=0$ for each b_{j}. Remove $b_{j}=a\left(v_{j}, w_{j}\right), j=1,2, \ldots, m$, from \tilde{N}^{d} and add new

Fig. A1 Proof of Lemma 5.4.
nodes $z_{j}, j=1,2, \ldots, m$ and new arcs $a\left(v_{j}, z_{j}\right), a\left(w_{j}, z_{j}\right)$, $j=1,2, \ldots, m$. Define the capacities of these arcs by $\tilde{c}\left(a\left(v_{j}, z_{j}\right)\right)=\tilde{c}\left(a\left(w_{j}, z_{j}\right)\right)=0, \quad j=1,2, \ldots, m$. Let \tilde{G} be the resulting graph. Then $N^{d}=\left(\tilde{G}, \tilde{P}, P^{d}, \tilde{g}, g^{d}, \tilde{c}\right)$ is feasible. Each neighbouring pair $\left(x_{i}, y_{i}\right)$ satisfies $\Pi\left(x_{i}, y_{i}\right)=\emptyset$ in G, and N^{d} generates no new poles. Therefore N^{d} has no pole, though N^{d} has a convergent node z_{j} which is not on the boundary. This contradicts Corollary 5.1.

Lemma A1 If $\operatorname{rank}\left(\hat{x}_{i}\right) \leq \operatorname{rank}\left(\tilde{x}_{i}\right)$ holds for a pole $\left(x_{1}, y_{1}\right)$ and an $i \in \bar{I}$ in a feasible $C U$ network N^{d}, then $\Pi\left(x_{1}, \hat{x}_{i}\right)=\Pi\left(x_{1}, \tilde{x}_{i}\right)=\emptyset$ holds. \square

Proof First we assume that $\operatorname{rank}\left(\hat{x}_{i}\right)=\operatorname{rank}\left(\tilde{x}_{i}\right)$ and $\Pi\left(x_{1}, \hat{x}_{i}\right) \neq \emptyset$. See Figure A2. From $\hat{x}_{i} \in S^{d}$ and Definition 5.1 (3), \hat{x}_{i} is unilateral. This is however impossible, because $\mathrm{x}_{1}, \mathrm{y}_{\mathrm{i}}, \hat{\mathrm{x}}_{\mathrm{i}}\left(=\tilde{\mathrm{x}}_{\mathrm{i}}\right), \mathrm{y}_{\mathrm{i}+1}$ appear along the boundary in this order. Secondly assume $\operatorname{rank}\left(\hat{x}_{i}\right)<\operatorname{rank}\left(\tilde{x}_{i}\right)$. From the planarity of $N^{d}, \pi_{1} \in \Pi\left(\hat{x}_{i}, y_{i+1}\right)$ and $\pi_{2} \in \Pi\left(\tilde{x}_{i}, y_{i}\right)$ have a common node z, as illustrated in Figure A3. Assume $\Pi\left(x_{1}, \tilde{x}_{i}\right) \neq \emptyset$, and consider (1) $z \neq \hat{x}_{i}, \tilde{x}_{i}$. Here $\pi_{3} \in \Pi\left(x_{1}, \tilde{x}_{i}\right)$ have a node w common to $\pi^{\prime}{ }_{1} \in \Pi\left(z, y_{i+1}\right)$ or $\pi^{\prime}{ }_{2} \in \Pi\left(z, y_{i}\right)$. If w is in $\pi^{\prime}{ }_{1}\left(\right.$ similarly for $\left.\pi^{\prime}{ }_{2}\right)$, then $\Pi\left(w, \tilde{x}_{i}\right) \neq \emptyset$ and II $\left(\tilde{x}_{i}, w\right) \neq \emptyset$ contradicting the acyclicity of G. Therefore
$\Pi\left(x_{1}, \tilde{x}_{i}\right)=\emptyset$. We can show $\Pi\left(x_{1}, \hat{x}_{i}\right)=\emptyset$ in the same manner. The cases (2) $z=\hat{x}_{i}$ and (3) $z=\bar{x}_{i}$ can be treated similarly. \square

Fig. A2 Proof of Lemma A1.

Fig. A3 Proof of Lemma A1.

Proof of Lemma 5.5 First we show that $\Pi 1\left(\bar{x}_{i}, \mathrm{y}_{i+1}\right)=\emptyset$ holds in Case-2, i.e., there exists a convergent set $X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right)$ by Lemma 5.1 (see Figure 5.6). Suppose $\pi\left(\tilde{x}_{i}, y_{i+1}\right) \neq \emptyset$, then $\operatorname{rank}\left(\hat{\mathrm{x}}_{\mathrm{i}}\right) \leq \operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)$. This means $\Pi\left(\mathrm{x}_{1}, \tilde{x}_{i}\right)=\emptyset$ from Lemma A1 contradicting the assumption of Case-2 $\quad\left(\Pi\left(\tilde{x}_{1}, x_{i}\right) \neq \emptyset\right)$. Therefore let $X_{i}^{+}=V-X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right)$. We obtain $x_{1}, y_{i+1} \in X_{i}^{+}$by $\Pi\left(x_{1}, y_{i+1}\right) \neq \emptyset$ and $x_{i}, y_{1} \in V-X_{i}^{+}$by $\Pi\left(\tilde{x}_{i}, y_{1}\right) \neq \emptyset$. Therefore the boundary can be divided into the two parts contained in X_{i}^{+} and $\mathrm{V}-\mathrm{X}_{\mathrm{i}}^{+}$respectively by Lemma 2.4.

Furthermore

$$
\begin{aligned}
& \left\{z \mid \operatorname{rank}\left(\mathrm{y}_{1}\right) \leq \operatorname{rank}(\mathrm{z}) \leq \operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)\right\} \subseteq \mathrm{V}-\mathrm{X}_{\mathrm{i}}^{+} \\
& \left\{\mathrm{z} \mid \operatorname{rank}\left(\mathrm{y}_{\mathrm{i}+1}\right) \leq \operatorname{rank}(\mathrm{z})\right\} \cup\left\{\mathrm{x}_{1}\right\} \subseteq \mathrm{V}-\mathrm{X}_{\mathrm{i}}^{+}
\end{aligned}
$$

are obtained. Now we assume that $\mathrm{A}\left(\mathrm{X}_{\mathrm{i}}^{+}\right)$is not an α-cut, i.e., there exist $x^{\prime} \in S^{d}$ and $y^{\prime} \in T^{d}$ satisfying $x^{\prime} \in V B_{i} \cap X_{i}^{+}, y^{\prime} \in V-X_{i}^{+}$and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$. If $\operatorname{rank}\left(y^{\prime}\right)<\operatorname{rank}\left(x_{i}\right)$ then $\pi_{1} \in \Pi\left(\tilde{x}_{i}, y_{1}\right)$ and $\pi_{2} \in \Pi\left(x^{\prime}, y^{\prime}\right)$ cross each other by the planarity, and $\Pi\left(x^{\prime}, y_{1}\right) \neq \emptyset$ holds contradicting the definition of \tilde{x}_{i}. Then we obtain ($\left.\operatorname{rank}\left(\mathrm{y}_{\mathrm{i}}\right)<\right) \operatorname{rank}\left(\tilde{x}_{\mathrm{i}}\right)<\operatorname{rank}\left(\mathrm{y}^{\prime}\right)$ and $\mathrm{y}^{\prime} \notin \mathrm{T}^{\mathrm{d}}\left(\mathrm{x}_{1}\right)$. Here if $\Pi\left(\tilde{x}_{i}, y^{\prime}\right) \neq \emptyset$ then $\Pi\left(x_{1}, y^{\prime}\right) \neq \emptyset$ by $\Pi\left(x_{1}, x_{i}\right) \neq \emptyset$ contradicting $y^{\prime} \notin \mathrm{T}^{\mathrm{d}}\left(\mathrm{x}_{1}\right)$. Then $\Pi\left(\tilde{x}_{\mathrm{i}}, \mathrm{y}^{\prime}\right)=\varnothing$ holds and there is a unilateral simple cut $A\left(X^{+}\right)$with $X^{\prime} \in X^{+}$and $\tilde{x}_{i} \in V-X^{+}$by Lemma 2.1. By the unilaterality of cut $A\left(X^{+}\right)$, we have
$x^{\prime} \in X^{+}$. Here any path $\pi \in \Pi\left(x^{\prime}, y^{\prime}\right)$ satisfies $u \in X^{+} \cap X_{i}^{+}$and $v \in X^{+} \cap X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right)$ for some $a(u, v) \in A(\pi)$. From $v \in X^{+}$ $\Pi\left(\tilde{x}_{i}, v\right)=\emptyset$ holds. In addition, $\Pi\left(\tilde{x}_{i}, v\right) \neq \emptyset$ must hold for $a(u, v) \in A\left(V-X^{-}\left(\tilde{x}_{i} ; y_{i+1}\right)\right)$ by Lemma 2.2. This is a contradiction. Therefore the assumed x^{\prime} and y^{\prime} do not exist and $A\left(X_{i}^{+}\right)$is an α-cut.

Proof of Lemma 5.6 In Case-3, $\Pi\left(\tilde{x}_{i}, y_{i+1}\right)=\emptyset$ holds from $\hat{S}_{i}^{d}=\emptyset$. In Case-4, if $\Pi\left(\tilde{x}_{i}, y_{i+1}\right) \neq \emptyset$ then $\operatorname{rank}\left(\hat{x}_{i}\right) \leq \operatorname{rank}\left(\tilde{x}_{i}\right)$ holds and $\Pi\left(x_{1}, \hat{x}_{i}\right)=\emptyset$ by Lemma Al. This contradicts the assumption of Case-4, and hence $\Pi\left(\tilde{x}_{i}, y_{i+1}\right)=\emptyset$. This means that a divergent set $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ exists for Cases-3 and 4. Let $X_{i}^{+}=X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$. Then similarly to Lemma 7.1, we obtain

$$
\begin{aligned}
& \left\{z \mid \operatorname{rank}\left(y_{1}\right) \leq \operatorname{rank}(z) \leq \operatorname{rank}\left(\bar{x}_{i}\right)\right\} \subseteq V-X_{i}^{+} \\
& \left\{z \mid \operatorname{rank}\left(y_{i+1}\right) \leq \operatorname{rank}(z)\right\} \cup\left\{x_{1}\right\} \subseteq V-X_{i}^{+}
\end{aligned}
$$

Now assume that $A\left(X_{i}^{+}\right)$is not an α-cut, i.e., there exist $x^{\prime} \in S^{d}$ and $y^{\prime} \in T^{d}$ satisfying $x^{\prime} \in V B_{i} \cap X_{i}^{+}, y^{\prime} \in V-X_{i}^{+}$and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$. Here we show $\Pi\left(x^{\prime}, y_{i+1}\right)=\emptyset$. In Case-3, $\Pi\left(x^{\prime}, y_{+1}\right)=\emptyset$ from $\hat{S}_{i}^{d}=\emptyset$. In Case-4, we obtain $\operatorname{rank}\left(\widetilde{x}_{i}\right)<\operatorname{rank}\left(\mathrm{y}^{\prime}\right), \mathrm{y}^{\prime} \not \not \mathrm{T}^{\mathrm{d}}\left(\mathrm{x}_{1}\right)$, similarly to the proof of Lemma 5.5. If $\operatorname{rank}\left(\hat{x}_{i}\right) \leq \operatorname{rank}\left(x^{\prime}\right)$, then $\pi_{1} \in \Pi\left(x_{1}, \hat{x}_{i}\right)$ and $\pi_{2} \in \Pi\left(x^{\prime}, y^{\prime}\right)$ have a common node by planarity of G. Therefore $\Pi\left(x_{1}, y^{\prime}\right) \neq \emptyset$ holds. This contradicts $y^{\prime} \notin T^{d}\left(x_{1}\right)$,
and we have $\operatorname{rank}\left(x^{\prime}\right)<\operatorname{rank}\left(\hat{x}_{i}\right)$. Therefore $\Pi\left(x^{\prime}, y_{i+1}\right)=\emptyset$ in Case-4, since $\Pi\left(x^{\prime}, y_{i+1}\right) \neq \emptyset$ contradicts the definition of \hat{x}_{i}.

By $\Pi\left(x^{\prime}, y_{i+1}\right)=\emptyset$ and Lemma 2.1, there exists an unilateral simple cut $A\left(V-X^{-}\right)$with $x^{\prime} \in X^{-}$and $y_{i+1} \in V-X^{-}$. From the unilaterality of cut $A\left(V-X^{-}\right), \quad V(\pi) \subseteq X^{-}$, $A(\pi) \cap A\left(X_{i}^{+}\right) \neq \emptyset$ holds for any path $\pi \in \Pi\left(x^{\prime}, y^{\prime}\right)$. Here $u \in X^{-} \cap X_{i}^{+}$and $v \in V-X^{+}$for some $a(u, v) \in A\left(X_{i}^{+}\right)$. From the convergency of X^{-}, it holds $\Pi\left(u, y_{i+1}\right)=\varnothing$. This, however contradicts the result $\Pi\left(u, y_{i+1}\right) \neq \emptyset$ obtained by applying Lemma 5.2 to $X^{+}\left(y_{i+1} ; \bar{x}_{i}\right)$. Therefore the assumption is false, and $A\left(X_{i}^{+}\right)$is an $\alpha-c u t . ~ \square$

Proof of Lemma 5.7 Based on $V_{i}^{+}=\emptyset$, we first show $\operatorname{rank}\left(\tilde{x}_{i}\right)<\operatorname{rank}\left(\hat{x}_{i}\right)$. As $\operatorname{rank}\left(\hat{x}_{i}\right) \neq \operatorname{rank}\left(\tilde{x}_{i}\right)$ is clear, assume that $\operatorname{rank}\left(\hat{x}_{i}\right)<\operatorname{rank}\left(\tilde{x}_{i}\right)$. By Lemma 2.4, there is an arc $a(u, v)$ such that $a(u, v) \in A\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right) \cap A_{B} \quad$ and $\operatorname{rank}\left(\hat{x}_{i}\right) \leq \operatorname{rank}(u)<\operatorname{rank}(v)<\operatorname{rank}\left(\tilde{x}_{i}\right)$. Applying Lemma 5.1 to $X^{-}\left(x_{1} ; \hat{x}_{i}\right)$, we obtain $\Pi\left(x_{1}, z\right) \neq \emptyset$ (see Figure A4). Here by $\Pi\left(x_{1}, y_{i}\right) \neq \emptyset$ and the planarity, $\Pi\left(\tilde{x}_{i}, y_{i}\right) \neq \emptyset$ holds, and $\pi_{1} \in \Pi\left(\tilde{x}_{i}, y_{i}\right)$ and $\pi_{2} \in \Pi\left(\hat{x}_{i}, y_{i+1}\right)$ have a common node w. By the unilaterality of the cut, w is not contained in $\left(V-X^{-}\left(x_{1} ; \tilde{x}_{i}\right)\right) \cap\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right)$. Now assume that $\Pi\left(x_{1}, w\right) \neq \emptyset$
and $\Pi(w, z) \neq \emptyset$ hold or $w=z$ holds. (Otherwise, based on a path $\pi_{3} \in \Pi\left(x_{1}, z\right)$ that does not pass through node w, we can find a directed cycle in a manner similar to the proof of Lemma A1.) Here if $w \not V_{B}$ then w is unilateral from the

Fig. A4 Proof of Lemma 5.7.
definition of a CU network. This, however is impossible as obvious from Figure A4. In case $w \in V_{B}$, we can derive a contradiction by the same argument, and then obtain $\operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)<\operatorname{rank}\left(\hat{\mathrm{x}}_{\mathrm{i}}\right)$.

If $\Pi\left(\tilde{x}_{i}, y_{i+1}\right) \neq \emptyset$, then $\operatorname{rank}\left(\tilde{x}_{i}\right)<\operatorname{rank}\left(\hat{\mathrm{x}}_{\mathrm{i}}\right)$ contradicts the definition of \hat{x}_{i}. Therefore $\Pi\left(\tilde{x}_{i}, y_{i+1}\right)=\emptyset$, and there exists $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$. Let $X_{i}^{+}=X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right) \cup\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right)$. By Lemma 2.4, there exist four arcs $a_{1}, a_{2}, b_{1}, b_{2}$ such that $A\left(X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)\right) \cap A_{B}=\left\{a_{1}, a_{2}\right\}$ and $A\left(V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)\right) \cap A_{B}=\left\{b_{1}, b_{2}\right\}$, where the ranks of the end points of $a_{1}\left(b_{1}\right)$ are larger than those of the end points of $a_{2}\left(b_{2}\right)$. Here $\hat{x}_{i} \in X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ from $\pi\left(\tilde{x}_{i}, y_{i+1}\right) \neq \emptyset$. Both $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ and $V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)$ contain $\hat{\mathrm{x}}_{\mathrm{i}}$ but not $\tilde{\mathrm{x}}_{\mathrm{i}}$. Let $\mathrm{a}_{2}=\mathrm{a}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{b}_{2}=\mathrm{a}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)$. Then $\operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)<\operatorname{rank}\left(\mathrm{z}^{\prime}\right)<\operatorname{rank}(z) \leq \operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)$, and $\operatorname{rank}\left(\tilde{\mathrm{x}}_{\mathrm{i}}\right)<\operatorname{rank}\left(\mathrm{w}^{\prime}\right)<\operatorname{rank}(\mathrm{w}) \leq \operatorname{rank}\left(\hat{\mathrm{x}}_{\mathrm{i}}\right)$
hold.
Now we show $A\left(X_{i}^{+}\right)$is a unilateral simple cut and furthermore is an α-cut by considering two cases (1) $\operatorname{rank}(w) \leq \operatorname{rank}(z) \quad$ (see Figure 5.8), and (2) $\operatorname{rank}(z)<\operatorname{rank}(w)$ (see Figure A5). First consider case (1). As two connected divergent sets $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ and $V_{-X^{-}}\left(\mathrm{x}_{1} ; \hat{\mathrm{x}}_{\mathrm{i}}\right)$ both contain \hat{x}_{i}, their union X_{i}^{+}is a connected divergent set. Since all nodes whose rank is larger than $\operatorname{rank}\left(\hat{x}_{i}\right)$ are

Fig. A5 Proof of Lemma 5.7.
contained in $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ and the ranks of the end points of b_{1} are larger than that of $\hat{x}_{i}, X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$ contains the end ponits of b_{1}. Similarly $V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)$ contains the end points of a_{2}, or $a_{2}=b_{2}$ holds. Therefore we have $A\left(X_{i}^{+}\right) \cap A_{B}=\left\{a_{1}, b_{2}\right\}$. By Lemma 2.4, this means that convergent set $\mathrm{V}-\mathrm{X}^{-}\left(\mathrm{x}_{1} ; \hat{\mathrm{x}}_{\mathrm{i}}\right)$ is connected. Therefore, unilateral cut $A\left(X_{i}^{+}\right)$is simple. In case (2), a similar argument can be used to show that $A\left(X_{i}^{+}\right)$is simple.

Secondly, We show that $A\left(X_{i}^{+}\right)$is an α-cut. For this, assume $\mathrm{A}\left(\mathrm{X}_{i}^{+}\right)$is not an α-cut. Here, from the unilaterality of $A\left(X_{i}^{+}\right)$, we have easily

$$
\begin{aligned}
& \left\{z \mid \operatorname{rank}\left(y_{1}\right) \leq \operatorname{rank}(z) \leq \operatorname{rank}\left(\tilde{x}_{i}\right)\right\} \in \mathrm{V}-\mathrm{X}_{i}^{+}, \\
& \left\{\mathrm{z} \mid \operatorname{rank}\left(\mathrm{y}_{i+1}\right) \leq \operatorname{rank}(\mathrm{z})\right\} \cup\left\{\mathrm{x}_{1}\right\} \in \mathrm{X}_{i}^{+} .
\end{aligned}
$$

Therefore, this assumption implies that there exist $x^{\prime} \in S^{d}$ and $y^{\prime} \in T^{d}$ satisfying $x^{\prime} \in V_{i} \cap X_{i}^{+}, y^{\prime} \in V-X_{i}^{+}$and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$. First we consider case (1). From $y^{\prime} \in V-X_{i}^{+}$, we obtain $\operatorname{rank}\left(y^{\prime}\right)<\operatorname{rank}\left(y_{i+1}\right)$. If $\operatorname{rank}\left(y^{\prime}\right)<\operatorname{rank}\left(\tilde{x}_{i}\right)$, then $\Pi\left(\tilde{x}_{i}, y_{i}\right) \neq \emptyset$ and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$ mean $\Pi\left(x^{\prime}, y_{1}\right) \neq \emptyset$ by the palanarity. This, however, contradicts the definition of \tilde{x}_{i}, and we have $\operatorname{rank}\left(\tilde{x}_{i}\right)<\operatorname{rank}\left(y^{\prime}\right)<\operatorname{rank}\left(\hat{x}_{i}\right)$, that is, $y^{\prime} \not \& T^{d}\left(x_{1}\right)$ and $\pi\left(x_{1}, y^{\prime}\right)=\emptyset$. Here, by Lemma 2.1, there is a unilateral simple cut $A\left(X_{i}^{+}\right)$such that $y^{\prime} \in X^{+}$and $x_{1} \in V-X^{+}$. From the divergency of X^{+}and $\Pi\left(x^{\prime}, y^{\prime}\right) \neq \emptyset$, we have $x^{\prime} \in X^{+}$. Since
each of X^{+}and $\mathrm{V}-\mathrm{X}^{+}$contains one of the two parts of the boundary, nodes w, w^{\prime} (the end points of b_{2}) are contained in X^{+}. Then $\Pi\left(x_{1}, w^{\prime}\right)=\emptyset$ from the divergency of X^{+}. This, however contradicts $\Pi\left(x_{1}, w^{\prime}\right)=\emptyset$ that is obtained by applying Lemma 5.1 to $X^{-}\left(x_{1} ; \hat{x}_{i}\right) . A\left(X_{i}^{+}\right)$is an α-cut.

Now we consider case (2). Similarly for case (1), we have $\operatorname{rank}\left(\bar{x}_{i}\right)<\operatorname{rank}\left(y^{\prime}\right)<\operatorname{rank}\left(\hat{\mathrm{x}}_{\mathrm{i}}\right)$. If $\operatorname{rank}\left(\mathrm{w}^{\prime}\right) \leq \operatorname{rank}\left(\mathrm{x}^{\prime}\right)$, then we have a unilateral simple cut $A\left(X_{i}^{+}\right)$with $y^{\prime} \in X^{+}$and $\mathrm{x}_{1} \in \mathrm{~V}-\mathrm{X}^{+}$by $\Pi\left(\mathrm{x}_{1}, \mathrm{y}^{\prime}\right)=\emptyset$ and Lemma 4.1, as shown in a manner similar to case (1). Hence w^{\prime} (the terminal node of b_{2}) satisfies $w^{\prime} \in X^{+}$, that is, $\Pi\left(\mathrm{x}_{1}, \mathrm{w}^{\prime}\right)=\emptyset$. This, however, contradicts $\Pi\left(x_{1}, w^{\prime}\right)=\emptyset$ that is obtained by app1ying Lemma 4.2 to $X^{-}\left(x_{1} ; \hat{x}_{i}\right)$. This implies $\operatorname{rank}\left(x^{\prime}\right)<\operatorname{rank}\left(w^{\prime}\right)$. Also $x^{\prime} \neq \hat{x}_{i}$ and $\Pi\left(x^{\prime}, y_{i+1}\right)=\emptyset$ hold by $x^{\prime} \in V-X^{-}\left(x_{1} ; \hat{x}_{i}\right)$. Then there is a unilateral simple cut $A\left(X^{+}\right)$with $y_{i+1} \in X^{+}$and $x^{\prime} \in V-X^{+}$. Furthermore $y^{\prime} \in V-X^{+}$holds by its unilaterality. As cut $A\left(X^{+}\right)$is unilateral, $V(\pi) \subseteq V-X^{+}$and $A(\pi) \cap A\left(X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)\right) \neq \emptyset$ hold for any path $\pi \in \Pi\left(x^{\prime}, y^{\prime}\right)$. Then $\Pi\left(u, y_{i+1}\right)=\emptyset$ for some $a(u, v) \in A\left(X_{i}^{+}\right)$. This, however contradicts the result $\Pi\left(u, y_{i+1}\right) \neq \emptyset$ that is obtained by applying Lemma 4.2 to $X^{+}\left(y_{i+1} ; \tilde{x}_{i}\right)$. Therefore $A\left(X_{i}^{+}\right)$is also an α-cut in case (2). \square

Proof of Lemma 5.8 We first show $X^{-}\left(x_{1} ; \tilde{x}_{i}\right)=X^{-}\left(x_{1} ; \hat{x}_{i}\right)$ from the assumption that $\mathrm{V}_{\mathrm{i}}^{+} \neq \emptyset$ in Case- 6 . If we assume $w \in\left(V-X^{-}\left(x_{1} ; \hat{x}\right)\right)-\left(V-X^{-}\left(x_{1} ; \tilde{x}_{i}\right)\right)$, there exists an arc $a\left(w^{\prime}, w\right)$ with $w^{\prime} \in V_{i}^{+}$by the connectivity of $V-X^{-}\left(x_{1} ; x_{i}\right)$. Then

Fig. A6 Proof of Lemma 5.8.
$\Pi\left(x_{1}, w\right) \neq \emptyset$ by Lemma 5.1 contradicting the convergency of $X^{-}\left(x_{1} ; \hat{x}_{i}\right)$. Therefore $V-X^{-}\left(x_{1} ; \hat{x}_{i}\right) \subseteq V-X^{-}\left(x_{1} ; \tilde{x}_{i}\right)$. Similar argument can show the reverse inclusion-relation. Now shrink the connected divergent set $\mathrm{V}_{\mathrm{i}}^{+}$into a node w_{0}. By Lemma 2.6, the resulting graph $\mathrm{G}^{\prime \prime}$ is also CU. Here the four nodes $x_{1}, y_{1}, w_{0}, y_{i+1}$ are 4-reachable: and $G^{\prime \prime}$ has a 4alternating partition such that $x_{1} \in X_{i}^{+}, y_{1} \in Y_{i}^{-}, \quad w_{0} \in \hat{W}_{i}^{+}$, $y_{i+1} \in Z_{i}^{-}$by Lemma 5.3. From $\pi\left(x_{1}, y_{i}\right) \neq \emptyset$ and $\pi\left(w_{0}, y_{i}\right) \neq \emptyset$, we obtain $y_{i} \in Y_{i}^{-}$and $y_{1}, y_{2}, \ldots, y_{i} \in Y_{i}^{-}$by Lemma 2.4. $A\left(\hat{W}_{i}^{+}\right)$is a simple cut even in G by Lemma 2.6. Let $W_{i}^{+}=\left(\hat{W}_{i}^{+}-\left\{W_{0}\right\}\right) \cup V_{i}^{+}$ then $\tilde{x}_{i}, \hat{x}_{i} \in W_{i}^{+}$. Consequently, the existence of a $\beta-$ partition $X_{i}^{+}, Y_{i}^{-}, W_{i}^{+}, Z_{i}^{-}$in G is shown.

Proof of Lemma 5.9 Compute $\mathrm{A}\left(\mathrm{X}_{i}^{+}\right)$in the decreasing order of $i \in \tilde{I}$, and shrink X_{i}^{+}before computing α or β-cut for the next $i \in \bar{I}$. Since the required time to compute the maximal directed tree for an is $0(|V|)$, the entire time is $O\left(|v|^{2}\right)$.

Proof of Lemma 5.10 For simplicity, we consider the case in which both i and j have α-cuts A_{i}, A_{j} (see Figure A7). The other cases can be shown similarly. If $r_{i}=0$, the lemma is obvious. Therefore, assume $r_{i}>0$. From the definition of α-cut $A\left(X_{i}^{+}\right)$, the source $x^{\prime \prime}$ and the sink $y^{\prime \prime}$ for any dummy

Fig. A7 Proof of Lemma 5.10.
flow passing through $A\left(X_{i}^{+}\right)$satisfy

$$
\operatorname{rank}\left(y_{i+1}\right) \leq \operatorname{rank}\left(x^{\prime \prime}\right), \quad \text { and } \operatorname{rank}\left(y_{1}\right) \leq \operatorname{rank}\left(y^{\prime \prime}\right) \leq \operatorname{rank}\left(y_{i}\right),
$$ (otherwise $x^{\prime \prime} \in \widetilde{S}_{i}^{d}$ or $y^{\prime \prime} \in T^{d}\left(x_{1}\right)$ are easily shown contradicting the definition of \tilde{x}_{i} or $T^{d}\left(x_{1}\right)$). If $e_{i}<\min \left\{e_{j}, r_{i}\right\}$, then some part of dummy flow f from source x_{1} passing through A_{j} enters dummy sinks $y_{i+1}, y_{i+2}, \ldots, y_{j}$ contained in $X_{i}^{+}-X_{j}^{+}$. By $e_{i}<r_{i}$, there exists another dummy flow f^{\prime} passing through A_{j}. We consider the source of this f^{\prime}. Since $\Pi\left(x^{\prime}, y^{\prime}\right)=\varnothing$ for any $x^{\prime} \in V B_{i} \cap X_{i}^{+} \cap S^{d}$ and $y^{\prime} \in(V-$ $\left.X_{i}^{+}\right) \cap T^{d}$ as a property of an α-cut, the source of f^{\prime} is not in $V B_{i} \cap X_{i}^{+}$. Now we show that the source of f^{\prime} can not be equal to any node $z^{\prime} \in S^{d}$ with $\operatorname{rank}\left(y_{i+1}\right)<\operatorname{rank}\left(z^{\prime}\right)<\operatorname{rank}\left(y_{j}\right)$ (see Figure A7). Suppose some dummy flow from such z^{\prime} enters $w \in\left(V-X_{i}^{+}\right) \cap T^{d}$. Since any directed path from z^{\prime} to w and any path in $\Pi\left(x_{1}, y_{i+1}\right)$ cross each other by the planarity, it holds $\Pi\left(x_{1}, w\right) \neq \emptyset$. Therefore $w \in T^{d}\left(x_{1}\right)$. Thus w is equal to one of $y_{1}, y_{2}, \ldots, y_{i}$, and $I I\left(z^{\prime}, y_{1}\right) \neq \emptyset$ holds because any path from z^{\prime} to w and any path in $\pi\left(x_{1}, y_{1}\right)$ cross each other. This contradicts the assumption that $\mathrm{S}_{\mathrm{k}}^{\mathrm{d}}=\emptyset$ holds for any k with $i<k<j$. Therefore the source z of f^{\prime} satisfies $\operatorname{rank}\left(y_{j}\right)<\operatorname{rank}(z)$. Thus any path π_{1} of dummy flow f from x_{1} to $y_{k}(i+1 \leq k<j)$ and any path π_{2} of dummy flow f^{\prime} from $z \in S^{d}$ to $w \in T^{d} \cap\left(V-X_{i}^{+}\right)$cross each other again by the

planarity. Then we exchange the flows f and f^{\prime} in paths π_{1} and π_{2} in the same manner as discussed in the proof to Lemma 3.1. Repeating this modification, the amount e_{i} of f through A_{i} will eventually become equal to $\min \left\{e_{j}, r_{i}\right\}$.

Proof of Lemma 5.11 We first show that there exists a feasible flow in which the amount e_{i} of a dummy flow from source x_{1} passes through A_{i} for each $i \in \tilde{I}$, where $e_{i}=\min \left(g_{x 1}^{d}, r_{q-1}, r_{q-2}, \ldots, r_{i}\right\}$. Let $i^{\prime \prime}\left(i^{*}\right)$ be the maximun (minimum) i in \tilde{I}.

For $i " \epsilon \bar{I}$, we consider a dummy flow whose amount is $e_{i} "=\min \left\{g_{x l}^{d}, r_{i} "\right\}$. Assume $r_{i} ">0$, since otherwise the network is infeasible. Now we assume that the amount of dummy flow passing from source x_{1} through A_{i} " is less that e_{i} ". Then there is a dummy flow f^{\prime} from source $x^{\prime}\left(\neq x_{1}\right)$ passing through A_{i} " and dummy flow \tilde{f} from source x_{1} not passing through A_{i}. These f ' and \tilde{f} cross each other by the planarity as shown next. By definition of an α-cut (or β-semi-cut) A_{i} ", source $x^{\prime}\left(\neq x_{1}\right)$ of f^{\prime} satsifies $\operatorname{rank}\left(y_{i^{\prime \prime}+1}\right)<\operatorname{rank}\left(x^{\prime}\right)$, as shown in Figure A8. Let y^{\prime} be a sink of f^{\prime}. If $\operatorname{rank}\left(x^{\prime}\right)<\operatorname{rank}\left(\mathrm{y}_{\mathrm{q}}\right)$, then a path in $\Pi\left(x^{\prime}, y^{\prime}\right)$ and a path in $\Pi\left(x_{1}, y_{i}{ }^{\prime \prime}+1\right)$ have a common node and therefore $\Pi\left(x_{1}, y^{\prime}\right) \neq \emptyset$. That is, $y^{\prime} \in T^{d}\left(x_{1}\right)$ and y^{\prime} is one of $y_{1}, y_{2}, \ldots, y_{i} \prime$. This
means $\operatorname{rank}\left(y^{\prime}\right) \leq \operatorname{rank}\left(y_{i} \prime\right)$. Here $\mathbb{H}\left(x^{\prime}, y_{1}\right) \neq \emptyset$ holds, however, because there exists $\tilde{x}_{i "}$ with $\Pi\left(\tilde{x}_{i "}, y_{1}\right) \neq \emptyset$ from $\bar{S}_{i}^{d} \| \neq \emptyset$, and a path in $\Pi\left(\tilde{x}_{i} \prime, y_{1}\right)$ and a path in $\Pi\left(x^{\prime}, y^{\prime}\right)$ have a common node. This contradicts the definition of i ". Consequently

Fig. A8 Proof of Lemma 5.11.
$\operatorname{rank}\left(y_{q}\right)<\operatorname{rank}\left(x^{\prime}\right)$ holds, and f^{\prime} and \tilde{f} cross each other by planarity. We now exchange flows f^{\prime} and \tilde{f} in the same manner as in the proof for Lemma 5.10. As a result of this exchange, we obtain the amount e_{i} " of dummy flow from source x_{1} that passes through A_{i} ".

For each $j^{\prime} \in \tilde{I}$, we show that any $i \in \tilde{I}$ with $j^{\prime} \leq i$ has a feasible flow in which the amount e_{i} of dummy flow from source x_{1} passes through A_{i}, where $e_{i}=\min \left\{g_{x 1}^{d}, r_{q-1}, r_{q-2}, \ldots, r_{i}\right\}$. For $j^{\prime}=i^{\prime \prime}$, this is obviously true. Now consider $i^{\prime}\left(\left\langle j^{\prime}\right)\right.$ such that $k \notin \tilde{I}$ for all k with $i^{\prime}<k<j^{\prime}$. By Lemma 5.10, there exists a feasible flow in which the amount e_{i}, of a dummy flow from source x_{1} passes through A_{i}, where $e_{i^{\prime}}=\min \left\{e_{j} \prime^{\prime}, r_{i},\right\}\left(=\min \left\{g_{x 1}^{d}, r_{q-1}, r_{q-2}, \ldots\right.\right.$, $\left.r_{i}\right\}$). By using induction, we can show that, from $j^{\prime}=i^{\prime \prime}$ to $j^{\prime}=i^{*}$, there is a feasible flow in which the amount e_{j} of dummy flow from source x_{1} passes through A_{j}, where $e_{j}=\min \left\{g_{x 1}^{d}, r_{q-1}, r_{q-2}, \ldots, r_{j}\right\}$.

Finally we consider the amount of dummy flow from source x_{1} to sink y_{1} that passes through $A_{i} *$. Let f^{*} be the dummy flow from source x_{1} that passes through $\mathrm{A}_{\mathrm{i}}{ }^{*}$. From the previous argument, we have a feasible flow f^{*} whose amount is e_{i}. Assume that A_{i} * is an α-cut (as the case of a β-semi-cut can be similarly treated). Assume that the
amount of dummy flow in f^{*} to sink y_{1} is less than $\min \left\{e_{i} *, g_{y 1}^{d}\right\}$. In this case, we have a dummy flow \tilde{f} to a sink $\left(\neq \mathrm{y}_{1}\right)$ and a dummy flow f^{\prime} from some source z to sink y_{1}. Clearly $\operatorname{rank}\left(y_{i} *\right)<\operatorname{rank}(z)$ holds by definition of i^{*}. Then we may have the $\min \left\{\mathrm{e}_{\mathrm{i}}{ }^{*}, \mathrm{~g}_{\mathrm{y} 1}^{\mathrm{d}}\right\}$ amount of dummy flow from source x_{1} to sink y_{1} by modifying flows f and f^{\prime} in the same manner as in the proof for Lemma 5.10. \square

REFERENCES

[AHO 74] Aho,A.V., Hopcroft,J.E. and U11man,J.D.: The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).
[AHO 83] Aho,A.V., Hopcroft,J.E. and U11man,J.D.: Data Structure and Algorithms, Addison-Wesley, Reading, Mass. (1983).
[BELL 57] Be11man,R.E.: Dynamic Programming, Princeton University Press, Princeton N.J. (1957).
[BERG 73] Berge,C.: Graphs and Hypergraphs, NorthHolland Publishing (1973).
[BERT 85] Bertsekas,D.P.: "A unified framework for primaldual methods in minimum cost network flow problems", Math. Prog., Vol.32, pp.125-145 (1985).
[BERT 87] Bertsekas,D.P., Hossein,P.A. and Tseng,P.: "Relaxation methods for network flow problems with convex arc costs", SIAM J. Control and Optimization, Vo1.25, pp.1219-1243 (1987).
[DIAZ 72] Diaz,H. and de Ghe11ink,G.: "Multicommodity maximam flow in plannar networks (The Dalgorithm approach)", CORE discussion paper

No. 7212, Center for Operations Research and Econometrics, Louvain-1a-Neuve, Belgium (1972).
[DINI 70] Dinic,E.A.: "Algorithm for solution of a problem of maximal flow in a network with power estimation", Soviet Math. Dok1., Vol.11, pp.1277-1280 (1970).
[DREY 77] Dreyfus,S.E. and Law,A.M.: The Art and Theory of Dynamic Programming, Academic Press, New York (1977).
[EDMO 72] Edomonds,J. and Karp,R.M.: "Theoretical improvements in the algorithmic efficiency for network flow problems", J. ACM, Vo1.19, pp.248264 (1972).
[FORD 62] Ford,L.R. and Fulkerson,D.R.: Flows in Networks, Princeton University Press, Princeton, N,J. (1962).
[FRED 83] Frederickson,G.N.: "Shortest path problems in planar graphs", Proc. 24-th Symposium on Foundation of Computer Science, Tucson, Nov. pp. 242-247 (1983).
[FUJI 86] Fujishige,S.: "A capacity-rounding algorithm for the minimum-cost circulation problem: a dual framework of the Tardos algorithm", Math.

Prog., pp.298-308 (1986).
[FUKU 84] Fukushima,M.: "A nonsmooth optimization approach to nonlinear multicommodity network flow problems", Journal of the Operation Research Society of Japan, Vo1.27, No.2, pp.151-177 (1984).
[GALI 86] Gali1,Z. and Tardos,E.: "An $O\left(n^{2}(m+n \operatorname{logn}) \operatorname{logn}\right)$ min-cost flow algorithm", Proc. 27-th Annual IEEE Symp. on Foundations of Computer Science, pp.1-9 (1986).
[GALL 77] Gallager,R.G.: "An optimal routing algorithm using distributed computation," IEEE Trans. on Communications, Vo1.COM-25, pp.73-85 (1977).
[HASS 81] Hassin,R.: "Maximum flow in (s, t) planar networks, Inform. Proc. Lett., Vo1.13, pp. 107 (1981).
[HOFF 56] Hoffman,A.J., Kruskal,J.B.: "Integral boundary points of convex polyhedra", Annals of Mathematical Studies 38, Princeton University Press, pp.223-246 (1956).
[HU 69] Hu,T.C.: Integer Programming and Network Flows, Addison Wesley, Reading, Mass. (1969).
[IBAR 82] Ibaraki,T., Hosono,M. and Hasegawa,T.: "Network flow approaches to multi-item multi-stage production scheduling", Working paper, Dept. of Applied Mathmatics and Physics, Kyoto University, Kyoto, Oct. (1982).
[IBAR 76a] Ibaraki,T.: "Theoretical comparisons of search strategies in branch-and-bound algorithms", International J. Computer and Information Sciences, Vol.5, pp.315-344 (1976).
[IBAR 76b] Ibaraki,T.: "Computational efficiency of approximate branch-and-bound algorithms", Mathematics of Operations Res., Vol.1, pp.287298 (1976).
[IBAR 77] Ibaraki,T.: "On the computational efficiency of branch-and-bound algorithms", Journal of Operations Research Society of Japan, Vo1.20, pp.16-35 (1977).
[IBAR 78] Ibaraki,T.: "Branch-and-bound procedure and state-space representation of combinatorial optimization problems", Information and Control, Vol.36, pp.1-27 (1978).
[ITO 85] Ito,H.: "Performance evaluation of the algorithm for some multicommodity flow
problem" (in Japanese), Bachelor thesis, Dept. of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University (1985).
[IRI 70] Iri,M.: "On an extension of the maximum-flow minimum-cut theorem to multicommodity flows, Journal of the Operation Research Society of Japan, Vol.13, pp.129-135 (1970).
[KARM 84] Karmarkar,N.: "A new polynomial-time algorithm for linear programming", Combinatorica, Vo1.4, No.4, pp.373-395 (1984).
[KARZ 85] Karzanov,A.V.: "Determining the maximal flow in a network by the method of preflows", Soviet Math. Dok1., Vol.15, pp.434-437 (1974).
[KENN 78] Kennington,J.L.: "A survey of linear cost multicommodity network f1ows", Operations Research, Vol.26, pp.209-236 (1978).
[KENN 80] Kennington,J.L. and Helgason,R.V.: Algorithms for Network Programing, John Wiley and Sons. (1980).
[KHAC 79] Khachiyan,L.G.: "A polynomial algorithm in linear programming", Dokl. Akad. Nouk SSSR N.S.

244:5, pp.1093-1096 (1979) [Eng1ish trans1., Soviet Math. Dok1. 20:1, pp.191-194 (1979)].
[LAWL 76] Lawler,E.L.: Combinatorial Optimization: Networks and Matroids, Ho1t, Rinehart \& Winston, New York (1976).
[LOMO 85] Lomonosov,M.V.: Combinatorial Approaches to Multiflow Problems, Disc. App1. Math., Vo1.11, pp.1-93 (1985)
[MTSU 85] Matsumoto,K., Nishizeki,T. and Saito,N.: "An efficient algorithms for finding multicommodity flows in planar graphs", SIAM J. Comput., Vo1.14, No.2, pp.289-320 (1985).
[NAGA 87a] Nagamochi,H., Ibaraki,T. and Hasegawa,T.: "On multicommodity flow problems in certain directed planar networks", Transactions of the Institute of Electronics, Information and Communication Engineers of Japan, Section A, pp.228-238 (1987).
[NAGA 87b] Nagamochi,H., Ibaraki,T. and Hasegawa,T.: "Multicommodity flow for the class CU of certain planar directed networks", Transactions of the Institute of Electronics, Information and Communication Engineers of Japan, Section A,
pp. 1328-1339 (1987).
[NAGA 87c] Nagamochi,H., Fukushima,M and Ibaraki,T.: "Relaxation methods for the strictly convex multicommodity flow problem with capacity constraints on individual commodities", Journal of the Operation Research Society of Japan (submitted).
[NAGA 88a] Nagamochi,H. and Ibaraki,T.: "Max-f1ow min-cut theorem for the multicommodity flows in certain directed planar networks", Transactions of the Institute of Electronics, Information and Communication Engineers of Japan, Section A, pp.71-82 (1988).
[NAGA 88b] Nagamochi,H. and Ibaraki,T.: "An efficient feasibility testing of the multicommodity flow problem in certain planar directed networks", Transactions of the Institute of Electronics, Information and Communication Engineers of Japan, Section A (to appear).
[NAGA 88c] Nagamochi,H. and Ibaraki,T.: "Mu1ticommodity flows in certain planar directed networks", Disc. App1. Math. (to appear).
[NEMH 72] Nemhauser,G. and Garfinke1,R.: Integer Programming, John Wiley, New York (1972).
[OKAM 81] Okamura,H. and Seymour,P.D.: "Multicommodity flows in planar graphs", Journal of Combinatorial Theory, Series B, Vo1.31, pp.7581 (1981).
[OKAM 83] Okamura,H.: "Multicommodity flows in graphs", Disc. Appl. Math., Vol.6, pp.55-62 (1983).
[ONAG 71] Onaga,K. and Kakusho,0.: "On feasibility conditions of multicommodity flows in networks", IEEE Trans. Circuit Theory Vo1.18, pp.425-429 (1971).
[ORLI 84] Orlin,J.B.: "Genuinely polynomial simplex and non-simplex algorithms for the minimum cost flow problem", Working papar No.1615-84, A.P.Sloan School of Management, MIT, December (1984).
[ORLI 86] Orlin,J.B.: "A dual version of Tardos's algorism for linear programming", Operations Research Letters, Vo1.5, No. 5 (1986).
[PAPA 82] Papadimitriou,C. and Steiglitz,K.: Combinatorial Optimization: Algorithms and Complexity, Printice-Hal1, Eng1ewood Clifs, New

Jersey (1982).
[ROCK 70] Rockafellar,R.T.: Convex Analysis, Princeton Univ. Press, N.J. (1970).
[ROCK 81] Rockafellar,R.T.: Monotropic programming: descent algorithms and duality : in Nonlinear Programming 4, by Mangasarian,0.L., Meyer,R. and Robinson,S. (eds.), Academic Press, pp.327366 (1981).
[ROCK 84] Rockarfe11ar,R.T.: Network F1ows and Monotropic Optimization: Pure and Applied Mathematics, A Wiley-Intersicience Series of Texts, Monographs and Tracts (1984).
[SLEA 80] Sleator,D.D.: "An O(mnlogn) algorithm for maximam network flow", Ph.D. Dissertation, Computer Science Department, Stanford University (1980).
[STER 77] Stern,T.E.: "A class of descentralized routing algorithms using relaxation", IEEE Trans. on Communications, Vo1.COM-25, pp.1092-1102 (1977).
[SUZU 85] Suzuki,H., Nishizeki,T. and Saito,N.:
"Multicommodity flows in planar undirected
graphs and shortest paths", Proc. 17-th Annual ACM Symposium on Theory of Computing, pp.195-204 (1985).
[TANG 64] Tang,D.T.: "Bi-path networks and multicommodity flows", IEEE Trans. Circuit Theory, Vol.CT-11, pp.468-474 (1964).
[TARD 86] Tardos,E.: "A strongly polynomial algorithm to solve combinatorial linear programs", Operations Resaerch, Vo1.34, No.2, March-Apri1, pp. 250-256 (1986).
[TARD 85] Tardos,E.: "A strong1y polynomial minimum cost circulation algorithm", Combinatorica, Vol.5, No.3, pp.247-255 (1985).
[TARJ 83] Tarjan,R.E.: Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, Penn. (1983).
[ZAHO 84] Zahorik,A., Thomas,L.J. and Trigeiro,W.W.: "Network programming models for production scheduling in multi-stage, multi-item capacitated systems", Management Science, Vo1.30, No.3, pp.308-325 (1984).

