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 PREFACE 

    Network optimization is one of the most important 

practical branches of mathematical programming, and is 

encountered in various engineering fields, especially 

information processing and operations research. Among 

various network optimization problems, the multicommodity 

flow problem often arises when more than one commodity 

shares each arc in a network. This problem can represent 

many important problems encountered in a wide variety of 

applications such as traffic assignment in road or 

communication networks, production scheduling and routing 

in VLSI design. From theoretical view point, the 

multicommodity flow problem may be classified into two 

categories, linear and nonlinear, according to the types of 

the cost function to be optimized. 

    The linear model can be formulated as a specially 

structured linear program, and can be solved in strongly 

polynomial time, as recently shown by E.Tardos (1986). In 

practice, the codes based on the simplex method appear to be 

faster than others and are currently used, but they are not 

efficient enough to solve large scale problems encountered 

in practice. It is therefore desirable to develop efficient
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network theoretic algorithms. 

     The nonlinear network models also have been extensively 

studied in connection with urban traffic systems, 

communication systems, and many other practical 

applications. Some algorithms for the general nonlinear 

programming problems have been specialized to solve 

nonlinear network problems. 

    The objective of this thesis is to develop efficient 

algorithms for the multicommodity flow problem in directed 

networks, linear and nonlinear models. The main 

contribution of this thesis may be classified into the 

following two categories. 

    The first category contains graph theoretic algorithms 

for testing feasibility of the multicommodity flow problem 

in certain planar directed networks. Tree polynomial time 

algorithms for classes CB, CS and CU of such networks are 

developed. Furthermore, the integrality of flows and the 

max-flow  min-cut property are investigated: Classes CB, CS 

and CU all have integral flow property, but only classes CB 

and CS have the max-flow min-cut property. 

     In the second category, the minimization of a 

nonlinear cost function of the multicommodity flow problem 

in a general directed network is studied. Relaxation 
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methods of various types for obtaining optimal solutions are 

proposed, and compared on the basis of computational 

experiment. 

    Importance of efficient algorithms in these areas will 

be increasing. The author hopes that the work contained in 

this thesis is helpful for further study in this growing 

field. 

                                       March, 1988 

                                       Hiroshi Nagamochi
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 CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION 

    Network optimization is one of the most important 

practical branches of mathematical programming, and is 

encountered in various engineering fields, especially 

information processing and operations research. It may be 

classified into two categories, linear and nonlinear, 

according to the types of the cost function to be 

optimized. The linear model can be formulated as a 

specially structured linear program. The special structure 

exhibits a useful property that it always possesses an 

optimal integer solution. This integer  property permits a 

number of important combinatorial problems to be formulated 

and solved as network flow problems [PAPA 82]. 

    In dealing with combinatorial optimization, we should 

note that, even if the problems usually have finitely many 

feasible solutions, the straightforward enumeration of all 

feasible solutions often requires a prohibitively large 

amount of computation time. Even problems of moderate sizes 

often become intractable in the sense of practical computer 

computation. This necessitates the development of efficient 

                         1



combinatorial optimization algorithms. 

      It is difficult, however, to develop an algorithm that 

always works efficiently for all types of combinatorial 

optimization problems. Some general solution techniques are 

known, i.e., integer programming [NEMH 72], dynamic 

programming [BELL 57, DREY 77] and branch-and-bound methods 

[LAWL 66, IBAR 76a, IBAR 76b, IBAR 77, IBAR 78]. However, 

these general techniques are not always effective, i.e., 

there are certain classes of combinatorial optimization 

problems that become computationally intractable as the 

problem size increases. Usually, general purpose techniques 

are less efficient than special purpose algorithms that are 

designed for only one class of combinatorial optimization 

problems.  ' 

     From this viewpoint, therefore, it is advisable to 

develop a special purpose algorithm suited for the given 

problem by exploiting its specific structure. Much effort 

to develop such algorithms has been made in these two or 

three decades. Efficient algorithms are now available for 

some classes of combinatorial optimization problems. It is 

often the case that such tractable classes of problems are 

formulated as network flow problems in linear model
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[PAPA 82]. Therefore it is important to develop special 

purpose graph theoretic algorithms, which can be more 

efficient than the general purpose simplex method for linear 

programming. 

    The nonlinear network models also have been extensively 

studied in connection with urban traffic systems, 

communication systems, and many other practical 

applications. Some algorithms for the general nonlinear 

programming problems are specialized to solve nonlinear 

network problems. For example, based on the convexity of 

the objective function, theory of monotropic programming 

[ROCK 81,84] has been developed.
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1.2  COMPUTATIONAL COMPLE7IITY 

     In the theory of combinatorial optimization, 

performance of an algorithm is evaluated by the amount of 

computation required to solve given problem instances. To 

analyze this, we shall formalize the size L of each problem 

instance, and describe the amount of computation as a 

function of L. The size of a problem instance is usually 

measured by the length of the input data which is required 

for its specification. For example, consider a graph 

G=(V,E). To input G, the set of nodes and the set of edges 

can be encoded in length 0(IVI+IEI), where IVI is the number 

of nodes and IEI is the number of edges. Here 0(f(x)). 

reading order f(x), denotes that it is bounded from above 

by cf(x) where c is a constant. This notation will be often 

used in the subsequent discussion. If length d(vi,v.j) is 

attached to each edge (vi,v.j), the length of the input data 

becomes 0(IEI+IVI) + 0(IEllogd) = 0(IVI+IEIlogd), where 

d=max{Id(vi,v~)II(vi,v~)EE}. The term logd comes from the 

fact that log2d bits are required to represent an integer d 

in binary expression [AHO 74, AHO 86]. 

   The time complexity T(L) is a practically important and 

widely accepted measure of the amount of computation, which 

is the number of steps required in the computation. The 
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number of additions, multiplications and comparisons are 

typical unit operations to count the number of steps . Since 

it is very difficult to estimate the exact number of steps, 

its order is mostly discussed. 

    It should be noted that, in order to determine 

function T(L) for a given problem size L, we have to 

consider an infinite number of problem instances with size 

L. As global measures for these problem instances, the 

following two have been proposed: average time complexity 

and worst-case time complexity. The worst-case time 

complexity guarantees that any problem instance can be 

solved within that bound. However, it sometimes provides a 

bound which is too large for most problem instances. The 

average time complexity is therefore practically more 

important. However, it is usually very difficult to 

derive the time complexity averaged over all the possible 

problem instances. It is also not easy to know the 

probability distribution of problem instances in the real 

world. For this reason, this thesis concentrates on the 

worst-case time complexity. 

     By an efficient algorithm we mean one whose worst-case 

time complexity is bounded by a polynomial function of the 
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input size. The reason for this is that polynomial time 

complexity increases more slowly with the sizes of problem 

instances than nonpolynomial, e.g., exponential, time 

complexity. Recently, the concept of strong polynomiality 

has been introduced in connection with an open problem 

related to the minimum cost flow problem. An algorithm is 

strongly polynomial [TARD 86], if it consists of the 

(elementary) arithmetic operations, e.g., additions, 

comparisons, multiplications and divisions, the number of 

which is polynomially bounded in the dimension of the 

input. Here the dimension of input is defined to be the 

number of data items in the input, e.g., the number of arcs 

and that of nodes in the underlying graph, and the dimension 

of the matrix in the underlying linear program.

6



1.3 HISTORICAL BACKGROUND 

    Efficient algorithms for solving the maximum flow 

problem, the minimum cost flow problem and the 

multicommodity flow problem has been extensively studied, 

from both theoretical and practical viewpoints. 

    We start with the description of the maximum flow 

problem of a single commodity. It is formulated as follows, 

where the network considered is a directed graph (although 

it can also be defined for an undirected graph [BERG 73]). 

      N = (G,c): A network. 

     G = (V,A): A finite directed graph, where V is a set 

          of nodes, and A is a set of arcs. 

          a(x,y): A directed arc from node x to node y 

 OUT(x): The set of arcs whose initial node is x. 

          IN(x): The set of arcs whose terminal node is x. 

      c: A ÷ Z+ is a capacity function, where Z+ is the set 

           of nonnegative integers. 

     Given a pair of source node s and sink node t in V, it 

is asked to find a flow f maximizing the flow value g. A 

flow is a function f: A } R that satisfies the following 

conditions (1.1) and (1.2), where f(a) denotes the flow 

value in arc a.

7



     Flow conservation: For 

 E f(a) -  E  f(b) = 
aEOUT(x) bEIN(x) 

     Capacity constraint: 

0 < f(a) < c(a). 

    Let g' denote the IVI dim( 

entry corresponding to node 

otherwise. Since constraints 

can formulate the maximum fl( 

linear program. 

       maximize: g 

      subject to Ax = g' 

                 0 < x < c 

where A=(aiu),i eV, u E A, is 

matrix of the graph with size 

initial node of arc u, aiu=-1 

arc u). 

    Ford and Fulkerson in tt 

developed an algorithm for ti 

presented the max-flow mil 
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is called the node-arc incidence 

ze IVI*IAI (aiu +1 if i is the 

-1 if i is the terminal node of 

their seminal book [FORD 62] 

 the maximum flow problem and 

min-cut theorem. The first



polynomial algorithm for the maximum flow problem was given 

by Dinic [DINI 70]. After a number of improvements of the 

time complexity in the past decade,  0(1V13) and 

0(IAIIVIlogIVI) are currently known as the best bounds 

[KARZ 74, SLEA 80, TARJ 83], where 1V1 is the number of 

nodes and CAI is the number of arcs in a network. 

    The following problem is called the minimum cost 

circulation problem: Find a flow f that minimizes cost 

 I d(a)f(a), where d(a) denotes the cost given to the unit 
a EA 
amount of flow in arc a. As in the above case, a flow f 

satisfies the following conditions (1.3) and (1.4). 

     Flow conservation: 

             f(a) — I f(b) = 0, for all xE V. (1.3) 
     a EOUT(x) b EIN(x) 

    Capacity constraint: 

     c(a) < f(a) < c(a),for all a EA, (1.4) 

where c(a) and c(a) are lower and upper bounds on the flow 

in arc a. Obviously, the minimum cost flow problem can also 

be written as an LP problem in a similar manner [KENN 80]. 

    Edomonds and Karp developed a scaling technique to 

solve the minimum cost flow problem in polynomial time 

[EDMO 72]. However, the number of arithmetic operations 

                        9



required by their algorithm depends on the size of the 

bounds. Therefore, it is not strongly polynomial. Finding 

a strongly polynomial algorithm for the minimum cost flow 

problem has been an open problem for about ten years, until 

Tardos [TARD 85] answered it affirmatively. Currently, the 

dual version of the Tardos algorithm and the simplex like 

method are also known [FUJI 86, ORLI 86,  GALI 86]. 

    Since the coefficient matrix in the formulation of the 

maximum flow problem or the minimum cost flow problem is 

totally unimodular [BERG 73], all extreme points of the 

polyhedron defined by the constraint are integers provided 

that all capacities are integers [HOFF 56]. 

     Multicommodity flow problems arise when more than one 

commodity share each arc in a network. This problem can 

represent many important problems encountered in a wide 

variety of applications such as traffic assignment in roads 

or communication networks, production scheduling problems 

and routing in VLSI design. 

     P: The set of source-sink pairs (sk,tk), k=1,2,...,K, 

        where K is the number of commodities. We assume that 

        each commodity k has exactly one source sk and one 

        sink tk. Let, S={skIk=1,...,K} and T={tklk=1,...,K} 
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       (possibly skl=sk2or tkl=tk2 for  klk2) , 

     g: {1,2,...,K} Z+, where Z+ denotes the set of 

        positive integers. Let gk denote g(k), the amount 

        of supply (=the amount of demand) of commodity k . 

     The multicommodity flow problem in a directed network 

is feasible if there exists a set of f(a ,k),a EA, 

k€ {1,...,K}, which satisfies the following conditions (1 .5) 

and (1.6). Here f(a,k) denotes the flow value of commodity 

k in arc a. 

    Flow conservation: For all x E V and all k 

                                     gk, if x = sk 

             f(a,k)- E f(b,k)= 0 , if x A sk, x# tk 
     a € OUT(x) b E IN(x) 

                                  - gk, if x = tk . (1.5) 

    Capacity constraint: For all aE A 

K 

E f(a,k) < c(a),(1.6) 
      k=1 

f(a,k)>0, k=1,2,...,K. 

     Since the maximum flow problem, the minimum cost flow 

problem and the multicommodity flow problem can generally 

be formulated as specially structured linear programming
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problems, they can be solved by polynomial time algorithms 

devised for  LP [KHAC 79, KARM 84]. Furthermore, [ORLI 84, 

TARD 86] showed that if all sizes of entries in the 

coefficient matrix are bounded by a constant in LP 

formulation, such LP can be solved in strongly polynomial 

time. Therefore, we see that the multicommodity flow 

problem can be solved in strongly polynomial time, though 

the degree of polynpmial is still very high. In practice, 

the codes based on the simplex method appear to be faster 

than others and are currently used. However, the LP 

formulation often involves a large number of variables and 

conditions, and such codes based on the simplex method are 

not efficient enough in many cases. It is therefore 

desirable to develop efficient network theoretic algorithms 

[LOMO 85]. 

    Efficient graph theoretic algorithms are known only for 

very limited classes of undirected networks [HU 69, 

OKAM 81, OKAM 83, TANG 64]. This perhaps comes from the 

fact that most of the properties useful for developing 

efficient algorithms for the single commodity flow problem 

such as the unimodularity and the max-flow min-cut property 

can not be directly generalized to the multicommodity flow 

problem, except for some special cases [FORD 62]. 
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    In an  undirected network with K=2 commodities, the max-

flow min-cut theorem still holds [HU 69] and a polynomial 

time graph theoretic algorithm is known. Okamura and 

Seymour [OKAM 81, OKAM 83] have shown that if all sources 

and sinks are placed only on the boundary of the outer face 

of a given planar undirected graph, the max-flow min-cut 

theorem holds for general K. It is known that the minimum 

cut in a planar network can be obtained by computing the 

shortest path in the dual network [HASS 81]. Based on these 

properties, [MATS 85, SUZU 85] developed an efficient 

algorithm to check its feasibility. The max-flow min-cut 

theorem is extended for the multicommodity flow in general 

undirected networks [IRI 70, ONAG 71]. Unfortunately, this 

extension involves infinite number of conditions. 

     Contrary to the above results, the max-flow min-cut 

theorem does not hold for the multicommodity flow problem 

even with K=2 for directed networks [KENN 78]. 

Accordingly, not many tractable classes have been known for 

directed networks in the sence of efficient graph theoretic 

algorithms. An exception is [DIAZ 72], in which a planar 

directed network is considered under the assumption that all 

sources are on the left side of the boundary while all sinks 
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are on the 

commodities of 

appear in the

right side, 

 sources and 

same order.

and 

the

 furthermore the 

order of commodities

order of 

of sinks
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1.4 OUTLINE OF THE THESIS 

     In this thesis, we concentrate on the multicommodity 

flow problem in a directed network. In Chapter 2, we 

describe basic properties of a directed network, and present 

notations and definitions necessary for the subsequent 

discussion. In Chapter 3, we first introduce class CB 

(capacity balanced networks) of directed planar networks for 

which it is possible to develop a polynomial time graph 

theoretic algorithm. Its running time is  0(KIVI) for a CB 

network with K commodities and 'VI nodes. It can also be 

shown that the integral flow property holds for CB. In 

Chapter 4, we generalize class CB to class CS (capacity 

semi-balanced networks), and show that CS can be reduced to 

CB by an 0(1V1) time algorithm. Therefore, CS also has a 

polynomial time graph theoretic algorithm and the integral 

flow property. In Chapter 5, we introduce class CU 

(capacity semi-balanced unilateral networks) as another 

class that is reducible to CB, and developed an 0(1V13) time 

algorithm. These classes CS and CU contain certain multi-

item multi-stage production scheduling problem [IBAR 82] as 

a special case, indicating their importance in practical 

applications. In Chapter 6, we show that the max-flow min-

cut theorem holds for classes CB and CS. For this purpose, 
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we develop an  0(KIVI) time algorithm for finding the minimum 

cut not satisfying the cut-condition if the network is 

infeasible. In Chapter 7, based on the max-flow min-cut 

property for classes CB and CS, we present an 

0(S(IVI)+IVBIT(IVI)) time algorithm for testing feasibility 

of a problem in CB and CU, where T(IVI) is the time required 

to obtain the shortest path tree in a planar network with 

IVI nodes and SOVI) is its preprocessing time. This 

algorithm is faster than the one developed in Chapters 3 and 

4, when the number of commodities K is large. In 

Chapter 8, we study the nonlinear multicommodity flow 

problem that minimizes a strictly convex cost function. 

Each arc in the network can have lower and upper capacities 

on individual commodities and on the sum of commodities. By 

making use of its dual, we formulate the problem as a 

nonlinear unconstrained optimization problem and propose 

relaxation methods of various types. Some computational 

results are also included for various problem instances.
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 CHAPTER 2 

PROPERTIES OF DIRECTED PLANAR NETWORKS

2.1 INTRODUCTION 

    In this chaper, we describe the basic properties of a 

directed (planar) network and present notations and 

definitions necessary for the subsequent discussion in which 

graph theoretic algorithms are constructed. See [BERG 73] 

as to other basic terminology in graph theory. 

2.2 DEFINITIONS FOR A DIRECTED GRAPH 

    A node is called a divergent node if it has no entering 

arc, a convergent node if it has no outgoing arc. When we 

discuss the connectivity of a graph G, we consider the 

undirected graph resulting by disregarding the orientation 

of every arc in A. We define for a pair of sets of nodes X 

and Y with X n Y=O, 

A(X;Y)=[a(x,y)Ix E X and y E Y), 

A 

       in paticular A(X)=A(X;V-X). 

A set of arcs C A is called a cut if it is given as 

C={a(x,y)EAI xEX and yEV-X or xEV-X and yEX) 

(=A(X) U A(V-X)) for some X such that XXO and XAV. A cut C 

is simple if it does not properly contain any other cut.
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Fig. 2.1 Arcs a and b are immediate neighbours each other.

x

2(x)

(x)

 OUT1(x)

Fig. 2.2 Definition of INi(x) and OUTi (x).
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Thus removing all arcs in a simple cut C decomposes a 

connected graph  G into exactly two components. A set of 

nodes X  E V is called divergent if there is no arc from V-X 

to X. Similarly X is called convergent if there is no arc 

from X to V-X. A cut A(X) is called unilateral if X and V-X 

are divergent and convergent, respectively. A set of nodes 

X is called connected if the subgraph induced by X is 

connected. 

   Let H(x,y) denote the set of all directed paths from x 

to y. For a 7E H(x,y), V(7) denotes the set of nodes in 

7, and A(7) denotes the set of arcs in 7. We say that a 

node y is reachable from a node x (i.e., x is reachable to 

y) if H(x,y)AO. If a directed path from x to y and arc 

a(y,x) exist for some nodes x and y, they consists closed 

directed path which is called a directed cycle. A directed 

path (cycle) without repeated nodes is called simple. 

    Here we consider a planar directed graph G. In 

subsequent discussion, G is embeded in the plane and we fix 

it. In G, a cycle which is obtained by ignoring the arc 

orientation, divides the plane into two areas. A window of 

G is a simple cycle in G such that one of the resulting two 

areas contains no arc of G. The boundary B of G is clearly 

a window. Arcs a,b E IN(x) U OUT(x), are called immediate  
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clockwise

 .  .  .  a
i-1

W i+1

Fig. 2.3 Definition of unilateral chain circuit.

OUTi -1(x) 

• 

      IN 

• x 

•

OUT . (x)

(x)

vi -1 

 • • x0 

'v 

i

WV

 WU

 i-i 

i

Fig. 2.4 Proof of Lemma 2.5.
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neighbours if both a and b are contained in a window which 

is not the boundary. See Figure 2.1. For each node x, we 

 partition  IN(x)  and  OUT(x)  into  INi(x) and OUT.(x) 

respectively as follows. Each of the INi(x)=(a0,a1,...,a m}, 

i=1,2,...,ix, is a maximal subset of IN(x) with the property 

that ak _l,ak E INi(x) iff ak_1 and ak are immediate 

neighbours for k=1,2,...,m. Similarly for OUT.(x), 

j=1,...,jx. See Figure 2.2. 

     A sequence [al,a2,..., am] of arcs is cutting, if each 

pair of ai and ai+l (1=1,...,m-1) is contained in a window 

Wi, and all Wi's are distinct. Note that one of the windows 

Wi's may be the boundary B. A cutting sequence [al, 

a2,..., am] is called a cutting circuit, if am and al are 

contained in a window Wm, and all Wi (i=1,...,m) are 

distinct. A cutting sequence [al, a2,..., am] is called 

unilateral, if the direction of each arc ai (1=1,...,m-1) is 

the same as that of window Wi when we go round Wi in the 

clockwise manner. See Figure.2.3. The above definitions 

are easily understandable in terms of the directed dual 

graph G =(V ,A) corresponding to G. Each node vi EV 

corresponds to window Wi in G (boundary B corresponds to 

vB), and every arc ak EA corresponds to exactly one arc 

ak=a(vi,vj) such that the two distinct windows Wi and Wj 
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corresponding to  vi and  vi have common arc ak in G and the 
direction of ak is the same as that of window Wi when we go 

round W. in the clockwise manner (counterclockwisely if W. 

is the boundary). Then cutting sequences and cutting 

circuits in G correspond simple paths and simple ciruits 

                                    * 
(neglecting the orientations)in G respectively. It is 

also clear from definition that if a cutting sequence and a 

cutting circuit are unilateral, they correspond to a simple 

directed path and a simple directed circuit in G* 

respectively.
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2.3 ASSUMPTION A AND SOME LEMMAS 

    The following Assumption A is important, because all 

classes CB, CS and CU discussed in Chapters  5-8 satisfy this 

assumption. we show some properties of a graph G satisfying 

Assumption A. 

Assumption A: (1) G=(V,A) is planar, acyclic (i.e., has no 

directed circuit). G has no articulation points (i.e., G is 

2-connected), where a node is called an articulation point 

if the number of components in G increases at least by one 

after deleting the node. Furthermore, we fix a drawing of G 

in the plane, and define 

      B: the boundary of the outer face of G, 

      VB: the set of nodes in B , 

       AB: the set of arcs whose both end-nodes are in VB. 

     (2) Any divergent or convergent node belongs to VB. 

     (3) T c VB. (Recall that sink nodes are not necessarily 

convergent. The subsequent discussion can be easily 

modified for the case in which condition (3) is changed to 

S c VB. We assume this (3) for simplicity.) ^ 

Lemma 2.1 If II(x,y) = 0 for nodes x and y in G, then 

there are two connected node sets X-, X+ E V such that 

x €X-, y EX+, X- u X+= V, X- n X+ =0, X- is convergent and 
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 X+ is divergent. 

Proof. Let XT be the set of all nodes (including x) 

reachable from x (i.e., XT is the node set of maximal 

directed tree T with root x). This XT does not include y, 

and the direction of every arc between XT and V-XT is 

from V-XT to XT. Remove the subgraph spanned by XT-

together with these arcs from V-XT to XT , and we obtain 

connected components Xk,k=1,2,...,p each of which is 

divergent. Clearly each Xk is connected to XT (since G is 

connected) and there are no arcs between Xk and Xi(' with 

k#k'. Name the component Xk containing y by X+, and let 

X-=V-X+. This X- is therefore connected and convergent. 

Consequently X+ and X- satisfy the lemma's statement. ^ 

Lemma 2.2 In a planar graph G, a set of arcs 

(al,a2,...,am)S A is a simple cut if and only if there is a 

cutting circuit [ail,ai2,...,aim] such that 

{ail'ai2'" ''aim}=(al,a2,...,am}, Further, a cutting 

circuit [ail'ai2, "''aim] is unilateral if and only if the 

corresponding simple cut {al,a2,...,am) is unilateral. 

Proof. Let G* be the directed gragh dual to G. 

Obviously a simple cut {a1,a2,...,am) in G corresponds a 

simple cycle (disregarding arc orientation) in G*. The
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lemma follows from the above discussion, because a simple 

cycle in G* corresponds to a cutting circuit in G. 

Unilaterality is clear from definition.  ^ 

Lemma 2.3 Assume that G satisfies Assumption A (1) and 

(2). If a set of nodes X in G is divergent or convergent, 

then X n VBO. 

    Proof. Assume that X is divergent. X contains at 

least one divergent node x0, otherwise a directed cycle 

exists in X. Therefore, by (2) of Assumption A, X n VB AO 

follows. The case of a convergent X is similar. ^ 

Lemma 2.4 Assume that G satisfies Assumption A (1) and (2). 

Every unilateral cutting circuit C contains exactly two 

arcs in AB. 

     Proof. By lemma 2.2, C divides V into a connected 

divergent X set and a connected convergent set V-X. By 

Lemma 2.3, X nVBA and (V-X)nVBo. Therefore, C=[al,a2,..., 

am] has ai and ai+1, where window Wi containing ai and ai+1 

is the window of the boundary. Since all window Wi, 

i=1,2,...,m are distinct in cutting circuit C, any other 

arcs a., j4i,i+1 are not in AB. ^
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Lemma 2.5 Corresponding to arc sets  INi(x) (i=1,...,ix), 

and OUT.(x) (j=1,...,jx) of a node x in G, there is a 

partition of V into Xi+ (i=1,...,ix), Xj- (j=1,...,jx) and 

X0 = {x) such that allXi+are connected divergent sets, and 

all Xj- are connected convergent sets. The set of the 

terminal nodes of arcs in OUT.(x) (the set of the initial 

nodesofarcsinINi(x))iscontainedinXj-(Xi+). 

     Proof. From the definition of ix and jx, we have ix=jx 

if (a) x q' VB or (b) xE VB, a(zl,x), a(x,z2)E AB for some 

zl,z2 E VB. We have ix=jx+1 (or ix=jx-1) if X E VB and 

a(zl,x), a(z2,x)E AB (or a(x,zl), a(x,z2)E AB) for some 

z14z2. We shall consider only the case of x ' VB, since 

the other case can be treated in a similar manner. Replace 

node x by the set of node x0, ui (i=1,...,ix) and vi 

(i=1,...,ix), and make ui the terminal node of the arcs in 

INi(x), and vi the initial node of the arcs in OUTi(x). 

We then add arcs a(ui,x0) (i=1,...,ix) and a(x0,vi) 
A A A 

(1=1,...,ix). LetG=(V,A) be the obtained graph (see 

Figure 2.4), which still satisfies Assumption A. Now 

there exists a cutting circuit [a(ul,x0),a(x0,v1),..., 

a(u1,XO),a(XO,v1),•••s a(uix,x0), a(x0,vix)], where we 

denote the window containing a(ui,x0) and a(x0,vi) by WUi
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and the window containing  a(x0,vi) and a(ui+1,x0) by WVi 

(with the convention ix+1=1). By lI(x0,ui)=0 (by the 

acyclicity of G) and Lemma 2.1, there exists for each i a 

divergent set Xi' containing all y such that a(y,ui)E A. 

Let A(Xi+) be the arcs between Xi+ and V-Xi+. We show that 

these A(Xi+), i=1,2,...,ix are disjoint as shown in 

Figure 2.5 (as the result, it follows that X1, 

are disjoint). By (2) of Assumption 2.1, there exist for 

each i a node wi E VB and a path TTi+E 1I (wi , x0) with 

a(ui,x0)E A( 7i+) (similarly a node w'i EVB and a path Tri-

E 11(x0,w'i) with a(x0,vi)E A( ii-)).Clearly, by the 

acyclicity of G, each 7i- (i=1,2,...,ix) are node disjoint 

to any of 7i+ (i=1,2,...,i x) except node x0. Since each 
itis contained in the area bordered by 71_1- and 'Ri- 

(with the convention that i-1=ix for i=1), and A(Xi+) does 

not contain any arcs of paths 71_1- or iri- (by the 

divergency of Xi), all A(Xi+),i=1,2,...,ix have no common 

arc and all are are node disjoint. 

    Note that each V-Xi is connected (from Lemma 2.1 and 
                                         A. 

construction of X1), then we have unilateral cutting 

circuits [al,...,am] and [bl,...,bn] such that A(Xi+) = 

{a1,...,aln}, A(Xi+1+) = (b1,...,bn) and al,am,bl,bn E AB 

(=AB) (by Lemma 2.4). Recall that ap=a(ui,x0) E A(Xi+) 
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and  bq=a(ui+1'xO)E  A(Xi+1+) for some p and q. We can assume 

that window WUi contains a(x0,vi),ap and ap_1, andWVi 

contains a(x0,vi),bq and bq+1' without loss of 

generality. Here, no window contains ai'ai+1(i+1<p-1) and 

bj,bj+1(j<q+1). Otherwise, 

[ai+1'ai+2'...,ap-1'a(xo'vi)'bq+1'bq+2'..''bj] 

                                          * corresponds a directed cycle in graph G dual to G, and a 

simple directed cycle contained in this directed cycle 

A corresponds a unilateral cutting circiut inG. However, 

since this unilateral cutting circuit does not contain arc 

(al,bn) in the boundary, this contradicts Lemma 2.3. 

Therefore, 

[al,a2,...'ap-1'a(xo'vi)'bq+1'bq+2~...:bn] 

is a unilateral cutting circuit. Apply Lemma 2.2 to this 

cutting circuit, and denote the component containing vi 

by Xi- as shown in Figure 2.6. In this way, the node set 

A of G is partitioned into {x0), connected divergent sets 

 + (i=1 ,...,ix) and connected convergent sets Xi- Xi 

(1=1,...,ix). 

    Finally it is easy to see that this partition of G 

gives the stated partition of G, i.e., let Xi+=Xi+-{ui} and 
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Xi-.Xi_-(vi). Each of the resulting  Xi' (Xi-) is connected 

because if some Xi' (Xi-) becomes unconnected by deleting ui 

(vi) then G becomes unconnected by deleting x0, 

contradicting the 2-connectivity of G. Therefore the 

resulting family of node sets is the partition of G. ^ 

Lemma 2.6 In a graph satisfying (1) and (2) of Assumption A, 

let G" be the graph obtained by shrinking X+ (or V-X+) into 

node x0 for any unilateral simple cut A(X+). Then 

  (i) G" still satisfies (1) and (2) of Assumption A. 

  (ii) For any nodes x,y (4x0) in G", 1I(x,y)4 in G 

implies 1I(x,y)40 in G". 

  (iii) Any simple cut in G" is a simple cut in G. 

     Proof. We consider the case X+ is shrunken into node 

x0 (similarly for V-X-). First we show (1). The planarity 

of G is obvious. If G" has a directed cycle C, then C does 

not contain any arc incident to divergent node x0 and 

therefore the C exists in G. By the acyclicity of G, this 

means that G" is acyclic, a contradiction. The 2-

connectivity of G" is shown as follows. G is clearly 

connected. Then if G" is not 2-connected, then G" has an 

articulation point z. By the 2-connectivity of G, there 

exist two node-disjoint undirected paths pl,p2 between any
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two nodes x,y  V X+. Since there still exist two node-

disjont undirected paths between x and y if one of  pl and p2 

contain no node in X+, z=x0 must hold. However, by 

definition, A(X+) is a uniulateral simple cut, and therefore 

the resulting graph obtained by removing x0 from G" is 

connected. This contradicts that x0 is an articulation 

point. 

    Next for any x,y q' X+, there is no path 7 e ll (x,y) 

through X+ or x0 in G or G", respectively. Therefore we 

obtain (ii). (iii) is also obvious from the definition of 

G". ^
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2.4 CUT CONDITION AND UNILATERAL CUT 

     For two sets of nodes X and Y with X  n  Y=0 in 

N=(G,P,g,c), we define 

c(X;YA E c(a), in particular c(X)Lc(X;V-X). 
            a E A(X;Y) 

K(X;Y)!(kiskEX,tkEY}, in paticular K(X)=K(X;V-X), 

           4 

      g(X;Y). E gk, in particular g(X).g(X;V-X), 
k E K(X; Y) 

r(X;Y)A c(X;Y) - g(X;Y), in particular r(X)Ar(X;V-X). 

     Here the cut-condition for the multicommodity flow 

problem: 

r(X)>0 for all X c V(2.1) 

is cleary a necessary condition for a network to be 

feasible. In general, however, the cut-condition is not 

sufficient to guarantee the feasibility of the 

multicommodity flow problem. If the cut-condition is a 

sufficient condition for a network in some class to be 

feasible, we call the max-flow min-cut theorem holds for the 

class (or the class has the max-flow min-cut property). 

    If a network N=(G,P,g,c) satisfying Assumption A has a 

pair (skl,tkl) EP with II(skltkl)=w  then N is clearly 

infeasible (by assumption gk>0). In this case, Lemma 2.1 

                        33



 1

 X

 X

Fig. 2.7 Proof of Lemma 2.7.
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implies that N has a connected convergent set  X- and a 

connected divergent set V-X- such that skl EX- and 

tkl E V-X-. Then 

r(X) = c(X)-g(X) _ -g(X) < -gkl<0 

holds, i.e., A(V-X-) is a unilateral simple cut not 

satisfying the cut-condition. Therefore, the max-flow min-

cut theorem holds. 

     Based on this, we concentrate in the subsequent 

discussion on a network that satisfies the following 

Assumption B. 

Assumption B:II(sk,tk)Q1for every (sk,tk) EP. ^ 

     Now we introduce the following capacity balance 

function Ac(x) and Assumption C. 

Ac(x) = E c(a) + E gk - E c(b) - E gk. 

           a € OUT (x) tk=x b E IN(x) sk=x 

Assumption C: Ac(x)=0 for every node x EV. ^ 

    Under this assumption, the following lemma tells that 

any unilateral cut A(X+) satisfies the cut-condition (2.1).
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Lemma 2.7 In a network N, 

 y  EXAc(y)= r(X)-r(V-X) for X EV. 

    Proof. For  X=(x), 

r(X)= E c(a)- E gk and r(V-X)= E c(a) - E gk 

  a E OUT(x) sk=xa EIN(x) tk=x 

hold, i.e., r(X)-r(V-X)= Ac(x) satisfying the lemma's 

statement. Now, we show that X'=X u(x) satisfies r(X')-

r(V-X')= I Ac(y) for any x EV-X, if r(X)-r(V-X)= I Ac(y) 
yEX'yEX 

for some X. See Figure 2.7. 

c(X')=c(X;V-X')+c({x};V-X') 

=c(X)-c(X;{x})+c({x);V-X'). 

c(V-X')=c(V-X';X)+c(V-X';(x)) 

=c(V-X)-c((x);X)+c(V-X'+{x)). 

Hence, 

c(X')-c(V-X')=c(X)-c(V-X)+ E c(a) - E c(a). 
                         a OUT(X) a IN(x) 

Similarly we have 

g(X')-g(V-X')=g(X)-g(V-X)+ kI gk -kgk. 
                   t=x s =x 

Then 

r(X')-r(V-X')=c(X')-c(V-X')-g(X')+g(V-X') 

                 = r(X)-r(V-X)+ Ac(x) 

holds. Therefore by induction, we obtain r(X)-r(V-X)= 
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 E Ac(y) for any  X  E  V. ^ 
yEX 

    By this lemma, if N satisfies Assumption C, then r(X)-

r(V-X)=0 for all XS- V. 

Lemma 2.8 If a network satisfies Assumption B and C, then 

any divergent set X+ (unilateral cut A(X+)) satisfies 

r(X+)=r(V-X+)=0 (i.e., satisfying the cut condition (2.1)). 

    Proof. Take a unilateral cut A(X+) with r(X+)<0. By 

Lemma 2.7 and Assumption C, r(X+)=r(V-X+), and then r(X+)<0 

implies r(V-X+)<0. From divergency of X+, c(V-X+)=0. 

Hence 

r(V-X+)=c(V-X+)-g(V-X+)=-g(V-X+)<0 

holds, and this means K(V-X+)40. For k E K(V-X+), however 

II(sk,tk)=10 from convergency of V-X+. This contradicts 

Assumption B, and we obtain r(X+)>0. Here assume r(X+)>0, 

then we have g(V-X+)<0 in the same manner. This contradicts 

the assumption gk>0. Therefore we obtain r(X+)=r(V-X+)=0. 

0
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                    CHAPTER 3 

            ALGORITHM ASSIGN FOR TESTING 

            FEASIBILITY OF A  CB NETWORK 

3.1 INTRODUCTION 

     In this chapter, we introduce class CB (capacity 

balanced networks) of directed planar networks for which it 

is possible to develop a polynomial time graph theoretic 

algorithm. Its running time is 0(KIVI) for a CB network 

with K commodities and IV' nodes. It is also be shown that 

integral flow property holds for CB, i.e., an integral 

feasible flow exists if the network is feasible and 

capacities of arcs are all integers [NAGA 87a].
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3.2 CAPACITY  BALANCED NETWORKS 

    A network N=(G,P,g,c) is called capacity balanced if it 

satisfies Assumption A and C, and the class of capacity 

balanced networks is denoted by CB. 

    In order to present algorithm ASSIGN that tests the 

feasiblity of the multicommodity flow problem of (1.5) and 

(1.6) for a capacity balanced network N=(G,P,g,c), we 

prepare the following notations. 

    By the acyclicity of G, the level of each node x can be 

defined as follows.

level (x)A 

    For each  OUTS 

sequence [a1,a2,...,l 

We define that ai is 

the connected convergent 

Lemma 2.5, we define 

inXj- nVB as follows:

0,if x is a divergent node 

max L( 7r ), where v runs over all 
VX 

v 

divergent nodes such that II (v,x)#O, 

and L(rrvx) is the number of arcs in a 

simple longest path Trvx E II(x,v). 

there is a unilateral cutting 

     ch that OUTj(x)=(ai'i=1,2,...,m). 

s to he left of a for 1<i<j<m. Given 

ergent set Xj- obtained for OUTj(x) by 

e the left-right relation between sinks 

Sink tkl is to the left of sink tk2 
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if we visit tkl before  tk2 

boundary contained in Xj-n 

this case, we also say that 

commodity k2. For kl and k2 

commodity kl is to the left 

smaller than k2.

when we go round the part 

VB in the clockwise manner. 

commodity kl is to the left 

with tkl = tk2, we define 

of commodity k2, if index kl

 of 

 In 

 of 

that 

 is
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3.3 ALGORITHM ASSIGN 

    We first describe the outline of algorithm ASSIGN. 

Clearly, a network not satisfying Assumption B is 

infeasible. ASSIGN chooses nodes x in the nondecreasing 

order of their levels, and, for each of the chosen nodes, it 

determines the flows in the arcs in OUT(x). When a node x 

is chosen, the flows on IN(x) are already known, since the 

flows on OUT(y) of all nodes y with level(y)<level(x) have 

already been determined. For each of  j=1,...,jx, Lemma 2.5 

asserts that there exists a connected convergent set X.- 

correspondingto OUTj(x). Let 

K.(x)Ak 1 tk is reachable from x 

                 via some arcs in OUT.(x)}_ 

Clearly {tklk EK.(x)} VBn Xj-, and all K.(x), 

j=1,2,...,jx, are disjoint. For each j, ASSIGN chooses the 

arcs in OUT.(x) from left to right, and, to each of the 

chosen arcs, assigns the commodities in the left-to-right 

order of their sinks tk, k EK(x). 

    We shall show below after the description of ASSIGN 

that N is feasible if and only if ASSIGN succeeds, i.e., all 

arcs in G are assigned their flows within their capacities. 

In the following, f(a,k) denotes the flow value of commodity 
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k on arc a, and  fxk 

which must go out of 

assignment to all the

denotes the flow 

x. A node x is 

arcs in OUT(x)

 value of commodity k 

called scanned if flow 

has been completed.
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Procedure ASSIGN 

Input: A capacity balanced network N=(G,P,g,c) satisfying 

      Assumption A, B and C. 

Output: Flow values f(a,k) for all  aE  A and k E{1,...,K) (if 

      N is feasible), or an indication of infeasibility. 

0. f(a,k):= 0, fxk:= 0 for all a c A, x E V, k€ {1,...,K). 

   All nodes are "unscanned". Compute INj(x),OUTj(x) and 

K.(x) j=1,...,jx, for all nodes x. 

1. If all nodes are scanned, halt; a feasible flow 

  assignment has been made. Otherwise take an unscanned 

  node x in the minimum level. Let

f k:= x 

  If the 

concluding 

    (T-1) 

    (T-2) 

Otherwise, 

be "scanned"

_ 

a E IN(x) 

          E f(a,k)_gk, if x=tk 
      a c IN(x) 

E f(a,k), otherwise. 
      a E IN(x) 

ollowing (T-1) or (T-2) hold, then halt by 

feasibility. 

T(x)=0 and fX>0 for some k. 

<0 for some k. 

   if OUT(x)=0 and 4=0 for all k, then let x 

   and return to 1. Else if OUT(x)#O and fX>0 
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 for all k, then let 

      Kj:=K3(x)  n(klf>0), j=1,2,...,jx 

       Oj:=OUT.(x), j=1,2,..,jx, 

    and go to 2. 

2. Repeat the following procedure for each j=1,...,jx (in 

 this order): 

     UntilOj=Oand Kj=O holds, take the leftmost aE O. 

     and the leftmost commodity Ice Ki(x) and let 

      f(a,k):=c(a), fxk:=fxk-c(a), Oj:=Oj-[a] if c(a)<fxk, 

      f(a,k):=fxk, c(a):=c(a)-fxk, Kj:= Kj-(k) if c(a)>fxk, 

      f(a,k):=c(a), Oj:=Oj-{a), Kj:= Kj-(k) if c(a)=fxk. 

     Whenever the following case (T-3) occurs, halt by 

     concluding infeasibility. 

      (T-3) Kj40 and 0j=0, or 0j=0 and Kj=O. 

3. (It holds Oj=Kj=fib for j=1,2,...,jx.) If the following 

  (T-4) holds, then halt by concluding infeasibility. 

      (T-4) f(a(x,v),k)>0 and iI(v,tk)AO for some 

          a(x,v) EOUT(x) and k. 

   Otherwise let x be "scanned" and return to 1. ^ 

    Although ASSIGN described in [NAGA 87a] does not 

contain the condition (T-4) terminating the procedure , the 
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validity 

procedure

of (T-4) is 

earlier).

obvious  ((T-4) may terminate the

X

 TT

 ?T

P

q

Fig. 3.1 Proof of Lemma 3.1.
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3.4 CORRECTNESS OF ASSIGN 

     To prove the correctness of algorithm ASSIGN, we first 

prove the following Lemma 3.1. If N has more than one 

feasible solution, call the feasible solution  ff(a,k)I a E 

A, k=1,...,K) with the following property standard: If 

f(a,k)>0 for some arc a e OUTj(x) and kE Kj(x), then 

f(a',k')=0 holds if a' E OUTj(x) is to the right of arc a and 

k E K.(x) is to the left of commodity k. 

Lemma 3.1 If N=(G,P,c) is feasible, there exists a 

standard feasible solution. 

    Proof. We first consider a divergent node x. Clearly 

jx=1 (i.e., OUT1(x)=OUT(x)). Assume that a given feasible 

solution f is not standard on x, i.e., there exist 

b,c EOUT1(x) and p,q EK1(x) such that b is to the left of c , 

p is to the left of q, f(b,q)>0 and f(c,p)>0 (see 

Figure 3.1). Since N is capacity-balanced , all arcs a EA 

are saturated, i.e., 

K 
      c(a)= I f(a,k).. 

            k=1 

Define 

II b(x ,t(1,f) 
0 { TrE II (x,tq) lb E A(Tr), f(a ,q)>0 for all a E A(Tr)) 
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 IIc(x,tp,f) 

..(TrE 11 (x ,tp)lc EA(Tr ), f(a,p)>0 for all a EA(Tr )). 

Obviously these sets are not empty. and any TT bE ]l b(x ,tq,f) 

and 'rr CE li (x , tp, f) have a common node by the planarity of 

N. Let z be the common node nearest to x, and let b 

(Ir c*)  be the part of Tr b( c) from x to z. We assume that 

b and Trc are chosen so that the area surrounded byTrb* and 

c* does not contain in its interrior any node of a path in 

r[ (x,tq,f) uII c(x,tp,f). Then we modify the flows f on Trb'~ 
and Tic* as follows: 

       f'(a,q):=f(a,q)-e, f'(a,p):=f(a,p)+e, for a EA(Trb*), 

f'(a,p):=f(a,p)-e, f'(a,q):=f(a,q)+e, for a EA( Trc*), 

where e=min[min(f(a,q)la EA( Trb )),min(f(a,p)la EA( Trc*))], 

     The resulting flow f' is clearly feasible. Furthermore 

11 (x,tq,f')uIIc(x,tp,f')5IIb(x,tq,f)uHc(x,tp,f)holds, 

since at least one of f'(a,q) (aE A( Trb*)) or f'(a,p) 

(aE A( 7c*)) becomes 0 by the above modification, and no new 

path in 11b(x,tq,f') u llc(x,tp,f') is created as obvious 

from the assumption on Trb and 7c. Therefore after finite 

repetition of such modifications, we obtain a feasible 

solution f for which either llb(x,tq,f')=O or lc(x,tp,f')=f 
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holds. 

    Now if f is not standard on OUT(x), we apply the above 

operation to the nonstandard pair of arcs b,c EOUT(x), which 

is leftmost in the lexicographical sense of (b,c). 

Repeating this, we eventually obtain a feasible flow f that 

is standard on x, because once a pair (b,c) becomes 

standard, it will never become nonstandard again, as easily 

shown. 

    This procedure is then applied to all nodes x in the 

increasing order of their levels. A nondivergent node x may 

have  jx>1, but it is obvious that the above procedure can be 

applied to j=1,2,...,jx separately. Once f becomes standard 

on x, it remains to be standard on x even if the above 

modification is applied to the nodes of larger levels. 

Therefore, we eventually obtain a feasible solution f that 

is standard on all nodes. ^ 

Lemma 3.2 If N=(G,P,g,c) is feasible, the standard feasible 

solution is unique. 

Proof. Assume two distinct standard feasible solutions 

f and f, and take a node x such that f(a,k) = f(a ,k) for 

all k and aE OUT(y) with level(y)<level(x) , but 

f(a',k') # f(a',k') for some a'EOUT(x) and k' . Assume 
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without loss of generality that a' is the leftmost arc in 

 OUT.(x) with this property, and that 

    0< f(a',k')< f(a',k').(3.1) 

To satisfy the capacity constraint of a', there exists a k" 

such that 

    0< f(a',k")< f(a',k").(3.2) 

(3.1) and (3.2) then imply that some arcs b,cE OUTj(x) 

(possibly b=c), located to the right of a', satisfy 

    0< f(b,k')< f(b,k')(3.3) 

    0< f(c,k")< f(c,k").(3.4) 

If k' is to the left of k", (3.2) and (3.3) imply that f is 

not standard, while if k" is to the left of k', (3.1) and 

(3.4) imply that f is not standard. In either case, this 

is a contradiction. ^ 

Lemma 3.3 If a capacity balanced network N=(G,P,g,c) is 

feasible, ASSIGN finds the standard feasible solution. On 

the other hand, if N is infeasible, ASSIGN indicates the 

infeasibility by halting at (T-1), (T-2), (T-3) or (T-4). 
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    Proof. If N is feasible, Lemma 3.1 says that it has 

the standard feasible solution. First, consider a node x 

with  level(x)=0. As easily proved from the order of 

selections of arcs a and commodities k in Step 2 of ASSIGN, 

the flows given to the arcs in OUT(x) by ASSIGN are 

standard, and this is the only way to have standard flows on 

OUT(x) under the condition that all arcs in OUT(x) are 

saturated. Since we assume that N is feasible, and the 

standard feasible flows on OUT(x) are unique by Lemma 3.2, 

ASSIGN realizes on OUT(x) exactly the same flows as the 

standard feasible flows. To use induction, take a node x 

and assume that the flows realized by ASSIGN on OUT(y) of 

all y with level(y)<level(x) are the only ones that is both 

feasible and standard. These flows uniquely determine the 

flows on IN(x). Given the flows on IN(x), it is also easly 

to see that the flows on OUT(x) realized by ASSIGN are the 

only ones that are feasible and standard at x. This shows 

that ASSIGN gives the standard feasible flow if N is 

feasible. 

     Finally we consider the case in which N is infeasible . 

Assume that ASSIGN has scanned all nodes x in N 

successfully, then it is easily seen that the flow realized 

by ASSIGN is feasible since it satisfies the constraints of 
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3.5 TERMINATION CONDITION OF ASSIGN 

     As described in Lemma 3.3, ASSIGN halts only at  (T-1)-

(T-4) when an infeasible network is input. In this section, 

we show that (T-4) always occurs earlier than (T-1)-(T-3). 

That is, (T-4) in Step 3 is sufficient to terminate ASSIGN 

if a given network is infeasible. 

    For a node x and a node set X c V define 

REACH(x)={v E VI 11 (v,x)40) u {x) , 

     OUT(X)= I OUT(x) 
X E X 

Let SCAN(x) denote the set of nodes already scanned when an 

unscanned node x is chosen in Step 1 of ASSIGN (in 

particular x V SCAN(x)). At this instant, all arcs in 

OUT(SCAN(x)) are already assigned flows to their 

capacities. Since ASSIGN chooses each node x in the 

nondecreasing order of level(x), 

     REACH(x) ESCAN(x) u{x) 

always holds. 

    For an infeasible CB network, ASSIGN halts by one of 

(T-1)-(T-4). We have the following properties. 

Lemma 3.4 For an infeasible CB network satisfying 

Assumption B, ASSIGN does not halt by (T-1) or (T-2) .
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    Proof. First assume that  OUT(x)=Q but f0 for some 

k. Since this x is a convergent node, we have x S holds 

by Assumption, and 

     c(x) = E gk - E c(a) = 0 
tk=x a EIN(x) 

holds. As flow values in IN(x) have already been determined 

by ASSIGN, this means 

E f(a,k) = E gk. 
    k a EIN(x)tk=x 

and hence 

      I f X =0 

as obvious from Step 1 of ASSIGN. Therefore, if fX0O for 
some k, fx <0,i.e., (T-2), holds for some k'. 

    Now we assume fx<0 for some k and derive a 

contradiction. By Step 1, 4<0 is possible only if x=tk. 

Also we have 11(sk,tk)40 by Assumption B and 

skE REACH(x)-(x) SCAN(x). By the mechanism of ASSIGN, all 

flows in OUT(SCAN(x)) have already been determined. If 

f(a(u,v),k)>0 for some a(u,v)E A(REACH(x)-{x)), this implies 

lI (v,tk )=¢, and ASSIGN must have halted in Step 3 by (T-4) 

when it has scanned node uE SCAN(x). Therefore commodity 

k from source sk passes through only nodes in REACH(x) and 

reaches sink tk=x. This and flow conservation imply fx=0,

53



contradicting the assumption.  ^ 

    For two nodes x and y such that  II (x,y)#O, we define 

two directed paths from x to y IR(x,y) and 71-L(x,y) as 

follows. 

7R(x,y): Any arc a(u,v)E OUTj(u) in 7R(x,y) satisfies 

          that if an arc a(u,w)E OUTj(u) is to the right 

           of a(u,v), then l(w,y)=0. 

111(x,y): Defined similarly as above by replacing "right" 

            with "left". 

Lemma 3.5 For an infeasible CB network N satisfying 

Assumption B, ASSIGN halts by (T-4). 

    Proof. If ASSIGN does not halt by (T-4), it terminate 

by (T-3) from Lemma 3.4. Assume (T-3) holds at x=x* in 

Step 2 of ASSIGN. From A c(x*)=0, 

   f=c(a)(3.5) 
      kxac OUT(x*) 

holds before Step 2 is performed. First we show j x>2 for 

OUTj(x), j=1,2,...,jx. Since Step 2 is performed only if 

OUT(x*)40, jx*>1 clearly holds. Assume jx*=1. Then the 

condition 01=0 and H140 in (T-3) is impossible. Therefore 

assume 0140 and K1=0. If fx*l>0 for some k1E K1 by H140, 
then fx*2<0 for some k2 by 014 and (3.5). This means that 
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Fig. 3.2 Proof of Lemma 3.5.
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ASSIGN has halted before choosing  x*, a contradiction. 

Therefore, assume fxJ=0 for all kE K1. Then fxJl>0 for some 

kliK1(x*) by (3.5). AsII(x*,tkl)=O,wehave xrskl. At 

this instant, there exists a node v satisfying 

a(v,x*) E IN(x*) and f(a(v,x*),kl)>O, i.e., (T-4) holds. 

Again ASSIGN must have halted before choosing x*, a 

contradiction. Therefore we obtain jx*>2. 

    To prove the lemma, assume that we continue Step 2 of 

ASSIGN for all j=1,2,...,jx* even if some j satisfying (T-3) 

are found. By flow conservation constrained for node x, we 

have some j satisfyingOj=Qand K.00 and other j satisfying 

Oj00 and Kj=0. Assume Oj=0 and K.00 for j=p. See 

Figure 3.2. Since all flows in OUT (x*) have already been 

determined, OUT(x*) is saturated and fx~l>0 for 

k1E K(x ). Here we show that source skl and sink tkl are 

separated by an unilateral simple cut not satisfying the 

cut-condition. Let a(x*,w) and a(x*,z) be the leftmost and 

the rightmost arcs in OUTp(x*), respectively. Further let 

a(w',x*) and a(z',x*) be the arcs next to a(x*,w) and 

a(x*,z) in IN(x*), respectively. (Similar argument holds 

even if a(w',x*) or a(z',x*) does not exist.) By 

Lemma 2.5, there are connected divergent sets Xi, 
i=1,2,..,ix*. Without loss of generality, assume 
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 a(w',x*)E INq(x*) and a(z',x*)E INq+1(x*). Since set Xq is 
divergent, it contains REACH(x*). Let w"E REACH(w') nVB be 

the rightmost node in the part of the boundary contained in 

X.Similarly, let z"E REACH(z') nVB be the leftmost node 

in the part of the boundary contained in Xq+1. We consider 

the undirected path C consisting of T L(w",x*) and 

TT R(z",x). C separates the graph into two parts. Let Z+ 

denote the set consisting of the nodes in C and the nodes in 

the part (divided by C) not containing the end nodes of 

OUT (x*). Further let Z-=V-Z+. By the selection rule of w" 

and z", there is no directed path from a node in Z- to a 

node in C, i.e., Z+ is divergent. As each initial node of 

arc in A(Z+) belongs to path C, we have IA(Z+) nABI=2. Let 

Zi, i=1,2,...,m, denote components of Z. By Lemma 2.4, 

IA(Zi) nABI>2 for i=1,2,...,m. Since no arc exists between 
Zl and Zit (iAi'), i.e., A(Z1) and A(Zit) are disjoint, it 

holds IA(Z+) nABI>2m. Therefore m=1 and Z+ is connected. 

Similarly we may obtain from IA(V-Z-) nABI=IA(Z+) nABI=2 

that Z is connected. 

     Now we consider the cut A(Z+). This is a unilateral 

simple cut as obvious from the connectivity of Z+ and Z. 

Since all initial nodes of arcs in A(Z+) are in path C, 
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they are scanned and flow is already assigned to each arc in 

A(Z+). Here we show, for any  aE A(Z+), that 

f(a,k)>0 then tkE Z-(3.6) 

holds. In the case that aE OUT (x*), we have a connected 

convergent set XP by applying Lemma 2.5 to OUTp(x*). XP 

satisfies {tklk E Kp(x*)} Xp- n VB and further Xp E Z- from its 

convergency. Then {tklkE Kp(x*)} Z- and (3.6) holds for 

aE OUTp(x*) by the assumption O=0. Take a(u,v)E A(Z+)- 

OUT (x*), and assume f(a(u,v),k)>0 with tk ' Z-. Then 

IL(v,tk)=O holds from v EZ-,tk ' Z- and convergency of Z-, 

and this means that ASSIGN halts by (T-4) when node u is 

chosen, contradicting that u is scanned. Therefore we 

obtain (3.6). 

    Now we show that A(Z+) separates (skl,tkl) and does not 

satisfy the cut-condition. Since A(Z+) is saturated, we 

have 

I I f(a,k) = c(a) .(3.7) 
     k a EA(Z+) 

At this instant, flow fxl is not yet assigned to any arc 

from node x*. Since no flow passes through a unilateral 

cut twice, we have the following from (3.6) and the 

definition of fx*l. 

I I f(a ,k) +fkl <g(Z+)•(3.8) 
   k a E A(Z+)x 
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By (3.7) and (3.8), 

 r(Z+)=c(Z+)-g(Z+)<-fxV  <0. 

This shows that a unilateral simple cut A(Z+) does not 

satisfy the cut-condition under the assumption that ASSIGN 

halts by (T-3). This, however, contradicts Lemma 2.8, and 

the lemma is proved. ^ 

    From the above argument, we see that (T-4) in Step 3 is 

sufficient to terminate procedure ASSIGN if a given network 

is infeasible.
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3.6 COMPUTATIONAL COMPLEXITY OF ASSIGN 

    In ASSIGN, all major operations are additions or 

subtractions. This implies that the integral property 

holds for the standard feasible flow realized by ASSIGN, 

i.e., flows f(a,k) are always integer if all capacities c(a) 

are nonnegative integers. 

    The preprocessing to check whether a CB network 

satisfies Assumption B or not requires  0(KIAI) time. The 

computation of Kj(x) in Step 0 of ASSIGN is done by tracing 

all nodes in the decreasing order of levels (i.e., from 

sinks to sources). This is done in 0(KIAI) time. The 

number of operations required in Steps 1 and 2 of ASSIGN for 

each node x is 0(IOUT(x)I+K). Since E IOUT(x)I=IAI, 
XE V 

ASSIGN requires 0(KIAI+KIVI) time in total. Furthermore 

0(IAI) = 0(IVI) holds by the planarity of N, and the time 

becomes 0(KIVI). The required memory space is 0(KIVI) for 

storing the flows in arcs. Consequently we obtain the next 

theorem. 

Theorem 3.1 The integral flow property holds for a capacity 

blanced network N=(G=(V,E),P,g,c) satisfying Assumption B. 

Procedure ASSIGN decides whether N is feasible or not , and 

gives the standard feasible flow if N is feasible. The time 
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and space required by ASSIGN are  0(KjVJ), 0
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Fig. 3.3 Example of a CB network.
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Example 3.1 In Figure 3.3 and Table 3.1, an example of CB 

network with K=7 and its numerical results are given. 

ASSIGN scans the nodes in the order of  xl,x2,...,x9 and 

assigns flows to arcs in the order of al,a2,...,a14. The 

values f(a,k),a E A,k=1,2,...,K, in Table 3.1 are the 

standard feasible flows obtained by ASSIGN and fxkis the 

values observed immediately after Step 1 of ASSIGN. In 

Table 3.1, commodities in { ) of K.(x) are ordered from left 

to right. ^ 

    To compare the computation speeds of the simplex method 

for general linear programming and algorithm ASSIGN, 

[ITO 85] solved randomly generated CB networks. The size of 

problems, L=KIAI, varies from 30 to 60. The computational 

results confirm that ASSIGN works much faster than the 

simplex method. The speed of ASSIGN is roughly 0.009*L2 

times faster than the simplex method.
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Talbe 3.1 Values of KJ.(x) fk  'x and f(a,k).

 x K~(x)

 x1. X3. x4 (3,6,7,2,5,1,4 ,)

X2. x5

(

1,4,3,6,7,2,51

x6 K,(x6)=(1,4),K2( x
6 )=(3,6,7,2,5)

X7 (3,6,7)

XS. xy 0

 Values 0 f {r

 k\xi xi x2 x3 xa x5 x6 X7 xa xy

1 20 20 10 10

2 10 10 10

3 10 10

4 10 10

5 10 10

6 10 10

7 10

 Values of f(a,k)

 k\a a1 a2 a3 a4 a5 a5a, a8 a
9 a10 all alt a13 a14

1 20 10 10 10 10

2 10 10 10

3 10 10

4 10 10

5 10 10

6 10 10

7 10
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3.7 CONCLUSION 

    In this chapter, we introduced the concept of capacity 

balance. Based on it, we defined class CB of multicommodity 

flow problems for class CB in directed networks, and 

presented an efficient graph theoretic algorithm for it. In 

the following chapter, we will discuss an extension of class 

CB to a class of networks with capacity unbalanced nodes.
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                   CHAPTER 4 

             ALGORITHM MATE1 FOR TESTING 

             FEASIBILITY OF A CS  NETWORK 

4.1 INTRODUCTION 

     In this chapter, we introduce class CS (capacity semi-

balanced networks), an extension of CB, and show that a CS 

network can be reduced to a CB network. Therefore, CS also 

has a polynomial time graph theoretic algorithm and the 

integral flow property [NAGA 87a]. This class contains 

certain multi-item multi-stage production scheduling problem 

[IBAR 82] as a special case, indicating its importance in 

practical applications. 

4.2 DEFINITION OF DUMMY FLOW 

    When there is some node x with i c(x)40, algorithm 

ASSIGN does not work correctly. To handle such nodes, we 

first remove all capacity unbalanced nodes by supplying a 

flow of the new commodity d to each unbalanced node, the 

amount of which is equal to the residue of capacity. This 

defines the multicommodity flow problem with K+1 

commodoties (i.e., k=1,...,K,d) by_adding sources and sinks 

of commodity d to the capacity unbalanced nodes in N. 
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Definition 4.1 For a network N, we call the following flows 

of new commodity d, dummy flows. If Ac(x) > 0, then we put a 

dummy source  sX at node x (i.e., sX = x), and let 

gx= Ac(x)>0 denote the supply amount of sx. Similarly if 
Ac(x) < 0, then we put a dummy sink tX at node x, and let 

gx = - Ac(x) > 0. Let 
    gd: the set of gx. 

    Sd: the set of all sx's. Td: the set of all tx's 

pd:= (Sd,Td), Nd:= (G,P,Pd,g,gd,c)• 

    The flows of d in N also satisfy constraints (1.5) and 

(1.6). ^ 

Lemma 4.1 The multicommodity flow problem in Nd with 

commodities k=1,...,K,d is feasible if and only if the 

original problem in N with commodities k=1,. ..,K is 

feasible. 

    Proof. Obvious from (1.5),(1.6) and Definition 4 .1. ^ 

    It is obvious that the capacity constraint is satisfied 

only if 

                f(a,k) = c(a) 
         k=1,...,K,d 

holds. In other words, Ac(x) = 0 holds for all X V in 
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the resulting network Nd. Note that  commmodity d may have 

more than one source and/or one sink, and (3) of 

Assumption A does not generally hold. 

    If a feasible solution f to Nd has a positive e such 

that f(a,d) > e (>0), a EA(Tr ), for some TrEn(s$,td),then 
this flow from sX to td may be regarded as the flow of a new 
K+1—th commodity. If all dummy flows can be decomposed 

into new commodities by repeating this operation, then the 

resulting network becomes CB. The feasibility of the 

resulting network may be tested by ASSIGN. As such a 

reducible class, we consider the following CS (capacity 

semibalanced networks).
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4.3 CS NETWORKS 

Definition 4.2 We call that a multicommodity flow problem 

N=(G,P,g,c) belongs to class CS if N satisfies the following 

conditions. 

    (1) N satisfies (1)-(3) of Assumption A. 

    (2) Let  Sd=(xl A c(x)>0), Td=(xl Ac(x)<O). Then V can 

be divided into two connected sets X and V-X such that 

Sdg X n VB and Td g (V-X)nVB (see Figure 4.1). ^ 

     As an example of CS, we present a certain multi-item 

multi-stage production scheduling problem in Figure 4.2. In 

this network, a slanting arc that advances one stage in each 

period represents the production in the corresponding 

stage. Such an arc is given a capacity with finite value. 

A vertical arc that advances one period represents the 

inventory and its capacity is considered to be infinite. 

From the nodes marked with "s", materials of item k are 

supplied, and finished items k are shipped from the nodes 

marked with "t". Since the source-sink pair of each product 

is specified, this may be reguarded as a multicommodity flow 

problem. This network does not satisfy the condition of 

capacity balance. We can, nevertheless, make all node 

except nodes marked "si' or "t" balanced without loss of 
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feasibility, by replacing (infinite valued) capacities of 

all inventory arcs with some capacities of sufficiently 

large finite values. As a result, a node x with A  c(x)#0 

exists only on the boundary and it is easily shown that a 

node x with A c(x)>0 (A c(x)<0) must be a node marked "s" 

("t"), i.e., (2) of Definition 4.2 holds. Thus the network 

in Figure 4.2 may be considered as CS. 

    In order to construct an algorithm for solving a CS 

network, we shall derive some properties of a network in 

class CS. 

    From the definition of A c(x), any CS network clearly 

satisfies 

gx - I gx = 0. 
     x E Sd x E Td 

We define the left-right relation between nodes in Sd (Td) 

on the basis of (2) of Definition 4.2 as follows: For the 

set X in (2) of Definition 4.2, sxd is to the left of sx2 if 

we visit sxd before sx2 when we go round the boundary of 

the part contained in X nVB in the clockwise manner. 

See Figure 4.1. Similarly we define for Td by using 

(V-X) nVB. In Figure 4.1, t1 is to the left of ty2. 

Lemma 4.2 Let Nd be the network constructed from a CS 

network by Definition 4.2. If Nd is feasible, the 
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rightmost node (say  sX) in Sd and the leftmost node (say ty) 
satisfy the following: ll(4,4)40 and there exist 
Tri ,Tr2 , • • • ,Trm EH($X,ty) and ei (i=1,2,...,m) such that 

E ei = min {gX, gy}, for each arc a E A(Tri), 
i=1 

e• < f(a,d) 
Ida A(Tri) 

      (summation runs over all i satisfying a A(1ri)) 

    Proof. For any feasiblbe solution f to Nd, let 

      lld(x,y).{TrE11(x,y)lf(a,d)>0 for aEA(Tr)). 

For eachsXand ty, there exist some tdETdand sWESd 
satisfying lI(4,td)and 11(44)40. First,4=4or 
sW=sX implies IId(sX,ty)O.On the other hand, if td#tyand 
sWsX,then sincetdis to the right of td and sWis to the 
left of 4, anyTraE TId(s$,tvd)40 and Tr b E IId(sd,td)O 

y have a common node z by the planarity of G.Thus, from 

ll(4,z)40 and 11(z4)40, IId(4,4)40 follows. 
    Here we choose a Tr 1EIId(sd,td)and let                                 •

el=min{f(a,d)laEA(Trl)}. Clearly e1<min{4,41}. If 
el=min{g1,41} then the lemma is shown. If el<min{gX,gy} 
then we consider the network Nd=(G,P,Pd,g,gd,c) defined by
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 c(a):=c(a)-el, a E A(Trl) 

c(a):=c(a), a q A('rrl) 

f(a,d):=f(a,d)-el, a E A(Trl) 

f(a,d):=f(a,d), a ci A(71) 

    -d , d -dd         g
x•=gx-el, gy.=gy el, 

      "d .dwrx ,y•         gw'=gw 

Obviously f is feasible to Nd. Then for 

lId(x,yA{Tr€ll(x,y)lf(a,d)>0 for a EA(Tr)}, 

we getlld(sx,ty) o from min(gX,41}>0 in the same manner 
as above. Now we choose a72e Iid(sd,ty) and repeat the 
same operation. As long as min(gX,gy}>O, this repetition 
can be continued. Since min(gX,gy} must be reduced at 
least by 1 at each iteration. gX or gy must becomes 0 
after m(< °°) iterations, and we obtain 71,72,...,7m and 

el,e2,...,em satisfying the lemma's statement. ^
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4.4 ALGORITHM MATE1 

     For a CS network Nd=(G,P,Pd,g,gd,c) with commodities 

k=1,2,...,K and d, Lemma 4.2 asserts that Nd can be reduced 

to a CB network by applying the following procedure  NEW- 

ITEM($ ,ty) to the the rightmost node sX in Sd and the 
leftmost node td in Td. 

Procedure NEW-ITEM(4, ty) 
 e:= min{sX, ty); 

 sK+1.= sX,tK+1.= tdY,gK+1.= e. 

                                                             ' 

 S:= S u {s/C+1); T:= T u {tK+1); 

 P:= P u (sK+1, tK+1); 

 gx.= gX-e; gy.= gy - e; 
Sd:= Sc - {sxd), if gX = 0; 

 Td:= Td - {tyd}, if gy = 0. ^ 

    By repeating this procedure, a CS network can be 

reduced to a CB network.
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Procedure MATE1 

Input: A CS network  N=(G,P,g,c) satisfying Definition 4 .2, 

       where g={gl,g2,...,gK}. 

Output: A CB network N=(G,P,g,c) that is feasible if and 

       only if so is N, whereg'={g1,g2,,,.,gK,,,,,gK) 

0. Construct the network Nd=(G,P,Pd,g,gd,c) with commodities 

k=1,2,...,K,d according to Definition 4.1. 

1. If Pd=0, then let P:=P K:=K and halt. 

2. Apply procedure NEW-ITEM(sX,ty) to the rightmost node sX 
   in Sd and the leftmost node td in Td. Let K:=K+1 and 

   return to 1. ^ 

    Since iterations of Step 2 in MATE1 is at most ISdl 

+1Td1(<1VBI), the required time of MATE1 is 0(IVBI). The 

number of commodities generated by MATE1 is also 0(1VB1). 

Theorem 4.1 If a CS network N=(G,P,g,c) satisfying 

Definition 4.2 is feasible, then N has a feasible flow with 

integral property. Procedure MATE1 and ASSIGN test its 

feasibility correctly. The time and space required by MATE1 

and ASSIGN are 0((K+1VB1)1V1). 

    Proof. To show the theorem, reduce N to a CB network by 

MATE1 and apply ASSIGN. Because this calculation needs only 

addition and subtraction, the integral flow property holds. 
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The resulting CB network with  0(K+IVBI) commodities clearly 

shows the required time and space of the theorem. ^ 

Example 4.1 We present a CS network in Figure 4.3. Here, 

Sd=(xl,x2,x3), Td=(x7,x8}. Applying MATE1 to this network, 

dummy sources sxl, sx3' sx5 and dummy sinks tx4, tx$ are 

first created by Definition 4.1 (wheregxd=gx3-d_gx5-_gxd7-                                                   d_10                                          l

. and Pd is decomposed into source-sink pairs gx8=20) 

(x5,x7),(x3,x8),(xl,x8) of new commodities. This completes 

the reducton to CB network. The obtained CB network is 

shown in Figure 3.3, and its feasibility can be tested by 

ASSIGN. ^
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Fig. 4.3 Example of a CS network.

77



4.5  CONCLUSION 

    In this chapter, by introducing the concept 

flows, we showed that a network in class CS can be 

to a network in class CB, and develpoed an 

graph theoretic algorithm for CS. Another class 

also reducible to class CB by a similar method 

discussed in the next chapter.

of dummy 

  reduced 

efficient 

that is 

will be
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                   CHAPTER 5 

            ALGORITHM MATE2 FOR TESTING 

            FEASIBILITY OF A CU  NETWORK 

5.1 INTRODUCTION 

    In this chapter, we introduce class CU (capacity semi-

balanced unilateral networks) as another class reducible 

to CB, and develop 0(1V13) time algorithm that reduces CU to 

CB. In the next chapter, it will be shown that the max-flow 

min-cut theorem holds for class CB and CS, but CU does not 

have this property. In this sence, class CU is 

theoretically interesting because it can still be solved 

graph theoretically in polynomial time '[NAGA 87b]. The 

multi-item multi-stage production scheduling problem [IBAR 

82] is also a special case of class CU, and it indicates its 

importance in practical applications. 

     In the subsequent discussion, we solve two examples of 

CU network NA and NB, illustrated in Figure 5.1 and 5.2, 

respectively. The network NB is presented by Kennington 

[KENN 78] as a counterexample to the max-flow min-cut 

theorem.
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5.2 CU NETWORKS 

    We define the unilaterality of a node in a network 

satisfying Assumption A as follows. Consider  INi(x), i=1, 

2,...,ix, and OUTj(x),j=1,2,...,jx defined in Chapter 2. 

Here, a node x is called unilateral if ix<1 and jx<1, and 

semi-unilateral if ix*jx=2. Note that ixAjx occurs only for 

node x in the boundary. In Figure 5.1, node s6 is semi-

unilateral and other nodes are all unilateral. Further, if 

arcs in OUTj(x) are al,a2,...,am (aranged in the clockwise 

manner), we say that ai is to the left of aj for i<j. 

Definition 5.1 Multicommodity flow problem N=(G,P,g,c) 

belongs to class CU if N satisfies the following 

conditions. 

    (1) N satisfies Assumption A. 

     (2) All node in G are unilateral or semi-unilateral. 

    (3) Let Sd={x1a c(x)>0), Td={xIL c(x)<O). Then all 

nodes in Sdu Tdc VB are unilateral. 

    (4) Sdu Tdg VB. ^ 

    For example, NA in Figure 5.1 and NB in Figure 5.2 are 

CU networks. 

    To test the feasiblity of a CU network and to find a 
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feasible flow if the network is feasible, we try to reduce a 

CU network to a CB network. For this purpose, we introduce 

dummy flow according to Definition 4.1. For NA in 

Figure 5.1, we get Sd={sl,t9,s2,s3,s4,s5}, 

 Td=(t4,t5,t7,tl,s7). In Figure 5.1, QO and 40 repersent a 

dummy source and a dummy sink, respectively. 

    By Lemma 4.1, the multicommodity flow problem in Nd= 

(G,P,Pd,g,gd,c), with commodities k=1,...,K,d, is feasible 

if and only if the original problem in N=(G,P,g,c) with 

commodities k=1,...,K is feasible. 

     Note that commmodity d may have more than one source 

and/or one sink, and hence (3) of Assumption A does not 

generally hold. 

   If a feasible solution f to Nd has a positive e such 

that f(a,d)>e(>0), aE ACT ), for some ¶ E 11(4,41‘,then 
this flow from sX to td may be regarded as the flow of a new 

K+1-th commodity. If all dummy flows can be decomposed to 

new commodities by repeating this operation, then the 

resulting network becomes CB. The feasibility of the 

resulting network may be tested by ASSIGN. It will be shown 

that CU (capacity semi-balanced unilateral networks) is also 

such a reducible class. 
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    Here, we introduce a unilateral simple cut. For nodes 

 x,y  E V with II (x,y)=O, let X' be the set of nodes reachable 

from x. Clearly X' may be obtained by computing a maximal 

directed tree with root x. Time required for this 

computaton is 0(JAI). V-X' is composed of connected 

divergent sets Xk,k=1,2,...,m. No arcs exist between 

distinct sets Xk, and some arcs from Xk to X' exist between 

Xk and X'. Let Xk, denote the Xk including y, and X-(x;y) 

denote the connected convergent set V-Xk,. Similarly let X" 

be the set of nodes reachable to y, where l(x,y)=fib. Among 

the components in V-X", let X"k be the connected convergent 

set containing y, and X+(y;x) denote V-X"k. 

     For example, if x=s1,y=s4 in Figure 5.1, then we get 

X'={sl,t4,t9,t5,t2,t7,t1,s6,s7,s8,s9,s10,xl,y' ,z'}, 

X1={s2}, X2={s3}, X3={s4,w'}, X4={s5}, x-(s1;s4)=V-X3 . 

    If y=t7,x=s2 in Figure 5.1, then we have 

      X"={t7s3s4s5s6s7slx'yw's9s10}          ,,,,,,,,',,,, 

X"1={t4,t9,t5,s2,t2,s8}, X"2={t1,z'} 

X+(t7;s2)=V-X"1. 

Lemma 5.1 If a directed graph is connected (neglecting the 

directions of arcs), then for any pair of nodes x,y EV with 

ll(x,y)=Q, the above sets X-(x;y) and X+(y;x) satisfy the 
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following. 

 II  (x,v)#O for all nodes v with a(u,v)E A(V-X-(x;y)). 

II (u,y)O for all nodes u with a(u,v)E A(X+(y;x)). 

Furthermore, A(V-X-(x;y)) and A(X+(y;x)) are unilateral 

simple cuts respectively. 

    Proof. Obvious from the definition of X+(y;x) and 

X (x;y)• ^ 

     In Sections 5.3-5.5, we clarify the properties of CU. 

Then in Section 5.6, we show that CU can be reduced to CB by 

algorithm MATE2.
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5.3 A POLE OF DUMMY FLOWS 

    For two sets of nodes X and Y with  X  Y=0, we define 

   d(X)= Egx - E gy.(5.1) 
SXEX tyEY 

If a network is feasible, the cut-condition: 

r(X)>0for all X EV 

clearly holds. Furthermore, for any connected divergent set 

X, the following condition holds. 

d(X)>0 

    A boundary line refers to an undirected path 

representing a part of the boundary. A boundary line from 

node x to node y refers to the undirected path when we go 

around the boundary from x to y in the clockwise manner. 

Note that SdIJTdc VB holds by Definition 5.1. Then Ndwith 

Sdu Td40 has two nodes x=4z Sd and y=ty ETd, such that no 
other dummy sources and sinks exist in the boundary line 

from x to y (or y to x). We call such (sXty)a 
neighbouring pair. If a neighbouring pair (x,y) satisfies 

II(x,y)40, then (x,y) is called a pole. In Figure 5.1, 

(17)is a pole, and (s5,s7)i s,sis a neighbouring pair (but 

not a pole). 
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Lemma 5.2 If G of  Nd=(G,P,Pd,g,gd,c) is a connected 

(neglecting the directions of arcs) planar directed graph 

and OASd u Td c VB, then a feasible Nd has at least one pole. 

    Proof. Assume that Nd has no pole. From ISdi>1 and 

ITdl>1, there exists a neighbouring pair (x1,y1) with 

xiE Sd, y1E Td. Without loss of generality, we assume that 

there are no dummy sources and sinks in the boundary line 

from x to y. Since II(xl,y1)=0 from the assumption, 

V1=X+(y1;x1) exists by Lemma 5.1, where y1E V1 and xl / Vi. 
From the feasibility of Nd, d(V1)>0 holds, and this means 
Vi n SdAO. Here, let x2 be the node in VI n 5d nearest to yl 
in the boundary line. If there exsits another dummy sink in 

the boundary line from yl to x2, let y2 be the dummy sink 

nearest to x2. Ohterwise, let y2=y1. See Figure 5.3. Here 

(x2,y2) is a neighbouring pair, and ll(x2,y2)=95 holds by 

assumption. ThenV2=X-(x2'y2)exists byLemma 5.1, where 

x2 E V2, y2 / V2. Now we show V2V1 as follows. Assume 
V2-V1A0, then there exists an arc a(u,v)E A(V1) satisfying 
u E V1n V2 and vEV1 -V2 from the divergency of Vi. Apply 
Lemma 5.1 to Vi, and we have ll(u,y1)40 for the above node 
u. This, however, contradicts the convergency of V2 by 
u EV2. Then we get V2-V1=0, and V2Viholds from 

y2 EV1, y2 4 V2. We may define the neighbouring pair
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 (xi,y1) in the same way. This argument cannot be repeated 

indefinitely, however, because V is finite and Vi+1 O Vi 

always holds. This proves the lemma. 0 

    Since the proof of Lemma 5.2 does not need (2) of 

Assumption A, we obtain the following corollary. 

Corollary 5.1 Even if G has divergent and/or convergent 

nodes outside of the boundary in Lemma 5.2, a feasible Nd 

has at least one pole. ^

89



5.4 STRUCTURE OF A CU NETWORK 

    Take two directed paths from x to y,  1 R(x,y) and 

TTL(x,y), defined in Section 3.5. In Figure 5.1, for 

example, we get Tr R(sl,t4):slx'y'}s94.s8t4, and 

Tr L(s4,ty):s4}w yr 3 s9÷ s10-- t7. 

     If four nodes x,y,w,z are located in the boundary 

clockwisely in this order and they satisfy 11(x,304, 

                                                     II (x,z)O, II (w,y)O, II (w,z)O, as illustrated in 

Figure 5.4, then we call these node are 4-reachable. For 

example, s1,t4,s4,t1in Figure 5.1 are 4-reachable. 

Lemma 5.3 In a CU network, if four unilateral nodes x,y,w,z 

are 4-reachable, then TrR(x,y) and TtR(w,z) have no node in 

common. Similarly for TrL(x,z) and TrL(w,y). Let x' be the 

node farthest from x among the nodes common to TrR(x,y) and 

TrL(x,z). We define y',w',z' similarly. See Figure 5.4. 

Then the cycle C (neglecting the directions of arcs) 

consisting of TrR(xy'), TrR(w',z'), Tr L(x',z') and 

TrL(w',y') is a window in G. Furthermore, V can be divided 

into two connected divergent sets X+,W+ and two connected 

convergent sets Y-,Z- satsfying x EX+, y EY-, w EW , zE Z. 

    Proof. Assume that a path Trl E II(x,y) and a path 

72 E ll(w,z) have a common node u. This node u is unique,
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since otherwise a directed cycle exists. Node u satisfies 

 i>2 and j>2 as shown in Figure 5.4 contradicting the 

unilaterality of the graph. Therefore TrR(x,y) and TrR(w,z) 

have no nodes in common (similarly for 7L(x,z) and 

TiL(w,y)). The cycle C (neglecting the directions of arcs) 

consisting of 1R(x',y'), R(w',z'), 7 L(x',z') and 

TrL(w',y') is simple by the selection rule of x',y',w' and 

z'. We show that cycle C is a window in G. If C is not a 

window, then the area surrounded by C contains an arc 

a(u0,v0). This node v0 is reachable to a node ul in VB, 

otherwise the set of nodes reachable from v0 is a connected 

convergent set with no nodes in VB and contradicts 

Lemma 2.3. Similarly u0 is reachable from a node u2 in 

VB. The path from u2 to ul through a(u0,v0) has nodes u'l 

and u'2 that belong to C, by planarity of G. Therefore there 

exists a simple path Tr 0 from u'2 to u'l through a(u0,v0). 

Without loss of generality, we assume that u'2 is in 

7L(x',z') (similarly for the case u'l is in the other path 

except Tr L(x',z')). If u'l is in Tr L(w',y'), then the path 

consisting of Tr L(x,u'2), Tr 0 and Tr L(u'l,y') contains an arc 

located to the right of the first arc in i R(x',y'). This 

contradicts the definition of R(x',y'). 

    Now add a node v0 and four arcs a(x',v0), a(v0,y'), 
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 a(w',v0), a(v0,z') in the area surrounded by C. The 

resulting graph G" still satisfies Assumption A (1) -(3) . By 

Lemma 2.5, V u {v0} is divided into two connected divergent 

sets X+,W+, two connected convergent sets Y- ,Z- and (v0), 

such that x E X+, y E Y-, w E W+, z E Z- . These X+,Y-,W+,Z-

also satisfy the condition of the lemma in G. 0 

     We call the above X+,Y-,W+,Z- a 4-alternating partition  

and call the window C satisfying Lemma 5.3 a partition  

window. Furhter A(X+;Y-) is called a unilateral semi-cut . 

For example, in Figure 5.1, the partition window C is the 

cycle containing x',y',w',z' and the 4-alternating 

partition is given by X+={sl,s7,s6,s5,x'}, 

Y-={t4,t9,t5,s2,t2,s3,t7,s8,s9,s10,y1}, W+={s4,w1} and 

Z-={t1,z'}. 

    A feasible CU network with Sdu Td o has a pole (x,y) by 

Lemma 5.2. Since 1I(x,y)O implies l(y,x)=O, there exists 

a unilateral simple cut A(X+) with x EX+,y EV-X+ by 

Lemma 2.1. If r(X+)=0 for this connected divergent set X+, 

there is no dummy flow from x ESd to y ETd. Similarly, if 

a 4-alternating partition X+,Y-, W+,Z- with x EX+,y€ Y 

exists for a pole (x,y) and furthermore r(X+;Y-)=0 holds, 

then no dummy flow from x to y exists. Here we call a pole 
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not satisfying these conditions a non-trivial pole. 

Namely a non-trivial pole (x,y) satisfies the following 

conditions  (1),(ii). 

    (i) r(X+)>0 for any unilateral simple cut A(X+) with 

x E X+, y E V-X+. 

    (ii) r(X+;Y-)>0 for any 4-alternating partition X+, 

Y-,W+,Z- with x E X+,y E Y-. 

    For the pole (vl,v2) in Figure 5.2, A(X+) with 

X+={vl,v6} is a unilateral simple cut, and vl EX+,v2E V- 

X+,r(X+)=2-(gl+g2)=0. Therefore (vl,v2) is a trivial 

pole. 

Lemma 5.4 If a CU network N=(G,P,g,c) with Sdu TdA0 is 

feasible, then Nd=(G,P,Pd,g,gd,c) has at least one non-

trivial pole. 

Proof. See Appendix. ^ 

    Here we describe an outline of algorithm MATE2 to be 

disccussed in Section 5.6. We first construct the set Q of 

all poles in Nd If Q contains no non-trivial pole, then Nd 

is infeasible. Otherwise, there is a positive some amount e 

of dummy flow from x to y, as will be shown in Section 5.5. 
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pair (x,y) 
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complete the
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and  gK+1_e. As a result of this, (x,y) 

 Q. By repeating this until Q=O holds, 

reduction of CU to CB.

sink 

 is 

  we
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5.5  a -CUT AND  s—CUT 

    In this section, we test whether a pole (xl,y1) is 

trivial or not. We also describe some lemmas necessary for 

determining the amount e(>0) of dummy flow from x to y. 

Without loss of generality, we assume that no other dummy 

source or sink exist in the boundary line from xl to yl. 

When we go around the boundary clockwisely starting from xl, 

we define rank(x1)=0, and rank(z)=i for the i-th node 

zE VB. Further let 

     Td(x1)°={yE TdJ 11(x1,y)40). 

If ITd(x1)1=1 (i.e., Td(x1)=(y1)), then obviously there 

exists a dummy flow of amount gxd from xl to yl. In the 

subsequent discussion, we consider the case q=1Td(x1)I>2. 

Without loss of generality, assume that Td(xl)=1y1,y2,..., 

yq) satisfies rank(y1)<rank(y2)<...<rank(yq), as illustrated 

in Figure 5.5. We further divide V into the following 

sets. 

     VB0 (zE VBIrank(xl)(=0)<rank(z)<rank(yl)), 

4 VBi = (zE VBIrank(y0<rank(z)<rank(yi+1)), 

i=1,2,...,q-1, 

     VBq= (zE VBIrank(yq)<rank(z)).
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Fig. 5.5 Explanation of Definition of VBi,xi and xi.
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In each  VBi, i=1,2,..,q-1, we define the following sets of 

dummy sources. 

Sa a {x E Sd Ix E VBi, Il (x,y1)O} ,(5.2) 

Sdi =° (x EShcx EVBi,1(x,yi+1)#~},(5.3) 

     I ! (i1Sdi4$, 

If SidAO, then let xi denote the node with the maximum rank 

in 5140. If Sd#Q, the let xi denote the node with the 

minimum rank in Y.These are also illustrated in 

Figure 5.5. For example, interpreting pole (sl,t4) as 

(xl,y1) in Figure 5.1, we get y2=t5, y3=t7, y4=t1, y5=s4 

(i.e., q=5), and x1=t9, 7c2=s2, x2=s3, 7c3=x3=s4, 7c4=s5, 

I={1,2,3,4}. 

      Furthermore, we classify VBi, i=1,2,..,q-1, as follows 

Case-1: S4=0. 

    Case-2: SIA0 and 11(x1,7c0O. 
    Case-3: S140, ll(xl,xi)=O and Sd=O. 

    Case-4: S140, ll(x1,x0=0, 440 and ll(xl,xi)O. 
There still remains the case of S140, ll(xl,xi)=¢, Sdi Q and 

ll(xl,xi)=O. In this case, there exists X-(xl;xi) and 

X-(x1;xi). Let 

Vl (V-X-(xl;xi)) u(V-X-(x1;x0)• 

Based on this Vi, we add the following cases. 
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    Case-5: SIAO,11(x1,xi)=O, Sd ~,II(xl,xi)=O and V1=O. 
    Case-6:  S1AO, 11(x107i)=9, 44, 11(xl,xi)=0 and V1o. 
    Now a unilateral simple cut A(X4) satisfying the 

following condition is called a-cut. 

yi+1'yi+2' ...,yq,x1 EXi' yl,y2,..,yi'xiE V-4, and there 
   are no x' E Sd , y' E Td such that x' E VBi n Xl , y' E V-Xi and 

11(x' , y') A0 . 

Here, if r(Xt)=0, then any feasible solution f to Nd has no 

dummy flow from xl to yl by the definition of r, and 

therefore (xl,y1) is a trivial pole. If r(X4)>O, f has the 

amount r(X4) of dummy flow through this a-cut, as obvious 

from the unilateraliy of the cut. 

     In each of Cases-2,4,5, there always exists an a -cut 

as shown in the following lemmas. 

Lemma 5.5 In Case-2, let X1=V-X-64;yi+1)• Then A(X4) is 

an a-cut. 

    Proof. This is illustrated in Figure 5.6. See 

Appendix for details. ^
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Lemma 5.6 
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Appendix for

In Cases-3,4,

 This 

details.

let X1=X+(yi+l'xi)•

is illustrated in Figure
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Lemma 5.7 

Then  A(Xi) is 

Proof. 
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    For example, let  (xl,y1)=(sl,t4) in Figure 5 .1. Then 

Cases-2,5,3 hold for 1=1,2,4, respectively. For 1=1,2,4 we 

obtain 

X7+.=V-X-6(1;y2)=V-{t4,t9), 

4=X+(y3;x2)U (V-X-(x1;x2)) ={sl,x',y',s9,s10,s3,t7, 

s4tls5s6s7z' w'}u{s3} 

      X4=X+(y5;x'4)={sl,s7} 

The a -cuts defined for these sets have the following 

properties. 

           =6-(g4+g8+g9)=3,   r(Xl) 

r(4)=7-(g3+g4+g5+g6+g9)=2, 

r(4)=5-(gl+g7)=3. 

     In Case-6, there may not be any a -cut. However, there 

exists a 4-alternating partition Xl, Y1, Wt, Zi satisfying 

the following conditions. 

       x1 EXi, y1,y2,...,yiE Y1, 

        --i,--i E1 'yl+l E C. • 

    We call such a 4-alternating partition of V Xi, Yi, 

Wt, Zl a P.-partition  for i, and A(Xi;Yj) is called a P.- 

semi-cut for i.
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Lemma 5.8 Case-6 always has a  13-partition for 

    Proof. This is illustrated in Figure 

Appendix for details. ^

i. 
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Fig. 5.9 R - partition for Case-6.
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    Let  (x1,y1)=(sl,t4) in Figure 5.1. Case-6 holds for 

i=3. A method to construct a (3-partition is given in the 

proofs of Lemmas 5.3 and 5.8. According to them, we obtain 

      X3={sl,s7,s6,s5,x'}, 

       {4 9 5 2 2 3 7 8 9 10r        Y3=t,t,t,S,t,S,t,S,S,S,y}, 

W3={s4,w'}, Z3={tl,z'}. 

The resulting f3-semi-cut is as follows. 

A(X3;Y3)={a(s1,t4),a(x',t4),a(x',s8),a(x',y')}, 

r(X3;Yg)=5-(g5+g6+g7)=2.
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5.6 ALGORITHM MATE2 

     In this section, we first describe a method for 

testing the triviality of a pole  (xl,y1) and for computing 

the amount a>0 of dummy flow from xl to yl in case (x1,y1) 

is a non-trivial pole. Using this, we then present 

algorithm MATE2 that determines the assignment of dummy 

flows. 

    By the definition, X-(xi;yi+1), X+(yi+1;xxi) and 

X-(xl;xi) are obtained by computing a maximal directed (or 

reversely directed) tree with an appropriate root. The 

corresponding a -cuts can be computed from these. We 

compute a a -semi-cut defined by a (3-partition Xi, Yi, Wt, 

Zi as follows. We first obtain A(Xt) and compute the 

s-semi-cut from it as follows. Let x' be the node nearest 

to yl among the nodes contained in both 'rrR(xl,yl) and 

7L(xl,yi+1) (in Figure 5.4, for example, we consider x=x1, 

y=y1' z=yi+1, x'=x'). Here X+(x';y1) is a cut A(X4) as its 
4-reachability can be easily shown. X+(x';y1) can be 

obtained by computing a maximal directed tree. Let C be the 

partition window providing the s-partition. There exists an 

arc a with {a}=C nA(X4;YI), which can be computed from 

A( TrR(x1,y1))n A(X1). The (8-semi-cut A(X4;Yj) can then be 

constructed from A(Xt) and the arc a. 
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Lemma 5.9 Let  (xl,y1) be a pole in a CU network Nd. There 

are a or 3-cuts A(Xt) for iE I, such that X1pX~holds for 
every i<j. There a, (3-cuts for all iE I of a given pole 

can be computed in O0V12) time. 

Proof. See Appendix. ^ 

    In fact, pole (xl,y1)=(sl,t4) in Figure 5.1 has a-cuts 

satisfying X4 X3 X2 X1. 

     Let Ai denote the a-cut or (3-semi-cut satisfying 

Lemma 5.9, and let ri be its r-value. 

Lemma 5.10 Take i.j EI such that k j I holds for any k 

with i<k<j. Let ej denote the amount of dummy flow that 

goes out of xl and passes through cut Aj in a feasible 

solution. Then the feasible solution has the amount ei of 

dummy flow that goes out of xl and passes through Ai, where 

ei=min{ej,ri}. 

Proof. See Appendix. ^ 

    For pole (xl,y1)=(sl,t4) in Figure 5.1, let j=4,i=3. 

Then we obtain e4=r4=3, r3=2, e3=min{e4,r3}=2 from 

Lemma 5.10. 

     Since there exists no a-cut or 3-semi-cut for each 

iE(1,2,...,q-1)-I, Ai is undefined for such i. Here, we 
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assume that the r value of such i is infinite (i.e., let 

ri=+oo) for convenience. The amount of any dummy flow from 

 xi to y1 does not clearly exceed the value e determined by 

       e = min fgxl,rq-1'rq-2,...,rl,gy1}. 
The following lemma claims that this amount e of dummy flow 

from x1 to y1 in fact exists. 

Lemma 5.11 For a pole (x1,y1) in a feasible CU network Nd, 

assume q=1Td(x1)1>2, and let 

e = min (gxl,rq-1,r(1-2,...,rl,gy1}-
Then a feasible solution in Nd has the amount e of dummy 

flow from xlto y1. 

    Proof. Apply Lemma 5.10 in the order of i=q-1, 

q-2,...,1. See Appendix for details. ^ 

    For pole (x1,y1)=(sl,t4) in Figure 5.1, we obtain e=4 

from gx1=4, gy1=4, r4=3, r3=2, r2=2, r1=3. 

Lemma 5.12 A pole (x1,y1) in a feasible CU network Nd is 

non-trivial if and only if e>0. 

    Proof. If e=0, it is clearly trivial. If e>0, there 

exists a positive dummy flow from x1 to y1 by Lemma 5.11. 

Therefore conditions (i),(ii) for being a non-trivial pole 

(described prior to Lemma 5.4) are satisfied. ^ 
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    In the following algorithm for reducing a CU network Nd 

to a CB network, we compute the  e of Lemma 5.11 for each 

pole  (xl,y1). If e<0 holds for some pole (xl,y1), then Nd 

is infeasible and we terminate the procedure. If e=0, then 

(x1,y1) is a trivial pole and we remove it from the set of 

poles Q. If e>0, then the amount e of dummy flow from xl to 

yl is replaced by a new commodity K+1 applying the following 

procedure NEWITEM. 

Procedure NEWITFI4(xl,y1,e,K) 

 sK+1:=x1,J-4-1:=y1, gK+1.=e, 

S:=S{sK+l},T:=T u{tK+1}, p:=p u{(sK+1,tK+1)), 

d. d d. d g
x1'=gx1-e, gyl•=gyl-e, 

 Sd:=Sd-{sxd}. if gxd=0• 

Td:=Td-{tyl}, if gy1=0. ̂  

    For pole (xl,y1)=(sl,t4) in Figure 5.1, the 11-th 

commodity with (sll,t11)=(sl,t4), g11=2 is created by 

NEWITEM(s1,t4,2,1O). 

     As a result of this, if there exists an i with e=ri, 

then the updated ri becomes 0. Therefore pole (xl,y1) is 

removed from Q. If e=gx1 (or e=gyd), then xl t Sd (y1 t Td) 

implies that (xl,y1) is not a pole any longer, and it is 
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removed from Q. At this time, it is possible that a new 

neighbouring pair (x',y1) (or  (xl,y'),(x',y')) is 

generated; we add such a pole to Q. From the above 

discussion, we obtain the following algorithm MATE2 in order 

to reduce CU networks to CB networks. 

Procedure MATE2 

Input: CU network N=(G,P,g,c), where gk=(gl,g2...,gK). 

Output: CB network N=(G,P,g,c) that is feasible if and only 

       if so is N, where g`k=(g1g2...,gK,...,gK). 

0. Construct Nd=(G,P,Pd,g,gd,c) with commodities 

k=1,2,...,K,d. and compute the reachiability II (x,y) 

  between every pair of x E Sd and ye Td. The set of all 

  such 1I(x,y) is denoted II(Sd;Td). From II(Sd;Td), 

  compute the set of poles Q in Nd. 

1. If Q=O and Sdu Td#¢, halt by concluding infeasibility. 

  If Q=0 and Sdu Td=O (CB network is obtained), let P:=P, 

  K:=K and halt. 

2. IF Q,O, then choose a pole (xl,y1) in Q and compute 

 Td(x1), q=1Td(x1)1. If q=1, let e:=min{gxi,gyd} and 

  proceed to 3. Ifq2, compute Sd, ST (i=1,2,...,q-1) 
  from II (Sd;Td). Then compute a-cuts or 3-semi-cuts Ai 

  for iE I, as well as thier values ri. Let 
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       e:=min{gxl'rq-1'rq-2,...,rl,gyd}. 
  If  e=0, proceed to 4. If e<0, then halt by concluding 

  infeasibility. 

3. Create a new commodity by calling NEWITEM(x1,y1,e,K). 

4. Q:=Q-{(x1,y1)). If a new neighbouring pair (x',y1) (or 

(xl,y'),(x',y')) is generated, check whether the 

  neighbouring pair is a pole or not by usingll(Sd;Td). 

  Add it to Q if it is a pole. Return to 1. 0 

   The initial cardinality of Q is at most 

min{ISdI,ITdJ)*2 because each dummy sorce (sink) is in VB 

and contained in at most two poles. This cadinality 

decreases by one at Step 4, or does not change when a new 

pole is created in Step 4. If IQI does not change, however, 

the cardinality of Sd u Td decreases at least by one. This 

means that the number of iterations until Q=Q is at most the 

sum of the initial cardinality of Q and 15d uTdI, which is 

0(IVBI). Since the amount e of Lemma 5.11 can be 

determined in 0(IVI2) time for a pole (xl,y1) eQ by 

Lemma 5.9, the time required in one cycle of Steps 1-4 is 

also 0(IVI2). ll(Sd;Td) in Step 0 can be computed in 

0(IVI2) time. Therefore the entire time of MATE2 is bounded 

from above by 0(1V13). The required space is 0(IVI2) which
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is necessary to store  ll(Sd;Td) and other data. Fainally we 

consider the number of new commodities created by MATE2. 

Since the source sink pair of any new commodity is a 

neighbouring pair when it is created by MATE2, no two paths 

from sources to sinks of new commodities cross each other. 

Thus the number of the created commodities is bounded from 

above by IVBI. This proves the following theorem. 

Theorem 5.1 If a CU network N=(G,P,g,c) of Definition 5.1 is 

feasible, then a feasible solution to N satisfies the 

integral flow property. The procedure MATE2 and ASSIGN test 

the feasibility of a CU network correctly. The required 

time and space are 0(KIVI+IV13), 0(KIVI+IVI2) respectively. 

0 

    For the network NA in Figure 5.1, we obtain the initial 

set of poles Q=((s1,t4),(t9,t4),(s2,t5),(s3,t7),(s4,t7). 

(s4,0),(s5,0),(sl,s7)). We illustrate the process of 

MATE2 applied to NA in Table 5.1. New commodities k=11-20 

are created.
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Table 5.1 Application of MATE2 to NA.

Selected
 d d g

xl 'gyl q Case and r1 e New Out from Trivial Pole added

pole for each i item Sd Td pole after to Q

(xl,yl) modifi-

cation

(s1, t4) 4, 4 5 i=1:Case-2, r1=3 K=11
1 (s1,t4)

 (t9, t4) 

(s2, t5) 

(s2, t4) 

(s3, t7) 

(s 1, t7) 

(s4, t7) 

(s4, t1) 

(s 1, t1) 

(s5, ti) 

(s 1, s7)

1, 2 

2, 1 

1, 1 

2, 4 

2, 2

i=2 

i=3 

i=4

1 

2 1=1: 

1 

1 

2 1=1:

Case-5, 

Case-6, 

Case-3,

r2=2 

r3=2 

r4=3

Case-1, r1=+°°

Case-6 , rl :11 
=2 

2

2 

1 

1 

1 

2 

0

K=12 

K=13 

K=14 

K=15

to

s 

s

2 

3

t 

t

5 

4

(sl,t7)

(s2, t4)

(sl , t7)

 X1 

X2 

X3

A(X1+; 

A(X1+; 

A (Xl+)

1=

i=1

Case-6,

Case-3

17 

18

19 

20

Y1 )=(a(s1,t4),a(x',t4),a(x',s8),a(x',y')) 

Y1)=(a(w',y'),a(w',s10),a(s4,t7)) 

=(a(sl,t4),a(sl,x'),a(s7,x'),a(s7,s6)}

(s1 t1)

tl)
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5.7 ON  THE CONDITIONS DEFINING CU NETWORKS 

    If we remove the conditions (3) and (4) of 

Definition 5.1, the network in Figure 5.10 serves as a 

counterexample to the integral flow property. This suggests 

the difficulty to generalize the method discussed in this 

chapter to such networks. 

    For any positive rational number k/n (n and k are 

positive integers such that 1<k<n), we can construct a 

network that has the unique feasible flow with its flow 

value of a commodity being equal to k/n, as shown in 

Figure 5.10. This network has 2n2+4 nodes, 3n2+2n arcs and 

2 commodities, and all capacities of arcs are 1 and gl=k and 

g2=n-k. Furthermore, the network is planar and acyclic, and 

all sources and sinks are located in the boundary, that is, 

Assumption A is satisfied. The feasible solution f of the 

network is given as follows, where only non-zero flows are 

described. 

f(a(sl,uil),1)=k/nfor i=1,2,...,n, 

f(a(vi
n,t1),1)=k/nfor i=1,2,...,n, 

       f(a(uij,vij),1)=k/n for i=1,2,...,n, j=1,2,...,n, 

        f(a(v..,uij+1)~1)=k/n for i=1,2,...,n,j=1,2,...,n-1, 

f(a(s2,u1i),2)=(n-k)/nfor i=1,2,...,n, 

f(a(v
ni,t2),2)=(n-k)/nfor i=1,2,...,n, 
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 f(a(uij,vij),2) 

f(a(vii,u1+1j),

=(n-k)/n for 

2)=(n-k)/n

i=1,2,...,n, 

      for i=

j=1,2,...,n, 

1,2......n-1.

2

S

2
S

Fig. 5.10 A counterexample to integral flow property.
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The uniqueness of the feasible flow is proved as follows. 

Assume the existence of a feasible flow f' through paths 

  1,Tr2'•••,TrpE l(sl,tl), and 71'110i-121 ... Or'q EII(s2t2) 

and nonnegative real values  el,e2, ... ,ep, and 

...,e'q such that 

f'(a,l)= E{elIA(Tri) contains arc a), 

f'(a,2)= E{e'i1A(Tr'i) contains arc a), 

E Ceti' i=1,2,...,q )=n-k. 

Here, let 4={a(uik,vik)Ii=1,2,...,n} and 

A2={a(uki,vki)Ii=1,2,...,n} for k=1,2, ...,n. For any k, if 

we remove the set of arcs Al from the network, then source 
s1 becomes unreachable to sink t1. Therefore, any path Tr 

in ]I (s1 ,t1) satisfies A( Tr ) n AkA0 for k=1,2,...,n, and 
hence IA( Tri)n 41>1 holds for i=1,2,...,p, k=1,2,...,n. 
Similarly we have IA(rr'i) n Ake >1 for i=1,2,...,q, 
k=1,2,...,n. Since the sum of flows of commodity 1 in Ak 
cannot exceed the sum of capacities in 4, properties 

       1 IA( Tri)n Ak~>1, i=1,2,...,p, k=1,2,...,n, gives the 

following, 

n> E IA( Tri) n41ei > Eei = k for k=1,2,...,n. 
   i=1i=1 

Similarly we obtain 
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 n>  q IA(Tr'i) nAle'i > E e'i=n-k for k=1,2,...,n. 
i=11=1 

Since the sum of flows of commodities 1 and 2 in 

                      (= u Ak u u Ai) 
                           k=1 k=1 

does not exceed the sum of capacities of 

{a(uij,vij)1i=1,2,...,n, j=1,2,...,n), we have 

     n2> E EIA( Tri) nAklei+ E E1A( T~') nAk~e'i 
      k=1 1=1k=1 1=1 

p q 
> n E ei + n E e'i = nk + n(n-k) = n2. 

         1=1 1=1 

This implies 

       IA( Tri) n Akl=1 for i=1,2,...,p, k=1,2,...,n, 
IA( T~'i) n41=1 for i=1,2,...,q, k=1,2,...,n. 

Without loss of generality, we can assume p=q=n. In this 

case, 7i,i=1,2,..,n can be written as 

s1 uila vi1 }ui2 ±vi24-...#uin-* vines t1, i=1,2,...,n, 

and Tr'i,i=1,2,..,n can be written as 

s2-r uli- vli} u21-4- ~ vni * t2, i=1,2,...,n. 

Here, since the flow of commodities 1 and 2 in each arc 

a(uli,vli) EAi cannot exceed its capacity 1, we have 

1> e1 + e'i for i=1,2,...,n, 

which then implies
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 n 
       n>  nel + E e'i= nel + n-k. 

                 1=1 

This proves el<k/n. Similarly we get ei<k/n, i=1,2,...,n. 

That is, by E{e1Ii=1,2,...,p}=k, we obtain 

f(a(uij,vij),1)=k/n for i=1,2,...,n, j=1,2,...,n. 

The uniqueness of the values of other flows can be shown 

similarly. This proves that the solution is unique. 

     Lastly we show that the max-flow min-cut theorem does 

not hold for CU networks. The counterexample to the max-

flow min-cut theorem presented by Kennington [KENN 78] is 

shown in Figure 5.2. This network NB happens to be a CU 

network as easily verified. Although this network satisfies 

the cut condition, it is infeasible. In fact, MATE2 and 

ASSIGN reveal its infeasibiliy as follows. MATE2 decomposes 

dummy flows from Sd to Td in NB into new commodities k=3-5 

such that g3=g4=g5=1, (s3,t3)=(v1,v6), (s4,t4)=(v5,v2), 

(s5,t5)=(v3,v4). When ASSIGN is applied to the resulting CB 

network NB, ASSIGN halts at node v5 by concluding 

infeasibility. This infeasibility may be explained as 

follows. The minimum cut to NB is C={al,a2,a3}. By 

removing C, node set V is divided into X={vl,v2,v3} and 

V-X={v4,v5,v6} and 

r(X)=c(X)- E gk=2-(g2+g3+g5)=-1<0
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holds. Thus NB does not satisfy the cut condition. Among 

the commodities 2,3 and 5 that indicate infeasibility here, 

commodities k=3,5 are created from dummy flows by MATE2. 

This cut satisfies the cut-condition (2.1) in the original 

network  NB, 

r(X)=r(X)+g3+g5=-1+2=1>0. 

In other words, testing the cut condition can not find the 

infeasibilty before specifying a one-to-one correspondence 

between all dummy sources and sinks.
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5.8  CONCLUSION 

    Among the known classes of multicommodity flow problems 

in directed networks for which it is possible to develop 

efficient graph theoretic algorithms, the class of CU 

networks possesses a unique characteristic that it does 

not satisfy the max-flow min-cut theorem. It should also be 

noted that class CU does not contain class CS, because CU 

must satisfy the unilaterality property which is not 

imposed on CS. In the next section, we show the max-flow 

min-cut theorem holds for classes CB and CS.
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                  CHAPTER 6 

             MAX—FLOW MIN—CUT THEOREM 

             FOR CLASSES CB AND CS 

6.1 INTRODUCTION 

    In this chapter, we first show that 

cut theorem holds for class CB. For 

 0(KIVI) time algorithm is constructed to 

not satisfying the cut condition for 

network. This result is then extended to 

CU, however, does not have this property 

6.2 MAX—FLOW MIN—CUT PROPERTY 

    Let VB[x,y] denote the set of nodes 

assume x,yE VB[x,y]). If nodes v,zE VB 

                       VB[x,y)

Fig. 6.1

 the max-flow  min-

 this purpose, an 

find a minimum cut 

an infeasible CB 

  class CS. Class 

[NAGA 88a]. 

in B(x,y) (where we 

appear along B(x,y)

Definition 

among the

of left-right relation 

nodes in VB[x,y). 
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in the order of x,v,z,y, then v is to the left of z in 

B(x,y) (see Figure 6.1). Further we introduce notations 

 VB(x,y]=VB[x,y]-(x), VB[x,y)=VB[x,y]-(y), and 

VB(x,y)=VB[x,y]-(x,y). 

It is clear that the cut-condition (2.1) for the 

multicommodity flow problem is nescessary for a network to 

be feasible, as described in Section 2.4. In general, 

however, the cut-condition alone is not sufficient to 

guarantee the feasibility of the multicommodity flow 

problem. For example, the networks in Figure 6.2 and 6.3 

satisfy the cut-condition, but they are infeasible. Note 

that the networks in Figure 6.2 and 6.3 satisfy Assumption C 

(i.e., A c(x)=0 for all xE V) and have the unique source and 

sink for each commodity. Furthermore, the network in Figure 

6.2 is acyclic.
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     If the cut-condition is a sufficient condition that a 

network in some class is feasible, we call the max-flow  min-

cut theorem holds for the class (or the class has the max-

flow min-cut property). In this chapter, we show the 

following theorems. 

Theorem 6.1 The max-flow min-cut theorem holds for class 

CB. ^ 

Theorem 6.2 The max-flow min-cut theorem holds for class 

CS. ^
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6.3 PROPERTIES OF AN INFEASIBLE NETWORK 

     Given an infeasible network N"=(G",P",g",c"), assume 

that ASSIGN halts at node  x* by (T-4) in Step 3 since 

 a(x*,v*)=EOUTp(x*), f(a(x*,v*),k*)>O, II (v*,tk*)=O. Based 

on this information, we now clarify some properties of N" in 

this section. These will be used in the subsequent 

discussion to show that there is a cut which does not 

satisfy the cut-condition. A concrete method to construct 

such a cut will be developed in the next section. 

    Let f denote the flow assigned in N" at the time when 

ASSIGN halts as described above. Clearly f is assigned to 

the arcs in OUT(SCAN(x*))YuOUT(x*). (The flow in OUT(x*) 

is also available because ASSIGN has already passed through 

Step 2 for x*.) Now we define w,z,w',z',w",z",Z+,Z- for x* 

in a manner similar to the proof of Lemma 3.5 as shown in 

Figure 3.2 (we consider 41-=Xq+1 for IN(x*)=IN1(x*)). 

    For simplicity, we transform the CB network N"= 

(G",P",g",c") into the following network. 

Definition 6.1 REACH(x*) is the set of nodes in a maximal 

directed tree with root x* in G"=(V",A"). Obviously 

REACH(x*) is a connected divergent set. The set V"-REACH(x ) 

consists of connected convergent sets Xi, i=1,2,...,q, where 
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Table  6.1 Flows f obtained by ASSIGN for N1

k 1 2 3 4  5 6 7  8 9
^ ^ ^ ^ ^ ^

el 3

e2 4

e3 2

e4 1

e5 1

e6 2

e7 1

e8 1

e9 1 3

e10 1

ell 1

e12 3 1

e13 2 2

 k 1 2 3 4 5 6 7 8 9

e14 1

e15 2

e16 2

e17 1

e18 1 1

e19 2

e20 1

e21 1 1

e22 1

e23 1 1 1

e24 2

 e25 2
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 AA 

some  Xi is equal to Z- (we assume Xq=Z- without loss of 

generality). Let G=(V,A) be the resulting graph obtained by 

                                A shrinking each setX,i=1,2,...,q-1, to node xi, except Z. 

That is, Z+={x1,x2,...,xq _1}u REACH(x*) holds in G. Let 

P=P" and g=g" and c(a)=c"(a) for aE A. We put all sources 

A and sinks contained in Xi on x1, i.e., for i=1,2,...,q-1. 

Let sk=xi (tk=xi) in N if skE Xi (tkE Xi) in N". In 

particular, let P=P-(sk,tk) and gk=0 for each k with 

sk=tk=xi. Let N=(G,P,g,c) denote the resulting network. 

Then N is also a CB network by Lemma 2.6. We may consider 

the case in which flow in OUT(x") has already been assigned 

for some x" before ASSIGN scans x*, where x" is a node in 

Z. Here, obviously x" is not reachable to x* and the 

level of x" should be lower than that of x*. In this case, 

no flow in Z- is necessary to determine the flow in 

OUT(REACH(x*)). For simplicity, therefore, we assume that 

all node in Z- are unscanned. That is, in network N, flow 

in an arc a is not determined (f(a,k)=0) if and only if the 

A initial node of a is in Z-(=Xq). Let (N,f) be the pair of 

the resulting network N and the flow f in N. We define 

K(a)={klf(a,k)>0}, aE A, 

TK(a)={tklf(a,k)>0}, aE A. ^ 
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    For example, apply ASSIGN to the network in 

Figure 6.4. The arcs in each  OUT(yi),i=1,4,11,... are 

assigned flows in the order of el,e2,...,e25. When ASSIGN 

chooses node y8, it halts by concluding infeasibility 

because f(a(y8,y15),5)>0 and 11(y15,t5)=0 hold in Step 3. 

Table 6.1 shows the flows assigned before ASSIGN chooses 

node y8. According to the above definition, we have 

REACH(x*)={yl,Y2,Y3,Y4,Y5,Y6,Y7,Y8}, 

OUTp(x)={e23,e24,e25), 

       x*=y8' v*=y15' k*=5, w"=y2, w'=y3, z"=y5, z'=y6, 

Z+={{Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y17,Y18}, 

Z-={y9,Y10'yll'y12'y13'y14'y15'y16}' 

     V"-REACH(x*)=X1 uX2, 

X1={y17,y18} (XI will be shrunk into node xl), 

X2=Z . 

Lemma 6.1 In (N,f), TK(a(u,v))=0 (i.e., K(a(u,v))=o) holds 

if and only if u qf REACH(x*). 

Proof. Obvious from c(a)>O, a EA and Definition 6.1. 

0 

     By applying Lemma 2.6 to i=1,2,...,q-1 repeatedly, we 

see that Assumption A also holds in G. Furthermore, 

divergent nodes xi, i=1,2,...,q-1, are located on the
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boundary of G. 

    Since ASSIGN halts by (T-4) at  x* in N", we have  v*,k* 

and p for which a(x*,v*)E OUTp(x*), k*E K(a(x*,v*)) and 

II (v*,tk*)=O hold in N. See Figure 6.5. Let X be the set 

of nodes reachable from v*. By applying the same argument 

in the proof of Lemma 2.1 to II (v*,tk*)=Q, we have a 

connected divergent set X+ such that tk*E X+s V-X holds and 

set X---V-X+ is connected. X- contains vO, but not x*. 

Therefore X-s Z. 

    In (N,f), a cut A(X)u A(V-X) dividing V into X and V-X 

is called commodity disjoint if the following conditions 

hold. 

A(X)E OUT(REACH(x*)) (i.e., flow in A(X) has already 

determined.)(6.1) 

K(a)'nK(b)=O for a EA(X) and bE A(V-X). (6.2) 

    TK(a) cV-X for a EA(X).(6.3) 

Let A(X)u A(V-X) be a commodity disjoint cut. Since all 

arcs in A(X) are saturated, we have, 

c(X)= E E f(a,k). 
          k E K(a) a€ A(X) 

From (6.3), 

     g(X)> E E f(a,k) 
          k E K(a) a€ A(X) 

holds, and hence 
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 r(X)=c(X)-g(X)= I I f(a,k)-g(X)<0. 
k E K(a) a EA 

Therefore unless r(X)=0, the cut-condition (2.1) is not 

satisfied. Algorithm FIND-CUT described in the subsequent 

discussion is a procedure to find out such a commodity 

disjoint cut not satisfying the cut-condition. 

Definition 6.2 All devergent nodes reachable to sk* are 

contained in VB[z",w"](=Z+n VB). Let DIV(Z+) denote the set 

of divergent nodes in Z. Let the unilateral simple cut 

A(V-X-) be denoted by (b1,b2,...,bm) as shown in Figure 6.5, 

where A(V-X-)n AB= (b1,bm) and the direction of arc 

b1=a(u,v) is counterclockwise- along the boundary. ^ 

     For example, let x*=y8,v*=y15 in Figure 6.4. Then we 

have X-={y15,y16), b1=a(y11'y15)'b2=a(y14'y15)' b3=e23' 

b4=e8, b5=e7, b6(=bm)=e5, u=1'11, 1'=Y15• 

Lemma 6.2 For a given (N,f), we define k*, Z- and X- as 

described in the above. Then tk*E Z--X- holds, as shown in 

Figure 6.5. 

 k**      Proof . tE V-X-is obviousfromII (v,tk*)=O. Since 

ASSIGN has passed Step 2 when x* is chosen, k*E Hps Kp(x*) 

holds. Note that Kp(x*) is the set of commodities k whose 
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sinks  tk(4x*) are 

such sinks tk are 

implies tk €Z

reachable 

contained

from 

in Z-

x 

by

via OUT (x*). 

divergency of

Therefore 

Z. This

z+

- "\-- \ - 

 R T (x} ) 

4/__

Z

Fig. 6.5 Proof of Lemma 6.2.
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Assumption 6.1 (a) By Lemma 6 .2, we have  tk*E  (Z--X-) nVB. 

The w" and z" defined as above satisfy tk*E VB(w",u) or 

tk*E VB[u,z"), as illustrated in Figure 6.5. In subsequent 

sections 6.4, 6.5 and 6.6, we assume tk*E VB[u,z") without 

loss of generality, because the other case tk* E VB(w",u) can 

be treated similarly by reversing the left-right relation. 

    (b) (T-4) holds for some a(x*,v*) E OUTp(x*). Now we 

select the arc a(x*,v*) such that any arc (in OUTp(x*)) to 

the right of a(x*,v*) does not satisfy (T-4). That is, the 

rightmost arc a' in the set of arcs satisfying (T-4) can be 

chosen as such a(x*,v*). (If a pair of arc a' and 

commodity k', and a pair of arc a" and k" both satisfy (T-

4), we see that if a' is to the right of a" then tk' is also 

to the right of tk" by the rule of flow assignment used in 

ASSIGN. Therefore this definition of a(x*,v*) does not 

contradict assumption (a)). ^ 

     Assumption 6.1 is made throughout this chapter. 

Lemma 6.3 In (N,f), these exists an arc a(x*,zO) EOUTp(x*) 

that is located to the right of a(x*,v*) and satisfies 

II (z0,tk )4O. This is illustrated in Figure 6.5. 

     Proof. If x*4sk*, k* EK(a(u,x*)) holds for some 

a(u,x*) EIN(x*).II (x*,tk*)40 holds because u is scanned 
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(i.e., (T-4) is not satisfied). On the other hand, if 

 x*=sk*, we obtain II (x*,tk*)40 immediately from 

Assumption A. Here since tk*E Z- by Lemma 6.2, any path in 

II (x*,tk*) contains some a(x*,z0) EOUTp(x*) and z0 / X- by 

definition of Z- and X. If such a(x*,z0) is to the left of 

a(x*,v*), this contradicts the planarity of N by 

Assumption 6.1 (a). Therefore a(x*,z0) is located to the 

right of a(x*,v*). ^ 

Lemma 6.4 For vE DIV(Z+) and ye REACH(x*) with II (v,y)#o in 

(N,f), choose two arcs a,be OUTj(y) such that a is 

immediately to the left of b, as illustrated in Figure 6.6. 

Then TK(a)E VB(v,v] or TK(b)E VB[u,v) hold. 

    Proof. Since ye REACH(x*) has already passed Step 2, 

all commodities of the flow in OUT.(y) are contained in 

K.(y). Let X7 denote a connected convergent set obtained by 

applying Lemma 2.5 to OUTj(y). Then v A X5 by the 

convergency of X3. ASSIGN has assigned the commodities in 

K.(y) in the left-right order to the arcs in OUT.(y) chosen 

in the left-right order. Therefore each commodity in b is 

equal to or to the right of any commodity of flow in a. 

Therefore, if TK(a)n VB[u,v)gh holds, then any sink in TK(b) 

                                                   t is not to left to any sink tkE'aka) nVB[u,v), i.e., 
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TK(b) 

obtain

 VB[u,v) 

TK(a)

  holds. 

VB(v,v]

 In case TK(a)n 

immediately. ^

VB[u,V)=o holds, we

VBI  ,v)

   / 

  /

\ - \

(y)

 VB  (v, V ]

Fig. 6.6 Proof of Lemma 6.4.
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     In (N,f), take a window that contains an arc already 

assigned flow. Let WB denote the window corresponding to 

the boundary. An arc in W is called forward (backward) arc 

in W if the arc direction is clockwise (counterclockwise) 

along W. From acyclicity of G, we see that any window W has 

at least one forward arc and one backward arc. 

Definition 6.3 For a window W  (#WB) and an arc a in W, we 

define arcs a+(W,a) and a (W,a) as follows. 

    (1) If arc a is a backward arc in W, let a+(W,a) be the 

first forward arc encountered when we go around from the 

initial node of a in the clockwise manner along W. Let a 

(W,a) be the backward arc whose initial node is common to

a+(W,a),

a (W,a)

 u

 (possibly  a=a  (W,a)) 

  u' a+(W,a) 

/).14111111-°‘ ‘ 
\ 1 

1 

W1 

1 

b-----------/ a' ~' 

   (a) 

Fig. 6.7 Explanation

See Figure 6.7. 

         a (W

1 

I 

1

/

/

I

/

 W

 u

(W,a)

— a 

           (b) 

of Definition 6.3.
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        (2) If arc a is a forward arc in W, let  a-(W,a) be the 

    first backward arc encountered when we go around from the 

    initial node of a in the counterclockwise manner along W. 

    Let a+(W,a) be the forward arc whose initial node is common 

    to a (W,a), (possibly a=a+(W,a)). See Figure 6.7. ^ 

         Consider window W6 and arc e17 shown in Figure 6.4. 

e17 is backward in W6. Therefore and then a+(W6,e17)=e11 

    and a (W6,e17) =e12. 

        In each of (a) and (b), if arc a has already been 

    assigned flow by ASSIGN then flow in a+(W,a) and a-(W,a) 

    have been determined, because the initial node of a+(W,a) 

    is reachable to the initial node of arc a. 

        DIV(Z+) sVB[z",w"] was already stated. Let 

ul,u2 EVB[z",w"]. If ul is to the left of u2 in VB[z",w"] 

    (i.e., u2 EVB(ul,w"]), this is denoted by ul>u2. The case 

u1=u2 or ul>u2 is denoted by ul>ul. For each u REACH(x*), 

    let vR(u) and vL(u) be the rightmost divergent node and the 

    leftmost divergent node, respectively, among these nodes in 

    DIV(Z+) which are reachable to u. See Figure 6.8.
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 VB[z

 (u)

(u)

 i

/

/

/

/

 1 

I 
I

Fig. 6.8 Definition of vL(u) and vR(u).
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vL(u')

 vR(u')=vR(u) 

(W.a)

       Fig. 

Lemma 6.5 

an arc a in 

the initial

 L(u) 

(u'))

 R(u')

6.9 Illustration of Lemma 6.5(1). 

Under the above notation, a window W  (4WB) 

W satisfy the following, where u and u' 

nodes of arc a and arc a+(W,a), respectively. 
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     (1) If arc a is backward in W, u  EREACH(x*) and 

TK(a) c VB(vR(u),v], then u' EREACH(x*) and vL(u)>vL(u') 

>vR(u')>vR(u) hold. Furthermore one of the following (i) 

and (ii) holds, as illustrated in Figure 6.9. 

(i) TK(a+(W,a)) S VB(vR(u'),v] and a+(W,a)4a. 

    (ii) TK(a-(W,a)) s VB[u,vL(u')) and a-(W,a)4a. 

    (2) If arc a is forward in W, u EREACH(x*) and 

TK(a) c VB[u,vL(u)), then u' EREACH(x*) and vL(u)>vL(u') 

>vR(u')>vR(u) hold. Furthermore one of the following (i) 

and (ii) holds. 

(i) TK(a+(W,a)) c VB(vR(u'),v] and a+(W,a)La. 

    (ii) TK(a-(W,a)) c VB[u,vL(u')) and a-(W,a)Aa. 

     Proof. We prove only (1), as (2) is similar. First we 

show vL(u) >vL(u')>vR(u')>vR(u). Take a divergent node 0 

with n(v,u')O (i.e., vL(u')>v>vR(u')). Then, since 

vL(u)>v>vR(u) holds from l(u',u)AO, we have vL(u)>vL(u') 

>vR(u')>vR(u). 

    Now we show that (i) or (ii) always holds. For the 

ternimal node v of arc a, let Y[v] denote the set of nodes 

y EVB with l(v,y)#O (for v EVB, assume v EY[v]). Since VB 

contains a convergent node which is reachable from v ' VB, 

Y[v]46 always holds. Here we consider the following three 

cases. 
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 Case-1 

Case-2 

Case-3

Y[ v] 

Y[ v] 

Y[v]

nVB(vL(u),vR(u))4o, 

E VB(vL(u),vR(u)), 

nVB(vL(u),vR(u))=O•

Y[v]-VB(vL(u),vR(u))4O,

v
R

(u)

Y

L
(u)

 r2

_u 

a(W,a)

Y

+(W
,a)

713 

  z

v

i

W I'

/

/

/

/

1 

1

Fig. 6.10 Proof of Lemma 6.5.
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   In  Case-1, we choose y and y' such that 

y EY[v] nVB(vL(u),vR(u)) and y' EY[v]-VB(vL(u),vR(u)), as 

shown in Figure 6.10. Clearly vL(u) EVB(y',y). From the 

planarity, any path 71 E II(vL(u),u) has a node common to 

either Tr 2 E II (v,y) or Tr 3 E (v,y'), contradicting the 

acyclicity of G. Therefore Case-1 is impossible. 

    In Case-2, we first show that TK(a) c VB(vL(u),vR(u)) 

holds. Consider the case u4x*. This u EREACH(x*) has 

already passed Steps 2 and 3, and therefore II(v,tk)4O for 

any sink tk ETK(a). That is, we have TK(a) cY[v]S 

VB(vL(u),vR(u)). On the contrary, if u=x*, x* has passed 

Step 2, and therefore all sinks of the commodities in flow 

in OUT.(x*) (containing arc a) are located in X:, which is 

obtained by Lemma 2.5. See Figure 6.11. From u=x* V X3 and 

convergency of X~, set X3 contains no node reachable to x. 

Hence, vL(u).vR(u) V X3. From Y[v] cXi and the assumption 

of Case-2, we have X
.-3: nVB(vL(u),vR(u))40, that is, 

(TK(a) c))5 c VB(vL(u),vR(u)). The result 

TK(a) `VB(vL(u),vR(u)) however means 

VB(vL(u),vR(u)) nVB(vR(u),v']=O because v E/ VB(vL(u),vR(u)) 

holds by definition of vv, where v is the terminal node of b1 

in Definition 6.2. This contradicts the condition of the 

lemma, TK(a) E VB(vR(u),v]. Therefore Case-2 is also 
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impossible.

vR(u)
 u 

(W,a)

 (u)

(W, a)

   N. 

  I

I~ 1 

7

/

 ̂  

 I 

I

Fig. 6.11 Proof of Lemma 6.5.
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     In Case-3, by applying Lemma 6.4 to  a=a+(W,a), 

b=-Ma), y=u' and v=vR(u), we have TK(a+(W,a)) E 

VB(vR(u'),v] or Ma-Ma)) SVB[u,vR(u')). Since the former 

satisfies the lemma's statement (obviously backward arc a 

differs from a+(W,a)), we assume the latter. For the 

terminal node v' of arc a (W,a), let Y[v'] denote the set of 

nodes y EVB with l(v',y)40. For v'E VB, let v'E Y[v]. 

Hence, Y[v] EY[v']#O from II (v',v)40, and 

Y[v] VB(vL(u'),vR(u'))=4 from the assumption 

Y[v]n VB(vL(u),vR(u))=9. Here if we assume 

Y[v'] n VB(vL(u'),vR(u'))O, then 

Y[v']-VB(vL(u'),vR(u')) 2Y[v]40. In this case, since 

Y[v']n VB(vL(u'),vR(u'))A0 and Y[v']-VB(vL(u'),vR(u'))#O, 

we can derive a contradiction from the acyclicity of G in a 

manner similar to Case-1. Therefore we obtain 

Y[v'] n VB(vL(u'),vR(u'))=o. See Figure 6.12. This u' is 

satisfies u'E REACH(x*) by uE REACH(x*) and 11 (u',u),O. 

Furthermore u'4x* can be shown as follows. If u=x* holds, 

u'Ax* is obvious from u'#u. If u4x* holds, we have 

ll(u',u)AO and hence u'Ax by the acyclicity of G and 

l(u,x*)40. Therefore (x* )u'E REACH(x*) has passed Steps 2 

and 3 of ASSIGN, and 11(v1,tk)40 holds for any tk E 

TK(a(W,a)). Then we obtain
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 TK(a-(W,a)) E Y[v'] E VB-VB(vL(u'),vR(u')). Therefore, 

assumption TK(a-(W,a))E VB[u',vR(u')) implies 

(W,a)) EVB[u,vR(u')). Consequently we have 

(W,a))n TK(a)=O (i.e., a (W,a)a) by the condition of 

lemma, TK(a) E VB(vR(u),v]. Hence (ii) holds. ^

 the 

TK(a-

TK(a-

 the

vR(u') =vR(u)

vL(u')

(u)

 (W,a) 

v`

y

(W,a)

 1 

 I 

V

Zn

Fig. 6.12 Proof of Lemma 6.5.
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    In (N,f) 

and  bi+1 (b1 

{bi,b2,...,bm} 

Definition 6.2 

such that the 

initial node 

Figure 6.13.

, let WI denote the window containing arcs bi 

and bm are the arcs contained in WB), where 

 is the unilateral simple cut A(V-X-) in 

. There exists the r-th arc br in A(V-X-) 

initial node of br differs from x* and the 

 of br+1 is equal to x*, as shown in

WI'

z

 r+1 

W' 
r 

ar+l 

z11 •c

r+2,

b

2=b 

W' 1

V

b1

Fig. 6.13 Illustration of arc a
r.
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    In Figure 6.4, we obtain  br=b2=a(y14,y15) and 

br+1=b3=e23• 

Lemma 6.6 Let bi=a(u1,v1), i=1,2,...,r. Then any u'i 

satisfies ui / REACH(x*), i.e., flows in bi(i=1,2,...,r) 

are not determined yet in (N,f). 

    Proof. Assume that u'E REACH(x*) holds for some 

bi(1<i<r). Then a simple path Tr1Ell(u1,x*) exists. Here we 

consider the graph obtained by shrinking the connected 

convergent set X- into a convergent node x-, as shown in 

Figure 6.14. By Lemma 2.6, G' is also planar and acyclic. 

In G', a(x ,x ) ,bi and ff1 form a simple undirected cycle 

C. In G', a(x ,z0) is located to the right of a(x ,x`), and 

therefore a(x*,z0) is contained in the area surrounded by C, 

where a(x*,z0) is the arc defined in Lemma 6.3 such that 

11(z0,tk*)40 and a(x*,z0)E OUT (x*). From tk*E VB, tk*(4x-) 

is located in C or in the outside of the area surrounded by 

C. This means that 71 andTr2E1I(z0,tk*) consist of a 

directed cycle, contradicting the acyclicity of G'. ^ 

Lemma 6.7 For the index r in Lemma 6.6, W. contains a node 

z1 such that br+14a(x*,zl)E A and TK(a(x*,zl))E VB[tk*,z) 

hold. This is illustrated in Figure 6.13. 

    Proof. If OUT (x*) contains no arc located to the 
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         b.. 

      u 

~ 

   tkl
 Zn

           Fig. 6.14 Proof of Lemma 6.7 

right of br+1, then this contradicts the existence of 

a(x ,z0) satisfying Lemma 6.3. Therefore we can choose an 

arc a(x*,zi) located to the right of br+1• Clearly a(x*,zl) 

is contained in Wi.. Since x* has passed Step 2 of ASSIGN, 

flow has already been assigned to each arc in OUT (x*)and 

TK(a) E Z-n VB holds for each a EOUT(x ). Now consider 

TK(a(x*,zl)). As a(x*,z1) is to the right of a(x*,v*) in 
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Assumption 6.1, 

of flow in a(x 

 TK(a(x*,zl) c VB[t 

    In Figure 6 

z1-y10'

tk* E TK(a(x*,v*)) 

,zl) is to the 

k* ,z") holds.^ 

.4, we obtain

means that any 

right of k*.

W'r=W2, a(x*

commodity 

That is,

,z1)=e24 and

149



6.4 ALGORITHM FIND-CUT 

    Assume that ASSIGN has found a(x ,v )E OUT (x ) 

satisfying (T-4) and then halted. Given the (N,f) of 

Definition 6.1, the following procedure constructs a simple 

cut C not satisfying the cut-condition (2,1). In this 

section, after presenting the procedure, we clarify some 

properties. 

Procedure  FIND-CUT 

0. For the unilateral simple cut A(V-X-)={b1,b2,...,bm} 

  constructed in Section 6.3, obtain the set of arcs 

{bl,b2,...,br} defined prior to Lemma 6.6. Let ai:=bi 

  (i=1,2,...,r). Let ar+i:=a(x*,z1), where a(x*,z1) is 

 the arc satisfying Lemma 6.7. Based on window WB and 

 windows Wi containing ai and ai+1 (i.e., equal to those WI 

 defined prior to Lemma 6.6) (i=1,2,...,r), we define a 

 set of windows Q={W0,W1,W2,...,Wr}. Further let 

C-:={al,a2,...,ar}, C+:={ar+1} and i:=r+1. 

1. Let Wi be the other window (distinct from Wi-1) 

 containing ai. If WiE Q then proceed to 5. Otherwise, 

 let Q:=Q U (Wi) and proceed to 2. 

2. If ai E C- (i.e., ai is a backward arc in Wi), the 

 initial node u of ai satisfies u E REACH(x*) and
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 TK(a)c VB(vR(u),v]. In this case, (i) or (ii) of 

 Lemma 6.5 (1) holds. (The validity is proved in the 

  following Lemma 6.10.) 

    If aiE C+ (i.e., ai is a forward arc in Wi), the 

  initial node u ofaisatisfies uE REACH(x*) and 

TK(a)E VB[u,vL(u)). In this case, (i) or (ii) of 

  Lemma 6.5 (2) holds, i.e., 

     (i) TK(a+(Wi,ai))E VB(vR(u'),v] and a+(Wi,a04ai, 

     (ii) TK(a (Wi,ai))s VB[u,vL(u')) and a (Wi,ai)4ai, 

 where u' is the node common to a+(Wi,ai) and a (Wi,ai). 

 Proceed to 3 if (i) holds. Otherwise, proceed to 4. 

3. Let ai+1'=a+(Wi,ai), C-:=C-u (ai+1} (ai+1 is a backward 

  arc in Wi+1) and is=i+1. Return to 1. 

4. Let ai+l'=a (Wi,ai), C-:=C-u (ai+1} (ai+l is a forward 

  arc in Wi+1) and i:=i+1. Return to 1. 

5. Let C*:=C+u C- and halt. This situation is illustrated 

  in Figure 6.15. ^ 

    Since the number of updating Q:=Qu (WO in Step 1 of 

FIND-CUT is at most the number of all windows in G, FIND-CUT 

halts after finite number of operations. Here we estimate 

the time complexity of FIND-CUT. To obtain a+(W1,ai) and 

a-(Wi,ai) for some ai in Step 2, we go around the cycle Wi 
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 C
*

=c+U c-

 a
r E C

=b
1E C 
— cut

Fig. 6.15 Cut C* obtained by algorithm FIND-CUT .
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from the initial node ui ofaito the node u' common to 

 a+(Wi,ai) and a (Wi,ai).Since FIND-CUT does not search a 

window more than twice and furthermore an arc is contained 

in exactly two distinct windows, any arc is not searched by 

FIND-CUT more than three times. Therefore, the total of 

the time required to obtain a+(Wi,ai) and a (Wi,ai) for all 

i is bounded from above by 0(IAI) (i.e., 0(IVI) by the 

planarity). Now we consider the time required to determine 

whether (i) holds or not in Step 2. Here we make use of the 

preprocessing by which vR(u') and VB(vR(u'),v] n T are 

computed for each u'E REACH(x*). That is, to obtain vR(u') 

for each u'E REACH(x), we scan a divergent node (say 9) from 

right to left among VB[z",w"] and set vR(u')=v for all 

u'E REACH(x ) such that u' is reachable from v but vR(u') is 

not yet set. In this process, no arc is searched more than 

twice, and therefore the required time is bounded from above 

by 0(1A1+IVI), i.e., 0(IVI). Also the time required to 

obtain VB(vR(u'),v] nT from the set of all vR(u') is bounded 

from above by 0(KIVI), because the set of the searched 

nodes is located only in the boundary. Based on the data 

obtained by preprocessing, we can determine whether (i) of 

Step 2 holds or not in 0(IKI) time. Since the number of 

iterations in Step 2 is 0(1Q1)(=0(IVI)), the total time of 
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FIND-CUT and the preprocessing is bounded from above by 

 0(KIVI). 

    Applying FIND-CUT to the network in Figure 6.4, we 

obtain 

v =v=Y15' u=y11',k*=Y12' Z0-Z1-Y10' 

a1=b1=a(y11,y15), a2=b2=br=a(Y14,3'15)' a3=e24, 

       a4=e25, a5=e18' a6=e17, a7=an=e11' 

C+={a3,a4), C-={al,a2,a5,a6,a7), 

X1={y1,Y2,Y3,Y7,Y8,Y150-16,x1(={Y170T18})}' 

X2={y4'3'50r6'Y9'3r10'Y11'Y120T13'Y14}' 

where X1 and X2 are the sets of nodes obtained after 

removing cut C*=C+u C: Windows Wi,i=1,2,...,6 are shown in 

Figure 6.4. Here, 

c(X1)=c(e24)+c(e25)=f(e24,6)+f(e25,6)=4 

holds. However, f(e23,5)=1>0 for a(x*,v*)=e23, and hence 

r(X1)=c(X1)-g(X1)<c(X1)-(g5+g6)=4-(4+1)<0 

holds, indicating that C* does not satisfy the cut-condition 

(2.1). 

    The validity of Step 2 of FIND-CUT is shown by the 

following lemma. 

Lemma 6.8 Let ai=a(ui,vi) denote the ai (i>r+1) obtained 

by FIND-CUT. Then TK(ai) o and u€ REACH(x*) always hold.
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Furthermore,  TK(ai) s VB(vR(ui),v'] holds if ai is a backward 

arc in Wi (i.e., aiE C-), and TK(ai)E VB[u,vL(ui)) holds 

if ai is a forward arc in Wi (i.e., aiE C+). 

    Proof. We show by induction on i (i>r+1). 

    (I) For i=r+1, we have ar+1=a(x*,z1)E C+ and 

ur+1=x*E REACH(x*). Here TK(a(x*,zl))E VB[tk*,z") by 

Lemma 6.7, and then TK(ar+i)c VB[tk*,z") E VB[u',z") by 

  ~x 
tkE VB[u,z") of Assumption 6.1 (a). Furthermor, since 

vL(ur+1)E VB[z",w"] from the definition of vL, we have 

TK(ar+1)- VB[u,z")E VB[u,vL(ur+1)]• 

    (II) For i=k (k>r+1), we assume that the lemma holds 

(i.e., the condition of Lemma 6.5 holds). Since ak+1 is 

equal to a+(Wk,ak) or a (Wk,ak), II(uk+l,uk)AO by 

Definition 6.3. Here ak satisfies the condition of 

Lemma 6.5, and then we have uk EREACH(x*) and furthermore 

uk+1 E REACH(x*) (i.e., TK(ak+1)o by Lemma 6.1). If (i) of 

Lemma 6.5 holds for i=k, then ak+1=a+(Wk,ak) implies that 

ak+1 E C- and TK(a+(Wk,ak))E VB(vR(uk+l),v]. If (ii) of 

Lemma 6.5 holds for i=k, then ak+1=a (Wk,ak) implies that 

ak+1 EC+ and TK(a(Wk,ak))C VB[u,vL(uk+1))• ^ 

Lemma 6.9 Let C- and C+ be the sets of arcs obtained by 

FIND-CUT. Then TK(ai) nTK(aj)=O always holds for ai EC_ 
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and  aj EC+. 

     Proof. For the set of arcs C*=C+ ~C-={a1,a2,...,an}, 

let ai=a(ui,v.),i=1,2,..,n. Lemma 6.6 and Lemma 6.8 assert 

that 

ai EC- and TK(ai) = 0 for i<r, 

    0 TK(ai) c VB[u,vL(ui)) if i>r+1 and aiE C+, 

    0 A TK(ai) s VB(vR(ui),v] if i>r+1 and aiE C. 

Therefore, to prove the lemma, we show VB(vR(ui),v] and 

VB[u,vL(uj)) are always disjoint for aiE C+ and ajE C- with 

i,j>r+1. That is, we shall prove that vL(uj)>vR(ui) holds. 

  By Lemma 6.5 and the way of constructing ai, we have 

vL(ui)>vL(ui+1)>vR(ui+1)>vR(ui) (r+1<i<n-1). (6.4) 

Hence, for r+1p<q n-1, we obtain 

vL(up)>vL(uq) and vR(uq)>vR(up).(6.5) 

Assume that vL(uj)<vR(ui) holds for some i and j. From the 

definition of vR(u) and vL(u), vR(ui)<vL(ui) always holds. 

As i4j holds obviously, we have vR(ui)>vL(uj)>vR(uj) for 

j<i. This, however, contradicts the latter condition of 

(6.5). Otherwise, vL(uj)>vR(ui)>vL(uj) holds for j<i, 

contradicting the former condition of (6.5). Therefore we 

obtain vL(uj)>VR(ui). ^ 
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Lemma 6.10 Let  C* be the set of arcs obtained by FIND-CUT. 

Then  C* contains no arc located to the left of a(x*,zl) in 

OUT (x*). 

Proof. From Step 0 of FIND-CUT, a(x*,zl)=ar+lE C+ 

holds. Assume that C+u C- contains some arc aqE OUT (x*) to 

the left of ar+1• Clearly q>r+1. By the proof of 

Lemma 6.8, II (uj,ui)40 holds for any pair of i and j with 

r+1<i<j<q. Here we show ui=x* for all i with r+1<i<q. If 

ui,x for some i with r+1<i<q, then ur+1=uq=x implies that*  

  (uq,ui)4oand11(ui'ur+1)#0'That is, there exists a 

directed cycle containing x and ui, contradicting the 

acyclicity. Then we have ui=x* for i with r+1<i<q. Window 

Wi containing ai and ai+1 satisfies Wi#WB for i with 

r+1<i<q, because FIND-CUT has constructed Q for i=q. This 

means that ai and ai+1 for r+1<i<q are immediate neighbour 

each other and ai+1 is to the right of a1. This contradicts 

the assumption that aq is to the left of ar+1• 0 

    By the simplicity of cut A(V-X-), all windows Wi 

(0<i<r) in Q at Step 0 are distinct each other. By the 

termination condition in Step 1, no window is searched by 

FIND-CUT more than tiwce. Assume that the termination 

condition holds for WnE Q with i=n and FIND-CUT has 
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halted. Note that this is the first time when the set of 

windows in Q contains a simlpe cycle in the graph dual to 

G, because a simple cut in a planar graph corresponds to a 

simple cycle in the dual graph, as described in Lemma 2.2. 

This means that the set of arcs  C*=(al,a2,...,an} obtained 

by FIND-CUT contains exactly one simple cut (say C'). Since 

a simple cut can be written as a cutting circiut by 

Lemma 2.2, this simple cut C' should be represented as 

C'=(aq,aq+l,...,an) for some q with 1<q<n and Wn=Wq_l. Let 
X1 and X2 be the partitions obtained by removing C', where 

A(X1) E C+ and A(X2) EC-. 

    Here we define by ll k(v,y) the set of flow paths of 

commodity k in (N,f), as follows. 

lk(v,y)62( Tr E 1(v,y)1 f(a ,k)>0 for all a EA( Tr)}. 

Lemma 6.11 Let a(u,v) be an arc in (N,f), where u is being 

scanned by ASSIGN. 

    (a) If tk ETK(a(u,v)) holds for some commodity k with 

sk EREACH(x*) and tk E Z+, then II k(v,tk)40 . 

    (b) If tk ETK(a(u,v)) holds for some commodity k with 

sk EREACH(x*) and tk EZ-, then H k(v ,z*)#O for some node 

z EZ . 

     Proof. (a) Note that the connected convergent sets in 
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          Fig. 6.16 Proof of Lemma 6.11 (a). 

V-REACH(x*) are already shrunk except the set Z- of 

Definition 6.1. Assume that llk(v,tk)=o holds for v and tk 

satisfying (a) of the lemma. Since flow of commodity k 

from source sk satisfies the flow conservation at any node 

in REACH(x*), this flow reaches a convergent node w* (#tk) 

or a node w* (Ax* I Z-) in Z-, as shown in Figure 6.16. 

This, however, means that 11(w*,tk)=0 and then ASSIGN must 

halt by (T-4) before x* is scanned. This is a 

contradiction.
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           Fig. 6.17 Proof of Lemma 6.11 (b). 

    (b) Assume that  II  k(v,z)=0 holds for all z EZ-. Since 

the flow of commodity k from source sk satisfies the flow 

conservation at any node in REACH(x*), II k(v,w*)#O holds 

for some convergent node wK EZ+n VB. See Figure 6.17. 

Since w* (or a subgraph shrunk into w*) does not contain tk , 

ASSIGN must halt by (T-4) before x* is scanned. This is a 

contradiction. ^ 

                       160



Lemma 6.12 Let  C*=C+u C-={al,a2,...,an) be the set of arcs 

obtained by FIND-CUT, and let C'={aq,aq_1,...,an) be the 

simple cut contained in CK. Then q=1 holds (i.e., C'=C*). 

    Proof. Since Q contains WO(=WB) in Step 0, every ai 

(2<i<n-1) is not contained in WB. (Otherwise FIND-CUT must 

have halted earlier.) Since all windows in Q are always 

distinct each other, C'n AB40 implies that 1C'n ABI=2, 

i.e., C'n AB={al,an), and hence q=1 holds. In the 

subsequent discussion, therefore, we will derive a 

contradiction under the assumption that C'n AB=O and q2. 

This assumption implies that X1n VB=0 or X2 n VB=o holds, 

where the partitions into X1 and X2(=V-X1) obtained by 

removing C' satisfies as A(X1)c C+ and A(X2)E C. See 

Figure 6.15. We consider the following three cases. 

     (i) Case of 2<q<r and X1 n VB=o. Let aq=a(uq,vq). Then 

uqE Z- and vqE Xl hold..As all convergent nodes are 

contained in VBS. X2, node vq is not convergent. By the 

acyclicity of G, there exists a convergent node w*E VBE X2 

with l(vq,w*)o. As cut C' separates vq and w' as shown in 

Figure 6.18, C' and It E l(vq,w*) have a common arc (say 

a.). By ajE A(X1), ajE C+ holds. Since uq ft REACH(x*) 

holds by Lemma 6.6, uj ft REACH(x*) holds for the initial
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w

*

           Fig. 6.18 Proof  (i) of Lemma 6.12. 

node ujof arc aj.This arc a.E C+, however,satisfies 

j>r+1 and this contradicts Lemma 6.8. 

    (ii) Case of 2<01�r and X2n VB=O. Since Wi (0<i<r) are 

all distinct by the simplicity of cut A(V-X-), n>r+1 holds 

for C'={aq,aq+l,...,an)' i.e., ar+1=a(x ,zl)E C'n C+, where 

zlE Z- is the node in Lemma 6.7. Clearly x*E X1 and z1E X2 

hold. Since all convergent nodes are contained in VB cX1, 

node z1 is not convergent. By acyclicity, there exists a 

convergent node w*E VB sX1 with l(zl,w*) Q. Since cut C' 

separates z1 and w*, C' and Tr E 11(zl,w*) have a common arc
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         Fig. 6.19 Proof of (ii) of Lemma 6.12. 

(say aj), as shown in Figure 6.19. By aj EA(X2), aj EC-

holds, and II (z1,x)=0 by z1 EZ-. Then II(uj,x)=O holds for 

the initial node ujof aj.Hence,ujE/REACH(x*) holds and 

we have TK(aj)=O by Lemma 6.1. By Step 0 of FIND-CUT, j<r 

holds if ajE C- satisfiesTK(aj)=O. (That is,aj=bjE 

A(V-X-).) Therefore, without using an arc in A(V-X-), node 

zl cannot be reachable to any sink. Since 

TK(a(x*,z1))s VB[tk*,z")E V-X- by Lemma 6.7, a(x*,z1) 

satisfies (T-4). This, however, contradicts Assumption 

6.1 (b), because a(x*,z1) is to the right of a(x*,v*). 
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         Fig. 6.20 Proof (iii) of Lemma 6.12. 

    (iii) Case of r<q n. Assume Xln VB=fib (the case of 

X2 nVB=O is similar). If C+ nC'=O or C- nC'=0 holds, then 

X1 becomes a connected convergent set or a connected 

divergent set. By Lemma 2.3, X1 nVBAO holds, but this 

contradicts the assumption. Therefore we have C+ nC'4O 

or C- nC'40. Then take an arc aj a(ui,vj) EC- nC'(=A(X2)) 

and a commodity k'E K(aj) going out of vjE X1, as shown in 
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Figure 6.20. By Lemma 6.9, k'  '/ K(ai) holds for any 

ai EC+n C'(=A(X1)). Then tkrEVB E X2 implieslik'(v~,tk')=O. 

By sic'  EREACH(x*) and Lemma 6.11 (a), commodity k' must 

satisfy tkr EZ-. There exists a node z*E Z- with 

     r U k(vi,z)#0 by Lemma 6.11 (b), and z* EX1 holds by the 

reachability of II k. As all convergent nodes are contained 

in VB, node z' is not convergent. By the acyclicity of G, 

we have a convergent node w* EVB S. X2 with R(z ,w )40. As 

cut C' separates z* and w*, C' and 7 E II (z*,w*) have a 

common arc (say ah=a(uh,vh)). By z*E Z-, z* V REACH(x*) 

holds, i.e., uh I REACH(x*) and TK(ah)=o hold by Lemma 6.1. 

Since r<q, i.e., C'n (al,a2,...,ar}=0, we obtain h>r+1. 

This, however, contradicts the property that TK(ai)40 for 

all aiE C' (i>r+1). ^ 

Lemma 6.13 For C*=C+U C- obtained by FIND-CUT, 

    (a) TK(ai) EX1 for aiE C-, 

    (b) TK(ai) EX2 for aiE C. 

     Proof. We denote C* by (al,a2,...,an}. By Lemma 6.8, 

the initial node un of arc an satisfies unE REACH(x*). By 

Lemma 6.12, an is contained in WB. Then, considering the 

partition of the boundary defined by C', VB[u,z") EX2 and 

VB(w",v] EX1 hold, where a1=b1=a(u,v)E A(V-X-).
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    (a) Assume that there is some sink  tk with 

tk'E TK(ai) nX2 for some ai=a(ui,vi)E C. By aiE C- and 

Lemma 6.8, we have tk'E TK(ai)c VB(vR(ui),v]E VB(z",v]. 

                                                 , Since no ajE C+ satisfies tkE TK(aj) by Lemma 6.9, 

II k'(vi,tk')=0 holds. Then tk'E Z- must hold by 

Lemma 6.11 (a). This means tk'E VB[u,z") by the assumption 

tk'E X2. This, however, contradicts tk'E VB(z",v]. 

                                                                             r 

    (b) Assume that there is some sink tk with 

tk, TK(ai) n Xl for some ai=a(ui,vi) E C+. By aiE C+ and 

Lemma 6.8, we have tk'E TK(ai)c VB[u,vL(ui))E VB[u,w"). 

Since no ajE C- satisfies tk E TK(aj) by Lemma 6.9, we 

get*'(vi,tkf)=0. Then tk'E Z- must hold by Lemma 6.11 

(a). This meams tk'E VB(w",v] by the assumption tk'E Xl. 

                                       r This, however contradicts tkE VB[u,w"). ^ 

Lemma 6.14 Let C* be the set of arcs obtained by FIND-CUT. 

Then C* is a simple cut, but not unilateral. Furthermore, 

C* is a commodity disjoint cut and satisfies IC* nABI=2. 

    Proof. By Lemma 6.12, C* is a simple cut and 

C* nAB=(al,an) holds. C* is not unilateral, since alE C-

and ar+l E C+ hold. By Lemmas 6.8 and 6.9, flows are 

assigned to all the arcs in A(X1)=C+, and TK(ai) nTK(aj)=0 

holds for ai E C- and ajE C+. By Lemma 6.13 (b), 
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 TK(a)c V—X1 for all aE 

satisfies (6.1)—(6.2),

A(X1).

and then

As 

is

a result 

commodity

of this, 

disjoint

cut C*
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6.5 MAX-FLOW  MIN-CUT THEOREM FOR CB AND CS NETWORKS 

      Based on the results in the previous sections, we shall 

prove Theorems 6.1 and 6.2 stated in Section 6.2, i.e., the 

max-flow min-cut theorem for CB and CS networks . 

Lemma 6.15 An infeasible CB network N" satsfying 

Assumption B has the following simple cut C* . 

(i) C* is not unilateral, and IC*nABI=2. 

     (ii) C does not satisfy the cut-condition (2.1) . 

     Proof. When ASSIGN halts in N", we construct (N,f) 
according to Definition 6.1. In N, FIND-CUT finds a simple 

cut C* which is not unilateral . C' partitions V into X1 

and X2(=V-X1) such that A(X1)=C+ and A(X
2)=C-. By 

Lemma 6.13, C' is a commodity disjoint cut and satisfies (i) 

of the lemma's statement. We now show that C* does not 

satisfy the cut-condition (2.1). Since all arcs in A(X1) 

are saturated, 

c(X1)= E I f(a ,k)            k EK(a) a €A(X1) 

holds. As TK(a) E V-X1 for a EA(X
1) by Lemma 6.12, clearly 

g(X1)> I I f(a,k) 
           k EK(a) a EA(X1) 

                       168



holds. Here a(x*,v*) is located to the left of  a(x* ,zl) by 

the definition of ar+1=a(x*,zl), and therefore C* does not 

contain a(x*,v*) by Lemma 6.10. That is , v*E X1 holds. 

Since f(a(x*,v*))>0 holds for commodity k* that satisfies 

the termination condition (T-4), this flow does not outgo 

from node vE Z. Therefore, by considering tk*E X2, g(X1) 

can be estimated as follows. 

      g(X1)> E E f(a,k) + f(a(x*.v*),k*). 
k E K(a) a E A(X1) 

Here, the r-value of X1 becomes 

r(X1)=c(X1)-g(X1)= E E f(a,k) -g(X1) 
k E K(a) a E A(X1) 

< -f(a(x*,v*),k*)<0. 

That is, C* does not satisfy the cut-condition. By 

Lemma 2.6, C* also satisfies (i) in N". Each commodity 

whose source and sink are separated by C' in N remains still 

in N". Therefore, C* does not satisfy the cut-condition 

(2.1) in N". ^ 

    Theorem 6.1 follows immediately from Lemma 6.15. Now 

we prove Theorem 6.2 for CS networks. 
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Lemma 6.16 If a CS network N' does not satisfy 

Assumption B, then N' has a unilateral simple cut not 

satisfying the cut-condition (2.1). 

     Proof. Obvious from the argument prior to Assumption B 

in Section 2.4.  ^ 

Lemma 6.17 An infeasible CS network N' satisfying 

Assumption B has a simple cut not satisfying the cut-

condition (2.1). 

    Proof. In Chapter 4, we presented algorithm MATE1 that 

reduces a CS network to a CB network. Let N" be the CB 

network reduced from N' according to MATE1, and let K* 

denote the set of commodities created by MATE1 in N". If N" 

does not satisfy Assumption B, N" has a unilateral simple 

cut not satisfying the cut-condition as described in 

Section 2.4. Otherwise, if N" satisfies Assumption B, then, 

by Lemma 6.15, N" has a non-unilateral simple cut 
 ~x 

C=A(X1)u A(X2) not satisfying the cut-condition (2.1). 

Here, by Lemma 2.8, we have r(X1)=r(X2)<O. If 

K(X1;X2) nK*=O holds, then C* is also a simple cut not 

satisfying the cut-condition since the value of r(X1) does 

not change in N'. Since case K(X2;X1) nK*=O can be treated 

similarly, assume that K(X1;(2) nK*# and K(X2;X1) nK*0 , 
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          Fig. 6.21 Proof of Lemma 6.17. 

and take kl EK(X1;X2)n K* and k2 EK(X2;X1)n K* 

network, the boundary line can be divided into 

such that all dummy sources are located in one 

all dummy sinks are located in the other part. 

pair of each commodity in K* was a neighbouring 
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its commodity is created by  MATE1. This implies that a path 

between source and sink of a new commdity kl EK* does not 

cross a path between source—sink pair of other new commdity 

k2 EK*. That is, skl,tkl,sk2 and tk2 must be located in 

the boundary as shown in Figure 6.21. Then we have 

~~`klk2  CnABI>4 from s,t EX1. This, however contradicts 

IC*n ABI=2 of Lemma 6.15 (1). Therefore we obtain 

K(X1;X2) nK*=O and K(X2;X1)n K*=0. 0 

    Lemmas 6.16 and 6.17 give Theorem 6.2.
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6.6  CONCLUSION 

    In this chapter, we showed that CB and CS are classes 

of multicommodity flow problems, for which the max-flow 

min-cut theorem holds. It should be noted that algorithm 

ASSIGN for CB does not employ the max-flow min-cut 

property. Based on the max-flow min-cut property, the 

feasibility of CB can be tested by computing the minimum cut 

immediately. In the next chapter, we construct this type of 

algorithm for classes CB and CS.
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                    CHAPTER 7 

 ALGORITHM VEST FOR TESTING 

          FEASIBILITY OF A CB OR CS NETWORK 

7.1 INTRODUCTION 

     It was shown in the previous chapter that the max-flow 

min-cut theorem holds for classes CB and CS. Based on the 

max-flow min-cut property, we shall present in this 

chapter an 0(S(IVI)+IVBIT(IVI)) time algorithm for testing 

feasibility of the multicommodity flow problem for classes 

CB and CS, where IVI is the number of nodes, IVBI is the 

number of nodes in the boundary, SOVI) is the time required 

for preprocessing and TOY') is the time to compute a 

shortest path tree. The best bounds currently known are 

SOVI)=O(1), TOVI)=0(1Vl,/logIVI) and SOVI)=0(IVIlogIVI), 
TOVI)=0(IVIlog*IVI), which respectively give 

0(IVBIMJJlogIVI) and 0(IVIlogIVI+IVBIIVIlog*IVI) time 

bounds for our problem. These are better than the bound 

0(KIVI) obtained in Chapter 3, when the number of 

commodities K is large [NAGA 88b].
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 7.2 ASSUMPTION D AND SOME LEMMAS 

    In the subsequent discussion, we consider CB and CS 

networks satisfying the following assumption. 

Assumption D: Su T EVB. 0 

    Under this assumption, g(X)=0 clearly holds for an 

arbitrary set X c V-VB. That is, such set of nodes X 

satisfies cut-condition (2.1) (r(X)=c(X)>0). Therefore, to 

examine condition (2.1), we concentrate on X with X nVBAO. 

Furthermore, we make use of the following property. 

Lemma 7.1 In a connected graph G, r(X)>0 holds for every 

X c V, if and only if r(X)>0 holds for those X c V such that 

X and V-X are connected, respectively. 

Proof. As necessity is obvious, we show sufficiency. 

First, we show that r(Y)>0 and r(Z)>0 imply r(Y uZ)>0 for 

any Y,Z cif with Y nZ=0 and A(Y;Z)=A(Z;Y)=o. Now 

r(Y u Z)= c(Y u Z) - g(Y u Z) 

           = c(Y) + c(Z) - (g(Y)+g(Z)-g(Y;Z)-g(Z;Y)} 

           = r(Y) + r(Z) + g(Y;Z) + g(Z;Y) 

           > r(Y) + r(Z) > 0. 

If a set X c V is composed of some number of connected sets, 

repeat the above argument. It shows that if r(X)>0 holds 
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for any connected set X then  r(X)>0 for every X EV. 

     Now we assume that X is connected, but V-X is not 

connected. Then V-X may be divided into disjoint connected 

components. For convenience, we assume that the number of 

such components are two (say sets Y and Z). That is, 

X nY=X n Z=Y nZ=0, X u Y uZ=V and A(Y;Z)=A(Z;Y)=Q. For these, 

we obtain A(X;Y) uA(Y;X) EA(X) uA(V-X) and 

(A(Z;X) uA(X;Z)) n(A(X;Y) uA(Y;X))=O. This means that V-Y 

is connected, because A(Z;X) uA(X;Z)#O holds since G is 

connected. Similarly we can show that V-Z is connected. 

Since these sets satisfy the condition of the lemma, we can 

assume r(V-Y)>0 and r(V-Z)>0. Then we have 

      r(X)= r(V-(Y uZ))= c(V-(Y uZ)) - g(V-(Yu Z)) 

         = c(V-Y) + c(V-Z) - (g(V-Y)+g(V-Z)-g(Y;Z)-g(Z;Y)) 

         = r(V-Y) + r(V-Z) + g(Y;Z) + g(Z;Y) 

         > r(V-Y) + r(V-Z) > 0. 

Therefore, we obtain that if r(X)>0 for X E V such that X 

and V-X are both connected, then r(X)>0 holds for any 

X c V . 0 

    By combining this result and Assumption D, we conclude 

the following. To test feasibility, it is sufficient to 

examine (2.1) only for connected sets X c V with X nVB=
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 VB[x,y) for some x,y E VB. Here, we consider 

which x,y EVB are fixed. Then, for any X 

VB[x,y), we have 

r(X)= c(X)-g(X)= c(X)-g(VB[x,y)) (see

the 

with

Figure

case in 

XnVB=

7.1).

I

VB[x,y)

 Y

Fig. 7.1 Illustration of VB[x,y).

177



Therefore, to test r(X)>O, we consider that 

c(X). Let c°[x,y) denote the minimum value of 

obtain the following lemma. 

Lemma 7.2 A CB (or CS) network is feasible, if 

 c°[x,y)—g(VB[x,y))>0 for all x,y EVB, 

holds. ^

X 

c(X) 

and 

x#y

minimizes 

, then we 

only if 

   (7.1)
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7.3 USE OF A DUAL GRAPH 

    In this section, we consider the use of a dual graph in 

order to test condition (7.1) efficiently. 

Definition 7.1 For a CB or CS network N=(G,P,g,c) satifying 

Assumption D, we define directed dual graphs G*, H* and 

directed networks N* as follows. Each node  vi in the dual 

graph corresponds to a window Wi in G (in particular, node 

vB corresponds to the outer face of G). For each directed 
arc ak in G, a directed arc ak is introduced between nodes 
vi and v* corresponding to the windows Wi and W. which 
contain ak commonly. Here, direction of ak is defined by 
the orientation when we turn ak 90 degrees in the clockwise

 V

Fig. 7.2 Explanation of Definition 7.1.
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manner (see Figure 7.2). Let  V* and A+ denote the resulting 

set of nodes and set of arcs, respectively. Further, let ak 

be the arc obtained by reversing the orientaion of ak, and 

let A- be the set of arcs ak. We denote dual graphs 

(V*,A+u A-) by G*. Furthermore, let H* denote the resulting 

graph obtained by removing vB and all arcs incident to vB 
from G*. By introducing the length of arcs d:A+u A--)-R+, we 

define directed dual networks N*=(H*,d), where d is defined 

by 

d(at)=c(ai) for a4E A+, 

d(a7)=0 for aiE A. ^ 

     Assume that we know the information about the 

incidence relation of arcs, which is necessary to embed a 

planar graph into the plane. Then, since O(IV*I)=O(1A+1)= 

O(1A-1)=O0A1)=O(IVI) holds in a planar graph, we can find 

all windows in G and construct G* according to 

Definition 7.1 in O(IVI) time. 

    We take a simple directed cycle C in G* and consider 

the set of arcs in G corresponding to the arcs in C. The 

obtained set is a simple cut in G, and from definition of d, 

the length of the directed cycle is equal to the sum of 

capacities of arcs in the simple cut. Since any cut
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necessary for examining (7.1) contains an arc in the 

boundary, we shall concentrate on, in particular, directed 

cycles containing  vB among all simple directed cycles in 
G*. As shown in Figure 7.3, let  x1,x2,...,xm (m=IVBI) 

denote the nodes which appear in this order when we go 

around the boundary in the clockwise manner. Further, we 

denote the directed arc betweenxiand x.by by ai with 

convention m+1=1. Letvi,i=1,2,...,m denote the node 

     ** adjecent to vB in G via aie A+, i=1,2,...,m, where a1, 

i=1,2,...,m in G* correspond to the above aie A, 

i=1,2,...,m. Let VB be the set of vi, i=1,2,-.,m (vi=v~ is 
possible for i4j, but similar argument also applies). 

Lemma 7.3 Let d°(v4.;,4) be the length of the shortest 
directed path from v*. to vi in N*. Then

*      c°[xi+1,xj+l) = d°(vj,vi) + d(a(vB,v~)) + d(a(vi,vB)) 
holds, where m+1=1 is assumed for convenience. 

Proof. In (G*,d), consider a directed cycle C such 

that the sum of arc lengths in C is 0. Then all arcs in C 

are in A. Since C is a directed cycle in graph (V ,A-), 

this means that C corresponds to a cut A(X) between a 

divergent set X and a convergent set V-X in G. Therefore 

A(X)n ABA$ by Lemma 2.4, that is, any directed cycle in 
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corresponding to the directed cycle. By Definition 7.1,  C°

*                  *contains arcs a(vB,v~) and a(vi,vB). Thus, C° contains 
subgraphvB~v*}vivB*. Therefore, by the minimumity of 
co[x1.+1'x3.+1)' co and C' have the same cost value and we 

have the lemma's statement. ^ 

     Lemma 7.3 asserts that we can compute c°[x,y), by 

constructing the shortest path tree ST(vi) in N* for each of 
i=1,2,...,m, where ST(vi) is the shortest path tree from 
root vi to all other v~.As N* is strongly connected by 
the definition, eachST(vi)contains all nodes in N*, where 
a graph G=(V,A) is strongly connected if II(x,y)40 holds for 

any pair x,y E V, x4y. Let T(IVI) and S(IVI) denote the time 

required to compute a shortest path tree and the 

preprocessing time for it, repectively. We can obtain all 

shortest path trees ST(vi), i=1,2,...,IVBI, in 

0(S(IVI)+IVBIT(IVI)) time.
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7.4  COMPUTATION OF g(VB[x,y)) 

     To obtain all g(VB[x,y)), we first compute 

g(VB[xl,xi)), i=2,3,...,m for x1E VB in 0(K+IVBI) time as 

follows. Introduce 0-1 variables S(k) for commodities 

k=1,2,...,K, and let 

Ks(x){klsk=x), Kt(x){kltk=x) for each x EVB. 

Procedure SETG(xl) 

0. S(k):=1 for k=1,2,...,K; 

g(VB[xl,x1)):=0; i:=1. 

1. g(VB[x1,xi+1)):=g(VB[xl,xi)) 

              + E 6(k)gk - E (1- S (k))gk; 
                 k Es(xi)k EKt(xi) 

S (k):=1- 6(k) for all k EKs(xi) uKt(xi). 

2. If i=m-1 then halt the procedure. Otherwise let i:=i+1 

 and return to Step 1. ^ 

    This procedure is executed from xl to xm along the 

boundary in the clockwise manner. We first consider the 

case in which source and sink of some commodity k are 

located in the order of x1,..., xPsk,...,xq=tk,...,xm. 

Since S(k) is set to 1 in Step 0 and changes only when x
p 

or xq is scanned, the value of gk is added only to
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 g(VB[xl,xi)), i=p+1,...,q. In case the source and sink of 

some commodity k are located in the order of 

xl,...,xp=tk,...,xq=sk,...,xm, the value of S (k)=1 changes 

to 0 (1) when xp(xq) is scanned, and the value of gk is 

not added to any g(VB[xl,x0),i=2,3,...,q. Therefore, the 

procedure SET(xl) computes g(VB[xl,x1)), i=2,3,...,q, 

correctly. By storing Ks(xi) and Kt(xi) for each xiE VB in 

advance and referring the data as required, the total time 

of procedure SETG(xl) is 0(K+IVB1). 

     If g(VB[xl,x1)),i=2,3,...,m for xlE VB is known, we can 

obtain g(VB[x2,x1)),i=3,4,...,m,1 for x2E VB as follows. 

Procedure UPDATEG(x2) 

0. g(VB[x2,x1)):=E gk; 
                   k EKt(xl) 

A 2:= - E gk; 
         k EKs(xl) 

is=3. 

                                                   r l. A i:= A i-1 +Igk+I g; 
             k'E Kt(xl) n Ks(xi-1) kE Ks(xl) n Kt(xi-1) 

g(VB[x2,x1)):=g(VB[xl,x1))+ Ai. 

2. If i=m then halt the procedure. Otherwise let is=i+1 and 

   return to Step 1. ^

185



 g(VB[xi,xi)) 

k 
          x_=s

g(VB[x2,xi)) 

k', 

x_

s
k'

Fig. 7.4 Explanation of procedure UPDATEG(x2).
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     For  i=3,4,...,m,1, we clearly have 

g(VB[x2,xi))=g(VB[xl,xi)) 

+ gk' 
                  k'E Kt(xl) n {Ks(x2) ... Ks(xi -1)) 

+ Egk 
k E Ks(x1) n{Kt(xi) ... Kt(xm)}. 

See Figure 7.4. Since Ks(x1)n {Kt(xi)u ... uKt(xm)} can be 

rewritten as Ks(x1)-Ks(x1) n{Kt(xi) u... u Kt(xm)}, each 

increment A i of g(VB[x2,xi))-g(VB[x1,xi)) satisfies the 

relation in Steps 0 and 1. This shows the validity of 

procedure UPDATEG. Since we may find xi with kE Kt(xi) 

(Ks(xi)) in 0(1) time for each kE Ks(x1) (Kt(x1)) by using 

appropriate data structure, the required time of UPDATEG is 

bounded from above by 0(1Ks(xl)1+1Kt(xl)1+1VBI). 

     By repeating this procedure UPDATEG for x3,x4,...,xm, 

therefore we can obtain all g(VB[x,y)) within 

0(K+1Ks(x1)1+...+JKs(xm-1)I+IKt(xl)1+... +IKt(xm-1)I+IVB12) 

=0(K+IVB12) time.
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7.5 FEASIBILITY TESTING 

     By the following procedure FTEST, which is based on the 

procedures in the previous section, we can test 

feasibilities of a CB network or a CS network N=(G,P,g,c). 

Procedure FTEST 

Input: A CB or CS network N=(G,P,g,c) satisfying 

       Assumption D. 

Output: Feasibility of N. 

0. Construct dual networks N*=(H*,d) and according to 

  Definition 7.1. 

1. Obtain the shortest path trees  ST(vi) with root 
       i=1,2,...,m in N* vi,  

2. Compute all g(VB[x,y)), x,y E VB (x4y) by SETG and 

 UPDATEG. 

3. For each pair xi+1,xj+l E VB in N, compute c°[xi+1,xj+1) 

 by Lemma 7.3 and ST(vi), and test 
c°[xi+1,xj+1)-g(VB[xi+1,xj+1))>0 

 If this holds for all [xi+1,xj+1), then output 

  "feasible" and halt . Otherwise, output "infeasible" and 

 halt. ^ 

     The required time of the above computation is 0(IVI)+ 

0(S(IVI)+IVBIT(IVI))+0(K+IVB12) as obvious from the results 
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in Sections 7.3-7.4. Here, if we do not distinguish the 

commodities with the same source-sink pair , we have 

 K  < IVBI2. 

In addition, suppose T(IVI)>0(IVI). Then the entire time 

then becomes 0(S(IVI)+ IVBIT(IVI)). 

Theorem 7.1 Feasibility of a CB (CS) network N can be 

tested in 0(S(IVI)+IVBIT(IVI)) time, where IVI is the number 

of nodes, IVBI is the number of nodes in the boundary, 

T(IVI) and S(IVI) are the time required to compute a 

shortest path tree and the preprocessing time for it. ^ 

    As N* is a planar graph with nonnegative arc lengths, 

Frederickson's two algorithms [FRED 83] have running times 

S(IVI)=0(1), T(IVI)=0(IVIJlogJVJ) and S(IVI)=0(IVIloglVI), 

T(IVI)= 0(IVllog*IVI), where log*n is the minimum integer p 

satisfying logpn<1, assuming that login is defined as 

log0n=logn and loriin=log(logi-11), i>1. As described in 

Section 7.1, the time complexities obtained from these 

results of S(IVI) and T(IVI) become advantageous when the 

number of commodities K is large. 

    Finally, consider the scheduling network in Figure 4.2 

and apply FTEST. Since IVBI=O(I+J) and IVI=O(IJ). the
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latter of Frederickson's gives the time complexity 

 O((I+J)IJlog  IJ) of FTEST. For large K, this new time 

bound becomes smaller if compared with the O(IJK) time bound 

of the algorithm developed exclusively for this sheduling 

problem in [IBAR 85], and the 0(KIVI+IVBIIVI)=O((K+I+J)IJ) 

time bound of the algorithms ASSIGN and MATE1 developed in 

Chapters 3 and 4 for CS. 

7.6 CONCLUSION 

     We showed that the feasibility of a network in class 

CB or CS of the multicommodity flow problem in directed 

planar graphs can be tested efficiently by computing the 

shortest path trees in their dual graphs. This result is 

based on the max-flow min-cut property that holds for these 

classes. If the number of commodities K is large , the 

proposed method FTEST is more efficient than the methods 

based on ASSIGN and MATE1. It should be noted , however, 

that FTEST answers only whether the network is feasible or 

not, and does not output the values of feasible flow f(a ,k) 

even if it is feasible. This point differs from the 

algorithm based on ASSIGN and MATE1.
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                   CHAPTER 8 

               RELAXATION METHODS 

         FOR A DIRECTED NONLINEAR NETWORK 

8.1 INTRODUCTION 

    As described in Chapter 1, the multicommodity flow 

problem can be formulated as a linear  programming (LP) 

problem if its objective function is linear. Some graph 

theoretic algorithms are also developed in Chapters 3-7 of 

this thesis. If the objective function is not linear, these 

algorithms for the LP formulation can no longer be applied. 

     In case of nonlinear objective functions, Bertsekas 

[BERT 85,87] considers the dual problem for the minimum cost 

single commodity flow problem with strictly convex objective 

function, which is based on the dual formulation 

[ROCK 81]. As to the multicommodity flow problem, some 

methods have been developed for the case where the capacity 

restriction is imposed only on the total flow of commodities 

in each arc. (See, for example, the dual approach by 

Fukushima [FUKU 84] and the relaxation approaches by 

Gallager [GALL 77] and Stern [STER 77].) Fukushima's 

alogorithm [FUKU 84] obtains an optimal solution of the 

dual problem by repeatedly solving the shortest path 
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problems. 

     In this chapter, we propose relaxation methods for the 

multicommodity flow problem with a strictly convex objective 

function. Associated with each arc in the network are 

capacity constraints not only on the total flow of 

commodities but also on the flow of each commodity. 

Capacity constraints for individual commodities are often 

required, for example, in order to represent a selection of 

particular commodities in an arc of the network for multi-

stage multi-item production scheduling problem [ZAHO 84]. 

The methods proposed in this chapter are extensions of the 

methods proposed by Bertsekas [BERT 85,87] for the single 

commodity case, and are efficient enough to practically 

solve problem instances of moderate sizes with several 

commodities. Typical computational results show that 

problem instances with up to 100 nodes, 1000 arcs and 7 

commodities can be solved in about 60 seconds on a  FACOM M-

382 machine [NAGA 87c]. 

    It is noted here that the previous formulations such as 

those considered in [FUKU 84, GALL 77. STER 77] are 

different from ours because they do not have capacity bounds 

on individual commodities, and their objective functions
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contain as arguments only the total flows of commodities on 

arcs. In this sense, our formulation is more general. 

However, their formualtions are not special cases of ours 

because the deletion of the objective function of individual 

commodities (i.e., to assume that it is constant) violates 

the assumption of strict convexity, which is vital to the 

proposed methods.
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8.2 DEFINITIONS 

    We consider the following network  N=(G,c,c). 

    G=(V,A): a directed graph, where V is the set of nodes 

and A is the set of arcs. (i,j)E A denotes a directed arc 

from node i to node j. 

    c: a vector of lower capacities. cif denotes the lower 
bound for commodity k in arc (i,j), and cij denotes the 

lower bound for the sum of all commodities in arc (i,j). 

(Elements of c are allowed to be -0.) 

                                 c: a vector of upper capacities.cif denotes the 
upper bound for commodity k in arc (i,j), andcij denotes 

the upper bound for the sum of all commodities in arc 

(i,j). (Elements of c are allowed to be +00) 

                                       Let K be the set of commodities, and letfibdenote the 
flow of commodity k EK in arc (i,j). The multicommodity 

flow circulation problem we consider is stated as follows. 

P: minimizeEE F.~(fi~) + E Gi(sij) 
          (i,j) EA k €K (i,j) EA 

    subject to 

E fim- Efmi=0for k EK, i EV, (8.1) 
      (i,m) EA(m, i) EA 

si •= E fikfor (i,j) EA, (8.2) 
          k EKJ 
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 c1J < f iJ<cijfor k E K, (i,j) EA, (8.3) 

     cij<sij<cijfor (i,j) EA, (8.4) 

where Fi~:R+(-00,+ ~ ) andGij:R ->(-00 ,+ C° ) are 
(everywhere finite) strictly convex functions. Further, we 

assume 

        lim F1J(x)/x=-if c.=- co , 
       xi-~ 

        lim Gij(x)/x = -00 if cij=-co, 
       x -OD 

lim F1J(x)/x=+ c0 ifciJ= +00, 
                                                 x±+OD 

                        A lim Gij(x)/x = + o ifcij= + 03 .(8.5) 
x±+00 

     Strict convexity and assumption (8.5) on FiJandG.and 
are necessary to guarantee that their conjugate functions 

are finite everywhere and continuously differentiable. 

Constraint (8.1) is the flow conservation of commodity k at 

node i. Note that the ordinary multicommodity flow problem, 

in which some nodes are specified as sources or sinks, is 

reducible to this formulation P by introducing return arcs 

with appropriate lower capacities from sinks to sources. 

    Let f denote the IKIIA1+1A1 dimensional vector with 

components fjJ (k EK, (i,j) EA) and sij ((i,j) EA). Problem 
A P may then be rewritten as follows.
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 A 
 P: minimize4  (f)=  E E F•k(f•k) + E G••(s••) 

                (i, 7) E A k E K 1J 1J(i, j) E A1J1J                                             (
8.6) 

    subject to 

E f1m- E fm/f=0 for kE K, iE V, (8.7) 
(i,m)E A(m,i)E A 

     s••=Ef•kfor (i, j) E A, (8.8)        1J
k E K1J 

whereF1~:R--(- co,- co] andG1j:R ~(-co ,--co ] are defined by 

F1l(x) = F4(x), x E [cif, c1ll] 
+00 , x f kill, C1 j ] 

  A~ 

G1j(x) = Gij(x), x E [Lij, CO 

+3° , x / [Cij, cij]. 

    Let p denote the IKIIVI+IAI dimensional vector with 

components pi (kE K, iE V) and pij ((i,j)E A). We then 

derive the dual D of problem P as follows. Consider the 

Lagrangean of P and its inf: 

L0(f,P)= c(f) 

          + EEPi(-fim+Efmi) 
(1, j) E A k E K(l,m)EA(m,i)E A 

             +E p1.(-s1. + E fib), 
         (i,j) EAkEK
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Here Fil and Gij are the functions conjugate to Fil and 
 Gij, respectively. By the theory of nonlinear programming , 

therefore, D can be written as follows. 

 D: minimize E 
(i,j)E 

    subject to 

tij = pi - pj - pijfor kE K, (i,j)E A. (8.10) 

     One may consider the variable pi as representing the 
potential of commodity k at node i, as in the case of the 

single commodity flow problem [ROCK 84]. The variable pij 

correponding to constraint (8.2) is unique to the 

multicommodity flow problem. Here we shall call variables 

pij the potential of arc (i,j). We also call variables tij 
satisfying (8.10) the tension of arc (i,j). 

    Substituting (8.10) into the objective function, 

problem D becomes an unconstrained minimization problem with

inf LO(f,p) 

= E 

(i,j)E A 

+ E 
(i,j)E A 

- (i,j)E A

 E 

kER inf{Fi~(f)+ (-pi+pj+pij)fij}        1J 

 inf (Gij(sij)-pijsij} 
sii

•E F•.(pi-p.-pij)-E (G*ij(pi.)}- kE K(i,j)E A 

are the functions conjugate to Fi/1 and 

By the theory of nonlinear programming, 

written as follows.
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variables  pi and pij: 

minimize E (p)=E E F.k(pk-Pk-P)+EG•*                                                                -(P• 
            (i,j) EA k El(1J 1 J1J(i,j) EA13 13 

                                          (8.11) 

It is known [ROCK 70; Corollary 13.3.1, Corollary 25.5.1 and 

Theorem 26.3] that assumption (8.5) implies that Fib and 
Gij are continuously differentiable convex functions which 
take finite values everywhere. In the convergence proof of 

the alogorithms to be presented in Section 8.4, we shall 

also assume that the first derivatives of the functions are 

Lipschitz continuous.

198



8.3  OPTIMALITY CONDITIONS 

    Let (t,p) denote the vector of all variables tip,pi 
and pij of D. By the duality theory of nonlinear 

programming, a solution f of P and a solution (t,p) of D are 

both optimal if 

      tij= pi- pj - pij for kE K, (i,j)E A, (8.12) 

     dFi(tij)/dti~-fib=0 forkE K, (i,j)E A, (8.13) 

E im-E fi=0 for kE K, i E V, (8.14) 
(i,m) E A(ram€ A 

     dGij(pij)/dpij- E fib=0for (i,j)E A, (8.15) 
k E K 

hold. In particular, conditions (8.12) and (8.13) imply 

that t of D and f of P can both be determined from an 

optimal potential vector p of D. That is, if the vectors t 

and f obtained from a given potential vector p by (8.12) and 

(8.13) satisfy conditions (8.14) and (8.15), then f and 

(p,t) are optimal to P and D, respectively. 

    To find such p, we try in the following to minimize the 

objective function (p) of (8.11). Note that the 

derivatives of E (p) are given by 

                       199



 C(P)/ 34=
(u

E 
EA 

E 
(i,m) 

(m,i)E 

E 
(i,m)E

a c(p)/ aPij=E 
(u,v)E A 

(u,v)E 

_ - E 
                   kE K 

             _ - E 
           kE K-- 

provided that we determine ti/ and fi/ by 

(8.13), respectively. We see that (8.16) 

represent the deviations from equalities (8.14) 

respectively. Denote these deviations by 

    di(PA E fim- E fl (=a E(P)/a 
(i,m) E A (m,i) E A 

     dij(P).- Ef'J+de •(pij)/dpij(=a 
               kE K

EBFu(pu-pv31)11-puv)/ ai 

k dFim(ti)/dtim 
EA 

 dFmi(tmi)/dtmi 

A 

  fim-E fml,(8.16) 
A (m,i)E A 

4,_ _ ,_ ,_ _ / a Pij 

              ij(Pij)/dpij 

~, (8.17)

 (8. 

and 

and

Pi/, 

(P)/

12) 

 (8 

(8.

and 

.17) 

15),

(8.

api j 

(8.

18) 

). 

19)
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    If  di(p) is negative (positive) for some k and i, 

condition (8.16) implies that (p) decreases by increasing 

(decreasing) the corresponding potential pi. Similarly if 
dij(p) is positive (negative) for some (i,j), (8.17) 

implies that E(p) decreases by decreasing (increasing) 

pij. In particular,if di(p)and dij(p) all become 0, the 
obtained f and (t,p) satisfy (8.12)-(8.15), and are optimal 

to P and D respectively. Based on this observation, we 

propose in the next section a framework of descent 

algorithms for minimizing (p). By specifying the details, 

various algorithms for solving P and D will result.
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8.4 ALGORITHMS 

    Let  ei and eij be the IKIIVI+IAI dimensional unit 
vectors such that p•ei=pi and p•eij =pij, respectively. 

Also let S >0 and E >0 be parameters, where E is the 

accuracy with which the procedure halts after finite 

iterations, and E is the margin of deviations that restrict 

the candidates of pi and pij updated in each iteration. For 

f3 >0, denote 

Vk( Rid-{iEVldi(p)<<-R ), V+(g )A{iEVldi(P)>R } for kE K, 

A_(S )A{(1,j)€ Aldij(P)<-S }, A4.0 A((i,j)E Aldij(P)>_a 

Procedure ?4ULTIFLOW 

Input: A network with upper and lower capacities 

N=(G(V,A),c,c), cost functions F4 and Gij (or their 
      conjugates Fisk and and and real numbers S >0, 

E >0. 

Output: Approximate optimal solutions f of P and (t ,p) of 

         D. 

Step 0(initialization): Choose an initial potential vector 

      p and compute the corresponding tiJ and f1J by 
      (8.12) and (8.13), for kE K, (i,j)E A, as well as di 

      and dij of (8.18) and (8.19), for kE K, iE V, 

(i,j)E A. Let k':=0. 
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Step 1(checking of the current solution): If  Vk( E)=V+( 6)_0 

      for all k EK and A_( e)=A+( e)=0 (convergence check), 

      then output the current f and (t,p) as approximate 

      optimal solutions of P and D, respectively, and halt. 

Step 2(updating S ): Choose a real number S'>0 and update 

         by S:= S' according to an appropriate rule. Let 

k':=k'+1 and go to Step 3. 

Step 3(updating p): If k'=K+1 then let k':=0 and go to (b). 

      Otherwise, go to (a). 

       (a) If Vkt( S)u V( 0=0, return to Step 1. 

       Otherwise, execute the following procedure. Choose a 

      nonempty set S cVkt(S )u V+'(S ), and obtain A >0 

      and P such that 

  P= P+EA eij                      — E A ei, (8.20) 
iE SnVk'(S ) iE snV+'(S ) 

E di(17)=0. 
1E S 

      Update p by p:=p and return to Step 1. 

        (b) If A_( S ) u A+(S )4, return to Step 1. 

      Otherwise, choose a nonempty set SA_(S ) uA+(S ), 

      and obtain A >0 and p such that 

P=P + I Aeij_I Aeij.(8.21) 
          (i,j) ESn A_(S) (i,j) ESn A+(S ) 
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 E dlJ(p)=0. 
 (1,3)  E  S 

      Update p by p:=p and return to Step 1. ^ 

    The conditions (8.20) and (8.21) in Step 3 intend to 

decrease (p) by modifying some components of the current 

potential vector p, as discussed in the last paragraph of 

Section 8.3. As the second condition in (8.20) or (8.21) 

indicates, the step size A is determined so that 

  (p+ A•es) is minimized in the direction of 

eS= Eelf1            -I ei or 

iE Sn Vk'(S ) i E S nV+,(S ) 

eS=Eei. - Iei 
        (i,j)ESnA_(S)(i,j)ESnAl.(S)3 

respectively. The A may be computed by applying an 

appropriate one-dimensional search technique. The purpose 

of introducing S and S is to faciliate the computation of 

each iteration by restricting the target potentials only to 

those that are important and easily computed. 

If S=Vk(0)uV+(0) and S=A_(0) uA+(0) are used in Steps 3(a) 
and (b), respectively, the potential vector p is modified in 

the direction of steepest descent. This method, however, 

requires a considerable amount of computation because all pi 

and pij take part in the computation of A and p. For the 
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single commodity flow problem, Bertsekas [BERT 85,87] 

compared the following two cases: the case  ISI=1 and the 

case S={1EVI di(p)<O} (or {iEVIdi(p)>O}), where di(p) is 

defined in a manner similar to (8.18). Note that the 

procedure using the former S corresponds to the coordinate 

descent method. The multicommodity versions of these cases, 

i.e., ISI=1 and S={iEVldi(p)<O} (or {iEVldik(p)>O}), are 

considered in [GALL 77] and [STER 77] respectively, though 

lower and upper capacities for individual commodities are 

not explicitly introduced therein. S in the latter case 

gives the maximal descent direction of (p) when pi,iE V are• 
modified, but much time is required for constructing the S 

and for updating the corresponding potentials. In fact, 

[BERT 85,87, STER 77] report that the former is a better 

selection method of S than the latter. By introducing S , 

we can define a set S which lies between the above two 

extreme cases. To guarantee the convergence of the 

resulting procedures, as proved in Section 8.6, S must 

satisfy the condition that S always contain at least one 

(i,k) with Idi(p)I> E ((i,j) with Idi~(p)I> E ). The 
selection rule of S must also satisfy the condition that it 

must eventually become S <6 after finite iterations. 
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    As described above, Procedure  MULTIFLOW has much 

freedom as to how to determine the set S in Step 3, and as 

to how to update the controlling parameter S in Step 2. We 

describe below some typical rules, which are used in the 

subsequent computational experiments. 

Determination of S The following two rules are tested. 

(S-1) In Step 3(a), use 

S=Vk( S) and S=V+(S-) 
alternately for the selected kE K, and in Step 3(b), use 

S=A_(S ) and S=A}(S ) 

alternately. 

  (S-2) In Step 3(a), use S=(i) such that iE Vk(S )uV+(S ), 
and in Step 3(b), use S=((i,j)) such that 

(i,j) EA_( )u A+( S ), where the selection of i (or (i,j)) 

is done simply by taking the first one found during the 

course of checking Vk(S) u V( (S) (or A_((S) u (S)). 

    Note that (S-2) gives rise to the coordinate descent 

method. 

Determination of S The following three rules are tested . 

  ( 6-1) 6= a nonnegative constant (< 6), throughout the 

computation. 
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  (  6-2) S= max {Id+(P)I,Idij(p)I}. This rule forces 
           i,k,(i,j) 

to choose in Step 3 the potential p or pij with the 

largest deviation Id+(p)I or Idij(p)I, respectively. It is 
noted that if commodity kl uniquely attains the maximum, 

i.e., Idikl(P)I= maxi,k,(i,j){Idi(P)I, Idij(P)I}, then 
Vk (S)=V+' ( S )=O for k'kl and A_( S )=A+( 6)=0 holds in 
Step 3(a) and (b). That is, in this case, Steps 3(a) and 

3(b) are skipped until k' becomes kl. However, the 

computation time required for skipping Step 3 is usually 

negligible. 

  ( 6-3) In Step 0, set S initially to some So> E. We 

update S only when Vk( S)=V( 6)=0 for all k E K and 

A_( S)=A+( 6)=0 hold in Step 2 (margin check). At the 

(i+1)-th iteration of updating in Step 2, S' (= (4+1) is 

determind by

where

S i =

d={ 

(i.e., the

 E 

 kE  K 

 average

0.7 

9

Si + O.3d, if E <0.7 Si+O.3d 

           otherwise,(8.22) 

Idl(P) I + E Idi;(P) l)/(IKI IVI+IAI ), 
V(i,j) E A 

deviation). ^
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    The constants 0.7 and 0.3 in  (S -3) have been 

empirically selected on the basis of computational 

experiments in Section 8.5. 

    Combining these, we test the following six cases of 

MULTIFLOW in the experiments reported in the next section. 

      A: (S-1),(6 -1),6 =0.0. 

      B: (S-1),(S -1),6 =c . 

      C: (S-1),(6 -3). 

      D: (S-2),(S -1),6 =E . 

      E: (S-2),(6 -2) . 

      F: (S-2),(6 -3). 

    Algorithm A may be regarded as a faithful approximation 

of the method of steepest descent, while B and C deviate 

from A in that those pi and pig with small 14(p)1 and 

Id. .(p)1 are neglected in choosing the potentials to be ij 

modified. Algorithms D, E and F are coordinate descent 

methods. Among these, E has a special property that it 

always chooses the potential pl or pig corresponding to the 
largest deviation among Id/11 and HO.
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8.5 NUMERICAL RESULTS 

    Computation was carried out with the following test 

data. To obtain a feasible network with given numbers of 

nodes and arcs, a strongly connected network and a flow 

satisfying the flow conservation constraints are first 

generated. For this purpose, we first construct a directed 

Hamiltonian cycle through all given nodes, and then generate 

arcs between some pairs of nodes, which are selected 

randomly, until the network has a specified number of arcs. 

On the resulting graph, we construct a feasible flow for 

each commodity k by randomly selecting cycles in the graph, 

to which commodity k of the amount chosen from interval 

[0.0, 100.0] is assigned. The assignment to cycles is 

repeated until every arc has a positive flow of commodity 

k. After completing this procedure for all commodities k, 

the capacitiescij and  cif are selected randomly from 
intervals [fib,fib+100.0]and [0.0,fij], respectively. 
The numbers of cij andcij are then randomly selected from 

intervals [ E k -ij' E k fij] and [max( E k fij,maxk -cij}, 

E kc^j], respectively. Finally all flows and capacities are 
scaled so that 

        ~~xx-k__      k,(i.j)1J100 
holds. 
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    All the strictly convex functions  Fib and G 
objective function are assumed to be quadratic. 

illustrates a quadratic functions Fib and its 
F i.e., 

      F1~(x) = ax2+bx+d, x E [c,-c] 
+°° ,x [c, c], 

Fi7(y) = ( c(y-b)-ac2-d, YE [2ac+b,+°°

Each  Fij is defined by 
    Fij=a(fi~-h 

where a is randomly 

h=((cif-cij)/2)+ a 
interval [-(cij-c 
similarly defined. 

step size A is 

analytically without 

     The parameter 

set to c =0.1 in Figures 

    The procedure 

on the FACOM M-382 m 

Center.

ij in the 
  Figure 1 

  conjugate

c(y-b)-ac2-d, yE [2ac+b,+c 

(y-b)2/4a-d, yE [2ac+b, 2ac+b] 

c(y-b)-ac2-d, yE [- . ,2ac+b]. 

d by 

mly chosen from interval [0.1, 10.0] and 

.ere a is ramdomly chosen from 

    cij-cif)].FunctionsGijare 
 In he case of quadratic functions, the 

20) and (8.21) can be obtained 

ut orting to line search techniques. 

used in Procedure MULTIFLOW is always 

igures 8.2-8.7. 

MULIFLOW was coded in FORTRAN77, and run 

Lachine of Kyoto University Data 

_.re 8.2 shows the computation time of
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all algorithms A-F, described in the previous section. 

Since it has been found that algorithm A performs much worse 

than others, only the results for small problems are shown. 

One may conclude that algorithm F is most efficient among 

these, and the computation time of algorithm F increases 

only linearly with  lAl. 

     To explain the reasons for these, we illustrate in 

Figure 8.3 the total number of inner iterations (Step 3) for 

the coordinate descent methods D, E and F. (Recall that 

most of the computational time is spent in Step 3.) Since 

algorithm E always updates the potential with the largest 

absolute deviation, it is expected that E achieves the 

largest gain in one iteration, among all the coordinate 

descent methods. This suggests that algorithm E is most 

efficient if measured only by the number of iterations. 

This point is clearly observed in Figure 8.3. However, the 

computation time required for one iteration of E is much 

larger than others because it is quite expensive to find the 

potential with the largest deviation. 

    Figure 8.3 also indicates that the number of iterations 

required by E and F are almost the same. Since the 

computation time per iteration of F is much smaller than 

that of E, this explains why F is faster than E. This 
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desirable aspect of F concerning the number of iterations 

may be explained as follows. When we update  S  i by rule 

(d -3), absolute values of all deviations are smaller than 

S . In most cases, it is expected that S i is only 

slightly larger than the maximum absolute deviation. As the 

new threshold 6141 is determined by taking into account 

the average d of all deviations, it is usually close to the 

maximum absolute deviation. For this reason, (S -3) well 

simulates the behavior of (S -2). 

    The constants in (8.22) are empirically selected on the 

basis of computational experiments as shown in Figure 8.4. 

We see that the optimal a in S i+1'° aS 1+(1- a )d is 0.7. 

    Algorithms C and F, which both adopt rule (S -3), spend 

some computation time to update i in Step 2. In our 

computational experiments, however, the total number of 

updating S i in Step 2 was always between 32 and 40, 

independently of the problem size. As this number is rather 

small compared with the number of executing Step 3, the time 

required for updating Si is usually negligible. 

    Figure 8.2 also shows that algorithm C gives better 

performance than the coordinate descent methods D and E. 

This means that the computational efficiency depends more on 

the 6-rule than on the S-rule. 
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    As F appears to be most promising, we carried out 

further numerical tests with various network parameters  IV' 

and IAI. Figure 8.5 is the results for larger networks, 

exhibiting the behavior similar to Figure 8.2. We see that 

the computation time increases approximately linearly with 

RAJ. Figure 8.6 shows the results of F for rather dense 

networks, i.e., 1A1=0.1*IVI2 and 1K1=7. Even in this case, 

the required computation time seems to increase only 

linearly with IAJ. As typical examples, F could solve 

problems with IKI=7,IVI=100 and CAI=1000 in about 60 

seconds. Figure 8.7 illustrates the behavior of algorithm 

F for various values of the number of commodities IKI. 

Unfortunately, it is observed that the computation time 

increases rapidly with IKI. Finally we show in Figure 8.8 

the CPU time of algorithm F versus precision E. The 

convergence rate of F seems to be linear, since the 

computation time is approximately proportional to the 

inverse of log c.
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 8.6 CONVERGENCE 

     Before concluding this chapter, we give a proof that, 

for a given E >0, each of the algorithms B-F finitly 

terminates at an approximate optimal solution satisfying 

 Vk( E)=V+( E)=0 for all k €K and A_( E )= Al.( E )_0, then 

output the current f, provided that the dual problem D has 

an optimal solution. 

    As noted in the last paragraph of Section 2, Fib and 
Gib are continuously differentiable. We assume in addition 
that the first derivatives of E(p) are also Lipschitz 

continuous, i.e., there exists a positive real number L such 

that 

II V E(P1) - 0 E(P2)II < L IIP1-P2II, (8.23) 

where IIxil is the Euclidian norm of vector x. 

    First let us consider the case in which a set 

S sVk( (3) has been chosen in Step 3(a). Let vector es 

denote jES ei. Let A(>0) denote the step size determined 

by (8.20), i.e., di(p+ A-eg)=0. We shall estimate the amount 

of reduction in the dual cost (p)- E(p+ A•es). For any 

z>0, we have 

E(P+z•e5)- E(P)
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 z 

 <  V(p+t•es)T es dt (by the convexity of ) 

0 z 

        =[ VE (p)T.es + (Vg(P+t• es)- VE (P))T• es]dt 

0 

z 

< z • E (p)T. es + 11 VE (P+t•es)- 'V' (P) I I • I IeSI Idt 

0 z 

       < z •E(p)T•es + L tIIeslI2 dt, 

0 where the last inequality follows from (8.23). Therefore, 

since IIeSIi<IVI and 

E(P)T•eS = E 40) 
i€S 

by (8.16), we obtain 

E(P)- E(P+z•es) > - z • E 4(p) - LIVIz2/2. (8.24) 
i E S 

Moreover, since the step size A is determined so that the 

minimum of (p+z•eS) is attained at z= A , it follows from 

(8.24) that 

E (p)- E (P+ A. es) = max ( E (p)- (P+z •eg)} 
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 max {-z iE (1i(p) - LIVIz2/2) 

Iie S di(p)I2/(2LIVI). (8.25) 

     Similar argument applies to the other cases S E V+( 6 ), 
SEA _( 6) and SEA+(6) of Step 2. 

     Now observe that algorithms B-F are constrainted in 

 such a way that a nonempty set S satisfying 

Ii Z, dl(p) I>_e orI(i ,J)Esdij(p) I_>e (8.26) 

is always selected in Step 3, by the property 6> E. 

     Under condition (8.26), the dual cost decreases at 

least by e 2/(2LIVI) (>0) as shown in (8.25) . Therefore, if 

the dual problem D has an optimal solution
, i.e., its 

optimal cost is finite, the decrease by c 2/(2LIVI) can 

occur only finite times. Combining this with the above 

argument, we conclude that algorithms B-F halt in Step 1 

after a finite number of iterations , if D has an optimal 

solution (i.e., P has an optimal solution) . 

    With algorithm A, however , it is not possible to 

guarantee (8.26), and it appears difficult to prove its 

finite convergence.
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8.7 CONCLUSION 

    A framework of relaxation methods for the minimum 

cost  multicommodity flow problem with a strictly convex 

objective function is presented. By specifying the rules 

for determining S and d , this framework can genarate 

various types of procedures including the steepest descent 

methods and the coordinate descent methods. Limited 

computational experiments for the cases in which the 

objective function is separable and quadratic indicate that 

method F has the best performance among the six tested 

methods. The computation time of F appears to grow only 

linearly with the number of arcs, but grows rapidly with 

the number of commodities. Therefore, it is one of the 

future directions to develop an algorithm that is efficient 

for problems with many commodities.
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 CHAPTER 9 

                  CONCLUSION 

     Throughout this thesis, we have developed efficient 

algorithms for the multicommodity flow problem in directed 

networks. The main theoretical contribution of this thesis 

may be classified into the following two categories. 

     The first category contains graph theoretic algorithms 

for testing feasibility of the multicommodity flow problem 

in certain planar directed network. Three polynomial time 

algorithms for classes CB, CS and CU are developed in 

Chapters 3, 4 and 5. Furthermore, we have shown some 

important properties in the network theory, e.g., the 

integrality of flows and the max-flow min-cut theorem: 

Classes CB, CS and CU have the integral flow property, and 

furthermore classes CB and CS have the max-flow min-cut 

property, while class CU does not have the latter property. 

We illustrate the inclusion relations among these classes in 

Figure 9.1. Among the known classes of the multicommodity 

flow problem in directed or undirected networks for which it 

is possible to develop efficient graph theoretic algorithms, 

the class of CU networks possesses a unique characteristic 

that it does not have the max-flow min-cut property . This 
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 may suggest that the concept of capacity balance and dummy 

 flow introduced for defining these classes will play an 

 important role, different from the max-flow  min-cut theorem, 

 in the theory of directed networks. 

     In the second category, we have studied the 

mathematical programming approach for minimizing a nonlinear 

cost function of the multicommodity flow problem in a 

general directed network. Relaxation methods of various 

types for obtaining optimal solutions are proposed. 

Computational experiments indicate that the best one among 

the six tested methods can practically solve those problem 

which contain, for example, up to 100 nodes, 1000 arcs and 7 

commodities. 

     The efficient algorithms proposed in the above 

categories would be useful and important from both 

theoretical and practical point of views , as many of the 

problems in various engineering fields can be formulated as 

network optimization problems . Importance of efficient 

algorithms in these areas will be increasing. The auther 

hopes that the work contained in this thesis is helpful to 

forward the status of network optimization techniques one 

step ahead. 
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                   APPENDIX 

 Proof of. Lemma 5.4 By Lemma 5.2, Nd has a pole. Suppose 

that all poles of Nd, (xi,y0,i=1,2,...,q, are trivial . 

Without loss of generality, we assume that Nd has 4-

alternating partitions Xt,Yi,W1, Zi with xiE Xi,yiE Yi and 

r(Xl;Yj)=0 for i=1,2,..,r, and has unilateral simple cuts 

A(Xt) with xi! Xyi E Yi and r(Xl)=0 for i=r+1,r+2,...,q 

(r=q or r+1=1 are allowed). 

    Let f be a feasible solution of Nd. Remove all flows 

of the given commodities except dummy flows, i.e., for each 

arc a EA 

K 
c(a):=c(a)- E f(a,k) (=f(a,d)), 

                   k=1 

P:=O, gk:=0,k=1,2,...,K. 

The resulting network Nd=(G,P,Pd,g,gd,c) is feasible. We 

consider the following set of arcs in Nd, as shown in 

Figure Al. 

    rq 
(b1,b2,...,bm)=( u A(Xt;YT))u ( u A(Xt)) 

i=1i=r+1 

    From r(Xl;Yi)=0 and r(X1)=0, we have c(bj)=0 for each 

bj.Remove bj=a(vj,wj),j=1,2,...,m, fromNdand add new 
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nodes  z.,j=1,2,...,m and new arcs a(vj ,z),a(wj,z), 

j=1,2,...,m. Define the capacities of these arcs by 

c(a(vj,z))=c(a(wj,z))=0,j=1,2,...,m. Let G be the 

resulting graph. Then Nd=(G,P,Pd,g',gd,c) is feasible . Each 

neighbouring pair (xi,yi) satisfies 1(xi,yi)=0 in G, and 

Nd generates no new poles. Therefore Nd has no pole, though 

Nd has a convergent node zj which is not on the boundary. 

This contradicts Corollary 5.1. ^ 

Lemma Al If rank(xi)<rank(x'i) holds for a pole (xl,y1) and 

an i E I in a feasible CU network Nd, then 

A 11(x1,xi)= 11(x1,xi)=Q holds. ^ 

    Proof First we assume thatrank(i)=rank(xi) and 

ll(xl,xi)#O. See Figure A2. From xiE Sd and Definition 

A 5.1 (3), xi is unilateral. This is however impossible, 

because xl,y1,xi(=xi)'yi+1 appear along the boundary in this 

A order. Secondly assume rank(xi)<rank(xi). From the 

planarity of Nd, 7 1 E II (xi , yi+1) and ir 2 E ll ('xi , yi) have a 

common node z, as illustrated in Figure A3. Assume 

11(xl,xi)40, and consider (1) z4xi,xxi. Here Tr 3 E H 

have a node w common to 7'1 E II (z,yi+1) or 7'2 E II (z'yi). 

If w is in Tr'1 (similarly for Tr'2), then II (w,xi), Q and 

II(xi,w)40 contradicting the acyclicity of G. Therefore
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 Proof of Lemma 5.5 First we show that II(xi'yi+1)=o holds 

 in Case-2, i.e., there exists a convergent set X-(xi;yi+1) 

by Lemma 5.1 (see Figure 5.6). Suppose B(xi,yi+1)40, then 

rank(xi)<rank(xi). This means 11(xl,x0=0 from Lemma Al 

contradicting the assumption of Case-2 (11(xl,xi)40). 

Therefore let X1=V-X-(7i'yi+1)• We obtain xl,yi+lE Xl by 

11(xl'yi+1)40 and xi,y1 E V-Xl by ll(xi,y1)40. Therefore the 

boundary can be divided into the two parts contained in X1 

and V-Xl respectively by Lemma 2.4. 

Furthermore 

(zIrank(yl)<rank(z)<rank(xi)} c V-Xt 

{zirank(yi+1)<rank(z)} u {x1} c V-X1 
are obtained. Now we assume that A(X4) is not an a -cut, 

i.e., there exist x'E Sd and y'E Td satisfying 

x'E VBin Xl,y'E V-Xi and 1I(x',y')40. If rank(y')<rank(xi) 

then Tr  E lI (xi,y1) and Tr 2 E 11(x' ,y') cross each other by 

the planarity, and 1I (x',y1)40 holds contradicting the 

definition of xi. Then we obtain 

(rank(yi)<)rank(xi)<rank(y') and y' Td(x1). Here if 

ll(xi,y')40 then ll(x1,y')4 by 11(xl,x04 contradicting 

y' ' Td(x1). Then iI64,y')=0 holds and there is a 

unilateral simple cut A(X+) with x'E X+ and xiE V-X+ by 

Lemma 2.1. By the unilaterality of cut A(X+), we have 
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 x'  E X. Here any path 7 e II (x' , y') satisfies u EX-Fn  Xi and 

v EX+nX-(xi'yi+l) for some a(u,v) EA('rr ). From v EX+ 

II(xi,v)=0 holds. In addition, II (x1,v)40 must hold for 

a(u,v)E A(V-X-(xi'yi+1)) by Lemma 2.2. This is a 

contradiction. Therefore the assumed x' and y' do not exist 

and A(X1) is an a -cut. ^ 

Proof of Lemma 5.6 In Case-3, 11(xi,yi+1)=0 holds from 

Sd=0.InCase-4,ifH(xi'yi+1)#O then rank(xi)<rank(xi) 

holds and 11(xl,xi)=0 by Lemma Al. This contradicts the 

assumption of Case-4, and hence 11(7i,yi+1)=0. This means 

that a divergent set X+(yi+l;xi) exists for Cases-3 and 4. 

Let X1=X+(yi+1;7ci). Then similarly to Lemma 7.1, we obtain 

{z1 rank (y1)<rank(z)<rank(xi)) c V-Xi, 

{zIrank(yi+l)<rank(z)} u (x1) c V-Xi. 

Now assume that A(Xt) is not an a -cut, i.e., there exist 

x' E Sd and y' E Td satisfying x' E VBi n X4,y' E V-Xl and 

II(x',y')O. Here we show II(x',yi+1)=4. In Case-3, 

II (x',41)=0 from 4=0. In Case-4, weobtain 
rank(xi)<rank(y'),y' I Td(x1), similarly to the proof of 

Lemma 5.5. If rank(xi)<rank(x'), then 71 II(x1,x1) and 

72 E 11(x',y') have a common node by planarity of G. 

Therefore l(xl,y')40 holds. This contradicts y' I Td(x1), 
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 and we have  rank(x')<rank(xi). Therefore n(x',yi+l)=O in 

 Case-4, since ll(x',yi+1)40 contradicts the definition of 

 xi. 

      By 11(x',yi+1)=0 and Lemma 2.1, there exists an 

 unilateral simple cut A(V-X-) with x'E X- and yi+lE V-X-. 

 From the unilaterality of cut A(V-X`), V(7r)E X-, 

A(71) n A(Xl)AO holds for any path 7 E II (x' , y') . Here 

u E X- n Xl and v E V-X+ for some a(u,v) E A(X1). From the 

 convergency of X-, it holds JI(u,yi+1)=0. This, however 

 contradicts the result ll(u,yi+1)#0 obtained by applying 

Lemma 5.2 to X+(yi+l;xi)• Therefore the assumption is 

false, and A(X1) is an a -cut. ^ 

Proof of Lemma 5.7Based on Vi=O, we first show 
rank(xi)<rank(xi). As rank(xi)#rank(x

i) is clear, assume 

A that rank(xi)<rank(xi). By Lemma 2 .4, there is an arc 

a(u,v) such that a(u ,v)E A(V-X-(xl;xi))n AB and 

rank(xi)<rank(u)<rank(v)<rank(xi) . Applying Lemma 5.1 to 

A X_(xl; xi),, we obtain 1I(xl ,z)#0 (see Figure A4). Here by 

B(xl,yi)#O and the planarity , T1(xi,yi)40 holds, and 

71 E H(xi,yi) and 72 E 1I(xi,yi+1) have a common node w. 

By the unilaterality of the cut , w is not contained in 

(V-X-(x1;x0) n (V-X-(x1;xi)). Now assume that n(xl ,w)#O
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 definition of a CU network. This, however is impossible as 

 obvious from Figure A4. In case  w  E  VB, we can derive a 

 contradiction by the same argument, and then obtain 

 rank(xi)<rank(xi). 

     If 11(i1.)40'then ran                  )40,thk(xi)<rank(xi) contradicts 

 the definition of xi. Therefore H(xi'yi+1)=0, and there 

 exists X+(yi+1'xi)• Let Xi=X+(yi+l;xi) u(V-X-(xl;xi)). By 

 Lemma 2.4, there exist four arcs al,a2,b1,b2 such that 

A(X+(yi+1;xi))n AB={ ,a2) and A(V-X-(x1;xi)) CAB={bl,b2}, 

where the ranks of the end points of al (b1) are larger than 

those of the end points of a2 (b2). Here xiE X+(yi
+l;xi) 

from 11(xi,yi+1)40. Both X+(yi+1;xi) and V-X-(xl;xi) 

contain xi but not xi. Let a2=a(z,z'),b2=a(w,w') . Then 

rank(xi)<rank(z')<rank(z)<rank(xi) , and 

      rank(x'i)<rank(w')<rank(w)<rank(xi) 

hold. 

    Now we show A(Xt) is a unilateral simple cut and 

furthermore is an a-cut by considering two cases (1) 

rank(w)<rank(z) (see Figure 5 .8), and (2) rank(z)<rank(w) 

(see Figure A5). First consider case (1). As two 

connected divergent sets X+(yi
+1;xi) and V-X-(xl;xi) both 

A contain xi, their union Xi is a connected divergent set. 
Since all nodes whose rank is larger than rank(x

i) are 
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 contained in  X+(yi+l;xi) and the ranks of the end points of 

b1 are larger than that of xi, X+(yi+1;xi) contains the end 

ponits of bl. Similarly V-X-(xl;xi) contains the end points 

of a2, or a2=b2 holds. Therefore we have 

A(Xt)n AB={al,b2). By Lemma 2.4, this means that convergent 

set V-X-(xl;xi) is connected. Therefore, unilateral cut 

A(Xt) is simple. In case (2), a similar argument can be 

used to show that A(Xt) is simple. 

     Secondly, We show that A(4) is an a-cut. For this, 

assume A(X4) is not an a-cut. Here, from the unilaterality 

of A(Xl), we have easily 

{zI rank (y1)<rank(z)<rank(xi)) E V-X1, 

{zIrank(yi+1)<rank(z)) u (x1) E Xi. 
Therefore, this assumption implies that there exist x'E Sd 

and y' E Td satisfying x' E VBi n Xi,y' E V-Xi and l(x' ,y')#O. 
First we consider case (1). From y'E V-Xi. we obtain 
rank(y')<rank(yi+1)• If rank(y')<rank(xi) , then B(xi,yi)40 

and l(x',y')#O mean 11(x' ,y1)40 by the palanarity . This, 

however, contradicts the definition of xi , and we have 

rank(xi)<rank(y')<rank(xi), that is , y' ' Td(x1) and 

II(x1,y')=0. Here, by Lemma 2.1 , there is a unilateral 

simple cut A(Xi) such that y'E X+ and x1 E V-X+. From the 
divergency of X+ and II(x',y')40 , we have x'E X+. Since 
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each of  X+ and V-X+ contains one of the two parts of the 

boundary, nodes w,w' (the end points of b2) are contained in 

X+. Then E(xl,w')=O from the divergency of X+. This, 

however contradicts H(xl,w')=O that is obtained by applying 

Lemma 5.1 to X-(xl;xi). A(Xt) is an a-cut. 

    Now we consider case (2). Similarly for case (1), we 

have rank(xi)<rank(y')<rank(xi). If rank(w')<rank(x'), then 

we have a unilateral simple cut A(Xt) with y'E X and 

xlE V-X+ by 11(xl,y')=0 and Lemma 4.1, as shown in a manner 

similar to case (1). Hence w' (the terminal node of b2) 

satisfies w'E X+, that is, 1I(xl,w')=0. This, however, 

contradicts 11(xl,w')=0 that is obtained by applying 

Lemma 4.2 to X-(xl;xi). This implies rank(x')<rank(w'). 

Also x' xi and 11(x',yi+1)=0 hold by x'E V-X-(xl;xi). Then 

there is a unilateral simple cut A(X+) with yi+lE X+ and 

x'E V-X+. Furthermore y'E V-X+ holds by its unilaterality. 

As cut A(X+) is unilateral, V( 7)c V-X+ and 

A( 'rr)n A(X+(yi+1;xi))#0 hold for any path Tr E 11(x',y'). 

Then 11(u,yi+1)=0 for some a(u,v)E A(XT). This, however 

contradicts the result 1I(u,yi+1)40 that is obtained by 

applying Lemma 4.2 to X+(yi+1'xi)• Therefore A(Xt)is also 

an a-cut in case (2). ^
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 Proof of Lemma 5.8 We first show X-(x1;x0=X-(x1;x0 from 

the assumption that VtAO in Case-6. If we assume 

w E(V-X-(x1;x))-(V-X-(x1;xi)), there exists an arc a(w',w) 

with w'e VI by the connectivity of V-X-(x1;x0. Then

V-X (x1; x i)-.0 

x!

 /  \  1

,V-X (x1 ; X i)

Fig. A6 Proof of Lemma 5 .8.
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 11(xl,w)4 by Lemma 5.1 contradicting the convergency of 

X-(x1;xi). Therefore V-X-(x1;xi) c V-X-(xl;xi). Similar 

argument can show the reverse inclusion-relation. Now 

shrink the connected divergent set Vt into a node w0. By 

Lemma 2.6, the resulting graph G" is also CU. Here the 

four nodes xl,y1,w0,yi+1 are 4-reachable, and G" has a 4- 

alternating partition such thatxl E Xt, yl E Yi,into E W1, 

yi+le Z1 by Lemma 5.3. From ll(xl,yi)O and 1I(w0,y0A0, we 

obtain yiE Yi and yl,y2,...,yiE Yi by Lemma 2.4. A(W1) is a 

simple cut even in G by Lemma 2.6. Let Wi=(14-(w0)) u Vi 

then xi,x1EW1.Consequently, the existence of a R - 

partition Xt,YI,W ,Zi in G is shown. ̂  

Proof of Lemma 5.9 Compute A(Xt) in the decreasing order 

of i EL and shrink Xt before computing a or 3-cut for the 

next i E I. Since the required time to compute the maximal 

directed tree for an i is 0WT,), the entire time is 

0(IV12)• ^ 

Proof of Lemma 5.10 For simplicity, we consider the case 

in which both i and j have a -cuts Ai,Aj (see Figure A7). 

The other cases can be shown similarly. If ri=0, the lemma 

is obvious. Therefore, assume ri>0. From the definition of 

a-cut A(Xt), the source x" and the sink y" for any dummy 
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flow passing through  A(X4) satisfy 

rank(yi+1)<rank(x"), and rank(yl)<rank(y")<rank(yi) , 

(otherwise x"E Sd or y"E Td(xl) are easily shown 
contradicting the definition of xi or Td(x1)). If 

ei<min{ej,ri}, then some part of dummy flow f from source xl 

passing through Ai enters dummy sinks yi+1'yi+2' ...,yj 

contained in X1-X4i. By ei<ri, there exists another dummy 

flow f' passing through Ai. We consider the source of this 

f'. Since 11(x',3,')=0 for any x' E VBi n Xi n Sd and y' E (V-

4) n Td as a property of an a-cut, the source of f' is not 
in VBin4.Now we show that the source of f' can not be 

equal to any node z' E Sd with rank(yi+1)<rank(z')<rank(y•)                                                J 

(see Figure A7). Suppose some dummy flow from such z' 

enters we (V-Xt) nTd. Since any directed path from z' to w 

and any path in 1I(xl,yi+1) cross each other by the 

planarity, it holds ll(xl,w)#o. Therefore w ETd(xl). Thus 

w is equal to one of yl,y2,...,yi, and fl(z',y1)40 holds 

because any path from z' to w and any path in 11(x1,y1) 

cross each other. This contradicts the assumption that Sk=o 

holds for any k with i<k<j. Therefore the source z of f' 

satisfies rank(yj)<rank(z). Thus any path Trl of dummy flow 

f from xl to yk (i+1<k<j) and any path Tr2 of dummy flow f' 

from z E Sd to w E Td n (V-Xi) cross each other again by the 
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planarity. Then we exchange the flows f and f' in paths  Trl 

and Tr2 in the same manner as discussed in the proof to 

Lemma 3.1. Repeating this modification, the amount ei of f 

through Ai will eventually become equal to min{epri}. ^ 

Proof of Lemma 5.11 We first show that there exists a 

feasible flow in which the amount ei of a dummy flow from 

source xl passes through Ai for each i EI, where 
                                                     ~x 

ei=min{gXl,rq_l,rq_2,...,ri}.Let in (i ) be the maximun 

(minimum) i in I. 

     For inc I, we consider a dummy flow whose amount is 

eiu=min{gX1,ri^^}. Assume ri,^>0, since otherwise the network 

is infeasible. Now we assume that the amount of dummy flow 

passing from source xl through Ail, is less that ei”. Then 

there is a dummy flow f' from source x'(#xl) passing through 

Ai^^ and dummy flow f from source xl not passing through Ai. 

These f' and f cross each other by the planarity as shown 

next. By definition of an a-cut (or 13-semi-cut) Ai^^, 

source x'(#xl) of f' satsifies rank(yi"+1)<rank(x'), as 

shown in Figure A8. Let y' be a sink of f'. If 

rank(x')<rank(yq), then a path in 1I(x',y') and a path in 

11(xl,yi"+1) have a common node and therefore 1I(xl,y')40. 

That is, y'E Td(xl) and y' is one of yl,y2,...,yi^^. This
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means  rank(y')<rank(yin) 

because there exists xin 

path in lI(xiu,y1) and 

node. This contradicts

. Here m(x',y1)A0 holds, however, 

with II(xin,yl)A0 from 440, and a 

a path in II(x',y') have a common 

the definition of i". Consequently
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rank(yq)<rank(x') holds, and f' and f cross each other by 

planarity. We now exchange flows f' and f in the same 

manner as in the proof for Lemma 5.10. As a result of this 

exchange, we obtain the amount  ei„ of dummy flow from 

source xl that passes through Ai,,. 

    For each j'E I, we show that any 1 € I with j'<i has a 

feasible flow in which the amount ei of dummy flow from 

source xl passes through Ai, where 

ei=min{41,rq_l,rq_2,...,ri}. For j'=i", this is obviously 
true. Now consider i' (<j') such that k / I for all k with 

i'<k<j'. By Lemma 5.10, there exists a feasible flow in 

which the amount ei, of a dummy flow from source xl passes 

through Ai,, where ei,=min{ej,,ri,}(=min{gd,,rq _l,rq_2,..., 

ri}). By using induction, we can show that, from j'=i" to 

j'=i*, there is a feasible flow in which the amount ej, of 

dummy flow from source xl passes through A.,, where 

ej,=min{gxl'rq -1'rq-2,...,rj}. 

    Finally we consider the amount of dummy flow from 

source xl to sink yl that passes through Ai*. Let f* be 

the dummy flow from source xl that passes through Ai*. From 

the previous argument, we have a feasible flow f* whose 

amount is ei*. Assume that Ai* is an a -cut (as the case of 

a (3-semi-cut  can be similarly treated). Assume that the
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amount of dummy flow in f* to sink 

min(ei*,gy1). In this case, we have a 

sink  (Ay]) and a dummy flow f' from some 

pl. Clearly rank(yi*)<rank(z) holds by 

Then we may have the min(ei*,41} amount 
source xl to sink yl by modifying flows f 

manner as in the proof for Lemma 5.10.

yl is less 

dummy flow f 

 source z to 
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