
 - •
 -

]1--;) \,],/ 1:1 ,TA '1:11

I .1 r _1)

•

 4F-,
 4̀0i;

 •

 STUDIES
 ON

MULTICOMMODITY FLOWS IN

 DIRECTED NETWORKS

HIROSHI NAGAMOCHI

KYOTO UNIVERSITY

KYOTO, 606 JAPAN

 MARCH, 1988

 STUDIES
 ON

MULTICOMMODITY FLOWS IN

 DIRECTED NETWORKS

 by

HIROSHI NAGAMOCHI

Submitted in partial fulfillment of the

 requirement for the degree of

 DOCTOR OF ENGINEERING

(Applied Mathematics and Physics)

KYOTO UNIVERSITY

KYOTO, 606 JAPAN

 MARCH, 1988

 PREFACE

 Network optimization is one of the most important

practical branches of mathematical programming, and is

encountered in various engineering fields, especially

information processing and operations research. Among

various network optimization problems, the multicommodity

flow problem often arises when more than one commodity

shares each arc in a network. This problem can represent

many important problems encountered in a wide variety of

applications such as traffic assignment in road or

communication networks, production scheduling and routing

in VLSI design. From theoretical view point, the

multicommodity flow problem may be classified into two

categories, linear and nonlinear, according to the types of

the cost function to be optimized.

 The linear model can be formulated as a specially

structured linear program, and can be solved in strongly

polynomial time, as recently shown by E.Tardos (1986). In

practice, the codes based on the simplex method appear to be

faster than others and are currently used, but they are not

efficient enough to solve large scale problems encountered

in practice. It is therefore desirable to develop efficient

iii

network theoretic algorithms.

 The nonlinear network models also have been extensively

studied in connection with urban traffic systems,

communication systems, and many other practical

applications. Some algorithms for the general nonlinear

programming problems have been specialized to solve

nonlinear network problems.

 The objective of this thesis is to develop efficient

algorithms for the multicommodity flow problem in directed

networks, linear and nonlinear models. The main

contribution of this thesis may be classified into the

following two categories.

 The first category contains graph theoretic algorithms

for testing feasibility of the multicommodity flow problem

in certain planar directed networks. Tree polynomial time

algorithms for classes CB, CS and CU of such networks are

developed. Furthermore, the integrality of flows and the

max-flow min-cut property are investigated: Classes CB, CS

and CU all have integral flow property, but only classes CB

and CS have the max-flow min-cut property.

 In the second category, the minimization of a

nonlinear cost function of the multicommodity flow problem

in a general directed network is studied. Relaxation

 iv

methods of various types for obtaining optimal solutions are

proposed, and compared on the basis of computational

experiment.

 Importance of efficient algorithms in these areas will

be increasing. The author hopes that the work contained in

this thesis is helpful for further study in this growing

field.

 March, 1988

 Hiroshi Nagamochi

 v

 ACKNOWLEDGEMENTS

 The author is heartily grateful to Professor Toshihide

Ibaraki of Kyoto University for his enthusiastic guidance,

discussion and persistent encouragement. Without his

support, none of this work would have been possible. He

would also like to thank him for his careful reading of this

manuscript and accurate comments.

 The author would like to express his sincere

appreciation to Professor Toshiharu Hasegawa of Kyoto

University for his supervision of this work and continuous

encouragement.

 The author is also highly indebted to Associate

Professor Masao Fukushima of Kyoto University for his

invaluable discussion and constant encouragement.

 Thanks are in order to Assistant Professor Shigeru

Masuyama, Assistant Professor Masamitsu Ohnishi and all his

friends and colleagues in Professor Ibaraki's laboratory for

their encouragement.

Finally, but not least, the author would like to

express his heartiest gratitude to his family for their

heartfelt cooperation and encouragement.

vi

 CO

PREFACE

ACKNOWLEDGEMENTS vi

CHAPTER 1

1.1

1.2

1.3

1.4

INTRODUCTION

INTRODUCTION

COMPUTATIONAL COMPLEXITY

HISTORICAL BACKGROUND

OUTLINE OF THE THESIS

1

1

4

7

15

CHAPTER 2

2.1

2.2

2.3

2.4

PROPERTIES OF DIRECTED PLANAR NETWORKS

INTRODUCTION

DEFINITIONS FOR A DIRECTED GRAPH

ASSUMPTION A AND SOME LEMMAS

CUT CONDITION AND UNILATERAL CUT

17

17

17

23

33

CHAPTER 3 ALGORITHM ASSIGN FOR TESTING FEASIBILITY

OF A CB NETWORK 38

3.1

3.2

3.3

3.4

3.5

INTRODUCTION

CAPACITY BALANCED NETWORKS

ALGORITHM ASSIGN

CORRECTNESS OF ASSIGN

TERMINATION CONDITION OF ASSIGN

38

39

41

46

52

vii

3.6

3.7

COMPUTATIONAL COMPLEXITY OF ASSIGN

CONCLUSION

60

64

CHAPTER 4

4.1

4.2

4.3

4.4

4.5

ALGORITHM MATE1 FOR TESTING FEASIBILITY

OF A CS NETWORK

INTRODUCTION

DEFINITION OF DUMMY FLOW

CS NETWORKS

ALGORITHM MATE1

CONCLUSION

65

65

65

68

74

78

CHAPTER 5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

ALGORITHM MATE2 FOR TESTING FEASIBILITY

OF A CU NETWORK

INTRODUCTION

CU NETWORKS

A POLE OF DUMMY FLOWS

STRUCTURE OF A CU NETWORK

a -CUT AND 8-CUT

ALGORITHM MATE2

ON THE CONDITIONS DEFINING A CU NETWORK

CONCLUSION

79

79

82

86

90

96

106

114

120

CHAPTER 6 MAX-FLOW MIN-CUT THEOREM

FOR CLASSES CB AND CS 121

viii

6.1

6.2

6.3

6.4

6.5

6.6

INTRODUCTION .

MAX-FLOW MIN-CUT PROPERTY

PROPERTIES OF AN INFEASIBLE NETWORK

ALGORITHM FIND-CUT

MAX-FLOW MIN-CUT THEOREM

FOR CB AND CS NETWORKS

CONCLUSION

121

121

125

150

168

173

CHAPTER 7

7.1

7.2

7.3

7.4

7.5

7.6

ALGORITHM FTEST FOR TESTING FEASIBILITY

OF A CB OR CS NETWORK

INTRODUCTION

ASSUMPTION D AND SOME LEMMAS

USE OF A DUAL GRAPH

COMPUTATION OF g(VB[x,y))

FEASIBILITY TESTING

CONCLUSION

174

174

175

179

184

188

190

CHAPTER 8

8.1

8.2

8.3

8.4

8.5

RELAXATION METHODS FOR A DIRECTED

NONLINEAR NETWORK

INTRODUCTION

DEFINITIONS

OPTIMALITY CONDITIONS

ALGORITHMS

NUMERICAL RESULTS

191

191

194

199

202

209

ix

8.5

8.6

8.7

NUMERICAL RESULTS

CONVERGENCE

CONCLUSION

209

222

225

CHAPTER 9

APPENDIX

REFERENCES

CONCLUSION 226

229

250

x

 CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

 Network optimization is one of the most important

practical branches of mathematical programming, and is

encountered in various engineering fields, especially

information processing and operations research. It may be

classified into two categories, linear and nonlinear,

according to the types of the cost function to be

optimized. The linear model can be formulated as a

specially structured linear program. The special structure

exhibits a useful property that it always possesses an

optimal integer solution. This integer property permits a

number of important combinatorial problems to be formulated

and solved as network flow problems [PAPA 82].

 In dealing with combinatorial optimization, we should

note that, even if the problems usually have finitely many

feasible solutions, the straightforward enumeration of all

feasible solutions often requires a prohibitively large

amount of computation time. Even problems of moderate sizes

often become intractable in the sense of practical computer

computation. This necessitates the development of efficient

 1

combinatorial optimization algorithms.

 It is difficult, however, to develop an algorithm that

always works efficiently for all types of combinatorial

optimization problems. Some general solution techniques are

known, i.e., integer programming [NEMH 72], dynamic

programming [BELL 57, DREY 77] and branch-and-bound methods

[LAWL 66, IBAR 76a, IBAR 76b, IBAR 77, IBAR 78]. However,

these general techniques are not always effective, i.e.,

there are certain classes of combinatorial optimization

problems that become computationally intractable as the

problem size increases. Usually, general purpose techniques

are less efficient than special purpose algorithms that are

designed for only one class of combinatorial optimization

problems. '

 From this viewpoint, therefore, it is advisable to

develop a special purpose algorithm suited for the given

problem by exploiting its specific structure. Much effort

to develop such algorithms has been made in these two or

three decades. Efficient algorithms are now available for

some classes of combinatorial optimization problems. It is

often the case that such tractable classes of problems are

formulated as network flow problems in linear model

2

[PAPA 82]. Therefore it is important to develop special

purpose graph theoretic algorithms, which can be more

efficient than the general purpose simplex method for linear

programming.

 The nonlinear network models also have been extensively

studied in connection with urban traffic systems,

communication systems, and many other practical

applications. Some algorithms for the general nonlinear

programming problems are specialized to solve nonlinear

network problems. For example, based on the convexity of

the objective function, theory of monotropic programming

[ROCK 81,84] has been developed.

3

1.2 COMPUTATIONAL COMPLE7IITY

 In the theory of combinatorial optimization,

performance of an algorithm is evaluated by the amount of

computation required to solve given problem instances. To

analyze this, we shall formalize the size L of each problem

instance, and describe the amount of computation as a

function of L. The size of a problem instance is usually

measured by the length of the input data which is required

for its specification. For example, consider a graph

G=(V,E). To input G, the set of nodes and the set of edges

can be encoded in length 0(IVI+IEI), where IVI is the number

of nodes and IEI is the number of edges. Here 0(f(x)).

reading order f(x), denotes that it is bounded from above

by cf(x) where c is a constant. This notation will be often

used in the subsequent discussion. If length d(vi,v.j) is

attached to each edge (vi,v.j), the length of the input data

becomes 0(IEI+IVI) + 0(IEllogd) = 0(IVI+IEIlogd), where

d=max{Id(vi,v~)II(vi,v~)EE}. The term logd comes from the

fact that log2d bits are required to represent an integer d

in binary expression [AHO 74, AHO 86].

 The time complexity T(L) is a practically important and

widely accepted measure of the amount of computation, which

is the number of steps required in the computation. The

 4

number of additions, multiplications and comparisons are

typical unit operations to count the number of steps . Since

it is very difficult to estimate the exact number of steps,

its order is mostly discussed.

 It should be noted that, in order to determine

function T(L) for a given problem size L, we have to

consider an infinite number of problem instances with size

L. As global measures for these problem instances, the

following two have been proposed: average time complexity

and worst-case time complexity. The worst-case time

complexity guarantees that any problem instance can be

solved within that bound. However, it sometimes provides a

bound which is too large for most problem instances. The

average time complexity is therefore practically more

important. However, it is usually very difficult to

derive the time complexity averaged over all the possible

problem instances. It is also not easy to know the

probability distribution of problem instances in the real

world. For this reason, this thesis concentrates on the

worst-case time complexity.

 By an efficient algorithm we mean one whose worst-case

time complexity is bounded by a polynomial function of the

 5

input size. The reason for this is that polynomial time

complexity increases more slowly with the sizes of problem

instances than nonpolynomial, e.g., exponential, time

complexity. Recently, the concept of strong polynomiality

has been introduced in connection with an open problem

related to the minimum cost flow problem. An algorithm is

strongly polynomial [TARD 86], if it consists of the

(elementary) arithmetic operations, e.g., additions,

comparisons, multiplications and divisions, the number of

which is polynomially bounded in the dimension of the

input. Here the dimension of input is defined to be the

number of data items in the input, e.g., the number of arcs

and that of nodes in the underlying graph, and the dimension

of the matrix in the underlying linear program.

6

1.3 HISTORICAL BACKGROUND

 Efficient algorithms for solving the maximum flow

problem, the minimum cost flow problem and the

multicommodity flow problem has been extensively studied,

from both theoretical and practical viewpoints.

 We start with the description of the maximum flow

problem of a single commodity. It is formulated as follows,

where the network considered is a directed graph (although

it can also be defined for an undirected graph [BERG 73]).

 N = (G,c): A network.

 G = (V,A): A finite directed graph, where V is a set

 of nodes, and A is a set of arcs.

 a(x,y): A directed arc from node x to node y

 OUT(x): The set of arcs whose initial node is x.

 IN(x): The set of arcs whose terminal node is x.

 c: A ÷ Z+ is a capacity function, where Z+ is the set

 of nonnegative integers.

 Given a pair of source node s and sink node t in V, it

is asked to find a flow f maximizing the flow value g. A

flow is a function f: A } R that satisfies the following

conditions (1.1) and (1.2), where f(a) denotes the flow

value in arc a.

7

 Flow conservation: For

 E f(a) - E f(b) =
aEOUT(x) bEIN(x)

 Capacity constraint:

0 < f(a) < c(a).

 Let g' denote the IVI dim(

entry corresponding to node

otherwise. Since constraints

can formulate the maximum fl(

linear program.

 maximize: g

 subject to Ax = g'

 0 < x < c

where A=(aiu),i eV, u E A, is

matrix of the graph with size

initial node of arc u, aiu=-1

arc u).

 Ford and Fulkerson in tt

developed an algorithm for ti

presented the max-flow mil

 8

all

 For

dimensional

ode s

is (1.1)

flow

1 X E V

g, if x =

0, if x 4

-g, if x =

 r all aEA

ional vector

 is g

and (1.2)

problem as

s

s, x# t (1.1)

t.

 (1.2)

such that the

 (-g), and 0

are linear, we

the following

is called the node-arc incidence

ze IVI*IAI (aiu +1 if i is the

-1 if i is the terminal node of

their seminal book [FORD 62]

 the maximum flow problem and

min-cut theorem. The first

polynomial algorithm for the maximum flow problem was given

by Dinic [DINI 70]. After a number of improvements of the

time complexity in the past decade, 0(1V13) and

0(IAIIVIlogIVI) are currently known as the best bounds

[KARZ 74, SLEA 80, TARJ 83], where 1V1 is the number of

nodes and CAI is the number of arcs in a network.

 The following problem is called the minimum cost

circulation problem: Find a flow f that minimizes cost

 I d(a)f(a), where d(a) denotes the cost given to the unit
a EA
amount of flow in arc a. As in the above case, a flow f

satisfies the following conditions (1.3) and (1.4).

 Flow conservation:

 f(a) — I f(b) = 0, for all xE V. (1.3)
 a EOUT(x) b EIN(x)

 Capacity constraint:

 c(a) < f(a) < c(a),for all a EA, (1.4)

where c(a) and c(a) are lower and upper bounds on the flow

in arc a. Obviously, the minimum cost flow problem can also

be written as an LP problem in a similar manner [KENN 80].

 Edomonds and Karp developed a scaling technique to

solve the minimum cost flow problem in polynomial time

[EDMO 72]. However, the number of arithmetic operations

 9

required by their algorithm depends on the size of the

bounds. Therefore, it is not strongly polynomial. Finding

a strongly polynomial algorithm for the minimum cost flow

problem has been an open problem for about ten years, until

Tardos [TARD 85] answered it affirmatively. Currently, the

dual version of the Tardos algorithm and the simplex like

method are also known [FUJI 86, ORLI 86, GALI 86].

 Since the coefficient matrix in the formulation of the

maximum flow problem or the minimum cost flow problem is

totally unimodular [BERG 73], all extreme points of the

polyhedron defined by the constraint are integers provided

that all capacities are integers [HOFF 56].

 Multicommodity flow problems arise when more than one

commodity share each arc in a network. This problem can

represent many important problems encountered in a wide

variety of applications such as traffic assignment in roads

or communication networks, production scheduling problems

and routing in VLSI design.

 P: The set of source-sink pairs (sk,tk), k=1,2,...,K,

 where K is the number of commodities. We assume that

 each commodity k has exactly one source sk and one

 sink tk. Let, S={skIk=1,...,K} and T={tklk=1,...,K}

 10

 (possibly skl=sk2or tkl=tk2 for klk2) ,

 g: {1,2,...,K} Z+, where Z+ denotes the set of

 positive integers. Let gk denote g(k), the amount

 of supply (=the amount of demand) of commodity k .

 The multicommodity flow problem in a directed network

is feasible if there exists a set of f(a ,k),a EA,

k€ {1,...,K}, which satisfies the following conditions (1 .5)

and (1.6). Here f(a,k) denotes the flow value of commodity

k in arc a.

 Flow conservation: For all x E V and all k

 gk, if x = sk

 f(a,k)- E f(b,k)= 0 , if x A sk, x# tk
 a € OUT(x) b E IN(x)

 - gk, if x = tk . (1.5)

 Capacity constraint: For all aE A

K

E f(a,k) < c(a),(1.6)
 k=1

f(a,k)>0, k=1,2,...,K.

 Since the maximum flow problem, the minimum cost flow

problem and the multicommodity flow problem can generally

be formulated as specially structured linear programming

11

problems, they can be solved by polynomial time algorithms

devised for LP [KHAC 79, KARM 84]. Furthermore, [ORLI 84,

TARD 86] showed that if all sizes of entries in the

coefficient matrix are bounded by a constant in LP

formulation, such LP can be solved in strongly polynomial

time. Therefore, we see that the multicommodity flow

problem can be solved in strongly polynomial time, though

the degree of polynpmial is still very high. In practice,

the codes based on the simplex method appear to be faster

than others and are currently used. However, the LP

formulation often involves a large number of variables and

conditions, and such codes based on the simplex method are

not efficient enough in many cases. It is therefore

desirable to develop efficient network theoretic algorithms

[LOMO 85].

 Efficient graph theoretic algorithms are known only for

very limited classes of undirected networks [HU 69,

OKAM 81, OKAM 83, TANG 64]. This perhaps comes from the

fact that most of the properties useful for developing

efficient algorithms for the single commodity flow problem

such as the unimodularity and the max-flow min-cut property

can not be directly generalized to the multicommodity flow

problem, except for some special cases [FORD 62].

 12

 In an undirected network with K=2 commodities, the max-

flow min-cut theorem still holds [HU 69] and a polynomial

time graph theoretic algorithm is known. Okamura and

Seymour [OKAM 81, OKAM 83] have shown that if all sources

and sinks are placed only on the boundary of the outer face

of a given planar undirected graph, the max-flow min-cut

theorem holds for general K. It is known that the minimum

cut in a planar network can be obtained by computing the

shortest path in the dual network [HASS 81]. Based on these

properties, [MATS 85, SUZU 85] developed an efficient

algorithm to check its feasibility. The max-flow min-cut

theorem is extended for the multicommodity flow in general

undirected networks [IRI 70, ONAG 71]. Unfortunately, this

extension involves infinite number of conditions.

 Contrary to the above results, the max-flow min-cut

theorem does not hold for the multicommodity flow problem

even with K=2 for directed networks [KENN 78].

Accordingly, not many tractable classes have been known for

directed networks in the sence of efficient graph theoretic

algorithms. An exception is [DIAZ 72], in which a planar

directed network is considered under the assumption that all

sources are on the left side of the boundary while all sinks

 13

are on the

commodities of

appear in the

right side,

 sources and

same order.

and

the

 furthermore the

order of commodities

order of

of sinks

14

1.4 OUTLINE OF THE THESIS

 In this thesis, we concentrate on the multicommodity

flow problem in a directed network. In Chapter 2, we

describe basic properties of a directed network, and present

notations and definitions necessary for the subsequent

discussion. In Chapter 3, we first introduce class CB

(capacity balanced networks) of directed planar networks for

which it is possible to develop a polynomial time graph

theoretic algorithm. Its running time is 0(KIVI) for a CB

network with K commodities and 'VI nodes. It can also be

shown that the integral flow property holds for CB. In

Chapter 4, we generalize class CB to class CS (capacity

semi-balanced networks), and show that CS can be reduced to

CB by an 0(1V1) time algorithm. Therefore, CS also has a

polynomial time graph theoretic algorithm and the integral

flow property. In Chapter 5, we introduce class CU

(capacity semi-balanced unilateral networks) as another

class that is reducible to CB, and developed an 0(1V13) time

algorithm. These classes CS and CU contain certain multi-

item multi-stage production scheduling problem [IBAR 82] as

a special case, indicating their importance in practical

applications. In Chapter 6, we show that the max-flow min-

cut theorem holds for classes CB and CS. For this purpose,

 15

we develop an 0(KIVI) time algorithm for finding the minimum

cut not satisfying the cut-condition if the network is

infeasible. In Chapter 7, based on the max-flow min-cut

property for classes CB and CS, we present an

0(S(IVI)+IVBIT(IVI)) time algorithm for testing feasibility

of a problem in CB and CU, where T(IVI) is the time required

to obtain the shortest path tree in a planar network with

IVI nodes and SOVI) is its preprocessing time. This

algorithm is faster than the one developed in Chapters 3 and

4, when the number of commodities K is large. In

Chapter 8, we study the nonlinear multicommodity flow

problem that minimizes a strictly convex cost function.

Each arc in the network can have lower and upper capacities

on individual commodities and on the sum of commodities. By

making use of its dual, we formulate the problem as a

nonlinear unconstrained optimization problem and propose

relaxation methods of various types. Some computational

results are also included for various problem instances.

16

 CHAPTER 2

PROPERTIES OF DIRECTED PLANAR NETWORKS

2.1 INTRODUCTION

 In this chaper, we describe the basic properties of a

directed (planar) network and present notations and

definitions necessary for the subsequent discussion in which

graph theoretic algorithms are constructed. See [BERG 73]

as to other basic terminology in graph theory.

2.2 DEFINITIONS FOR A DIRECTED GRAPH

 A node is called a divergent node if it has no entering

arc, a convergent node if it has no outgoing arc. When we

discuss the connectivity of a graph G, we consider the

undirected graph resulting by disregarding the orientation

of every arc in A. We define for a pair of sets of nodes X

and Y with X n Y=O,

A(X;Y)=[a(x,y)Ix E X and y E Y),

A

 in paticular A(X)=A(X;V-X).

A set of arcs C A is called a cut if it is given as

C={a(x,y)EAI xEX and yEV-X or xEV-X and yEX)

(=A(X) U A(V-X)) for some X such that XXO and XAV. A cut C

is simple if it does not properly contain any other cut.

17

Fig. 2.1 Arcs a and b are immediate neighbours each other.

x

2(x)

(x)

 OUT1(x)

Fig. 2.2 Definition of INi(x) and OUTi (x).

18

Thus removing all arcs in a simple cut C decomposes a

connected graph G into exactly two components. A set of

nodes X E V is called divergent if there is no arc from V-X

to X. Similarly X is called convergent if there is no arc

from X to V-X. A cut A(X) is called unilateral if X and V-X

are divergent and convergent, respectively. A set of nodes

X is called connected if the subgraph induced by X is

connected.

 Let H(x,y) denote the set of all directed paths from x

to y. For a 7E H(x,y), V(7) denotes the set of nodes in

7, and A(7) denotes the set of arcs in 7. We say that a

node y is reachable from a node x (i.e., x is reachable to

y) if H(x,y)AO. If a directed path from x to y and arc

a(y,x) exist for some nodes x and y, they consists closed

directed path which is called a directed cycle. A directed

path (cycle) without repeated nodes is called simple.

 Here we consider a planar directed graph G. In

subsequent discussion, G is embeded in the plane and we fix

it. In G, a cycle which is obtained by ignoring the arc

orientation, divides the plane into two areas. A window of

G is a simple cycle in G such that one of the resulting two

areas contains no arc of G. The boundary B of G is clearly

a window. Arcs a,b E IN(x) U OUT(x), are called immediate

 19

clockwise

 . . . a
i-1

W i+1

Fig. 2.3 Definition of unilateral chain circuit.

OUTi -1(x)

•

 IN

• x

•

OUT . (x)

(x)

vi -1

 • • x0

'v

i

WV

 WU

 i-i

i

Fig. 2.4 Proof of Lemma 2.5.

20

neighbours if both a and b are contained in a window which

is not the boundary. See Figure 2.1. For each node x, we

 partition IN(x) and OUT(x) into INi(x) and OUT.(x)

respectively as follows. Each of the INi(x)=(a0,a1,...,a m},

i=1,2,...,ix, is a maximal subset of IN(x) with the property

that ak _l,ak E INi(x) iff ak_1 and ak are immediate

neighbours for k=1,2,...,m. Similarly for OUT.(x),

j=1,...,jx. See Figure 2.2.

 A sequence [al,a2,..., am] of arcs is cutting, if each

pair of ai and ai+l (1=1,...,m-1) is contained in a window

Wi, and all Wi's are distinct. Note that one of the windows

Wi's may be the boundary B. A cutting sequence [al,

a2,..., am] is called a cutting circuit, if am and al are

contained in a window Wm, and all Wi (i=1,...,m) are

distinct. A cutting sequence [al, a2,..., am] is called

unilateral, if the direction of each arc ai (1=1,...,m-1) is

the same as that of window Wi when we go round Wi in the

clockwise manner. See Figure.2.3. The above definitions

are easily understandable in terms of the directed dual

graph G =(V ,A) corresponding to G. Each node vi EV

corresponds to window Wi in G (boundary B corresponds to

vB), and every arc ak EA corresponds to exactly one arc

ak=a(vi,vj) such that the two distinct windows Wi and Wj

 21

corresponding to vi and vi have common arc ak in G and the
direction of ak is the same as that of window Wi when we go

round W. in the clockwise manner (counterclockwisely if W.

is the boundary). Then cutting sequences and cutting

circuits in G correspond simple paths and simple ciruits

 *
(neglecting the orientations)in G respectively. It is

also clear from definition that if a cutting sequence and a

cutting circuit are unilateral, they correspond to a simple

directed path and a simple directed circuit in G*

respectively.

22

2.3 ASSUMPTION A AND SOME LEMMAS

 The following Assumption A is important, because all

classes CB, CS and CU discussed in Chapters 5-8 satisfy this

assumption. we show some properties of a graph G satisfying

Assumption A.

Assumption A: (1) G=(V,A) is planar, acyclic (i.e., has no

directed circuit). G has no articulation points (i.e., G is

2-connected), where a node is called an articulation point

if the number of components in G increases at least by one

after deleting the node. Furthermore, we fix a drawing of G

in the plane, and define

 B: the boundary of the outer face of G,

 VB: the set of nodes in B ,

 AB: the set of arcs whose both end-nodes are in VB.

 (2) Any divergent or convergent node belongs to VB.

 (3) T c VB. (Recall that sink nodes are not necessarily

convergent. The subsequent discussion can be easily

modified for the case in which condition (3) is changed to

S c VB. We assume this (3) for simplicity.) ^

Lemma 2.1 If II(x,y) = 0 for nodes x and y in G, then

there are two connected node sets X-, X+ E V such that

x €X-, y EX+, X- u X+= V, X- n X+ =0, X- is convergent and

 23

 X+ is divergent.

Proof. Let XT be the set of all nodes (including x)

reachable from x (i.e., XT is the node set of maximal

directed tree T with root x). This XT does not include y,

and the direction of every arc between XT and V-XT is

from V-XT to XT. Remove the subgraph spanned by XT-

together with these arcs from V-XT to XT , and we obtain

connected components Xk,k=1,2,...,p each of which is

divergent. Clearly each Xk is connected to XT (since G is

connected) and there are no arcs between Xk and Xi(' with

k#k'. Name the component Xk containing y by X+, and let

X-=V-X+. This X- is therefore connected and convergent.

Consequently X+ and X- satisfy the lemma's statement. ^

Lemma 2.2 In a planar graph G, a set of arcs

(al,a2,...,am)S A is a simple cut if and only if there is a

cutting circuit [ail,ai2,...,aim] such that

{ail'ai2'" ''aim}=(al,a2,...,am}, Further, a cutting

circuit [ail'ai2, "''aim] is unilateral if and only if the

corresponding simple cut {al,a2,...,am) is unilateral.

Proof. Let G* be the directed gragh dual to G.

Obviously a simple cut {a1,a2,...,am) in G corresponds a

simple cycle (disregarding arc orientation) in G*. The

24

lemma follows from the above discussion, because a simple

cycle in G* corresponds to a cutting circuit in G.

Unilaterality is clear from definition. ^

Lemma 2.3 Assume that G satisfies Assumption A (1) and

(2). If a set of nodes X in G is divergent or convergent,

then X n VBO.

 Proof. Assume that X is divergent. X contains at

least one divergent node x0, otherwise a directed cycle

exists in X. Therefore, by (2) of Assumption A, X n VB AO

follows. The case of a convergent X is similar. ^

Lemma 2.4 Assume that G satisfies Assumption A (1) and (2).

Every unilateral cutting circuit C contains exactly two

arcs in AB.

 Proof. By lemma 2.2, C divides V into a connected

divergent X set and a connected convergent set V-X. By

Lemma 2.3, X nVBA and (V-X)nVBo. Therefore, C=[al,a2,...,

am] has ai and ai+1, where window Wi containing ai and ai+1

is the window of the boundary. Since all window Wi,

i=1,2,...,m are distinct in cutting circuit C, any other

arcs a., j4i,i+1 are not in AB. ^

25

Lemma 2.5 Corresponding to arc sets INi(x) (i=1,...,ix),

and OUT.(x) (j=1,...,jx) of a node x in G, there is a

partition of V into Xi+ (i=1,...,ix), Xj- (j=1,...,jx) and

X0 = {x) such that allXi+are connected divergent sets, and

all Xj- are connected convergent sets. The set of the

terminal nodes of arcs in OUT.(x) (the set of the initial

nodesofarcsinINi(x))iscontainedinXj-(Xi+).

 Proof. From the definition of ix and jx, we have ix=jx

if (a) x q' VB or (b) xE VB, a(zl,x), a(x,z2)E AB for some

zl,z2 E VB. We have ix=jx+1 (or ix=jx-1) if X E VB and

a(zl,x), a(z2,x)E AB (or a(x,zl), a(x,z2)E AB) for some

z14z2. We shall consider only the case of x ' VB, since

the other case can be treated in a similar manner. Replace

node x by the set of node x0, ui (i=1,...,ix) and vi

(i=1,...,ix), and make ui the terminal node of the arcs in

INi(x), and vi the initial node of the arcs in OUTi(x).

We then add arcs a(ui,x0) (i=1,...,ix) and a(x0,vi)
A A A

(1=1,...,ix). LetG=(V,A) be the obtained graph (see

Figure 2.4), which still satisfies Assumption A. Now

there exists a cutting circuit [a(ul,x0),a(x0,v1),...,

a(u1,XO),a(XO,v1),•••s a(uix,x0), a(x0,vix)], where we

denote the window containing a(ui,x0) and a(x0,vi) by WUi

26

 W 1 -1

1+1

Tr.
J

r

Tri -1

1+1

i-1

Tr.
 1

^+
X.

W.
 1

Tr.
 1

w.

Fig. 2.5 Proof of Lemma 2.5.

27

and the window containing a(x0,vi) and a(ui+1,x0) by WVi

(with the convention ix+1=1). By lI(x0,ui)=0 (by the

acyclicity of G) and Lemma 2.1, there exists for each i a

divergent set Xi' containing all y such that a(y,ui)E A.

Let A(Xi+) be the arcs between Xi+ and V-Xi+. We show that

these A(Xi+), i=1,2,...,ix are disjoint as shown in

Figure 2.5 (as the result, it follows that X1,

are disjoint). By (2) of Assumption 2.1, there exist for

each i a node wi E VB and a path TTi+E 1I (wi , x0) with

a(ui,x0)E A(7i+) (similarly a node w'i EVB and a path Tri-

E 11(x0,w'i) with a(x0,vi)E A(ii-)).Clearly, by the

acyclicity of G, each 7i- (i=1,2,...,ix) are node disjoint

to any of 7i+ (i=1,2,...,i x) except node x0. Since each
itis contained in the area bordered by 71_1- and 'Ri-

(with the convention that i-1=ix for i=1), and A(Xi+) does

not contain any arcs of paths 71_1- or iri- (by the

divergency of Xi), all A(Xi+),i=1,2,...,ix have no common

arc and all are are node disjoint.

 Note that each V-Xi is connected (from Lemma 2.1 and
 A.

construction of X1), then we have unilateral cutting

circuits [al,...,am] and [bl,...,bn] such that A(Xi+) =

{a1,...,aln}, A(Xi+1+) = (b1,...,bn) and al,am,bl,bn E AB

(=AB) (by Lemma 2.4). Recall that ap=a(ui,x0) E A(Xi+)

 28

 xo

b

B

 "-F
 Xi+1

1+1

 /-b n

a

WV i I Wi

Xi

V

P

u

1

f;
\

X.

a1\

a
m

Fig. 2.6 Proof of Lemma 2.5.

29

and bq=a(ui+1'xO)E A(Xi+1+) for some p and q. We can assume

that window WUi contains a(x0,vi),ap and ap_1, andWVi

contains a(x0,vi),bq and bq+1' without loss of

generality. Here, no window contains ai'ai+1(i+1<p-1) and

bj,bj+1(j<q+1). Otherwise,

[ai+1'ai+2'...,ap-1'a(xo'vi)'bq+1'bq+2'..''bj]

 * corresponds a directed cycle in graph G dual to G, and a

simple directed cycle contained in this directed cycle

A corresponds a unilateral cutting circiut inG. However,

since this unilateral cutting circuit does not contain arc

(al,bn) in the boundary, this contradicts Lemma 2.3.

Therefore,

[al,a2,...'ap-1'a(xo'vi)'bq+1'bq+2~...:bn]

is a unilateral cutting circuit. Apply Lemma 2.2 to this

cutting circuit, and denote the component containing vi

by Xi- as shown in Figure 2.6. In this way, the node set

A of G is partitioned into {x0), connected divergent sets

 + (i=1 ,...,ix) and connected convergent sets Xi- Xi

(1=1,...,ix).

 Finally it is easy to see that this partition of G

gives the stated partition of G, i.e., let Xi+=Xi+-{ui} and

 30

Xi-.Xi_-(vi). Each of the resulting Xi' (Xi-) is connected

because if some Xi' (Xi-) becomes unconnected by deleting ui

(vi) then G becomes unconnected by deleting x0,

contradicting the 2-connectivity of G. Therefore the

resulting family of node sets is the partition of G. ^

Lemma 2.6 In a graph satisfying (1) and (2) of Assumption A,

let G" be the graph obtained by shrinking X+ (or V-X+) into

node x0 for any unilateral simple cut A(X+). Then

 (i) G" still satisfies (1) and (2) of Assumption A.

 (ii) For any nodes x,y (4x0) in G", 1I(x,y)4 in G

implies 1I(x,y)40 in G".

 (iii) Any simple cut in G" is a simple cut in G.

 Proof. We consider the case X+ is shrunken into node

x0 (similarly for V-X-). First we show (1). The planarity

of G is obvious. If G" has a directed cycle C, then C does

not contain any arc incident to divergent node x0 and

therefore the C exists in G. By the acyclicity of G, this

means that G" is acyclic, a contradiction. The 2-

connectivity of G" is shown as follows. G is clearly

connected. Then if G" is not 2-connected, then G" has an

articulation point z. By the 2-connectivity of G, there

exist two node-disjoint undirected paths pl,p2 between any

31

two nodes x,y V X+. Since there still exist two node-

disjont undirected paths between x and y if one of pl and p2

contain no node in X+, z=x0 must hold. However, by

definition, A(X+) is a uniulateral simple cut, and therefore

the resulting graph obtained by removing x0 from G" is

connected. This contradicts that x0 is an articulation

point.

 Next for any x,y q' X+, there is no path 7 e ll (x,y)

through X+ or x0 in G or G", respectively. Therefore we

obtain (ii). (iii) is also obvious from the definition of

G". ^

32

2.4 CUT CONDITION AND UNILATERAL CUT

 For two sets of nodes X and Y with X n Y=0 in

N=(G,P,g,c), we define

c(X;YA E c(a), in particular c(X)Lc(X;V-X).
 a E A(X;Y)

K(X;Y)!(kiskEX,tkEY}, in paticular K(X)=K(X;V-X),

 4

 g(X;Y). E gk, in particular g(X).g(X;V-X),
k E K(X; Y)

r(X;Y)A c(X;Y) - g(X;Y), in particular r(X)Ar(X;V-X).

 Here the cut-condition for the multicommodity flow

problem:

r(X)>0 for all X c V(2.1)

is cleary a necessary condition for a network to be

feasible. In general, however, the cut-condition is not

sufficient to guarantee the feasibility of the

multicommodity flow problem. If the cut-condition is a

sufficient condition for a network in some class to be

feasible, we call the max-flow min-cut theorem holds for the

class (or the class has the max-flow min-cut property).

 If a network N=(G,P,g,c) satisfying Assumption A has a

pair (skl,tkl) EP with II(skltkl)=w then N is clearly

infeasible (by assumption gk>0). In this case, Lemma 2.1

 33

 1

 X

 X

Fig. 2.7 Proof of Lemma 2.7.

34

implies that N has a connected convergent set X- and a

connected divergent set V-X- such that skl EX- and

tkl E V-X-. Then

r(X) = c(X)-g(X) _ -g(X) < -gkl<0

holds, i.e., A(V-X-) is a unilateral simple cut not

satisfying the cut-condition. Therefore, the max-flow min-

cut theorem holds.

 Based on this, we concentrate in the subsequent

discussion on a network that satisfies the following

Assumption B.

Assumption B:II(sk,tk)Q1for every (sk,tk) EP. ^

 Now we introduce the following capacity balance

function Ac(x) and Assumption C.

Ac(x) = E c(a) + E gk - E c(b) - E gk.

 a € OUT (x) tk=x b E IN(x) sk=x

Assumption C: Ac(x)=0 for every node x EV. ^

 Under this assumption, the following lemma tells that

any unilateral cut A(X+) satisfies the cut-condition (2.1).

35

Lemma 2.7 In a network N,

 y EXAc(y)= r(X)-r(V-X) for X EV.

 Proof. For X=(x),

r(X)= E c(a)- E gk and r(V-X)= E c(a) - E gk

 a E OUT(x) sk=xa EIN(x) tk=x

hold, i.e., r(X)-r(V-X)= Ac(x) satisfying the lemma's

statement. Now, we show that X'=X u(x) satisfies r(X')-

r(V-X')= I Ac(y) for any x EV-X, if r(X)-r(V-X)= I Ac(y)
yEX'yEX

for some X. See Figure 2.7.

c(X')=c(X;V-X')+c({x};V-X')

=c(X)-c(X;{x})+c({x);V-X').

c(V-X')=c(V-X';X)+c(V-X';(x))

=c(V-X)-c((x);X)+c(V-X'+{x)).

Hence,

c(X')-c(V-X')=c(X)-c(V-X)+ E c(a) - E c(a).
 a OUT(X) a IN(x)

Similarly we have

g(X')-g(V-X')=g(X)-g(V-X)+ kI gk -kgk.
 t=x s =x

Then

r(X')-r(V-X')=c(X')-c(V-X')-g(X')+g(V-X')

 = r(X)-r(V-X)+ Ac(x)

holds. Therefore by induction, we obtain r(X)-r(V-X)=

 36

 E Ac(y) for any X E V. ^
yEX

 By this lemma, if N satisfies Assumption C, then r(X)-

r(V-X)=0 for all XS- V.

Lemma 2.8 If a network satisfies Assumption B and C, then

any divergent set X+ (unilateral cut A(X+)) satisfies

r(X+)=r(V-X+)=0 (i.e., satisfying the cut condition (2.1)).

 Proof. Take a unilateral cut A(X+) with r(X+)<0. By

Lemma 2.7 and Assumption C, r(X+)=r(V-X+), and then r(X+)<0

implies r(V-X+)<0. From divergency of X+, c(V-X+)=0.

Hence

r(V-X+)=c(V-X+)-g(V-X+)=-g(V-X+)<0

holds, and this means K(V-X+)40. For k E K(V-X+), however

II(sk,tk)=10 from convergency of V-X+. This contradicts

Assumption B, and we obtain r(X+)>0. Here assume r(X+)>0,

then we have g(V-X+)<0 in the same manner. This contradicts

the assumption gk>0. Therefore we obtain r(X+)=r(V-X+)=0.

0

37

 CHAPTER 3

 ALGORITHM ASSIGN FOR TESTING

 FEASIBILITY OF A CB NETWORK

3.1 INTRODUCTION

 In this chapter, we introduce class CB (capacity

balanced networks) of directed planar networks for which it

is possible to develop a polynomial time graph theoretic

algorithm. Its running time is 0(KIVI) for a CB network

with K commodities and IV' nodes. It is also be shown that

integral flow property holds for CB, i.e., an integral

feasible flow exists if the network is feasible and

capacities of arcs are all integers [NAGA 87a].

38

3.2 CAPACITY BALANCED NETWORKS

 A network N=(G,P,g,c) is called capacity balanced if it

satisfies Assumption A and C, and the class of capacity

balanced networks is denoted by CB.

 In order to present algorithm ASSIGN that tests the

feasiblity of the multicommodity flow problem of (1.5) and

(1.6) for a capacity balanced network N=(G,P,g,c), we

prepare the following notations.

 By the acyclicity of G, the level of each node x can be

defined as follows.

level (x)A

 For each OUTS

sequence [a1,a2,...,l

We define that ai is

the connected convergent

Lemma 2.5, we define

inXj- nVB as follows:

0,if x is a divergent node

max L(7r), where v runs over all
VX

v

divergent nodes such that II (v,x)#O,

and L(rrvx) is the number of arcs in a

simple longest path Trvx E II(x,v).

there is a unilateral cutting

 ch that OUTj(x)=(ai'i=1,2,...,m).

s to he left of a for 1<i<j<m. Given

ergent set Xj- obtained for OUTj(x) by

e the left-right relation between sinks

Sink tkl is to the left of sink tk2

39

if we visit tkl before tk2

boundary contained in Xj-n

this case, we also say that

commodity k2. For kl and k2

commodity kl is to the left

smaller than k2.

when we go round the part

VB in the clockwise manner.

commodity kl is to the left

with tkl = tk2, we define

of commodity k2, if index kl

 of

 In

 of

that

 is

40

3.3 ALGORITHM ASSIGN

 We first describe the outline of algorithm ASSIGN.

Clearly, a network not satisfying Assumption B is

infeasible. ASSIGN chooses nodes x in the nondecreasing

order of their levels, and, for each of the chosen nodes, it

determines the flows in the arcs in OUT(x). When a node x

is chosen, the flows on IN(x) are already known, since the

flows on OUT(y) of all nodes y with level(y)<level(x) have

already been determined. For each of j=1,...,jx, Lemma 2.5

asserts that there exists a connected convergent set X.-

correspondingto OUTj(x). Let

K.(x)Ak 1 tk is reachable from x

 via some arcs in OUT.(x)}_

Clearly {tklk EK.(x)} VBn Xj-, and all K.(x),

j=1,2,...,jx, are disjoint. For each j, ASSIGN chooses the

arcs in OUT.(x) from left to right, and, to each of the

chosen arcs, assigns the commodities in the left-to-right

order of their sinks tk, k EK(x).

 We shall show below after the description of ASSIGN

that N is feasible if and only if ASSIGN succeeds, i.e., all

arcs in G are assigned their flows within their capacities.

In the following, f(a,k) denotes the flow value of commodity

 41

k on arc a, and fxk

which must go out of

assignment to all the

denotes the flow

x. A node x is

arcs in OUT(x)

 value of commodity k

called scanned if flow

has been completed.

42

Procedure ASSIGN

Input: A capacity balanced network N=(G,P,g,c) satisfying

 Assumption A, B and C.

Output: Flow values f(a,k) for all aE A and k E{1,...,K) (if

 N is feasible), or an indication of infeasibility.

0. f(a,k):= 0, fxk:= 0 for all a c A, x E V, k€ {1,...,K).

 All nodes are "unscanned". Compute INj(x),OUTj(x) and

K.(x) j=1,...,jx, for all nodes x.

1. If all nodes are scanned, halt; a feasible flow

 assignment has been made. Otherwise take an unscanned

 node x in the minimum level. Let

f k:= x

 If the

concluding

 (T-1)

 (T-2)

Otherwise,

be "scanned"

_

a E IN(x)

 E f(a,k)_gk, if x=tk
 a c IN(x)

E f(a,k), otherwise.
 a E IN(x)

ollowing (T-1) or (T-2) hold, then halt by

feasibility.

T(x)=0 and fX>0 for some k.

<0 for some k.

 if OUT(x)=0 and 4=0 for all k, then let x

 and return to 1. Else if OUT(x)#O and fX>0

 43

 for all k, then let

 Kj:=K3(x) n(klf>0), j=1,2,...,jx

 Oj:=OUT.(x), j=1,2,..,jx,

 and go to 2.

2. Repeat the following procedure for each j=1,...,jx (in

 this order):

 UntilOj=Oand Kj=O holds, take the leftmost aE O.

 and the leftmost commodity Ice Ki(x) and let

 f(a,k):=c(a), fxk:=fxk-c(a), Oj:=Oj-[a] if c(a)<fxk,

 f(a,k):=fxk, c(a):=c(a)-fxk, Kj:= Kj-(k) if c(a)>fxk,

 f(a,k):=c(a), Oj:=Oj-{a), Kj:= Kj-(k) if c(a)=fxk.

 Whenever the following case (T-3) occurs, halt by

 concluding infeasibility.

 (T-3) Kj40 and 0j=0, or 0j=0 and Kj=O.

3. (It holds Oj=Kj=fib for j=1,2,...,jx.) If the following

 (T-4) holds, then halt by concluding infeasibility.

 (T-4) f(a(x,v),k)>0 and iI(v,tk)AO for some

 a(x,v) EOUT(x) and k.

 Otherwise let x be "scanned" and return to 1. ^

 Although ASSIGN described in [NAGA 87a] does not

contain the condition (T-4) terminating the procedure , the

44

validity

procedure

of (T-4) is

earlier).

obvious ((T-4) may terminate the

X

 TT

 ?T

P

q

Fig. 3.1 Proof of Lemma 3.1.

45

3.4 CORRECTNESS OF ASSIGN

 To prove the correctness of algorithm ASSIGN, we first

prove the following Lemma 3.1. If N has more than one

feasible solution, call the feasible solution ff(a,k)I a E

A, k=1,...,K) with the following property standard: If

f(a,k)>0 for some arc a e OUTj(x) and kE Kj(x), then

f(a',k')=0 holds if a' E OUTj(x) is to the right of arc a and

k E K.(x) is to the left of commodity k.

Lemma 3.1 If N=(G,P,c) is feasible, there exists a

standard feasible solution.

 Proof. We first consider a divergent node x. Clearly

jx=1 (i.e., OUT1(x)=OUT(x)). Assume that a given feasible

solution f is not standard on x, i.e., there exist

b,c EOUT1(x) and p,q EK1(x) such that b is to the left of c ,

p is to the left of q, f(b,q)>0 and f(c,p)>0 (see

Figure 3.1). Since N is capacity-balanced , all arcs a EA

are saturated, i.e.,

K
 c(a)= I f(a,k)..

 k=1

Define

II b(x ,t(1,f)
0 { TrE II (x,tq) lb E A(Tr), f(a ,q)>0 for all a E A(Tr))

46

 IIc(x,tp,f)

..(TrE 11 (x ,tp)lc EA(Tr), f(a,p)>0 for all a EA(Tr)).

Obviously these sets are not empty. and any TT bE]l b(x ,tq,f)

and 'rr CE li (x , tp, f) have a common node by the planarity of

N. Let z be the common node nearest to x, and let b

(Ir c*) be the part of Tr b(c) from x to z. We assume that

b and Trc are chosen so that the area surrounded byTrb* and

c* does not contain in its interrior any node of a path in

r[(x,tq,f) uII c(x,tp,f). Then we modify the flows f on Trb'~
and Tic* as follows:

 f'(a,q):=f(a,q)-e, f'(a,p):=f(a,p)+e, for a EA(Trb*),

f'(a,p):=f(a,p)-e, f'(a,q):=f(a,q)+e, for a EA(Trc*),

where e=min[min(f(a,q)la EA(Trb)),min(f(a,p)la EA(Trc*))],

 The resulting flow f' is clearly feasible. Furthermore

11 (x,tq,f')uIIc(x,tp,f')5IIb(x,tq,f)uHc(x,tp,f)holds,

since at least one of f'(a,q) (aE A(Trb*)) or f'(a,p)

(aE A(7c*)) becomes 0 by the above modification, and no new

path in 11b(x,tq,f') u llc(x,tp,f') is created as obvious

from the assumption on Trb and 7c. Therefore after finite

repetition of such modifications, we obtain a feasible

solution f for which either llb(x,tq,f')=O or lc(x,tp,f')=f

 47

holds.

 Now if f is not standard on OUT(x), we apply the above

operation to the nonstandard pair of arcs b,c EOUT(x), which

is leftmost in the lexicographical sense of (b,c).

Repeating this, we eventually obtain a feasible flow f that

is standard on x, because once a pair (b,c) becomes

standard, it will never become nonstandard again, as easily

shown.

 This procedure is then applied to all nodes x in the

increasing order of their levels. A nondivergent node x may

have jx>1, but it is obvious that the above procedure can be

applied to j=1,2,...,jx separately. Once f becomes standard

on x, it remains to be standard on x even if the above

modification is applied to the nodes of larger levels.

Therefore, we eventually obtain a feasible solution f that

is standard on all nodes. ^

Lemma 3.2 If N=(G,P,g,c) is feasible, the standard feasible

solution is unique.

Proof. Assume two distinct standard feasible solutions

f and f, and take a node x such that f(a,k) = f(a ,k) for

all k and aE OUT(y) with level(y)<level(x) , but

f(a',k') # f(a',k') for some a'EOUT(x) and k' . Assume

 48

without loss of generality that a' is the leftmost arc in

 OUT.(x) with this property, and that

 0< f(a',k')< f(a',k').(3.1)

To satisfy the capacity constraint of a', there exists a k"

such that

 0< f(a',k")< f(a',k").(3.2)

(3.1) and (3.2) then imply that some arcs b,cE OUTj(x)

(possibly b=c), located to the right of a', satisfy

 0< f(b,k')< f(b,k')(3.3)

 0< f(c,k")< f(c,k").(3.4)

If k' is to the left of k", (3.2) and (3.3) imply that f is

not standard, while if k" is to the left of k', (3.1) and

(3.4) imply that f is not standard. In either case, this

is a contradiction. ^

Lemma 3.3 If a capacity balanced network N=(G,P,g,c) is

feasible, ASSIGN finds the standard feasible solution. On

the other hand, if N is infeasible, ASSIGN indicates the

infeasibility by halting at (T-1), (T-2), (T-3) or (T-4).

 49

 Proof. If N is feasible, Lemma 3.1 says that it has

the standard feasible solution. First, consider a node x

with level(x)=0. As easily proved from the order of

selections of arcs a and commodities k in Step 2 of ASSIGN,

the flows given to the arcs in OUT(x) by ASSIGN are

standard, and this is the only way to have standard flows on

OUT(x) under the condition that all arcs in OUT(x) are

saturated. Since we assume that N is feasible, and the

standard feasible flows on OUT(x) are unique by Lemma 3.2,

ASSIGN realizes on OUT(x) exactly the same flows as the

standard feasible flows. To use induction, take a node x

and assume that the flows realized by ASSIGN on OUT(y) of

all y with level(y)<level(x) are the only ones that is both

feasible and standard. These flows uniquely determine the

flows on IN(x). Given the flows on IN(x), it is also easly

to see that the flows on OUT(x) realized by ASSIGN are the

only ones that are feasible and standard at x. This shows

that ASSIGN gives the standard feasible flow if N is

feasible.

 Finally we consider the case in which N is infeasible .

Assume that ASSIGN has scanned all nodes x in N

successfully, then it is easily seen that the flow realized

by ASSIGN is feasible since it satisfies the constraints of

 50

flow

The

one

conservation and

only way not to

of (T-1)-(T-4).

 capacity.

reach this

0

This is a

conclusion

contradiction

is to halt at

51

3.5 TERMINATION CONDITION OF ASSIGN

 As described in Lemma 3.3, ASSIGN halts only at (T-1)-

(T-4) when an infeasible network is input. In this section,

we show that (T-4) always occurs earlier than (T-1)-(T-3).

That is, (T-4) in Step 3 is sufficient to terminate ASSIGN

if a given network is infeasible.

 For a node x and a node set X c V define

REACH(x)={v E VI 11 (v,x)40) u {x) ,

 OUT(X)= I OUT(x)
X E X

Let SCAN(x) denote the set of nodes already scanned when an

unscanned node x is chosen in Step 1 of ASSIGN (in

particular x V SCAN(x)). At this instant, all arcs in

OUT(SCAN(x)) are already assigned flows to their

capacities. Since ASSIGN chooses each node x in the

nondecreasing order of level(x),

 REACH(x) ESCAN(x) u{x)

always holds.

 For an infeasible CB network, ASSIGN halts by one of

(T-1)-(T-4). We have the following properties.

Lemma 3.4 For an infeasible CB network satisfying

Assumption B, ASSIGN does not halt by (T-1) or (T-2) .

52

 Proof. First assume that OUT(x)=Q but f0 for some

k. Since this x is a convergent node, we have x S holds

by Assumption, and

 c(x) = E gk - E c(a) = 0
tk=x a EIN(x)

holds. As flow values in IN(x) have already been determined

by ASSIGN, this means

E f(a,k) = E gk.
 k a EIN(x)tk=x

and hence

 I f X =0

as obvious from Step 1 of ASSIGN. Therefore, if fX0O for
some k, fx <0,i.e., (T-2), holds for some k'.

 Now we assume fx<0 for some k and derive a

contradiction. By Step 1, 4<0 is possible only if x=tk.

Also we have 11(sk,tk)40 by Assumption B and

skE REACH(x)-(x) SCAN(x). By the mechanism of ASSIGN, all

flows in OUT(SCAN(x)) have already been determined. If

f(a(u,v),k)>0 for some a(u,v)E A(REACH(x)-{x)), this implies

lI (v,tk)=¢, and ASSIGN must have halted in Step 3 by (T-4)

when it has scanned node uE SCAN(x). Therefore commodity

k from source sk passes through only nodes in REACH(x) and

reaches sink tk=x. This and flow conservation imply fx=0,

53

contradicting the assumption. ^

 For two nodes x and y such that II (x,y)#O, we define

two directed paths from x to y IR(x,y) and 71-L(x,y) as

follows.

7R(x,y): Any arc a(u,v)E OUTj(u) in 7R(x,y) satisfies

 that if an arc a(u,w)E OUTj(u) is to the right

 of a(u,v), then l(w,y)=0.

111(x,y): Defined similarly as above by replacing "right"

 with "left".

Lemma 3.5 For an infeasible CB network N satisfying

Assumption B, ASSIGN halts by (T-4).

 Proof. If ASSIGN does not halt by (T-4), it terminate

by (T-3) from Lemma 3.4. Assume (T-3) holds at x=x* in

Step 2 of ASSIGN. From A c(x*)=0,

 f=c(a)(3.5)
 kxac OUT(x*)

holds before Step 2 is performed. First we show j x>2 for

OUTj(x), j=1,2,...,jx. Since Step 2 is performed only if

OUT(x*)40, jx*>1 clearly holds. Assume jx*=1. Then the

condition 01=0 and H140 in (T-3) is impossible. Therefore

assume 0140 and K1=0. If fx*l>0 for some k1E K1 by H140,
then fx*2<0 for some k2 by 014 and (3.5). This means that

 54

 Z+

I

 X

 x+
q

 x,

X
q+1

OUT

,x*)

 r

(x*)

 (z" x*)

z

Fig. 3.2 Proof of Lemma 3.5.

55

ASSIGN has halted before choosing x*, a contradiction.

Therefore, assume fxJ=0 for all kE K1. Then fxJl>0 for some

kliK1(x*) by (3.5). AsII(x*,tkl)=O,wehave xrskl. At

this instant, there exists a node v satisfying

a(v,x*) E IN(x*) and f(a(v,x*),kl)>O, i.e., (T-4) holds.

Again ASSIGN must have halted before choosing x*, a

contradiction. Therefore we obtain jx*>2.

 To prove the lemma, assume that we continue Step 2 of

ASSIGN for all j=1,2,...,jx* even if some j satisfying (T-3)

are found. By flow conservation constrained for node x, we

have some j satisfyingOj=Qand K.00 and other j satisfying

Oj00 and Kj=0. Assume Oj=0 and K.00 for j=p. See

Figure 3.2. Since all flows in OUT (x*) have already been

determined, OUT(x*) is saturated and fx~l>0 for

k1E K(x). Here we show that source skl and sink tkl are

separated by an unilateral simple cut not satisfying the

cut-condition. Let a(x*,w) and a(x*,z) be the leftmost and

the rightmost arcs in OUTp(x*), respectively. Further let

a(w',x*) and a(z',x*) be the arcs next to a(x*,w) and

a(x*,z) in IN(x*), respectively. (Similar argument holds

even if a(w',x*) or a(z',x*) does not exist.) By

Lemma 2.5, there are connected divergent sets Xi,
i=1,2,..,ix*. Without loss of generality, assume

56

 a(w',x*)E INq(x*) and a(z',x*)E INq+1(x*). Since set Xq is
divergent, it contains REACH(x*). Let w"E REACH(w') nVB be

the rightmost node in the part of the boundary contained in

X.Similarly, let z"E REACH(z') nVB be the leftmost node

in the part of the boundary contained in Xq+1. We consider

the undirected path C consisting of T L(w",x*) and

TT R(z",x). C separates the graph into two parts. Let Z+

denote the set consisting of the nodes in C and the nodes in

the part (divided by C) not containing the end nodes of

OUT (x*). Further let Z-=V-Z+. By the selection rule of w"

and z", there is no directed path from a node in Z- to a

node in C, i.e., Z+ is divergent. As each initial node of

arc in A(Z+) belongs to path C, we have IA(Z+) nABI=2. Let

Zi, i=1,2,...,m, denote components of Z. By Lemma 2.4,

IA(Zi) nABI>2 for i=1,2,...,m. Since no arc exists between
Zl and Zit (iAi'), i.e., A(Z1) and A(Zit) are disjoint, it

holds IA(Z+) nABI>2m. Therefore m=1 and Z+ is connected.

Similarly we may obtain from IA(V-Z-) nABI=IA(Z+) nABI=2

that Z is connected.

 Now we consider the cut A(Z+). This is a unilateral

simple cut as obvious from the connectivity of Z+ and Z.

Since all initial nodes of arcs in A(Z+) are in path C,

 57

they are scanned and flow is already assigned to each arc in

A(Z+). Here we show, for any aE A(Z+), that

f(a,k)>0 then tkE Z-(3.6)

holds. In the case that aE OUT (x*), we have a connected

convergent set XP by applying Lemma 2.5 to OUTp(x*). XP

satisfies {tklk E Kp(x*)} Xp- n VB and further Xp E Z- from its

convergency. Then {tklkE Kp(x*)} Z- and (3.6) holds for

aE OUTp(x*) by the assumption O=0. Take a(u,v)E A(Z+)-

OUT (x*), and assume f(a(u,v),k)>0 with tk ' Z-. Then

IL(v,tk)=O holds from v EZ-,tk ' Z- and convergency of Z-,

and this means that ASSIGN halts by (T-4) when node u is

chosen, contradicting that u is scanned. Therefore we

obtain (3.6).

 Now we show that A(Z+) separates (skl,tkl) and does not

satisfy the cut-condition. Since A(Z+) is saturated, we

have

I I f(a,k) = c(a) .(3.7)
 k a EA(Z+)

At this instant, flow fxl is not yet assigned to any arc

from node x*. Since no flow passes through a unilateral

cut twice, we have the following from (3.6) and the

definition of fx*l.

I I f(a ,k) +fkl <g(Z+)•(3.8)
 k a E A(Z+)x

 58

By (3.7) and (3.8),

 r(Z+)=c(Z+)-g(Z+)<-fxV <0.

This shows that a unilateral simple cut A(Z+) does not

satisfy the cut-condition under the assumption that ASSIGN

halts by (T-3). This, however, contradicts Lemma 2.8, and

the lemma is proved. ^

 From the above argument, we see that (T-4) in Step 3 is

sufficient to terminate procedure ASSIGN if a given network

is infeasible.

59

3.6 COMPUTATIONAL COMPLEXITY OF ASSIGN

 In ASSIGN, all major operations are additions or

subtractions. This implies that the integral property

holds for the standard feasible flow realized by ASSIGN,

i.e., flows f(a,k) are always integer if all capacities c(a)

are nonnegative integers.

 The preprocessing to check whether a CB network

satisfies Assumption B or not requires 0(KIAI) time. The

computation of Kj(x) in Step 0 of ASSIGN is done by tracing

all nodes in the decreasing order of levels (i.e., from

sinks to sources). This is done in 0(KIAI) time. The

number of operations required in Steps 1 and 2 of ASSIGN for

each node x is 0(IOUT(x)I+K). Since E IOUT(x)I=IAI,
XE V

ASSIGN requires 0(KIAI+KIVI) time in total. Furthermore

0(IAI) = 0(IVI) holds by the planarity of N, and the time

becomes 0(KIVI). The required memory space is 0(KIVI) for

storing the flows in arcs. Consequently we obtain the next

theorem.

Theorem 3.1 The integral flow property holds for a capacity

blanced network N=(G=(V,E),P,g,c) satisfying Assumption B.

Procedure ASSIGN decides whether N is feasible or not , and

gives the standard feasible flow if N is feasible. The time

 60

and space required by ASSIGN are 0(KjVJ), 0

a

x9=t
1

,t
4

 x7 =t2

g1=20 ,g2=g3=g4

capacity: c(ai)

c(ai) =10 (i=1 ,
12

2

a7

 x8

10

20(i=3

,4,5,7
14)

=t3

,6 ,9 ,13)

,8 ,10,

x
1

1
s

2
s

Fig. 3.3 Example of a CB network.

61

Example 3.1 In Figure 3.3 and Table 3.1, an example of CB

network with K=7 and its numerical results are given.

ASSIGN scans the nodes in the order of xl,x2,...,x9 and

assigns flows to arcs in the order of al,a2,...,a14. The

values f(a,k),a E A,k=1,2,...,K, in Table 3.1 are the

standard feasible flows obtained by ASSIGN and fxkis the

values observed immediately after Step 1 of ASSIGN. In

Table 3.1, commodities in {) of K.(x) are ordered from left

to right. ^

 To compare the computation speeds of the simplex method

for general linear programming and algorithm ASSIGN,

[ITO 85] solved randomly generated CB networks. The size of

problems, L=KIAI, varies from 30 to 60. The computational

results confirm that ASSIGN works much faster than the

simplex method. The speed of ASSIGN is roughly 0.009*L2

times faster than the simplex method.

62

Talbe 3.1 Values of KJ.(x) fk 'x and f(a,k).

 x K~(x)

 x1. X3. x4 (3,6,7,2,5,1,4 ,)

X2. x5

(

1,4,3,6,7,2,51

x6 K,(x6)=(1,4),K2(x
6)=(3,6,7,2,5)

X7 (3,6,7)

XS. xy 0

 Values 0 f {r

 k\xi xi x2 x3 xa x5 x6 X7 xa xy

1 20 20 10 10

2 10 10 10

3 10 10

4 10 10

5 10 10

6 10 10

7 10

 Values of f(a,k)

 k\a a1 a2 a3 a4 a5 a5a, a8 a
9 a10 all alt a13 a14

1 20 10 10 10 10

2 10 10 10

3 10 10

4 10 10

5 10 10

6 10 10

7 10

 63

3.7 CONCLUSION

 In this chapter, we introduced the concept of capacity

balance. Based on it, we defined class CB of multicommodity

flow problems for class CB in directed networks, and

presented an efficient graph theoretic algorithm for it. In

the following chapter, we will discuss an extension of class

CB to a class of networks with capacity unbalanced nodes.

64

 CHAPTER 4

 ALGORITHM MATE1 FOR TESTING

 FEASIBILITY OF A CS NETWORK

4.1 INTRODUCTION

 In this chapter, we introduce class CS (capacity semi-

balanced networks), an extension of CB, and show that a CS

network can be reduced to a CB network. Therefore, CS also

has a polynomial time graph theoretic algorithm and the

integral flow property [NAGA 87a]. This class contains

certain multi-item multi-stage production scheduling problem

[IBAR 82] as a special case, indicating its importance in

practical applications.

4.2 DEFINITION OF DUMMY FLOW

 When there is some node x with i c(x)40, algorithm

ASSIGN does not work correctly. To handle such nodes, we

first remove all capacity unbalanced nodes by supplying a

flow of the new commodity d to each unbalanced node, the

amount of which is equal to the residue of capacity. This

defines the multicommodity flow problem with K+1

commodoties (i.e., k=1,...,K,d) by_adding sources and sinks

of commodity d to the capacity unbalanced nodes in N.

 65

Definition 4.1 For a network N, we call the following flows

of new commodity d, dummy flows. If Ac(x) > 0, then we put a

dummy source sX at node x (i.e., sX = x), and let

gx= Ac(x)>0 denote the supply amount of sx. Similarly if
Ac(x) < 0, then we put a dummy sink tX at node x, and let

gx = - Ac(x) > 0. Let
 gd: the set of gx.

 Sd: the set of all sx's. Td: the set of all tx's

pd:= (Sd,Td), Nd:= (G,P,Pd,g,gd,c)•

 The flows of d in N also satisfy constraints (1.5) and

(1.6). ^

Lemma 4.1 The multicommodity flow problem in Nd with

commodities k=1,...,K,d is feasible if and only if the

original problem in N with commodities k=1,. ..,K is

feasible.

 Proof. Obvious from (1.5),(1.6) and Definition 4 .1. ^

 It is obvious that the capacity constraint is satisfied

only if

 f(a,k) = c(a)
 k=1,...,K,d

holds. In other words, Ac(x) = 0 holds for all X V in

 66

the resulting network Nd. Note that commmodity d may have

more than one source and/or one sink, and (3) of

Assumption A does not generally hold.

 If a feasible solution f to Nd has a positive e such

that f(a,d) > e (>0), a EA(Tr), for some TrEn(s$,td),then
this flow from sX to td may be regarded as the flow of a new
K+1—th commodity. If all dummy flows can be decomposed

into new commodities by repeating this operation, then the

resulting network becomes CB. The feasibility of the

resulting network may be tested by ASSIGN. As such a

reducible class, we consider the following CS (capacity

semibalanced networks).

67

4.3 CS NETWORKS

Definition 4.2 We call that a multicommodity flow problem

N=(G,P,g,c) belongs to class CS if N satisfies the following

conditions.

 (1) N satisfies (1)-(3) of Assumption A.

 (2) Let Sd=(xl A c(x)>0), Td=(xl Ac(x)<O). Then V can

be divided into two connected sets X and V-X such that

Sdg X n VB and Td g (V-X)nVB (see Figure 4.1). ^

 As an example of CS, we present a certain multi-item

multi-stage production scheduling problem in Figure 4.2. In

this network, a slanting arc that advances one stage in each

period represents the production in the corresponding

stage. Such an arc is given a capacity with finite value.

A vertical arc that advances one period represents the

inventory and its capacity is considered to be infinite.

From the nodes marked with "s", materials of item k are

supplied, and finished items k are shipped from the nodes

marked with "t". Since the source-sink pair of each product

is specified, this may be reguarded as a multicommodity flow

problem. This network does not satisfy the condition of

capacity balance. We can, nevertheless, make all node

except nodes marked "si' or "t" balanced without loss of

 68

 1

 1

/

/

\

/

\

 X I
1

clockwise

d
 S
x2

d

xl

d

yl

d

y2

Fig. 4.1 Illustration of a CS network.

69

periods

 1

2

•

I

 stages 1 2 J

 S S S S S

I
^ N

\ 1
I \^1 ^L I

I I V

I L 1I 1.1 I I

I '1 1„ 1 1 I I

t ttt

 t

 t

 t

t

Fig. 4.2 Multi—item

scheduling

multi—stage

problem.

production

70

feasibility, by replacing (infinite valued) capacities of

all inventory arcs with some capacities of sufficiently

large finite values. As a result, a node x with A c(x)#0

exists only on the boundary and it is easily shown that a

node x with A c(x)>0 (A c(x)<0) must be a node marked "s"

("t"), i.e., (2) of Definition 4.2 holds. Thus the network

in Figure 4.2 may be considered as CS.

 In order to construct an algorithm for solving a CS

network, we shall derive some properties of a network in

class CS.

 From the definition of A c(x), any CS network clearly

satisfies

gx - I gx = 0.
 x E Sd x E Td

We define the left-right relation between nodes in Sd (Td)

on the basis of (2) of Definition 4.2 as follows: For the

set X in (2) of Definition 4.2, sxd is to the left of sx2 if

we visit sxd before sx2 when we go round the boundary of

the part contained in X nVB in the clockwise manner.

See Figure 4.1. Similarly we define for Td by using

(V-X) nVB. In Figure 4.1, t1 is to the left of ty2.

Lemma 4.2 Let Nd be the network constructed from a CS

network by Definition 4.2. If Nd is feasible, the

 71

rightmost node (say sX) in Sd and the leftmost node (say ty)
satisfy the following: ll(4,4)40 and there exist
Tri ,Tr2 , • • • ,Trm EH($X,ty) and ei (i=1,2,...,m) such that

E ei = min {gX, gy}, for each arc a E A(Tri),
i=1

e• < f(a,d)
Ida A(Tri)

 (summation runs over all i satisfying a A(1ri))

 Proof. For any feasiblbe solution f to Nd, let

 lld(x,y).{TrE11(x,y)lf(a,d)>0 for aEA(Tr)).

For eachsXand ty, there exist some tdETdand sWESd
satisfying lI(4,td)and 11(44)40. First,4=4or
sW=sX implies IId(sX,ty)O.On the other hand, if td#tyand
sWsX,then sincetdis to the right of td and sWis to the
left of 4, anyTraE TId(s$,tvd)40 and Tr b E IId(sd,td)O

y have a common node z by the planarity of G.Thus, from

ll(4,z)40 and 11(z4)40, IId(4,4)40 follows.
 Here we choose a Tr 1EIId(sd,td)and let •

el=min{f(a,d)laEA(Trl)}. Clearly e1<min{4,41}. If
el=min{g1,41} then the lemma is shown. If el<min{gX,gy}
then we consider the network Nd=(G,P,Pd,g,gd,c) defined by

72

 c(a):=c(a)-el, a E A(Trl)

c(a):=c(a), a q A('rrl)

f(a,d):=f(a,d)-el, a E A(Trl)

f(a,d):=f(a,d), a ci A(71)

 -d , d -dd g
x•=gx-el, gy.=gy el,

 "d .dwrx ,y• gw'=gw

Obviously f is feasible to Nd. Then for

lId(x,yA{Tr€ll(x,y)lf(a,d)>0 for a EA(Tr)},

we getlld(sx,ty) o from min(gX,41}>0 in the same manner
as above. Now we choose a72e Iid(sd,ty) and repeat the
same operation. As long as min(gX,gy}>O, this repetition
can be continued. Since min(gX,gy} must be reduced at
least by 1 at each iteration. gX or gy must becomes 0
after m(< °°) iterations, and we obtain 71,72,...,7m and

el,e2,...,em satisfying the lemma's statement. ^

73

4.4 ALGORITHM MATE1

 For a CS network Nd=(G,P,Pd,g,gd,c) with commodities

k=1,2,...,K and d, Lemma 4.2 asserts that Nd can be reduced

to a CB network by applying the following procedure NEW-

ITEM($,ty) to the the rightmost node sX in Sd and the
leftmost node td in Td.

Procedure NEW-ITEM(4, ty)
 e:= min{sX, ty);

 sK+1.= sX,tK+1.= tdY,gK+1.= e.

 '

 S:= S u {s/C+1); T:= T u {tK+1);

 P:= P u (sK+1, tK+1);

 gx.= gX-e; gy.= gy - e;
Sd:= Sc - {sxd), if gX = 0;

 Td:= Td - {tyd}, if gy = 0. ^

 By repeating this procedure, a CS network can be

reduced to a CB network.

74

Procedure MATE1

Input: A CS network N=(G,P,g,c) satisfying Definition 4 .2,

 where g={gl,g2,...,gK}.

Output: A CB network N=(G,P,g,c) that is feasible if and

 only if so is N, whereg'={g1,g2,,,.,gK,,,,,gK)

0. Construct the network Nd=(G,P,Pd,g,gd,c) with commodities

k=1,2,...,K,d according to Definition 4.1.

1. If Pd=0, then let P:=P K:=K and halt.

2. Apply procedure NEW-ITEM(sX,ty) to the rightmost node sX
 in Sd and the leftmost node td in Td. Let K:=K+1 and

 return to 1. ^

 Since iterations of Step 2 in MATE1 is at most ISdl

+1Td1(<1VBI), the required time of MATE1 is 0(IVBI). The

number of commodities generated by MATE1 is also 0(1VB1).

Theorem 4.1 If a CS network N=(G,P,g,c) satisfying

Definition 4.2 is feasible, then N has a feasible flow with

integral property. Procedure MATE1 and ASSIGN test its

feasibility correctly. The time and space required by MATE1

and ASSIGN are 0((K+1VB1)1V1).

 Proof. To show the theorem, reduce N to a CB network by

MATE1 and apply ASSIGN. Because this calculation needs only

addition and subtraction, the integral flow property holds.

 75

The resulting CB network with 0(K+IVBI) commodities clearly

shows the required time and space of the theorem. ^

Example 4.1 We present a CS network in Figure 4.3. Here,

Sd=(xl,x2,x3), Td=(x7,x8}. Applying MATE1 to this network,

dummy sources sxl, sx3' sx5 and dummy sinks tx4, tx$ are

first created by Definition 4.1 (wheregxd=gx3-d_gx5-_gxd7- d_10 l

. and Pd is decomposed into source-sink pairs gx8=20)

(x5,x7),(x3,x8),(xl,x8) of new commodities. This completes

the reducton to CB network. The obtained CB network is

shown in Figure 3.3, and its feasibility can be tested by

ASSIGN. ^

76

x9=t1,t4

 X5=S

a8

8

3

kX
1

=5
1 2

 ,s ,s
7

g1=20 ,gk=10 (k=2 ,3 ,4 ,5 ,6 ,7)
capacity: c(ai)=20(i=3 ,6 ,9 ,13)

c(ai)=10(1=1 ,2 ,4 ,5 ,7 ,8,10,11,
12, 14)

Fig. 4.3 Example of a CS network.

77

4.5 CONCLUSION

 In this chapter, by introducing the concept

flows, we showed that a network in class CS can be

to a network in class CB, and develpoed an

graph theoretic algorithm for CS. Another class

also reducible to class CB by a similar method

discussed in the next chapter.

of dummy

 reduced

efficient

that is

will be

78

 CHAPTER 5

 ALGORITHM MATE2 FOR TESTING

 FEASIBILITY OF A CU NETWORK

5.1 INTRODUCTION

 In this chapter, we introduce class CU (capacity semi-

balanced unilateral networks) as another class reducible

to CB, and develop 0(1V13) time algorithm that reduces CU to

CB. In the next chapter, it will be shown that the max-flow

min-cut theorem holds for class CB and CS, but CU does not

have this property. In this sence, class CU is

theoretically interesting because it can still be solved

graph theoretically in polynomial time '[NAGA 87b]. The

multi-item multi-stage production scheduling problem [IBAR

82] is also a special case of class CU, and it indicates its

importance in practical applications.

 In the subsequent discussion, we solve two examples of

CU network NA and NB, illustrated in Figure 5.1 and 5.2,

respectively. The network NB is presented by Kennington

[KENN 78] as a counterexample to the max-flow min-cut

theorem.

79

 a

 s 5
 ti

(44

 a

0

(=y4)

(=y5)

4
s

ti
=x

0

) .'

) 1 1 I/
I 1 /

y

k
g=1 for k=1

,2,...,10

: capacity 1
-----~~ : capacity 2

-----~^-^ : capacity 3

--^-~.-~ : capacity 4

QO : dummy sources
41: dummy sinks

=t-

(=y¶)

=t (=y1)

0

(x1;x2)

=t

a

(=y2)

'L
=X

V—X

=t

ti
X

2
)

Fig. 5.1 CU network NA.

80

6,S1

 O

g1 z

412
CaPa

1

cytl
es a

re

°t2

O) 11"2

0

2

1

Fzg
. 5.2 C

U net
work N

B•

81

5.2 CU NETWORKS

 We define the unilaterality of a node in a network

satisfying Assumption A as follows. Consider INi(x), i=1,

2,...,ix, and OUTj(x),j=1,2,...,jx defined in Chapter 2.

Here, a node x is called unilateral if ix<1 and jx<1, and

semi-unilateral if ix*jx=2. Note that ixAjx occurs only for

node x in the boundary. In Figure 5.1, node s6 is semi-

unilateral and other nodes are all unilateral. Further, if

arcs in OUTj(x) are al,a2,...,am (aranged in the clockwise

manner), we say that ai is to the left of aj for i<j.

Definition 5.1 Multicommodity flow problem N=(G,P,g,c)

belongs to class CU if N satisfies the following

conditions.

 (1) N satisfies Assumption A.

 (2) All node in G are unilateral or semi-unilateral.

 (3) Let Sd={x1a c(x)>0), Td={xIL c(x)<O). Then all

nodes in Sdu Tdc VB are unilateral.

 (4) Sdu Tdg VB. ^

 For example, NA in Figure 5.1 and NB in Figure 5.2 are

CU networks.

 To test the feasiblity of a CU network and to find a

 82

feasible flow if the network is feasible, we try to reduce a

CU network to a CB network. For this purpose, we introduce

dummy flow according to Definition 4.1. For NA in

Figure 5.1, we get Sd={sl,t9,s2,s3,s4,s5},

 Td=(t4,t5,t7,tl,s7). In Figure 5.1, QO and 40 repersent a

dummy source and a dummy sink, respectively.

 By Lemma 4.1, the multicommodity flow problem in Nd=

(G,P,Pd,g,gd,c), with commodities k=1,...,K,d, is feasible

if and only if the original problem in N=(G,P,g,c) with

commodities k=1,...,K is feasible.

 Note that commmodity d may have more than one source

and/or one sink, and hence (3) of Assumption A does not

generally hold.

 If a feasible solution f to Nd has a positive e such

that f(a,d)>e(>0), aE ACT), for some ¶ E 11(4,41‘,then
this flow from sX to td may be regarded as the flow of a new

K+1-th commodity. If all dummy flows can be decomposed to

new commodities by repeating this operation, then the

resulting network becomes CB. The feasibility of the

resulting network may be tested by ASSIGN. It will be shown

that CU (capacity semi-balanced unilateral networks) is also

such a reducible class.

 83

 Here, we introduce a unilateral simple cut. For nodes

 x,y E V with II (x,y)=O, let X' be the set of nodes reachable

from x. Clearly X' may be obtained by computing a maximal

directed tree with root x. Time required for this

computaton is 0(JAI). V-X' is composed of connected

divergent sets Xk,k=1,2,...,m. No arcs exist between

distinct sets Xk, and some arcs from Xk to X' exist between

Xk and X'. Let Xk, denote the Xk including y, and X-(x;y)

denote the connected convergent set V-Xk,. Similarly let X"

be the set of nodes reachable to y, where l(x,y)=fib. Among

the components in V-X", let X"k be the connected convergent

set containing y, and X+(y;x) denote V-X"k.

 For example, if x=s1,y=s4 in Figure 5.1, then we get

X'={sl,t4,t9,t5,t2,t7,t1,s6,s7,s8,s9,s10,xl,y' ,z'},

X1={s2}, X2={s3}, X3={s4,w'}, X4={s5}, x-(s1;s4)=V-X3 .

 If y=t7,x=s2 in Figure 5.1, then we have

 X"={t7s3s4s5s6s7slx'yw's9s10} ,,,,,,,,',,,,

X"1={t4,t9,t5,s2,t2,s8}, X"2={t1,z'}

X+(t7;s2)=V-X"1.

Lemma 5.1 If a directed graph is connected (neglecting the

directions of arcs), then for any pair of nodes x,y EV with

ll(x,y)=Q, the above sets X-(x;y) and X+(y;x) satisfy the

 84

following.

 II (x,v)#O for all nodes v with a(u,v)E A(V-X-(x;y)).

II (u,y)O for all nodes u with a(u,v)E A(X+(y;x)).

Furthermore, A(V-X-(x;y)) and A(X+(y;x)) are unilateral

simple cuts respectively.

 Proof. Obvious from the definition of X+(y;x) and

X (x;y)• ^

 In Sections 5.3-5.5, we clarify the properties of CU.

Then in Section 5.6, we show that CU can be reduced to CB by

algorithm MATE2.

85

5.3 A POLE OF DUMMY FLOWS

 For two sets of nodes X and Y with X Y=0, we define

 d(X)= Egx - E gy.(5.1)
SXEX tyEY

If a network is feasible, the cut-condition:

r(X)>0for all X EV

clearly holds. Furthermore, for any connected divergent set

X, the following condition holds.

d(X)>0

 A boundary line refers to an undirected path

representing a part of the boundary. A boundary line from

node x to node y refers to the undirected path when we go

around the boundary from x to y in the clockwise manner.

Note that SdIJTdc VB holds by Definition 5.1. Then Ndwith

Sdu Td40 has two nodes x=4z Sd and y=ty ETd, such that no
other dummy sources and sinks exist in the boundary line

from x to y (or y to x). We call such (sXty)a
neighbouring pair. If a neighbouring pair (x,y) satisfies

II(x,y)40, then (x,y) is called a pole. In Figure 5.1,

(17)is a pole, and (s5,s7)i s,sis a neighbouring pair (but

not a pole).

 86

Lemma 5.2 If G of Nd=(G,P,Pd,g,gd,c) is a connected

(neglecting the directions of arcs) planar directed graph

and OASd u Td c VB, then a feasible Nd has at least one pole.

 Proof. Assume that Nd has no pole. From ISdi>1 and

ITdl>1, there exists a neighbouring pair (x1,y1) with

xiE Sd, y1E Td. Without loss of generality, we assume that

there are no dummy sources and sinks in the boundary line

from x to y. Since II(xl,y1)=0 from the assumption,

V1=X+(y1;x1) exists by Lemma 5.1, where y1E V1 and xl / Vi.
From the feasibility of Nd, d(V1)>0 holds, and this means
Vi n SdAO. Here, let x2 be the node in VI n 5d nearest to yl
in the boundary line. If there exsits another dummy sink in

the boundary line from yl to x2, let y2 be the dummy sink

nearest to x2. Ohterwise, let y2=y1. See Figure 5.3. Here

(x2,y2) is a neighbouring pair, and ll(x2,y2)=95 holds by

assumption. ThenV2=X-(x2'y2)exists byLemma 5.1, where

x2 E V2, y2 / V2. Now we show V2V1 as follows. Assume
V2-V1A0, then there exists an arc a(u,v)E A(V1) satisfying
u E V1n V2 and vEV1 -V2 from the divergency of Vi. Apply
Lemma 5.1 to Vi, and we have ll(u,y1)40 for the above node
u. This, however, contradicts the convergency of V2 by
u EV2. Then we get V2-V1=0, and V2Viholds from

y2 EV1, y2 4 V2. We may define the neighbouring pair

87

 X

 *
 V1 =X

~f
.

(y1;x1)

Y2

`j am

V2

x

NCO'

-11-/

i

i ,A'

Fig. 5.3 Proof of Lemma 5.2.

88

 (xi,y1) in the same way. This argument cannot be repeated

indefinitely, however, because V is finite and Vi+1 O Vi

always holds. This proves the lemma. 0

 Since the proof of Lemma 5.2 does not need (2) of

Assumption A, we obtain the following corollary.

Corollary 5.1 Even if G has divergent and/or convergent

nodes outside of the boundary in Lemma 5.2, a feasible Nd

has at least one pole. ^

89

5.4 STRUCTURE OF A CU NETWORK

 Take two directed paths from x to y, 1 R(x,y) and

TTL(x,y), defined in Section 3.5. In Figure 5.1, for

example, we get Tr R(sl,t4):slx'y'}s94.s8t4, and

Tr L(s4,ty):s4}w yr 3 s9÷ s10-- t7.

 If four nodes x,y,w,z are located in the boundary

clockwisely in this order and they satisfy 11(x,304,

 II (x,z)O, II (w,y)O, II (w,z)O, as illustrated in

Figure 5.4, then we call these node are 4-reachable. For

example, s1,t4,s4,t1in Figure 5.1 are 4-reachable.

Lemma 5.3 In a CU network, if four unilateral nodes x,y,w,z

are 4-reachable, then TrR(x,y) and TtR(w,z) have no node in

common. Similarly for TrL(x,z) and TrL(w,y). Let x' be the

node farthest from x among the nodes common to TrR(x,y) and

TrL(x,z). We define y',w',z' similarly. See Figure 5.4.

Then the cycle C (neglecting the directions of arcs)

consisting of TrR(xy'), TrR(w',z'), Tr L(x',z') and

TrL(w',y') is a window in G. Furthermore, V can be divided

into two connected divergent sets X+,W+ and two connected

convergent sets Y-,Z- satsfying x EX+, y EY-, w EW , zE Z.

 Proof. Assume that a path Trl E II(x,y) and a path

72 E ll(w,z) have a common node u. This node u is unique,

90

TT (x >Z)
I

 (x, Y)

1

1

Fig. 5.4 Definition of 4-alternating partition.

91

since otherwise a directed cycle exists. Node u satisfies

 i>2 and j>2 as shown in Figure 5.4 contradicting the

unilaterality of the graph. Therefore TrR(x,y) and TrR(w,z)

have no nodes in common (similarly for 7L(x,z) and

TiL(w,y)). The cycle C (neglecting the directions of arcs)

consisting of 1R(x',y'), R(w',z'), 7 L(x',z') and

TrL(w',y') is simple by the selection rule of x',y',w' and

z'. We show that cycle C is a window in G. If C is not a

window, then the area surrounded by C contains an arc

a(u0,v0). This node v0 is reachable to a node ul in VB,

otherwise the set of nodes reachable from v0 is a connected

convergent set with no nodes in VB and contradicts

Lemma 2.3. Similarly u0 is reachable from a node u2 in

VB. The path from u2 to ul through a(u0,v0) has nodes u'l

and u'2 that belong to C, by planarity of G. Therefore there

exists a simple path Tr 0 from u'2 to u'l through a(u0,v0).

Without loss of generality, we assume that u'2 is in

7L(x',z') (similarly for the case u'l is in the other path

except Tr L(x',z')). If u'l is in Tr L(w',y'), then the path

consisting of Tr L(x,u'2), Tr 0 and Tr L(u'l,y') contains an arc

located to the right of the first arc in i R(x',y'). This

contradicts the definition of R(x',y').

 Now add a node v0 and four arcs a(x',v0), a(v0,y'),

 92

 a(w',v0), a(v0,z') in the area surrounded by C. The

resulting graph G" still satisfies Assumption A (1) -(3) . By

Lemma 2.5, V u {v0} is divided into two connected divergent

sets X+,W+, two connected convergent sets Y- ,Z- and (v0),

such that x E X+, y E Y-, w E W+, z E Z- . These X+,Y-,W+,Z-

also satisfy the condition of the lemma in G. 0

 We call the above X+,Y-,W+,Z- a 4-alternating partition

and call the window C satisfying Lemma 5.3 a partition

window. Furhter A(X+;Y-) is called a unilateral semi-cut .

For example, in Figure 5.1, the partition window C is the

cycle containing x',y',w',z' and the 4-alternating

partition is given by X+={sl,s7,s6,s5,x'},

Y-={t4,t9,t5,s2,t2,s3,t7,s8,s9,s10,y1}, W+={s4,w1} and

Z-={t1,z'}.

 A feasible CU network with Sdu Td o has a pole (x,y) by

Lemma 5.2. Since 1I(x,y)O implies l(y,x)=O, there exists

a unilateral simple cut A(X+) with x EX+,y EV-X+ by

Lemma 2.1. If r(X+)=0 for this connected divergent set X+,

there is no dummy flow from x ESd to y ETd. Similarly, if

a 4-alternating partition X+,Y-, W+,Z- with x EX+,y€ Y

exists for a pole (x,y) and furthermore r(X+;Y-)=0 holds,

then no dummy flow from x to y exists. Here we call a pole

 93

not satisfying these conditions a non-trivial pole.

Namely a non-trivial pole (x,y) satisfies the following

conditions (1),(ii).

 (i) r(X+)>0 for any unilateral simple cut A(X+) with

x E X+, y E V-X+.

 (ii) r(X+;Y-)>0 for any 4-alternating partition X+,

Y-,W+,Z- with x E X+,y E Y-.

 For the pole (vl,v2) in Figure 5.2, A(X+) with

X+={vl,v6} is a unilateral simple cut, and vl EX+,v2E V-

X+,r(X+)=2-(gl+g2)=0. Therefore (vl,v2) is a trivial

pole.

Lemma 5.4 If a CU network N=(G,P,g,c) with Sdu TdA0 is

feasible, then Nd=(G,P,Pd,g,gd,c) has at least one non-

trivial pole.

Proof. See Appendix. ^

 Here we describe an outline of algorithm MATE2 to be

disccussed in Section 5.6. We first construct the set Q of

all poles in Nd If Q contains no non-trivial pole, then Nd

is infeasible. Otherwise, there is a positive some amount e

of dummy flow from x to y, as will be shown in Section 5.5.

 94

Therefore we

pair (x,y)

removed from

complete the

 create a new commodity K+1 with source

and gK+1_e. As a result of this, (x,y)

 Q. By repeating this until Q=O holds,

reduction of CU to CB.

sink

 is

 we

95

5.5 a -CUT AND s—CUT

 In this section, we test whether a pole (xl,y1) is

trivial or not. We also describe some lemmas necessary for

determining the amount e(>0) of dummy flow from x to y.

Without loss of generality, we assume that no other dummy

source or sink exist in the boundary line from xl to yl.

When we go around the boundary clockwisely starting from xl,

we define rank(x1)=0, and rank(z)=i for the i-th node

zE VB. Further let

 Td(x1)°={yE TdJ 11(x1,y)40).

If ITd(x1)1=1 (i.e., Td(x1)=(y1)), then obviously there

exists a dummy flow of amount gxd from xl to yl. In the

subsequent discussion, we consider the case q=1Td(x1)I>2.

Without loss of generality, assume that Td(xl)=1y1,y2,...,

yq) satisfies rank(y1)<rank(y2)<...<rank(yq), as illustrated

in Figure 5.5. We further divide V into the following

sets.

 VB0 (zE VBIrank(xl)(=0)<rank(z)<rank(yl)),

4 VBi = (zE VBIrank(y0<rank(z)<rank(yi+1)),

i=1,2,...,q-1,

 VBq= (zE VBIrank(yq)<rank(z)).

96

 •

 •

•

 VBn

 xi

1

 yi

•

•

•

Fig. 5.5 Explanation of Definition of VBi,xi and xi.

97

In each VBi, i=1,2,..,q-1, we define the following sets of

dummy sources.

Sa a {x E Sd Ix E VBi, Il (x,y1)O} ,(5.2)

Sdi =° (x EShcx EVBi,1(x,yi+1)#~},(5.3)

 I ! (i1Sdi4$,

If SidAO, then let xi denote the node with the maximum rank

in 5140. If Sd#Q, the let xi denote the node with the

minimum rank in Y.These are also illustrated in

Figure 5.5. For example, interpreting pole (sl,t4) as

(xl,y1) in Figure 5.1, we get y2=t5, y3=t7, y4=t1, y5=s4

(i.e., q=5), and x1=t9, 7c2=s2, x2=s3, 7c3=x3=s4, 7c4=s5,

I={1,2,3,4}.

 Furthermore, we classify VBi, i=1,2,..,q-1, as follows

Case-1: S4=0.

 Case-2: SIA0 and 11(x1,7c0O.
 Case-3: S140, ll(xl,xi)=O and Sd=O.

 Case-4: S140, ll(x1,x0=0, 440 and ll(xl,xi)O.
There still remains the case of S140, ll(xl,xi)=¢, Sdi Q and

ll(xl,xi)=O. In this case, there exists X-(xl;xi) and

X-(x1;xi). Let

Vl (V-X-(xl;xi)) u(V-X-(x1;x0)•

Based on this Vi, we add the following cases.

 98

 Case-5: SIAO,11(x1,xi)=O, Sd ~,II(xl,xi)=O and V1=O.
 Case-6: S1AO, 11(x107i)=9, 44, 11(xl,xi)=0 and V1o.
 Now a unilateral simple cut A(X4) satisfying the

following condition is called a-cut.

yi+1'yi+2' ...,yq,x1 EXi' yl,y2,..,yi'xiE V-4, and there
 are no x' E Sd , y' E Td such that x' E VBi n Xl , y' E V-Xi and

11(x' , y') A0 .

Here, if r(Xt)=0, then any feasible solution f to Nd has no

dummy flow from xl to yl by the definition of r, and

therefore (xl,y1) is a trivial pole. If r(X4)>O, f has the

amount r(X4) of dummy flow through this a-cut, as obvious

from the unilateraliy of the cut.

 In each of Cases-2,4,5, there always exists an a -cut

as shown in the following lemmas.

Lemma 5.5 In Case-2, let X1=V-X-64;yi+1)• Then A(X4) is

an a-cut.

 Proof. This is illustrated in Figure 5.6. See

Appendix for details. ^

99

o — ti

1 X (x.;yi+l)

 yi+1

 X

 O

O

X

.R' N of

X+

v 1

137

O

a-cut

yi

Fig. 5.6 a-cut for Case-2.

100

Lemma 5.6

is an a-cut.

Proof.

Appendix for

In Cases-3,4,

 This

details.

let X1=X+(yi+l'xi)•

is illustrated in Figure

Then

5.7.

A(X1)

See

(y i+1;

y i+1

 (X
of

xl

>c\f`

x,

1

T.-

 I rti...-

,1

 I /\

Diati

1

I y' a

 X
_~--

yi

Fig. 5.7 a -cut for Case-3 and 4.

101

Lemma 5.7

Then A(Xi) is

Proof.

Appendix for

In Case-5,

 an a -cut .

 This is

details. ^

let Xi=X+(yi+l-xi

illustrated in

) u(V-X-(xl;xi).

Figure 5.8. See

 (Y i+1

yi+1

b1

i0

z

 /

v

"2

x1

,Co

1
 I a

l

b21

z'•
 w

L.

V-X (x 1; 2) '

.,

V-X

O) x

(x1; X i)

Fig. 5.8 a—cut for Case-5.

102

 For example, let (xl,y1)=(sl,t4) in Figure 5 .1. Then

Cases-2,5,3 hold for 1=1,2,4, respectively. For 1=1,2,4 we

obtain

X7+.=V-X-6(1;y2)=V-{t4,t9),

4=X+(y3;x2)U (V-X-(x1;x2)) ={sl,x',y',s9,s10,s3,t7,

s4tls5s6s7z' w'}u{s3}

 X4=X+(y5;x'4)={sl,s7}

The a -cuts defined for these sets have the following

properties.

 =6-(g4+g8+g9)=3, r(Xl)

r(4)=7-(g3+g4+g5+g6+g9)=2,

r(4)=5-(gl+g7)=3.

 In Case-6, there may not be any a -cut. However, there

exists a 4-alternating partition Xl, Y1, Wt, Zi satisfying

the following conditions.

 x1 EXi, y1,y2,...,yiE Y1,

 --i,--i E1 'yl+l E C. •

 We call such a 4-alternating partition of V Xi, Yi,

Wt, Zl a P.-partition for i, and A(Xi;Yj) is called a P.-

semi-cut for i.

103

Lemma 5.8 Case-6 always has a 13-partition for

 Proof. This is illustrated in Figure

Appendix for details. ^

i.

5.10. See

yi+1

 i_

X
 1

r w0

W+

 i

Y

Fig. 5.9 R - partition for Case-6.

104

 Let (x1,y1)=(sl,t4) in Figure 5.1. Case-6 holds for

i=3. A method to construct a (3-partition is given in the

proofs of Lemmas 5.3 and 5.8. According to them, we obtain

 X3={sl,s7,s6,s5,x'},

 {4 9 5 2 2 3 7 8 9 10r Y3=t,t,t,S,t,S,t,S,S,S,y},

W3={s4,w'}, Z3={tl,z'}.

The resulting f3-semi-cut is as follows.

A(X3;Y3)={a(s1,t4),a(x',t4),a(x',s8),a(x',y')},

r(X3;Yg)=5-(g5+g6+g7)=2.

105

5.6 ALGORITHM MATE2

 In this section, we first describe a method for

testing the triviality of a pole (xl,y1) and for computing

the amount a>0 of dummy flow from xl to yl in case (x1,y1)

is a non-trivial pole. Using this, we then present

algorithm MATE2 that determines the assignment of dummy

flows.

 By the definition, X-(xi;yi+1), X+(yi+1;xxi) and

X-(xl;xi) are obtained by computing a maximal directed (or

reversely directed) tree with an appropriate root. The

corresponding a -cuts can be computed from these. We

compute a a -semi-cut defined by a (3-partition Xi, Yi, Wt,

Zi as follows. We first obtain A(Xt) and compute the

s-semi-cut from it as follows. Let x' be the node nearest

to yl among the nodes contained in both 'rrR(xl,yl) and

7L(xl,yi+1) (in Figure 5.4, for example, we consider x=x1,

y=y1' z=yi+1, x'=x'). Here X+(x';y1) is a cut A(X4) as its
4-reachability can be easily shown. X+(x';y1) can be

obtained by computing a maximal directed tree. Let C be the

partition window providing the s-partition. There exists an

arc a with {a}=C nA(X4;YI), which can be computed from

A(TrR(x1,y1))n A(X1). The (8-semi-cut A(X4;Yj) can then be

constructed from A(Xt) and the arc a.

 106

Lemma 5.9 Let (xl,y1) be a pole in a CU network Nd. There

are a or 3-cuts A(Xt) for iE I, such that X1pX~holds for
every i<j. There a, (3-cuts for all iE I of a given pole

can be computed in O0V12) time.

Proof. See Appendix. ^

 In fact, pole (xl,y1)=(sl,t4) in Figure 5.1 has a-cuts

satisfying X4 X3 X2 X1.

 Let Ai denote the a-cut or (3-semi-cut satisfying

Lemma 5.9, and let ri be its r-value.

Lemma 5.10 Take i.j EI such that k j I holds for any k

with i<k<j. Let ej denote the amount of dummy flow that

goes out of xl and passes through cut Aj in a feasible

solution. Then the feasible solution has the amount ei of

dummy flow that goes out of xl and passes through Ai, where

ei=min{ej,ri}.

Proof. See Appendix. ^

 For pole (xl,y1)=(sl,t4) in Figure 5.1, let j=4,i=3.

Then we obtain e4=r4=3, r3=2, e3=min{e4,r3}=2 from

Lemma 5.10.

 Since there exists no a-cut or 3-semi-cut for each

iE(1,2,...,q-1)-I, Ai is undefined for such i. Here, we

 107

assume that the r value of such i is infinite (i.e., let

ri=+oo) for convenience. The amount of any dummy flow from

 xi to y1 does not clearly exceed the value e determined by

 e = min fgxl,rq-1'rq-2,...,rl,gy1}.
The following lemma claims that this amount e of dummy flow

from x1 to y1 in fact exists.

Lemma 5.11 For a pole (x1,y1) in a feasible CU network Nd,

assume q=1Td(x1)1>2, and let

e = min (gxl,rq-1,r(1-2,...,rl,gy1}-
Then a feasible solution in Nd has the amount e of dummy

flow from xlto y1.

 Proof. Apply Lemma 5.10 in the order of i=q-1,

q-2,...,1. See Appendix for details. ^

 For pole (x1,y1)=(sl,t4) in Figure 5.1, we obtain e=4

from gx1=4, gy1=4, r4=3, r3=2, r2=2, r1=3.

Lemma 5.12 A pole (x1,y1) in a feasible CU network Nd is

non-trivial if and only if e>0.

 Proof. If e=0, it is clearly trivial. If e>0, there

exists a positive dummy flow from x1 to y1 by Lemma 5.11.

Therefore conditions (i),(ii) for being a non-trivial pole

(described prior to Lemma 5.4) are satisfied. ^

 108

 In the following algorithm for reducing a CU network Nd

to a CB network, we compute the e of Lemma 5.11 for each

pole (xl,y1). If e<0 holds for some pole (xl,y1), then Nd

is infeasible and we terminate the procedure. If e=0, then

(x1,y1) is a trivial pole and we remove it from the set of

poles Q. If e>0, then the amount e of dummy flow from xl to

yl is replaced by a new commodity K+1 applying the following

procedure NEWITEM.

Procedure NEWITFI4(xl,y1,e,K)

 sK+1:=x1,J-4-1:=y1, gK+1.=e,

S:=S{sK+l},T:=T u{tK+1}, p:=p u{(sK+1,tK+1)),

d. d d. d g
x1'=gx1-e, gyl•=gyl-e,

 Sd:=Sd-{sxd}. if gxd=0•

Td:=Td-{tyl}, if gy1=0. ̂

 For pole (xl,y1)=(sl,t4) in Figure 5.1, the 11-th

commodity with (sll,t11)=(sl,t4), g11=2 is created by

NEWITEM(s1,t4,2,1O).

 As a result of this, if there exists an i with e=ri,

then the updated ri becomes 0. Therefore pole (xl,y1) is

removed from Q. If e=gx1 (or e=gyd), then xl t Sd (y1 t Td)

implies that (xl,y1) is not a pole any longer, and it is

 109

removed from Q. At this time, it is possible that a new

neighbouring pair (x',y1) (or (xl,y'),(x',y')) is

generated; we add such a pole to Q. From the above

discussion, we obtain the following algorithm MATE2 in order

to reduce CU networks to CB networks.

Procedure MATE2

Input: CU network N=(G,P,g,c), where gk=(gl,g2...,gK).

Output: CB network N=(G,P,g,c) that is feasible if and only

 if so is N, where g`k=(g1g2...,gK,...,gK).

0. Construct Nd=(G,P,Pd,g,gd,c) with commodities

k=1,2,...,K,d. and compute the reachiability II (x,y)

 between every pair of x E Sd and ye Td. The set of all

 such 1I(x,y) is denoted II(Sd;Td). From II(Sd;Td),

 compute the set of poles Q in Nd.

1. If Q=O and Sdu Td#¢, halt by concluding infeasibility.

 If Q=0 and Sdu Td=O (CB network is obtained), let P:=P,

 K:=K and halt.

2. IF Q,O, then choose a pole (xl,y1) in Q and compute

 Td(x1), q=1Td(x1)1. If q=1, let e:=min{gxi,gyd} and

 proceed to 3. Ifq2, compute Sd, ST (i=1,2,...,q-1)
 from II (Sd;Td). Then compute a-cuts or 3-semi-cuts Ai

 for iE I, as well as thier values ri. Let

 110

 e:=min{gxl'rq-1'rq-2,...,rl,gyd}.
 If e=0, proceed to 4. If e<0, then halt by concluding

 infeasibility.

3. Create a new commodity by calling NEWITEM(x1,y1,e,K).

4. Q:=Q-{(x1,y1)). If a new neighbouring pair (x',y1) (or

(xl,y'),(x',y')) is generated, check whether the

 neighbouring pair is a pole or not by usingll(Sd;Td).

 Add it to Q if it is a pole. Return to 1. 0

 The initial cardinality of Q is at most

min{ISdI,ITdJ)*2 because each dummy sorce (sink) is in VB

and contained in at most two poles. This cadinality

decreases by one at Step 4, or does not change when a new

pole is created in Step 4. If IQI does not change, however,

the cardinality of Sd u Td decreases at least by one. This

means that the number of iterations until Q=Q is at most the

sum of the initial cardinality of Q and 15d uTdI, which is

0(IVBI). Since the amount e of Lemma 5.11 can be

determined in 0(IVI2) time for a pole (xl,y1) eQ by

Lemma 5.9, the time required in one cycle of Steps 1-4 is

also 0(IVI2). ll(Sd;Td) in Step 0 can be computed in

0(IVI2) time. Therefore the entire time of MATE2 is bounded

from above by 0(1V13). The required space is 0(IVI2) which

111

is necessary to store ll(Sd;Td) and other data. Fainally we

consider the number of new commodities created by MATE2.

Since the source sink pair of any new commodity is a

neighbouring pair when it is created by MATE2, no two paths

from sources to sinks of new commodities cross each other.

Thus the number of the created commodities is bounded from

above by IVBI. This proves the following theorem.

Theorem 5.1 If a CU network N=(G,P,g,c) of Definition 5.1 is

feasible, then a feasible solution to N satisfies the

integral flow property. The procedure MATE2 and ASSIGN test

the feasibility of a CU network correctly. The required

time and space are 0(KIVI+IV13), 0(KIVI+IVI2) respectively.

0

 For the network NA in Figure 5.1, we obtain the initial

set of poles Q=((s1,t4),(t9,t4),(s2,t5),(s3,t7),(s4,t7).

(s4,0),(s5,0),(sl,s7)). We illustrate the process of

MATE2 applied to NA in Table 5.1. New commodities k=11-20

are created.

112

Table 5.1 Application of MATE2 to NA.

Selected
 d d g

xl 'gyl q Case and r1 e New Out from Trivial Pole added

pole for each i item Sd Td pole after to Q

(xl,yl) modifi-

cation

(s1, t4) 4, 4 5 i=1:Case-2, r1=3 K=11
1 (s1,t4)

 (t9, t4)

(s2, t5)

(s2, t4)

(s3, t7)

(s 1, t7)

(s4, t7)

(s4, t1)

(s 1, t1)

(s5, ti)

(s 1, s7)

1, 2

2, 1

1, 1

2, 4

2, 2

i=2

i=3

i=4

1

2 1=1:

1

1

2 1=1:

Case-5,

Case-6,

Case-3,

r2=2

r3=2

r4=3

Case-1, r1=+°°

Case-6 , rl :11
=2

2

2

1

1

1

2

0

K=12

K=13

K=14

K=15

to

s

s

2

3

t

t

5

4

(sl,t7)

(s2, t4)

(sl , t7)

 X1

X2

X3

A(X1+;

A(X1+;

A (Xl+)

1=

i=1

Case-6,

Case-3

17

18

19

20

Y1)=(a(s1,t4),a(x',t4),a(x',s8),a(x',y'))

Y1)=(a(w',y'),a(w',s10),a(s4,t7))

=(a(sl,t4),a(sl,x'),a(s7,x'),a(s7,s6)}

(s1 t1)

tl)

113

5.7 ON THE CONDITIONS DEFINING CU NETWORKS

 If we remove the conditions (3) and (4) of

Definition 5.1, the network in Figure 5.10 serves as a

counterexample to the integral flow property. This suggests

the difficulty to generalize the method discussed in this

chapter to such networks.

 For any positive rational number k/n (n and k are

positive integers such that 1<k<n), we can construct a

network that has the unique feasible flow with its flow

value of a commodity being equal to k/n, as shown in

Figure 5.10. This network has 2n2+4 nodes, 3n2+2n arcs and

2 commodities, and all capacities of arcs are 1 and gl=k and

g2=n-k. Furthermore, the network is planar and acyclic, and

all sources and sinks are located in the boundary, that is,

Assumption A is satisfied. The feasible solution f of the

network is given as follows, where only non-zero flows are

described.

f(a(sl,uil),1)=k/nfor i=1,2,...,n,

f(a(vi
n,t1),1)=k/nfor i=1,2,...,n,

 f(a(uij,vij),1)=k/n for i=1,2,...,n, j=1,2,...,n,

 f(a(v..,uij+1)~1)=k/n for i=1,2,...,n,j=1,2,...,n-1,

f(a(s2,u1i),2)=(n-k)/nfor i=1,2,...,n,

f(a(v
ni,t2),2)=(n-k)/nfor i=1,2,...,n,

 114

 f(a(uij,vij),2)

f(a(vii,u1+1j),

=(n-k)/n for

2)=(n-k)/n

i=1,2,...,n,

 for i=

j=1,2,...,n,

1,2......n-1.

2

S

2
S

Fig. 5.10 A counterexample to integral flow property.

115

The uniqueness of the feasible flow is proved as follows.

Assume the existence of a feasible flow f' through paths

 1,Tr2'•••,TrpE l(sl,tl), and 71'110i-121 ... Or'q EII(s2t2)

and nonnegative real values el,e2, ... ,ep, and

...,e'q such that

f'(a,l)= E{elIA(Tri) contains arc a),

f'(a,2)= E{e'i1A(Tr'i) contains arc a),

E Ceti' i=1,2,...,q)=n-k.

Here, let 4={a(uik,vik)Ii=1,2,...,n} and

A2={a(uki,vki)Ii=1,2,...,n} for k=1,2, ...,n. For any k, if

we remove the set of arcs Al from the network, then source
s1 becomes unreachable to sink t1. Therefore, any path Tr

in]I (s1 ,t1) satisfies A(Tr) n AkA0 for k=1,2,...,n, and
hence IA(Tri)n 41>1 holds for i=1,2,...,p, k=1,2,...,n.
Similarly we have IA(rr'i) n Ake >1 for i=1,2,...,q,
k=1,2,...,n. Since the sum of flows of commodity 1 in Ak
cannot exceed the sum of capacities in 4, properties

 1 IA(Tri)n Ak~>1, i=1,2,...,p, k=1,2,...,n, gives the

following,

n> E IA(Tri) n41ei > Eei = k for k=1,2,...,n.
 i=1i=1

Similarly we obtain

 116

 n> q IA(Tr'i) nAle'i > E e'i=n-k for k=1,2,...,n.
i=11=1

Since the sum of flows of commodities 1 and 2 in

 (= u Ak u u Ai)
 k=1 k=1

does not exceed the sum of capacities of

{a(uij,vij)1i=1,2,...,n, j=1,2,...,n), we have

 n2> E EIA(Tri) nAklei+ E E1A(T~') nAk~e'i
 k=1 1=1k=1 1=1

p q
> n E ei + n E e'i = nk + n(n-k) = n2.

 1=1 1=1

This implies

 IA(Tri) n Akl=1 for i=1,2,...,p, k=1,2,...,n,
IA(T~'i) n41=1 for i=1,2,...,q, k=1,2,...,n.

Without loss of generality, we can assume p=q=n. In this

case, 7i,i=1,2,..,n can be written as

s1 uila vi1 }ui2 ±vi24-...#uin-* vines t1, i=1,2,...,n,

and Tr'i,i=1,2,..,n can be written as

s2-r uli- vli} u21-4- ~ vni * t2, i=1,2,...,n.

Here, since the flow of commodities 1 and 2 in each arc

a(uli,vli) EAi cannot exceed its capacity 1, we have

1> e1 + e'i for i=1,2,...,n,

which then implies

117

 n
 n> nel + E e'i= nel + n-k.

 1=1

This proves el<k/n. Similarly we get ei<k/n, i=1,2,...,n.

That is, by E{e1Ii=1,2,...,p}=k, we obtain

f(a(uij,vij),1)=k/n for i=1,2,...,n, j=1,2,...,n.

The uniqueness of the values of other flows can be shown

similarly. This proves that the solution is unique.

 Lastly we show that the max-flow min-cut theorem does

not hold for CU networks. The counterexample to the max-

flow min-cut theorem presented by Kennington [KENN 78] is

shown in Figure 5.2. This network NB happens to be a CU

network as easily verified. Although this network satisfies

the cut condition, it is infeasible. In fact, MATE2 and

ASSIGN reveal its infeasibiliy as follows. MATE2 decomposes

dummy flows from Sd to Td in NB into new commodities k=3-5

such that g3=g4=g5=1, (s3,t3)=(v1,v6), (s4,t4)=(v5,v2),

(s5,t5)=(v3,v4). When ASSIGN is applied to the resulting CB

network NB, ASSIGN halts at node v5 by concluding

infeasibility. This infeasibility may be explained as

follows. The minimum cut to NB is C={al,a2,a3}. By

removing C, node set V is divided into X={vl,v2,v3} and

V-X={v4,v5,v6} and

r(X)=c(X)- E gk=2-(g2+g3+g5)=-1<0

118

holds. Thus NB does not satisfy the cut condition. Among

the commodities 2,3 and 5 that indicate infeasibility here,

commodities k=3,5 are created from dummy flows by MATE2.

This cut satisfies the cut-condition (2.1) in the original

network NB,

r(X)=r(X)+g3+g5=-1+2=1>0.

In other words, testing the cut condition can not find the

infeasibilty before specifying a one-to-one correspondence

between all dummy sources and sinks.

119

5.8 CONCLUSION

 Among the known classes of multicommodity flow problems

in directed networks for which it is possible to develop

efficient graph theoretic algorithms, the class of CU

networks possesses a unique characteristic that it does

not satisfy the max-flow min-cut theorem. It should also be

noted that class CU does not contain class CS, because CU

must satisfy the unilaterality property which is not

imposed on CS. In the next section, we show the max-flow

min-cut theorem holds for classes CB and CS.

120

 CHAPTER 6

 MAX—FLOW MIN—CUT THEOREM

 FOR CLASSES CB AND CS

6.1 INTRODUCTION

 In this chapter, we first show that

cut theorem holds for class CB. For

 0(KIVI) time algorithm is constructed to

not satisfying the cut condition for

network. This result is then extended to

CU, however, does not have this property

6.2 MAX—FLOW MIN—CUT PROPERTY

 Let VB[x,y] denote the set of nodes

assume x,yE VB[x,y]). If nodes v,zE VB

 VB[x,y)

Fig. 6.1

 the max-flow min-

 this purpose, an

find a minimum cut

an infeasible CB

 class CS. Class

[NAGA 88a].

in B(x,y) (where we

appear along B(x,y)

Definition

among the

of left-right relation

nodes in VB[x,y).

 121

in the order of x,v,z,y, then v is to the left of z in

B(x,y) (see Figure 6.1). Further we introduce notations

 VB(x,y]=VB[x,y]-(x), VB[x,y)=VB[x,y]-(y), and

VB(x,y)=VB[x,y]-(x,y).

It is clear that the cut-condition (2.1) for the

multicommodity flow problem is nescessary for a network to

be feasible, as described in Section 2.4. In general,

however, the cut-condition alone is not sufficient to

guarantee the feasibility of the multicommodity flow

problem. For example, the networks in Figure 6.2 and 6.3

satisfy the cut-condition, but they are infeasible. Note

that the networks in Figure 6.2 and 6.3 satisfy Assumption C

(i.e., A c(x)=0 for all xE V) and have the unique source and

sink for each commodity. Furthermore, the network in Figure

6.2 is acyclic.

122

t
4

Fig. 6.

Fig. 6.

2

a

3

 A counterexample

 2
 s1=t

3

s3=t1 a
2

 A counterexample

 gl=g2=1, g3=3, g4=2

 All capacities are 1.

counterexample to max-flow

 2
 s1=t //,,_ip,„,___))::;)al

 2 3
s =t

to max-flow

 123

min-cut property.

1 2 3_
g=g=g=1

c(a1)=c(a2)=c(a3)=

min-cut property.

1

s
3

 If the cut-condition is a sufficient condition that a

network in some class is feasible, we call the max-flow min-

cut theorem holds for the class (or the class has the max-

flow min-cut property). In this chapter, we show the

following theorems.

Theorem 6.1 The max-flow min-cut theorem holds for class

CB. ^

Theorem 6.2 The max-flow min-cut theorem holds for class

CS. ^

124

6.3 PROPERTIES OF AN INFEASIBLE NETWORK

 Given an infeasible network N"=(G",P",g",c"), assume

that ASSIGN halts at node x* by (T-4) in Step 3 since

 a(x*,v*)=EOUTp(x*), f(a(x*,v*),k*)>O, II (v*,tk*)=O. Based

on this information, we now clarify some properties of N" in

this section. These will be used in the subsequent

discussion to show that there is a cut which does not

satisfy the cut-condition. A concrete method to construct

such a cut will be developed in the next section.

 Let f denote the flow assigned in N" at the time when

ASSIGN halts as described above. Clearly f is assigned to

the arcs in OUT(SCAN(x*))YuOUT(x*). (The flow in OUT(x*)

is also available because ASSIGN has already passed through

Step 2 for x*.) Now we define w,z,w',z',w",z",Z+,Z- for x*

in a manner similar to the proof of Lemma 3.5 as shown in

Figure 3.2 (we consider 41-=Xq+1 for IN(x*)=IN1(x*)).

 For simplicity, we transform the CB network N"=

(G",P",g",c") into the following network.

Definition 6.1 REACH(x*) is the set of nodes in a maximal

directed tree with root x* in G"=(V",A"). Obviously

REACH(x*) is a connected divergent set. The set V"-REACH(x)

consists of connected convergent sets Xi, i=1,2,...,q, where

 125

 N

 Y1

e

y18

=t9

y2

21

W

 y17'1-

 ell

 •

 X1=x1)
 *1 C

 ----~ : capacit
y 1 —^-^ : capacity 2

Fig.

W

y4 =s

Y

e18

Y6=z

12

3 7
,s,s

e13

6.4 CB

= W

X

y8=x

w4

e19

eg 1

25

Y9

y5 =z

capacity

capacity

network N1.

15

W3

=s

3

4

y16=t

e23

Y10

z+1

3

5

Z

Y15

W

Y14

y13=t

ti
=v=t

 ti

~yl l=u s4

y12=t

t7

 k

 gk

2

1

5

1

6

4

7

2

8

2

9

3

Table 6.1 Flows f obtained by ASSIGN for N1

k 1 2 3 4 5 6 7 8 9
^ ^ ^ ^ ^ ^

el 3

e2 4

e3 2

e4 1

e5 1

e6 2

e7 1

e8 1

e9 1 3

e10 1

ell 1

e12 3 1

e13 2 2

 k 1 2 3 4 5 6 7 8 9

e14 1

e15 2

e16 2

e17 1

e18 1 1

e19 2

e20 1

e21 1 1

e22 1

e23 1 1 1

e24 2

 e25 2

127

 AA

some Xi is equal to Z- (we assume Xq=Z- without loss of

generality). Let G=(V,A) be the resulting graph obtained by

 A shrinking each setX,i=1,2,...,q-1, to node xi, except Z.

That is, Z+={x1,x2,...,xq _1}u REACH(x*) holds in G. Let

P=P" and g=g" and c(a)=c"(a) for aE A. We put all sources

A and sinks contained in Xi on x1, i.e., for i=1,2,...,q-1.

Let sk=xi (tk=xi) in N if skE Xi (tkE Xi) in N". In

particular, let P=P-(sk,tk) and gk=0 for each k with

sk=tk=xi. Let N=(G,P,g,c) denote the resulting network.

Then N is also a CB network by Lemma 2.6. We may consider

the case in which flow in OUT(x") has already been assigned

for some x" before ASSIGN scans x*, where x" is a node in

Z. Here, obviously x" is not reachable to x* and the

level of x" should be lower than that of x*. In this case,

no flow in Z- is necessary to determine the flow in

OUT(REACH(x*)). For simplicity, therefore, we assume that

all node in Z- are unscanned. That is, in network N, flow

in an arc a is not determined (f(a,k)=0) if and only if the

A initial node of a is in Z-(=Xq). Let (N,f) be the pair of

the resulting network N and the flow f in N. We define

K(a)={klf(a,k)>0}, aE A,

TK(a)={tklf(a,k)>0}, aE A. ^

128

 For example, apply ASSIGN to the network in

Figure 6.4. The arcs in each OUT(yi),i=1,4,11,... are

assigned flows in the order of el,e2,...,e25. When ASSIGN

chooses node y8, it halts by concluding infeasibility

because f(a(y8,y15),5)>0 and 11(y15,t5)=0 hold in Step 3.

Table 6.1 shows the flows assigned before ASSIGN chooses

node y8. According to the above definition, we have

REACH(x*)={yl,Y2,Y3,Y4,Y5,Y6,Y7,Y8},

OUTp(x)={e23,e24,e25),

 x*=y8' v*=y15' k*=5, w"=y2, w'=y3, z"=y5, z'=y6,

Z+={{Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y17,Y18},

Z-={y9,Y10'yll'y12'y13'y14'y15'y16}'

 V"-REACH(x*)=X1 uX2,

X1={y17,y18} (XI will be shrunk into node xl),

X2=Z .

Lemma 6.1 In (N,f), TK(a(u,v))=0 (i.e., K(a(u,v))=o) holds

if and only if u qf REACH(x*).

Proof. Obvious from c(a)>O, a EA and Definition 6.1.

0

 By applying Lemma 2.6 to i=1,2,...,q-1 repeatedly, we

see that Assumption A also holds in G. Furthermore,

divergent nodes xi, i=1,2,...,q-1, are located on the

129

boundary of G.

 Since ASSIGN halts by (T-4) at x* in N", we have v*,k*

and p for which a(x*,v*)E OUTp(x*), k*E K(a(x*,v*)) and

II (v*,tk*)=O hold in N. See Figure 6.5. Let X be the set

of nodes reachable from v*. By applying the same argument

in the proof of Lemma 2.1 to II (v*,tk*)=Q, we have a

connected divergent set X+ such that tk*E X+s V-X holds and

set X---V-X+ is connected. X- contains vO, but not x*.

Therefore X-s Z.

 In (N,f), a cut A(X)u A(V-X) dividing V into X and V-X

is called commodity disjoint if the following conditions

hold.

A(X)E OUT(REACH(x*)) (i.e., flow in A(X) has already

determined.)(6.1)

K(a)'nK(b)=O for a EA(X) and bE A(V-X). (6.2)

 TK(a) cV-X for a EA(X).(6.3)

Let A(X)u A(V-X) be a commodity disjoint cut. Since all

arcs in A(X) are saturated, we have,

c(X)= E E f(a,k).
 k E K(a) a€ A(X)

From (6.3),

 g(X)> E E f(a,k)
 k E K(a) a€ A(X)

holds, and hence

 130

 r(X)=c(X)-g(X)= I I f(a,k)-g(X)<0.
k E K(a) a EA

Therefore unless r(X)=0, the cut-condition (2.1) is not

satisfied. Algorithm FIND-CUT described in the subsequent

discussion is a procedure to find out such a commodity

disjoint cut not satisfying the cut-condition.

Definition 6.2 All devergent nodes reachable to sk* are

contained in VB[z",w"](=Z+n VB). Let DIV(Z+) denote the set

of divergent nodes in Z. Let the unilateral simple cut

A(V-X-) be denoted by (b1,b2,...,bm) as shown in Figure 6.5,

where A(V-X-)n AB= (b1,bm) and the direction of arc

b1=a(u,v) is counterclockwise- along the boundary. ^

 For example, let x*=y8,v*=y15 in Figure 6.4. Then we

have X-={y15,y16), b1=a(y11'y15)'b2=a(y14'y15)' b3=e23'

b4=e8, b5=e7, b6(=bm)=e5, u=1'11, 1'=Y15•

Lemma 6.2 For a given (N,f), we define k*, Z- and X- as

described in the above. Then tk*E Z--X- holds, as shown in

Figure 6.5.

 k** Proof . tE V-X-is obviousfromII (v,tk*)=O. Since

ASSIGN has passed Step 2 when x* is chosen, k*E Hps Kp(x*)

holds. Note that Kp(x*) is the set of commodities k whose

 131

sinks tk(4x*) are

such sinks tk are

implies tk €Z

reachable

contained

from

in Z-

x

by

via OUT (x*).

divergency of

Therefore

Z. This

z+

- "\-- \ -

 R T (x})

4/__

Z

Fig. 6.5 Proof of Lemma 6.2.

132

Assumption 6.1 (a) By Lemma 6 .2, we have tk*E (Z--X-) nVB.

The w" and z" defined as above satisfy tk*E VB(w",u) or

tk*E VB[u,z"), as illustrated in Figure 6.5. In subsequent

sections 6.4, 6.5 and 6.6, we assume tk*E VB[u,z") without

loss of generality, because the other case tk* E VB(w",u) can

be treated similarly by reversing the left-right relation.

 (b) (T-4) holds for some a(x*,v*) E OUTp(x*). Now we

select the arc a(x*,v*) such that any arc (in OUTp(x*)) to

the right of a(x*,v*) does not satisfy (T-4). That is, the

rightmost arc a' in the set of arcs satisfying (T-4) can be

chosen as such a(x*,v*). (If a pair of arc a' and

commodity k', and a pair of arc a" and k" both satisfy (T-

4), we see that if a' is to the right of a" then tk' is also

to the right of tk" by the rule of flow assignment used in

ASSIGN. Therefore this definition of a(x*,v*) does not

contradict assumption (a)). ^

 Assumption 6.1 is made throughout this chapter.

Lemma 6.3 In (N,f), these exists an arc a(x*,zO) EOUTp(x*)

that is located to the right of a(x*,v*) and satisfies

II (z0,tk)4O. This is illustrated in Figure 6.5.

 Proof. If x*4sk*, k* EK(a(u,x*)) holds for some

a(u,x*) EIN(x*).II (x*,tk*)40 holds because u is scanned

 133

(i.e., (T-4) is not satisfied). On the other hand, if

 x*=sk*, we obtain II (x*,tk*)40 immediately from

Assumption A. Here since tk*E Z- by Lemma 6.2, any path in

II (x*,tk*) contains some a(x*,z0) EOUTp(x*) and z0 / X- by

definition of Z- and X. If such a(x*,z0) is to the left of

a(x*,v*), this contradicts the planarity of N by

Assumption 6.1 (a). Therefore a(x*,z0) is located to the

right of a(x*,v*). ^

Lemma 6.4 For vE DIV(Z+) and ye REACH(x*) with II (v,y)#o in

(N,f), choose two arcs a,be OUTj(y) such that a is

immediately to the left of b, as illustrated in Figure 6.6.

Then TK(a)E VB(v,v] or TK(b)E VB[u,v) hold.

 Proof. Since ye REACH(x*) has already passed Step 2,

all commodities of the flow in OUT.(y) are contained in

K.(y). Let X7 denote a connected convergent set obtained by

applying Lemma 2.5 to OUTj(y). Then v A X5 by the

convergency of X3. ASSIGN has assigned the commodities in

K.(y) in the left-right order to the arcs in OUT.(y) chosen

in the left-right order. Therefore each commodity in b is

equal to or to the right of any commodity of flow in a.

Therefore, if TK(a)n VB[u,v)gh holds, then any sink in TK(b)

 t is not to left to any sink tkE'aka) nVB[u,v), i.e.,

134

TK(b)

obtain

 VB[u,v)

TK(a)

 holds.

VB(v,v]

 In case TK(a)n

immediately. ^

VB[u,V)=o holds, we

VBI ,v)

 /

 /

\ - \

(y)

 VB (v, V]

Fig. 6.6 Proof of Lemma 6.4.

135

 In (N,f), take a window that contains an arc already

assigned flow. Let WB denote the window corresponding to

the boundary. An arc in W is called forward (backward) arc

in W if the arc direction is clockwise (counterclockwise)

along W. From acyclicity of G, we see that any window W has

at least one forward arc and one backward arc.

Definition 6.3 For a window W (#WB) and an arc a in W, we

define arcs a+(W,a) and a (W,a) as follows.

 (1) If arc a is a backward arc in W, let a+(W,a) be the

first forward arc encountered when we go around from the

initial node of a in the clockwise manner along W. Let a

(W,a) be the backward arc whose initial node is common to

a+(W,a),

a (W,a)

 u

 (possibly a=a (W,a))

 u' a+(W,a)

/).14111111-°‘ ‘
\ 1

1

W1

1

b-----------/ a' ~'

 (a)

Fig. 6.7 Explanation

See Figure 6.7.

 a (W

1

I

1

/

/

I

/

 W

 u

(W,a)

— a

 (b)

of Definition 6.3.

136

 (2) If arc a is a forward arc in W, let a-(W,a) be the

 first backward arc encountered when we go around from the

 initial node of a in the counterclockwise manner along W.

 Let a+(W,a) be the forward arc whose initial node is common

 to a (W,a), (possibly a=a+(W,a)). See Figure 6.7. ^

 Consider window W6 and arc e17 shown in Figure 6.4.

e17 is backward in W6. Therefore and then a+(W6,e17)=e11

 and a (W6,e17) =e12.

 In each of (a) and (b), if arc a has already been

 assigned flow by ASSIGN then flow in a+(W,a) and a-(W,a)

 have been determined, because the initial node of a+(W,a)

 is reachable to the initial node of arc a.

 DIV(Z+) sVB[z",w"] was already stated. Let

ul,u2 EVB[z",w"]. If ul is to the left of u2 in VB[z",w"]

 (i.e., u2 EVB(ul,w"]), this is denoted by ul>u2. The case

u1=u2 or ul>u2 is denoted by ul>ul. For each u REACH(x*),

 let vR(u) and vL(u) be the rightmost divergent node and the

 leftmost divergent node, respectively, among these nodes in

 DIV(Z+) which are reachable to u. See Figure 6.8.

137

 VB[z

 (u)

(u)

 i

/

/

/

/

 1

I
I

Fig. 6.8 Definition of vL(u) and vR(u).

138

vL(u')

 vR(u')=vR(u)

(W.a)

 Fig.

Lemma 6.5

an arc a in

the initial

 L(u)

(u'))

 R(u')

6.9 Illustration of Lemma 6.5(1).

Under the above notation, a window W (4WB)

W satisfy the following, where u and u'

nodes of arc a and arc a+(W,a), respectively.

 139

"
N7

and

are

 (1) If arc a is backward in W, u EREACH(x*) and

TK(a) c VB(vR(u),v], then u' EREACH(x*) and vL(u)>vL(u')

>vR(u')>vR(u) hold. Furthermore one of the following (i)

and (ii) holds, as illustrated in Figure 6.9.

(i) TK(a+(W,a)) S VB(vR(u'),v] and a+(W,a)4a.

 (ii) TK(a-(W,a)) s VB[u,vL(u')) and a-(W,a)4a.

 (2) If arc a is forward in W, u EREACH(x*) and

TK(a) c VB[u,vL(u)), then u' EREACH(x*) and vL(u)>vL(u')

>vR(u')>vR(u) hold. Furthermore one of the following (i)

and (ii) holds.

(i) TK(a+(W,a)) c VB(vR(u'),v] and a+(W,a)La.

 (ii) TK(a-(W,a)) c VB[u,vL(u')) and a-(W,a)Aa.

 Proof. We prove only (1), as (2) is similar. First we

show vL(u) >vL(u')>vR(u')>vR(u). Take a divergent node 0

with n(v,u')O (i.e., vL(u')>v>vR(u')). Then, since

vL(u)>v>vR(u) holds from l(u',u)AO, we have vL(u)>vL(u')

>vR(u')>vR(u).

 Now we show that (i) or (ii) always holds. For the

ternimal node v of arc a, let Y[v] denote the set of nodes

y EVB with l(v,y)#O (for v EVB, assume v EY[v]). Since VB

contains a convergent node which is reachable from v ' VB,

Y[v]46 always holds. Here we consider the following three

cases.

 140

 Case-1

Case-2

Case-3

Y[v]

Y[v]

Y[v]

nVB(vL(u),vR(u))4o,

E VB(vL(u),vR(u)),

nVB(vL(u),vR(u))=O•

Y[v]-VB(vL(u),vR(u))4O,

v
R

(u)

Y

L
(u)

 r2

_u

a(W,a)

Y

+(W
,a)

713

 z

v

i

W I'

/

/

/

/

1

1

Fig. 6.10 Proof of Lemma 6.5.

141

 In Case-1, we choose y and y' such that

y EY[v] nVB(vL(u),vR(u)) and y' EY[v]-VB(vL(u),vR(u)), as

shown in Figure 6.10. Clearly vL(u) EVB(y',y). From the

planarity, any path 71 E II(vL(u),u) has a node common to

either Tr 2 E II (v,y) or Tr 3 E (v,y'), contradicting the

acyclicity of G. Therefore Case-1 is impossible.

 In Case-2, we first show that TK(a) c VB(vL(u),vR(u))

holds. Consider the case u4x*. This u EREACH(x*) has

already passed Steps 2 and 3, and therefore II(v,tk)4O for

any sink tk ETK(a). That is, we have TK(a) cY[v]S

VB(vL(u),vR(u)). On the contrary, if u=x*, x* has passed

Step 2, and therefore all sinks of the commodities in flow

in OUT.(x*) (containing arc a) are located in X:, which is

obtained by Lemma 2.5. See Figure 6.11. From u=x* V X3 and

convergency of X~, set X3 contains no node reachable to x.

Hence, vL(u).vR(u) V X3. From Y[v] cXi and the assumption

of Case-2, we have X
.-3: nVB(vL(u),vR(u))40, that is,

(TK(a) c))5 c VB(vL(u),vR(u)). The result

TK(a) `VB(vL(u),vR(u)) however means

VB(vL(u),vR(u)) nVB(vR(u),v']=O because v E/ VB(vL(u),vR(u))

holds by definition of vv, where v is the terminal node of b1

in Definition 6.2. This contradicts the condition of the

lemma, TK(a) E VB(vR(u),v]. Therefore Case-2 is also

 142

impossible.

vR(u)
 u

(W,a)

 (u)

(W, a)

 N.

 I

I~ 1

7

/

 ̂

 I

I

Fig. 6.11 Proof of Lemma 6.5.

143

 In Case-3, by applying Lemma 6.4 to a=a+(W,a),

b=-Ma), y=u' and v=vR(u), we have TK(a+(W,a)) E

VB(vR(u'),v] or Ma-Ma)) SVB[u,vR(u')). Since the former

satisfies the lemma's statement (obviously backward arc a

differs from a+(W,a)), we assume the latter. For the

terminal node v' of arc a (W,a), let Y[v'] denote the set of

nodes y EVB with l(v',y)40. For v'E VB, let v'E Y[v].

Hence, Y[v] EY[v']#O from II (v',v)40, and

Y[v] VB(vL(u'),vR(u'))=4 from the assumption

Y[v]n VB(vL(u),vR(u))=9. Here if we assume

Y[v'] n VB(vL(u'),vR(u'))O, then

Y[v']-VB(vL(u'),vR(u')) 2Y[v]40. In this case, since

Y[v']n VB(vL(u'),vR(u'))A0 and Y[v']-VB(vL(u'),vR(u'))#O,

we can derive a contradiction from the acyclicity of G in a

manner similar to Case-1. Therefore we obtain

Y[v'] n VB(vL(u'),vR(u'))=o. See Figure 6.12. This u' is

satisfies u'E REACH(x*) by uE REACH(x*) and 11 (u',u),O.

Furthermore u'4x* can be shown as follows. If u=x* holds,

u'Ax* is obvious from u'#u. If u4x* holds, we have

ll(u',u)AO and hence u'Ax by the acyclicity of G and

l(u,x*)40. Therefore (x*)u'E REACH(x*) has passed Steps 2

and 3 of ASSIGN, and 11(v1,tk)40 holds for any tk E

TK(a(W,a)). Then we obtain

149

 TK(a-(W,a)) E Y[v'] E VB-VB(vL(u'),vR(u')). Therefore,

assumption TK(a-(W,a))E VB[u',vR(u')) implies

(W,a)) EVB[u,vR(u')). Consequently we have

(W,a))n TK(a)=O (i.e., a (W,a)a) by the condition of

lemma, TK(a) E VB(vR(u),v]. Hence (ii) holds. ^

 the

TK(a-

TK(a-

 the

vR(u') =vR(u)

vL(u')

(u)

 (W,a)

v`

y

(W,a)

 1

 I

V

Zn

Fig. 6.12 Proof of Lemma 6.5.

145

 In (N,f)

and bi+1 (b1

{bi,b2,...,bm}

Definition 6.2

such that the

initial node

Figure 6.13.

, let WI denote the window containing arcs bi

and bm are the arcs contained in WB), where

 is the unilateral simple cut A(V-X-) in

. There exists the r-th arc br in A(V-X-)

initial node of br differs from x* and the

 of br+1 is equal to x*, as shown in

WI'

z

 r+1

W'
r

ar+l

z11 •c

r+2,

b

2=b

W' 1

V

b1

Fig. 6.13 Illustration of arc a
r.

146

 In Figure 6.4, we obtain br=b2=a(y14,y15) and

br+1=b3=e23•

Lemma 6.6 Let bi=a(u1,v1), i=1,2,...,r. Then any u'i

satisfies ui / REACH(x*), i.e., flows in bi(i=1,2,...,r)

are not determined yet in (N,f).

 Proof. Assume that u'E REACH(x*) holds for some

bi(1<i<r). Then a simple path Tr1Ell(u1,x*) exists. Here we

consider the graph obtained by shrinking the connected

convergent set X- into a convergent node x-, as shown in

Figure 6.14. By Lemma 2.6, G' is also planar and acyclic.

In G', a(x ,x) ,bi and ff1 form a simple undirected cycle

C. In G', a(x ,z0) is located to the right of a(x ,x`), and

therefore a(x*,z0) is contained in the area surrounded by C,

where a(x*,z0) is the arc defined in Lemma 6.3 such that

11(z0,tk*)40 and a(x*,z0)E OUT (x*). From tk*E VB, tk*(4x-)

is located in C or in the outside of the area surrounded by

C. This means that 71 andTr2E1I(z0,tk*) consist of a

directed cycle, contradicting the acyclicity of G'. ^

Lemma 6.7 For the index r in Lemma 6.6, W. contains a node

z1 such that br+14a(x*,zl)E A and TK(a(x*,zl))E VB[tk*,z)

hold. This is illustrated in Figure 6.13.

 Proof. If OUT (x*) contains no arc located to the

 147

 b..

 u

~

 tkl
 Zn

 Fig. 6.14 Proof of Lemma 6.7

right of br+1, then this contradicts the existence of

a(x ,z0) satisfying Lemma 6.3. Therefore we can choose an

arc a(x*,zi) located to the right of br+1• Clearly a(x*,zl)

is contained in Wi.. Since x* has passed Step 2 of ASSIGN,

flow has already been assigned to each arc in OUT (x*)and

TK(a) E Z-n VB holds for each a EOUT(x). Now consider

TK(a(x*,zl)). As a(x*,z1) is to the right of a(x*,v*) in

148

Assumption 6.1,

of flow in a(x

 TK(a(x*,zl) c VB[t

 In Figure 6

z1-y10'

tk* E TK(a(x*,v*))

,zl) is to the

k* ,z") holds.^

.4, we obtain

means that any

right of k*.

W'r=W2, a(x*

commodity

That is,

,z1)=e24 and

149

6.4 ALGORITHM FIND-CUT

 Assume that ASSIGN has found a(x ,v)E OUT (x)

satisfying (T-4) and then halted. Given the (N,f) of

Definition 6.1, the following procedure constructs a simple

cut C not satisfying the cut-condition (2,1). In this

section, after presenting the procedure, we clarify some

properties.

Procedure FIND-CUT

0. For the unilateral simple cut A(V-X-)={b1,b2,...,bm}

 constructed in Section 6.3, obtain the set of arcs

{bl,b2,...,br} defined prior to Lemma 6.6. Let ai:=bi

 (i=1,2,...,r). Let ar+i:=a(x*,z1), where a(x*,z1) is

 the arc satisfying Lemma 6.7. Based on window WB and

 windows Wi containing ai and ai+1 (i.e., equal to those WI

 defined prior to Lemma 6.6) (i=1,2,...,r), we define a

 set of windows Q={W0,W1,W2,...,Wr}. Further let

C-:={al,a2,...,ar}, C+:={ar+1} and i:=r+1.

1. Let Wi be the other window (distinct from Wi-1)

 containing ai. If WiE Q then proceed to 5. Otherwise,

 let Q:=Q U (Wi) and proceed to 2.

2. If ai E C- (i.e., ai is a backward arc in Wi), the

 initial node u of ai satisfies u E REACH(x*) and

150

 TK(a)c VB(vR(u),v]. In this case, (i) or (ii) of

 Lemma 6.5 (1) holds. (The validity is proved in the

 following Lemma 6.10.)

 If aiE C+ (i.e., ai is a forward arc in Wi), the

 initial node u ofaisatisfies uE REACH(x*) and

TK(a)E VB[u,vL(u)). In this case, (i) or (ii) of

 Lemma 6.5 (2) holds, i.e.,

 (i) TK(a+(Wi,ai))E VB(vR(u'),v] and a+(Wi,a04ai,

 (ii) TK(a (Wi,ai))s VB[u,vL(u')) and a (Wi,ai)4ai,

 where u' is the node common to a+(Wi,ai) and a (Wi,ai).

 Proceed to 3 if (i) holds. Otherwise, proceed to 4.

3. Let ai+1'=a+(Wi,ai), C-:=C-u (ai+1} (ai+1 is a backward

 arc in Wi+1) and is=i+1. Return to 1.

4. Let ai+l'=a (Wi,ai), C-:=C-u (ai+1} (ai+l is a forward

 arc in Wi+1) and i:=i+1. Return to 1.

5. Let C*:=C+u C- and halt. This situation is illustrated

 in Figure 6.15. ^

 Since the number of updating Q:=Qu (WO in Step 1 of

FIND-CUT is at most the number of all windows in G, FIND-CUT

halts after finite number of operations. Here we estimate

the time complexity of FIND-CUT. To obtain a+(W1,ai) and

a-(Wi,ai) for some ai in Step 2, we go around the cycle Wi

151

 C
*

=c+U c-

 a
r E C

=b
1E C
— cut

Fig. 6.15 Cut C* obtained by algorithm FIND-CUT .

152

from the initial node ui ofaito the node u' common to

 a+(Wi,ai) and a (Wi,ai).Since FIND-CUT does not search a

window more than twice and furthermore an arc is contained

in exactly two distinct windows, any arc is not searched by

FIND-CUT more than three times. Therefore, the total of

the time required to obtain a+(Wi,ai) and a (Wi,ai) for all

i is bounded from above by 0(IAI) (i.e., 0(IVI) by the

planarity). Now we consider the time required to determine

whether (i) holds or not in Step 2. Here we make use of the

preprocessing by which vR(u') and VB(vR(u'),v] n T are

computed for each u'E REACH(x*). That is, to obtain vR(u')

for each u'E REACH(x), we scan a divergent node (say 9) from

right to left among VB[z",w"] and set vR(u')=v for all

u'E REACH(x) such that u' is reachable from v but vR(u') is

not yet set. In this process, no arc is searched more than

twice, and therefore the required time is bounded from above

by 0(1A1+IVI), i.e., 0(IVI). Also the time required to

obtain VB(vR(u'),v] nT from the set of all vR(u') is bounded

from above by 0(KIVI), because the set of the searched

nodes is located only in the boundary. Based on the data

obtained by preprocessing, we can determine whether (i) of

Step 2 holds or not in 0(IKI) time. Since the number of

iterations in Step 2 is 0(1Q1)(=0(IVI)), the total time of

 153

FIND-CUT and the preprocessing is bounded from above by

 0(KIVI).

 Applying FIND-CUT to the network in Figure 6.4, we

obtain

v =v=Y15' u=y11',k*=Y12' Z0-Z1-Y10'

a1=b1=a(y11,y15), a2=b2=br=a(Y14,3'15)' a3=e24,

 a4=e25, a5=e18' a6=e17, a7=an=e11'

C+={a3,a4), C-={al,a2,a5,a6,a7),

X1={y1,Y2,Y3,Y7,Y8,Y150-16,x1(={Y170T18})}'

X2={y4'3'50r6'Y9'3r10'Y11'Y120T13'Y14}'

where X1 and X2 are the sets of nodes obtained after

removing cut C*=C+u C: Windows Wi,i=1,2,...,6 are shown in

Figure 6.4. Here,

c(X1)=c(e24)+c(e25)=f(e24,6)+f(e25,6)=4

holds. However, f(e23,5)=1>0 for a(x*,v*)=e23, and hence

r(X1)=c(X1)-g(X1)<c(X1)-(g5+g6)=4-(4+1)<0

holds, indicating that C* does not satisfy the cut-condition

(2.1).

 The validity of Step 2 of FIND-CUT is shown by the

following lemma.

Lemma 6.8 Let ai=a(ui,vi) denote the ai (i>r+1) obtained

by FIND-CUT. Then TK(ai) o and u€ REACH(x*) always hold.

154

Furthermore, TK(ai) s VB(vR(ui),v'] holds if ai is a backward

arc in Wi (i.e., aiE C-), and TK(ai)E VB[u,vL(ui)) holds

if ai is a forward arc in Wi (i.e., aiE C+).

 Proof. We show by induction on i (i>r+1).

 (I) For i=r+1, we have ar+1=a(x*,z1)E C+ and

ur+1=x*E REACH(x*). Here TK(a(x*,zl))E VB[tk*,z") by

Lemma 6.7, and then TK(ar+i)c VB[tk*,z") E VB[u',z") by

 ~x
tkE VB[u,z") of Assumption 6.1 (a). Furthermor, since

vL(ur+1)E VB[z",w"] from the definition of vL, we have

TK(ar+1)- VB[u,z")E VB[u,vL(ur+1)]•

 (II) For i=k (k>r+1), we assume that the lemma holds

(i.e., the condition of Lemma 6.5 holds). Since ak+1 is

equal to a+(Wk,ak) or a (Wk,ak), II(uk+l,uk)AO by

Definition 6.3. Here ak satisfies the condition of

Lemma 6.5, and then we have uk EREACH(x*) and furthermore

uk+1 E REACH(x*) (i.e., TK(ak+1)o by Lemma 6.1). If (i) of

Lemma 6.5 holds for i=k, then ak+1=a+(Wk,ak) implies that

ak+1 E C- and TK(a+(Wk,ak))E VB(vR(uk+l),v]. If (ii) of

Lemma 6.5 holds for i=k, then ak+1=a (Wk,ak) implies that

ak+1 EC+ and TK(a(Wk,ak))C VB[u,vL(uk+1))• ^

Lemma 6.9 Let C- and C+ be the sets of arcs obtained by

FIND-CUT. Then TK(ai) nTK(aj)=O always holds for ai EC_

 155

and aj EC+.

 Proof. For the set of arcs C*=C+ ~C-={a1,a2,...,an},

let ai=a(ui,v.),i=1,2,..,n. Lemma 6.6 and Lemma 6.8 assert

that

ai EC- and TK(ai) = 0 for i<r,

 0 TK(ai) c VB[u,vL(ui)) if i>r+1 and aiE C+,

 0 A TK(ai) s VB(vR(ui),v] if i>r+1 and aiE C.

Therefore, to prove the lemma, we show VB(vR(ui),v] and

VB[u,vL(uj)) are always disjoint for aiE C+ and ajE C- with

i,j>r+1. That is, we shall prove that vL(uj)>vR(ui) holds.

 By Lemma 6.5 and the way of constructing ai, we have

vL(ui)>vL(ui+1)>vR(ui+1)>vR(ui) (r+1<i<n-1). (6.4)

Hence, for r+1p<q n-1, we obtain

vL(up)>vL(uq) and vR(uq)>vR(up).(6.5)

Assume that vL(uj)<vR(ui) holds for some i and j. From the

definition of vR(u) and vL(u), vR(ui)<vL(ui) always holds.

As i4j holds obviously, we have vR(ui)>vL(uj)>vR(uj) for

j<i. This, however, contradicts the latter condition of

(6.5). Otherwise, vL(uj)>vR(ui)>vL(uj) holds for j<i,

contradicting the former condition of (6.5). Therefore we

obtain vL(uj)>VR(ui). ^

 156

Lemma 6.10 Let C* be the set of arcs obtained by FIND-CUT.

Then C* contains no arc located to the left of a(x*,zl) in

OUT (x*).

Proof. From Step 0 of FIND-CUT, a(x*,zl)=ar+lE C+

holds. Assume that C+u C- contains some arc aqE OUT (x*) to

the left of ar+1• Clearly q>r+1. By the proof of

Lemma 6.8, II (uj,ui)40 holds for any pair of i and j with

r+1<i<j<q. Here we show ui=x* for all i with r+1<i<q. If

ui,x for some i with r+1<i<q, then ur+1=uq=x implies that*

 (uq,ui)4oand11(ui'ur+1)#0'That is, there exists a

directed cycle containing x and ui, contradicting the

acyclicity. Then we have ui=x* for i with r+1<i<q. Window

Wi containing ai and ai+1 satisfies Wi#WB for i with

r+1<i<q, because FIND-CUT has constructed Q for i=q. This

means that ai and ai+1 for r+1<i<q are immediate neighbour

each other and ai+1 is to the right of a1. This contradicts

the assumption that aq is to the left of ar+1• 0

 By the simplicity of cut A(V-X-), all windows Wi

(0<i<r) in Q at Step 0 are distinct each other. By the

termination condition in Step 1, no window is searched by

FIND-CUT more than tiwce. Assume that the termination

condition holds for WnE Q with i=n and FIND-CUT has

 157

halted. Note that this is the first time when the set of

windows in Q contains a simlpe cycle in the graph dual to

G, because a simple cut in a planar graph corresponds to a

simple cycle in the dual graph, as described in Lemma 2.2.

This means that the set of arcs C*=(al,a2,...,an} obtained

by FIND-CUT contains exactly one simple cut (say C'). Since

a simple cut can be written as a cutting circiut by

Lemma 2.2, this simple cut C' should be represented as

C'=(aq,aq+l,...,an) for some q with 1<q<n and Wn=Wq_l. Let
X1 and X2 be the partitions obtained by removing C', where

A(X1) E C+ and A(X2) EC-.

 Here we define by ll k(v,y) the set of flow paths of

commodity k in (N,f), as follows.

lk(v,y)62(Tr E 1(v,y)1 f(a ,k)>0 for all a EA(Tr)}.

Lemma 6.11 Let a(u,v) be an arc in (N,f), where u is being

scanned by ASSIGN.

 (a) If tk ETK(a(u,v)) holds for some commodity k with

sk EREACH(x*) and tk E Z+, then II k(v,tk)40 .

 (b) If tk ETK(a(u,v)) holds for some commodity k with

sk EREACH(x*) and tk EZ-, then H k(v ,z*)#O for some node

z EZ .

 Proof. (a) Note that the connected convergent sets in

158

 Z+

 / x

 * 1

Z

'k

s

0

5--a
 `I- -----

1

w

w

 Fig. 6.16 Proof of Lemma 6.11 (a).

V-REACH(x*) are already shrunk except the set Z- of

Definition 6.1. Assume that llk(v,tk)=o holds for v and tk

satisfying (a) of the lemma. Since flow of commodity k

from source sk satisfies the flow conservation at any node

in REACH(x*), this flow reaches a convergent node w* (#tk)

or a node w* (Ax* I Z-) in Z-, as shown in Figure 6.16.

This, however, means that 11(w*,tk)=0 and then ASSIGN must

halt by (T-4) before x* is scanned. This is a

contradiction.

159

 Z
+

 Z

w

*

 1

 Fig. 6.17 Proof of Lemma 6.11 (b).

 (b) Assume that II k(v,z)=0 holds for all z EZ-. Since

the flow of commodity k from source sk satisfies the flow

conservation at any node in REACH(x*), II k(v,w*)#O holds

for some convergent node wK EZ+n VB. See Figure 6.17.

Since w* (or a subgraph shrunk into w*) does not contain tk ,

ASSIGN must halt by (T-4) before x* is scanned. This is a

contradiction. ^

 160

Lemma 6.12 Let C*=C+u C-={al,a2,...,an) be the set of arcs

obtained by FIND-CUT, and let C'={aq,aq_1,...,an) be the

simple cut contained in CK. Then q=1 holds (i.e., C'=C*).

 Proof. Since Q contains WO(=WB) in Step 0, every ai

(2<i<n-1) is not contained in WB. (Otherwise FIND-CUT must

have halted earlier.) Since all windows in Q are always

distinct each other, C'n AB40 implies that 1C'n ABI=2,

i.e., C'n AB={al,an), and hence q=1 holds. In the

subsequent discussion, therefore, we will derive a

contradiction under the assumption that C'n AB=O and q2.

This assumption implies that X1n VB=0 or X2 n VB=o holds,

where the partitions into X1 and X2(=V-X1) obtained by

removing C' satisfies as A(X1)c C+ and A(X2)E C. See

Figure 6.15. We consider the following three cases.

 (i) Case of 2<q<r and X1 n VB=o. Let aq=a(uq,vq). Then

uqE Z- and vqE Xl hold..As all convergent nodes are

contained in VBS. X2, node vq is not convergent. By the

acyclicity of G, there exists a convergent node w*E VBE X2

with l(vq,w*)o. As cut C' separates vq and w' as shown in

Figure 6.18, C' and It E l(vq,w*) have a common arc (say

a.). By ajE A(X1), ajE C+ holds. Since uq ft REACH(x*)

holds by Lemma 6.6, uj ft REACH(x*) holds for the initial

161

w

*

 Fig. 6.18 Proof (i) of Lemma 6.12.

node ujof arc aj.This arc a.E C+, however,satisfies

j>r+1 and this contradicts Lemma 6.8.

 (ii) Case of 2<01�r and X2n VB=O. Since Wi (0<i<r) are

all distinct by the simplicity of cut A(V-X-), n>r+1 holds

for C'={aq,aq+l,...,an)' i.e., ar+1=a(x ,zl)E C'n C+, where

zlE Z- is the node in Lemma 6.7. Clearly x*E X1 and z1E X2

hold. Since all convergent nodes are contained in VB cX1,

node z1 is not convergent. By acyclicity, there exists a

convergent node w*E VB sX1 with l(zl,w*) Q. Since cut C'

separates z1 and w*, C' and Tr E 11(zl,w*) have a common arc

162

 /

/

 v.
 3

 i

w*

— A(V-X)

 Fig. 6.19 Proof of (ii) of Lemma 6.12.

(say aj), as shown in Figure 6.19. By aj EA(X2), aj EC-

holds, and II (z1,x)=0 by z1 EZ-. Then II(uj,x)=O holds for

the initial node ujof aj.Hence,ujE/REACH(x*) holds and

we have TK(aj)=O by Lemma 6.1. By Step 0 of FIND-CUT, j<r

holds if ajE C- satisfiesTK(aj)=O. (That is,aj=bjE

A(V-X-).) Therefore, without using an arc in A(V-X-), node

zl cannot be reachable to any sink. Since

TK(a(x*,z1))s VB[tk*,z")E V-X- by Lemma 6.7, a(x*,z1)

satisfies (T-4). This, however, contradicts Assumption

6.1 (b), because a(x*,z1) is to the right of a(x*,v*).

 163

/
 / Z

 J 117C ‘ Z*

\\..• ,\ • w
 x1 1 1I 1

`ahl
 C' `•• +

' .uh,' °h

R21

 \
 \

 Fig. 6.20 Proof (iii) of Lemma 6.12.

 (iii) Case of r<q n. Assume Xln VB=fib (the case of

X2 nVB=O is similar). If C+ nC'=O or C- nC'=0 holds, then

X1 becomes a connected convergent set or a connected

divergent set. By Lemma 2.3, X1 nVBAO holds, but this

contradicts the assumption. Therefore we have C+ nC'4O

or C- nC'40. Then take an arc aj a(ui,vj) EC- nC'(=A(X2))

and a commodity k'E K(aj) going out of vjE X1, as shown in

 164

Figure 6.20. By Lemma 6.9, k' '/ K(ai) holds for any

ai EC+n C'(=A(X1)). Then tkrEVB E X2 implieslik'(v~,tk')=O.

By sic' EREACH(x*) and Lemma 6.11 (a), commodity k' must

satisfy tkr EZ-. There exists a node z*E Z- with

 r U k(vi,z)#0 by Lemma 6.11 (b), and z* EX1 holds by the

reachability of II k. As all convergent nodes are contained

in VB, node z' is not convergent. By the acyclicity of G,

we have a convergent node w* EVB S. X2 with R(z ,w)40. As

cut C' separates z* and w*, C' and 7 E II (z*,w*) have a

common arc (say ah=a(uh,vh)). By z*E Z-, z* V REACH(x*)

holds, i.e., uh I REACH(x*) and TK(ah)=o hold by Lemma 6.1.

Since r<q, i.e., C'n (al,a2,...,ar}=0, we obtain h>r+1.

This, however, contradicts the property that TK(ai)40 for

all aiE C' (i>r+1). ^

Lemma 6.13 For C*=C+U C- obtained by FIND-CUT,

 (a) TK(ai) EX1 for aiE C-,

 (b) TK(ai) EX2 for aiE C.

 Proof. We denote C* by (al,a2,...,an}. By Lemma 6.8,

the initial node un of arc an satisfies unE REACH(x*). By

Lemma 6.12, an is contained in WB. Then, considering the

partition of the boundary defined by C', VB[u,z") EX2 and

VB(w",v] EX1 hold, where a1=b1=a(u,v)E A(V-X-).

165

 (a) Assume that there is some sink tk with

tk'E TK(ai) nX2 for some ai=a(ui,vi)E C. By aiE C- and

Lemma 6.8, we have tk'E TK(ai)c VB(vR(ui),v]E VB(z",v].

 , Since no ajE C+ satisfies tkE TK(aj) by Lemma 6.9,

II k'(vi,tk')=0 holds. Then tk'E Z- must hold by

Lemma 6.11 (a). This means tk'E VB[u,z") by the assumption

tk'E X2. This, however, contradicts tk'E VB(z",v].

 r

 (b) Assume that there is some sink tk with

tk, TK(ai) n Xl for some ai=a(ui,vi) E C+. By aiE C+ and

Lemma 6.8, we have tk'E TK(ai)c VB[u,vL(ui))E VB[u,w").

Since no ajE C- satisfies tk E TK(aj) by Lemma 6.9, we

get*'(vi,tkf)=0. Then tk'E Z- must hold by Lemma 6.11

(a). This meams tk'E VB(w",v] by the assumption tk'E Xl.

 r This, however contradicts tkE VB[u,w"). ^

Lemma 6.14 Let C* be the set of arcs obtained by FIND-CUT.

Then C* is a simple cut, but not unilateral. Furthermore,

C* is a commodity disjoint cut and satisfies IC* nABI=2.

 Proof. By Lemma 6.12, C* is a simple cut and

C* nAB=(al,an) holds. C* is not unilateral, since alE C-

and ar+l E C+ hold. By Lemmas 6.8 and 6.9, flows are

assigned to all the arcs in A(X1)=C+, and TK(ai) nTK(aj)=0

holds for ai E C- and ajE C+. By Lemma 6.13 (b),

 166

 TK(a)c V—X1 for all aE

satisfies (6.1)—(6.2),

A(X1).

and then

As

is

a result

commodity

of this,

disjoint

cut C*

167

6.5 MAX-FLOW MIN-CUT THEOREM FOR CB AND CS NETWORKS

 Based on the results in the previous sections, we shall

prove Theorems 6.1 and 6.2 stated in Section 6.2, i.e., the

max-flow min-cut theorem for CB and CS networks .

Lemma 6.15 An infeasible CB network N" satsfying

Assumption B has the following simple cut C* .

(i) C* is not unilateral, and IC*nABI=2.

 (ii) C does not satisfy the cut-condition (2.1) .

 Proof. When ASSIGN halts in N", we construct (N,f)
according to Definition 6.1. In N, FIND-CUT finds a simple

cut C* which is not unilateral . C' partitions V into X1

and X2(=V-X1) such that A(X1)=C+ and A(X
2)=C-. By

Lemma 6.13, C' is a commodity disjoint cut and satisfies (i)

of the lemma's statement. We now show that C* does not

satisfy the cut-condition (2.1). Since all arcs in A(X1)

are saturated,

c(X1)= E I f(a ,k) k EK(a) a €A(X1)

holds. As TK(a) E V-X1 for a EA(X
1) by Lemma 6.12, clearly

g(X1)> I I f(a,k)
 k EK(a) a EA(X1)

 168

holds. Here a(x*,v*) is located to the left of a(x* ,zl) by

the definition of ar+1=a(x*,zl), and therefore C* does not

contain a(x*,v*) by Lemma 6.10. That is , v*E X1 holds.

Since f(a(x*,v*))>0 holds for commodity k* that satisfies

the termination condition (T-4), this flow does not outgo

from node vE Z. Therefore, by considering tk*E X2, g(X1)

can be estimated as follows.

 g(X1)> E E f(a,k) + f(a(x*.v*),k*).
k E K(a) a E A(X1)

Here, the r-value of X1 becomes

r(X1)=c(X1)-g(X1)= E E f(a,k) -g(X1)
k E K(a) a E A(X1)

< -f(a(x*,v*),k*)<0.

That is, C* does not satisfy the cut-condition. By

Lemma 2.6, C* also satisfies (i) in N". Each commodity

whose source and sink are separated by C' in N remains still

in N". Therefore, C* does not satisfy the cut-condition

(2.1) in N". ^

 Theorem 6.1 follows immediately from Lemma 6.15. Now

we prove Theorem 6.2 for CS networks.

 169

Lemma 6.16 If a CS network N' does not satisfy

Assumption B, then N' has a unilateral simple cut not

satisfying the cut-condition (2.1).

 Proof. Obvious from the argument prior to Assumption B

in Section 2.4. ^

Lemma 6.17 An infeasible CS network N' satisfying

Assumption B has a simple cut not satisfying the cut-

condition (2.1).

 Proof. In Chapter 4, we presented algorithm MATE1 that

reduces a CS network to a CB network. Let N" be the CB

network reduced from N' according to MATE1, and let K*

denote the set of commodities created by MATE1 in N". If N"

does not satisfy Assumption B, N" has a unilateral simple

cut not satisfying the cut-condition as described in

Section 2.4. Otherwise, if N" satisfies Assumption B, then,

by Lemma 6.15, N" has a non-unilateral simple cut
 ~x

C=A(X1)u A(X2) not satisfying the cut-condition (2.1).

Here, by Lemma 2.8, we have r(X1)=r(X2)<O. If

K(X1;X2) nK*=O holds, then C* is also a simple cut not

satisfying the cut-condition since the value of r(X1) does

not change in N'. Since case K(X2;X1) nK*=O can be treated

similarly, assume that K(X1;(2) nK*# and K(X2;X1) nK*0 ,

 170

 Skl\tkl
 • N

\•
 \ \

N
N

N

 • N•
 sk2\ tk2 1

 1)

 Fig. 6.21 Proof of Lemma 6.17.

and take kl EK(X1;X2)n K* and k2 EK(X2;X1)n K*

network, the boundary line can be divided into

such that all dummy sources are located in one

all dummy sinks are located in the other part.

pair of each commodity in K* was a neighbouring

171

 . In a CS

 two parts

part while

 Source-sink

pair before

its commodity is created by MATE1. This implies that a path

between source and sink of a new commdity kl EK* does not

cross a path between source—sink pair of other new commdity

k2 EK*. That is, skl,tkl,sk2 and tk2 must be located in

the boundary as shown in Figure 6.21. Then we have

~~`klk2 CnABI>4 from s,t EX1. This, however contradicts

IC*n ABI=2 of Lemma 6.15 (1). Therefore we obtain

K(X1;X2) nK*=O and K(X2;X1)n K*=0. 0

 Lemmas 6.16 and 6.17 give Theorem 6.2.

172

6.6 CONCLUSION

 In this chapter, we showed that CB and CS are classes

of multicommodity flow problems, for which the max-flow

min-cut theorem holds. It should be noted that algorithm

ASSIGN for CB does not employ the max-flow min-cut

property. Based on the max-flow min-cut property, the

feasibility of CB can be tested by computing the minimum cut

immediately. In the next chapter, we construct this type of

algorithm for classes CB and CS.

173

 CHAPTER 7

 ALGORITHM VEST FOR TESTING

 FEASIBILITY OF A CB OR CS NETWORK

7.1 INTRODUCTION

 It was shown in the previous chapter that the max-flow

min-cut theorem holds for classes CB and CS. Based on the

max-flow min-cut property, we shall present in this

chapter an 0(S(IVI)+IVBIT(IVI)) time algorithm for testing

feasibility of the multicommodity flow problem for classes

CB and CS, where IVI is the number of nodes, IVBI is the

number of nodes in the boundary, SOVI) is the time required

for preprocessing and TOY') is the time to compute a

shortest path tree. The best bounds currently known are

SOVI)=O(1), TOVI)=0(1Vl,/logIVI) and SOVI)=0(IVIlogIVI),
TOVI)=0(IVIlog*IVI), which respectively give

0(IVBIMJJlogIVI) and 0(IVIlogIVI+IVBIIVIlog*IVI) time

bounds for our problem. These are better than the bound

0(KIVI) obtained in Chapter 3, when the number of

commodities K is large [NAGA 88b].

174

 7.2 ASSUMPTION D AND SOME LEMMAS

 In the subsequent discussion, we consider CB and CS

networks satisfying the following assumption.

Assumption D: Su T EVB. 0

 Under this assumption, g(X)=0 clearly holds for an

arbitrary set X c V-VB. That is, such set of nodes X

satisfies cut-condition (2.1) (r(X)=c(X)>0). Therefore, to

examine condition (2.1), we concentrate on X with X nVBAO.

Furthermore, we make use of the following property.

Lemma 7.1 In a connected graph G, r(X)>0 holds for every

X c V, if and only if r(X)>0 holds for those X c V such that

X and V-X are connected, respectively.

Proof. As necessity is obvious, we show sufficiency.

First, we show that r(Y)>0 and r(Z)>0 imply r(Y uZ)>0 for

any Y,Z cif with Y nZ=0 and A(Y;Z)=A(Z;Y)=o. Now

r(Y u Z)= c(Y u Z) - g(Y u Z)

 = c(Y) + c(Z) - (g(Y)+g(Z)-g(Y;Z)-g(Z;Y)}

 = r(Y) + r(Z) + g(Y;Z) + g(Z;Y)

 > r(Y) + r(Z) > 0.

If a set X c V is composed of some number of connected sets,

repeat the above argument. It shows that if r(X)>0 holds

175

for any connected set X then r(X)>0 for every X EV.

 Now we assume that X is connected, but V-X is not

connected. Then V-X may be divided into disjoint connected

components. For convenience, we assume that the number of

such components are two (say sets Y and Z). That is,

X nY=X n Z=Y nZ=0, X u Y uZ=V and A(Y;Z)=A(Z;Y)=Q. For these,

we obtain A(X;Y) uA(Y;X) EA(X) uA(V-X) and

(A(Z;X) uA(X;Z)) n(A(X;Y) uA(Y;X))=O. This means that V-Y

is connected, because A(Z;X) uA(X;Z)#O holds since G is

connected. Similarly we can show that V-Z is connected.

Since these sets satisfy the condition of the lemma, we can

assume r(V-Y)>0 and r(V-Z)>0. Then we have

 r(X)= r(V-(Y uZ))= c(V-(Y uZ)) - g(V-(Yu Z))

 = c(V-Y) + c(V-Z) - (g(V-Y)+g(V-Z)-g(Y;Z)-g(Z;Y))

 = r(V-Y) + r(V-Z) + g(Y;Z) + g(Z;Y)

 > r(V-Y) + r(V-Z) > 0.

Therefore, we obtain that if r(X)>0 for X E V such that X

and V-X are both connected, then r(X)>0 holds for any

X c V . 0

 By combining this result and Assumption D, we conclude

the following. To test feasibility, it is sufficient to

examine (2.1) only for connected sets X c V with X nVB=

176

 VB[x,y) for some x,y E VB. Here, we consider

which x,y EVB are fixed. Then, for any X

VB[x,y), we have

r(X)= c(X)-g(X)= c(X)-g(VB[x,y)) (see

the

with

Figure

case in

XnVB=

7.1).

I

VB[x,y)

 Y

Fig. 7.1 Illustration of VB[x,y).

177

Therefore, to test r(X)>O, we consider that

c(X). Let c°[x,y) denote the minimum value of

obtain the following lemma.

Lemma 7.2 A CB (or CS) network is feasible, if

 c°[x,y)—g(VB[x,y))>0 for all x,y EVB,

holds. ^

X

c(X)

and

x#y

minimizes

, then we

only if

 (7.1)

178

7.3 USE OF A DUAL GRAPH

 In this section, we consider the use of a dual graph in

order to test condition (7.1) efficiently.

Definition 7.1 For a CB or CS network N=(G,P,g,c) satifying

Assumption D, we define directed dual graphs G*, H* and

directed networks N* as follows. Each node vi in the dual

graph corresponds to a window Wi in G (in particular, node

vB corresponds to the outer face of G). For each directed
arc ak in G, a directed arc ak is introduced between nodes
vi and v* corresponding to the windows Wi and W. which
contain ak commonly. Here, direction of ak is defined by
the orientation when we turn ak 90 degrees in the clockwise

 V

Fig. 7.2 Explanation of Definition 7.1.

 179

manner (see Figure 7.2). Let V* and A+ denote the resulting

set of nodes and set of arcs, respectively. Further, let ak

be the arc obtained by reversing the orientaion of ak, and

let A- be the set of arcs ak. We denote dual graphs

(V*,A+u A-) by G*. Furthermore, let H* denote the resulting

graph obtained by removing vB and all arcs incident to vB
from G*. By introducing the length of arcs d:A+u A--)-R+, we

define directed dual networks N*=(H*,d), where d is defined

by

d(at)=c(ai) for a4E A+,

d(a7)=0 for aiE A. ^

 Assume that we know the information about the

incidence relation of arcs, which is necessary to embed a

planar graph into the plane. Then, since O(IV*I)=O(1A+1)=

O(1A-1)=O0A1)=O(IVI) holds in a planar graph, we can find

all windows in G and construct G* according to

Definition 7.1 in O(IVI) time.

 We take a simple directed cycle C in G* and consider

the set of arcs in G corresponding to the arcs in C. The

obtained set is a simple cut in G, and from definition of d,

the length of the directed cycle is equal to the sum of

capacities of arcs in the simple cut. Since any cut

180

necessary for examining (7.1) contains an arc in the

boundary, we shall concentrate on, in particular, directed

cycles containing vB among all simple directed cycles in
G*. As shown in Figure 7.3, let x1,x2,...,xm (m=IVBI)

denote the nodes which appear in this order when we go

around the boundary in the clockwise manner. Further, we

denote the directed arc betweenxiand x.by by ai with

convention m+1=1. Letvi,i=1,2,...,m denote the node

 ** adjecent to vB in G via aie A+, i=1,2,...,m, where a1,

i=1,2,...,m in G* correspond to the above aie A,

i=1,2,...,m. Let VB be the set of vi, i=1,2,-.,m (vi=v~ is
possible for i4j, but similar argument also applies).

Lemma 7.3 Let d°(v4.;,4) be the length of the shortest
directed path from v*. to vi in N*. Then

* c°[xi+1,xj+l) = d°(vj,vi) + d(a(vB,v~)) + d(a(vi,vB))
holds, where m+1=1 is assumed for convenience.

Proof. In (G*,d), consider a directed cycle C such

that the sum of arc lengths in C is 0. Then all arcs in C

are in A. Since C is a directed cycle in graph (V ,A-),

this means that C corresponds to a cut A(X) between a

divergent set X and a convergent set V-X in G. Therefore

A(X)n ABA$ by Lemma 2.4, that is, any directed cycle in

 181

 m

 v O ,

 • 17
mV -1

•
•

0 0

•

 Fig. 7.3 Definition of vi,

graph (G*,d) with length 0 must c

directed cycle does not contain vB

positive sum of lengths. Thus,

shortest path (with d(v~,v.) in 1

lemma is simple. Therefore, the sh

and two arcs a(vB,v~), a(vi,vB) giv
and there is a simple cut in N wit

 182

 +vB
al -

 al

i • x2
O

*
vl

* 0o
 v2 •

* • x3
V3 O

0 •
x4

* *
v1,v2,...,vm.

t contain vB. Hence, if a
vB, then this cycle has a

s, this implies that the

n length) described in the

 shortest path from v. to vi

give a directed cycle in G*,

with its cost c°[xi+1,vj+1)

corresponding to the directed cycle. By Definition 7.1, C°

* *contains arcs a(vB,v~) and a(vi,vB). Thus, C° contains
subgraphvB~v*}vivB*. Therefore, by the minimumity of
co[x1.+1'x3.+1)' co and C' have the same cost value and we

have the lemma's statement. ^

 Lemma 7.3 asserts that we can compute c°[x,y), by

constructing the shortest path tree ST(vi) in N* for each of
i=1,2,...,m, where ST(vi) is the shortest path tree from
root vi to all other v~.As N* is strongly connected by
the definition, eachST(vi)contains all nodes in N*, where
a graph G=(V,A) is strongly connected if II(x,y)40 holds for

any pair x,y E V, x4y. Let T(IVI) and S(IVI) denote the time

required to compute a shortest path tree and the

preprocessing time for it, repectively. We can obtain all

shortest path trees ST(vi), i=1,2,...,IVBI, in

0(S(IVI)+IVBIT(IVI)) time.

183

7.4 COMPUTATION OF g(VB[x,y))

 To obtain all g(VB[x,y)), we first compute

g(VB[xl,xi)), i=2,3,...,m for x1E VB in 0(K+IVBI) time as

follows. Introduce 0-1 variables S(k) for commodities

k=1,2,...,K, and let

Ks(x){klsk=x), Kt(x){kltk=x) for each x EVB.

Procedure SETG(xl)

0. S(k):=1 for k=1,2,...,K;

g(VB[xl,x1)):=0; i:=1.

1. g(VB[x1,xi+1)):=g(VB[xl,xi))

 + E 6(k)gk - E (1- S (k))gk;
 k Es(xi)k EKt(xi)

S (k):=1- 6(k) for all k EKs(xi) uKt(xi).

2. If i=m-1 then halt the procedure. Otherwise let i:=i+1

 and return to Step 1. ^

 This procedure is executed from xl to xm along the

boundary in the clockwise manner. We first consider the

case in which source and sink of some commodity k are

located in the order of x1,..., xPsk,...,xq=tk,...,xm.

Since S(k) is set to 1 in Step 0 and changes only when x
p

or xq is scanned, the value of gk is added only to

184

 g(VB[xl,xi)), i=p+1,...,q. In case the source and sink of

some commodity k are located in the order of

xl,...,xp=tk,...,xq=sk,...,xm, the value of S (k)=1 changes

to 0 (1) when xp(xq) is scanned, and the value of gk is

not added to any g(VB[xl,x0),i=2,3,...,q. Therefore, the

procedure SET(xl) computes g(VB[xl,x1)), i=2,3,...,q,

correctly. By storing Ks(xi) and Kt(xi) for each xiE VB in

advance and referring the data as required, the total time

of procedure SETG(xl) is 0(K+IVB1).

 If g(VB[xl,x1)),i=2,3,...,m for xlE VB is known, we can

obtain g(VB[x2,x1)),i=3,4,...,m,1 for x2E VB as follows.

Procedure UPDATEG(x2)

0. g(VB[x2,x1)):=E gk;
 k EKt(xl)

A 2:= - E gk;
 k EKs(xl)

is=3.

 r l. A i:= A i-1 +Igk+I g;
 k'E Kt(xl) n Ks(xi-1) kE Ks(xl) n Kt(xi-1)

g(VB[x2,x1)):=g(VB[xl,x1))+ Ai.

2. If i=m then halt the procedure. Otherwise let is=i+1 and

 return to Step 1. ^

185

 g(VB[xi,xi))

k
 x_=s

g(VB[x2,xi))

k',

x_

s
k'

Fig. 7.4 Explanation of procedure UPDATEG(x2).

186

 For i=3,4,...,m,1, we clearly have

g(VB[x2,xi))=g(VB[xl,xi))

+ gk'
 k'E Kt(xl) n {Ks(x2) ... Ks(xi -1))

+ Egk
k E Ks(x1) n{Kt(xi) ... Kt(xm)}.

See Figure 7.4. Since Ks(x1)n {Kt(xi)u ... uKt(xm)} can be

rewritten as Ks(x1)-Ks(x1) n{Kt(xi) u... u Kt(xm)}, each

increment A i of g(VB[x2,xi))-g(VB[x1,xi)) satisfies the

relation in Steps 0 and 1. This shows the validity of

procedure UPDATEG. Since we may find xi with kE Kt(xi)

(Ks(xi)) in 0(1) time for each kE Ks(x1) (Kt(x1)) by using

appropriate data structure, the required time of UPDATEG is

bounded from above by 0(1Ks(xl)1+1Kt(xl)1+1VBI).

 By repeating this procedure UPDATEG for x3,x4,...,xm,

therefore we can obtain all g(VB[x,y)) within

0(K+1Ks(x1)1+...+JKs(xm-1)I+IKt(xl)1+... +IKt(xm-1)I+IVB12)

=0(K+IVB12) time.

187

7.5 FEASIBILITY TESTING

 By the following procedure FTEST, which is based on the

procedures in the previous section, we can test

feasibilities of a CB network or a CS network N=(G,P,g,c).

Procedure FTEST

Input: A CB or CS network N=(G,P,g,c) satisfying

 Assumption D.

Output: Feasibility of N.

0. Construct dual networks N*=(H*,d) and according to

 Definition 7.1.

1. Obtain the shortest path trees ST(vi) with root
 i=1,2,...,m in N* vi,

2. Compute all g(VB[x,y)), x,y E VB (x4y) by SETG and

 UPDATEG.

3. For each pair xi+1,xj+l E VB in N, compute c°[xi+1,xj+1)

 by Lemma 7.3 and ST(vi), and test
c°[xi+1,xj+1)-g(VB[xi+1,xj+1))>0

 If this holds for all [xi+1,xj+1), then output

 "feasible" and halt . Otherwise, output "infeasible" and

 halt. ^

 The required time of the above computation is 0(IVI)+

0(S(IVI)+IVBIT(IVI))+0(K+IVB12) as obvious from the results

 188

in Sections 7.3-7.4. Here, if we do not distinguish the

commodities with the same source-sink pair , we have

 K < IVBI2.

In addition, suppose T(IVI)>0(IVI). Then the entire time

then becomes 0(S(IVI)+ IVBIT(IVI)).

Theorem 7.1 Feasibility of a CB (CS) network N can be

tested in 0(S(IVI)+IVBIT(IVI)) time, where IVI is the number

of nodes, IVBI is the number of nodes in the boundary,

T(IVI) and S(IVI) are the time required to compute a

shortest path tree and the preprocessing time for it. ^

 As N* is a planar graph with nonnegative arc lengths,

Frederickson's two algorithms [FRED 83] have running times

S(IVI)=0(1), T(IVI)=0(IVIJlogJVJ) and S(IVI)=0(IVIloglVI),

T(IVI)= 0(IVllog*IVI), where log*n is the minimum integer p

satisfying logpn<1, assuming that login is defined as

log0n=logn and loriin=log(logi-11), i>1. As described in

Section 7.1, the time complexities obtained from these

results of S(IVI) and T(IVI) become advantageous when the

number of commodities K is large.

 Finally, consider the scheduling network in Figure 4.2

and apply FTEST. Since IVBI=O(I+J) and IVI=O(IJ). the

189

latter of Frederickson's gives the time complexity

 O((I+J)IJlog IJ) of FTEST. For large K, this new time

bound becomes smaller if compared with the O(IJK) time bound

of the algorithm developed exclusively for this sheduling

problem in [IBAR 85], and the 0(KIVI+IVBIIVI)=O((K+I+J)IJ)

time bound of the algorithms ASSIGN and MATE1 developed in

Chapters 3 and 4 for CS.

7.6 CONCLUSION

 We showed that the feasibility of a network in class

CB or CS of the multicommodity flow problem in directed

planar graphs can be tested efficiently by computing the

shortest path trees in their dual graphs. This result is

based on the max-flow min-cut property that holds for these

classes. If the number of commodities K is large , the

proposed method FTEST is more efficient than the methods

based on ASSIGN and MATE1. It should be noted , however,

that FTEST answers only whether the network is feasible or

not, and does not output the values of feasible flow f(a ,k)

even if it is feasible. This point differs from the

algorithm based on ASSIGN and MATE1.

190

 CHAPTER 8

 RELAXATION METHODS

 FOR A DIRECTED NONLINEAR NETWORK

8.1 INTRODUCTION

 As described in Chapter 1, the multicommodity flow

problem can be formulated as a linear programming (LP)

problem if its objective function is linear. Some graph

theoretic algorithms are also developed in Chapters 3-7 of

this thesis. If the objective function is not linear, these

algorithms for the LP formulation can no longer be applied.

 In case of nonlinear objective functions, Bertsekas

[BERT 85,87] considers the dual problem for the minimum cost

single commodity flow problem with strictly convex objective

function, which is based on the dual formulation

[ROCK 81]. As to the multicommodity flow problem, some

methods have been developed for the case where the capacity

restriction is imposed only on the total flow of commodities

in each arc. (See, for example, the dual approach by

Fukushima [FUKU 84] and the relaxation approaches by

Gallager [GALL 77] and Stern [STER 77].) Fukushima's

alogorithm [FUKU 84] obtains an optimal solution of the

dual problem by repeatedly solving the shortest path

 191

problems.

 In this chapter, we propose relaxation methods for the

multicommodity flow problem with a strictly convex objective

function. Associated with each arc in the network are

capacity constraints not only on the total flow of

commodities but also on the flow of each commodity.

Capacity constraints for individual commodities are often

required, for example, in order to represent a selection of

particular commodities in an arc of the network for multi-

stage multi-item production scheduling problem [ZAHO 84].

The methods proposed in this chapter are extensions of the

methods proposed by Bertsekas [BERT 85,87] for the single

commodity case, and are efficient enough to practically

solve problem instances of moderate sizes with several

commodities. Typical computational results show that

problem instances with up to 100 nodes, 1000 arcs and 7

commodities can be solved in about 60 seconds on a FACOM M-

382 machine [NAGA 87c].

 It is noted here that the previous formulations such as

those considered in [FUKU 84, GALL 77. STER 77] are

different from ours because they do not have capacity bounds

on individual commodities, and their objective functions

192

contain as arguments only the total flows of commodities on

arcs. In this sense, our formulation is more general.

However, their formualtions are not special cases of ours

because the deletion of the objective function of individual

commodities (i.e., to assume that it is constant) violates

the assumption of strict convexity, which is vital to the

proposed methods.

193

8.2 DEFINITIONS

 We consider the following network N=(G,c,c).

 G=(V,A): a directed graph, where V is the set of nodes

and A is the set of arcs. (i,j)E A denotes a directed arc

from node i to node j.

 c: a vector of lower capacities. cif denotes the lower
bound for commodity k in arc (i,j), and cij denotes the

lower bound for the sum of all commodities in arc (i,j).

(Elements of c are allowed to be -0.)

 c: a vector of upper capacities.cif denotes the
upper bound for commodity k in arc (i,j), andcij denotes

the upper bound for the sum of all commodities in arc

(i,j). (Elements of c are allowed to be +00)

 Let K be the set of commodities, and letfibdenote the
flow of commodity k EK in arc (i,j). The multicommodity

flow circulation problem we consider is stated as follows.

P: minimizeEE F.~(fi~) + E Gi(sij)
 (i,j) EA k €K (i,j) EA

 subject to

E fim- Efmi=0for k EK, i EV, (8.1)
 (i,m) EA(m, i) EA

si •= E fikfor (i,j) EA, (8.2)
 k EKJ

 194

 c1J < f iJ<cijfor k E K, (i,j) EA, (8.3)

 cij<sij<cijfor (i,j) EA, (8.4)

where Fi~:R+(-00,+ ~) andGij:R ->(-00 ,+ C°) are
(everywhere finite) strictly convex functions. Further, we

assume

 lim F1J(x)/x=-if c.=- co ,
 xi-~

 lim Gij(x)/x = -00 if cij=-co,
 x -OD

lim F1J(x)/x=+ c0 ifciJ= +00,
 x±+OD

 A lim Gij(x)/x = + o ifcij= + 03 .(8.5)
x±+00

 Strict convexity and assumption (8.5) on FiJandG.and
are necessary to guarantee that their conjugate functions

are finite everywhere and continuously differentiable.

Constraint (8.1) is the flow conservation of commodity k at

node i. Note that the ordinary multicommodity flow problem,

in which some nodes are specified as sources or sinks, is

reducible to this formulation P by introducing return arcs

with appropriate lower capacities from sinks to sources.

 Let f denote the IKIIA1+1A1 dimensional vector with

components fjJ (k EK, (i,j) EA) and sij ((i,j) EA). Problem
A P may then be rewritten as follows.

195

 A
 P: minimize4 (f)= E E F•k(f•k) + E G••(s••)

 (i, 7) E A k E K 1J 1J(i, j) E A1J1J (
8.6)

 subject to

E f1m- E fm/f=0 for kE K, iE V, (8.7)
(i,m)E A(m,i)E A

 s••=Ef•kfor (i, j) E A, (8.8) 1J
k E K1J

whereF1~:R--(- co,- co] andG1j:R ~(-co ,--co] are defined by

F1l(x) = F4(x), x E [cif, c1ll]
+00 , x f kill, C1 j]

 A~

G1j(x) = Gij(x), x E [Lij, CO

+3° , x / [Cij, cij].

 Let p denote the IKIIVI+IAI dimensional vector with

components pi (kE K, iE V) and pij ((i,j)E A). We then

derive the dual D of problem P as follows. Consider the

Lagrangean of P and its inf:

L0(f,P)= c(f)

 + EEPi(-fim+Efmi)
(1, j) E A k E K(l,m)EA(m,i)E A

 +E p1.(-s1. + E fib),
 (i,j) EAkEK

196

Here Fil and Gij are the functions conjugate to Fil and
 Gij, respectively. By the theory of nonlinear programming ,

therefore, D can be written as follows.

 D: minimize E
(i,j)E

 subject to

tij = pi - pj - pijfor kE K, (i,j)E A. (8.10)

 One may consider the variable pi as representing the
potential of commodity k at node i, as in the case of the

single commodity flow problem [ROCK 84]. The variable pij

correponding to constraint (8.2) is unique to the

multicommodity flow problem. Here we shall call variables

pij the potential of arc (i,j). We also call variables tij
satisfying (8.10) the tension of arc (i,j).

 Substituting (8.10) into the objective function,

problem D becomes an unconstrained minimization problem with

inf LO(f,p)

= E

(i,j)E A

+ E
(i,j)E A

- (i,j)E A

 E

kER inf{Fi~(f)+ (-pi+pj+pij)fij} 1J

 inf (Gij(sij)-pijsij}
sii

•E F•.(pi-p.-pij)-E (G*ij(pi.)}- kE K(i,j)E A

are the functions conjugate to Fi/1 and

By the theory of nonlinear programming,

written as follows.

197

variables pi and pij:

minimize E (p)=E E F.k(pk-Pk-P)+EG•* -(P•
 (i,j) EA k El(1J 1 J1J(i,j) EA13 13

 (8.11)

It is known [ROCK 70; Corollary 13.3.1, Corollary 25.5.1 and

Theorem 26.3] that assumption (8.5) implies that Fib and
Gij are continuously differentiable convex functions which
take finite values everywhere. In the convergence proof of

the alogorithms to be presented in Section 8.4, we shall

also assume that the first derivatives of the functions are

Lipschitz continuous.

198

8.3 OPTIMALITY CONDITIONS

 Let (t,p) denote the vector of all variables tip,pi
and pij of D. By the duality theory of nonlinear

programming, a solution f of P and a solution (t,p) of D are

both optimal if

 tij= pi- pj - pij for kE K, (i,j)E A, (8.12)

 dFi(tij)/dti~-fib=0 forkE K, (i,j)E A, (8.13)

E im-E fi=0 for kE K, i E V, (8.14)
(i,m) E A(ram€ A

 dGij(pij)/dpij- E fib=0for (i,j)E A, (8.15)
k E K

hold. In particular, conditions (8.12) and (8.13) imply

that t of D and f of P can both be determined from an

optimal potential vector p of D. That is, if the vectors t

and f obtained from a given potential vector p by (8.12) and

(8.13) satisfy conditions (8.14) and (8.15), then f and

(p,t) are optimal to P and D, respectively.

 To find such p, we try in the following to minimize the

objective function (p) of (8.11). Note that the

derivatives of E (p) are given by

 199

 C(P)/ 34=
(u

E
EA

E
(i,m)

(m,i)E

E
(i,m)E

a c(p)/ aPij=E
(u,v)E A

(u,v)E

_ - E
 kE K

 _ - E
 kE K--

provided that we determine ti/ and fi/ by

(8.13), respectively. We see that (8.16)

represent the deviations from equalities (8.14)

respectively. Denote these deviations by

 di(PA E fim- E fl (=a E(P)/a
(i,m) E A (m,i) E A

 dij(P).- Ef'J+de •(pij)/dpij(=a
 kE K

EBFu(pu-pv31)11-puv)/ ai

k dFim(ti)/dtim
EA

 dFmi(tmi)/dtmi

A

 fim-E fml,(8.16)
A (m,i)E A

4,_ _ ,_ ,_ _ / a Pij

 ij(Pij)/dpij

~, (8.17)

 (8.

and

and

Pi/,

(P)/

12)

 (8

(8.

and

.17)

15),

(8.

api j

(8.

18)

).

19)

200

 If di(p) is negative (positive) for some k and i,

condition (8.16) implies that (p) decreases by increasing

(decreasing) the corresponding potential pi. Similarly if
dij(p) is positive (negative) for some (i,j), (8.17)

implies that E(p) decreases by decreasing (increasing)

pij. In particular,if di(p)and dij(p) all become 0, the
obtained f and (t,p) satisfy (8.12)-(8.15), and are optimal

to P and D respectively. Based on this observation, we

propose in the next section a framework of descent

algorithms for minimizing (p). By specifying the details,

various algorithms for solving P and D will result.

201

8.4 ALGORITHMS

 Let ei and eij be the IKIIVI+IAI dimensional unit
vectors such that p•ei=pi and p•eij =pij, respectively.

Also let S >0 and E >0 be parameters, where E is the

accuracy with which the procedure halts after finite

iterations, and E is the margin of deviations that restrict

the candidates of pi and pij updated in each iteration. For

f3 >0, denote

Vk(Rid-{iEVldi(p)<<-R), V+(g)A{iEVldi(P)>R } for kE K,

A_(S)A{(1,j)€ Aldij(P)<-S }, A4.0 A((i,j)E Aldij(P)>_a

Procedure ?4ULTIFLOW

Input: A network with upper and lower capacities

N=(G(V,A),c,c), cost functions F4 and Gij (or their
 conjugates Fisk and and and real numbers S >0,

E >0.

Output: Approximate optimal solutions f of P and (t ,p) of

 D.

Step 0(initialization): Choose an initial potential vector

 p and compute the corresponding tiJ and f1J by
 (8.12) and (8.13), for kE K, (i,j)E A, as well as di

 and dij of (8.18) and (8.19), for kE K, iE V,

(i,j)E A. Let k':=0.

 202

•

Step 1(checking of the current solution): If Vk(E)=V+(6)_0

 for all k EK and A_(e)=A+(e)=0 (convergence check),

 then output the current f and (t,p) as approximate

 optimal solutions of P and D, respectively, and halt.

Step 2(updating S): Choose a real number S'>0 and update

 by S:= S' according to an appropriate rule. Let

k':=k'+1 and go to Step 3.

Step 3(updating p): If k'=K+1 then let k':=0 and go to (b).

 Otherwise, go to (a).

 (a) If Vkt(S)u V(0=0, return to Step 1.

 Otherwise, execute the following procedure. Choose a

 nonempty set S cVkt(S)u V+'(S), and obtain A >0

 and P such that

 P= P+EA eij — E A ei, (8.20)
iE SnVk'(S) iE snV+'(S)

E di(17)=0.
1E S

 Update p by p:=p and return to Step 1.

 (b) If A_(S) u A+(S)4, return to Step 1.

 Otherwise, choose a nonempty set SA_(S) uA+(S),

 and obtain A >0 and p such that

P=P + I Aeij_I Aeij.(8.21)
 (i,j) ESn A_(S) (i,j) ESn A+(S)

 203

 E dlJ(p)=0.
 (1,3) E S

 Update p by p:=p and return to Step 1. ^

 The conditions (8.20) and (8.21) in Step 3 intend to

decrease (p) by modifying some components of the current

potential vector p, as discussed in the last paragraph of

Section 8.3. As the second condition in (8.20) or (8.21)

indicates, the step size A is determined so that

 (p+ A•es) is minimized in the direction of

eS= Eelf1 -I ei or

iE Sn Vk'(S) i E S nV+,(S)

eS=Eei. - Iei
 (i,j)ESnA_(S)(i,j)ESnAl.(S)3

respectively. The A may be computed by applying an

appropriate one-dimensional search technique. The purpose

of introducing S and S is to faciliate the computation of

each iteration by restricting the target potentials only to

those that are important and easily computed.

If S=Vk(0)uV+(0) and S=A_(0) uA+(0) are used in Steps 3(a)
and (b), respectively, the potential vector p is modified in

the direction of steepest descent. This method, however,

requires a considerable amount of computation because all pi

and pij take part in the computation of A and p. For the

 204

single commodity flow problem, Bertsekas [BERT 85,87]

compared the following two cases: the case ISI=1 and the

case S={1EVI di(p)<O} (or {iEVIdi(p)>O}), where di(p) is

defined in a manner similar to (8.18). Note that the

procedure using the former S corresponds to the coordinate

descent method. The multicommodity versions of these cases,

i.e., ISI=1 and S={iEVldi(p)<O} (or {iEVldik(p)>O}), are

considered in [GALL 77] and [STER 77] respectively, though

lower and upper capacities for individual commodities are

not explicitly introduced therein. S in the latter case

gives the maximal descent direction of (p) when pi,iE V are•
modified, but much time is required for constructing the S

and for updating the corresponding potentials. In fact,

[BERT 85,87, STER 77] report that the former is a better

selection method of S than the latter. By introducing S ,

we can define a set S which lies between the above two

extreme cases. To guarantee the convergence of the

resulting procedures, as proved in Section 8.6, S must

satisfy the condition that S always contain at least one

(i,k) with Idi(p)I> E ((i,j) with Idi~(p)I> E). The
selection rule of S must also satisfy the condition that it

must eventually become S <6 after finite iterations.

 205

 As described above, Procedure MULTIFLOW has much

freedom as to how to determine the set S in Step 3, and as

to how to update the controlling parameter S in Step 2. We

describe below some typical rules, which are used in the

subsequent computational experiments.

Determination of S The following two rules are tested.

(S-1) In Step 3(a), use

S=Vk(S) and S=V+(S-)
alternately for the selected kE K, and in Step 3(b), use

S=A_(S) and S=A}(S)

alternately.

 (S-2) In Step 3(a), use S=(i) such that iE Vk(S)uV+(S),
and in Step 3(b), use S=((i,j)) such that

(i,j) EA_()u A+(S), where the selection of i (or (i,j))

is done simply by taking the first one found during the

course of checking Vk(S) u V((S) (or A_((S) u (S)).

 Note that (S-2) gives rise to the coordinate descent

method.

Determination of S The following three rules are tested .

 (6-1) 6= a nonnegative constant (< 6), throughout the

computation.

 206

 (6-2) S= max {Id+(P)I,Idij(p)I}. This rule forces
 i,k,(i,j)

to choose in Step 3 the potential p or pij with the

largest deviation Id+(p)I or Idij(p)I, respectively. It is
noted that if commodity kl uniquely attains the maximum,

i.e., Idikl(P)I= maxi,k,(i,j){Idi(P)I, Idij(P)I}, then
Vk (S)=V+' (S)=O for k'kl and A_(S)=A+(6)=0 holds in
Step 3(a) and (b). That is, in this case, Steps 3(a) and

3(b) are skipped until k' becomes kl. However, the

computation time required for skipping Step 3 is usually

negligible.

 (6-3) In Step 0, set S initially to some So> E. We

update S only when Vk(S)=V(6)=0 for all k E K and

A_(S)=A+(6)=0 hold in Step 2 (margin check). At the

(i+1)-th iteration of updating in Step 2, S' (= (4+1) is

determind by

where

S i =

d={

(i.e., the

 E

 kE K

 average

0.7

9

Si + O.3d, if E <0.7 Si+O.3d

 otherwise,(8.22)

Idl(P) I + E Idi;(P) l)/(IKI IVI+IAI),
V(i,j) E A

deviation). ^

207

 The constants 0.7 and 0.3 in (S -3) have been

empirically selected on the basis of computational

experiments in Section 8.5.

 Combining these, we test the following six cases of

MULTIFLOW in the experiments reported in the next section.

 A: (S-1),(6 -1),6 =0.0.

 B: (S-1),(S -1),6 =c .

 C: (S-1),(6 -3).

 D: (S-2),(S -1),6 =E .

 E: (S-2),(6 -2) .

 F: (S-2),(6 -3).

 Algorithm A may be regarded as a faithful approximation

of the method of steepest descent, while B and C deviate

from A in that those pi and pig with small 14(p)1 and

Id. .(p)1 are neglected in choosing the potentials to be ij

modified. Algorithms D, E and F are coordinate descent

methods. Among these, E has a special property that it

always chooses the potential pl or pig corresponding to the
largest deviation among Id/11 and HO.

208

8.5 NUMERICAL RESULTS

 Computation was carried out with the following test

data. To obtain a feasible network with given numbers of

nodes and arcs, a strongly connected network and a flow

satisfying the flow conservation constraints are first

generated. For this purpose, we first construct a directed

Hamiltonian cycle through all given nodes, and then generate

arcs between some pairs of nodes, which are selected

randomly, until the network has a specified number of arcs.

On the resulting graph, we construct a feasible flow for

each commodity k by randomly selecting cycles in the graph,

to which commodity k of the amount chosen from interval

[0.0, 100.0] is assigned. The assignment to cycles is

repeated until every arc has a positive flow of commodity

k. After completing this procedure for all commodities k,

the capacitiescij and cif are selected randomly from
intervals [fib,fib+100.0]and [0.0,fij], respectively.
The numbers of cij andcij are then randomly selected from

intervals [E k -ij' E k fij] and [max(E k fij,maxk -cij},

E kc^j], respectively. Finally all flows and capacities are
scaled so that

 ~~xx-k__ k,(i.j)1J100
holds.

 209

 All the strictly convex functions Fib and G
objective function are assumed to be quadratic.

illustrates a quadratic functions Fib and its
F i.e.,

 F1~(x) = ax2+bx+d, x E [c,-c]
+°° ,x [c, c],

Fi7(y) = (c(y-b)-ac2-d, YE [2ac+b,+°°

Each Fij is defined by
 Fij=a(fi~-h

where a is randomly

h=((cif-cij)/2)+ a
interval [-(cij-c
similarly defined.

step size A is

analytically without

 The parameter

set to c =0.1 in Figures

 The procedure

on the FACOM M-382 m

Center.

ij in the
 Figure 1

 conjugate

c(y-b)-ac2-d, yE [2ac+b,+c

(y-b)2/4a-d, yE [2ac+b, 2ac+b]

c(y-b)-ac2-d, yE [- . ,2ac+b].

d by

mly chosen from interval [0.1, 10.0] and

.ere a is ramdomly chosen from

 cij-cif)].FunctionsGijare
 In he case of quadratic functions, the

20) and (8.21) can be obtained

ut orting to line search techniques.

used in Procedure MULTIFLOW is always

igures 8.2-8.7.

MULIFLOW was coded in FORTRAN77, and run

Lachine of Kyoto University Data

_.re 8.2 shows the computation time of

210

 N

I--,

I-,

F
lk(x)

 C C

k (x)
ij

X

F..(y)

 ((y-b)

slope c

 lac+b 2ac+b
Y

(a) Primal cost

 Fig.. 8.1

function(b)

A quadratic convex function

Conjugate cost function

and its conjugate.

all algorithms A-F, described in the previous section.

Since it has been found that algorithm A performs much worse

than others, only the results for small problems are shown.

One may conclude that algorithm F is most efficient among

these, and the computation time of algorithm F increases

only linearly with lAl.

 To explain the reasons for these, we illustrate in

Figure 8.3 the total number of inner iterations (Step 3) for

the coordinate descent methods D, E and F. (Recall that

most of the computational time is spent in Step 3.) Since

algorithm E always updates the potential with the largest

absolute deviation, it is expected that E achieves the

largest gain in one iteration, among all the coordinate

descent methods. This suggests that algorithm E is most

efficient if measured only by the number of iterations.

This point is clearly observed in Figure 8.3. However, the

computation time required for one iteration of E is much

larger than others because it is quite expensive to find the

potential with the largest deviation.

 Figure 8.3 also indicates that the number of iterations

required by E and F are almost the same. Since the

computation time per iteration of F is much smaller than

that of E, this explains why F is faster than E. This

 212

sec

40

30

 20

 P-1
U

10

20 40 60 80 100

IAI

Fig. 8.2 CPU time for obtaining optimal

 point represents the average of

IAI=2IVI,IKI=4.)

solutions.

ten samples

(Each

 with

213

desirable aspect of F concerning the number of iterations

may be explained as follows. When we update S i by rule

(d -3), absolute values of all deviations are smaller than

S . In most cases, it is expected that S i is only

slightly larger than the maximum absolute deviation. As the

new threshold 6141 is determined by taking into account

the average d of all deviations, it is usually close to the

maximum absolute deviation. For this reason, (S -3) well

simulates the behavior of (S -2).

 The constants in (8.22) are empirically selected on the

basis of computational experiments as shown in Figure 8.4.

We see that the optimal a in S i+1'° aS 1+(1- a)d is 0.7.

 Algorithms C and F, which both adopt rule (S -3), spend

some computation time to update i in Step 2. In our

computational experiments, however, the total number of

updating S i in Step 2 was always between 32 and 40,

independently of the problem size. As this number is rather

small compared with the number of executing Step 3, the time

required for updating Si is usually negligible.

 Figure 8.2 also shows that algorithm C gives better

performance than the coordinate descent methods D and E.

This means that the computational efficiency depends more on

the 6-rule than on the S-rule.

 214

 aD

 0

ro

 a)

4-1
0

0

E

106

105

104

103
20 40 60 80 100

 IAI

Fig. 8.3 The number of inner

point represents the

IAI=2IVI,IK1=4.)

iterations

average of

(Step 3)

ten samples

(Each

with

215

 sec

3.

3

a)

~3

P4 C)

3

3

0.9 0.7 0.5 0.3 0.1 0.0
a

Fig. 8.4 CPU time of method F

coefficient a in(8.22). (Each point

of nine samples with CAI=150, IVI=

with respect

 represents the

50 and 11(1=4.)

to the

 average

216

 As F appears to be most promising, we carried out

further numerical tests with various network parameters IV'

and IAI. Figure 8.5 is the results for larger networks,

exhibiting the behavior similar to Figure 8.2. We see that

the computation time increases approximately linearly with

RAJ. Figure 8.6 shows the results of F for rather dense

networks, i.e., 1A1=0.1*IVI2 and 1K1=7. Even in this case,

the required computation time seems to increase only

linearly with IAJ. As typical examples, F could solve

problems with IKI=7,IVI=100 and CAI=1000 in about 60

seconds. Figure 8.7 illustrates the behavior of algorithm

F for various values of the number of commodities IKI.

Unfortunately, it is observed that the computation time

increases rapidly with IKI. Finally we show in Figure 8.8

the CPU time of algorithm F versus precision E. The

convergence rate of F seems to be linear, since the

computation time is approximately proportional to the

inverse of log c.

217

sec

100 200 300 400
IAI

Fig. 8.5 CPU

 IAI

time

=2IVI

of method F for large

,IKI=4 ([.]: the number

scale problems

of samples) .

with

218

 sec

a)
E •r1

P-1
U

60

40

20

200 400 600 800 1000

[5]

 IAI

Fig. 8.6 CPU

IAI

 time of method

=0.11VI2,IKJ=7

F

(1.

for

]:

 large scale

the number of

problems

samples)

with

219

sec

 v
e r1

PL.
Li

300

200

100

5 10 15 20
 IKI

Fig. 8.7 CPU time of method F

 commodities IKI for

([.]: the number of

with respect to

networks with

samples).

the

IAI=

number

8O,IVI=

of

20

220

100

 10-1

10-2

10-3

sec

CPU time

Fig. 8.8 CPU time of method F versus

(Each point represents the

with 1A1=150,1V1=50,1K1=4.)

 the

average

precision

 of ten

E

samples

221

 8.6 CONVERGENCE

 Before concluding this chapter, we give a proof that,

for a given E >0, each of the algorithms B-F finitly

terminates at an approximate optimal solution satisfying

 Vk(E)=V+(E)=0 for all k €K and A_(E)= Al.(E)_0, then

output the current f, provided that the dual problem D has

an optimal solution.

 As noted in the last paragraph of Section 2, Fib and
Gib are continuously differentiable. We assume in addition
that the first derivatives of E(p) are also Lipschitz

continuous, i.e., there exists a positive real number L such

that

II V E(P1) - 0 E(P2)II < L IIP1-P2II, (8.23)

where IIxil is the Euclidian norm of vector x.

 First let us consider the case in which a set

S sVk((3) has been chosen in Step 3(a). Let vector es

denote jES ei. Let A(>0) denote the step size determined

by (8.20), i.e., di(p+ A-eg)=0. We shall estimate the amount

of reduction in the dual cost (p)- E(p+ A•es). For any

z>0, we have

E(P+z•e5)- E(P)

222

 z

 < V(p+t•es)T es dt (by the convexity of)

0 z

 =[VE (p)T.es + (Vg(P+t• es)- VE (P))T• es]dt

0

z

< z • E (p)T. es + 11 VE (P+t•es)- 'V' (P) I I • I IeSI Idt

0 z

 < z •E(p)T•es + L tIIeslI2 dt,

0 where the last inequality follows from (8.23). Therefore,

since IIeSIi<IVI and

E(P)T•eS = E 40)
i€S

by (8.16), we obtain

E(P)- E(P+z•es) > - z • E 4(p) - LIVIz2/2. (8.24)
i E S

Moreover, since the step size A is determined so that the

minimum of (p+z•eS) is attained at z= A , it follows from

(8.24) that

E (p)- E (P+ A. es) = max (E (p)- (P+z •eg)}

z 223

 max {-z iE (1i(p) - LIVIz2/2)

Iie S di(p)I2/(2LIVI). (8.25)

 Similar argument applies to the other cases S E V+(6),
SEA _(6) and SEA+(6) of Step 2.

 Now observe that algorithms B-F are constrainted in

 such a way that a nonempty set S satisfying

Ii Z, dl(p) I>_e orI(i ,J)Esdij(p) I_>e (8.26)

is always selected in Step 3, by the property 6> E.

 Under condition (8.26), the dual cost decreases at

least by e 2/(2LIVI) (>0) as shown in (8.25) . Therefore, if

the dual problem D has an optimal solution
, i.e., its

optimal cost is finite, the decrease by c 2/(2LIVI) can

occur only finite times. Combining this with the above

argument, we conclude that algorithms B-F halt in Step 1

after a finite number of iterations , if D has an optimal

solution (i.e., P has an optimal solution) .

 With algorithm A, however , it is not possible to

guarantee (8.26), and it appears difficult to prove its

finite convergence.

224

8.7 CONCLUSION

 A framework of relaxation methods for the minimum

cost multicommodity flow problem with a strictly convex

objective function is presented. By specifying the rules

for determining S and d , this framework can genarate

various types of procedures including the steepest descent

methods and the coordinate descent methods. Limited

computational experiments for the cases in which the

objective function is separable and quadratic indicate that

method F has the best performance among the six tested

methods. The computation time of F appears to grow only

linearly with the number of arcs, but grows rapidly with

the number of commodities. Therefore, it is one of the

future directions to develop an algorithm that is efficient

for problems with many commodities.

225

 CHAPTER 9

 CONCLUSION

 Throughout this thesis, we have developed efficient

algorithms for the multicommodity flow problem in directed

networks. The main theoretical contribution of this thesis

may be classified into the following two categories.

 The first category contains graph theoretic algorithms

for testing feasibility of the multicommodity flow problem

in certain planar directed network. Three polynomial time

algorithms for classes CB, CS and CU are developed in

Chapters 3, 4 and 5. Furthermore, we have shown some

important properties in the network theory, e.g., the

integrality of flows and the max-flow min-cut theorem:

Classes CB, CS and CU have the integral flow property, and

furthermore classes CB and CS have the max-flow min-cut

property, while class CU does not have the latter property.

We illustrate the inclusion relations among these classes in

Figure 9.1. Among the known classes of the multicommodity

flow problem in directed or undirected networks for which it

is possible to develop efficient graph theoretic algorithms,

the class of CU networks possesses a unique characteristic

that it does not have the max-flow min-cut property . This

 226

The

the

class of

max-flow

a network with

 min-cut property

C5

 CB

Multi-item

scheduling

multi-stage

network in

/

 production

Figure 4.2.

/
/

/

^
 1

 CU

Kennington's

example NB in

counter-

 Figure 5.2.

Fig. 9.1 Illustration of the

classes CB, CS and

inclusion

CU.

relations among

227

 may suggest that the concept of capacity balance and dummy

 flow introduced for defining these classes will play an

 important role, different from the max-flow min-cut theorem,

 in the theory of directed networks.

 In the second category, we have studied the

mathematical programming approach for minimizing a nonlinear

cost function of the multicommodity flow problem in a

general directed network. Relaxation methods of various

types for obtaining optimal solutions are proposed.

Computational experiments indicate that the best one among

the six tested methods can practically solve those problem

which contain, for example, up to 100 nodes, 1000 arcs and 7

commodities.

 The efficient algorithms proposed in the above

categories would be useful and important from both

theoretical and practical point of views , as many of the

problems in various engineering fields can be formulated as

network optimization problems . Importance of efficient

algorithms in these areas will be increasing. The auther

hopes that the work contained in this thesis is helpful to

forward the status of network optimization techniques one

step ahead.

 228

 APPENDIX

 Proof of. Lemma 5.4 By Lemma 5.2, Nd has a pole. Suppose

that all poles of Nd, (xi,y0,i=1,2,...,q, are trivial .

Without loss of generality, we assume that Nd has 4-

alternating partitions Xt,Yi,W1, Zi with xiE Xi,yiE Yi and

r(Xl;Yj)=0 for i=1,2,..,r, and has unilateral simple cuts

A(Xt) with xi! Xyi E Yi and r(Xl)=0 for i=r+1,r+2,...,q

(r=q or r+1=1 are allowed).

 Let f be a feasible solution of Nd. Remove all flows

of the given commodities except dummy flows, i.e., for each

arc a EA

K
c(a):=c(a)- E f(a,k) (=f(a,d)),

 k=1

P:=O, gk:=0,k=1,2,...,K.

The resulting network Nd=(G,P,Pd,g,gd,c) is feasible. We

consider the following set of arcs in Nd, as shown in

Figure Al.

 rq
(b1,b2,...,bm)=(u A(Xt;YT))u (u A(Xt))

i=1i=r+1

 From r(Xl;Yi)=0 and r(X1)=0, we have c(bj)=0 for each

bj.Remove bj=a(vj,wj),j=1,2,...,m, fromNdand add new

229

I

0

 Vj vi

Y!

/Al

0

 vj Z.

Wi

Ye

Fig. Al Proof of Lemma 5.4.

230

nodes z.,j=1,2,...,m and new arcs a(vj ,z),a(wj,z),

j=1,2,...,m. Define the capacities of these arcs by

c(a(vj,z))=c(a(wj,z))=0,j=1,2,...,m. Let G be the

resulting graph. Then Nd=(G,P,Pd,g',gd,c) is feasible . Each

neighbouring pair (xi,yi) satisfies 1(xi,yi)=0 in G, and

Nd generates no new poles. Therefore Nd has no pole, though

Nd has a convergent node zj which is not on the boundary.

This contradicts Corollary 5.1. ^

Lemma Al If rank(xi)<rank(x'i) holds for a pole (xl,y1) and

an i E I in a feasible CU network Nd, then

A 11(x1,xi)= 11(x1,xi)=Q holds. ^

 Proof First we assume thatrank(i)=rank(xi) and

ll(xl,xi)#O. See Figure A2. From xiE Sd and Definition

A 5.1 (3), xi is unilateral. This is however impossible,

because xl,y1,xi(=xi)'yi+1 appear along the boundary in this

A order. Secondly assume rank(xi)<rank(xi). From the

planarity of Nd, 7 1 E II (xi , yi+1) and ir 2 E ll ('xi , yi) have a

common node z, as illustrated in Figure A3. Assume

11(xl,xi)40, and consider (1) z4xi,xxi. Here Tr 3 E H

have a node w common to 7'1 E II (z,yi+1) or 7'2 E II (z'yi).

If w is in Tr'1 (similarly for Tr'2), then II (w,xi), Q and

II(xi,w)40 contradicting the acyclicity of G. Therefore

231

 11 (x1

The

,xl)=

cases

0.

(2)

We can

 z=xi

 show

and (3)

II (x1,xi)

z=xi can

0

be

in the same manner

treated similarly

 yi +1

N

X

xl

1=X i

Y.

Fig. A2 Proof of Lemma Al.

232

 Yi+1

 7(3 r

xi

0

xl

xi

Y.

Fig. A3 Proof of Lemma Al.

233

 Proof of Lemma 5.5 First we show that II(xi'yi+1)=o holds

 in Case-2, i.e., there exists a convergent set X-(xi;yi+1)

by Lemma 5.1 (see Figure 5.6). Suppose B(xi,yi+1)40, then

rank(xi)<rank(xi). This means 11(xl,x0=0 from Lemma Al

contradicting the assumption of Case-2 (11(xl,xi)40).

Therefore let X1=V-X-(7i'yi+1)• We obtain xl,yi+lE Xl by

11(xl'yi+1)40 and xi,y1 E V-Xl by ll(xi,y1)40. Therefore the

boundary can be divided into the two parts contained in X1

and V-Xl respectively by Lemma 2.4.

Furthermore

(zIrank(yl)<rank(z)<rank(xi)} c V-Xt

{zirank(yi+1)<rank(z)} u {x1} c V-X1
are obtained. Now we assume that A(X4) is not an a -cut,

i.e., there exist x'E Sd and y'E Td satisfying

x'E VBin Xl,y'E V-Xi and 1I(x',y')40. If rank(y')<rank(xi)

then Tr E lI (xi,y1) and Tr 2 E 11(x' ,y') cross each other by

the planarity, and 1I (x',y1)40 holds contradicting the

definition of xi. Then we obtain

(rank(yi)<)rank(xi)<rank(y') and y' Td(x1). Here if

ll(xi,y')40 then ll(x1,y')4 by 11(xl,x04 contradicting

y' ' Td(x1). Then iI64,y')=0 holds and there is a

unilateral simple cut A(X+) with x'E X+ and xiE V-X+ by

Lemma 2.1. By the unilaterality of cut A(X+), we have

 234

 x' E X. Here any path 7 e II (x' , y') satisfies u EX-Fn Xi and

v EX+nX-(xi'yi+l) for some a(u,v) EA('rr). From v EX+

II(xi,v)=0 holds. In addition, II (x1,v)40 must hold for

a(u,v)E A(V-X-(xi'yi+1)) by Lemma 2.2. This is a

contradiction. Therefore the assumed x' and y' do not exist

and A(X1) is an a -cut. ^

Proof of Lemma 5.6 In Case-3, 11(xi,yi+1)=0 holds from

Sd=0.InCase-4,ifH(xi'yi+1)#O then rank(xi)<rank(xi)

holds and 11(xl,xi)=0 by Lemma Al. This contradicts the

assumption of Case-4, and hence 11(7i,yi+1)=0. This means

that a divergent set X+(yi+l;xi) exists for Cases-3 and 4.

Let X1=X+(yi+1;7ci). Then similarly to Lemma 7.1, we obtain

{z1 rank (y1)<rank(z)<rank(xi)) c V-Xi,

{zIrank(yi+l)<rank(z)} u (x1) c V-Xi.

Now assume that A(Xt) is not an a -cut, i.e., there exist

x' E Sd and y' E Td satisfying x' E VBi n X4,y' E V-Xl and

II(x',y')O. Here we show II(x',yi+1)=4. In Case-3,

II (x',41)=0 from 4=0. In Case-4, weobtain
rank(xi)<rank(y'),y' I Td(x1), similarly to the proof of

Lemma 5.5. If rank(xi)<rank(x'), then 71 II(x1,x1) and

72 E 11(x',y') have a common node by planarity of G.

Therefore l(xl,y')40 holds. This contradicts y' I Td(x1),

 235

 and we have rank(x')<rank(xi). Therefore n(x',yi+l)=O in

 Case-4, since ll(x',yi+1)40 contradicts the definition of

 xi.

 By 11(x',yi+1)=0 and Lemma 2.1, there exists an

 unilateral simple cut A(V-X-) with x'E X- and yi+lE V-X-.

 From the unilaterality of cut A(V-X`), V(7r)E X-,

A(71) n A(Xl)AO holds for any path 7 E II (x' , y') . Here

u E X- n Xl and v E V-X+ for some a(u,v) E A(X1). From the

 convergency of X-, it holds JI(u,yi+1)=0. This, however

 contradicts the result ll(u,yi+1)#0 obtained by applying

Lemma 5.2 to X+(yi+l;xi)• Therefore the assumption is

false, and A(X1) is an a -cut. ^

Proof of Lemma 5.7Based on Vi=O, we first show
rank(xi)<rank(xi). As rank(xi)#rank(x

i) is clear, assume

A that rank(xi)<rank(xi). By Lemma 2 .4, there is an arc

a(u,v) such that a(u ,v)E A(V-X-(xl;xi))n AB and

rank(xi)<rank(u)<rank(v)<rank(xi) . Applying Lemma 5.1 to

A X_(xl; xi),, we obtain 1I(xl ,z)#0 (see Figure A4). Here by

B(xl,yi)#O and the planarity , T1(xi,yi)40 holds, and

71 E H(xi,yi) and 72 E 1I(xi,yi+1) have a common node w.

By the unilaterality of the cut , w is not contained in

(V-X-(x1;x0) n (V-X-(x1;xi)). Now assume that n(xl ,w)#O

236

and

path

find

Lemma

 ll(w,z)AO hold or

73 e ll(xl,z) that

a directed cycle

Al.) Here if w

 w=z

 does

in a

$ VB

holds. (Otherwise, based on

not pass through node w, we

manner similar to the proof

then w is unilateral from

 a

can

of

the

V-X

yi+l

(x1;

 1

Fig.

 xl

A4

2

Proof

*yi~ I0Xi/

• U
V-X (Xi; X i) al

of Lemma 5.7.

237

 definition of a CU network. This, however is impossible as

 obvious from Figure A4. In case w E VB, we can derive a

 contradiction by the same argument, and then obtain

 rank(xi)<rank(xi).

 If 11(i1.)40'then ran)40,thk(xi)<rank(xi) contradicts

 the definition of xi. Therefore H(xi'yi+1)=0, and there

 exists X+(yi+1'xi)• Let Xi=X+(yi+l;xi) u(V-X-(xl;xi)). By

 Lemma 2.4, there exist four arcs al,a2,b1,b2 such that

A(X+(yi+1;xi))n AB={ ,a2) and A(V-X-(x1;xi)) CAB={bl,b2},

where the ranks of the end points of al (b1) are larger than

those of the end points of a2 (b2). Here xiE X+(yi
+l;xi)

from 11(xi,yi+1)40. Both X+(yi+1;xi) and V-X-(xl;xi)

contain xi but not xi. Let a2=a(z,z'),b2=a(w,w') . Then

rank(xi)<rank(z')<rank(z)<rank(xi) , and

 rank(x'i)<rank(w')<rank(w)<rank(xi)

hold.

 Now we show A(Xt) is a unilateral simple cut and

furthermore is an a-cut by considering two cases (1)

rank(w)<rank(z) (see Figure 5 .8), and (2) rank(z)<rank(w)

(see Figure A5). First consider case (1). As two

connected divergent sets X+(yi
+1;xi) and V-X-(xl;xi) both

A contain xi, their union Xi is a connected divergent set.
Since all nodes whose rank is larger than rank(x

i) are

 238

 V-X

yi+1

bl

xi

(x1; Si

 i+i

w

/b
2 O

r ,

Lx

 la1

 1

I ~

~a2

J

Y•

Xi

Fig. A5 Proof of Lemma 5.7.

239

 contained in X+(yi+l;xi) and the ranks of the end points of

b1 are larger than that of xi, X+(yi+1;xi) contains the end

ponits of bl. Similarly V-X-(xl;xi) contains the end points

of a2, or a2=b2 holds. Therefore we have

A(Xt)n AB={al,b2). By Lemma 2.4, this means that convergent

set V-X-(xl;xi) is connected. Therefore, unilateral cut

A(Xt) is simple. In case (2), a similar argument can be

used to show that A(Xt) is simple.

 Secondly, We show that A(4) is an a-cut. For this,

assume A(X4) is not an a-cut. Here, from the unilaterality

of A(Xl), we have easily

{zI rank (y1)<rank(z)<rank(xi)) E V-X1,

{zIrank(yi+1)<rank(z)) u (x1) E Xi.
Therefore, this assumption implies that there exist x'E Sd

and y' E Td satisfying x' E VBi n Xi,y' E V-Xi and l(x' ,y')#O.
First we consider case (1). From y'E V-Xi. we obtain
rank(y')<rank(yi+1)• If rank(y')<rank(xi) , then B(xi,yi)40

and l(x',y')#O mean 11(x' ,y1)40 by the palanarity . This,

however, contradicts the definition of xi , and we have

rank(xi)<rank(y')<rank(xi), that is , y' ' Td(x1) and

II(x1,y')=0. Here, by Lemma 2.1 , there is a unilateral

simple cut A(Xi) such that y'E X+ and x1 E V-X+. From the
divergency of X+ and II(x',y')40 , we have x'E X+. Since

240

each of X+ and V-X+ contains one of the two parts of the

boundary, nodes w,w' (the end points of b2) are contained in

X+. Then E(xl,w')=O from the divergency of X+. This,

however contradicts H(xl,w')=O that is obtained by applying

Lemma 5.1 to X-(xl;xi). A(Xt) is an a-cut.

 Now we consider case (2). Similarly for case (1), we

have rank(xi)<rank(y')<rank(xi). If rank(w')<rank(x'), then

we have a unilateral simple cut A(Xt) with y'E X and

xlE V-X+ by 11(xl,y')=0 and Lemma 4.1, as shown in a manner

similar to case (1). Hence w' (the terminal node of b2)

satisfies w'E X+, that is, 1I(xl,w')=0. This, however,

contradicts 11(xl,w')=0 that is obtained by applying

Lemma 4.2 to X-(xl;xi). This implies rank(x')<rank(w').

Also x' xi and 11(x',yi+1)=0 hold by x'E V-X-(xl;xi). Then

there is a unilateral simple cut A(X+) with yi+lE X+ and

x'E V-X+. Furthermore y'E V-X+ holds by its unilaterality.

As cut A(X+) is unilateral, V(7)c V-X+ and

A('rr)n A(X+(yi+1;xi))#0 hold for any path Tr E 11(x',y').

Then 11(u,yi+1)=0 for some a(u,v)E A(XT). This, however

contradicts the result 1I(u,yi+1)40 that is obtained by

applying Lemma 4.2 to X+(yi+1'xi)• Therefore A(Xt)is also

an a-cut in case (2). ^

241

 Proof of Lemma 5.8 We first show X-(x1;x0=X-(x1;x0 from

the assumption that VtAO in Case-6. If we assume

w E(V-X-(x1;x))-(V-X-(x1;xi)), there exists an arc a(w',w)

with w'e VI by the connectivity of V-X-(x1;x0. Then

V-X (x1; x i)-.0

x!

 / \ 1

,V-X (x1 ; X i)

Fig. A6 Proof of Lemma 5 .8.

242

 11(xl,w)4 by Lemma 5.1 contradicting the convergency of

X-(x1;xi). Therefore V-X-(x1;xi) c V-X-(xl;xi). Similar

argument can show the reverse inclusion-relation. Now

shrink the connected divergent set Vt into a node w0. By

Lemma 2.6, the resulting graph G" is also CU. Here the

four nodes xl,y1,w0,yi+1 are 4-reachable, and G" has a 4-

alternating partition such thatxl E Xt, yl E Yi,into E W1,

yi+le Z1 by Lemma 5.3. From ll(xl,yi)O and 1I(w0,y0A0, we

obtain yiE Yi and yl,y2,...,yiE Yi by Lemma 2.4. A(W1) is a

simple cut even in G by Lemma 2.6. Let Wi=(14-(w0)) u Vi

then xi,x1EW1.Consequently, the existence of a R -

partition Xt,YI,W ,Zi in G is shown. ̂

Proof of Lemma 5.9 Compute A(Xt) in the decreasing order

of i EL and shrink Xt before computing a or 3-cut for the

next i E I. Since the required time to compute the maximal

directed tree for an i is 0WT,), the entire time is

0(IV12)• ^

Proof of Lemma 5.10 For simplicity, we consider the case

in which both i and j have a -cuts Ai,Aj (see Figure A7).

The other cases can be shown similarly. If ri=0, the lemma

is obvious. Therefore, assume ri>0. From the definition of

a-cut A(Xt), the source x" and the sink y" for any dummy

 243

 yj+I

 / a-cut

A (X)

 /\

ti

yk

\f

\i,

0 371+1

0371
)ti

x.
 1

a,-cut

A(Xi)

Fig. A7 Proof of Lemma 5.10.

244

flow passing through A(X4) satisfy

rank(yi+1)<rank(x"), and rank(yl)<rank(y")<rank(yi) ,

(otherwise x"E Sd or y"E Td(xl) are easily shown
contradicting the definition of xi or Td(x1)). If

ei<min{ej,ri}, then some part of dummy flow f from source xl

passing through Ai enters dummy sinks yi+1'yi+2' ...,yj

contained in X1-X4i. By ei<ri, there exists another dummy

flow f' passing through Ai. We consider the source of this

f'. Since 11(x',3,')=0 for any x' E VBi n Xi n Sd and y' E (V-

4) n Td as a property of an a-cut, the source of f' is not
in VBin4.Now we show that the source of f' can not be

equal to any node z' E Sd with rank(yi+1)<rank(z')<rank(y•) J

(see Figure A7). Suppose some dummy flow from such z'

enters we (V-Xt) nTd. Since any directed path from z' to w

and any path in 1I(xl,yi+1) cross each other by the

planarity, it holds ll(xl,w)#o. Therefore w ETd(xl). Thus

w is equal to one of yl,y2,...,yi, and fl(z',y1)40 holds

because any path from z' to w and any path in 11(x1,y1)

cross each other. This contradicts the assumption that Sk=o

holds for any k with i<k<j. Therefore the source z of f'

satisfies rank(yj)<rank(z). Thus any path Trl of dummy flow

f from xl to yk (i+1<k<j) and any path Tr2 of dummy flow f'

from z E Sd to w E Td n (V-Xi) cross each other again by the

 245

planarity. Then we exchange the flows f and f' in paths Trl

and Tr2 in the same manner as discussed in the proof to

Lemma 3.1. Repeating this modification, the amount ei of f

through Ai will eventually become equal to min{epri}. ^

Proof of Lemma 5.11 We first show that there exists a

feasible flow in which the amount ei of a dummy flow from

source xl passes through Ai for each i EI, where
 ~x

ei=min{gXl,rq_l,rq_2,...,ri}.Let in (i) be the maximun

(minimum) i in I.

 For inc I, we consider a dummy flow whose amount is

eiu=min{gX1,ri^^}. Assume ri,^>0, since otherwise the network

is infeasible. Now we assume that the amount of dummy flow

passing from source xl through Ail, is less that ei”. Then

there is a dummy flow f' from source x'(#xl) passing through

Ai^^ and dummy flow f from source xl not passing through Ai.

These f' and f cross each other by the planarity as shown

next. By definition of an a-cut (or 13-semi-cut) Ai^^,

source x'(#xl) of f' satsifies rank(yi"+1)<rank(x'), as

shown in Figure A8. Let y' be a sink of f'. If

rank(x')<rank(yq), then a path in 1I(x',y') and a path in

11(xl,yi"+1) have a common node and therefore 1I(xl,y')40.

That is, y'E Td(xl) and y' is one of yl,y2,...,yi^^. This

246

means rank(y')<rank(yin)

because there exists xin

path in lI(xiu,y1) and

node. This contradicts

. Here m(x',y1)A0 holds, however,

with II(xin,yl)A0 from 440, and a

a path in II(x',y') have a common

the definition of i". Consequently

Y 4

 Z

1

 xl

 f

 /yl
 i

 I

1
 ^

\ 0

Yi"+1 a-cut

xi

A (X

i"

Fig. A8 Proof of Lemma

247

5.11.

rank(yq)<rank(x') holds, and f' and f cross each other by

planarity. We now exchange flows f' and f in the same

manner as in the proof for Lemma 5.10. As a result of this

exchange, we obtain the amount ei„ of dummy flow from

source xl that passes through Ai,,.

 For each j'E I, we show that any 1 € I with j'<i has a

feasible flow in which the amount ei of dummy flow from

source xl passes through Ai, where

ei=min{41,rq_l,rq_2,...,ri}. For j'=i", this is obviously
true. Now consider i' (<j') such that k / I for all k with

i'<k<j'. By Lemma 5.10, there exists a feasible flow in

which the amount ei, of a dummy flow from source xl passes

through Ai,, where ei,=min{ej,,ri,}(=min{gd,,rq _l,rq_2,...,

ri}). By using induction, we can show that, from j'=i" to

j'=i*, there is a feasible flow in which the amount ej, of

dummy flow from source xl passes through A.,, where

ej,=min{gxl'rq -1'rq-2,...,rj}.

 Finally we consider the amount of dummy flow from

source xl to sink yl that passes through Ai*. Let f* be

the dummy flow from source xl that passes through Ai*. From

the previous argument, we have a feasible flow f* whose

amount is ei*. Assume that Ai* is an a -cut (as the case of

a (3-semi-cut can be similarly treated). Assume that the

248

amount of dummy flow in f* to sink

min(ei*,gy1). In this case, we have a

sink (Ay]) and a dummy flow f' from some

pl. Clearly rank(yi*)<rank(z) holds by

Then we may have the min(ei*,41} amount
source xl to sink yl by modifying flows f

manner as in the proof for Lemma 5.10.

yl is less

dummy flow f

 source z to

definition of

of dummy flow

and f' in the

Ei

 than

to a

sink

i .

from

same

249

 [AHO

[AHO

74]

83]

[BELL

[BERG

[BERT

[BERT

[DIAZ

57]

73]

85]

87]

72]

 REFERENCES

Aho,A.V., Hoperoft,J.E. and Ullman,J.D.: The

Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Mass. (1974).

Aho,A.V., Hoperoft,J.E. and Ullman,J.D.: Data

Structure and Algorithms, Addison-Wesley,

Reading, Mass. (1983).

Bellman,R.E.: Dynamic Programming, Princeton

University Press, Princeton N.J. (1957).

Berge,C.: Graphs and Hypergraphs, North-

Holland Publishing (1973).

Bertsekas,D.P.: "A unified framework for primal-

dual methods in minimum cost network flow

problems", Math. Prog., Vol.32, pp.125-145

(1985).

Bertsekas,D.P., Hossein,P.A. and Tseng,P.:

"Relaxation methods for network flow problems

with convex arc costs", SIAM J. Control and

Optimization, Vol.25, pp.1219-1243 (1987).

Diaz,H. and de Ghellink,G.: "Multicommodity

maximam flow in plannar networks (The D-

algorithm approach)", CORE discussion paper

 250

[DINI

[DREY

 [EDMO

[FORD

[FRED

[FUJI

70]

77]

72]

62]

83]

86]

No.7212, Center for Operations Research and

Econometrics, Louvain-la-Neuve, Belgium (1972).

Dinic,E.A.: "Algorithm for solution of a problem

of maximal flow in a network with power

estimation", Soviet Math. Dokl., Vol.11,

pp.1277-1280 (1970).

Dreyfus,S.E. and Law,A.M.: The Art and Theory of

Dynamic Programming, Academic Press, New York

(1977).

Edomonds,J. and Karp,R.M.: "Theoretical

improvements in the algorithmic efficiency for

network flow problems", J. ACM, Vol.19, pp.248-

264 (1972).

Ford,L.R. and Fulkerson,D.R.: Flows in Networks,

Princeton University Press, Princeton, N,J.

(1962).

Frederickson,G.N.: "Shortest path problems in

planar graphs", Proc. 24-th Symposium on

Foundation of Computer Science, Tucson, Nov.

pp.242-247 (1983).

Fujishige,S.: "A capacity-rounding algorithm for

the minimum-cost circulation problem: a dual

framework of the Tardos algorithm", Math.

251

 [FUKU

[GALL

[GALL

[HASS

[HOFF

[Hu

84]

86]

77]

81]

56]

69]

Prog., pp.298-308 (1986).

Fukushima,M.: "A nonsmooth optimization approach

to nonlinear multicommodity network flow

problems", Journal of the Operation Research

Society of Japan, Vol.27, No.2, pp.151-177

(1984).

Galil,Z. and Tardos,E.: "An 0(n2(m+nlogn)logn)

min-cost flow algorithm", Proc. 27-th Annual

IEEE Symp. on Foundations of Computer Science,

pp.1-9 (1986).

Gallager,R.G.: "An optimal routing algorithm

using distributed computation," IEEE Trans. on

Communications, Vol.COM-25, pp.73-85 (1977).

Hassin,R.: "Maximum flow in (s,t) planar

networks, Inform. Proc. Lett., Vol.13, pp.107

(1981).

Hoffman,A.J., Kruskal,J.B.: "Integral boundary

points of convex polyhedra", Annals of

Mathematical Studies 38, Princeton University

Press, pp.223-246 (1956).

Hu,T.C.: Integer Programming and Network Flows ,

Addison Wesley, Reading , Mass. (1969).

252

[IBAR

[IBAR

[IBAR

82]

76a]

76b]

[IBAR 77]

[IBAR

[ITO

78]

85]

 Ibaraki,T., Hosono,M. and Hasegawa,T.: "Network

flow approaches to multi-item multi-stage

production scheduling", Working paper, Dept. of

Applied Mathmatics and Physics, Kyoto University,

Kyoto, Oct. (1982).

Ibaraki,T.: "Theoretical comparisons of search

strategies in branch-and-bound algorithms",

International J. Computer and Information

Sciences, Vol.5, pp.315-344 (1976).

Ibaraki,T.: "Computational efficiency of

approximate branch-and-bound algorithms",

Mathematics of Operations Res., Vold, pp.287-

298 (1976).

Ibaraki,T.: "On the computational efficiency of

branch-and-bound algorithms", Journal of

Operations Research Society of Japan, Vol.20,

pp.16-35 (1977).

Ibaraki,T.: "Branch-and-bound procedure and

state-space representation of combinatorial

optimization problems", Information and Control,

Vol.36, pp.1-27 (1978).

Ito,H.: "Performance evaluation of the

algorithm for some multicommodity flow

 253

[IRI

[KARM

[KARZ

[KENN

[KENN

[KHAC

70]

84]

85]

78]

80]

79]

problem" (in Japanese), Bachelor thesis,

Dept. of Applied Mathematics and Physics,

Faculty of Engineering, Kyoto University

(1985).

Iri,M.: "On an extension of the maximum-flow

minimum-cut theorem to multicommodity flows,

Journal of the Operation Research

Society of Japan, Vol.13, pp.129-135 (1970).

Karmarkar,N.: "A new polynomial-time algorithm

for linear programming", Combinatorica,

Vol.4, No.4, pp.373-395 (1984).

Karzanov,A.V.: "Determining the maximal flow

in a network by the method of preflows", Soviet

Math. Dokl., Vol.15, pp.434-437 (1974).

Kennington,J.L.: "A survey of linear cost

multicommodity network flows", Operations

Research, Vol.26, pp.209-236 (1978).

Kennington,J.L. and Helgason,R.V.: Algorithms

for Network Programing, John Wiley and Sons .

(1980).

Khachiyan,L.G.: "A polynomial algorithm in

linear programming", Dokl. Akad. Nouk SSSR N.S.

254

[LAWL

[LOMO

 [MTSU

[NAGA

[NAGA

76]

85]

85]

87a]

87b]

244:5, pp.1093-1096 (1979) [English transl.,

Soviet Math. Dokl. 20:1, pp .191-194 (1979)].

Lawler,E.L.: Combinatorial Optimization:

Networks and

Winston, New York (1976).

Matroids, Holt

------------ to

Multiflow Problems, Disc. Appl. Math., Vol.11,

pp.1-93 (1985)

Matsumoto,K., Nishizeki,T. and Saito,N.: "An

efficient algorithms for finding multicommodity

flows in planar graphs", SIAM J. Comput.,

Vol.14, No.2, pp.289-320 (1985).

Nagamochi,H., Ibaraki,T. and Hasegawa,T.: "On

multicommodity flow problems in certain

directed planar networks", Transactions of the

Institute of Electronics, Information and

Communication Engineers of Japan, Section A,

pp.228-238 (1987).

Nagamochi,H., Ibaraki,T. and Hasegawa,T.:

"Multicommodity flow for the class CU of

certain planar directed networks", Transactions

of the Institute of Electronics, Information

and Communication Engineers of Japan, Section A,

 255 , Rinehart & Combinatorial

[NAGA

 [NAGA

[NAGA

[NAGA

87c]

88a]

88b]

88c]

pp.1328-1339 (1987).

Nagamochi,H., Fukushima,M and Ibaraki,T.:

"Relaxation methods for the strictly convex

multicommodity flow problem with capacity

constraints on individual commodities",

Journal of the Operation Research Society

of Japan (submitted).

Nagamochi,H. and Ibaraki,T.: "Max-flow min-cut

theorem for the multicommodity flows in certain

directed planar networks", Transactions of the

Institute of Electronics, Information and

Communication Engineers of Japan, Section A,

pp.71-82 (1988).

Nagamochi,H. and Ibaraki,T.: "An efficient

feasibility testing of the multicommodity flow

problem in certain planar directed networks",

Transactions of the Institute of Electronics,

Information and Communication Engineers of

Japan, Section A (to appear).

Nagamochi,H. and Ibaraki,T.: "Multicommodity

flows in certain planar directed networks" ,

Disc. Appl. Math. (to appear).

256

 [NEME

[OKAM

[OKAM

[ONAG

[ORLI

[ORLI

[PAPA

72]

81]

83]

71]

84]

86]

82]

Nemhauser,G. and Garfinkel,R.: Integer

Programming, John Wiley, New York (1972).

Okamura,H. and Seymour,P.D.: "Multicommodity

flows in planar graphs", Journal of

Combinatorial Theory, Series B, Vol.31, pp.75-

81 (1981).

Okamura,H.: "Multicommodity flows in graphs",

Disc. Appl. Math., Vol.6, pp.55-62 (1983).

Onaga,K. and Kakusho,0.: "On feasibility

conditions of multicommodity flows in

networks", IEEE Trans. Circuit Theory Vol.18,

pp.425-429 (1971).

Orlin,J.B.: "Genuinely polynomial simplex and

non-simplex algorithms for the minimum cost

flow problem", Working papar No.1615-84,

A.P.Sloan School of Management, MIT,

December (1984).

Orlin,J.B.: "A dual version of Tardos's algorism

for linear programming", Operations Research

Letters, Vol.5, No.5 (1986).

Papadimitriou,C. and Steiglitz,K.:

Combinatorial Optimization: Algorithms and

Complexity, Printice-Hall, Englewood Clifs,

257

New

[ROCK

[ROCK

[ROCK

[SLEA

70]

81]

84]

80]

[STER 77]

[SUZU 85]

Jersey (1982).

Rockafellar,R.T.: Convex Analysis, Princeton

Univ. Press, N.J. (1970).

Rockafellar,R.T.: Monotropic programming:

descent algorithms and duality : in Nonlinear

Programming 4, by Mangasarian,O.L., Meyer,R.

and Robinson,S. (eds.), Academic Press, pp.327-

366 (1981).

Rockarfellar,R.T.: Network Flows and Monotropic

Optimization: Pure and Applied Mathematics, A

Wiley-Intersicience Series of Texts, Monographs

and Tracts (1984).

Sleator,D.D.: "An 0(mnlogn) algorithm for

maximam network flow", Ph.D. Dissertation,

Computer Science Department, Stanford University

(1980).

Stern,T.E.: "A class of descentralized routing

algorithms using relaxation", IEEE Trans. on

Communications, Vol.COM-25, pp.1092-1102

(1977).

Suzuki,H., Nishizeki,T. and Saito,N.:

"Multicommodity flows in planar undirected

258

[TANG

[TARD

[TARD

[TARJ

[ZAHO

64]

86]

85]

83]

84]

graphs and shortest paths", Proc. 17-th

Annual ACM Symposium on Theory of Computing,

pp.195-204 (1985).

Tang,D.T.: "Bi-path networks and

multicommodity flows", IEEE Trans. Circuit

Theory, Vol.CT-11, pp.468-474 (1964).

Tardos,E.: "A strongly polynomial algorithm to

solve combinatorial linear programs",

Operations Resaerch, Vol.34, No.2, March-April,

pp.250-256 (1986).

Tardos,E.: "A strongly polynomial minimum cost

circulation algorithm", Combinatorica, Vol.5,

No.3, pp.247-255 (1985).

Tarjan,R.E.: Data Structures and Network

Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, Penn. (1983).

Zahorik,A., Thomas,L.J. and Trigeiro,W.W.:

"Network programming models for production

scheduling in multi-stage, multi-item

capacitated systems", Management Science,

Vol.30, No.3, pp.308-325 (1984).

259

