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Abstract

  The magnetohydrodynamic  (MHD) equilibrium and stability for the three-

dimensional stellarator/heliotron configurations are investigated mainly with 

numerical approaches. 

  By using the three-dimensional MHD code, BETA code, we study both 

the currentless and flux conserving torus (FCT) equilibria and ideal stability 

against the m = 1 and n = 1 internal mode in a Heliotron E model configu-

ration, where m and n are poloidal and toroidal mode numbers, respectively. 

The beta limit of the first stability region is i 2%, where 13 denotes an av-

erage beta value. For /3 ? 5%, a second stability region appears. It is found 

that the stability is sensitive to additional vertical magnetic fields. When the 

magnetic axis is shifted inward, the stability degrades, whereas, when it is 

shifted outward, the instability disappears for the above range of beta values. 

The stability is also examined in another heliotron configuration which has a 

rotational transform larger than unity for all flux surfaces. Its first stability 

beta limit is larger than that for the Heliotron E. For this configuration, an 

unstable free boundary mode with m = 1 and n = 1 is found. 

  The MHD equilibrium and local stability of a spatial axis stellarator with 

a circular cross section, Asperator NP-4, are also calculated by using the 

BETA code. The equilibrium results are compared with analytic expressions 

given by Solov'ev and Shafranov to examine the applicability of the theory. 

Agreements are found with respect to the equilibrium properties, such as the 

rotational transform, the shift of magnetic axis due to the finite pressure, 

and the formation of a magnetic well. Toroidal effects on both the curvature 
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and the torsion of the spatial magnetic axis must be estimated analytically 

with sufficient accuracy to obtain agreement . 

   The stability code named RESORM solving the reduced  MHD equations 

as the initial value problem is developed so as to examine the resistive in-

stabilities in the toroidal stellarator/heliotron configuration. Intrinsically 

this code can be applied to the ideal instabilities by assuming zero resistiv-

ity. Currentless equilibria in the Heliotron DR plasma are investigated by 

applying this code and the STEP code. It is found that the critical beta 

value determined by the ideal global modes is fa ^ 1.2% by the both codes 

and the Mercier criterion by the STEP code gives fib 0 .7%, where fib 

is a beta value at the magnetic axis . By the RESORM code the resistive 

modes become unstable with substantial growth rates for i3 < 1.2%, since 

the magnetic Reynolds number is not large , S ti 105, in Heliotron DR. For 

the Mercier stable beta value of fi0 < 0.7% , the growth rate is proportional 

to S-113, while in the Mercier unstable region the S-dependence deviates 

from this one because of the effects of the ideal instability . The effect of the 

magnetic axis shift on the ideal and resistive MHD stability is also studied 

by the both codes. 

   The numerical results by the above mentioned codes are compared with 

the experimental data in both Heliotron E and Heliotron DR . The experi-

mental stability beta limit is a little lower than the theoretical low n ideal 

mode stability result. It is concluded that the resistive interchange mode is 

the crucial instability in heliotron configurations and the MHD fluctuation 

including the internal disruption is excited by this mode at beta value lower 

than the ideal stability limit. 
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 Chapter  1

Introduction

1.1 Motivation

  Recently, many efforts have been made for the thermonuclear fusion re-

search using the magnetically confined plasmas. The most successful ex-

perimental data have been obtained in the large tokamak devices such as 

JET(EC), TFTR(USA) and JT-60(Japan). The geometrical property in the 

tokamak configuration with axisymmetry makes theoretical studies analyt-

ically tractable. In order to confine high temperature plasmas in toroidal 

systems, nested magnetic surfaces are necessary or existence of MHD equi-

librium is required. In axisymmetric tokamaks, a toroidal plasma current 

is driven to provide a poloidal magnetic field which is crucial to construct 

the magnetic surfaces. However, existence of such a plasma current in toka-

maks introduces current driven MHD instabilities when it exceeds a threshold
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value. Usually the maximum current is limited by the disruptive instabil-

ity which releases almost all thermal energy in a short time on the order of 

100 psec. The disruption is universal and seen in every tokamak. Another 

difficulty is that a non-inductive current drive is required to realize contin-

uous operation of tokamak . This is one of the current research subjects in 

tokamaks and there is no final solution with reasonable efficiency at present. 

   From the point of the continuous operation without the disruption the 

 stellarator/heliotron configuration is an alternative approach. The experi-

mental studies for the devices of this type have been made significant progress 

recently. Heliotron E at Kyoto University (Japan) is one of the largest stel-

larator/heliotron devices [1]. The concept of this configuration is charac-

terized by that nested magnetic surfaces are generated by only the external 

windings and the global plasma current is not necessary. Also it has a large 

rotational transform and a high shear. Thus confined plasmas become non-

axisymmetric and theoretical analyses become more complicated than those 

in tokamaks. Since the plasma can be confined without the global current
, 

the stellarator/heliotron is free from the disruptive instability. We can op-

erate the machine continuously, in principle, if super-conductive coils are 

equipped. 

  In Heliotron E experiments of 1983 [2], sawtooth-like fluctuations and 
internal disruptions are observed in the soft X ray measurement which have 

coincidence with magnetic fluctuations. At the internal disruption 20 

30% of plasma energy is lost by the enhancement of the energy and particle 

transport. One of our main concerns is what type of instability triggers 

the internal disruption and what is the threshold beta value for such an
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instability. We study  MHD equilibrium and stability problems in several 

stellarator/heliotron configurations with the numerical methods. In order to 

explore the applicability of the MHD model to the stellarator/heliotron, we 

compare our theoretical results with the experimental data of Heliotron E 

and Heliotron DR. 

  The MHD equations are obtained from the moment equations of the 

Boltzmann equation for the velocity distribution function with the Maxwell 

distribution under the assumptions of small gyroradii, high collisionalities, 

and lower characteristic frequencies than plasma oscillations [3]. Thus MHD 

becomes a useful model in describing the macroscopic dynamics of magneti-

cally confined plasmas, although the kinetic effects are completely eliminated 

to simplify the model. 

  When we investigate the toroidal plasma based on the MHD equations, 

we let the plasma be initially in a static MHD equilibrium where the force 

balance is satisfied at any point on nested flux surfaces. Since the MHD equi-

librium properties are related to a design of magnetic field coils, we inves-

tigate them in stellarator/heliotron configurations numerically by including 

the three-dimensional geometry with sufficient accuracy. 

  In order to confine high temperature plasmas long enough to achieve 

the Lawson criterion for the self-ignition of the thermonuclear fusion[4], the 

equilibrium must be stable for all possible perturbations. When the plasma 

is unstable to a global perturbation with a large growth rate, it will grow to 

such a high level that the plasma confinement is deteriorated by it. Thus 

it is also crucial to examine whether the obtained equilibrium is stable or 

not. The pressure driven instability becomes the most dangerous one in the 
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stellarator/heliotron configuration without the net toroidal current. This 

type of instability depends on beta value and pressure profile. The average 

beta value is defined by the volume average of the ratio of the internal plasma 

pressure, P, to the magnetic pressure,  B2/2po, as 

----------dV(1.1)              f         fB2/20, 
which represents efficiency of the magnetic field to confine a plasma. Al-

though a high beta plasma is attractive from the fusion reactor point of 

view, free energy related to the plasma pressure increases according to the 

increase of beta and pressure gradient, and it may cause the MHD instabili-

ties for ,Q > ,0 where lc is called the critical beta. We study the correlation 

between the theoretical value of /, and the appearance of MHD fluctuations. 

  Usually high temperature and low density plasmas can be assumed to 

have infinite conductivity. The instabilities under this assumption are called 

ideal ones. In the ideal MHD model, the perturbations grow with keeping 

the topology of the magnetic field. In the low temperature and high density 

plasmas, the resistivity may not be negligible in the MHD stability analysis. 

It is known that small resistivity significantly changes the properties of MHD 

instabilities in sheared magnetic fields[5]. This type of instabilities occurs 

even in plasmas stable to ideal MHD instabilities. They are called resistive 

modes or resistive instabilities. Since the resistivity dissipates the current, 

resistive instabilities are accompanied with reconnection of magnetic field 

lines or topology change of magnetic surfaces. In the beta limit study, both 

contributions from the ideal and resistive instabilities will be analyzed in this 

thesis.

4



  The stellarator/heliotron configurations do not have geometrical symme-

try like tokamaks. Thus, the analyses of the equilibrium and the stability 

become three-dimensional intrinsically. For  MHD studies in non-symmetric 

stellarator/heliotron, two kinds of theoretical approach have been developed. 

One is the method using the stellarator ordering and the averaging over the 

helical ripples in the toroidal direction . Originally an averaged equilibrium 

equation and the energy principle for ideal linear stability in stellarators were 

derived by using the stellarator expansion[6,7]. Recently it is recognized 

that reduced MHD equations can also be derived based on the stellarator 

expansion. This method has the merit to exploit the numerical techniques 

developed in tokamak equilibrium and stability studies because the helical 

variations in the toroidal direction are averaged out and only the axisym-

metric part remains. The other approach is the numerical calculation to 

solve the three-dimensional MHD equations directly. In this scheme realistic 

three-dimensional geometry can be included principally, however, it usually 

takes a long computation time and requires a large region in the core memory 

in order to obtain accurate results. Without super-computers it is impossi-

ble to use the three-dimensional code efficiently. We used FACOM VP-100 

first in 1985. After that we used more efficient VP-200 and VP-200E super 

computers. 

  In this thesis we pursue both approaches. At first, we apply the three-

dimensional equilibrium, stability and transport code, or the BETA code de-

veloped by Bauer, Betancourt and Garabedian [8,9] to investigate the ideal 

equilibrium and stability, to heliotron configurations and a spatial axis stel-

larator. For the approach using the stellarator expansion, we use the STEP 
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code developed by  Anania and Johnson [10,11] to study the ideal equilib-

rium and ideal stability of Heliotron DR. We have developed the RESORM 

code in order to study both the ideal and resistive instabilities based on the 

reduced MHD equations. Finally, comparison between the theoretical and 

experimental results is carried out for Heliotron E and Heliotron DR. Top 

views of the helical and vertical coils in these devices are shown in Fig.1.1 

and Fig.1.2.
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1.2 Brief history of MHD studies for 

stellarator/heliotron configurations

  As mentioned in  Sec.1.1, there is no geometrical symmetry in stellara-

tor/heliotron configurations. Consequently various approximations were tried 

to study MHD equilibrium and stability in obtaining analytically tractable 

expressions. The most successful approximation was the stellarator expan-

sion method developed by Greene and Johnson [6]. They assumed that the 

magnetic field can be expanded with the inverse aspect ratio, E = a/R << 1, 

where a and R are an average minor radius and major radius, respectively. 

With this ordering parameter, it is assumed that the helical field generated 

by the helical windings has the order of E112 and 8 ti 0(E). These two points 

are essential in the stellarator expansion and called stellarator ordering. Ap-

plying this ordering to the MHD equilibrium equations, the equation similar 

to the Grad-Shafranov equation can be derived for the stellarator/heliotron. 

The stellarator ordering is also applicable to the energy principle[12] which 

is used to study the linear stability of equilibria obtained from the Grad-

Shafranov type equation[7]. 

  The equilibrium equation derived by Greene and Johnson is essentially 

two dimensional after helical variations along the toroidal direction are av-

eraged out in the stellarator expansion. This property makes numerical 

schemes for the MHD studies of tokamaks usable for stellarator/heliotron 

configurations. Anania and Johnson developed the STEP code[10,11] based
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on the stellarator expansion method to study the MHD equilibrium and the 

ideal MHD stability of stellarator plasmas by modifying the PEST code[13, 

14] for ideal MHD instabilities in tokamaks. Furthermore, Nakamura et al. 

modified the STEP code[15] by including higher order toroidal corrections in 

order to apply the code to the low aspect ratio devices with  R/a ? 5. 

  Kovrizhnykh and Shchepetov[16] independently derived the equilibrium 

equation by averaging the helical field without the stellarator ordering, and 

their approach is an extension of the stellarator expansion and called stellara-

tor approximation. Carreras et al.[17] also derived the Grad-Shafranov type 

equation by using the approximation similar to Kovrizhnykh and Shchep-

etov. These equations are essentially same as the one derived by Greene 

and Johnson, when the higher order terms with respect to € are neglected. 

Todoroki[18] developed the HERATO code based on the stellarator approxi-

mation and the coordinate transformation to study the ideal linear stability. 

It is considered as an extension of the ERATO code[19] based on the energy 

principle for tokamaks to stellarators. 

   The above mentioned stellarator expansion or stellarator approximation 

is already established for the planner axis helical configurations such as stan-

dard stellarators, heliotrons and torsatrons. However, we cannot apply the 

same approximation directly to spatial axis stellarators because helical ex-

cursions of the spatial axis is usually large to produce a deep magnetic well 

and large rotational transform per field period. This point is beyond the 

assumption for the usual stellarator expansion. Solov'ev and Shafranov used 

a curvilinear coordinate system and derived the equation for the Shafranov 

shift, or the shift of the magnetic axis due to the plasma pressure, by applying 
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the perturbation method to the  MHD equilibrium equation in the neighbor-

hood of the helical magnetic axis[20]. Hender and Carreras[21] divided all 

equilibrium functions into the averaged part and the rapidly oscillating part 

in the magnetic coordinates. They obtained the Grad-Shafranov type equa-

tion for the averaged part. A Poisson type equation was also derived for 

obtaining the rapid oscillating part. When both solutions are obtained, an 

equilibrium including three-dimensional structures is realized. Koniges and 

Johnson[22] exploited a modified ordering to include the helical excursion of 

the spatial axis stellarator in the stellarator expansion approach. Here they 

assumed that rotational transform per field period is small, which gives a 

limitation on the application of this method. 

  In order to study the nonlinear dynamics of resistive instabilities in toka-

mak plasmas, the initial value approach based on the reduced MHD equations 

has been successfully developed. By using the high-beta tokamak ordering of 

,Q , E, the incompressible MHD equations are reduced to the three-field fluid 

equations for a poloidal flux, a stream function and a pressure[23]. For stel-

larators Strauss[24] employed the stellarator ordering in the reduction process 

of the MHD equations and applied the averaging method for the helical varia-

tions to obtaining the final reduced MHD equations. Wakatani[25] expressed 

an effective poloidal flux and an average curvature due to the helical mag-

netic field in terms of the rotational transform in the vacuum configuration 

based on the stellarator expansion method, and derived the reduced MHD 

equations equivalent to those by Strauss by adding these terms to the toka-

mak reduced MHD equations. The incompressible MHD equations without 

the ordering with respect to the aspect ratio are derived recently, which are 
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straightforwardly reduced to the three-field reduced  MHD equations by intro-

ducing the stellarator ordering. A numerical code solving the incompressible 

MHD equation has been developed by Oak Ridge MHD group as the initial 

value problem , which is called FAR code [26]. 

   On the other hand, several numerical codes to obtain the three-dimensional 

equilibria without any averaging procedure and to examine the stability of 

them have been developed successfully with the recent development of the 

super-computer equipped vector processors. Almost all the three-dimensional 

codes adopt the variational principle that the MHD equilibrium corresponds 

to the minimum energy state of the potential energy with the constraint 

of currentless equilibrium or FCT equilibrium[27], and use the Richardson 

method or the conjugate gradient method to guarantee monotonical decrease 

of the potential energy. 

   There are two types in the codes with respect to the choice of the co-

ordinate system. One uses the spatially fixed Eulerian coordinates. This 

case has an advantage capable to study equilibria including magnetic islands 

or stochastic region of magnetic field lines. A pioneer work was given by 

Chodura and Schliiter[28] who developed the three-dimensional code using 

the Eulerian cylindrical coordinates with a fixed boundary at a toroidal cham-

ber with rectangular cross section. They introduced a virtual displacement E 

and calculated density and the magnetic field variations due to E from both 

the equation of continuity and Faraday's law under the adiabatic change of 

the pressure. At each step, the residual force F is calculated from the force 

balance equation and the new displacement is given by d4/dt = aF . The 
iteration procedure is continued until the residual force vanishes. This nu- 
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merical scheme is called a friction model because a corresponds to a role 

of friction in the relaxation process to an equilibrium state. For a spatial 

discretization usual finite difference scheme is employed in three directions 

of the coordinates. Unfortunately, this numerical scheme given by Chodura 

and  Schluter showed a slow convergence to the equilibrium and it is diffi-

cult to use this code for parameter survey to optimize stellarator/heliotron 

configuration. 

  As an extension of the Chodura Schluter code NEAR code [29] was devel-

oped by Oak Ridge MHD group. Its numerical scheme is very similar to that 

in the Chodura-Schluter code; however, accuracy is improved significantly 

by using the magnetic coordinates called Boozer coordinates[30]. In both 

the poloidal and the toroidal directions of the Boozer coordinates Fourier 

expansion method was used to describe the displacement 4.. They employ 

the conjugate gradient method to obtain the minimum energy state instead 

of the friction method. While only the flux conserving equilibria can be ob-

tained by the Chodura-Schluter code due to the iteration including Faraday's 

law, the NEAR code can obtain the currentless equilibria as well as the FCT 

equilibria by adding the outer loop eliminating the net toroidal current on 

each flux surface. Recently Harafuji et al.[31] are trying to solve the time 

dependent MHD equations in the three-dimensional geometry to determine 

the equilibrium without assumption of the existence of nested flux surfaces. 

  The other choice for the coordinates in the three-dimensional codes is to 

use Lagrangian coordinates where a radial coordinate is always characterized 

by the flux surfaces at finite beta equilibrium. In this case, existence of the 

flux surface is assumed a priori and the equation for the spatial position 
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of the constant flux surface is solved. This numerical technique is called 

the inverse solver. The existence of the ideal  MHD equilibrium with the 

nested surfaces in non-symmetric three-dimensional system is a sophisticated 

problem and the existence theorem seems to be negative. The results given by 

the three-dimensional codes assuming the nested flux surfaces are acceptable 

in the three-dimensional system having a helically symmetric system in its 

geometrical neighborhood. 

  The first successful implementation of this approach was the BETA code 

[32] which was developed by the Courant Institute group at New York Univer-

sity. They followed strictly the variational principle of the MHD equilibrium 

in the development of the code. The BETA code also includes a package to 

study ideal MHD stability of the equilibrium by adding the assumed pertur-

bation to the equilibrium and trying the second minimization of the potential 

energy. The details of this code is given in Chapter 2. Based on the idea 

of the BETA code, Hirshman et al. have developed the VMEC code[33] 

with the spectral method. The minimization scheme is similar to that of 

the BETA code. By following the VMEC code Betancourt is developing the 

BETAS code[34] which is a version of the BETA code based on the spectral 

method. A similar spectral code was developed by GA group[35]; however, 

published papers including the numerical results are limited. Other efforts to 

develop the three-dimensional codes were given by Max-Planck people [36] 

and Russian group [37].
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1.3 Outline of this thesis

  The contents of this thesis is organized in the following way. 

  In Chapter 2, we explain mathematical basis and numerical procedures of 

the three-dimensional code, BETA code, with which we calculate the  MHD 

equilibrium and stability of heliotron configurations and a spatial axis stel-

larator in Chapters 3 and 4, respectively. First, the variational principle given 

by Kruskal and Kulsrud[27] for MHD equilibrium with the fixed boundary 

condition is reviewed briefly and is extended to the free boundary case. Then 

the Euler equations to minimize the potential energy are derived in the flux 

coordinates used in the BETA code. We refer to the steepest descent method 

for the numerical scheme of the energy minimization. A second minimiza-

tion of the potential energy to study global ideal MHD instabilities is also 

discussed. 

  In Chapter 3, we apply the BETA code to both the Heliotron E and 

Heliotron H configurations. Because the magnetic surface with the rotational 

transform of e = 1 always exists in the plasma column of the Heliotron E, 

we consider that the m = 1 and n = 1 mode resonant at the surface is 

the most dangerous mode, where m and n are the poloidal and the toroidal 

mode numbers, respectively. We examine the global stability for both types 

of equilibrium, currentless and FCT equilibria. As a configuration where 

rotational transform exceeds unity everywhere in the plasma column, we 

choose the Heliotron H and examine the stability for the non-resonant m = 1 

and n = 1 mode. We also study the effects of the magnetic axis shift due to
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the additional vertical field on the m  = 1 and n = 1 mode. 

  In Chapter 4, we investigate MHD equilibrium of the spatial axis stel-

larator, Asperator NP-4, at Tohoku University (Japan) by two approaches. 

We evaluate the equilibrium quantities of the Asperator NP-4 plasma based 

on the Solov'ev-Shafranov theory[20] analytically, and compare them with 

those obtained numerically be using the BETA code. We also calculate the 

Mercier criterion for localized pressure-driven modes with the BETA code, 

and compare the stability properties of the Asperator NP-4 with those of 

Heliotron E. 

   In order to study the linear stability for the resistive global modes we 

develop a code based on the initial value problem of the reduced MHD 

equations called the RESORM code. We explain mathematical basis and 

numerical procedures of this code in Chapter 5. We reduce incompressible 

resistive MHD equations to the three-field equations for torsatron/heliotron 

configurations by following the Strauss' approach[24]. In this reduction we 

include higher order corrections which are usually assumed to be small in the 

stellarator ordering. The stellarator equilibrium equation is obtained from 

the reduced equations. In this code we employ the flux coordinates based on 

both the existence of nested flux surfaces and the condition that magnetic 

field lines are expressed as -straight lines on the flux surface
, and write the 

linearized reduced MHD equations in this coordinate system . We explain 

briefly the structure of the RESORM code . 

  In Chapter 6, we study both the ideal and the resistive stability of He -

liotron DR plasmas. The equilibrium is obtained numerically from the stel -

larator equilibrium equation derived in Chapter 5 with the STEP code[15]. 

14.



We can examine the ideal stability by both the STEP code and the RESORM 

code with zero resistivity. For the resistive stability we apply the RESORM 

code by assuming a finite resistivity. The effects of the additional vertical 

field on the behaviors of both the ideal and resistive modes are also studied. 

  We compare the numerical results obtained in this thesis with the exper-

imental data in  Heliotron E and Heliotron DR devices in Chapter 7. We 

can explain the observed MHD activities in both devices with our theoretical 

results. 

  The concluding remarks of this thesis are given in Chapter 8.
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Fig.1.1

COIL

 VERTICAL COILS

Top view of helical and vertical coils in Heliotron E.

COIL

 VERTICAL  RTICAL COILS

Fig.1.2 Top view of helical and vertical coils shown by filaments in 

Heliotron DR.
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Chapter 2 

Variational Approach for 

Three-Dimensional Ideal  MHD 

Equilibrium and Stability 

2.1 Introduction 

  In the ideal MHD analysis, the plasma is assumed to be governed by the 

equations, 

-----+ V • (pmv) = 0, ( equation of continuity) (2.1) 
      at 

dv 
p„L dt = -VP + J x B, (momentum equation)(2.2) 

dP 

dt + 1PV • v = 0, (adiabatic equation of state) (2.3) 
          E = —v x B,( Ohm's law )(2.4) 
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 aB  
= 

at 
J=v 

V•B

x E, 

x B, 

= 0,

( Faraday's law 

( Ampere's law

(2.5) 

(2.6) 

(2.7)

where 

dt at+ v . V.(2.8) 

  Here v is the velocity of the fluid element, pm, is the mass density, P is 

the thermal pressure and F is the ratio of the specific heats. B, E and J 

are the magnetic field, the electric field and the current density, respectively. 

The MKS units with u0=1 are used, where ii0 is the magnetic permeability. 

  The static MHD equilibrium without macroscopic flows is expressed by 

the following set of equations,

vP=J x B, (2.9)

J=VxB,(2.10) 

v B = 0,(2.11) 

which are obtained from eqs.(2.1) ti (2.7) by assuming a/at=0 and v=0 . 

In the three-dimensional geometry with no symmetry , we cannot reduce 

eqs.(2.9) ti (2.11) to a generalized differential equation such as the Grad-

Shafranov equation obtained under the assumption of axisymmetry or helical 

symmetry. This equation has solutions with nested flux surfaces and they are 

obtained by applying a Poisson solver . For the asymmetric case the MHD 

equilibrium is formulated by noting that it corresponds to the minimum en-

ergy state of the potential energy ( see eq.(2.18) ). Kruskal and Kulsrud[27] 
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proved that the plasma in the minimum energy state satisfies  eqs.(2.9) ti 

(2.11) under the fixed boundary condition by considering the variation of 

the potential energy functional defined by a sum of internal energy and mag-

netic energy. However, there is the subtle problem for the existence of nested 

flux surfaces in the three-dimensional geometry and no mathematical proof 

to confirm it. Practically we believe that it is possible to produce nested flux 

surfaces if a deviation from a symmetric state with axisymmetry or helical 

symmetry is sufficiently small. Therefore, if we find the minimum energy 

state under the assumption of existence of nested flux surfaces, it means 

that we obtain the three dimensional MHD equilibrium solution of eqs.(2.9) 

  (2.11). This is the variational principle approach to obtain MHD equilib-
rium. It can be extended to the problem of MHD equilibrium surrounded by 

a vacuum region or the free boundary equilibrium problem. This approach 

was implemented in the BETA code to calculate the three-dimensional stel-

larator equilibrium, where the potential energy for one pitch length of the 

stellarator is actually minimized by assuming periodicity. 

  The same potential energy is also used to study the nonlinear global 

stability in the BETA code. Here it is minimized again by considering the 

whole toroidal stellarator plasma or the full torus. In the standard linear 

stability analysis based on the variational principle, the second variation of 

the potential energy is used to obtain the eigenvalue (or growth rate) and the 

eigenfuncion. On the analogy of the linear stability analysis using the energy 

principle, the difference between the potential energy corresponding to the 

equilibrium and the secondary minimized potential energy is interpreted as 

the second variation in the nonlinear stability case. The potential energy for
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studying the stability includes both perturbed functions with finite amplitude 

 and the background equilibrium contributions, and it is minimized under the 

linear constraint for the perturbed functions. Then, if the minimum energy 

of the perturbed state is larger than the minimum energy of the equilibrium 

state, the equilibrium is stable to the given perturbation, and if the former 

is smaller than the latter, the equilibrium is unstable. This is a picture of 

the nonlinear stability analysis in the BETA code. 

  In Sec.2.2, we review briefly the proof for the variational principle given 

by Kruskal and Kulsrud under the fixed boundary condition and extend the 

variational principle to the free boundary case in Sec.2.3. In Sec .2.4, we in-

troduce the flux coordinates and discuss the Euler equations that are used 

in the BETA code. In Sec.2.5, the numerical method to minimize the poten-

tial energy is described. In Sec.2 .6, we explain the method of the nonlinear 

stability based on the variational method.
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2.2 Variational 

equilibrium 

condition

principle for 

under the

MHD 

fixed boundary

  From an analogy of a particle motion in a potential field, the static  MHD 

equilibrium corresponds to the minimum potential energy state under the 

appropriate constraints. Kruskal and Kulsrud proved that the stationary 

state of the potential energy Wp is equivalent to equilibrium state without 

flow given by eqs.(2.9) N (2.11) based on the variational method[27]. We 

review this proof briefly. 

  A local conservative form for the energy of the ideal MHD can be written 

by 

at(p22+2+rP1)+0[[(v2 +F-----P)v+ExBl = 0. (2.12) 
In this section, the boundary condition is posed by assuming that a mag-

netically confined plasma extends to a rigid perfect conducting wall. This 

case is called a fixed boundary. It requires that the tangential electric field, 

the normal magnetic field and the normal component of velocity on the wall 

vanish and they are expressed as 

nxE=0,(2.13) 

n B = 0, (2.14) 

n•v=0.(2.15)
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By integrating eq.(2.12) over the whole plasma, it is shown that the second 

term vanishes because of the above fixed boundary conditions. Then we 

obtain the global energy conservation relation, 

           f (PrnV22 + 2 + r  -  1) dV = const, (2.16) 
where fp dV denotes the volume integral in the plasma region. Here the first 

term, 

            T=~(p22dV,(2.17) 
represents the kinetic energy and the second and third terms, 

                         B2             Wp=i(B+rPldV,(2.18) 
is called the potential energy. 

  Here it is assumed that the magnetic field generates a set of nested flux 

surfaces and magnetic field lines are ergodic on almost all flux surfaces. Then 

the toroidal flux can be introduced in order to express the flux surfaces 

explicitly, and Wp becomes a functional of P, B, and (D. The constraints for 

the functions necessary to obtain a non-trivial solution by the variation of 

W are as follows. 

 (a) is a single valued function with min 4 = 0 and max 4 = F at the 

    wall, 

 (b) V•B=0, 

 (c) B • VI. = 0, 

(d) fl< f B • V(dV = f, 
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(e)  f<1,<  f B • VOdV = W (f ), 

(f) f4)<f P1"rdV = M(f), 

where 0 and ( are poloidal and toroidal angles, respectively. For a given 

constant F, W(f) and M(f) are functions in 0 <f< F. These functions 

correspond to the poloidal flux and the mass of plasma, respectively. Here 

we prove that under the constraints (a) N (f) Wp becomes stationary if and 

only if P, B, and satisfy the variational conditions 

            P = P(0)(2.19) 

VP = (V x B) x B.(2.20) 

  Here we give the expression of B to satisfy the constraints. For a function 

 satisfying (a), the most general form satisfying the constraints (b) and (c) 

is the Clebsch representation, 

                B = V1 x Vv(0, 0, O.(2.21) 

Although v can be a multi-valued function, B should be single-valued. In 

order to satisfy (d) and (e), v must be written by 

v = —0 + t (f )C + (),(2.22) 

where t (f) is the rotational transform and defined by 

                              lf 
                           _d t(2.23) 

and A is single-valued and periodic in 0 and directions. Then we consider 

the variation of W2 with respect to P, A and 0. 
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  First, the variation with respect to  only P leads to 

SWP =r-----111F dff~=f IvoI SP.(2.24) 
Here we use the relation dV = dSdf /I V O! because I dfi / i V l is the distance 

between the two neighboring magnetic surfaces from (d). From the constraint 

(f), any perturbation SP must satisfy

dS1  
r~~_fIvo I Pr-1SP0.(2.25) 

Therefore we can choose for SP with the delta-function, 

             SP = IVoIP1-r (S(xl) - 6(x2)),(2.26) 

where x1 and x2 denote the different points on the same magnetic surface. 

Substituting (2.26) into (2.24), we have P = P(f) and the form, 

                            dS   

                                               r 

         P(f) = [MI(f) /14_f Ivo!]'(2.27) 
is given from (f), where the prime denotes the derivative with respect to the 

argument. 

  Next, we consider the variation with respect to only A. The variation 

8WP is given by 

SWP=f B•SBdV= —f v•(BxVO)6\dV.(2.28) 

Here we have used (b), and we obtain the condition, 

            V xB•VO=O.(2.29) 
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  Finally, in the variation with respect to only  0, we must consider both 

kinds of variation for P('1) with the change of 0 and without it. In the 

former case, the variation with respect to 1 is written by 

SP(') = P'8 .(2.30) 

In the latter case, we have 

                            dS  l -r 6P(4)) = [Mt(f)]rS [L=f Iv~l1 
_ rP(f)  d dS60(2 .31)                   f~=fjodff~=fIvo' . 

Then the variation of Wp with respect to 0 is given by 

SWP = f[B.{vsxvv+vxv(6)} 
                               P' S~ + F  dS~ dS/dSdV 

          + 

          r-1r-1dff~=f Ivo'f~=f Ivo' 
       = / SO [V (B x Vv) — P'] dV.(2.32) 

Here we have used the partial integration with respect to f and the fact that 

60 vanishes at the magnetic axis and the wall. Then the condition, 

VxB•Vu=P', (2.33) 

is obtained. Making the cross products of eq.(2.21) with V x B and using 

eqs.(2.29) and (2.33), we obtain 

              (V x B) x B = P'V = VP.(2.34) 

By reversing these procedures Wp can be constructed, therefore, the proof 

has been finished. 
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  It is noted that the constraint (e) means that the poloidal flux is conserved 

as a function of the toroidal flux in the variation of  Wp. The equilibrium 

under the constraint (e) is called FCT (flux conserving torus) equilibrium. 

In this case, the profile of the rotational transform is fixed. On the other 

hand, we can also eliminate this constraint. Then we must consider the 

variation with respect to t (f), and 6Wp is given by 

SW, = JB.6BdV 
                     =rFdf St (f)I-fB •(Vx V()-----O(2.35) 

We obtain an additional condition, 

                 B (VO xV)Id= 0,(2.36)         Lf 
which is reduced to 

It- f J•V(dV=0.(2.37) 
This equation means that the rotational transform t (f) or the poloidal flux 

T( f)  is adjusted so that the toroidal net current It vanishes. This condition 

is called the currentless constraint. Therefore we can obtain the two types 

of equilibrium according to whether the constraint (e) is used or not in this 

variational method. 

  The above proof guarantees that we can obtain the static MHD equilib-

rium by minimizing the potential energy W1, under the several constraints 

instead of solving egs.(2.9)N(2.11) directly. This is called the variational 

principle for MHD equilibrium.
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2.3 Extension of the variational principle for 

MHD equilibrium to the free boundary 

problem

  In this section we assume that the plasma is isolated from the conducting 

wall with a vacuum region. The  MHD equilibrium in such a situation is 

called a free boundary MHD equilibrium. In this case, the magnetic field B„ 

in the vacuum region satisfies the equations 

             V • By = 0(2.38) 

             V x By = 0.(2.39) 

And the pressure balance equation at the plasma-vacuum interface given by 

B2 B2 P + 2=2(2.40) 

must be also satisfied. The equilibrium equations (2.9),(2.11) for the plasma 

region are the same as in the fixed boundary case. Even for the free boundary 

MHD equilibrium we can formulate the variational method based on the 

potential energy functional for the MHD equilibrium equivalent to that given 

by equations (2.9),(2.11) and (2.38),(2.40). 

  Since the plasma boundary moves freely, it is convenient to use the virtual 

displacement of plasma, , in the variational approach. When an arbitrary 

functional Z is defined by 

Z = f z(x)dV,(2.41) 
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the variation under the free boundary condition is given by[3] 

               SZ = f SzdV + fzE •ndS,(2.42) 

                                                                s where n is the outward normal unit vector on the boundary S and the second 

term represents the contribution from the movement of the boundary. 

   In the plasma region the potential energy functional is the same as eq.(2.18) 

in the fixed boundary case. We reconsider the variation of  W, by expressing 

all perturbations in terms of 4 and associated equilibrium quantities. The 

magnetic perturbation SB is expressed by 

SB = V x (4 x B).(2.43) 

which is obtained from Faraday's law (2.5) and Ohm's law (2.4) by using 

v = 04/0t. The adiabatic equation (2.3) gives the expression of pressure 

perturbation 

SP = -4 • VP — FPV • 4.(2 .44) 

Then, the variation of the functional Wp under the free boundary condition 

is written by 

SWp =f{B • V x (4 x B))—r11(E•VP + rPV - C)]dV           L

2 +f,(-2+rP1------\J)4 ndS                      // 

                        (—B2=          J(VP  — J x B) • 4dV —f2+ Pf4 -ndS. (2.45) 
Here we have used the boundary condition 

          B•n=0(2 .46) 
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on the plasma surface that is given by the assumption that the plasma is a 

perfect conductor. The first term of the last expression in eq.(2.45) for  6W, 

gives MHD equilibrium equation (2.9). The second term represents the total 
force on the free boundary. 

  In the vacuum region, the potential energy W„ is defined as 

B2 

                                                    v and the variation under the free boundary condition is written by 

                                  B2             SW„ =fB„613,4VSdV —fB„ndS.(2.48) 
                                          S 2 

Here the minus sign appears in the second term means that n is chosen 

as an inwardly directed normal vector to the vacuum region. We need a 

constraint in the variation of SW„. It is noted that eqs.(2.38) and (2.39) are 

complementary each other. In other words, if we consider one of them as 

the constraint, the other expression is obtained as a result of the variational 

calculation. 

  First, we choose eq.(2.38) as the constraint. The vacuum magnetic field 

that satisfied this constraint is expressed by 

B„ = V x A„,(2.49) 

where A„ denotes the vector potential in the vacuum region. Since eq.(2.38) 

is considered as the differential form of conservation of magnetic flux, and 

B„ is the related to the vacuum electric field E„ as 

E„ vxB„=0, (2.50) 

                       29



on the plasma  surface[38]. If we choose the Coulomb gauge 

OE=0and V•Az1=0(2.51) 

for the electric potential OE and the vector potential Az, we obtain 

                            8A„ 
       E„=(2.52)                                            —

. 

Substituting eq.(2.52) into eq.(2.50), we obtain 

SA„ = 4 x B.(2.53) 

Then, the variation SW under the constraint of eq.(2.38) is given by 

                                     B2           SW,= fBv'vx6Avdv_f.nds                                     

                                                2 

           = J6AvV2AvdV+fndS,  (2.54) 

where we have used the boundary condition 

By • n = 0,(2.55) 

on the plasma-vacuum interface. The first term of eq.(2.54) gives the varia-

tional equation 

V2A„ = 0,(2.56) 

which is equivalent to eq.(2.39) in the vacuum region under the constraint of 

(2.51). Here if we define the total functional W as 

W = Wp .+ W,,,(2.57) 
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we find from  eqs.(2.45) and (2.54), 

       SW =j(VP_JxB).dV+f8Av.v2Avdv   
                          +[B,2—+ p)14 ndS.(2.58) 

Then the pressure balance equation (2.40) at the plasma surface is also ob-

tained as a variational condition in addition to eqs.(2.9) and (2.56). 

  Next, we consider eq.(2.39) as the constraint. By satisfying this constraint 

can be written by 

By = VO,(2.59) 

with a magnetic potential q. It is noted that eq.(2.39) implies that there 

is no current in the vacuum region and both the plasma current and the 

external current are expressed in terms of 0. The vacuum is not a simply 

connected region mathematically since it encircles both the plasma region 

and the external coils. The net toroidal plasma current It is given by 

It = By • dl,(2.60) 
                                      Il 

where the path of integral 11 is an arbitrary circuit that encircles only the 

plasma column once. From eq.(2.59) we obtain 

It = i Vq - dl = d¢.(2.61) 
Similarly, the total external coil currents Iext is given by 

Iext = dq,(2.62) 
                                         12 

where 12 is the circuit that encircles only the external coils once. If any current 

would flow in the plasma or vacuum region, It and Iext change automatically. 
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Then, the constraint (2.39) implies that It and  It are fixed during the 

variation of W. In this case, the variation of eq.(2.48) is written by 

                              B2 SW, = jVcVcdV—f-.ndSB 

 2 

                                                        2          = —f6q V q5 • ndS —fSOV20dV — fBy E • ndS. (2.63) 

In the evaluation of the first term we must remember that the potential 0 

is not single-valued. We introduce two cuts at 9 = const. and (= const. in 

the plasma region and name the both sides Si and Sl at the 0 = const. cut 

and S2 and SZ at the (= const. cut. Because Vc .11 = 0 at both the plasma 

boundary and the outer conducting wall, the surface integral is decomposed 

as 

      f 5q5Vcb•ndS = f5gVO• ndS + fSgVq•ndS       Si; 

                 + j5gVq • ndS + fSOVq• ndS. (2.64) 
                             z Since Vq must be single valued and take the same value at the both sides of 

the cut, we obtain 

  f64V • ndS = i1S(0 — .0t) V0• ndS +L2S(0— 01)V0 • ndS, (2.65) 
where Of is the value at SI. and SZ of the cuts. From egs.(2.61) and (2.62), 
8(0-0) corresponds to the perturbation of the current. Therefore, this term 

must vanish for the constraint that the current is conserved in the plasma 

column. We can apply the same discussion to the external coil current . Thus, 

we have 

B2 SWz1 = — fSOV2gdV — f2• ndS. (2.66) 
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Here the first term gives the variational condition

 z

(2.67)

which corresponds to eq.(2.38). In this case, if we define the total energy 

functional W as 

W = Wp — W„,(2.68) 

which is different from (2.57), we have the energy variation SW, 

SW =f(VP—J x B)•4dV—fScV2cdV+ffBy— (+i)1 dS. (2.69) 
Again we obtain the pressure balance equation (2.40) at the plasma-vacuum 

interface, eq.(2.9) and eq.(2.67) from SW = 0. Thus the stationary state of 

the total energy functional corresponds to an MHD equilibrium under the 

constant current condition. 

  It is noted that the sign of W„ in the expression of the total energy 

functional depends on the constraint which is conserved, the flux or the 

current.
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2.4 Derivation of the variational equations

  In the three-dimensional analysis, it is crucial to choose the coordinate 

system that makes the numerical calculation sufficiently accurate. When the 

existence of the nested magnetic surfaces is assumed, it is the most convenient 

to employ the flux coordinates. 

  In the BETA code to study  MHD equilibrium, stability and transport 

of stellarator[8,9], the coordinates (s, u, v) are used where s = ill 1F is the 

normalized toroidal flux in the plasma region. u and v are the normalized 

poloidal and toroidal angles, defined as 

             u-_-E9v-QC(2.70) 
                          27r' 27r' 

where Q denotes the number of field period in a stellarator configuration. 

Then, the MHD equilibrium of toroidal plasma is considered in the cubic 

domain, 

0<s<1, 0<u<1, 0<v<1.(2.71) 

Here s = 0 and s = 1 correspond to the magnetic axis and the outermost 

magnetic surface of the plasma, respectively. 

  We introduce the cylindrical coordinates (r, (, z) to explain geometrical 

properties of the coordinates (s, u, v). There are relations between the Carte-

sian coordinates (xi, x2, x3) and (r, C, z),

xi = (A + r) cos ( 

 x2=(A+r) sin  ( 

x3=Z, 
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where length is normalized by the minor radius of the conducting wall and 

A denotes the aspect ratio of the toroidal vacuum chamber. We define the 

expression for each flux surfaces as follows. For s = 0, the position of the 

magnetic axis is described by 

                        r = ro(v) 
                                           (2.73) 

                        z = zo(v) 

and for s = 1, the shape of the plasma surface is represented by 

                         r =  ri(u,v) 
                                           (2.74) 

z = zl(u,v). 

Here we introduce the radial function R(s, u, v) for the range of 0 < R < 1. 

The flux surface defined by s = const. in 0 < s < 1 is expressed in the (r, z) 

plane by 

r = ro(v) + R(s, u, v)[ri(u, v) — ro(v)]                                            (
2.75) 
             z = zo(v) + R(s, u, v)[zl(u, v) — zo(v)], 

with the condition 

R(0, u, v) = 0, /41,u, v) = 1. (2.76) 

Then the Jacobian of the flux coordinates in the plasma region is given by 

Dp = LHPKRRS,(2.77) 

where the subscripts s, u and v mean the partial derivative with respect to 

the assigned coordinate and 

     L = 27rA(2.78) 

      K = 1+r/A(2.79) 

Hp = (zl - zo)u-(ri — ro)u. (2.80) 
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  When we treat free boundary  MHD equilibria, we use the similar coordi-

nates (s, u, v) in the vacuum region and s = const. surface is given in (r, z) 

plane of the cylindrical coordinates as 

r = ri(u, v) + s[r2(u, v) — ri(u, v)] (2 .81) 
z = z1(u, v) + s[z2(u, v) — z1(u, v)] 

with 0 < s < 1. Here 

7' = r2(u, v)                                             (2
.82) 
                          z = z2(u,v) 

represents the shape of the outer conducting wall. In (2.81) case r = r1 and 

z = z1 represent the free boundary which is expressed as 

ri = r3(v) + g(u, v)[r2(u, v) — r3(v)]                                             (
2.83) 

zl =.-- z3(v) + g(u, v)[z2(u, v) — z3(v)], 

with the shaping function g(u, v). Here r3(v) and z3(v) describe a curve 

corresponding to the center of the free boundary. The Jacobian Dv in the 

vacuum region is also given by 

Dv = LHvK,(2.84) 

where 

   =(z2—z1) {sç+(1—s)au}—(r2—r1){sau+(1—s)au. (2.85)                          ll 

  Now we consider the vaiiation of the potential energy in this flux coordi-

nates by applying the results in Sec.2.2 and 2.3. We can write the magnetic 

field B as 

        B = Vs x Vu(2.86) 

t U = —u + Qv+A(s,u,v).(2 .87) 
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Then, the Cartesian component  B3 can be written in the form 

              B__ 9(s'v'xa) =D3(2.88)                     30(
x1, x2, x3)DI,' 

where 

             D;=a~s''u'~v).(2.89) 
Here we use the variational result P = P(s) for the potential energy func-

tional because this does not affect other variations. In the flux coordinates 

eq.(2.27) can be written by 

           P(s) = [M'(s) /1 f D2dudv]r(2.90) 

with the mass function M(s). Thus, the expression for the potential energy 

functional W. in the plasma region is written as 

W = f jj  [------------D3+ P(s)DPJdsdudv           2Dr-1

                   (7 jury— vvru)2 + L2K2vu + (vuzv — vvzu)2    = f 
              2Ddsdudv 

          1 [M'(s)]r  
                                                         2.91                                   ()        +r -1f[ff Dpdudv]P-1 ds. 

We impose the fixed boundary condition on (2.91). Then Wp becomes a 

functional of the unknown functions R, v, r0 and zo, since r1 and z1 are de-

termined by the shape of the conducting wall. The variation with respect 

to R corresponds to that with respect to I in Sec.2.2. The perturbation Si' 

is considered to be equivalent to 5A. Though the magnetic axis belongs to 

singularity, the position of the magnetic axis is determined as a result of the 

variational principle. Therefore, we also need the variation with respect to 
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 ro and z0. Then the variation of WP is expressed by 

SWP = — J f f [L1(v)Sv + L2(R)SR] dsdudv 
               — J [L3(ro)Sro + L4(zo)Szo]dv.(2.92) 

The operators Li(v), L2(R), L3(ro) and L4(zo) are obtained with the following 

 expressions 

   L1(v) —a[ry+ L2K2 + zv]7/u — [rury + zuzv]vv  
   au DP 

            a [r2+ z~]vv— [rury + zuzv]vu
(2.93)      + a

v DP 

  L2(R)(ri — TO)                1 auvv(vvruvurv)  
                                       P a vu(vur, — vvru)DPP* LKv.2 +av DP+2~(LK DP------)J)} 

la vv(vvzu — vuzv) +(z1 —z0) a
u DP 

a vu (vu zv — vvzu) 
      + a

vD------------ —LHPRs(P* K) (2.94) 

                              P 

  L3(ro) _— f01-19vv(vvru — vurv)+a vu(vury— vru)       ~~ [(1 au Dau D 
     Pp 

         +27r(DP*—LKv2             LI~ DPul}— P*LKRRsau—}dsdu (2.95) 

            J 

                            avv (vvzu — vu zv)0 vu (vu zv — vvzu )  L4(zo) = fJ {(1 — R)On D+avD} 
       PPJ 

      +P*LKRR,au } dsdu,(2.96) 
where 

B2 
            P* = —2 P.(2 .97) 
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The Euler equations  L1(v) = 0 and L2(R) = 0 can be written as 

           J • Vs = 0(2.98) 

              J • Vu = P'(s),(2.99) 

respectively. They are equivalent to eqs.(2.29) and (2.33). Under the FCT 

equilibrium, where the rotational transform profile t (s) is fixed at the zero 

pressure condition, above four Euler equations are sufficient to obtain an 

MHD equilibrium solution. On the other hand, for the currentless equilib-

rium of stellarator, we need an additional equation to determine the rota-

tional transform. From the discussion in Sec.2.2, the variation with respect 

to t is given by 

SWp = fIt  St dV,(2.100) 
and the corresponding Euler equation is It = 0. 

  In the free boundary MHD equilibrium case, the constraint that conserves 

the current in the external coils is implemented in the BETA code. As 

discussed in Sec.2.3, the total potential energy functional W is given by 

eq.(2.68) with 

IV, = VIVONV.(2.101) 
When we use the coordinates (s, u, v) in the vacuum region, this Dirichlet 

integral is rewritten as 

Wv = 2i i f (0s+bo2u+c,v+2dOsqou+2e050„+2f0u0„)dsdudv, (2.102) 
where 

LK(ru+zu+e2)  
    a =II

,(2.103) 
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        b  ==LK(rs+zs+ 12)(2.104) 
                               Hy 

 c =K(2.105) 
                d =LK(ef — rurs — zuzs}(2.106) 

Hy 
                                  ruzy— ryzu    =e(2.107) 

                     LK 

      f =ryzs— rszy(2.108) 
                    LK 

Thus we need the variations of 0 and g in eq. (2.83) in addition to v, R, ro and 

zo in the plasma region. The Euler equation to minimize W, with respect to 

0 is Laplace's equation with the expression 

 as(acbs+dou+eoz)-au(bou+dos+fov)+v(cOv+ecks+ fOu) = 0. (2.109) 

In general, the solution of Laplace's equation makes the Dirichlet integral 

(2.102) minimum. In the free boundary case, therefore, the variational prob-

lem of eq.(2.68) becomes the minimax problem. In the BETA code eq.(2.109) 
is solved by using the successive over relaxation method (SOR) with relax-

ation parameter independently of the energy minimization . The boundary 

conditions at s = 0 and s = 1 to solve eq.(2.109) are given by 

a0s + dcu + ecby = 0,(2 .110) 

which means By • n = 0. The periodicity condition imposed in the u and v 

directions are expressed by 

0(s, u -+- 1, v) = 0(s, u, v) -F Cl (2.111) 

0(s,u,v+1)=0(s,u,v)+C2.(2.112) 
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Here C1 and C2 correspond to the net toroidal current and the total external 

current in the coils as discussed in Sec.2.3, respectively. In the case that the 

currents are conserved, Ci and C2 are assigned as the external conditions. 

  When g(u, v) is varied, the variation of the total functional W is given by 

              6W = —  Jf  M(g)6gdudv,(2.113) 

where the operator M(g) is written in the form 

                     [B2B21     M(g) = LK[(r2 — r3)z,~— (z2 — z3)ru]2+ P —2v(2.114) 

The Euler equation M(g) = 0 corresponds to the pressure balance equation 

at the plasma-vacuum interface and determines the free boundary.
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2.5 Steepest descent 

minimization

method for energy

   As discussed in Sec.2.2, the minimum energy state obtained under several 

constraints corresponds to an  MHD equilibrium. In the numerical code the 

minimum energy state can be found by using an iteration method. 

   We introduce an artificial time parameter, t, and describe the variations 

at each iteration in terms of the time derivative. Since the vacuum potential 

  is solved by applying the successive over relaxation method to Laplace's 

equation, the variational equation for W is written by 

dW =+L2(R)aRdV dt—(Li(v)—atat 
aroazofag            —(i3ro)at+L4(zo)atdv —JMatdudv. 

                                           (2.115) 

For simplicity we use the vector U of which components are the functions 

(v, R, ro, z0). Here we choose the descent path in the space (U, g) for efficient 
energy minimization that is described by 

              e,as' = L3 for j = 1ti4(2 .116) 
e5a9= M(2 .117) 

with positive coefficients e3. By using (2.116) and (2.117) dW/dt is shown as 

  dW _av2aR 2 
  dt—       f[el                 at+e2atdV 

       ) 
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       pJ [e3()2+e4()2]dv—fe5(ldudv. 
         \1 

                                          (2.118) 

It is seen that RHS is always negative or zero. Therefore, the solutions for 

the differential equations (2.116) and (2.117) can decrease the energy W 

monotonically toward the minimum energy state. 

  In the BETA code the finite difference method is employed for the spatial 

derivatives in the three directions. It should be noted that operators L3 

include the second order derivatives with respect to u and v. This brings 

about the stability problem in the numerical scheme. An estimation for 

the numerical stability condition gives a limit for the maximum time step 

 At which scales like  h? or hv, where hu and by are the mesh size in the u 

and v directions, respectively. In order to take a larger time step than the 

above one, we add the terms of the second order time derivative to the path 

equations (2.116) in the following way, 

2 

             a~-------at2+e;aa3=L,(.7=1^'4) (2.119) 
This is one of the steepest descent method and called the second order 

Richardson method. If we choose a3 such that the time-dependent differential 

equations become hyperbolic and the Courant-Friedrichs-Lewy stability con-

dition is satisfied, we can take At that scales like hu or h„ for the maximum 

value. 

  In the equation of (2.119), the coefficient e3 must be selected to guaran-

tee that the path is the steepest descent. For simplicity, we assume that the 

functional W is varied by only one function U with the corresponding oper-
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ator L. We also assume that L has a negative eigenvalue  —w2 corresponding 

to an eigenfunction A, and U approaches A as eatA in the iteration scheme. 

Then, eq.(2.119) gives the relation 

a)2 + eA = —w2,(2.120)

and the time derivative of the energy W is written as 

       f12 

           au'_-J(aA + e)(auJdV.(2.121) 
In order to maintain the monotonic decrease of W, the coefficient must satisfy 

the condition 

             > lAl.(2.122) 

a This equation (2.122) implies that e/a must be larger than the largest eigen-

value of A. However, if we choose a large fixed number for e/a, A is scaled 

by 

           A—~2(2.123) 

from eq.(2.120). This means that the convergence becomes very slow when 

co is small. Equation (2.123) indicates that we can accelerate this scheme if 

we choose e to be proportional to the lowest eigenvalue A and to be time-

dependent. Here, we choose e = alAI, where a must be larger than a so as 

to satisfy eq.(2.122). Then A scales in proportion to w as 

             A w• a-2.(2.124)

This procedure requires the quantitative evaluation of A. In the BETA code 

the eigenvalue co is used instead of A to adjust the coefficient e, because A is 
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proportional to w on the steepest descent path as shown in  eq.(2.124). The 

eigenvalue —w at the time t = t3 is approximately given by 

             ~'—F+ a)12F1\2F+al'(2.125) 

                                    t where 

F (a                aU)dV,(2.126) 
and subscript t denotes the time derivative. In the code, e(t)/a is chosen as 

an average of 1w31 2 over the previous N time steps as 

               e(t) = 2 I N I w3_k12)2. (2.127) 

  The operator M in eq.(2.117) includes only the first order derivatives 

with respect to the spatial variables. This first order equation (2.117) for the 

free boundary function g is solved by using the Lax-Wendroff method in the 

BETA code. 

  Under the currentless constraint, another numerical scheme to obtain a 

stationary solution of 
at 

at = —It(2.128) 

must be added.
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2.6 Nonlinear stability of ideal  MHD mode 

based on the variational principle

  The concept of the nonlinear stability in the BETA code is explained 

here. When the plasma is perturbed from the equilibrium state, there are 

two possible cases ; increase or decrease of the total potential energy including 

a contribution due to the perturbation. The former corresponds to the stable 

equilibrium and the latter to the unstable one for the given perturbation. 

  In the linear stability theory[12], if we assume the time-dependence of the 

infinitesimal displacement 4 as 4 a eiwt, the growth rate —w2 is given by 

— w2 =2f ps12dV'(2.129) 
where SW denotes the linear potential energy and —w2 > 0 corresponds to 

stable state. In this section, we consider an extension of this linear stability 

formulation to the case of the finite amplitude perturbation. Here we limit 

the discussion to the fixed boundary case for simplicity. 

  The nonlinear potential difference is defined as the difference of the po-

tential energy W° at the equilibrium state and the potential energy W1 

including both contributions from the equilibrium and the perturbation. It 

is considered that SW in eq.(2.129) may be replace with W1 — W°[39]. 

  The vectors U° _ (v°, R°, rg, zg) and U1 = (vl, ill , ro, zo) are introduced 

to denote the variational variables that correspond to the equilibrium and 

perturbed states, respectively. Then the growth rate can be defined as the
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Rayleigh quotient 
                 10              —W2 =WS,UIW(2.130) 

Here  S' denotes the difference of the components between U1 and U° and 

the norm 11611112 is given by 

118'U112 = f f J[wi(6'v)  + w2(8'R)2]dsdudv 
                 + f [w3(S'ro)2 + w4(S'zo)2]dv, (2.131) 

where the weight factors w3 are determined so that, in the straight cylindrical 

plasma limit, the norm is assumed to be expressed by 

116'U112 = fpmjj2dV.(2.132) 
  The relation (2.130) gives the growth rate —w2 after W1 and 1IS'UI12 

are obtained numerically. In order to find the perturbed energy W1 and the 

associated vector U1, we try the second minimization based on the same vari-

ational method as that to obtain W° by imposing an additional constraint. 

In the BETA code, the first minimization to determine the equilibrium state 

is restricted to one field period of the torus because stellarator configurations 

usually have a periodicity condition in the toroidal direction. Since we have 

interest in the perturbation with a larger wave-length than the length of sin-

gle field period, W1 is calculated for the full torus and can be lower than 

W° corresponding to the full torus. The constraint imposed to obtain Wl is 

expressed by 

(S'U, Ud) = eo,(2.133) 

where (a, b) means the scalar product that is related to the norm by (U, U) = 

1113112. Here Ud is composed of the test functions describing the linear eigen-
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functions and  co is a parameter that controls the amplitude of the pertur-

bation. Thus, the second minimization corresponds to find the minimum of 

the potential energy within the hyperplane defined by (2.133) and W1 is the 

minimum energy for the perturbation Ud with an amplitude of co. 

   It is convenient to use the Lagrange multiplier method to solve the ex-

tremum problem with the constraint. When p is the multiplier, 1.31. and W1 

satisfy the relation 

awl acp  

 aUl aUl=0,(2.134) 

where cp represents the constraint (2.133) in the following way 

cp = (S'U, U') — co.(2 .135) 

Derivatives in the first term of (2.134) are described by using the same op-

erators L3 as in the energy minimization to find the equilibrium . From the 

definition of the scalar product in cp, 

ay 

                        U31= w'Ud(2.136)                    aU 

                                   J are given. Therefore, the minimization problem with the constraint (2.133) 
reduces to solving the equations 

L3(U31) — pw;Ua = 0. (2.137) 

These equations can be solved to obtain U1 with the same steepest descent 

method as that applied to the equilibrium problem for obtainin
gU°.Then 

the path of the steepest descent is expressed by the equations 

a 

            a' att-----+ e~t1 =L3(U3) — pw3Ua(2.138) 
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Here the Lagrange  multiplier is given by 

(L(U1), Ud)              µ __ 
IIUdII2

(2.139)

where

L(U;) = (Li(v), L2(R), L3(ro), L4(zo))• (2.140)
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Chapter 3

Ideal  MHD Equilibrium 

Stability of Heliotron E 

Heliotron H

and

and

3.1 Introduction

  We apply the BETA code explained in Chapter 2 to investigate the ideal 

MHD equilibrium and stability of Heliotron E and Heliotron H [40,42]. The 

BETA code has an advantage that the realistic three dimensional configu-

ration of Heliotron E or Heliotron H is included in the stability analysis of 

global modes. 

  Heliotron E is one of the largest experimental device of £=2 heliotron/ 

torsatron configuration [1]. The number of the field period is 19, the major
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radius is 2.2 m and the average minor radius is 0.2 m. In experiments it 

is expected that plasmas heated gradually by RF waves relax to currentless 

equilibria. On the other hand, when plasmas are heated abruptly by the 

neutral beam injection (NBI), for example, FCT equilibria may be achieved. 

Therefore, to know the difference between the both type equilibria, the sta-

bility of both the currentless and FCT equilibria is examined in the Heliotron 

E configuration. 

  The Heliotron E device was designed to have a large rotational trans-

form and a strong shear to stabilize instabilities in the vacuum magnetic 

configuration. However, in the high shear heliotron/torsatron, usually  t =1 

surface exists in the plasma column. Soft X ray and density fluctuations 

with (m, n) = (1, 1) resonant at t = 1 have been observed in Heliotron E 

high beta experiments [2]. Thus in this chapter we concentrate in the ideal 

MHD stability of the Heliotron E plasma against the m = 1 and n = 1 mode. 

  Since the m = 1 and n = 1 instability is considered to be related to the 

t=1 surface, it is interesting to examine the stability in a heliotron config-

uration with t larger than unity everywhere inside the plasma column. We 

pick up Heliotron H as one of such configurations. Heliotron H is originally 

designed as a reactor of the heliotron type with 15 periods [41]. Its major 

and minor radii are 21 m and 1.7 m. We also try to calculate the m = 1 and 

n = 1 instability under the free boundary condition, since the BETA code 

has capability to study the free boundary problem. 

  It is known that the stability is controlled by changing the magnetic axis 

position by the vertical magnetic field. The magnetic axis position is related 

to magnetic well or hill in the vacuum magnetic configuration. We expect 
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that, because of the increase of the magnetic hill, the stability deteriorates 

when the magnetic axis is shifted inward by the vertical magnetic field. On 

the contrary, when the magnetic axis is shifted outward, the stability is 

improved by deepening the magnetic well. 

   In Sec.3.2, we calculate the currentless and FCT equilibria of the He-

liotron E plasma under the fixed boundary condition. For these equilibria 

the ideal nonlinear stability against the  m = 1 and n = 1 mode is investi-

gated. Bauer, Betancourt and Garabedian presented the stability analysis 

of the m = 1 and n = 1 internal mode for the Heliotron E by the BETA 

code, which shows an average stability beta limit of 2 % for the currentless 

plasma in the Heliotron E  configuration[9]. First we tried to reproduce the 

results with finer meshes than those they used to obtain the beta limit of 2 %. 

In the next step we compare the stability between the currentless and FCT 

equilibria in Heliotron E. In Sec.3.3, we examine the finite beta currentless 

equilibria and the stability of the m = 1 and n = 1 mode in the Heliotron 

H configuration under both the fixed and free boundary conditions. In both 
Heliotron E and Heliotron H configurations we also study the effect of the 

axis shift due to the additional vertical field on the stability of the m = 1 

and n = 1 mode in Sec.3.4. Conclusion is given in Sec.3.5.
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3.2 Ideal MHD stability of the 

and FCT equilibria against m 

mode in  Heliotron E

currentless 

=1 and n=1

  In Heliotron E, there always exists the resonant surface at t = 1 in the 

vacuum magnetic configuration [41]. In this case, the most unstable mode 

might be the internal mode with (m, n) = (1, 1) localized near the e=1 

surface. Since the perturbation amplitude of the m = 1 internal mode is 

negligibly small in the region outside the t =1 surface at /3 , we may 

restrict our consideration to the interior region just including the resonance 

surface which is called an inner flux tube model of Heliotron E, where /9 is a 

stability beta limit. Bauer, Betancourt and Garabedian used this assumption 

to study the stability against the m = 1 and n = 1 mode in Heliotron 

E currentless equilibrium under the condition that the fixed boundary is 

put on the surface of the inner flux tube model[9]. Here we follow the same 

assumption and investigate the stability by using finer mesh calculations than 

theirs to obtain the precise result, because there are appreciable truncation 

errors in the numerical method implemented in the BETA code. The largest 

mesh number we used is 17 x 32 x (32 x 18), where 17 refers to the radial, 

32 to the poloidal and (32 x 18) to the toroidal directions, which became 

possible by using the super computer FACOM VP-100. (It is noted that 

we use 18 for the number of the field period to simulate the Heliotron E.) 

They used the maximum mesh number 9 x 16 x (16 x 18) in CRAY-1.
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Our concerns are also in the second stability region and in the comparison 

between the currentless and FCT equilibria about the beta limit. Thus we 

used an aspect ratio  13  •and the coefficient A2 = 0.27 which describes the 

elliptic deformation of the outermost surface with the following expression 

ri(u,v) = cos u-02cos(u—v) (3 .1) 
zl (u, v) = sin u + A2 sin(u — v) 

(see Sec.2.4 ). The pressure profile is assumed to be given by 

                P = P0(1 — 0.6772)2(3.2) 

in the limit of a straight approximation, where r denotes an average radius. 

In this model pressure is finite at the surface of the inner flux tube, r = 1. 

  First, we describe MHD equilibrium properties of the Heliotron E model. 

Figure 3.1 shows the magnetic surfaces for each quarter of toroidal period at 

P=5.2 %, of the currentless equilibrium under the fixed boundary condition 

where ,Q denotes the average beta value with considering the whole plasma 

column. At the left-hand side of each figure the axis of torus exists. It is 

clearly seen that the Shafranov shift of the magnetic axis due to the finite 

beta effect. Figure 3.2(a) shows variations of the rotational transform, t (r), 

due to finite beta effects at a fixed mesh size under the condition of currentless 

equilibrium. There is a tendency that t (0) increases and t (1) decreases. At 

P=5.2 %, t (0) : 1 and t (1) Re. 1.1 are obtained in the Heliotron E inner 

flux tube model. For FCT equilibria t (r) was fixed as in Fig.3.2(b). In the 

equilibrium calculations of Fig.3.2(a) we used 17 x 32 x 32 meshes. Figure 

3.3 shows the shift of the magnetic axis for the Heliotron E inner flux tube 
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model obtained by using the linear extrapolations as h 0 with the mesh 

size h. The shift of the magnetic axis under the FCT assumption is smaller 

than that for the currentless equilibria. 

  In the stability analysis for the above heliotron configuration,  eo=0.2 was 

used for the m = 1 and n = 1 mode, which denotes the amplitude of the 

perturbation. The test function Ud in Sec.2.6 for the m = 1 mode is specified 

by the following expressions

These forms were  given to describe a strongly unstable m = 1 mode from 

various stability analyses 

poloidal and toroidal  mode numbers due to geometrical coupling are pro-

duced during the process 

  In the BETA code the truncation errors comprise an artificial viscosity 

that tends to stabilize the equilibrium numerically. Therefore, it becomes 

necessary to perform careful convergence studies before conclusions are drawn 

on stability. Usually we check the dependence of the growth rate —w2 on the 

mesh size h. The finite difference scheme employed in the BETA code is 

supposed to have an accuracy of second order 0(h2) except perhaps at the 

magnetic axis s = 0 and the plasma surface s = 1. Therefore, we extrapolate 

the growth rate —w2 to zero mesh size by choosing a representation of the

SR = 281/2(1 — s) cos 27r(u — v) 

Sz/i = -(1 - 3s) sin 27r(u — v) 
(3.3) 

bro = cos 27ry 

6z0 = sin 2irv. 

 m to describe a strongly unstable m = 1 mode from 

ses using the BETA code. The sidebands with other 

mode numbers due to geometrical coupling are pro-

ess of the energy minimization. 

the truncation errors comprise an artificial viscosity 

the equilibrium numerically. Therefore, it becomes
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form 

 —  w2  =  Ao  +  A2h2  +  A3h3.(3.4) 

The coefficients Ao, A2 and A3 are determined numerically by a least squares 

fit to the data for —w2 computed at four or five different mesh sizes. The 

value of —w2 usually turns out to be positive for the practical mesh sizes; 

however, as h —* 0, it decreases and may become negative in this limit. Such 

a case corresponds to instability. A typical example of the extrapolation 

curve is given in Fig.3.4. Here we used five meshes: (7 x 12 x 12), (8 x 

14 x 14), (9 x 16 x 16), (13 x 24 x 24) and (17 x 32 x 32) for one pitch 

length. In Fig.3.4 h = 1 corresponds to (7 x 12 x 12) and the extrapolated 

growth rate, —w2, becomes negative. 

   We discuss results of nonlinear stability against the m = 1 and n = 1 

mode in the Heliotron E plasma. Figure 3.5(a) shows the eigenvalues or 

growth rates extrapolated by (3.4) for the m = 1 and n = 1 internal mode 

in Heliotron E currentless equilibria. Negative eigenvalues correspond to an 

unstable region against the pressure-driven internal mode , and the average 

beta limit 2 % is obtained which coincides with the result by Bauer et al . 

obtained by using crude meshes. It is also found that the second stability 

region appears for , ? 4.7 %. Figure 3.5 (b) shows the eigenvalues of the 

m = 1 and n = 1 mode in Heliotron E FCT equilibria. By comparing Fig.3.5 

(a) with Fig.3.5 (b), the FCT equilibria are seen to be a little more unstable 
than the currentless equilibria . Even under the FCT assumption for the 

equilibrium, the second stability region of the m = 1 and n = 1 internal 

mode appears for /3 N 5 %. The result that the FCT equilibria are more
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unstable than the currentless equilibria agrees with the stellarator expansion 

 analyses[l  7]. 

  To understand the physical mechanism for entering the second stability 

region in both Figs.3.5 (a) and (b), we have examined the magnetic well 

term, V"/V'. Here V denotes a specific volume surrounded by a flux surface 

and the prime means the derivative with respect to s. Here V' is calculated 

by 

V' = f Dpdudv(3.5) 

at each flux surface and Dp is given by (2.77). The values of V"/V' obtained 

by the extrapolation (3.4) are plotted as a function of ;(3. in Fig.3.6. By noting 

that the t =1 surface is at s 0.46 for i ^• 0 of the FCT equilibria, the second 

stability region appears when V"/V' at s = 0.5 shown in Fig.3.6(b) becomes 

sufficiently negative. The same situation is seen in the case of currentless 

equilibria shown in Fig.3.6(a). This demonstrates that the magnetic well 

stabilization is the main reason for entering the second stability region.
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3.3 Stability of m=1 and n=1 mode in 

Heliotron H currentless equilibria

  Heliotron E was designed and built to have a large shear to suppress the 

 MHD instabilities. However, the average beta limit is about 2% as shown in 

Sec.3.2, since the t = 1 surface exists in the half radius region of the plasma 

column. Therefore we have interest in the heliotron/torsatron configuration 

without the t = 1 surface to increase the beta limit compared to Heliotron 

E. When the t = 1 surface is removed into the outer region and t < 1 in 

the plasma column, we obtain an example of an £ = 2 torsatron such as 

the ATF[17]. On the other hand, an example of a heliotron with rotational 

transform larger than unity in the whole plasma column is Heliotron H[41]. 

The Heliotron H was designed to have an aspect ratio of A = 14 and a pitch 

number of 15. Here we again assume the pressure profile 

              P = P0(1 — r2)2(3.6) 

in the limit of a straight approximation to study the stability against the 

m = 1 and n = 1 mode and 02 = 0.33 is taken in eqs.(3.1). 

  Our interest is in currentless equilibria for the Heliotron H configuration 

because the currentless constraint is more appropriate for a steady operation 

reactor. As shown in Fig.3.7(a) obtained under the fixed boundary condition, 

there is no t = 1 surface and the behaviors of the change of t (f) due to finite 

beta effects are similar to the case of Heliotron E. 

  The eigenvalues of the m = 1 and n = 1 internal mode in the Heliotron 
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H equilibria are shown in Fig.3.8. The beta limit in the first stability region 

is  3  = 3.2%, and this configuration is more stable against the m = 1 and 

n = 1 internal mode than Heliotron E. This may be due to the removal of 

the t = 1 surface. 

  Next we study the stability of the external m = 1 and n = 1 mode in the 

currentless equilibria of the Heliotron H plasma. In this case we calculate 

free boundary equilibrium under the currentless constraint. The adjustable 

parameters are given so that the profile of the rotational transform inside the 

plasma column at ,Q 0 is almost the same as that in the fixed boundary 

calculation. The aspect ratio of the vacuum chamber is assumed A = 6.3 

and its shape is expressed as 

r2(u,v) = cos u—A2cos(u—v) (
3.7) 

z2(u,v) = sin u+A2sin(u—v) 

with 02 = 0.22 (see Sec.2.4). The pressure profile which we employ for the 

free boundary equilibria is given by

P(r) =

in the limit of the  straight 

equilibrium, the parameter 

appears in the periodicity 

is taken to the zero. The 

external coil current is chosen to adjust t] 

2.638 is used. 

                        59            r / 

        77,IJ1212 PO 1-Ifor 0<-7<0.45 
  \O.45/(3.8) 

0for 0.45<r<1 

 ;ht approximation. Since we consider the currentless 

ing to the toroidal current, which 

ity condition 2.111) for the vacuum potential qs 

he coefficient C2 in eq.(2.112) which determines the 

chosen to adjust he rotational transform, and C2 =



   The rotational transform of the free boundary currentless equilibrium is 

shown for three cases,  ,3 = 0.4%,,13 = 1.8% and /9 = 3.9% in Fig.3.7(b). 

The tendency that e (0) increases and e (1) decreases is seen and the profile 

becomes almost flat at ,Q = 3.9%. It is noted that e(1) corresponds to the 

rotational transform at the plasma surface of the free boundary equilibria. 

Figure 3.9 shows the magnetic surfaces at each quarter period in the one 

pitch length. The magnetic axis shift by the finite beta effect in Fig.3.9 is 

plotted as a function of the average beta in Fig.3.10. The magnetic axis shift 

in the fixed boundary equilibria is also plotted for comparison. The shift in 

the free boundary case is estimated by 

                                  o _to           S=r°--------
goo(3.9) 

where ro, g0° and g10 are the Fourier coefficients given by 

           fro(V)dVro =(3.10) 
                  goo=1dvJ1dug(u, v) (3.11) 

foo=1dvJ1du(cos 2u)g(u, v). (3.12) 
          0 The coefficients g00 and g10 correspond to the average minor radius and the 

average shift of the toroidal plasma column, respectively (see Sec.2.4). It 
is seen that the larger shift occurs in the free boundary case than in the 

fixed boundary case. The result may be explained by the difference of the 

condition for the vertical magnetic field . The fixed boundary case assumes a 

fixed position of the plasma column , which corresponds to a situation that 

the plasma column position is adjusted by the vertical field to compensate 
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the average shift of the plasma column in the free boundary case. On the 

contrary the plasma column can move in the major radius direction in the 

free boundary equilibria. 

  Figure 11 shows the extrapolate curve to obtain the growth rate for the 

free boundary or external m = 1 and n  = 1 mode in Heliotron H at ,Q = 

1.8%. This is the first demonstration of an unstable free boundary mode 

using the BETA code. Therefore, it is expected that a heliotron with large 

rotational transform, 1 < < 2, gives a higher beta limit than Heliotron E 

on the assumption of a fixed boundary; however, the free boundary mode 

may become crucial for such a configuration. 

  For these results, since the boundary condition at the free boundary is 

subtle from the mathematical point of view, the convergence of the iterative 

calculation of the minimum energy is limited to 6 digits. On the other hand, 

in the fixed boundary case, a convergence up to 9 to 10 digits is possible with 

reasonable iterations. The results under the fixed boundary condition shown 

in this chapter were obtained with 9 digits accuracy for the potential energy.
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3.4  Effects of magnetic axis 

tional vertical magnetic 

stability

shift 

field

by 

on

addi-

MHD

   Vacuum magnetic surfaces can be controlled by adding an additional 

vertical magnetic field with which the magnetic axis shifts inward or outward 

and the shape of flux surfaces changes to have triangular component[41]. In 

order to study the effect of the additional vertical magnetic field by the BETA 

code, we employ the boundary equations expressed by 

rl (u, v) = [1 — 03 cos(3u — v)] • cos u — 6,2 cos(u — v) 
(3.13) zi(u, v) = [1 — 03 cos(3u — v)] • sin u + O2 sin(u — v) 

instead of eqs.(3.1), where ~3 corresponds to a triangular deformation of the 

surface. We adjust 6,2 and 03 to describe the vacuum magnetic surface at 

the boundary obtained from a line tracing calculation. Figure 3.12(a) shows 

the flux surfaces at i3 ,� 0 when the magnetic axis is shifted outward by the 

additional vertical field. For this case, 6,2 = 0.26 and .A3 = 0.03 were used 
as the input data of the BETA code. Figure 3.12(b) shows the flux surfaces 

at R 0 for 6,2 = 0.26 and .A3 = —0.03 with the inward axis shift. For 

both cases, the shift of the magnetic axis is about 8 % of the average minor 

radius. Dependence of the magnetic axis shift on the average beta are shown 

in Fig.3.13. Here we assume the same pressure profile as eq.(3.2) and the 

currentless constraint on the MHD equilibria . In the outward shift case by 

the additional vertical field , the increase of the Shafranov shift with the beta 
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value is relatively small compared to the opposite inward shift case. 

  Stability against the internal m = 1 and n  = 1 mode was examined for 

these Heliotron E currentless equilibria with the additional vertical magnetic 

field and the results are shown in Fig.3.14. In the outward shift case, the 

m = 1 and n = 1 internal mode is stabilized completely. On the other 

hand, in the inward shift case the first beta limit reduces to 9 1.3% and 

growth rates become large compared to those for the standard Heliotron 

E configuration. In order to study the stabilizing mechanism associated 

with the outward axis shift we examine the depth of magnetic well since the 

outward magnetic shift generally enhances a good curvature region. Figure 

3.15(a) and (b) show the magnetic well V"/V' in both the outward and the 

inward shift cases, respectively. It is seen that the magnetic well region 

covers almost all plasma column for 1 > 3% in the outward shift case. On 

the contrary, in the inward shift case, as shown in Fig.3.15(b), the s = 0.5 

surface belongs to the magnetic well region for ,3 ? 4.2% which is larger than 

   1.8% in Fig.3.15(a). 

  We also examined the effect of the shift by an additional vertical field 

on the stability against the m = 1 and n = 1 internal mode in Heliotron H 

with the same procedure as we have used for Heliotron E. We assumed the 

boundary parameters 02 = 0.33 and 03 = 0.03 in eq.(3.13) and the pressure 

profile given by eq.(3.6). This positive 03 leads about 7 % outward shift with 

respect to average radius. We obtained that the m = 1 and n = 1 internal 

mode is completely stabilized by the outward shift of the magnetic axis in 

the currentless MHD equilibria as shown in Fig.3.8. It is confirmed that the 

larger region of the plasma column belongs to the magnetic well than the 
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standard case at the same average beta value. The instability is considered 

to be stabilized by the effects of the magnetic well.
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3.5 Conclusion

  We have investigated the equilibrium and the stability against the m = 1 

and n = 1 mode in the heliotron configurations with the three-dimensional 

 MHD code, BETA code. 

  First we examined both the currentless and the FCT equilibria for the 

Heliotron E inner flux tube model under the fixed boundary condition. We 

found the tendency that the central rotational transform t (0) increases and 

the edge rotational transform t (1) decreases as the beta value increases under 

the currentless constraint. The Shafranov shift due to the finite beta effect in 

the currentless equilibrium is usually larger than that in the FCT equilibrium. 

Since the t = 1 surface exists in the plasma column of Heliotron E, the 

most dangerous instability is expected the m = 1 and n = 1 internal mode. 

The average beta limit of 2 % in the currentless equilibrium of Heliotron 

E inner flux tube model obtained by Bauer, Betancourt and Garabedian 

was reproduced with finer meshes. These calculation became possible by 

running the BETA code in the super computer FACOM VP-100. It is worth 

while to obtain the same beta limit, because the growth rates depend on the 

mesh size strongly and the value extrapolated correctly to zero mesh size has 

the physical meaning. We also found that a second stability region appears 

Q N 4.7% in the Heliotron E configuration. The FCT equilibrium shows a 

little more unstable result to the m = 1 and n = 1 internal mode. The first 

stability limit is about 1.8 % and the second stability region is also found at 

,0 > 5%. It is obtained that the physical mechanism for entering the second
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stability region is the deepening and widening the magnetic well. 

   As the example of the heliotron configuration which has a rotational trans-

form larger than unity for all flux surfaces, we studied the Heliotron H con-

figuration under the currentless constraint. The first stability beta limit for 

the m = 1 and n = 1 mode is 3.2 % under the fixed boundary condition. 

This limit is larger than that of Heliotron E because the resonant surface, 

 e = 1, does not exist in Heliotron H configuration. However, since  e is still 

close to unity, the non-resonant m = 1 and n = 1 mode is destabilized for 

~3 ? 3.2%. We also examined the stability of the external m = 1 and n = 1 

mode in the currentless equilibrium of Heliotron H under the free boundary 

condition. The change of the profile of the rotational transform and the shift 

of the magnetic axis due to the finite beta effects is larger than these in the 

fixed boundary case. This may be understood by considering the difference 

for the vertical magnetic field constraint . In the fixed boundary case, the 

position of the plasma column is fixed by the vertical field. For the free 

boundary equilibrium the unstable external mode with m = 1 and n = 1 

is found. It is remarked that the level of convergence in the free boundary 

calculations is degraded compared to that in the fixed boundary case. 

  The effects of the shift of the magnetic axis due to an additional vertical 

field on the global mode stability , particularly on the m = 1 and n = 1 

were studied in both Heliotron E and Heliotron H. The vertical field effect 

on the vacuum equilibrium is included in the BETA code by deforming the 

boundary surface triangularly according to the results given by line tracing 

calculations. We obtain that when the magnetic axis is shifted inward the 

stability against the m = 1 and n = 1 mode degrades
, whereas, when it is 
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shifted outward the instability completely disappears for both Heliotron 

and Heliotron H currentless equilibria. It is found that the improvement 

the stability is attributed to the stabilizing effect of the magnetic well 

the pressure-driven instabilities. The outward shift of the magnetic axis 

associated with enhancement of the good curvature region.
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Fig.3.2 (a) Variation of rotational transform due to finite beta effects in 
currentless equilibria for Heliotron E by using a (17 x 32 x 32); (b) 
rotational transform in FCT equilibrium for Heliotron E .

69



 6

0.6

0.4

0.2

 0.0

- 0 .2

Fig.3.3 Shafranov shifts of the magnetic axis in 

line shows currentless equilibria and dotted line s

Heliotron E. Continuous 

hows FCT equilibria.

x  10-2

- w2

0.5

0

- 0 .5

Fig.3.4 Extrapolation curve for growth rates of  in  = 1 and n = 1 
a currentkss equilibrium with 13 = 2.6%. Ao = —0.0001593, 
A2 = 0.0063985, A3 = —0.0012352.

mode in

70



 x  10-2 

   0.16

_ W2

0.08

0.0

- 0 .08

 x102 
   0.16

- W2

0.08

0.0

- 0 .08

Fig.3.5 Eigenvalues of m = 1 and n 

(a) Heliotron E currentless equilibria
= 1  internal mode versus average beta. 

and (b) Heliotron E FCT equilibria.

71



0.04

 V'%  V'

0

-0 .04

0  2~ 

 f3(%)

S 

0.7 
0.5 
0.2

4

(a)

0.04

 5 

0.7 
0.5 
0.2

(b)

VW/1 

0
0 2 4

IJ(°/0)

-0 .04

Fig.3.6 V"/V' versus ,8 for three flux surfaces, s = 0.2, s = 0.5, s = 0.7. 
(a) Heliotron E currentless equilibria and (b) Heliotron E FCT equilibria.

72



 1.6

1.4

-I- 1
.2

1.0

0.8
0

(a)

0.5

 13(°I  ) 
5,9 
3.9 
2.6 
1-.S - 
1.0 
0.0

1

1.8

1.6

1.4

1.2

1.0

0.8
0

 \1.a 
 3.9

0.5 

f

1

Fig.3.7 Variations of rotational transform due to finite beta effects in the 

currentless equilibria for Heliotron H (a) in the fixed boundary condition by 
using a (9 x 16 x 16) mesh; (b) in the free boundary condition by using a 
(11 x 20 x 20) mesh.

73



0.16

0 0.08 

 x 

 N

0.0

-0 .08

 (%1

Fig.3.8 Eigenvalues of m = 1 and n = 1 internal mode versus average beta 

in Heliotron H currentless equilibria. Solid line shows case of standard 

configuration; dashed line shows case of outward magnetic axis shift.

74



                     AT V -  0.000 
-rrrrT~~-l-rrrrTT7-1~~-rrrr

rT~~ -rrrTT'f "1-I-I-r --1-1-I-1-rrr7-77
1 

rr *t --I-rrrr* ry 
-F-H--+-F -I-I 1-4-14-4 +4-1- -I -HHtt+4-I 

                 -1-1-1-1- 44-1-1 1-1-I-++44-
_-LL___1 J_I-LLLi111 J.J1 _LL1111J 
_LL_L11.J_I-LLLtJIJJJ_ LLL111J 

LLLL 1 I I_IJ_I-LJ_1_II_LL.IJJ i t II ' I 4 1 1 1 1~I1_1 1 1 1 1 1 1 1 1
I I r1-
^rrr 
rrrrrt 
rr-rr-4

I- I- h-U-C - -

LLLL11 
LLLL11

11III   1 1-I-

 y

1 -I J-I 
1 J J_I_1 

1 J J _I_I
~J LLL111J 
JJ_I-LL111J

TT T 1- 

44-1+ 

1 1 J J4

I-LI I L I I I

 11!JJJ_LLL

rrr T771- 
rrr T7T17 
rrr tt-t-r 
rrr tt-1-1-1

I- I- F-I4 1 J -1 -1-I 
I_LLL1 1JJJ_ 

LLLLL  JJJJ-I-

 AT V - 0.2S0 
 T711.1-I-rrrT777 

 T  T11-1-I-rr  r  T777 
 *rt-I-1-I-rrrttt-7 

 1_ J_1_LL LL111J 
 11_ J_I_LLL111J 

 ill!  _LLLL111J

 i  11-I-I -rrr777 
 '17-1-I- TTTT1    7 -I-1-r T-1-1-11

H-Irt-.tt-r1

I-I-1_+1G.1J 
I_L LL'11J 
LLLL 114

                     AT V  - 0.500 
1-rrrT7717---I-rrrrT7777-rrrry-71 
rrrrr--r-r-I-rrrr*-r-r-r7-I-rrrrr-r-r-t 
rrrtr-r-t~-I-I-rrr-tµ~y~-rrr+-+t-ri 

I-L~: _1JJ-LLL-1111JJ _;-L LL 1111 
LLLLi11JLL' 11T-ti _-I_LLLLJ.4 
I_ I_ I I I I I r l I I I T~ 1 1 i 1 1 i

T77717 -r rrr

LIL~`;.£1-a 

LL111JJ 
LL111J_I_

T77-1'1-rrrr 71

1 U Qt J 
L111 J 

_-I_LLLI 1J

I I I-; 71IIr rrfT I I I I I I r 7777 
17-7rrr-rT7111-I- VTT7T -rrrr-rr r T rr I-rrrr7-r1 -rrr-t-t-1y-I-rrr fT-ty -I-I-rrttt t 1 

-I-L^--~14-I-I-1-1>-10 1144-4-1-I-I-L114J -LLL__1..JJ -I-LLLr111JJ_LLLLLI11 
_LLL1_1JJ_I_LLLI _IIJJJ_I_LLL111J 

I I I' I J I I I I I i I I I I I I I L I I I I I

 rrrTT-1-1—rrrr 
I-rrrr1-lr-1-rV 
rrrrr-t-»-r 
I- I- I-1--F-t-i-i-I-//i

 I-LLl 4-4JJ 

 L L 111JJ 
_LL 111JJ

Irrrri~77  rrr1-1 
         T -rlrT7 

I-HHI-t-+-1

'2j"
,J-I- I_ L 

 J J_L LLe 
J J _I_I_ LL

.1_111J 

L11JJ

Fig.3.9 Flux surfaces of Heliotron H currentless equilibrium under the free 

boundary condition for ,$ = 3.8% at four different cross-sections.

75



0.6

0.4

6 0.2

0.0

 -0 .2

 O/0

Fig.3.10 Shifts of the magnetic axis in currentless equilibria of Heliotron H 

plasma. Dotted line shows the shift in the fixed boundary condition and 
the solid line shows the one in the free boundary condition.

x101

_W2

0.5

0

- 0 .5

0.5

Fig.3.11 Extrapolation curve for free boundary m 
Heliotron H with  9 = 1.8%. Mesh numbers 7 x 12 

 8  x  14  x  (14  x  15),  9  x  16  x  (16  x  15),  and  11  x  20

= 1 and n = 

x (12 x 15), 
x (20 x 15)

1 mode in

are used.

76



 

(  a  i
AT V • 0.0

 -f;

•

.1L, IC

:I -r
.

:17 f
11

II a

 rAh

• r -A't

•

AT V • 0  25

AT V -  0  500 AT V  - 0.
'750

 H0

:.

71/7.17-;•!•
I
.

%v'1~i
: TY"1C

:u;
./.i

2 12
•

I

;1

•

Fig.3.12 

and  A3

 Flux surfaces for (a) 
=-0.03. A = 13 andfi

02 = 0.26 and 03 = 0.03 
= 0.01% for both cases.

and (b) 02 = 0.26

77



(b)
AT V • 0.0

 :
•

V.

 lt •.Ll.l 1.U.l L

-L
1.-

J~-  A,  N is

xr ^;77.

.'\ r,ViC.'

r Is NI '1JI'

'X NY 
14

__l

AT V  •  0.250

 

; r
(

-r-
r•

• _r. -'

.r_

-0-

_1
.1

r •r

•1•

Q-

.r_ .r.

AT V - 0.  500

 0- T • 1 1 I 1 1

I '

r

igtti

404,11.

\

7Q-

'

'7 
11000

1

AT V -  0.150
•

 o.. -1-

- . ".' -•1: 

~;.•..l.
n

?/91.1.4-A 1• -0

••

ff

 : V.-

•'. 1. t •' IY. • .

.. L J

Aff

78



0.6

0.4

6 0.2

0.0

-0 .2

 0....
 0/0

Fig.3.13 Shifts of the magnetic axis in Heliotron E currentless equilibria 

with the additional vertical field. Solid line shows the standard case, 

dashed line shows the outward shift case with 03 = 0.03, and dotted line 

shows the inward shift case with 03 = —0.03.
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Fig.3.14 Eigenvalues of m = 1 and n = 1 internal mode in Heliotron E 

currentless equilibria. Solid line shows the standard case, dashed line shows 

the outward shift case with 03 = 0.03, and dotted line shows the inward 

shift case with 03 = —0.03.
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Chapter 4

Ideal  MHD Equilibrium and 

Mercier Criterion of a Spatial 

Axis Stellarator ( Asperator 

NP-4 )

4.1 Introduction

  Since a spatial axis stellarator can have a large rotational transform as 

well as a magnetic well, much effort has been made to achieve a stable high 

beta equilibrium with this approach. 

  Three different methods have been used for studying the ideal MHD equi-

libria of spatial axis stellarators. One is the analytic method given by Solov'ev 
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and Shafranov[20]. In this theory the linearized  MHD equilibrium equations 

are used, where the zeroth order corresponds to a cylindrical equilibrium and 

the perturbation includes both the helical and toroidal deformations. The 

equations are expanded in the neighborhood of the helical magnetic axis with 

respect to the distance from the axis. This method has been used widely to 

study the characteristics of equilibria analytically. A second method uses 

the reduced equations for the MHD equilibria, which is discussed in Chapter 

1. The third approach is to make use of a three-dimensional MHD code, 

recognizing that there is no symmetry. Bauer, Betancourt, and Garabedian 

applied the BETA code to several Heliac-type configurations[9]. Hender et.al 

used the NEAR code[29] to study the Heliac configuration[43]. 

   In this chapter we carry out the comparison between the analytic expres-

sions of Solov'ev and Shafranov and numerical results of the BETA code ex-

plained in Chapter 2 for a model configuration with a circular cross-section 

which is similar to the Asperator NP-4[44][45]. It is interesting to com-

pare the equilibrium quantities such as the rotational transform, the shift 

of magnetic axis, and the depth of magnetic well given by the Solov'ev and 

Shafranov theory with the numerical results to examine applicability of the 

theory. 

  In Sec.4.2, the equilibria obtained by the BETA code for the model con -

figuration are described. In Sec .4.3, numerical results of the local stability by 

the Mercier criterion are discussed . Analytic results given by Solov'ev and 

Shafranov are reviewed in Sec .4.4. In Sec.4.5, the comparison between the 

numerical results and the analytic results
, especially about the shift of mag-

netic axis and the formation of magnetic well
, is carried out. The conclusion 
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is given in Sec.4.6. In Appendix 4.A, we discuss the coordinate transfor-

mation from the coordinates on the plane perpendicular to the axis of the 

chamber to the coordinates on the v =  const., which is needed to give the 

input data of the BETA code. In Appendix 4.B, the expression for the cur-

vature and the torsion of the helical magnetic axis are given. The Mercier 

criterion is derived in Appendix 4.C.
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4.2 Equilibrium 

code

calculation with the BETA

  The model configuration used here is a spatial axis stellarator similar to 

Asperator NP-4[44]. The parameters of this device are shown in Table 4-1, 

where the plasma radius a is introduced into the definition of the major and 

helical radii; hence  R0 and rh can be normalized so that the average plasma 

radius is unity. In this calculation we use a fixed boundary condition at the 

plasma surface to obtain maximum numerical accuracy. Therefore the code 

requires data for the shape of the boundary on the plane of constant v as 

input parameters. The Asperator NP-4 was designed such that the cross-

section perpendicular to the spatially helical axis of the chamber is circular, 

while that on the v = const. plane has a non-circular shape. Thus we use 

the following expression for the fixed boundary described by (2.74);

r1 (u, v) = Ro + rh cos(Nv) 

          + [1 + 022 cos 2(u — Nv) + A33 cos 3(u — Nv)] • cos u 
(4.1) 

z1(u, v) = rh sin(Nv) 

+ [1+6.22 COS 2(2i- Nv) +6,33 COS 3(u-Nv)] • sin u, 

where v denotes the usual toroidal angle so that it varies 0 < v < 27 for a full 

torus. 022 and 033 correspond to the elliptic and the triangular deformations 

of the cross section, respectively. Here 022 = —0.15 and 6,33 = 0.025 are used 

for this model which are decided by using the transformation of coordinates
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discussed in Appendix 4.A. We assume the pressure profile 

               P =  P0(1 — p2)2,(4.2) 

where p is the mean radius of the flux surface, and calculate MHD equilibria 

under the zero net current constraint as is usual for stellarators. 

  Figure 4.1 shows the equilibrium flux surfaces with 0 = 4.4 % at every 

quarter period. Both the toroidal and helical shifts of the magnetic axis can 

be seen. Here the helical shift points to the principal normal direction of the 

axis. We will discuss this problem quantitatively in Sec.4.5. Figure 4.2 shows 

the profiles of rotational transform t per one period for the equilibria with 

several values of beta. The profile at nearly zero beta value is almost flat and 

the shear is fairly weak. As the beta value increases, the transform increases 

at the center and decreases at the edge under the currentless constraint for 

the equilibria. This tendency is similar to that in the currentless finite beta 

equilibrium of Heliotron E in Chapter 3. Although a weak negative shear 

appears in the finite beta plasmas, the currentless equilibrium of the Asper-

ator NP-4 seems to keep a property of FCT equilibrium up to a few percent 

of - because of the large rotational transform. 

  We evaluate the shifts of the magnetic axis on the plane perpendicular to 

the axis of the chamber in order to compare them with the analytic results 

that will be discussed in Sec.4.5. The position of this axis that is seen in 

Fig.4.1 is expressed as Fourier series,
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 Figure  4.3  shows  the 

 ular  to  the  magnetic  axis  over  one  period  for  several  values  of  beta,  which 

obtained by transforming 

to the magnetic axis 

the axis of the chamber. 

and binormal directions 

value of 0, the helical 

coordinates over this 

the distance from this 

we plot these shifts versus the beta value. 

  The magnetic well or hill V"(s)/V'(s) associated with the normal curva-

ture is frequently used as a stability criterion, and is shown in Fig .4.5. At 

Q N 0.0% the whole plasma region is in the magnetic hill . Magnetic well 

region appears near the magnetic axis at ,Q ti 1%. 

  In order to investigate equilibrium properties of the spatial axis stellara-

tor, we deform the boundary shape to include triangularity . The model con-

figurations used in this study have the same parameters as in Table 4.1 except 

the minor radius which is 0.85 times as small as that of Asperator NP-4 . We 

fixed the elliptic deformation parameter in the BETA code at A22 = —0.15 

and varied only the triangularity parameter A33 on the v = const . plane

ro(v) = roo + r01 cos(Nv) 

       r02 cos(2Nv) + r03 cos(3Nv) (
4.3) 

zo(v) = z01 sin(Nv) 

I z02 sin(2Nv) + z03 sin(3Nv). 

 e  projection  of  the  helical  axis  onto  the  plane  perpendic-

:  axis  over  one  period  for  several  values  of  beta,  which  is 

rming the position of eq.(4.3) to the plane perpendicular 

s with the matrix in Appendix 4.A. The origin denotes 

nber. The X and Y axes indicate the principal normal 

Ions of the helical magnetic axis, respectively. For each 

:al shift corresponds to the mean value (X0, 0) of the X 

s closed line and the toroidal shift to the mean value of 

'is (X0,0) point to a point on this closed line. In Fig.4.4
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from 0.0 to 0.1. The effect of the triangular deformation for the boundary 

flux surface is also seen on the plane perpendicular to the helical axis of 

the chamber. It is confirmed that  A33 = 0.025 corresponds to the circular 

boundary shape like the Asperator NP-4. 

  First we evaluate effects of triangularity on the equilibrium properties at 

  = 0.0%. Figure 4.6 shows the profile of rotational transform for various 

033 at Q = 0.0%. It is seen that the shear near the magnetic axis becomes 

strong according to the increase of A33. In Fig.4.7 we plot the magnetic well 

V"/V' at 0 = 0.0%. For A33 > 0.5, the magnetic well region appears near 

the magnetic axis. Thus, it is expected that spatial axis stellarators with 

cross-sections including triangularity have the more favorable stability than 

that with a circular cross-section. 

  Next we study the finite beta effect on the 022 = —0.15 and A33 = 0.1 

configuration which has the deepest magnetic well and the largest shear as 

shown in Figs.4.6 and 4.7 at ,(~ = 0.0%. Figure 4.8 shows the profiles of 

rotational transform at various beta values under the currentless constraint. 

While t (1) decreases with beta value as in the Asperator NP-4 case, e (0) 

also decreases in this configuration. Therefore the shear still exists near 

the magnetic axis at i = 5.4%. This tendency is not seen in the circular 

cross-section case (see Fig.4.2). As shown in Fig.4.9, both the helical and 

the toroidal shifts of magnetic axis are smaller than those of the Asperator 

NP-4 model in Fig.4.4. It is found that the triangular deformation reduces 

the magnetic axis shift in the spatial axis stellarator. This indicates the 

favorable property of the spatial axis stellarator with the triangular boundary 

concerning of the high beta equilibria. Figure 4.10 shows that V"/V' becomes 
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negative in the almost all region 

the present model spatial axis 

region at  ,Q = 0.0%.

of the plasma column at ,(9 

stellarator already has the

= 1.0%, because 

fairly wide well
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4.3 Mercier stability of Asperator NP-4

  By using the BETA code the local stability is examined for the calculated 

three-dimensional  MHD equilibrium. The sufficient and necessary condition 

for the local mode is given by the Mercier criterion[46,47]. It is obtained from 

minimization of the potential energy in the limit that the mode is localized at 

the rational surface. The derivation of this criterion is given in Appendix 4.C. 

When we employ the (s, u, v) coordinates used in BETA code, this criterion 

is also expressed by

                Sl = S2s -F S2 J.B + SZW + S2P.s. > 0, 

where 

                      S2s = (t,)2 

                        4 is the shear term, 

           52              T•B =t'ff (J'B2)•B DPdudv 
 — is the J • B term, 

                                                   2 

      SZW= P' [v"_P'ffDBzdv] Jf  Iv------812 DPdudv 
is the magnetic well term, and 

               12R2r r(J • B)2   P.s..=f'VsW2DPdudv]—ff-----B2Ivs12 

is Pfirsch-Schluter current term which is destabilizing by the geod 

ture or the component in the B x Vs plane of the curvature  

magnetic field line. 
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(4.5)

(4.6)

(4.7)



   In Fig.4.11 we plot the quantity  S2 and the the terms of eqs.(4.5) (4.8) 

 separately as a function of s obtained by the BETA code for the Aspera-

 tor NP-4 currentless equilibrium. For comparison we also show the same 

 quantities in Fig.4.12 in the case of Heliotron E which has 19 field periods, 

 the aspect ratio of 11, and the the ellipticity A2 = 0.26 in eq.(3.1) with the 

 parabolic pressure profile. All data are extrapolated values to the zero mesh 

size from three sets of grids (9 x 16 x 16), (17 x 32 x 32), and (25 x 48 x 48). 

   In the Asperator NP-4 case, Cl is negative in the whole region of the 

plasma column for all beta values, and the higher is the ,8, the larger is the 

absolute values of Cl. Because the shear is weak as shown in Fig.4.2, and 

Qs and S2J.B proportional to the shear do not contribute to the stability, 
shear stabilization is not expected. For ,3 ? 2%,5214, becomes positive and 

the stabilizing effects appear; however, the destabilizing contribution of the 

geodesic curvature C2p.s. is larger than the stabilizing contribution from the 

magnetic well due to the normal curvature . Therefore total value of S2 be-

comes negative. On the other hand , because the Heliotron E model has a 
strong shear as shown in Fig.4.12(b), S2 in the edge region keeps positive 

even for ,3 ? 1.0% as shown in Fig.4.12(a). We see a tendency that S2 has 

a large negative value at the inner region of the plasma column when r3 is 

increased. The result that the main contribution at large /3 values comes 

from the Pfirsch-Schliiter current term are the same as that in the Asperator 

NP-4 case. However, the stabilizing effect of the magnetic well in Asperator 

NP-4 model is relatively larger than that in the Heliotron E model. From 
the comparison of the Mercier criterion for the Heliotron E model between 

the BETA code and the VMEC code [33], it is pointed out that the BETA 
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code may underestimate the stabilizing contribution of the magnetic well 

 term[48]. If this is general, the Asperator NP-4 configuration may have the 

more optimistic stability property than that in Fig.4.11.

91



4.4 Equilibrium of spatial axis stellarator by 

the Solov'ev-Shafranov theory

  The finite beta equilibrium of the spatial axis stellarator has been ana-

lytically studied by Solov'ev and Shafranov [20], and the result relevant to 

the subject of this chapter is summarized here. 

  Since the spatial axis stellarator is characterized by the helical magnetic 

axis, it is convenient to use a generalized curvilinear coordinates for the de-

scription of  MHD equilibrium. The (p, w,17) coordinates are used by Solov'ev 

and Shafranov, which are also called Mercier coordinates. The magnetic axis 

is regarded as a coordinate and ri is the length along this axis. On the 

 = const . plane p is the distance from the axis, and the azimuthal angle B 

is measured from the principal normal direction. However, since the (p, 9, r7) 

coordinates are not orthogonal system, the new angle w is introduced by 

                                       n w = 9 +
0k(77)d77,(4.9) 

where ic(77) is the torsion of the magnetic axis. With Frenet's formula the 

line element of the (p, w, i) coordinates is given by 

            d12 = dp2 + p2dw2 + (1 — k cos 0)2d772, (4.10) 

where k(77) is the curvature of the magnetic axis. We normalize k, ic, p and 

ri to the plasma radius a. 

  The quantity k cos 9 in the metric of (4.10) is expanded by using Fourier
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series such that 

 k(r/)  cos  9 = E kn cos[w — rc07], (4.11) 

where 

       1/L2irn 
        Ico=L

0lc(?7)d?7(,kn =lco—L4.12) 

               fL(1C707 =k(7)) cos —pk(71)C171)dr7,(4.13) 
and L denotes the length of the magnetic axis for one period, 

              r21/2 L = 27„I1 + (No),(4.14) 
                                     h Here we have assumed N >> 1. Note that the relation (4.12) corresponds to 

the case where the winding of the magnetic axis is clockwise, while in the 

anticlockwise winding case 

2irn 
               /cn = KO +  L -(4.15) 

  In the spatial axis stellarator, the rotational transform, t, is produced 

by the torsion. This point is quite different from the method to produce the 

rotational transform in the heliotron/torsatron. The value near the magnetic 

axis per one period is given by the expression 

                                  L 

                = 1 — fk(r7)dr7.(4.16) 

                                   0 In the approximation of the straight helical geometry the curvature and the 

torsion are described by 

Ro  

    k= r---------------1= rNTh(4.17) 
rh[1+(h}2]rh[1+(NTh)2] 
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Hence the rotational transform is expressed as 

 =  1  —  .(4.18) 

The dashed line in Fig.4.2 shows the value given by (4.18) for the case of 

Asperator NP-4. Good agreement with the numerical results is obtained. 

  In the Mercier coordinates, we can show the equation to determine the 

shift of the flux surface in the finite beta equilibrium. We use the static 

equilibrium equations (2.9)N(2.11). By considering that a cylindrical plasma 

is deformed to have a helical magnetic axis, the equilibrium quantities are 

linearized such as 

                P = Po (p) + Pi (p, w, 77) 

                B = Bo (p) + B1 (p, w, 77)(4.19) 

J = Jo(p) + J1(p, w, 77) 

where the zeroth order corresponds to cylindrical symmetric equilibrium. 

The perturbed quantities due to the deformation are expanded by employing 

the torsion, 

Pi(p, w, 77) = E Pn(p) cos(w — in77) 

B1(p, w, 77) = E Bn(p) cos(w — Icn77)(4 .20) 

J1(p, w) 77) = E Jn(p) cos(w — kn77). 

The position of the center of a shifted magnetic surface with radius Po can 

be obtained by expanding 

p = Po + (po, co, 77)(4.21) 

                = Po + E en(p0) cos(w — iCn77) 
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and substituting (4.20) into the linearized  MHD equations. Here perturba-

tion of the pressure is given by 

                              dPo  Pi (Po, w, 77) = — (po, w, 71) d
Po• (4.22) 

Then, the equilibrium equations (2.9),(2.11) with the expansions (4.20) give 

an ordinary differential equation for Fn(p), 

               1 d 
100 (B — inPoB,7o)2 den] (4.23) 

Po dpo 1 + inpo dpoJ 

     +kn n 2k22B~o—~nPnB27o(Bwo — KnPoB0)2 — 2podPoJ 
   1 +Po1 +knPodPo kn 

=0, 

where BW0 and Bo denote the w and 77 components of the confining magnetic 

field, respectively. 

  If we assume 

iknU << 1, I nPI << 1,(4.24) 

we can integrate eq.(4.23) and we obtain 

                         P2 G                n = kn f po—Ddpo,(4.25) 
                                          Pl 

which implies the Fourier coefficient of the relative displacement between the 

surface with radius pi and that with p2. Here, 

          G = 2[(P0)P — Po(p)] + 2[(BW0)P 

+2(knpBwoBso)P — 3(i2nP2Bso)P](4.26) 

           D = [Bwo(p) — inpBso(p)]2,(4.27) 
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and the bracket  (f  )p denotes the surface average defined by 

                                       2~ 

              (f)p=p2rdw/'Pf(p,w, 7l)pdp.(4.28) 

When we take pi = 0 and p2 = a in eq.(4.25), en, means the shift of the mag-

netic axis in the fixed boundary condition. This estimation for the Asperator 

NP-4 configuration will be discussed in the following section. On the other 

hand, we can also estimate the shift of the center of the plasma column by 

taking pi . = b and p2 = a, where b is the radius of the circular wall. Here we 

assume

Then we have the

 =

 P0 = 0 

Bwo = I /Po for 

B30 = Bso(a) = const. 

expression, 

              2 
—3knb2 1— a2 

+ knab

a<po<b

2[Bwo(a) — KnaB3oj[Bwo(b) — lcnbBso] 

             • (Bw2)              a(2(P)a++(IpBB)(1—22-- 
     2b2 

          +BWo(a) [1n—b + 4(1 —b2I 
                              b21 —KnaBsoBwo(a) [inba+1—a2 I } , 

where (f )p in G is replaced by (f )a. In the currentless case 
which corresponds to Bwo = 0, we obtain 

            2a2\Qa2             n=—$3knb1—b2)+kn2~21—a2 

          1 
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(4.30)

of stellarator,

(4.31)



Equation (4.30) is also applicable to the shift of tokamak. Putting  kn, = 0 

for n 0 and ko = R, we obtain a familiar expression for the Shafranov shift 

in a circular tokamak with a large aspect ratio, 

        2R{Ina-{ (i_b2) (B2)+ 21/(4.32) 
where 

= 

                 (B4O2)
) ,(4.33) 

which is called an internal inductance. 

  The local MHD stability depends on the magnetic well which has a sta-

bilizing effect. It can be estimated from the equilibrium solution given by 

eq.(4.23). In the Mercier coordinates the specific volume V'(') is expressed 

as 

            V'(0) =c/(1)—_1 —~B~>os e> d~,(4.34) 
where line integral is carried out over the one period of the spatial axis 

stellarator. Since Bn is approximated as 

                     _ Bo (77)(4 .35) B~ 1 
— kp cos 0' 

we have the expression 

   110) =1 — 2(kp cos 0) — (k2 p2cos2 0) — (kp cos 0)2 (4.36) B
o(r7) 

The well depth can be obtained by substituting (4.21) into (4.36).
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4.5 Comparison between numerical results 

and the Solov'ev-Shafranov theory

  In this section, we derive the equations for the shift of the magnetic axis 

and the magnetic well due to the finite beta  effect based on the Solov'ev and 

Shafranov theory discussed in Sec.4.4, and compare the results of the BETA 

code with this expressions for the Asperator NP-4 equilibrium. 

  We estimate the shift of the magnetic axis in the following way. In the 

eq.(4.25), by using the pressure profile (4.2) and the currentless constraint 

or AA = 0, we find the relative shift en(po) between the magnetic axis and 

the surface with radius po given by 

                                          z en (P0) =—8knpo + —2K272 (3 a2)(4.37) 
We need the explicit expressions for kn and /cn in order to evaluate S. In 

the Asperator NP-4 case, we assume the expressions for the curvature and 

the torsion of the helical magnetic axis as(see Appendix 4.B), 

                 k = k + k cos27r77(4.38) 

K = —/c +iscos2L-,(4.39) 
where k and is mean toroidal corrections of the curvature and the torsion , 

respectively. These equations are consistent with the anticlockwise winding 

of the magnetic axis in the BETA code. Equations (4.15) and (4.39) give 

km =—~c+2Ln.(4.40) 
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Substituting  eqs.(4.38), (4.39) and (4.40) into eq.(4.13), we have the expres-

sion,
rl (IL) =kJ1+[+1+J~-1 (IL)] '(4.41) 
  2~2 

where J,i, is the Bessel function of the n-th order. For the parameters of 

the model configuration shown in Table 4-1, k << k and the first term is 

dominant in (4.41) as discussed in Appendix 4.B. Equations (4.41) shows 

that km becomes smaller as I n I increases, and k_1 ti k1 and i_i > i£1. Then 

we have 

            ~211<<^'~11(4.42) • 
Therefore, (4.21) is assumed by 

p ^' Po + 6 cos(w — ,co) + e1 cos(w — ic177) (4.43) 

                po+6ocos8+eicos(8—2777). 

It is shown that 6 and e1 in(4.43) correspond to the helical shift and the 

toroidal shift of the magnetic axis, respectively, when Po = a is substituted 

into eq.(4.37). After normalizing all values by a, they are written by 

                        o/3 
o =8ko +KZ(4.44) 

                                        0 with 

        k0=kJ0(kLl(4.45) 
                          2~r1'Ko—K, 

and 

1               = — 
8 kl +2(4.46) 

with 

          = c-)2ik1'~1 L(4.47) 
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When the toroidal correction vanishes, i.e., is = 0, eq.(4.44) is reduced to 

the shift in the straight helical configuration with  ko = k, and eq.(4.46) 

disappears because kl = 0. This means that the toroidal shift proportional 

to ,3 is caused by both the toroidal effect on the torsion, ic, and the averaged 

curvature k. 

  In Fig.4.4 we plot the results given by the expressions (4.44) and (4.46) 

versus the beta value with the shifts obtained numerically. It is considered 

that the agreement is reasonable. It is noticed that the toroidal shift is 

roughly comparable to the helical shift. 

  Since we have obtained the expression for the shift of the plasma column, 

we can also estimate the magnetic well by following the Solov'ev-Shafranov 

theory. Substituting (4.43) into the (4.36), the specific volume is expressed 

by, 

  V' ((I.) = 
1   f[l _kPof(2+)+ PodpoPo(2+dlcosLndpo/ 

    —2k2po,d~(4.48) 
Using (4.44), (4.46) and (4.38), eq.(4.48) becomes 

                                               2 1 + ------Cko—6k        V'(4)) = L./9l(4.49)                  Bno 7rBno\/co)J 
where 49 = poB"o has been used. The specific volume (4.49) shows that, 

when /3 > 4/6 , the magnetic hill at 0 = 0 changes into the well, V" < 0. We 
compare the relative well V"(s)/V'(s) obtained by the BETA code with that 

given by using (4.49) in Fig.4.5. Good agreement is seen at s = 0.3 N 0.4, 

and for ,C3 N 1%, the region near the magnetic axis already has the well,
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where s  =  4)/irB,o. Since we 

respect to po in (4.48), V"(4)) 

dependence.

have neglected 

obtained from

the higher 

(4.49) does

order terms with 

not have a radial
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4.6 Conclusion

  We studied the three-dimensional, finite beta,  MHD equilibria of the spa-

tial axis stellarator similar to the Asperator NP-4 configuration by using the 

BETA code. We used the numerical results to check the applicability of the 

analytic expressions given by Solov'ev and Shafranov to the Asperator type 

device. 

  The numerical equilibria were obtained under the currentless constraint 

and the fixed boundary condition, and assumed a pressure distribution such 

that the pressure falls roughly as the square of the toroidal flux. 

  First we adjusted input parameters carefully so that the shape of the 

plasma boundary on the perpendicular plane to the helical magnetic axis 

becomes circular, which is characterized by the vacuum chamber of the As-

perator NP-4. The obtained equilibria showed that a little worse Mercier 

criterion than that of Heliotron E. In the present spatial axis stellarator the 

profiles of the rotational transform for low beta equilibria are almost flat. 

The rotational transform is made by the torsion of the helical magnetic axis, 

which can be evaluated under the straight helical approximation with suf-

ficient accuracy. The results disagree with those in Ref.[22] which showed 

t -:.• 0.5. The difference between our value and that of Ref.[22] can be ex-

plained by their use of an asymptotic approximation t = N2rh/24 rather 

than t = 1 — [1 + (Nrh/R0)2]-1/2 as in Eqs.(4.14) and (4.18). With this 

correction, they would have found t = 0.29, in agreement with our result. 

Although their expansion techniques can provide an understanding of the
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physical behavior of stellarators with  nonplanar axes, this difference pro-

vides a good warning of the care that must be taken when we apply such 

formalisms to specific devices. We note that their calculation of the effect of 

plasma pressure on the transform is qualitatively similar to what we found. 

  The shift of the magnetic axis can be separated into the helical shift and 

the toroidal shift. Although the helical shift is usually expected to be much 

larger than the toroidal one in nonplanar axis stellarators, we find that they 

are of the same order in Asperator NP-4. A similar result was obtained for 

a Heliac configuration by Hender and his collaborators[43]. This correction 

to the toroidal shift, which is larger than expected, results from the toroidal 

correction of the torsion ( see eq.(4B.8) ). Both the toroidal shift and the 

helical shift in the numerical equilibria increase almost linearly according to 

the increase of beta and they agree fairly well with the analytic expressions, 

(4.44) and (4.46). 
  We estimated the depth of the magnetic well based on the shifts of the 

magnetic axis analytically. As the beta increases, the magnetic hill changes 

into the magnetic well. In the half radius region the transition also agrees 

quantitatively with the numerical results by the BETA code. Koniges and 

Johnson [22] also studied the MHD equilibrium of the Asperator NP-4; how-

ever, their interest is in the higher beta values than 10% . 

We also studied the effect of the triangularity of the boundary cross sec-

tion on the MHD equilibrium properties. As the triangularity becomes larger, 

the shear becomes stronger and the magnetic well region at ,6 = 0.0% be-

comes wider in the Asperator NP-4 like configuration. These properties 

contribute favorably to the MHD stability. 
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  The comparison between the BETA code and the Solov'ev-Shafranov the-

ory have elucidated usefulness of the analytic expressions, which gives a basis 

to extend the present study to other spatial axis stellarator such as heliac-

type configurations.
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4.A Matrix of coordinate transformation

  In order to determine the shape of the boundary on the v = const. plane, 

it is convenient to transform the coordinates on the plane perpendicular to 

the axis of the chamber to the coordinates on the v = const. plane. In this 

Appendix, we derive the matrix which represents the coordinate transforma-

tion. 

  In the Asperator NP-4 model the axis of the chamber is given by 

 ra(v) = Ro + rh cos(Nv) 
(4A.1) 

za(v) = rh sin(Nv). 

By using the Cartesian coordinates of which z-coordinate is the major axis 

of the torus, the position of this spatial axis, ra(v) = (x(v), y(v), z(v)), is 

expressed by

Now, we introduce the local orthogonal coordinates (xm, ym, zm) which have 

the origin at v  = vo on the 

perpendicular to the axis and zm-coordinate is along the tangential direction 

of the axis. Then, the unit vector in the zm-direction, ezm, is given by

where 77 is the same as the one in th 

Here we introduce another 

x (v) = ra(v) cos v 

                y(v) = ra(v) sin v(4A.2) 

                       z(v) = za(v). 

                         orthogonalcoordinates(xm,ym,zm)whichhave 

eaxis.Andweassumethat(xm,ym)planeis 

dzm-coordinateisalongthetangentialdirection 

                           vectorinthezm-direction,ezm,isgivenby 

         dr(4A .3) eZM =—
c177 

, 

                                                        v=vo 

leinthe Mercier coordinates discussed in Sec.4.4. 
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same axis direction as (4A.2) and with the origin on the same point of the 

 (xM, yM, zM) coordinates. Then we consider the transformation from the 

(xM, yM, zM) coordinates to the (xB, yB, zB) coordinates. Substituting (4A.2) 

into (4A.3), we obtain the components of ezM in the (xB, yB, zB) coordinate 

system, ((ezM)xB, (ezM)yB, (ezM)zB) as 

(ezM)zB = —[rhN sin(Nvo) cos vo + ra(vo) sin vo]/LzM, 

(ezM)yB = {—rhN sin(Nvo) sin vo + ra(vo) cos vo]/LzM, (4A.4) 

(ezM)zB = rhN cos(Nvo)/LzM, 

where 

LzM = [rh2N2 + ra(v)2]1/2.(4A.5) 

If we adjust the xM coordinate to the principal normal direction, the unit 
vector along the xM-coordinate, exM, is given by 

                           1 dezM  
ezM =—(4A .6) 

                                   dri v=v0 

where k is the curvature of the axis. By substituting (4A.4) into (4A.6), the 
components ((exM)xB, (ezM)yB, (exM)zB) are given by 

       1 dLzM 
(exM)xB = kL2(ez1)xB—ra cos vo 

       zMdv0 

—rhN2 cos(Nvo) cos vo + 2rhN sin(Nvo) sin vo 

       __ 1 fdLzM  (ezM)yB
kLzMI(ezM)yBdvo—ra sin vo(4A.7) 
—rhN2 cos(Nvo) sin vo — 2rhN sin(Nvo) cos vo] 

/1     (exM)zB = kL2(ezM)ZBdLzM                          —rhN2 sin(Nvo)1 
       zMdv0
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where 

 dLzM = —raNrh sin(Nvo)/LZM, dvo(4A.8) 

   k(v) = LZ 
M [rhN4 + 2r12,N2 + 2r N2 sin((Nv) + 2rhRoN2 cos(Nv) 

        + r2(1_rI,N2 sin((Nv))J1/2 
   \L2(4A.9) 

The unit vector in the yM-direction eyM is given by 

eyM = eZM x ezm.(4A .10) 

Using (4A.4) and (4A.7), we obtain the final expression for three components 

of eyM 

1 (eyM)xB = kLZM[r12,N3 sin vo +riN2 sin(Nvo) cos vo 
-+ra(vo)rh {cos(Nvo) sin vo — N2 sin(Nvo) cos vol ] 

(eyM)yB =1kLZM[—riN3 cos vo + r?,,N2 sin(2Nvo) sin vo 
           —ra(vo)rh {cos(Nvo) cos vo + N2 sin(Nvo) sin vol ] 

(eyM)ZB =3[2r 2N2 sin2(Nvo) + ra(vo)2 + ra(vo)rhN2 cos(Nvo)] • 
           kLzM 

(4A.11) 
Therefore, by using the matrix T,

T=

 exM 

ey, 

eZM

(4A.12)

where each unit vector means a row vector , we can transform the coordinates 

 (xM, yM, zM) to the coordinates (xB, yB, zB). It should be noted that, in order 
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to determine the position on the v =  vo plane, the rotation of the coordinates 

(xB, yB, zB) by the angle vo around the major axis is needed in addition after 
the transform by the matrix T. Then, we obtain the geometrical curve on the 

(XB) YB) plane transformed from the shape in the (xM, yM, zM) coordinates. 

  Since T is an orthogonal matrix, T-1 can be obtained by transposing it. 

We used T-1 in transforming the shift of the magnetic axis obtained by using 

the BETA code to the quantities on the plane perpendicular to the spatial 

axis in Fig.4.4.

108



4.B Expression for curvature 

the spatial magnetic axis

and torsion of

  When the magnetic axis of the spatial axis stellarator is given by (4A.1), 

Frenet's formula give the expressions of the curvature and the torsion as 

k(v) = L-----trhN4+2rhN2 + 2rhN2 sin2(Nv) +  2rhRoN2  cos(Nv) 
          l

rhN2 sin2(Nv)1)1/2    +ra2(1— 2l}(4B.1) 
LZM J JJJ 

2 k(v) = {_
L0 —2rh cos(Nv)) +  {(3r+r-------2MRorh)cos(Nv) + 2Rorhcos 2(Nv) — rhcos3(Nv)              JJJ 2 r+r+ (+)2                    NM 

                        RoL2         +2rh (Rorh— rh+NZMcos(Nv) 

         (2rlll—rhh_i_ NM )cos2(Nv)]}.(4B.2) 
To obtain more simple expressions we use the small parameter expansion 

with the ordering, 

          rh1 
ER = R

otiEN =N« 1 (4B.3) 

IR =RNN 1.(4B.4) 

                              h These are consistent with parameters of the Asperator NP-4 device as shown 

in Table 4-1, ER ̂ - EN • 1/8, IR ' 1. We expand eqs.(4B.1) and (4B.2) and 
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keep terms up to the first order of EN or  eR. Then, we get 

  k(v) k [1. +11+2eNcos(Nv)J(4B.5) 
n(v) ̂. —~c {1—1+/.1?,[2(1 +IR)eR + IR(3+IR)eNI cos(Nv) 

           l 

                                          (4B.6)

with k and give by eq.(4.17). Noting that Nv = 

obtain the following approximate expressions as 

k(77)=k 

k(77) = —k + 2~c(ER + EN) cos

2irrj/L and IR ^ 1, we

2777 

L

(4B.7) 

(4B.8)
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4.0 Derivation of Mercier criterion

  We derive the Mercier criterion by following Johnson and  Greene[47] 

which is different from the method given by Mercier and Luc[46]. 

  We can write the potential energy in the plasma region in the following 

way[47] 

 p2 SW =~I[Vx(xB)                        BZPQxB•Vx(4"xB) 
—2~ VP • tc + 11P1V • V ] dV,(4C.1) 

where 

• 

      o-=JBB,(4C.2) 
—[B x V (2P•+B2)] x B(4C.3) 

                           2B4 

To describe toroidal plasmas generally, we use the Hamada coordinates (V, 8, () 

with the Jacobian being unity. Here V denotes flux volume corresponding 

to the radial coordinate, and B and C are poloidal and toroidal angles, re-

spectively. In this coordinate system the magnetic field B can be expressed 

by 

             B = VV x V [V(V)8 — W'(V)(] ,(4C.4) 

where t and W denote the toroidal and the poloidal flux, respectively, and 

prime denotes the derivative with respect to V. We assume that the pertur-

bation is localized near the flux surface labeled Vo. When the infinitesimal 

displacement vector e is decomposed with the three local orthogonal vectors 
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as 

          _ VV  BxVV B              = 
IVVI +µB2 + v B2.(4C.5) 

We introduce a new variable 

U = ~Vo)8 — `(Vo)C.(4C.6) 

By using (4C.5) and (4C.6) in (4C.1) we obtain the expression 

sw = af[~vv~2Bo+BB2 {B Vp + (B•VB — A)e} 

2 

            ((vllVV • V(2P + B2)p4.} + BB • V\B2l—e B21vvi2—P~B•Va — V 

—apB• Ve+de{(B Vp)—e(A—B•von 

                              21 dV,(4C.7)            2IVVIh_   B 

where 

—VV•Vu 
             MVP 

             A = (1)'(Vo)kli"(Vo) — W'(V0)(1,"(V0) 

  Here we use x instead of V, 

x-(V—Vo)/e,

(4C.8) 

(4C.9)

(4C.10)

where e is a small quantity to measure the localization of the radial displace-

ment. We impose the following condition 

lel 0 as Ix' —} 1. (4C.11)
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We expand the components of the displacement vector in the neighborhood 

of the rational surface in the power series with respect to  E,

 _ 

 /-1 _ 

v =

e(°) + eel) + e2e(2) + .. . 

p(°) + 41(1) + .. . 

u(°) + ev(1) + .. .

(4C.12)

The operator B • V is also expanded as 

     B•Va =~'(°)a( + ex (i(o a~+Aaa)+ ...(4C.13) 
                                   au 

for an arbitrary scalar function a. Hereafter it is convenient to use the 

coordinates (V, u, 0) instead of the Hamada coordinates. 

  With these expansions we can write eq.(4C.7) in power of e by noting 

that a/aV = e-la/ax and dV = edxdudC. The lowest order of 6W is the 

e-1 order 

      6147(-1) =2 f_1               ([°) 2+I'P(°) (a(0))21 dx (4C.14) 
where B(°) and P(°) denote quantities of order e°. This gives a positive 

contribution and vanishes only if 

ae(°) ------- = 0.(4C.15) 
ax 

By using the condition (4C.11), (4C.15) means 0) = 0. 

  The next significant contribution comes from the order el which is ex-

pressed by
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 5147(1) = 1 frB(°) x VV,(°)ap(°)         2IB(°)12 a( 

                                                                    2 

        + B(°){i(o)3 _ -----_(v)(0)           PO) a(} 
+FP(°) ((V • )(0))2 ] dxd9d(,(4C.16) 

where Q(°), 41)(°), v(o), p(s), and (V • e)(°) denote the quantity of order e°. This 

order is also positive definite. If we choose the perturbations as 

µ(°) = p(°)(x, u) (4C.17) 

                       (V • )(°) = 0,(4C.18) 
                 a v (°) µ(°) au(0) 

a( BZP'(°) 0(0' (4C.19) 

8W(1) vanishes again. It is noted that eqs.(4C.18) and (4C.19) leads the 

condition 
a,(1) aµ(°) _ 

            ax+auO.(4C.20) 

Differentiating (4C.20) by ( and using the conditions (4C.11) and (4C.17) 

we obtain 

a(1)  

a(= 0.(4C.21) 

  The lowest order of bW with nonzero contribution is the order E3 and is 

given by
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 6w(3) = 2f13(°)x0 {B•Vp + (B•Vo— A)e}(1) 

+ B(o) v —V VV•V(2P+B2)—(1)2        lCB2)—B2VV~2p/B V~} 
— p(°)a(°)(B • ve)(2) + e(i)a(o) {B • Vµ — e(A — B vow) 

        (1)2(VP .V(2P+B2)(0) -µ)( B'Va)(2)-µ(1)(eBVQ)(1)           B~~VV12) 
    + rp(°) ((V • )(1))2 ] dxdBd(.(4C.22) 

Since v is included only in the second term which contributes to positive, we 

choose v so that this term should vanish. In order to eliminate the positive 

last term, we can set 

                (V • )(1) = 0.(4C.23) 

By performing integration of the terms including the (-derivative and using 

and (4C.20) and (4C.21) , we find 

                                                      2 SW(3) = 1iVViz  {G— Aa(xe(1)) + B2                                       Q (1)      -
2-JLB2 axIVVIa 

        + 0(1)2 c2B2  (+ a—VaO+A)—VV • V(2P + B2)dx IVVIZ°ac)Blvvi2 

                                           (4C.24) 

where 

              G = (13" ~(µ(1)+ eel)) 

(B . V)(°)(p(1) + (7:4-(1)). (4C.25)
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Hereafter the superscript (0) have been dropped for simplicity. In the mag-

netic differential equation (4C.25) with single-valued  p(1) and (1), Newcomb's 

theorem requires that G must satisfy the condition, 

                          -
.fide  = 0.(4C.26) 

Then we minimize eq.(4C.24) under the constraint (4C.26). By the Lagrange 

multiplier method we obtain the relation 

                                    QB2 de  Go =A(1—   B2••B2)(xe(1))_ --------B2a— I°2I2Be(1) 
         IVVI2I~VI2BaxIVVI2 loV12B 

                                          (4C.27) 
to minimize SW(3). After substituting eq.(4C.27) to (4C.24), we integrate 

the first term in eq.(4C.24) by parts and apply Schwartz's inequality 

                       l2 
            1{ax(xe(1))} dx > 411((1))2dx, (4C.28) 

to the integral. Here we have imposed the condition (4C.11) on the upper 

and lower limit of the integral. By noting that the equilibrium quantities in 

eq.(4C.24) are the values at the surface labeled with Vo, SW(3) is expressed 

by
( 

28W(3) =r'J11(St                              (1))2dx                B2------ac(4C.29) 
                               IVVl2B 

where 

F_A2 (fd)2aB2  deB2 d.e2        4 V 1—A~~IQB 
_ a2B2 deB2  d.ede B2  di4C                                                                .30                               ()        fIVVI2BfVVl2B+~KBY MVPB
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 VP•V(2P+B2)  
K — — B2 +--------------------IVVlz 

(P')21VVI2 ivvI2(J' " PT„) 
B2 

         —IVVI2B • V (  vB — V9  
MVP. 

In eq.(4C.31) we have introduced current fluxes I and J as 

                J = VV x [I'VB — J'V(] 

P' = J' O' —

3XVV)

(4C.31)

(4C.32) 

(4C.33)

If we change the label on the flux surface from the flux volume V to the 

toroidal flux 0 and use the prime to mean the derivative with respect to 1 

in eqs.(4C.30) and (4C.31), we obtain 

 =1A di)2a                    1B2  di)2 1o-2 B2 di B2  di F4~V'3rB2)+0/12rIvol2B)V141v4)12BrIvol2B 
    Tcr2B2 di  B2  di Pi2 di  B2  diL       V'21V012B-rV,2Iv4)12B—~B2V'2B.71V'21v012B+1/16 

(4C.34) 

where 

    L = —AV' de17'62-------—de+V,i(I,„ + PT”di B2  di B Iv012 B)B r ivo12 B 
          fdi='VT" +(I'—0-414f"}-------(4C.35) Bz(4C.35)                     l 

Since positive SW(3) by eq.(4C.29) corresponds to stability against the lo-

calized mode in the neighborhood of V = Vo, the stability criterion is given 
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from (4C.29), 

 S2 - 176F         A2d22,de(P — a 0')W" B2 di4\B)+ VrBr 1v012 B 
deB2  de 

    + V'—p,V,21 d2B2  de           B.~P,V,~ivol2B()rB2Br mop B 
                                          aB2  de)2Q2B2  d2B2 de        +v,2(Jivol2 B—4,' 

                      ivoj2B I ivoi2 B> o. 

                                            (4C.36) 

By employing the (s, u, v) coordinates used in the BETA code and noting 

that 

              A = c',B = f Dpdudv,(4C.37) 
we obtain the expressions in (4.4) ti (4.8).
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Table 4-1 Asperator NP-4 Parameters

Average major radius,  aRo 

Limiter radius, a (cm) 

Number of periods, N 

Helical radius, arh (cm)

(cm) 152.4 

 9.5 

  8 

19.05

-2 .0

-2 .0

-2.0 0.0    2.0 

 Nv=rr

 X-w -2 .0 0.0  2.0 x--

Nv = 3rr/2

       -2.00 .02.0 -2.0 0.0 

Fig.4.1 Flux surfaces of Asperator NP-4 equilibrium with f _ 
obtained by the BETA code at four cross-sections. 
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Fig.4.2 Profiles of rotational transform of Asperator NP-4 equilibrium for 

several beta values obtained numerically (solid line) and analytic values at 
magnetic axis (dashed line).
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Fig.4.3 Motion of magnetic axis on  n = const. plane (see (4.10)) over one 
period for several beta values. The four black circles correspond to the four 

cross sections in Fig.4.1. X and Y axes indicate the principal normal and 

binormal directions of the helical magnetic axis, respectively.
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Fig.4.4 (a)Helical and (b) toroidal shift of magnetic axis. Solid lines 
correspond to numerical calculation; dashed lines correspond to analytic 

expressions.
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Fig.4.9 (a)Helical and (b) toroidal shift of magnetic axis. Solid lines 
correspond to numerical calculation for equilibria with A22 = —0.15 and 

A33 = 0.1; dashed lines correspond to analytic expressions for Asperator 

NP-4 equilibria with circular cross section.
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 Fig.4.10 Radial dependence of relative magnetic well for equilibria with 

A22 = —0.15 and A33 = 0.1 for several beta values.
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Fig.4.11 Mercier criterion of Asperator NP-4 at # = 0.0%, 1.0%, 2.1%, 
3.2% and 4.4%; (a) CZ, (b) 1 , (c) SlJ.B, (d) S2w and (e) SZP.s.•
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Fig.4.12 Mercier criterion of Heliotron E model with A = 11, A2 = 0.26, 
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Chapter 5

Reduced  MHD Equations for 

Resistive Modes in 

Stellarator/Heliotron 

Configurations

5.1 Introduction

  For MHD instabilities, we usually consider two types of normal modes 

from characteristics of the eigenfunction; one is the localized mode in the 

neighborhood of the mode rational surface ( or the resonant surface ) and 

the other is the global mode with a broad mode structure inside the plasma 

column. For the former case , we usually use the Mercier criterion. The 
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second minimization of the potential energy is implemented in the BETA 

code for the latter case. The BETA code can obtain three-dimensional  MHD 

equilibria, examine the Mercier criterion and calculate growth rates of global 

modes. Particularly, as discussed in Chapter 4, it is very useful for calculating 

the MHD equilibria and the stability of spatial axis stellarators which seem 

to be complicated compared to heliotron/torsatron configurations. 

   A different approach for the analysis of global modes employs the reduced 

MHD equations. As mentioned in Chapter 1, the reduced MHD approach 

has been proposed for the study of equilibrium and stability in stellara-

tor configurations[24,25], which is essentially equivalent to the stellarator 

expansion method[6]. The MHD equilibrium equation obtained from the 

reduced MHD equations is two dimensional , since only the averaged quan-

tities over the helical period along the toroidal direction are retained in the 

lowest order. Hence this method has the advantage of exploiting the numer-

ical techniques developed to study tokamak equilibrium and stability . The 

STEP code [10,11] is one of the numerical codes for studying the ideal MHD 

equilibrium and stability based on the stellarator expansion method
, which 

is composed of 'Equilibrium' , 'Mapping' and 'Stability' parts. It is useful 

to obtain an currentless finite beta equilibrium and to examine its stability 

against both global and localized modes in heliotron/torsatron configurations 

with a reasonable computation time . 

  It is crucial to study the resistive effects on the MHD stability in the 

heliotron configurations, because present heliotron plasmas have finite resis-

tivity in the sheared magnetic field belong to the magnetic hill . In this situa-

tion the resistivity excites new instabilities called resistive modes . The linear
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instabilities of the resistive interchange, tearing and rippling modes were 

studied intensively in the slab geometry by Furth, Kileen and  Rosenbluth 

[5], where they divided the plasma region into the inner resistive layer and 

the outer ideal region and found the growth rates by matching the solution in 

the inner region to that in the outer region asymptotically. Glasser, Greene 

and Johnson [49] extended this matching procedure to the axisymmetric 

toroidal configuration and obtained a stability condition called GGJ crite-

rion for the localized resistive interchange and tearing modes. Recently this 

criterion is extended to the stellarator configuration based on the stellarator 

expansion including higher order terms [15]. Analysis of the global resistive 

mode requires to solve the eigenvalue problem composed of the fourth order 

or sixth order differential equation, and usually the numerical calculation is 

inevitable. 

  In Heliotron E and Heliotron DR soft X ray measurement showed the 

behaviors similar to internal disruptions in tokamaks. In these configura-

tions global resistive interchange modes become a candidate to explain the 

macroscopic fluctuations, instead of tearing modes, since currentless finite 

beta plasmas were produced in these devices. Thus, we have developed a 

code (RESORM code) [50] to study the resistive linear stability for equilib-

ria obtained by using the 'Equilibrium' part of the STEP code[15], which 

makes the RESORM code include more realistic magnetic configurations of 

Heliotron E and Heliotron DR than those in the previous studies [6]. We 

employ the modified stellarator ordering including the higher order toroidal 

corrections, which is consistent with the modified version of the 'Equilib-

rium' part of the STEP code [15]. These corrections become important for 
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the small aspect ratio devices [54]. In the RESORM code, the growth rate 

and the eigenfunction are determined by following the time evolution of the 

perturbation as the initial value problem based on the reduced  MHD equa-

tions for stellarators. In the previous codes of the initial value problem type 

[51,52,53], the quasi-toroidal coordinates were used and only the lowest order 
toroidal corrections were kept or the cylindrical configuration was assumed 

for simplicity. Here we employ the flux coordinates with which it is straight-

forward to include toroidal effects from the 'Equilibrium' result of the STEP 

code. This is essentially the same technique as that in the FAR code devel-

oped at Oak Ridge National Laboratory[26]. It is remarked that this type 

of stability code has an advantage that both the resistive and ideal modes 

can be studied by selecting finite resistivity or zero resistivity as an input 

parameter. 

  In Sec.5.2, we explain the stellarator ordering including higher order cor-

rection. The stellarator ordering leads to three field equations, and, two of 

them have the form of the magnetic differential equation including different 

order terms. However, we obtain the reduced MHD equations composed of 

uniformly ordered quantities by applying the averaging method to the above 

three field equations as explained in Sec.5.3. We also discuss the equilibrium 

equation derived from the -reduced equations and the 'Equilibrium' part of 

the STEP code in Sec5.4. In Sec.5.5, we introduce the flux coordinates which 

is similar to the PEST coordinates, and linearize the reduced MHD equa-

tions. In Sec.5.6, the numerical scheme employed in the RESORM code 

is discussed. We explain the 'Stability' part of the STEP code briefly in 

Sec.5.7. In Sec.5.8, the approach using the reduced MHD equations and the 
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RESORM code are discussed.
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5.2 Ordering to derive the reduced MHD 

equations

  The reduced  MHD equations for heliotron/torsatron were originally de-

rived based on the stellarator ordering under the assumption of large aspect 

ratio[24]. Although we follow the same principle, we consider higher order 

terms of toroidal corrections than those in Ref.[24] in order to investigate 

heliotron/torsatron with a small aspect ratio similar to ATF. The magnetic 

field in the heliotron/torsatron configuration is assumed to be 

B = BoRoV(+ SBb + S2V x A.(5.1) 

Here S is the ratio between the stellarator field produced by the helical wind-

ings IBbl to the longitudinal magnetic field Bo and S « 1 is assumed. The 

small parameter S is assumed to be on the order of E1/2, where c = a/Ro is an 

inverse aspect ratio and a and Ro are the minor and major radii of the torus, 

respectively. This ordering S N E1/2 is essential for the stellarator expansion. 

Here (is the toroidal angle. 

  In the expression of (5.1) higher order terms OW) with n > 3 are ignored. 

The vacuum field Bb is written with the potential Ob, 

Bb = v05,(5.2) 

and Os satisfies the Laplace's equation 020b = 0. In (5.1), A denotes the 

vector potential describing a magnetic field generated by a plasma current. It 

should be noted that, R/Ro is not expanded with respect to S in (5.1), where 
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R =  Ro + x is the local major radius. However, we use the ordering that 

VR/Ro is the order 82, since the toroidal curvature term appears as 0(82) 

in the ordinary stellarator expansion. This is called the improved stellarator 

ordering. 

  We apply the ordering with respect to the small parameter S to the full 

MHD equations (2.1) N (2.7). Here the gradient operator is assumed by 

Of = V1f + (—af                                            (5.3) 

for a scalar function f except the magnetic potential 08. Also a/at is assumed 

to be 0(82) in order to eliminate the compressional Alfven waves because our 

interest is in the plasma dynamics governed by shear Alfven waves which has 

a slower time scale than the compressional Alfven waves. Since the pressure 

driven modes are expected to be the dominant instabilities in currentless 

plasmas, the ordering of the pressure, P, is assumed to be 

              P = 62Po + 63P1.(5.4) 

We note that this ordering corresponds to the high beta ordering of the 

reduced MHD equations in tokamaks or /3 ti O(62) [23]. 

  It is convenient to divide a vector quantity into the component along the 

(-direction and the perpendicular component to it. Then, the last term of 

eq.(5.1.) can be written by 

VxA=VCx VIA +BpV(, (5.5) 

where A is defined by 

             A = —R2A • V(. (5.6) 
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Here  27A is considered as the poloidal flux produced by the plasma current[55]. 

From Ampere's law (2.6), the current density J is given by 

               J = V1Bp x V( + 0*AV( (
5.7) 
                  0(62), 

where 

            0*A-R2V1•(R2A).(5.8) 
  Substituting eq.(5.1) into Faraday's law eq.(2.5), we obtain 

            -a~+ E = Vx,(5.9) 
where VX is introduced as the integral constant satisfying V x VX = 0 . 

Making the scalar product of (5.9) with B, the leading order terms become 

                               R2 

            atA+ R2E •V(=RoBoB VX.(5.10) 
Here we include the resistivity 77 in Ohm's law 

E+vxB=7-4,(5.11) 

where 77 is assumed constant and order of 82. This ordering shows that E • VC 

in eq.(5.10) is 0(64). We assume that both v1 and E1 are 0(62), where v1 

is given by the ExB drift velocity in the lowest order. From eq.(5.9), 

El x B = RoBoVX x VC(5.12) 

is obtained in the leading order. Then , we have 

                    R              v1 = (—)2                Vx V(,(5.13) 

                               o 
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where we have introduced the stream function  u- RoX/Bo. Thus, Faraday's 

law combined with Ohm's law is reduced to 

                     l2                   -(5 .14) 

Here the left hand side is 0(64) while the leading order of right hand side is 

53. The component of the magnetic field generated by helical windings on 

order of 8 is included in B • V operator . 

  Next we consider the ordering of the equation of continuity (2.1) and the 

adiabatic pressure equation (2.3). In order to eliminate the compressional 

Alfven wave in the toroidal geometry we employ the following incompress-

ibility condition 

              (R2)= 0.(5.15) 
If we assume that the mass density pm is constant in time and 0(8°), eq.(2.1) 

leads to the relation, 

pmR2 = pmoRo,(5.16) 

where pmo is the density at the magnetic axis R = Ro. Substituting eq.(5.15) 

into eq.(2.3), we have the lowest order equation with 0(64) written by 

              aa
t°-+vl•VP0=0. (5.17) 

  Finally, we will derive vorticity equation from the momentum equation 

(2.2). If we assume that the mass density, pm, is 0(8°), the equation in the 

leading order of 82 is given by 

          R°B°(5 .18)              v1 (Po + R2Bp) = 0, 
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which shows the balance between the  plasma, pressure and the variation of 

the toroidal magnetic field through the diamagnetic effect. Making the scalar 

products between eq.(2.2) and B, in the lowest order we have 

pm°RoB0dtl = —B • VP,(5.19) 
where 

vll = v V(.(5.20) 

Here, using Faraday's law eq.(2.5), Ohm's law eq.(5.11) and eq.(5.17), we 

can prove 

              dtBVPti0(66).(5.21) 

It implies that the leading order of vii can be considered to be 64 which is 

higher than that of v1 given by eq.(5.13). This is consistent with that, if we 

consider v11 = B • VP = 0 or an equilibrium at t = 0, the time evolution of 

v11 is very slow. 

  Instead of using the perpendicular component of the momentum equation 

directly, we consider the quasi-neutrality condition, 

V•J=0.(5.22) 

From eq.(2.2), we obtain the plasma current 

            J1 (Pm+\= —B V p) x B+o-B, (5.23) 
where 

         _=0A(5.24) 
                      B2 RoBo.
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The last expression of a is obtained according to the ordering. Substituting 

eq.(5.23) into eq.(5.22), we obtain the equation including both the order of 

 63 and 64; 

Prno a1\2. 
      ROBO at+v1•VJV1u=B•Do.+OBBPxB(5.25) 
where we have used eq.(5.16). Here, it is noted that the leading order of the 

right hand side of eq.(5.25) is also OW). The last term of the right hand 

side is explicitly written by 

OB2 BPxB _ 83I2 R2 V(-1isax p1Po •LRoo(/d 

                            3 

           + 64 RBo~11V 0aI2—RB
o~1RxV1Po 

                        2 

       + 2R2B2vRab)xp1Po•(v5 -4RBoa6V() 

          

0-----0 

       +V(Ra6)xV1P1•}], (5.26) 
where ( is the unit vector in the (-direction. Thus, by ordering with respect 

to the parameter 6, we have the following three equations 

                      (—R\2a~r~O*A—RB B. Vet(5.27) 
               2 2.     RoBoat+v1.OVittBPxB=B•Va(5.28) 
aPo 

at-1- 
                  AT • VP0 =0,(5.29) 

which include the higher order toroidal corrections than the usual large as-

pect ratio limit. These equations are not closed because four unknown quan-

tities A, u, Po, and P1 exist and the orders of the all terms are not unified 
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in eq.(5.27) and eq.(5.28). 

averaging method to the a

 This problem will be resolved by applying the 

bove equations as explained in the next section.
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5.3 Averaging method for the reduced MHD 

    equations 

  As explained in Sec.5.2, the reduced equations (5.27) and (5.28) include 

terms with different orders with respect to  S. The reason is because the 

helical magnetic field given by Vcba contains a rapid variation in ( with a 

scale length 2irRo/N. We have assumed that we can separate the rapid 

oscillating scale from the slowly varying scale Z. the ordering 

            ~NS2a(5.30) 
Since we are interested in the global motion of the plasma which has a larger 

wave length than the scale of (, we eliminate the rapid motion associated with 

the (coordinate by averaging the reduced equations in the (-direction. Here 

we define the average for one field period of the (-direction in the following 

manner 
                   _ N2a/N               f—27 Ni '27r d(. (5.31) 

We also introduce the indefinite integral as 

(f)=Jtfd(+C,(5.32) 

where the constant of integration C determined by 

(f) = 0.(5.33) 

  Here we note that eqs. (5.27) and (5.28) have the same form as magnetic 

differential equation 

B•VF=G, (5.34) 
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                  R uc                             o 

which means that F0 does not contain the rapid oscillation and 

Fo=Fo(R,(,Z)• 

  The next order equation of eq.(5.34) is given by 

                RoBo aFl 

              RZ 8c                          +E1,5p1Fo =Gl. 

In order to obtain F1, we integrate eq.(5.39) with respect to 4, 

R2              F1=—RoBo[(B6)•V1Fo_(G1)] • 
  For the order of 64, eq.(5.34) is expressed by 

           R0 Bo aFo 
             _R2 ac                  + (v( x VIA)•V1F0 

                           RoBo aF2                  +Bo•VF1+RZ
a~= G2. 
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where F and G are assumed to be expanded in power of b as 

                F = 62F0+ 63F1 + 84F2 

                                           (5.35) 
             G =63G1+64G2, 

and we note that they depend on both scale(and (, 

                 F =F(R,(,(,Z) 

               G = G(R,(,(,Z).(5.36) 

Here (R,(, Z) is the cylindrical coordinates. The reason why we assume no 

0(62) term in G in (5.35) is that the RHS of (5.27) or (5.28) has such a 

property. 

  Then, we have the lowest order equation of eq.(5.34) with 0(82) written 

by 

RoBo aF° 

                                           (5.37)

(5.38)

(5.39)

(5.40)

(5.41)



When we integrate eq.(5.41) over one period in the (-direction, the forth 

term of the left hand side drops and we have 

        RoBo aFo 

         R2 a~+(V(xVLA)•V±Fo+Bo•VF1=G2.(5.42) 

Here we have assumed that A does not depend upon (. From eq.(5.40), we 

 obt  ain 

B5•VF1 = -----1 B5 • V[R2 {(G1) — (B5) •V±Fo}] 
RoBo 

1----- [B5 V(R2(G
1)) —2VIFo x V[R3(B6) x B8 • (] • V<-, 

RoBo2 

                                           (5.43) 

where we have used V x (B5) = V • (B5) = 0. Substituting eq.(5.43) into 

eq.(5.42) we have the magnetic differential equation (5.34) averaged over one 

period which can be written by 

                       1  
             BVFo = G2—R

0B0B5•0(R2(G1)),(5.44) 

where the averaged magnetic differential operator is given by 

RoBoa 
B•0=R2 a(—VITx0(•VI_(5.45) 

with the averaged poloidal flux, 

                                3 

              IF = A +R (B5) x B5 • (.(5.46) 
2RoBo 

Here the bar on ( has been dropped for simplicity. Equations (5.45) and 

(5.46) imply that the operator B • V is on the order of 62. When we go back 

to eqs.(5.27) and (5.28), they can be made to have only terms unified by the 

order of 64 with the averaged magnetic differential operator given by (5.45). 
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   From eq.(5.44), the averaged equation of (5.27) is immediately obtained 

as 

                          /\2 

            aA-ri0*A=—\RolB•Vu.(5.47) 
In this case, there is no term corresponding to  G1. 

   In applying the averaged equation (5.44) to eq.(5.28), G1 and G2 are found 

from eq.(5.26) and the left hand side of eq.(5.28). In order to determine P1 

in eq.(5.26), we also apply eq.(5.40) to the magnetic differential equation 

B • VP = 0 obtained from eq.(5.21). Then, we find the expression, 

                         R2 
              Pi = —------(Bo) • VLPo•(5.48) 

RoBo 

With eq.(5.48) we can obtain G1 and G2, in the following averaged form; 

  G2 = B0(Ro+R3IBZI2/x p1Po •                  R80

1J 
             DB0 

        Pm° (a 
            R3+V1•VJ01u 

    1+Ol 

         +2R3B8[01P0 x V1IV106I2 — B5 x V1.035•V±P0)] • 

                                           (5.49) 

  12R3  

     RoBoBa•V (R(G1))RB[138 x 01(V108 • VA)33 
                             00 

                      + V ill ± SI2 x V±P0] •(5.50) 

Substituting (5.49) and (5.50) into (5.44), we have the final expression 

   _41------I2= (R2                    +Box p1Po • 0C 
            Bo

Pm0 a 

RoBo at+ v1.0 J01u. (5.51) 
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            at \R°) B•Vu+r7Jc 
           dU 

          p„zo dt—B • VJS+RoV1SZxp1P•p( 
           dP _ 

          dt0' 

where 

B • V =R0RB0— VITx VC•VI 

d a 

           dt = at + v1 v 
U = viu 

JJ = A*A 

                 `I' = A+T v 

            Tv = R-----3 BaRICBazdC 
R°Bo 

                   R2 R4IBal2              52 
Re, + Ro Be, 

             (ITR\2               v1= 01u x V(. 

Here the bar on B • V and the subscript 0 of the pressure

  From the above procedures, we have obtained the reduced MHD equations 

for the resistive modes in stellarator/heliotron and we summarize them in the 

following way; 

0A7

(5.52) 

(5.53) 

(5.54)

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62)



and P. By comparing them with the reduced  MHD equations for stellarators 

derived by Strauss[24], our three-field equations keep higher order toroidal 

corrections through the factor R/Ro and the operator 0*. If we put ch = 0 

or the stellarator field is removed, the reduced MHD equations for high beta 

tokamaks including higher order toroidal corrections are obtained. If we put 

77 = 0, we can use these three-field equations for studying the ideal pressure-

driven modes. A significant limitation for the three-field equation comes from 

the averaging method. Short wave length modes comparable to or shorter 

than the pitch length of the stellarator field are not treated by them, since 

description of such modes is questionable by a kind of course graining or the 

averaging procedure.
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5.4 Averaged 

torsatron

equilibrium of heliotron/

  From the reduced  MHD equations, we can derive an equation describing 

a static equilibrium by putting a/at = u = 0 in egs.(5.52)N(5.54). If we as-

sume the averaged equilibrium is axisymmetric and use P = P(I), eq.(5.53) 

gives the Grad-Shafranov type equation written by 

              0*A= —RodP1l+g('F),(5.64) 
where g(111) is the constant of integration. Equation (5.64) coincides with 

that derived by Nakamura et al.[15] based on the stellarator expansion tech-

nique for the MHD equilibrium equation (2.9) N (2.11) including higher order 

toroidal corrections. Except the higher order toroidal corrections in A* and 

W, eq.(5.64) agrees with the equation originally derived by Greene and John-

son [6]. The function, g(T), can be determined by the currentless constraint, 

which is the most appropriate assumption in stellarators. From eq.(5.7), this 

constraint for the toroidal net current It is expressed by 

           ItI J • V(dV=fR2----dV = O. (5.65) 
By using eq.(5.64) on each magnetic surface, g(I) must satisfy the condition, 

g(T) = R2dP«SZ>>,(5.66) 
where we have used the flux surface average defined by 

                    de
/d2 (5.67) 
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  For a given  P(*) and g(T), eq.(5.64) is solved by the 'Equilibrium' part 

of the STEP code with the given data for the vacuum magnetic field, Bs. 

We obtain Tv and Ci defined by (5.60) and (5.61) by performing the aver-

aging procedure in the toroidal direction with vacuum magnetic fields by 

the Biot-Savart law as the input data for the STEP code, instead of us-

ing the Bessel function model corresponding to the straight cylindrical ap-

proximation, which was used in the previous calculations[6]. In this code 
the rectangular coordinates (R, Z) are employed, and the averaged equilib-

rium for stellarator/heliotron configuration is obtained numerically under the 

free boundary condition where the vacuum region exists outside the toroidal 

plasma. The plasma position is decided by assuming a limiter position in the 

STEP code. Its position is usually chosen so that it coincides with the out-

ermost vacuum flux surface. After the equilibrium is obtained by the STEP 

code, the stability problem can be studied by using eq.(5.52) N (5.54). 

  The rotational transform and the specific volume characterize the MHD 

equilibrium state. We need the expression of the averaged toroidal flux 0 to 

calculate the rotational transform and the specific volume. 0 is defined by 

0 =27 f B • V(dV.(5.68) 
Substituting (5.63) into (5.68) and using the relation 

             dV=dWdsRd((5.69) I
OwI 

where ds is the line element in the poloidal direction on the = const. 

surface, we obtain the averaged toroidal flux by 

                                 ds = R0B0 f dT .~ R~~~YI(5.70) 
                       150



This expression is essentially same as that for a tokamak. We note that 

eq.(5.68) is valid in the lowest order or in the limit of cylindrical approxi-

mation in the stellarator/heliotron configuration. To improve the accuracy, 

we use (5.1) for eq.(5.68) and average over one period in the (-direction 

 again[15]. Then, the more correct expression of 0 is given by 

= Ftds RoBo J d4R~VWI'(5.71) 

where 
              R2------ 

                    Ft=1--R
02113512                   RoIBBo                 5l2—(5.72) 

which includes higher order corrections. If we assume Ft = 1, we recover 

eq.(5.70). From (5.71) the rotational transform is given by 

               = d(21rW)= 2ir Ftds y1 ( )d0 RoBoCJRIVWI(5.73) 
The specific volume is obtained from eqs.(5.69) and (5.73) by 

V'(0) d0= 2zrtIVRds   T1.(5.74)
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5.5 Reduced MHD equations in the flux 

coordinates ( p,  8, ( )

  Since the reduced MHD equations (5.52) and (5.53) derived in Sec.5.4 

have the form of the magnetic differential equation, it is crucial to calculate 

the differential operator along the magnetic field line, B • V, accurately. 

The expression for the operator depends on the coordinate system. In MHD 

equilibrium the coordinates where magnetic field lines are seen straight make 

the expression reasonably simple. Thus we introduce the flux coordinates 

(T eq, 9, 0, where W eq denotes the averaged equilibrium poloidal flux obtained 

by eq.(5.59) and (is the toroidal angle. And the poloidal angle 6 is chosen 

so that the lines of force become straight in (9, () plane with Weq = const. 

Then the magnetic field at MHD equilibrium is expressed by[56] 

           B = V( x VTeq+------(1VT,x V9, (5.75)                         (T
eq) 

and differential operator B • V is given by 

             B • V = DF a +1 a,(5.76)                     ae a( 

where DE is the Jacobian in the flux coordinates given by 

DF1 = V'egxve - V( 

                  = lVJegllosello(l'(5.77) 

Here the operator V, is defined by[14] 

~,-0—V WeqV TeqV(5.78) lo4
egl2 
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which means the gradient operator along the magnetic surface labeled by the 

poloidal flux  Teq. We have assumed in eq.(5.77) that the averaged equilib-

rium under the stellarator expansion is axisymmetric , that is, 

Vklieg • V( = 0, V8 • V( = 0.(5 .79) 

From the analogy of the large aspect ratio limit case, the Jacobian (5.77) is 
considered to have the form 

                   DF =H (T eq,B, C)  
e (Teq)(5.80) 

By using eq.(5.77) with (5.80), we obtain 

dBR 
=-

                   ds HIVWegI.(5.81) 

The requirement that 0 increases by 27r during one poloidal circuit with the 

rotational transform eq.(5.73) gives the expression of H , 

                         H =FtR0B0. 
R2(5.82) 

Thus, the Jacobian DF is given by 

R2 
                DF =R

OB0e (Ifeq)Ft,(5.83) 

which includes the higher order correction, Ft. The coordinates (Teq, B, C) 
having the Jacobian eq.(5.83) with Ft = 1 are called the PEST coordinates[13]. 

  In order to write the basic equations in the flux coordinates with forms 

similar to those in the cylindrical geometry, we introduce p instead of eq as 

the normalized radial coordinate with 0 < p < 1 which is defined by 

             =~eq—Trami~2(5.84)                        — C~max—41min 
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where  Jmin and 4 max denote the values of Tel. at the magnetic axis and 

at the outermost surface, respectively. Then, the Jacobian of this (p, 9, 0 

coordinates, DR, is written as 

                                     R2               DR = (Vp x VO •0-1 = R0E2PFt.(5.85) 
Here we define the normalized minor radius a as 

                  [2(Wmax_ Wmin)l1/2(5.86)         aB
o 

In the (p, 9, 0 coordinates, the reduced MHD equations (5.52) N (5.54) are 

written in the following way, 

         aA _au(Hi1 au1 aT auJJ 
        at—a(—tFtappaBp aB ap+S(5.87) 

aUCaU 1 au lay au_(Rl2 aJS  at+tFtappaBpaBapl=`Ro)a((5.88) 
         awlaJ, 1oaJS I3o 1aP laQ—tFtap p aB p aB ap+2E2tt (as/                           app aB p aB Op /I J 

            aP aP 1 au 1 aP au 

            ~+tFt(appaBpa8a=0.(5.89) 
Here we have normalized the quantities as follows:

--- a2BoW , Jc — 

(Bo Jc               u —(a2'Ro/THp)u, U—>(Ro/THP)U 

P Po P,t -* THpt 

where Po is the equilibrium pressure at the magnetic 

poloidal Alfven time defined by 

R0 pmo  
THP = B. 

                                       0 
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axis

(5.90)

and  THp is the

(5.91)



S =  TR/Tgp in eq.(5.87) is the magnetic Reynolds number and TR = a2177 is 

the resistive diffusion time, and /3 = 2P0/Bo in (5.88) is the beta value at 

the magnetic axis. 

  When Ft = 1 is assumed in egs.(5.87)N(5.89) to keep the lowest order 

quantity, we also use (R/R0)2 = 1 in eq.(5.88). Since we are interested 

in the linear modes and the beta limit determined by them, we linearize 

egs.(5.87)'(5.89);

aA au au JJ                      —4-
S       at=-•-• ~-aes 

au _aJ, aJS_(aA 1 aJJeq 1 aAaJseq 
      ata(—t aez ap p ae p ae ap 

              /3as2eq 1 ap 1 as2eq aP             +
2E2tap p ae p ae ap 

OP _dPeq l au 
       at—' dp p ae' 

where the subscript 'eq' is attached to equilibrium quantities. 

and (5.58) U and JJ are written in the (p, 9, C) coordinates as 

        J~=DR1[i apDR(gnPapA-~ gPBa61 J   
               a DR aA9,aA} 1 + aeR2 V ap+g ae IJ 

_1aDR gP°au+gpeau           U         DR{ap[(apae/ J               aau96,49011+ae [DRVap+gaelIJ1' 
with the metric elements 

gPP = IVpI2, gPB = Vp • VO, g99 = IV9I2.

)
(5.92)

(5.93) 

(5.94)

From eqs.(5.57)

(5.95)

(5.96)

(5.97)
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5.6 Numerical scheme of the  RESORM code

  To solve the linearized reduced MHD equations (5.92) N (5.94) as an ini-

tial value problem for both the ideal and resistive modes, we have developed 

a linear resistive stability code. 

   We use the Fourier series with respect to angle variables B and C. Since 

the up-down symmetry is maintained in the usual stellarator/heliotron, the 

perturbations are expanded as 

A(p, 8, 0 = E An,,n(p) cos(m8 — n~), 
m=-00 
                                       +00 

u(p, B, 0 =E u„tn(p) sin(mB — n(), (5.98) 
m=-00 

+00 

P(p, 8, S) => Pmn(p) cos(mO — ne). 
m=-00 

These choice are also related to the spatial parity conservation in eqs. (5.92) 
ti (5.94). Here it is noted that m and n are poloidal and toroidal mode 

number, respectively. Since there is no coupling between the different toroidal 

modes in our approximation, only one toroidal mode number , n, is assigned 

in (5.98). The equilibrium quantities and the metrics are expanded as 

+00 

SZeq(p, 8) = E Slegm,(p) cos(mO), 
m=0(5 .99)                                        +00 

JCeq(p, 8) = E JCe(p) cos(mB), 
m=0
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 +oo 

gPP(p, 8) = E g (p) cos(m0), 
m=0 
+oo 

gPe(p, 8) _ E gfe(p) sin(m8),(5.100) 
m=0 
+00 

gee(p, 8) = i gme(p) cos(me), 
m=0 

 with respect to the poloidal angle 8. It should be noted that, in the present 

 stellarator expansion approximation, the lowest order equilibrium quantities 

 do not depend on C. In this case, the linearized reduced equations (5.92) 

 (5.94) for each n are written by 

              aatn= (n—mt )umn +mn(5.101) 
aUmn   

 _ 

    at--(n-77'mM n 
     t/~  +2-~m (aAfl J~e41+NOapin ieq~)—Z (in aap+22pin aap~) l 

 J 

  t
p;=(ylaAinNOaPinaJSeg7~0asiev  —2apJCeq~+2E2 ap~eq;)+i(Am ap+2E2Ptnap 

        m 

                                             (5.102)                  DP.
n =—tPmumn----dpeq•(5.103) 

 In eqs.(5.101) and (5.102), the first term of the right hand side shows the 

 mode resonance at t = n/m. 

    We use the finite difference representation in the radial coordinate p. 

 We assume the conducting wall at p = 1, which corresponds to the fixed 

 boundary condition. Since the resistive instabilities have properties of in-

 ternal mode, this boundary condition is appropriate for the resistive MHD 

 stability. Since v1 • Vp = B - Vp = 0 at this boundary, they may lead to 

umn = Amn = Pmn = 0(5.104) 
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at p  = 1. At the magnetic axis, p = 0, all quantities must behave regularly. 

Then we impose the conditions 

      umn=Amn= Pin„=0 form 0 and n 0 

   aumn aAmn_aPncn(5.105)                          =0 for m=0 and n 0 
apapap 

  As for the numerical method of the time evolution, we employ the two-

step algorithm. For the equation with the following form 

= g,(5.106) 

the first and the second steps are given by 

ft+ot/2 = ft + of gt 2(5 .107) 
ft+ot = ft + Atgt+ot12, 

where gt+°t/2 can be calculated by using f t+°t/2. The perturbations Amn, 

umn and Pmn for each n must have the same time-dependence as et for the 

linear eigenmode. Thus, the growth rate y can be obtained from 

y = 21n EK =20t1n EM,(5.108) 
where EK and EM are the perturbed kinetic and magnetic energies, respec-

tively, given by 

               /~2            EK2v21dV2JI~luI2R4-IT 
                                        2R                                           (5.109) EM1 f B1dV2f~V±AI24dV. 

                                                 0 In the code we calculate the growth rate at each time step. We follow time 

evolution of the perturbation until y converges to an exponential growth rate. 
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  When these numerical procedures are applied to the linearized reduced 

equations (5.101), (5.102) and (5.103), it is essential to consider the coupling 

between different poloidal modes through the toroidal geometry where the 

equilibrium quantities have 0-dependence. In the numerical calculations the 

geometrical coupling makes the matrix size large in obtaining  umn from the 

Poisson equation V u = U. Since we approximate the p-derivatives with 

the central differences, the matrix which we must invert to solve the Pois-

son equation becomes block-tridiagonal with N x N blocks, where N is the 

number of radial grid points. Each block size is M x M with M being the 

number of total poloidal modes included in the calculation. We apply the 

recurrence formula for the blocks in the matrix inversion procedure. If we 

use u; and U3 at the j-th radial grid to represent M poloidal components 

and denote three blocks which operate to u3_1i u3, u;+1, as L3, C;, and R3, 

the Poisson equation can be describes as 

L3u3_1+C3u;+R3u;+1=U3. (5.110) 

Then the recurrence formula gives the solution u; as follows, 

              U3 =A~1(S;-B3u;+1) for j N                                           (5.111) 
          u;=A-1S;for j=N, 

where

A3 = Cj 

B3 = R3 

S3-= U;

— L3(A3_1)-1B3-1 

—1_3(A3_1)-1S3-1

 for  j 1 (5.112)
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 A; = C; 

B; = R; 

S;=U;

 for  j  =  1. (5.113)

The code based on the above numerical model is called RESORM (Resistive 

Stability based on Reduced MHD). The flow chart of this code is shown in 

Fig.5.1.
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5.7 Eigenvalue 

stability

problem for ideal MHD

  To investigate the ideal linear  MHD stability, there are two ways. One is 

to use the initial value problem approach by assuming zero resistivity, and the 

other is based on the energy principle. Here the latter method is explained 

briefly for the introduction of the 'Stability' part of the STEP code[11]. 

  When the time dependence of the perturbation is given by e oc eryt, the 

Lagrangian for the linearized MHD equations is written by 

L = y2K — SW,(5.114) 

with the kinetic energy of the perturbation 

               K 2fdV pm 1412,(5.115) 

and the perturbed potential energy 

SW = 2 fdV[I  Q 12 +J x4 •Q+4 •VPV•4+FP(v•4 )2]+fdV I SB 12 . 
                                           (5.116) 

Here the perturbed magnetic field in the plasma is given by 

Q = V x (4 x B).(5.117) 

The integrals fp dV and f„ dV mean the volume integral in the plasma region 

and that in the vacuum region, respectively, and SB denotes the perturbed 

magnetic field in the vacuum region. Since we assume no surface current 
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at the plasma-vacuum interface, the surface term does not appear in the 

potential energy. To find an extremum of the Lagrangian, L, corresponds 

to obtaining the eigenvalue and the associated eigenfunction of the linear 

modes. This principle is implemented in the stability analysis part of the 

STEP code. By applying the stellarator ordering to the potential energy 

SW, we can eliminate definitely stable modes such as the fast magnetosonic 

wave and the acoustic wave. As a result, we have the form of the Lagrangian , 

         L = 
      'Y2  f

pmI)I2dV                   
 _ 1(2)t(°)•         2fdV[IQz1I+J11xc1(2) (°)Qi(2)+S11•VP(2)C(°)1v"(2) 

              P + fdV18B(2) 12 .(5.118) 
                 z Here the displacement vector in the plasma region is 

              E) = x VIA,(5.119) 

                           1 and the perturbed magnetic field is 

Q(12) = (x V E(5.120) 

E-(—Roa~+ V( x VWeq - 0) A,(5.121) 
where A corresponds to the stream function in the reduced MHD equations . 

The quantities with suffix (0) belong to 0(8°) and these with suffix (2) belong 

to 0(82). Therefore potential energy corresponds to OW) . In the vacuum 

region, 

8B(2) = x Va,(5.122) 

where a is obtained from the equation, 

                V x 6B(2) = 0,(5.123) 
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with the boundary conditions, 

             a = E at the plasma-vacuum boundary 

                                          (5.124) 
            a = 0 at the conducting wall 

  In the 'Stability' part of the STEP code, the PEST coordinate system 

 (Weq, B, () with the Jacobian(5.83) explained in Sec.5.4 is employed. A map-

ping calculation is carried out to construct this coordinate system from the 

equilibrium quantities in the rectangular coordinates obtained in the 'Equi-

librium' part of the STEP code. The same mapping is used in the initial value 

problem approach for studying the linear MHD stability with the RESORM 

code. For the calculation of eigenvalue and eigenfunction in the 'Stability' 

part of the STEP code,, the Galerkin method is employed in the 41,g -direction 

and the Fourier expansion in the B and ( direction. Then the growth rate is 

obtained by solving the eigenvalue problem of the matrix form and the posi-

tive eigenvalues correspond to instabilities. This numerical scheme to obtain 

eigenvalues in the matrix form has an advantage to find all eigenvalues prin-

cipally for a given equilibrium. However, this procedure cannot be applied to 

the resistive stability problem straightforwardly, because it is based on the 

property that the energy principle is hermitian.
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5.8 Conclusion

  We have derived the reduced  MHD equations to describe dynamics of 

stellarator plasmas based on the stellarator ordering. Without the expansion 

for R/R0, we can include higher order toroidal corrections with small changes 

of the reduced equations in the large aspect ratio limit. This is called the 

improved stellarator expansion. In the derivation of the three-field equations 

(5.52) N (5.54) the essential procedure is the averaging of the short wave 

length components over the helical period in the (-direction. This means 

that we consider average effects of rapidly oscillating quantities on the long 

wave length phenomena. 

  By using 0/at = it=  0 in the reduced MHD equations and assuming that 

the equilibrium is axisymmetric in the lowest order, the Grad-Shafranov type 

equation for the static equilibrium (5.64) is obtained. This equation can be 

solved by the `Equilibrium' part of the STEP code. 

  Based on the rotational transform depending on the flux function given 

by (5.73), we have introduced the flux coordinates (p, 9, (), where a line of 

force on the flux surface is expressed as a straight line with a gradient of e to 

the (-direction. Using the linearized reduced MHD equations (5.92) N (5.94) 

in this flux coordinates, we have developed the RESORM code to study the 

linear stability for both the ideal and resistive modes. By employing the 

flux coordinates, the B • V operator can be calculated accurately. Numerical 

procedures in the RESORM code were explained briefly. In the 0 and ( 

direction Fourier expansions are used and in the p direction a finite difference 
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approximation is used. Since our concern is in the linear stability, we can 

assign the toroidal mode number, n, in the code. Mode coupling between 

the different poloidal modes appears from the toroidal geometry where the 

equilibrium quantities depend on the 0 coordinate. 

  In order to compare the ideal stability result by the RESORM code to 

that by other independent code, we choose the  `Stability' part of the STEP 

code using the eigenvalue problem approach based on the energy principle.
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Start

Input the equilibrium quantities.

Calculate the Fourier coefficients of equilibrium quantities

 and the matrices L3, C„  and  R,.

Give Initial guesses for Amn, umn, and Pmn.

First step of time development for A;,+°t/2,utt/2and pt/2• •

Second step of time development for Atm°t, u;n°t and Pn°t.

Calculate kinetic and magnetic energies and growth rate of them.

Has the growth rate converged ?

YES

NO

Output the results.

i
Stop

Fig.5.1 Flow chart of the RESORM code.
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Chapter 6 

 MHD Beta Limit Study of 

Heliotron DR

6.1 Introduction 

  Recently finite beta currentless plasmas were produced in Heliotron DR 

by the second harmonic electron cyclotron resonance heating (ECRH) at 

the central magnetic field of B0 ^• 0.5T. It has an .e = 2 and M = 15 

helical winding, where M is a period of helical magnetic field. The major 

radius is 90cm and the average minor radius, a, is 7.8cm by the line tracing 

calculation. It is reported that low frequency fluctuations appear in the 

soft X ray measurement and the poloidal magnetic field measurement at 

0 ^- 0.5% [57]. They look similar to those observed in the Heliotron E high 

beta experiment[2]. It is an interesting subject whether the same type of 
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pressure-driven instabilities plays a role in Heliotron DR as in Heliotron E 

or not. We apply the RESORM code explained in Chapter 5 to Heliotron 

DR for studying the resistive mode behaviors and the relation to the ideal 

pressure-driven mode [50]. For comparison we also use the STEP code for 

the ideal instabilities. 

   In Sec.6.2, we discuss properties of currentless equilibrium in Heliotron 

DR by using the 'Equilibrium' part of the STEP code. Particularly we pay 

attention to effects of finite beta on the rotational transform , the shift of 

the magnetic axis and the magnetic well. By using the RESORM code we 

study the ideal  MHD stability of the equilibria obtained by the STEP code 

in Sec.6.3. The 'Stability' part of the STEP code is also used for the check 

and'comparison with the RESORM code results . In Sec.6.4, the results of 

the resistive MHD stability of the Heliotron DR plasma by the RESORM 

code are presented. By comparing the numerical results with the analytic 

expressions in the cylindrical geometry by Johnson, Greene and Coppi [58], 
S-dependence of the mode and the relation between the resistive and ideal 

modes are intensively discussed . In Sec.6.5, the effects of the additional 

vertical field producing the magnetic axis shift in the vacuum flux surfaces 

on both the resistive and the ideal instabilities are investigated . Conclusions 

are given in Sec.6.6.
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6.2 Currentless equilibria in Heliotron DR

  Heliotron DR device belongs to the  £ = 2 helical system of which magnetic 

coil parameters are shown in Table 6.1[59]. By applying the Biot-Savart law 

to the Heliotron DR device with an approximation of filamentary current 

we can calculate the vacuum magnetic field and the flux surfaces are shown 

in Fig.6.1. This case is called the standard configuration of Heliotron DR. 

In order to obtain the currentless equilibrium of Heliotron DR plasma, we 

solve eq.(5.64) by applying the 'Equilibrium' part of the STEP code. As 

mentioned in Chapter 5, Tv and Sl are obtained from the vacuum magnetic 

fields with the parameters in Table 6.1. Because Heliotron DR has an aspect 

ratio of 13, we use the expression for CZ in the large aspect ratio limit 

                              =2x-F-Bbz                                              (6.1) R
oBe, 

  In the STEP code the plasma position is also controlled by the external 

vertical magnetic field, B1. For the standard configuration, we use B1 to 

adjust the center of the finite beta plasma to the central position of the 

outermost vacuum flux surface. 

  Relying on the experimental data that the toroidal plasma current is 

negligibly small for the finite beta plasma, we calculate MHD equilibria un-

der the currentless constraint rather than the FCT condition. We use the 

following pressure profile as the standard one, 

p(`peq) = P0(1 — eq)2,(6.2)
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which seems to be consistent with that estimated from the diamagnetic mea-

surements and the soft X ray radiation  profiles[59]. 

  Figure 6.2 shows the profiles of the pressure P(feq), and the rotational 

transform t (Weq) versus average radius, r/a, where a denotes the average 

minor radius, for several beta values at the magnetic axis, j . For No = 0.0% 

(vacuum case), the rotational transform varies from t (0) = 0.8 at the axis 
to t (a) = 1.84 at the edge. As beta increases, t (0) increases, while t (a) 

decreases. This is the general tendency of rotational transform profile for 

the finite beta currentless plasmas in .2 = 2 heliotrons/torsatrons as shown 

in Chapter 3. However, the decrease of t (a) is very small in Heliotron DR as 

shown in Fig.6.2. Each case includes the t = 1 surface which is susceptible 

to the instability with .n/m = 1, particularly m = 1 and n = 1, where m and 

n are poloidal and toroidal mode number, respectively. 

  The Shafranov shift of the magnetic axis, A/a, is shown in Fig.6.3 for 

the pressure profile of (6.2). For the comparison, we also calculated the 

currentless equilibrium of Heliotron E plasma by using the STEP code with 

the same pressure profile as eq.(6.2). Since the vacuum rotational transform 

of Heliotron DR at the axis is larger than that of Heliotron E, which is about 

0.5 from the line tracing of the vacuum field [41], the shift of the magnetic 

axis in Heliotron DR is smaller than that of Heliotron E for the same pressure 

profile and the same beta value. The larger aspect ratio of Heliotron DR may 

enhance the difference. This axis shift is directly related to formation of the 

magnetic well. Figure 6.4 shows the magnetic well region defined by V" < 0 

in the plasma column and the position of the t = 1 surface with white circles 

in the (00, r/a) plane, where V'((1)) denotes the specific volume defined by 
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eq.(5.74). While the magnetic hill spreads over the whole plasma at the low 

beta case, the region of the magnetic well expands from the central region 

as the beta increases. However, the smallness of the axis shift in Heliotron 

DR prevents the formation of the substantial well until  ,Qo  ? 1%. It is noted 

that the c = 1 surface does not belong to the magnetic well region. This fact 

suggest that a global instability with m = 1 and n = 1 resonant at e = 1 

may appear.
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6.3 Ideal pressure-driven modes

   In the currentless equilibria of Heliotron DR plasma, it is considered that 

the pressure driven interchange mode is the most crucial instability, because 

they have the wide magnetic hill region. First, we study the stability against 

the ideal global modes by using the RESORM code. For the toroidal mode 

number n, we choose from n = 1 to n  = 3, and for each n poloidal modes 

with n — 3 < m < n + 3 are included in the stability calculation . It is 

found that the modes resonant at the t = 1 surface with the low mode 

numbers (m, n) = (1,1), (2,2) and (3,3) become unstable at the lowest beta 

value, although the RESORM and the STEP codes cannot treat high n 

modes principally. Figure 6.5 shows the growth rate of these modes as a 

function of For For comparison, the growth rates of the (1,1) mode with 
the STEP code are plotted and they show reasonable agreement with the 

results by the RESORM code. The reason why the growth rates given by the 

RESORM code are a little smaller than those given by the STEP code may be 

considered that the higher order toroidal corrections in the reduced equations 

(5.92),(5.94) which are not included in the STEP code have a stabilizing 
effect on the pressure-driven modes . In both codes radial mesh number of 

192 is assigned in the calculation for the (1,1) mode. For the other modes 
we used 96 meshes, because the growth rates calculated with the RESORM 

code are almost independent of the radial mesh number for 1.5% ,< Po N 3% 
in the Heliotron DR case from the convergence study. Profiles of the (1,1) 
mode eigenfunction obtained by the RESORM code

, u1, are shown at two
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beta values in Fig.6.6. In Fig.6.5, the beta limit of the standard Heliotron 

DR configuration is  ,Qo 1.2%. Although the growth rate becomes larger 

for the higher n mode, the growth rates of the three modes shown in Fig .6.5 

become marginal at the almost same critical beta value. This limit does not 

change even for the free boundary stability calculation[57] because the mode 

structure becomes strongly localized in the neighborhood of the singular 

surface at the beta value just above the critical beta, which is not affected 

by the free boundary condition. This tendency is also seen in Fig.6.6. 

  It is generally true that the eigenfunction of the interchange mode is local-

ized at the singular surface. However, when two singular surfaces appear for 

a single helicity, the mode localization depends on the negative contribution 

to the potential energy at each singular surface. In the currentless equilib-

rium, the central rotational transform increases according to the increase of 

9 and two t = 1 surfaces can be realized in Heliotron DR and Heliotron 

E. For the latter case there is an example of (m, n)=(1,1) mode localized 

near the magnetic axis[60]. For Heliotron DR, the beta value at which two 

t = 1 surfaces appear is higher than that in Heliotron E and it is beyond our 

interesting regime of beta value. 

  The beta limit for the localized mode in the ideal MHD stability is given 

by the Mercier criterion, which is derived from the potential energy for ideal 

pressure-driven instability in the limit that the mode is highly localized at 

the rational surface as discussed in Sec.4.C. The explicit expression consistent 

with the stellarator ordering is written in the form[15],
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where the bracket (f) means the flux surface average and prime denotes the 

ill-derivative. Here DI < 0 corresponds to the stable region. Figure 6.7 shows 

that the Mercier unstable region expands in the plasma column as the beta 

value increases. In the region near the magnetic axis, the Mercier criterion 

becomes unstable for ,30 N 0.3% because of the weakness of the stabilizing 

effect due to the magnetic well in the standard Heliotron DR configuration 

as shown in Fig.6.4. On the other hand the stable region near the edge is 

attributed to the magnetic shear and the small pressure gradient. At the 

t = 1 surface whose position is shown by white circles in Fig.6.7 DI becomes 

positive (or unstable) at Po ̂  0.7% which is lower than the critical beta value 

determined by the global modes ( see Fig.6.5 ). In other words, the Mercier 

criterion gives the more severe limit for the beta value than the low n mode 

stability. This difference comes from the numerical resolution associated with 

finite mesh size[61]. For 0.7% < 130 < 1.2%, there may be an unstable mode 

with strongly localized at the resonant surface which cannot be obtained by 

the RESORM or the STEP codes. However, the localized modes with very 

small growth rates may not disturb the plasma significantly in the ideal MHD 

model.
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6.4 Resistive pressure-driven mode

  We study resistive modes in the Heliotron DR configuration by using the 

initial value problem code, RESORM code. In the resistive  MHD stability 

calculation, magnetic Reynolds number S is needed as the input parameter. 

In Heliotron DR, plasma production and heating are possible only by ECRH. 

For such an ECRH produced currentless plasma, we typically obtained the 

electron temperature Te ^-' 300eV and the mean particle density n 2 x 

1019m-3, at the central magnetic field Bo = 0.5T, and hence, S N 105. 

  Figure 6.8 shows the beta dependence of the growth rates of global re-

sistive modes with toroidal mode numbers n = 1, n = 2, and n = 3 for 

S = 105. The poloidal modes with n — 3 < m < n + 3 are also included in 

the RESORM code for each n. The same in the ideal case, the modes with 

(1,1), (2,2), and (3,3) resonant at the c = 1 surface are dominant in Fig.6.8. 

The growth rates of the n = 1 mode for S = 103, 104, 105, and 106 are shown 

in Fig.6.9 and those of the n = 1 ideal mode are plotted for comparison. For 

all S values, the unstable modes with significant growth rates exist at the 

lower beta value than the ideal limit, ,Qo = 1.2%. It is true that there is no 

unstable mode at No = 0.0%; however, the resistive unstable modes survive 

until ,Qo N 0% within the incompressible MHD model. In S = 106 case, where 

the resistivity is relatively small, the growth rates of the n = 1 resistive mode 

are a little larger than those of the ideal n = 1 mode for #o > 1.2% and they 

decrease gradually for #o < 1.2%. On the other hand, beta dependence for 

S = 103, is quite different from the ideal case. The growth rates of resistive
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modes are much larger than those of ideal modes. 

   In the cylindrical geometry, we can estimate the growth rate of the resis-

tive interchange mode analytically by following the analysis given by John-

son, Greene and Coppi (JGC) [58]. The resistive mode with the mode num-

ber  (m, n) is assumed localized within the resistive layer around the singular 

surface, r = rs, where, 

t(rs) = 
m,(6.4) 

and in the outer region far from the singular surface the resistivity can be 

neglected. Since the thickness of the resistive layer Ir — rs I is approximated 

by the resistive skin depth, we can employ the ordering, 

Ir — r,I , ry , 771/3 ti E(6.5) 

where e is the small ordering parameter. Noting that the equilibrium quan-

tities depend on only r, and assuming that Amn, un,,n and P. are the same 

order and a/ar , E-1, the reduced equations (5.1O1)—(5.1O3) are written by 

1 d2Amn           'YAmn = —m(r — rs)tumn +—(6.6) 
S dr2 

        d2umn, d2Amn2nDsumn  
        rydr2= m(r—r,)td r2—mt --------(6.7) ry 

Here ' mn has been eliminated by substituting eq.(5.103) into eq.(5.102), and 

do 
B•V(r — rs) d

r—,(6.8) 
r=rg 

and 

            D_ QodlleqdPeg (6.9) 
2E2r320 dr dr 

are used.
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are used. 

   By considering the dimension we can replace the stream function  umn by 
the displacement e as 

umn = —'Ye•(6 .10) 

With the normalizations 

                       (m2t 12 1/3 = 
SQ (6.11) 

               Ir — rsl = (Smt')-1/3X(6.12) 

                                        m2t'2 -1/3 
Amn = 

S 0, (6.13) 

we obtain the eigenvalue equations from eqs.(6.6) and (6.7), 

0" = Q(0 — X e)(6.14) 

Q2e" = —Dse — X/n,(6.15) 

which are the same equations derived by JGC [58], where primes denote the 
derivative with respect to X . 

  When the Fourier transform defined by 

e(k) = 21 fL(x)p(_i,(6.16) 
is used, the eigenfunction of eqs. (6.14) and(6.15) has the form of series 

expansion with respect to k, 

-(k) = kN exp (_Q112k2) ak23 (6.17) 
         3=o 
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Then the eigenvalue 

                                 Ds 
 Q312 -------------------------------------------------(6.18)                                2'            N+2n+2+[4Nn+(2n+2)]12 

is obtained, where 

               N =1+1(1 — 4D41/2.(6.19) 

Equation (6.18) implies that  Q312 becomes positive when D,, is positive, and 

this means that the instability is driven by the pressure gradient in resistive 

plasma. Therefore, this mode is called resistive interchange mode or g mode. 

From eq.(6.11), we find that the growth rate is proportional to 5-1/3. Based 

on the ordering of eq.(6.5) JGC showed that the eigenfunction e(X) of the g 

mode in the real space decays rapidly in the large X region. The eigenvalue 

is determined by the matching condition of the resistive layer solution in the 

large X region with the asymptotic solution from the outer region to the 

singular surface. For the resistive interchange mode, there are two types of 

parity with respect to the singular surface, 'EVEN' mode and 'ODD' mode. 

Here the former means that e is even and b is odd, the latter is that e is odd 

and V is even. It is remarked that the unstable mode produces the magnetic 

island in the neighborhood of r = rs when % is even. By extending this 

analysis Glasser, Greene and Johnson [49] derived the GGJ criterion for the 

resistive interchange and tearing modes. 

  To compare the unstable modes obtained by the RESORM code with 

the analytic results, we examine the S-dependence of the growth rates and 

the radial mode structure. Fig.6.10 shows the S-dependence of the (1,1) 

mode at the several beta values. In the case of /3 = 0.5%, where the ideal 
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mode is completely stable, the growth rates are proportional to S-113 clearly. 

This mode is considered as the pure resistive interchange mode. As the beta 

increases, the deviation from the  S-1/3 dependence becomes large. It is 

considered that the ideal instability affects the resistive interchange mode 

growth rate. Deviations already appear at ,Qo = 0.7% and 1.0%, where 

there is no unstable ideal global mode by both the RESORM and the STEP 

codes. As discussed in Sec.6.3, these beta values belong to the marginal 

unstable region with very small growth rates. Therefore, the properties of 

the low n resistive mode are changed by the ideal instability effect in the 

Mercier unstable region (/90 ? 0.7% ) even if it is difficult to obtain the ideal 

interchange instability by the numerical calculation. In Fig.6.11, we show the 

eigenfunctions umi (p) and Ami (p) of the unstable n = 1 mode at S = 105 and 

130 = 2.0%. The uii profile localized around the t = 1 surface has the even 

mode structure, and the A11 profile shows the odd mode structure. They 

coincide with the 'EVEN' mode in the resistive interchange mode theory 

by JGC. There is no change of these mode structures from io = 0.5% to 

Po = 3%. The similar mode structures are also obtained in the case of n = 2 

and n = 3.
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6.5 Effects of magnetic axis shift on ideal 

and resistive MHD stabilities of 

Heliotron DR

  It is known that formation of magnetic well or hill depends on the position 

of magnetic axis in heliotron/torsatron configurations as discussed in Chapter 

3 [40,42]. By controlling magnitude of vertical magnetic field, the magnetic 

axis position changes easily in the vacuum magnetic configuration. On the 

other hand, in finite beta plasmas, the Shafranov shift occurs due to the 

 Pfirsch-Schluter current. It makes outward shift of the plasma column which 

is favorable for deepening the magnetic well. 

  In order to obtain an equilibrium with the additional vertical field, the 

'Equilibrium' part of the STEP code is used to solve the equation
, 

.A*(A — Aav) _ —RodSZ+ G,(6.20) 
where 2lFAav denotes the poloidal flux generated by the additional vertical 

field. Then, the vertical field Bavez is written by 

V ±Aav x 0( = Bavez.(6.21) 

By integrating (6.21) with the boundary condition, Aav(R = R0) = 0,
2 
                   Aav =(Ra2R°)Bav (6.22) 

is obtained. The magnitude of the vertical field B ay is used as the input 

parameter in the STEP code. 
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  Figure 6.12 shows the changes of rotational transform profile due to the 

magnetic axis shift in the vacuum configuration. It is seen that the new 

resonant surface of  t = 4/5 appears at the axis and the t = 1 surface moves 

to the outer region with inward shift of A,, _ —0.79cm, where Av denotes 

the shift of the magnetic axis at ,3 = 0 from the position of the standard 

configuration. While, in the outward shift case of Ov = +0.73cm, the t = 1 

surface moves to the inner region. Figure 6.13 shows the change of the 

rotational transform due to finite beta effects. In the case of A, _ —0.79cm, 

the change of t (0) is smaller than that in the standard configuration with 

Ov = 0, while it is larger for the outward shift case of A, = +0.73cm. Figure 

6.14 shows the magnetic well (or hill) region for the cases of O, = —0.79cm 

and A, = +0.73cm in the Po, /a) plane. By comparing with Fig.6.4 for the 

standard case, it is seen that the magnetic well region expands for Ov > 0, 

while it shrinks for Ov < 0. 

  STEP code results for the ideal linear stability under the free boundary 

condition are given in Fig.6.15 with the same pressure profile P = Po(1—TeQ)2 

as in eq.(6.2) . Here our concern is in the most unstable mode for various 

Lvs. The t = 4/5 surface appeared for Ov — 0.39cm destabilizes the n = 4 

mode strongly and the beta limit decreases by the increase of the inward shift. 

On the other hand, for A, > 0 the m = 1 and n = 1 mode resonant at the 

 = 1 surface is the dominant mode; however, there is no stabilizing tendency 

with the increase of Ay > 0, because the t = 1 surface moves inward and the 

pressure gradient becomes larger than that in the standard case at a fixed 

beta value under the same pressure profile. 

  Figure 6.16 shows growth rates of resistive mode as a function of central 
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beta value for several  Ovs at S = 105. There is a destabilizing tendency 

for Ov = —0.79cm and a stabilizing tendency for Dv = +0.73cm, which is 

consistent with the expectation from the MHD theory. By the increase of 

the outward shift, the growth rate of the m = 1 and n = 1 mode becomes 

smaller than that in the standard case or &, = 0. However, the difference 

of the growth rates between A, = 0 and ZS" = +0.73cm is very small for 

)30 < floe given in Fig.6.15. The n = 4 mode resonant at t = 4/5 is the new 

strong instability and it may enhance magnetic fluctuations in experiments 

with the inward shift of the magnetic axis. In this case, at )30 1.5% the 

dominant mode (m, n) is (5,4), however, the dominant mode changes to (4,4) 

at ,io ? 2%. By comparing this result with Fig.6.14(a), it is found that the 

resistive interchange mode resonant at the t = 4/5 surface is stabilized by 

the magnetic well as fib increases, and the mode resonant at t = 1 surface in 

the outer region becomes dominant. This transition also can be seen in the 

corresponding eigenfunctions in Fig.6.17.
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6.6 Conclusion

  We have investigated both the ideal and resistive instabilities in Heliotron 

DR plasmas by using the STEP code and the RESORM code. 

  First, we calculated the vacuum magnetic field from the coil configuration 

of Heliotron DR based on the Biot-Savart law, and then, averaged it in the 

toroidal direction to obtain the vacuum poloidal flux,  Tv, and the curvature 

1. By using the 'Equilibrium' part of the STEP code, in which Wv and CI 

are used as input parameters, we obtained the currentless equilibrium of the 

standard case for the pressure profile of P = P0(1 — ‘Ifeq)2 which describes 

reasonably the experimental pressure profile. The rotational transform varies 

from t (0) = 0.8 at the magnetic axis to t (a) = 1.84 at the outermost surface 

in the vacuum case. However, t (0) increases and t (a) decreases as beta 

increases under the constraint of currentless equilibrium. Since t (0) at ,9 = 0 

and the aspect ratio are larger than those of Heliotron E, the Shafranov shift 

of the magnetic axis is smaller than that of Heliotron E. If we compare the 

Shafranov shift of Heliotron E by the STEP code with that by the BETA 

code shown in Fig.3.3, it is seen that the BETA code gives a little smaller 

Shafranov shift. This difference comes from the assumption for the Heliotron 

E configuration in the BETA code, where we carefully treated the inside 

region including the t = 1 surface. It can be understandable from the analytic 

expression of Shafranov shift. 

  In the Heliotron DR equilibrium of the standard configuration, since the 

t = 1 surface always exists even for finite beta plasmas, the mode resonant
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there becomes the most unstable one. We have examined the ideal stability 

of the several currentless equilibria in the standard configuration by using 

both the STEP code and the RESORM code with zero resistivity. They 

show reasonable agreement each other for the growth rate of the same ideal 

interchange mode. The critical beta value against the ideal global modes is 

 )60  - 1.2%. However, the Mercier criterion indicates the lower beta limit, 

,30 = 0.7%, than that by the global modes. It is considered that the equi-

librium is marginally unstable in the region of 0.7% N )30 1.2% where the 

global modes are practically stable and the Mercier mode is unstable. 

  We have studied the resistive instability by applying the RESORM code 

to the equilibria in Heliotron DR. The resistive modes resonant at the t = 1 

surface survive with substantial growth rates even for i30 < 1.2%. The S-1/3 

dependence of the resistive mode growth rate is clearly seen in the region 

where the Mercier mode is stable. However, in the Mercier unstable region 

of )30 > 0.7% the resistive mode is modified by the ideal instability effect 

significantly. 

  The effect of the magnetic axis shift in the vacuum configuration on the 

MHD stability against the pressure-driven mode was also studied for He-

liotron DR. From the numerical results, both inward and outward axis shift 

are destabilizing in the Heliotron DR due to the behaviors of the two reso-

nant surfaces t = 1 and t = 4/5. In the inward shift case, the new resonant 
surface with t = 4/5 appears in the hill region and it destabilizes strongly 

both the ideal and resistive modes . In the outward shift case, the effect of 

the movement of the t = 1 surface to the region with the larger pressure 

gradient destabilizes the ideal mode and degrades the beta limit, although 
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the magnetic well region appears at the lower beta value than that in the 

standard case. The degradation of stability in the case of outward shift is a 

particular case. Usually a stabilizing tendency is seen in Heliotron E and He-

liotron H as discussed in Chapter 3. The resistive modes in the outward shift 

case, however, are stabilized by the magnetic well a little, and the growth 

rates are smaller than those in the standard case. 

  It is noted that Galerkin method that is used in the STEP code is similar 

to the usual finite element approximation and the eigenvalue depends on the 

mesh size. Therefore the convergence check is important to judge whether 

the instability is true one or numerical one. Usually radial mesh number 

192 is sufficient enough to decide the stability by the STEP  code[60]. We 

also evaluated the mesh size dependence of the growth rate in the initial 

value code, RESORM code, by using N =96, 144, and 192, where N is 

the radial grid number. In the Heliotron DR configuration, the differences 

of the growth rates among the three cases are less than 1% in both the 

ideal and the resistive modes. On the other hand, in the application of the 

RESORM code to Heliotron E we found that the y2 is proportional to the 

(1/N)2 and converges to a small growth rate. This different behavior of 

the convergence seems to come from the radial mode structure because this 

(1/N)2 dependence is obtained for the ideal mode fairly localized near the 
resonant surface.
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Table 6-1 Coil parameters of Heliotron DR 

Helical windingVertical windings

Major radius 

Minor radius 

Number of poles 

Number of pitch 

Number of turns

 (R0) 

(ah) 

(i) 

(M) 

(nh)

 90cm 

13.5cm 

   2 

  15 

   6

Radius 

Height
(Rz,) 
(J1 )

 138cm 

±41.4cm

C=0

 It 3 1•
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•

 C  4  M
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 4 M
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.
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Fig.6.1 Vacuum flux surfaces at different cross-sections by line tracing 

calculation. The average minor radius, a, is 7.8cm.
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Fig.6.2 Pressure profile for ,Qo = 
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Fig.6.3 Magnetic axis position versus  ,Qo; white circles show shift of 

magnetic axis in Heliotron DR, black circles show shift of magnetic axis in 

Heliotron E, by the STEP code.
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Fig.6.4 Boundary between the magnetic well and the magnetic hill is 

shown in Po, r/(2) plane. Shaded region belongs to the magnetic well. t = 1 
position is also shown with white circles.
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and (3,3) obtained by the RESORM code and black circles correspond to 
the (1,1) mode obtained by the STEP code.
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Fig.6.16 Growth rate of the unstable resistive modes corresponding to 

Fig.6.15 versus  /0 for A,, = —0.79cm(dot and dashed line), Av = 0(solid 
line) and Ov = +0.73 cm(dotted line). For ,Q0 =2% and 3%, the most 
unstable mode is m = 4 and n = 4 when Ov = —0.79cm, while for i30 < 2%, 
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Chapter 7

Comparison between 

Equilibrium and Stability 

Theory and High Beta 

Experiments in Heliotron 

Devices

7.1 Introduction

  Recently, experiments in both Heliotron E and Heliotron DR devices have 

been progressed and reliable data of  MHD activities particularly for sawtooth 

type oscillations and internal disruptions have been accumulated. Here we 

                       201



use 'internal disruption' for the large collapse in the soft X ray and density 

measurements without recovery of the electron temperature and the density. 

In this chapter, therefore, we compare the theoretical results in Chapters 3 

and 6 with these experimental results and study how the theoretical models 

for the equilibrium and stability work. 

  In Heliotron E, the high-beta experiment was started in 1983 and the 

 MHD activities were investigated for the two types of pressure profiles [2]. 

One was a fairly peaked profile where sawtooth oscillations and internal dis-

ruptions were observed. This type of experiment was called S mode. The 

other was a flat profile where soft X ray fluctuations were very weak and 

the highest beta value of ,Q N 2% was obtained. We called this experiment 

Q mode. During 1985 and 1986 we tried the high beta experiment again in 
Heliotron E with increase of NBI heating power from 2MW to 4MW [62]. We 

could reproduce the previous results and confirm that for a peaked or a highly 

peaked pressure profile the internal disruption is inevitable for #o 2.0%, 

while for flat pressure profile the highest average beta value was realized. 

However, ,Q ' 2% was not improved clearly. In recent two years, the effects 

of the axis shift by the additional vertical field on the MHD activities have 

been studied, and variations of soft X ray and density fluctuations with the 

axis shifts have been measured [63]. In Sec.7.2, we compare these experimen-

tal data of the Heliotron E with the numerical results obtained by using the 

BETA code in Chapter 3. 

  In the Heliotron DR experiment, finite beta plasma with < 0.5% were 

produced by ECRH with the 28GHz and 200kW gyrotron. The MHD in-

stabilities limit the maximum beta value at 13 0.5% for various magnetic 
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field intensities by using the second harmonic and the third harmonic ECRH 

[57,59,64]. The effects of the additional vertical field on the  beta limit have 
been intensively studied [65]. We also try to explore a theoretical model to 

explain these MHD activities observed in Heliotron DR from the point of 

view of the ideal and resistive modes in Sec.7.3. 

  Conclusion is given in Sec.7.4.
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7.2 Comparison 

experiments

of 

in

theoretical 

Heliotron E

results  with

  The high beta experiments were carried out in Heliotron E device at the 

central magnetic field, Bo = 0.94T [2]. By controlling gas puffing, two types 

of currentless finite beta plasma were generated. One was the type which had 

a broad pressure profile by the strong gas puffing. In this case, a maximum 

value of ,Q 2% was achieved associated with low level MHD fluctuations. 

This operation was called Q mode. One example with a fairly broad pressure 

profile is shown in Fig.7.1. When the gas puffing was stopped during the 

high power NBI heating phase, the other type of the plasma was realized. In 

this operation, the plasma had a fairly peaked pressure profile and sawtooth 

oscillations which were terminated by the internal disruption were observed 

as shown in Fig.7.2, which enhanced the energy loss significantly and degrade 

the critical beta value. Although the central beta value #0 before the internal 

disruption in this case was comparable or higher than that of Q mode, the 

average beta value was always smaller than the maximum average beta value 

in the Q mode. From the soft X ray measurement, it was found that the mode 

structure triggering the internal disruption was estimated as the m = 1 mode 

(see Fig.7.3). This discharge was called S mode. By plotting the beta value 

versus the amplitude of the internal disruption, we may estimate the beta 

limit as shown in Fig.7.4. 

  We have examined the ideal stability of Heliotron E currentless equilib-
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rium with the pressure profile of P  = P0(1 — 0.6r2)2 for the inner tube model 

and obtained the critical beta value of ,3 = 2% for the m = 1 and n = 1 

mode in Chapter 3. This pressure profile may correspond to the S mode 

rather than Q mode. Therefore, this result seems to be optimistic compared 

to the experimental data. Other calculations based on the STEP code by 

Rewoldt et al. [60], also showed that the beta limit of the n = 1 mode in 

Heliotron E is around ,@o 4% or /3 ti 2% for the similar pressure profile, 

which is also higher than the experimental values. Hence the origin of the 

MHD activity producing the internal disruption is expected to be resistive 

modes. In the analysis for the Heliotron DR plasma in Chapter 6, we showed 

that the resistive modes have significant growth rates in the stable region to 

the ideal modes when S ^ 105 N 106. Recently, we also studied the resistive 

instability with n = 1 in the Heliotron E plasma by using the RESORM code 

for the pressure profile of P = P0(1 — leq)2. The growth rates are shown 

in Fig.7.5 where the effects of the vertical magnetic field are also included 

[66]. Here S = 106 is used, which is estimated from Bo = 0.94T, Te 400eV 
and ne 5 x 1019m-3 obtained in the experiments. As shown in this figure, 

the resistive instability with the substantial growth rate exists for ,Qo < 4% 

where the n = 1 ideal mode is stable. This supports that the low n resistive 

instability is a candidate to explain the MHD activities in the standard He-

liotron E currentless plasmas. Nonlinear calculation of the m = 1 and n = 1 

resistive interchange mode by Wakatani et al., [52] demonstrated behaviors 

similar to the internal disruption driven by this mode. When the pressure 

profile becomes broad, which corresponds to the Q mode, growth rate of the 

resistive instability is decreased for ,Q < 2% by the decrease of the pressure 
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gradient at  t = 1 surface. 

  We have shown in Chapter 3 that the outward shift of the magnetic axis 

can suppress the ideal MHD instability with the m = 1 and n = 1 mode 

and produce the second stability region. According to this result, the effects 

of the additional vertical field on MHD stability have been investigated in 

Heliotron E [63] and Heliotron DR[65] experiments. In the inward shift case 

of Heliotron E, the sawtooth oscillations and the internal disruption were 

observed at lower beta value than the standard case as shown in Fig.7.6. This 

tendency is explained by the theoretical result. However, the critical beta 

value obtained by the BETA code is still larger than the experimental data. 

This difference also may be attributed to the resistive effect on the instability. 

In Fig.7.5, growth rates of the n = 1 mode are shown for both outward and 

inward axis shift case, which correspond to the cases of O, = 2cm and 

Ov = —2cm, respectively, in Fig.7.6. In the inward axis shift case, the 

significant growth rate is obtained at fib 1% in the inward shift case. This 

agrees with that MHD activities are observed experimentally for /30 ? 1%. 

Figure 7.5 also shows that the m = 2 and n = 1 mode resonant at t = 0.5 

is dominant for Po 2% ( see black squares ); however, we did not pay 

attention to this mode in the stability analysis using the BETA code as 

explained in Chapter 3. This m = 2 and n = 1 mode is already observed 

experimentally, which shows the inversion radius of the sawtooth oscillation 

in the neighborhood of t = 0.5 surface. 

  In the outward axis shift case of Heliotron E, the growth rate of the n = 1 

resistive mode decreases and an improved plasma behaviors are expected. 

However, because of the unexpected degradation of the transport or the 
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increase of the direct loss of high energy particles, the beta value did not 

increase according to the theoretical prediction. Thus, in order to increase 

the beta stability limit in the outward shift case, we must invent to keep 

the good confinement during the high power NBI heating, which is a future 

experimental subject beyond the  MHD equilibrium and stability.
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7.3 Comparison of the 

stability results with 

liotron DR

ideal and resistive 

experiments in He-

  First we discuss the beta limit for the standard configuration.  Heliotron 

DR results give ,Q ^.' 0.5% as the maximum average beta value when the 

magnitude of magnetic field is varied from 0.2T to 0.55T as shown in Fig.7.7 

[57]. Magnetic fluctuations are always observed when the beta value becomes 

close to ,Q ̂ • 0.5%. Many cases show that the sawtooth oscillations and the 

internal disruption occur at this average beta value, whose characteristics 

are very similar to those observed in Heliotron E. They are triggered by the 

m = 1 and n = 1 mode resonant at the c = 1 surface by considering the 

time evolution of radial profiles of the soft X ray, which is obtained during 

the sawtooth oscillations in Heliotron DR as shown in Fig.7.8 [64]. The peak 

of the soft X ray fluctuation amplitude exists around the c = 1 surface and 

displacement of the region within the c = 1 surface estimated from the soft 

X ray profile is consistent with the m = 1 mode. These results of the mode 

structure are also supported by the eigenmode shown in Fig.6.11. 

  Ideal MHD stability calculations of low n pressure-driven modes by the 

STEP code give the results that the maximum central beta value is ,60 ̂ -' 1.2% 

and the corresponding average beta value is 0 ^, 0.5% as shown in Fig.6.5. 

Resistive MHD calculations by the RESORM code show that the resistive 

pressure-driven modes or resistive interchange modes are unstable even for 
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 60 < 1.2% with substantial growth rates as shown in Fig.6.8. Experimentally 

it is not clear at what beta value the magnetic fluctuations appear . However, 

it is not unreasonable that they appear at the lower beta value than the ideal 

MHD beta limit by the STEP code and the beta value saturates at ,(i 2 0.5% 

by the degradation of the confinement with the increase of the magnetic 

fluctuation amplitude or by the sawtooth oscillations and the internal dis-

ruption. This scenario for the saturation of the beta limit seems consistent 

with the Heliotron DR results. If it is true, the dominant instability may be 

the resistive one. However, since the ideal MHD beta limit is very low, it is 

not clear which type of mode is important, the resistive one or the ideal one, 

in the Heliotron DR experiment. It should be noted that, in Heliotron E, 

the MHD activities appear at ,Qo ? 2% for peaked pressure profiles, which is 

clearly lower than that corresponding to the ideal MHD stability limit. 

  When the vertical magnetic field was changed to shift the magnetic axis 

inward or outward in the vacuum configuration, Heliotron DR results showed 

that the beta limit decreased in both cases as shown in Fig.7.9 [65]. This 

could be explained from the STEP code and the RESORM code results. In 

the inward shift case, the new resonant surface at t = 4/5 appears in the 

region of significant pressure gradients and weak shear. Then the pressure-

driven mode with n = 4 gives the lower beta limit than that by the n = 1 

mode in the standard configuration. On the other hand, in the outward shift 

case, the t = 1 surface moves to the region with the larger pressure gradient 

than that of the standard configuration at the fixed beta value under the 

same pressure profile. Then the beta limit determined by the m = 1 and 

n = 1 ideal mode decreases to ,Qo 0.9%. Although the magnetic well region 
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expands in the central region by the outward shift of the magnetic axis, the 

 t = 1 surface still belongs to the magnetic hill region and the growth rates 

of the n = 1 resistive mode in the outward case are almost the same as those 

in the standard case for /30 1% ( see Fig.6.16 ). Hence, the resistive modes 

may be dominant in the outward shift case. These results are not general in 

the heliotron configurations including Heliotron E and Heliotron H. Usually 

the magnetic well produced by the outward magnetic shift gives favorable 

effects on the  MHD stability theoretically.
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7.4 Conclusion

  We have compared the theoretical results in Chapters 3 and 6 with the 

experimental data in  Heliotron E and DR to study validity of the ideal and 

the resistive models in heliotron/torsatron configurations. 

  In the Heliotron E high beta experiments, the sawtooth oscillations with 

(m, n) = (1, 1) dominantly and the internal disruption were observed in the S 
mode regime with the peaked pressure profiles. The numerical calculation of 

the ideal stability for the currentless equilibrium with such a peaked pressure 

profile by the BETA code gave the higher beta limit for the m = 1 and 

n = 1 mode than the experimental data. According to the resistive stability 

calculation with the RESORM code, the resistive modes become unstable 

with substantial growth rates in the stable region against the ideal modes. 

Therefore, we conclude that the resistive mode is crucial in explaining the 

Heliotron E experimental data. 

  In the inward axis shift case by the additional vertical field, the beta 

limit degrades experimentally both in Heliotron E and Heliotron DR. This 

tendency coincides with the theoretical result in Chapter 3, however, the 

critical beta value, ,6 , by the BETA code is still higher than the experimental 

data. The resistive stability calculation with the RESORM code shows that 

the m = 1 and n = 1 mode becomes strongly unstable for /3 < 0, 1.3%, 

however, the m = 2 and n = 1 mode becomes dominant for /3 ti 19o/3 0.6%. 

It coincides with the fact that the m = 2 and n = 1 mode was observed in 

the Heliotron E experiments. 
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  In the outward shift case, the improvement of the experimental beta value 

is not significant in contrast to the theoretical expectation. This is related 

to the unexpected degradation of the transport or increase of the direct loss. 

  In the standard configuration of Heliotron DR, the maximum beta value 

obtained experimentally,  j , 0.5%, is almost the same as the theoretical 

critical value by the ideal low n stability analysis for the pressure profile close 

to the experimental one ( see Chapter 6 ). However, the MHD fluctuations 

seems to be seen at lower beta values than the ideal stability limit. The 

resistive stability calculation in Chapter 6 shows that there exist the n = 1 

resistive modes with substantial growth rates in the stable region against the 

ideal modes. Therefore, the resistive modes seem to be more important than 

the ideal ones; however, the experimental beta values saturate at around the 

ideal beta limit. 

  For both the outward and inward axis shifts the beta limit decreases 

experimentally, which is somewhat different from the Heliotron E case. The 

theoretical results in Chapter 6 may explain these results . In the inward 

shift case, the E = 4/5 resonant surface appears in the weak shear region 

with significant pressure gradient, and the m = 5 and n = 4 mode resonant 

at this surface becomes more unstable than the m = 1 and n = 1 mode . In 

the outward shift case, the t = 1 surface moves to the larger pressure gradient 

region than that in the standard case under the same pressure profile . Hence 

the m = 1 and n = 1 mode becomes more unstable and the beta limit 

decreases. 

  In summary, the ideal MHD model is useful to give a crude estimation 

at which beta value global MHD instabilities appear . The resistive MHD 
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model is crucial to investigate the physics of the observed macroscopic  MHD 

phenomena such as sawtooth like oscillation and internal disruption.
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Fig.7.1 Profiles for a discharge at the threshold for the onset of MHD 

activity ()60 ̂ • 2.1%, /3 ̂  1% ) in Heliotron E; (a) temperature and density 
profiles (charge-exchange and single-shot Thomson scattering 
measurement) (b) /3(e) profiles derived from fits to experimental data. In 
(b) the T, profile was used for the solid curve, while the assumption 
TT(r) = Te(r) was used for the dotted curve [2].
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disruption [2].
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Fig.7.5 Growth rates of n  = 1 resistive mode in Heliotron E obtained by 

RESORM code. Circles show the growth rates for the standard case , 
squares for the inward axis shift case of 2cm and triangles for the outward 

axis shift case of 2cm. Except black squares denoting that m = 2 and n = 1 
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plasma heating are also shown [57].

219



5 

4 

3 

2 

 1 

0 

80 

60 

40 

20 

0

 c 

d

# 12883 (a)

 fie(X1013/cm3)

Wp(J)-

-HE H
,

HX
tiftSX (ch .8)

I/ V V V

J `'",\

0 2 4

time

6 8 

 (msec )

10

2

(b)

40-_ 

x 20_ 4rar,,(\ el\ • 
d 0 t t i t I I I I I 1 I 1  

      1 2 3 4 5 6 7 8 9101112 
S X channel 

-E—major axis

Fig.7.8 Discharge with sawtooth oscillations in Heliotron DR; (a)time 
evolution of density (ne), stored energy  (Wp) and X ray signals (SX 
denotes soft X ray and HX denotes hard X ray), (b) radial profiles of total 
and fluctuations of soft X ray during sawtooth oscillation [64].

220



 0 

X 
d 
E

1.0

I c _ 0.5

0

STEP code (m,n) 

 (1,1)-4 
--.-------t-w. 

  -01.t-et (5, 

0 

      Exp.

-1 .0 -0 .5

co 

4)

I p(sub)

0 0.5 
Ev(cm)

500A

1.0

Fig.7.9 Maximum beta values versus shift of magnetic axis in vacuum. 

Black squares and triangles show results by STEP code. White circles show 

experimental data [65].

221



Chapter 8

Concluding Remarks

  We have studied three-dimensional  MHD equilibrium and stability for 

stellarator/heliotron configurations intensively. We have used the two dif-

ferent theoretical approaches; one is the pure three-dimensional numerical 

calculations and the other is based on the reduced MHD equations for stel-

larators. The main results are summarized here. 

  First, we have investigated both Heliotron E and Heliotron H plasmas by 

using the three-dimensional MHD code, BETA code. 

(1) In the currentless equilibrium of Heliotron E, the average stability beta 
    limit by the resonant m = 1 and n = 1 ideal pressure-driven mode 

    under the fixed boundary condition is /3 = 2% which was given by the 

    BETA code. Until now there is no other theoretical result using the 

    three-dimensional MHD code; however, this value is close to the highest 

    beta value obtained in Heliotron E high beta experiments. The FCT

222



    equilibria of Heliotron E is more unstable; however, the decrease of the 

   beta limit is not large. By studying the equilibrium properties for these 

    equilibria according to the increase of the beta value, it is found that 

    the main stabilizing effect to enter the second stability region is the 

    magnetic well. 

(2) With the BETA code the critical beta value of the currentless equilib-
    rium of Heliotron H for the non-resonant m = 1 and n = 1 ideal mode 

    is  /3 = 3.2%, which is obtained under the fixed boundary condition. 

    It seems more stable than that of the Heliotron E currentless plasma. 

    Under the free boundary condition, the stability of the Heliotron H 

    degrades, since the non-resonant mode becomes more dangerous. 

(3) When the magnetic axis is shifted outward significantly in the vacuum 

    configuration, the ideal m = 1 and n = 1 mode is stabilized completely 

    in both the Heliotron E and Heliotron H configurations. On the other 

    hand the inward shift destabilizes the mode significantly by losing the 

    magnetic well or enhancing the magnetic hill. 

  We have investigated the equilibrium properties of the spatial axis stel-

larator, Asperator NP-4, by using the BETA code and compared the results 

to the same quantities evaluated by the Solov'ev-Shafranov theory. 

(4) It is found that the variation of the rotational transform due to the 

    plasma pressure effect is small. The rotational transform is estimated 

    by the value in the straight helical axis configuration at / = 0 with suf-

    ficient accuracy. This point is significantly different from the Heliotron 
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    E case. By estimating the toroidal correction in the curvature and the 

    torsion of the magnetic axis accurately, the analytic relations to obtain 

    the helical and the toroidal shifts of the magnetic axis in the Asperator 

    NP-4 configuration are given. These quantities agree reasonably with 

    the values by the BETA code. 

(5) The magnetic well due to the Shafranov shift is estimated analytically 
    and it is found that the magnetic hill changes to the well at  ,Q , ~1% 

    which agrees with the results by the BETA code in the neighborhood 

    of the magnetic axis. By introducing the triangularity in the shape 

    of the plasma boundary, the magnetic well expands and becomes deep 

    even in the vacuum configuration of Asperator NP-4 type. 

(6) From the point of the Mercier criterion for the local stability, which 
    is estimated by the BETA code numerically, the Asperator NP-4 con-

    figuration without the triangular deformation is more unstable than 

    heliotron configurations. Therefore, stability improvement may be re-

    quired to confine high beta plasmas in this device, although there is no 

    theoretical result for the global mode stability. 

  In order to study the resistive instability we have developed the RESORM 

code which is the initial value code based on the reduced MHD equations for 

stellarator/heliotron configurations. 

(7) The reduced equations including the higher order toroidal corrections 
    are derived without the expansion for R/Ro , which is called the im-

    proved stellarator expansion. The stellarator equilibrium equation ob-
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 tained from the reduced MHD equations by assuming a/at = vl = 0 

    is the same as that given by Nakamura et al.[15] 

  The currentless equilibrium and the linear stability for both the ideal and 

resistive modes are studied in the Heliotron DR configuration. 

(8) It is shown that the Shafranov shift is small in Heliotron DR which 

    prevents the formation of the magnetic well. In consequence of this 

    property, the stability beta limit is /30 1.2%, which is determined by 

    the m = 1 and n = 1 ideal pressure-driven mode resonant at the t = 1 

    surface in the plasma column. The beta limits obtained by the both 

    RESORM and STEP codes agree with each other. 

(9) The Mercier criterion derived by using the improved stellarator expan-

    sion gives the lower limit of )30 0.7%. In the region of 0.7% ,Q0 

    1.2%, growth rate of the ideal mode becomes very small and the mode 

    structure becomes localized sharply at the resonant surface. There-

    fore, the numerical code using a finite difference method with a finite 

    mesh size can not treat such a strongly localized mode. Practically, 

    this region is marginally stable to the low n modes. 

(10) The resistive pressure gradient driven mode resonant at the t = 1 

    surface has substantial growth rates even for ,30 < 1.2%. The S-1/3 

    dependence of the growth rate is clearly seen in the Mercier stable re-

    gion, however, the resistive modes are affected by the ideal instabilities 

    in the Mercier unstable region.
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(11) It is found that both the inward and outward shifts of the magnetic  axis 
    in the vacuum configuration caused by the additional vertical field have 

    the tendency destabilizing the ideal modes. This is a unique property 

    of Heliotron DR. Usually the outward shift has the stabilizing effects on 

    the pressure-driven modes as discussed for the Heliotron E case. In the 

    inward shift case, the ideal and resistive modes resonant at the e = 4/5 

    surface are destabilized. On the contrary, in the outward shift case, the 

    ideal mode of (m, n) = (1, 1) is destabilized by the effect of the inward 

    movement of the e = 1 surface to the larger pressure gradient region; 

    however, the growth rates of the unstable resistive mode are decreased 

    a little by the magnetic well formation. 

  We have compared above theoretical results with the experimental data 

in Heliotron E and Heliotron DR. 

(12) The MHD activity with (m, n) = (1, 1) was observed in many cases 
    of Heliotron E experiments, and they usually appeared for ,Qo N 2.0% 
    and this beta value depends on the pressure profiles. The ideal beta 

    limit given by the BETA code is higher than the critical beta value at 

    which the fluctuation appears, and the m = 1 and n = 1 resistive mode 

    with substantial growth rate exists at )30 ̂- 2%. Therefore, the resistive 

    mode with (m, n) = (1, 1) seems to be a candidate to explain the MHD 

    activity observed experimentally. Based on the nonlinear calculations 

    of the resistive interchange modes , this point is confirmed definitely 

   [52]. 

(13) In the case of the inward shift of the magnetic axis by the additional 
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   vertical field, the destabilizing tendency obtained theoretically is con-

   sistent with the Heliotron E experiment. However, in the outward shift 

   case, the experimental beta limit of Heliotron E did not improved. 

   This point seems contradictory with the theoretical results within the 

 MHD model. Tentative explanation to resolve the discrepancy is that a 

    degradation of the particle and energy transports or an increase of the 

   direct loss of the high energy particles occurs induced by the outward 

   magnetic axis shift and it becomes difficult to increase the beta value 

    with the same heating power. 

(14) In Heliotron DR plasma, the m = 1 and n = 1 fluctuation was also 
    observed when the beta value becomes close to /3 ̂ ~ 0.5% which seems 

    consistent with the ideal MHD beta limit of /30 '� 1.2% or ,Q ̂_. 0.5% 

    obtained by the STEP and RESORM codes. Therefore, it is not clear 

    that which determines the beta limit of Heliotron DR, resistive one or 

    ideal one, although the resistive instabilities are more dangerous. 

(15) By the theoretical studies, the beta limit is decreased with the magnetic 
    axis shift for both inward and outward directions. These results are also 

    consistent with Heliotron DR experiments. 

  Finally we will discuss future problems of three-dimensional MHD stud-

ies for stellarator/heliotron configurations. As discussed in this thesis exten-

sively there are two approaches. One is to calculate the three-dimensional 

equilibrium without any averaging procedure which is firstly established by 

the BETA code. The other one is to use the averaging method over the heli-

cal field period with or without the stellarator ordering. In order to calculate 
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both the ideal and resistive linear stabilities for the low n global modes with 

 sufficient accuracy, the best way is to developed the initial value code such 

as the RESORM code or the FAR code, where the averaging process is es-

sential to reduce computation time and to keep numerical accuracy. Another 

advantage of this approach is that this type of numerical codes can be eas-

ily extended to study nonlinear evolution of the unstable modes. Thus we 

propose a new approach that MHD equilibrium is calculated by the three-

dimensional code, and then, the global MHD stability is examined by the 

initial value code after averaging the three-dimensional equilibrium by ap-

propriate procedures. We believe that a code development based on this idea 

will work efficiently for studying the global modes in the three-dimensional 

configurations.
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