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Preface

This dissertation develops several algorithms for the optimal control
of nonlinear dynamical systems. The systems under consideration are
described by nonlinear differential equations and the objective is to find
a control function with or without constraint which steers the state of the
system from a manifold to another manifold so as to minimize an associated
performance index of integral type. The fundamental attitude of the
dissertation is to reduce the problem to a sequence of linear two-point

boundary-value problems (TPBVP's).

o

&
The dissertation consists of four chapters, including the introductory

one. Chapter 2 develops a time-decomposition algorithm for solving stiff
linear TPBVP's, that is, linear TPBVP's with rapidly convergent and rapidly
divergent particular solutionms. Tﬂe algorithm belongs to the multipoint
approach and succeeds in reducing the numericai error in applying the
superposition principle. The chapter that follows discusses the solution
of nonlinear optimal controi problems without control constraint. The
time-decomposition algorithm is applied to the problem in combination with
linearization methods. The combined algorithm can effectively be applied

also to multiple-target problems, that is, problems containihg discontl—

-



nuities and additional boundary conditions in the intermediate points of
.control duration. Cﬁapter 4, the last chapter, deals with control-
constrained optimization problems. A direct method is modified to treat
problems with sPecified terminal condition. The problem is reduced to a
sequence of linear TPBVP's by introducing an artificial variable. Various

typical examples attached in each chapter illustrate several features of

the proposed algorithms.
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Chapter 1

Introduction

1.1. Optimal Control Problems in Nonlinear Systems

With the advance in the field of digital computers, enormous efforts
have been expended on the development of numerical solution techniques for
optimal control problems in nonli;ear systems within last two decades [1,

6, 8, 12, 17, 33, 43, 46, 66, 67, 78]. These techniques can be classified. into
two categories. The one is so called direct methods [8-11, 15, 34, 35, 46, 4&,
50, 65] and the other indirect methods [4, 6, 16, 17, 41, 42, 55, 63, 73]. %
The direct method generates a sequence of control functions so that the
given performance index may successively be minimized or maximized. On the
other hand, the indirect method transforms the problem into a two-point
boundary-value problem (TPBVP) by applying the, minimum principle [68] or
the variational principle [28] and the optimal control is detérmined by its

solution.

The optimal control problem is formulated as follows. The differen-
!/
tial equation which governs the dynamical system is expressed as

& = f(t, @, u). ' (1.1)



!

where x(t) 1s an n-dimensional state vector and u(¢t{) is an m-dimensional
.control vector. The objective is to find the control function u which
transfers the state & from a manifold to another manifold so as to mini-
mize the following performance index:
Ei
J = I L(t, x, u)dt. (1.2)

%o

In a practical sense, a'certain constraint is imposed on the control
function such as

gu) <0. - (1.3)
The functional g is often of the saturation type, that is, the set U of

the admissible control functions often takes the form of

U= Au|l lu )| 2m,, te [ty tel, T2, By wemsBl (1.4)

Such a formulation of optimal control problems requires the complete

information about the systém to be controlled and this is one of reasons

«,

L4
why the state-space approach is less made use of than the transfer function

approach in many engineering systems [29]. However, there are many
problems to which the state-space approach can effectively be applied.
For example, to the problem_in the'field of aerospace engineering, the
approach is suitable by nature of the problem.[46,54, 60]. Also in other
fields, many.workets have made efforts in the application of the approach

[531.

Since the direct method adjusts the control function directly at each
iteration of the calculation, it is not so difficult to take (1.3) or (1.4)

into consideration, while it is rather elaborate to adjust the control

-



function so that the state may satisfy the imposed manifold condition.
.The indirect method, on the contrary, can easily deal with specified
terminal point problems, though it is difficult to apply it to the control-
constrained problem except for the linear problem of small order.

This dissertation is concerned with the development of computational
schemes in view of the indirect method. In applying the indirect method
to the optimal control problgms, there are at least two m;in difficulties
to be resolved: The one is that the derived TPBVP is often difficult to
solve because of the numerical error. The other is that it is rather
difficult or even impossible to treat problems with control constraint as
(L B ) o

Generally the derived TPBVP is nonlinear. There are two approaches to
solve nonlinear TPBVP's, that is to say, the shooting method [2, 40, 64, 70,
72] and the linearization method [4, 42, 55,63]. The shooting method
solves the given nonlinear differential equation iteratively with a
sequence of estimated initial conditions of the missing ones until the
solution satisfies the manifold condition. The method suffers from the
critical sensitivity of boundary values to any small change of initial
conditions and therefore often fails to obtain the solution to the non-
linear problem, though it has the édvantage that only initial ;onditidﬁs
in the preceding iteration ;eed be available for the present calculation.

On the other hand, the linearization method reduces the’ nonlinear
TPBVP to a sequence of linear TPBVP's, whose' solutions satisfy the ma;ifold
condition and are to converge to the solution to the original nonlinear
problem. ?he difficu1t§ of solving nonlinear TPBVP's by the method, which.

is adopted in the text, lies in the fact that the 1inearized differential



equation often has a stiff structure, that is, the solution has both
.rapidly convergent and rapidly divergent components [23]. The stiffness
causes serious numerical error in applying the superposition principle [42]
to the linearized TPBVP. Therefore, one must dgvelop an efficient compu-
tational algorithm to solve such a differential equation.
Séveral algdrithms so called multipoint approach have been proposed

for such a TPBVP [22, 47, 51, 52, 61, 62, 71]. The fundamental idea lying

in these algorithms is to divide the-overali integration interval into
several subintervals, accordingly, the idea is to divide the overall TPBVP
into several sub-TPBVP's [62] or initial value problems [22, 47, 51, 71]
with shorter integration intervals, since the stiffness does not cause so
serious numerical error when the integration interval is not so long. The
solution to the original problem is obtained by adjusting the provisionally
assumed boundary values so as to make the solutions of subproblems conti-
nuous at the boundaries. In the text, a time-decomposition algorithm for a

linear TPBVP, which was first presented as a two-subinterval algorithm
[59, 61, 62], is extended to multi-subinterval one in theory as well as in M
numerical experiments. The nonlinear optimal control problems, including
a problem with discontinuities and additional boundary conditions in the
intermediate points of control duration, are solved by the aléorithm in
combination with the interaction—coordination.élgorithm [55, 63] and the
quasilineariéation method. [42].

For the numerical soluéion of‘control—constrained problems, the direct
method has mainly been employed. This is chiefly because the TPBVP derived

by the minimum princiﬁle usually contains very strong nonlinearities which

result from necessary conditions for optimality and therefore is practi-

-



cally very difficult or even impossible to solve. The direct method,
.however, becomes less effective when the terminal condition is specified.
For example, the steepest-descent method [35] suffers from poor accuracy of
the solution and the method proposed by Bryson and Denham [10] involves
additional integra?ion procedures, including the integration of matrix
differential equation, for determining the Lagrange multipliers. Further
the solutions obtained by these methods do not satisfy the specified termi-
nal condition until thé‘optimum is attained. - Therefore, it is desirable

to develop a new algorithm which remedies the defects the both methods
have. The requirepent for the new algorithm is to have the property that
the control function is easily adjusted to.satisfy the control constraint
(1.3) or (1.4) and, at the same time, to make the state of the system
satisfy the imposed manifold condition. Recently, Miele et al. have
proposed a sequential:gradient—restoration algorithm which satisfies the
requirement [20, 24-26, 48, 50]. The algorithm is composed of the gradient

phase and the restoration phase., The gradient phase aims at the minimi-

-,

«
zation of the values of the performance index while the restoration phase,

composed of several iterations, aims at making the solution be consistent
with all the constraint. The algorithm has a merit that each solution at

the end of the restoration phase ié a feasible one. However, turning
‘inside out, excessive restoration phase must ﬁé carried out to obtain the
optimal solufion.

In this text, another ;lgorithm is developed which also satisfies the
above requiremen£ [58]. The steepest-descent method is modified to treat

the problem with specified terminal condition. The basic idea is to reduce

the problem into a sequence of linear TPBVP's which contain explicitly the

-



the control variable term.. To this end, an artificial variable is intro-
duced in the system equation. The aritificial variable and the control
variable are corrected iteratively, using the solution to the linear TPBVP,

so as to attain the optimality.

1.2. Description of Contents

This text consists of four chapters, including the present intro-
ductory chapter.

Chapter 2 discusses the time-decomposition algorithm to solve a stiff
linear TPBVP. The algorithm was first presented as a two-subinterval
algorithm [59, 61, 62]. In the text, it is extended to multi-subinterval
one in theory as/well as in numerical experiments. Moreover, an error
analysis is made through an example by comparing the algorithm with a basic
superposition principle.

In a stiff problem, since some particular solutions of the system
equation increase and others decrease rapidly as the independent variable
changes, the integration of the system equation suffers from a serious
numerical error. In the time-decompositibn algorithm, first, the overall
interval of integration is divided into several subintervals at several
intermediate points. These points are called 'torn times.'. Then, in each
subinté;val, sub-TPBVP with arbitrarily chosen boundary conditiomns is
solved. Second, the exact boundary values which guarantee the continuity
of the solutions at the torn times are determined algebraically. Owing to
the division of the integration inéerval, the numerical error is effective-

ly redqced in spite of the stiffness. The effectiveness of the method is

demonstrated by solving two illustrative examples.



Though it has been pointgd out so far that such a division is much
-effective for stiff problems, mno anélysis has been made how the numerical
error is reduced by the division. It is also shown in this text how it is,
through examining an example.

In Chapter 3,. the time-decomposition algorithm is applied to nonlinear
optimal control problems. The performance index to be minimized is of a
quadratic type in state and control. No constraint is imposed on the
control function, that is, Mi in (1.4) is assumed to be infinity.

First, we consider the system described by a nonlinear differential
equation without any discontinuity on the overall interval. The initial
time, the terminal time, and the initial conditions of the state are
specified, and the terminal conditions may be or may not be spécified.

The problem is reduced to a nonlinear TPBVP by applying the minimum
principle and further reduced to a sequence of linear ones by the
interaction-coordination algorithm [55, 63] and the quasilinearization
method [4, 42]. Theoretically speaking, the linear TPBVP's can be solved
by the superposition principle. However, as have been mentioned, the
principle suffers from numerical errors; since the derived TPBVP's are in
themselves more or less stiff. Especially when the interaction-
coordination algorithm is employed to solve the nonlinear TPBVP, linear

TPBVP's to be solved are quite stiff, since it is empirically known that

the convergence property of the algorithm is much improved by modifying the

original TPBVP's stiffer. .

N

Two physical problems are solved by the time-decomposition algorithm
in combination with the linearization methods to show the effectiveness of

the combined algorithm.

-



Second, the multiple-target problem [30, 32, 56, 57, 74-76] is consid-
.ered in the latter half of Chapter 3. The system equation contains dis-
continuities at intermediate points of the overall interval. These points
are called 'corner times.' The boundary conditions are specified at
several corner times as well as the initial and the terminal times. By
specifying provisional corner times, the problem is reduced to a nonlinear
multipoint boundary-value’'problem (MPBPV) due to the minimum principle.
This nonlinear MPBVP is further reduced to a sequence of linear ones by use
of the linearization methods mentioned above. The linear MPBVP is solved
by the time—decompgsition algorithm for a discontinuous problem. The
problem is decomposed into several subinterval TPBVP's. The missing
boundary conditions of these TPBVP's are determined by using the solutions
obtained with arbitrarily chosen boundary conditions. Since, different
from the continuous case, discontinuities of variables may occur at the
corner times, it is impossible to integrate the differential equation in

series. Therefore, decomposition of the overall interval plays an

-,

(%
essential role to solve such a problem. After solving the nonlinear MPBVP,

the provisionally specified corner times are corrected by a gradient method.
The correction procedure is iterated until the optimum is attained. The
solution in each iteration satisfiés the boundary conditions exactly.

To illustrate how the combined algorithm'gorks, two linear problems
are solved and their solutios are compared with the analytical ones. An
example of noniinea; probleﬁ is also attached.

In Chapter 4, a modified direct method is developed to solve optimal

control problems in nonlinear systems where the control function is subject

to the constraint of (l.4) [58]. The basic idea of the method is to modify

L3



a steepest-descent method, which is often adopted for such a problem, by
Adntroducing the interaction-coordination technique in order to make
problems with the terminal manifold specified easily treatable. The
steepest-descent method generates a sequence of control functions which
successively reduce the value of the performance index. The control
function is corrected iteratively by using the solution to the adjoint
equation. The present idea %s to modify the system equation by intro-
ducing an interaction vari;ble, which acts as an additional control
fuction, to make the state satisfy the terminal condition. By the method,
the problem is reduced to a sequence of linear TPBVP's with the control
function appearing explicitly. By use of their solutions, the control
function is iteratively optimized and the interaction variable.is iterative-
ly corrected so that the solution to the modified equation coincides with
that of the original equation.

In order to verify the effectiveness of the proposed algorithm,
several examples are presented, including a state- and control-constrained

problem and an on-off type problem. *



Chapter 2

A Time-Decomposition Aigorithm for the Solution of a
Stiff Linear Two-Point Boundary-Value Problem

2.1. Introduction

In the last ten years, several researchers have been employed in the
study of numerical solution of stiff systems for an ordinary differential
equation(ODE) [22, 23, 38, 47, 51, 69, 71, 81]. The word 'stiff' originally
means that the solution of an ODE contains both the 'much fast' and the
'much slowly' convergent components. For example, when the system matrix
of the linear differential equation hgs both the large and the small
negative eigenvalues, the system is stiff. 1Initial value problems for such
an ODE appear in the analysis of e}ectronic circuits [7, 13]. The diffi-
culty of solving such a problem lies in the fact that one must choose
integration step size small enough to follow the rapidly changing compo-
nents while the integration interval requires to be long enough in order to
solve the differential equa?ion until the much slowly convergent components

reach to steady state. Thus, the computational time and the stability of

the integration routine become a matter of importance. For such a problem,

-10-



many algorithms have been proposed, e.g., Adams-Bashforth, Adams-Moulton
. [27]1, and Gear [19].

In the text, the word 'stiff' is used in an extended sense [23], that
is to say, we consider two-point boundary-value problems (TPBVP's) such as

follows:

d X X
D(2) + h(t), (2.1)
p p

]

with the boundary condition

x(to) = Ty x(tf) = Tes (2.2)

where & and p are variables of same order. The task is to find the
missing initial conditions. Assume that the system matrix D(t) be a
constant matrix and have both the large positive and the large negative
eigenvalues. Basically, the missing initial conditions can be determined
by the superposition principle [42]. The obtained values, however, contain
some numerical errors. Since the differential equation (2.1) is unstable
““

both forward and backward, a few numegical errors at the initial point
lead to a serious errofrét the end of the integration interval, whichevér
direction the eﬁuation may be integrated to. Different from initial value
problems, such a difficulty-can not be overcome only by improving the
integration routine.

Two-point boundary-value problems appear in various areas of mathe-
matical physics, for example, optimal control problems [e.g., 12; 18, 671,
boundary-layer problems [64], phaséllocked—loop design [77], and so on.

In many cases, the TPBVP has a stiff structure. For example, the TPBVP

-11-



derived from optimal control problems of regulator type, wﬂich will be
,treated in the following chapter, .inevitably has both positive and negative
eigenvalues.

Several algorithms due to multipoint approach have been proposed for
such TPBVP's [22, 47, 51, 52, 61, 62, 71]. The fundamental idea lying in
these algorithms is to divide the overall integration interval into several
subintervals. Accordingly tye idea is to divide the overall TPBVP into
several sub-TPBVP's [61, 62] or initial value problems [22, 47, 51, 71] with
shorter integration intervals. The intermediate points of division are
called 'torn times' in what follows. The solution to the original problem
is obtained by adjusting the provisionally given boundary values so as to
ensure the continuity of the solutions of subproblems at the torn times.

In this chapter, a time-decomposition algorithm with two subintervals
[61, 62] is extended to the one with multi-subintervals in theory as well .
as in numerical experiments. Moreover, an error analysis is made by
comparing the algorithm with the basic superposition principle in appli-
cation to an example.

The time-decomposition algorithm; which belongs to the methods due to
multipoint approach, divides the overall TPBVP into sub—IPBVP’s by assuming
provis%pnal boundary values at the torn times. Then, making use of their
solutions, the boundary values are corrected ﬁ} aﬁ algebraic means so as to
ensure the continuity of the solutions at the torn times. This correction
can be done by only one caléulatioq. The solution to the overall problem
is obtained by solving sub-TPBVP's with boundary conditions thus obtained.

In the above diséussion, only the linear TPBVP is dealt with by the .

proposed algorithm. This may seem a serious limitation to the algorithm.

-



However, since nonlinear TPBVP's can be reduced to linear ones by making
.use of the well-known quasilinearization method [4, 42] or, by the
interaction-coordination algorithm [55, 61, 63], the limitation of linearity
is not so serious.

Techniques similar to the present algorithm have been developed in
Refs. 22, 47, 51, and 71, which have dealt with nonlinear TPBVP's by divid-
ing the overall iqterval into L-subintervals. 1In Refs. 22 and 71, the
values of all the elements of the variable are estimated at each boundary,
and the nonlinear differential equation is solved in each subinterval with
these estimated initial values. Then, the estimated values are corrected
by the quasilinearization method so that the estimated values at the Z-th
boundary may coincide with the calculated terminal values in the (i—l);qh
subinterval. The solution does not satisfy the continuity condition until
the iteration is terminated. In Refs. 47 and 51, at the outset the non-
linear TPBVP is reduced to a sequence of linear ones by the quasilineari-

zation method. Then, the overall interval is divided into L-subintervals.

-

-~

All the values at each boundary are determined by the method of particular
solutions [45].

These algorithms determine all the boundary values at once, so that
they must take the inverse 9f an n&L-l)Xn(L—l)—dimensional matrix when the
order of the differential equation is #n. ]

On the other hand, our time-decomposition algorithm reduces the
problem to L-sub-TPBVP's. %herefo;e, in order to make the solutions

continuous at the torn times, only n(L-1)/2 elements are to be determined

at once. That is to say, the algorithm needs only to take the inverse of

-13-



an {n(Z-1)/2}x{n(Z-1)/2}-dimensional matrix, the existence of which is also
-discussed in the text.

Baumann [3] has proposed a trajectory-decomposition algorithm for a
control problem with discontinuity, which is also applicable to the problem
considered in this chapter. However, since the subinterval boundary values
are corrected by a gradient method, it often takes much computing time to
attain exact values. .

The organization of this chapter is as follows. In Section 2.2, the
principle of superposition is briefly summarized, on which the time-
decomposition algorithm is based. Section 2.3 discusses the time-
decomposition algorithm in detail. This section includes several theorems
for the algorithm. The algorithm is summarized in Section 2.4 and is
"applied to two illustrative examples with stiff structure in Section 2.5.
In Section 2.6, by examining an example, it is analyzed how the numerical

error is reduced by the proposed algorithm.

2.2. The Principle of Superposition “

Let us consider the TPBVP of (2.1) and (2.2). Both x(¢) and p(%)
are n-dimensional vectors, D(t) is a 2nx2n-dimensional matrix, ;nd.h(t)
is a 2n-dimensional vector function. Both D(t) and *h(t) are continuous
in ¢£. Though, for simplicity, the boundary condition is assumed to be
given as (2.2) in the following, more general case can be treated with a
slight modification of the argument.

Let Q(t,to) be the 2nx2n-dimensional transition matrix corresponding

to the homogeneous part of (2.1) with the initial condition Q(tO’tO)==Ién’

where 'I2n is the 2nx2n-dimensional identity matrix. Then the solution to

« 1 =



(2.1) subject to a set of initial conditions [x'(to),p'(to)],' can be

written as

x(t) <I>11(t, to)x(to) + @12(1;, to)p(to) % vl(t, to) s (2.3)

P(B) = 0y, (¢, t)a(t)) + 8,,(F, tID(E) + v, (¢, £) (2.4)

where @ij(t, to) is the nxn-dimensional element matrix of &(%, to) (Z,4=

1,2) with ;
A o(¢, to)
and
vl(t, to) t
v(t, to) = A | o(t, T)A(T)dT .
v, (£, £y) t

Let EO be an initial approximation to the initial condition of p.

Then, from (2.3) subject to x(to‘) =7_ and p(to) =Eo, the corresponding v

0
terminal value Ef Ax(t f) is given by

"f—<1> (tf,t)w +<I>12(t,t)p0+v(tf, . (2.5)

Similarly, let Py be the exact initial condition of p which

satisfies the given terminal condition x(tf) =1rf. Then, from (2.3) with
x(to) =T, and p(to? =Pg> e have ‘
Trf =, Qlli(t-f’ to)'no + <I>12(t , to)po + vl(tf., to) 8 (2.6)

Subtracting (2.5) from (2.6) gives

= 1B



le(tf-, to) (po - po) = Trf‘ - xf 3 (2.7 )
The result obtained above is summarized in the following lemma.

Lemma 2.1.

Let Ef be the terminal value of x obtained from (2.3) with a set of
initial conditions [né,EB]', where Eb is an arbitrary n—dimensional
vector. If the matrix @ f’t ) is nonsingular, then, from (2 7, t
exact initial eondition of p is given by

Sl =
po - Po + le(tf’to) (Tl'f xf) . (2.8)

2.3. Time-Decomposition Algorithm

In this section, a computational technique termed a time decomposition
is proposed in order to overcome the difficulty caused by numerical errors
in applyiné the superposition principle [42, 57, 59, 62]. The time decompo-
sition is to decompose the overall interval into several subintervals, say,
L-subintervals. *

Suppose that ERE;S be an estimated value of p at the torn time tz (
=1, 2, ...,L—i). Then, from (i.3) and (2.4), it is seen that the solu-
tion to (2.1) in the subinterval [t"ti+1] with the boundary conditions

x(ti) =?7c(ti) and x(t ) x(t ) satisfies °

x(t,,,) = ¢11(4:+1, 'i)x(ti) + ¢'12(i+1, i)p(t';:') + vl(ti_'_l, t;),  (2.9)
Bt

i) = ¢21(z+1 'b)x(t ) + ¢22(z+1 'L)p(t"') + 0, (10 t) :(2.10)

(£=0, 1, ., I-15 ¢ = t0),

= -



where ¢ij'(>" 1) denotes q’ij(.tl’ tu) and p(t'b'!') and p(t1‘:+;) denote
values of the variable p at ti and ti 1’ respect.i-vely, in the< -th sub-
interval. For the estimated boundary condition ;GD, the continuity
condition for p at t=ti’ 9 - p(t;:)=p(t2), is not always satisfied.

By calculating the difference p(_t;s —E@, let us now determine the
exact value of x at t=t’i’ with which both the given boundary conditions

and the continuity condition of p at t=ti are satisfied. If ¢12(1:+l, 1)

is nonsingular, we can rewrite (2.9) as follows:

'—T = _1 o . e, - - 0 -

p(ti) ¢12(1,+1, 1) [x(ti+l) ¢11(’L+1, t)x(ti) vl(ti+1’ ti) ] -(2.11)
Substitution of (2.11) into (2.10) yields

Pl = 0,y (P41, DT(E) + by, (41, )97, (041, D @ (E,, ) -

¢ll(7§+1, i)x(ti) - vl(ti+l’ t)]l +v (t1,+1’ ). (2.12)

By replacing Z in (2.11) by <+l and subtracting it from (2.12), we obtain

p(t;,) - p(EE) =S, z(2) + T,x(t, ) + Uy x(t, ) +V, 5 (2.13),

where

th
|

1 = 0y GHL D) = 0y, (41, D675 (641, D)0y, (641, 9)

_ SR, . ST § o
‘Ti = ¢22(1,+1, 1,)¢12(1,+1, 1) + ¢12(1,+2, 1+1) q>ll(z+2, i+1),
D P
U, = - 9]5(+2, T4, > (2.14)
Vi-= -¢22(1,+1 z)¢12(1,+1 z)v s (- ) +v (t.+l, .) +

41’

“’12(”2 '““)” 15420 Tigr)

(£=0,1, ..., I-2).



Taking (2.13) and (2.14) for all 7 (Z=0,1, ..., [-2) into account, we

-can establish the fol:lowing theorem.

Theorem 2.1.
Let p be the solution to ((2.1) in the interval [t., 7‘:. ] with the

boundary conditions x(ti) =:x:(t1:) and x(t ) z(t. ) (2=0,1, ..., L-1;

1+1
f)=1rf). Let p(‘b:L!') and p(t1':'+1) be the value of p at t=

o’
ti and t=ti+l’ respectively, in the Z-th subinterval. Then, the follow-

ing relation holds:

P=TX+7V . (2.15)
where
[ _b
Tos Ugs O
Sl,T Ul,
= .. ] " (2.16)
0 S1-30Tp-39Y1-3s
Sr_ 972
X = [ac (), (8,)5 -oen @' (6, D1, (2.17 ).

|
1

(EE) -pED) s +ovs @F,_D-PE_ DTS (2.18)

= 1 1 1
v =[5, +V) Vis eees Vi_as (VL_2+

1 (2.19°)

UL_Z'nf)']'.

Note that I' and V are independent of the choice of the boundary

conditions .’L‘(‘bi) (27=1,2, ..., L-1). Hence we have the following corollary.

Corollary 2.1.
Suppose T of (2.16) be nonsingular. Let X = [x' (1:1), %' (tz), ey

x'( L-l)] , Where x(t ) is the value of the exact solution to (2.1) with

= T8, =



the boundary conditions x(to) =7n_. and x(tf =1rf at t ='bi (2=1,2, ...,

0
I-1). Then X and X of (2.17) are related by the following algebraic

equation.

X=X-T "P. - (2.20)

Proof.
For the exact solution x(ti), obviously p is continuous in te [to,
tf]. Hence,
0O=TX+ V. (2.21)

Subtract (2.15) from (2.21). Then the nonsingularity of I proves the

validity of (2.20).

Q.E.D.

Remark 2.1.

.Corollary 2.1 means that the solution to the given TPBVP can be
obtained by solving several numbers of the subinterval TPBVP's. Hence, LE
is suggested that the time-decomposition algorithm is also applicable to
the problem, having discontinuities in the system equation, which will be -«

discussed in the following chapter.
Now let us consider the nonsingularity of T.

Theorem 2.2,
Suppose that ¢12(>\, 0) (A=1,2,...,L) and ¢12()\+1, A) (A=1,2, ...,

L-1) be nonsingular. Then, I is nonsingular.

Before proceeding to the proof of Theorem 2.2, we prove the following

two lemmas.
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Lemma 2.2.

For arbitrary A, u, and v, the following relation holds:

2
6;:(0s v) = kZ;”ik“’ W) (4, 5=1,2). (2.22)

Proof.

From the transition property of ¢,

-(I>('_b>‘, tv) = Q(t)\, tu)Q(tu, tv). (2.23)

Hence, expansion of (2.23) proves (2.22).
Q.E.D.
Lemma 2;3.
~ Assert the hypothesis of Theorem 2.2. Then, the following sequence of

matrices ?1: is well-defined:

-1 . .
. = =5, T, U + T (4=0,1,...,1-2), (2.24)

where SO AO, and T_'l and U_

given by

1 are arbitrary matrices. Furthermore Ti is™

1

5 (342, i+1) 91, (42, 0)¢1;(i+1, 0). (2.25)

I; =%

Proof. -

Clearly, it suffices to prove (2.25). We prove (2.25) inductively.

First, by the definition of _1-’-7: in (2.14) and Lemma 2.2, we have

]

& - -1 -1
Ty = Tg = 955(1,00¢,5(1, 0) + ¢,5(2,1)¢,,(2, 1)

-1 ' -1
¥15(2 DI61,(2, Db,y (1, 0) + 6., (2, Do, (1, 0167,(1, 0)
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_ -1 -1

(2.26) shows that (2.25) holds for % =0.
Second, we show that the relation (2.25) holds for 7 =k+1 if it holds

for 1=k. From (2.24) and (2.25),

_ -1
Terr ™ T = "5k T Y
= -1 .
= [0,y (2, K41) = 0y, (k42, K41)4 ], (K42, K41)
814 (k+2, %k1) 16, (K41, 0)4 75 (k42, 0) . (2.27)
Substituting

¢21(k+2, k+1) ¢12(k+1, 0) = ¢22(k+2, 0) - ¢22(k+2, k+1)¢22(k+1, 0) (2.28)

into (2.27), we obtain

-1
T 1 + ¢22(k+2, 0)¢12(k+2, 0) - (k+2, k+1) - [

Tk+1 k+ ¢’22

=1 .
¢22(k+1, 0) + ¢12(k+2, k+1)¢11(k+2, k+1)¢12(k+1, 01]-

475 (k+2, 0)

= -1 o
= Tp,q t+ 0y, (k+2, 0)4’12(ku’ 0) = ¢,,(k+2, k1) 65 (k+2, k+1)

-1 y -1
¢12(k+3, k+2)¢11(k+3, k+2) + ¢22(k+2, 0)¢12(k+2, 0)

~1 =1
415 (k+3, k+2)¢12(:k+3, 0)¢, (k+2, 0). (2.29)

(2.29) implies that (2.25) holds for 7 =k+1l. Thus, the proof is completed.

. Q.E.D.
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Now we can proceed to prove Theorem 2.2.

Proof of Theorem 2.2.

Let Ai be the nonsingular matrix defined by

. s
.(\_-___"_2—12-5__
A, = (£2=1,2, ..., [-2). (2.30)
T n(L-1) Iﬁ

-

=
o

(2.31)

Due to Lemma 2.3, the matrix (2.31) is nonsingular. Hence, Theorem 2.2 is

<

e
proved.

Q.E.D.
Remark 2.2.
The nonsingularity of le(éf;to) is necessary and sufficient for the
existence of a unique solution to the linear ffBVP (2.1) and (2.2).
(¢t

Similarly, the nonsingularity of ¢ ti) is necessary and sufficient

121 74+1°
for the unique existence of Z-th subinterval solution. Thus, the necessary
and sufficient condition for the applicabilty of the time-decomposition
algorithm to the TPBVP is that there exists a unique solution in each sub-

interval defined by arbitrary two torn times, including initial and

.
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terminal times.

Once the value of the transition matrix is obtained, I'_1 could be
calculated d‘irectly from (2.16). In practice, however, the following
procedure of calculation is more efficient in reducing the numerical error:
(i) for the lirllear TPBVP of (2.1) and (2.2), set h(¢) =0, 1r0=1rf=0, and
X equal to the v-th unit vector (v=1,2, ...,7n(l-1) ), (ii) obtain P by
solving the TPBVP with the corresponding boundary condition in each sub-
interval, (iii) let P be the v-th column of T (v=1,2, ..., n(L-1) );
then, calculate I‘Tl

Figure 2.1 illustrates the time-decomposition algorithm in the case
L=2. After calculating I‘_l as mentioned above, we estimate ;(t—T), the
value of x at t=t1’_ and solve sub-TPBVP for each subinterval. Then,
using the difference p-_('l;i—) -1_9_(12‘-_']‘_'—), the exact value x(tl) is determined by
(2.20) and sub-TPBVP's are again solved with boundary conditions thus
obtained. Each solution forms a bart of the overall solution.

The overall computational algorithm will be summarized in the follow-

*
ing section.

2.4, Summary of the Algorithm

We now summarize the above discussion.

Step 0-1: Set h(t) =0, te [to, tf] in (2.1).

Step 0-2: Compute (2.1) in each subinterval with the boundary conditions

z(ty) =0, [2'(),2"(2,)), cor (B, D] =X =e, x(tf) =0, (2.32)

where e, is the v-th unit vector (v=1,2,...,L-1). Then, let the

obtained difference P= [(pED -pED', (p(E) ~pED)'s -ons (PG -

LN
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P(tz_l))']' be the v-th column of the matrix T.

Step 0-3: Calculate rt

Step 1: Estimate x(ti) (2=1,2, ..., L-1) arbitrarily.

Step 2: Compute the subinterval solution p(t::f) to the problem (2.1) with

the boundary conditions

'x(to) = g x(ti) = x(ti) (2=1,2, v, I-1), =z(t (2.33)

f =1Tfo
Step 3: From (2.20) obtain the exact value x(ti) at the torn time ti
(2=1,2,...,L-1).

Step 4: Solve (2.1) in each subinterval [ti’ti+l] (2z=0,1, ..., L-1) with

and x(t

the boundary conditions obtained at Step 3 and x(to) =" f) =T £

0

2.5, Illustrative Examples

To show the effectiveness of the proposed time-decomposition algorithm,
the following examples are solved by both the basic superposition principle
and the time-decomposition algorithm, and the solutions are compared with
the analytical ones. For the numerical integration of the differential

equations, the fourth-order Runge-Kutta-Gill method is employed in double

precision arithmetic with integration step size of 0.001.
Example 2.1 [62].
L;t us consider first the following two-dimensional stiff linear TPBVP:

dal® 1, 1|«

atl | T |.2

» x(0) =1, P(tf) =0, (2.34)
p kS 1| p| -

where k and tf are poéitive constants. The eigenvalues of the system

matrix are lik. Therefore, if «k 1is large, the TPBVP has a stiff
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structure.
To the problem of (2.34), the analytical solution can be obtained as

follows:

x(t) = %{exp[(l+K)t]-Fexp[(l—K)t]}-4%{exp[(l+K)t]-exp[(l—K)t]}-

{exp[(1+K)tf]-exP[(l-K)tf]}/{exp[(1+K)tf]4—exp[(1—K)ff]}, (2.35)

P(£) = Sexp[ (1+0)t] - exp[ (1-€)£1} - Slexp[(1+x) ] +expl (1)1}~

{exp[(1+K)tf]-exp[(l—K)tf]}/{exp[(l+K)ff]4—exp[(1—K)tf]}. (2.36)

For comparison, the TPBVP with ¢

f

two methods. In applying the time-decomposition algorithm, the interval is

=5.0 and k=5.0 1is solved by the

divided at t==t1==2.5 into two subintervals. The results are shown in
Table 1. Table 1 shows that the time-decomposition algorithm reduces the
numerical error in the latter half of the integration interval while the
basic superposition principle (No Time Decomposition) fails to follow the
exact solution. In the following section, an analysis is made on this

example.

Example 2.2 [51].

Second, let us consider the following TPBVP:

¥

X
EL]=[cx-c#+4"x@)=m z(1) = 0.5, (2.37)
1 2

where the constants cl and ¢, are related to each other by c1=202.

Then, the analytical solution of (2.37) is given by

z(t) = 0.5t2, y(¢) = t. (2.38)
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The problem is solved for various values of 2 and Cye In Table 2.2,
solutions obtained by the basic superposition principle and the time-

decomposition algorithm with two-subintervals, and also the analyt%cal
solution are shown for c

=2,000 and c¢,=1,000. It is seen that the

1 2
numerical error is much reduced by the time-decomposition algorithm. When
cl==l,000 and cz==500, the superposition principle is effectively applied

to the problem, though the result is not listed. However, when c. =2,000

1
and cz==1,000, the numerical error is accumulated and therefore the sol-
tion gradually becomes less accurate as the independent variable, i.e.,

time, increases. When cl=3,000 and e, =1,500, even the time-

2
decomposition algorithm with L (number of subintervals) =2 suffers from the
numerical error. Table.2.3 shows the results by the algorithm with L =2
and L=4. Four-subinterval algorithm succeeds in obtaining a satisfactory
solution. Finally, the algorithm is applied to the problem with cl==10,000
and 02==5,000, the eigenvalues of the system matrix are #100. The problem
is successfully solved by the ten-subinterval algorithm. The result is shown

-

in Table 2.4 together with the result by the four-subinterval algorithm.

2.6. Error Analysis

In this section, it is examined how the numerical error is reduced by
the time-decomposition algorithm, by referring® the problem of Example 2.1.

Let us reconsider the TPBVP (2.34). The transition matrix of (2.34)

is given by

-
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Table 2.4. The solutions of Example 2.2 (cl==10,000 and c2==5,000).

Time Decomposition

(L=4, torn times=0.25, 0.5, 0.75)

x

Y

Time Decomposition (L =10,
torn times=0.1,0.2, ..., 0.9.)

x

Y

0.0
0.1
0.1t
0.2"
0.27
0.25"
0.25"
0.3
0.3
0.4
0.4
0.5
0.5
0.6
0.6
0.7”
0.7
0.75
0.75
0.8~
0.8
[0.97
0.9%
1.0

0.0

0.5000000104E-2

0.2000000010E-1

0.3124999974E-1
0.3125000010E-1

0.4500000010E-1
0.7999999905E-1

0.1249768380E0
0.1249999238E0

0.1800000001E0
0.2449992945E0

0.2811452852E0
0.2812506867E0

0.3200000047E0

0.4049999893E0

0.4997625140E0

0.9904520444E~8

0.9999999948E-1

0.1499999992E0

0.2499999631E0
0.2499999995E0

0.2999999995E0

0.3999998943E0

0.4976837863E0
0.5000076343E0

0.5999999966E0
0.6999294429E0

0.7396285118E0
0.7499313405E0

0.7999995368E0

0.8999989213E0

0.9762513929E0
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0.5000000104E-2
0.5000000104E-2
0.2000000010E-1
0.2000000010E-1

0.3125000010E-1

0.4500000010E-1
0.4500000010E-1
0.8000000009E-1
0.8000000010E-1
0.1250000001E0
0.1250000001E0
0.1800000001E0
0.1800000001E0
0.2450000001E0
0.2450000001E0

0.2812500001E0

0.3200000000E0
0.3&00000001E0
0.4050000000E0
0.4050000001E0
0.4999999999E0

0.9904520431E-8.
0.9999999948E-1
0.9999999948E-1
0.1999999994E0
0.1999999995E0

0.2499999995E0

0.2999999991E0
0.2999999995E0
0.3999999985E0
0.3999999995E0
0.4999999974E0
0.4999999995E0
0.5999999962E0
0.5999999996E0
0.6999999949E0
0.6999999996E0

0.7499999994E0

0.7999999934E0
0.7999999997E0
0.8999999916E0
0.8999999997E0
0.9999999791E0




8),(£,0),  6.,(t, 0)

]

(¢, 0)

{esn [ () 6] # expl(i=)E]}, Slexpl{ltcyE] - exp[(1=x)£]]
K (2.39)

1

2
k{exp[(1+k)¢] - exp[(1-x)£]}, {exp[(1+x)t] +exp[(1-x)£]}]|.

In the following, the quantiﬁies without numerical errors are presented with

the underline. For example, ¢ (%, 0) denotes the analytical transition

matrix while ®¢(Z, 0) denotes the one obtained by a numerical procedure.

By using (2.39), the general solution can be written as
©(8) = 8k, 0z(0) + p., (£, 0)p(0), (2.40)
p(E) = 85, (8, 0)z(0) + 8,, (£, 0)p(0). (2.41)

First, we consider the numerical error in the superposition principle.

Let 1pf'be the terminal value of p when (2.34) is solved with x2(0) =7

0
and p(0) = lpo. Then, by Lemma 2.1, the exact initial value P, of p is

given by

BO = lpo - Q;;(éfso)lpf' (2.42)

can be determined by (2.42). However, a certain

The exact value of Py
error is contained in the numerical solution procedure, such as round-off
and trancation errors. The numerical error may occur in the following
three procedures: (i) The p;ocedurq of the integration of (2.34), that is,
so called formula error of the integration routine, (ii) the procedure of
calculating (2.42), aﬁd (iii) the procedure of taking the inverse of 222(
tf’ 0). In this section, we assuie that the numerical error is due only to

-
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(idi).

Denote the numerically obtained transition matrix by ¢(¢, 0) and put
¢—l(t 0) = i—l(t 0) + ¢,. (2.43)
22° 7 22> 1 :

Then, the initial value 2p0 obtained by the superposition principle is

2P0

'pg - ¢;§_(tf, 0)'p,
= 2y - &'y (2.44)
Define E(f) by

1/2

E(t) = {[x(®) - ()% + [p(t) - p(¥)1?} (2.45)

where £(t) and B(t) are the exact solutions and x(f) and p(t) are the
numerical solutions with the initial conditions z(0) =1r0 and p(0) =2p0.

Then,

E2(2) = [9),(t, 0)e P 1% + [8,, (%, O)e;'pL]?

[Zl.zziexptz(1+K>t1 + exp[2(1-k)t] - 2exp(2t)} +
'-'l]"—{exp[2(1+l<)t] + exp[2(1-k)t] + 2exp(2t)} ] ei 1p}2.

2
N <K4K+2Q ei bJ%,exp[Z(l‘-l-K)t]. (2.46)

For a special case, let 1p0=0. Then,

) P = 299 (Ep OO
and
B(8) n M e [lng lexp L1+ (£ 1. : (2.47)
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Second, let us consider the numerical error in the time-decomposition
algorithm. We consider the case where the overall interval is divided into

two subintervals at t=tl=tf/2. We write
ot ,0 = 0 +e
12071 1271 ¢ 2

-1 o gL ;

Now we follow the time-decomposition algorithm.
1) We solve (2.34) with z(0) =Ty .'L‘(tl) =x(t1) =0 in the subinterval I:
[0, 'bll, and with x(tl) =x(tl),p(tf) =0 in the subinterval I: ['bl, 'L'f].
Subinterval I: '
Let 1p0=0, then x(tl) =2.11(t1’ O)TI’O- Let Py be the initial value with

which the solution to (2.34) is to hit x(tl) =x(t1). Then,

Py =By~ gy, (85 OOy

and *
Subinterval II:
Similarly,
p(t]) =p() =0 (2.50)

2) Next, we determine the boundary value x(tl) of x by (2.20) of

Corollary 2.1, that is,

z b a(t) = a(t) - IHE - e,09, (8, 08, (8, 0] =z, = 6 (2.51)
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where P = p(E]D - p(t*l) and

oy e : _
§ = (L~ +%¢,)[-e,0,,(¢;,09,,(t, 0)myl + €,P. (2.52)
Substituting

_ ; ]

P = 891 (85 00y = 955 (%, 008, (25 008y, (2, Oy

‘ | (2.53)
I = 85080 0855 (b 0y (5o 1)

into (2.52), we obtain

§ = {-ey [ 91,(¢,5,0)09,5(t, 0)i22(tf, t) +g,1,, (81,008, ,(2,0) +

-1
3) Finally, we solve (2.34) with x(0) =Ty x(tl) =, in the subinterval I:
[o, t1], and with x(tl) =%, p(tf) =0 in the subinterval II: [7';1, 'bf]. The

initial estimate of the missing condition in each subinterval is set to

zero. The analytical value x. is given by -

1

2y = 8y (81, 00 = 8, (by5 00855 (8, 008y (£, OV - (2.55)

~

I) The calculated value po of p(0) with which the solution to (2.34) is

to hit .'L'l is .

-1 ‘

Po
[975(t1> 0) + €,z - 6 = 8 (6, 0),]

= D ’ - - - _1
=Py *eplzy = 8y, 0y - 8] - 89,5 (2, 0)

- &, 5 (2.56)
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where
_ -1 -1
61 = ez[ilz(tl’-o)-‘ﬁzz(tf’ 0)i21(t . 0)110 + 6] + 6_912('1;1, 0). (2.57)

II) Similarly,

+ o
= Lagp(bps £)) + 5310y (b £1) @y = 6)
= BUED = ey (b ) + [65)(Ep b)) + €310y, iy £)6
= E_(tp - 52 . (2.58)
where
_ -1
8y = €391 (B 8108y = [055(Pps B1) + €310y (Bpy 26
e0g1 (B £ 1811 (81, 0) = 8, (E ), O3 (Ep, 08y (£ 0y
[ﬁt;;(t ’ tl) + 53]:{21(13]‘., tl)ﬁ . . (2.59)

Now we evaluate (2.54), (2.57), and (2.59). Since, for sufficiently -«

large Kk and t,

1
1, =

o(t, 0) % exp[ (1+k) ¢] |: K] (2.60)
1l

the following relations are obtained:

§ n [-EZ-(EIE + 64)%éxp[(2(]_.+i<)t1] + 64{%exp[(1+|<)tl]

- %exp[(1+|<.)t1]2|<exp[-(1+|<)t1] 5 exp[(14+Kk)t ]}] LA
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€
2
;-ﬁ—exp[Z(lﬂ)tllﬂo, (2.61)

Sxe zz1 exp[(1+<) ¢, ] 2exp[- (1+.<)tf] eXP[(1+|<)tf]1r +

{52 + 2kexp [—(1+|<)t1] 16
2

2
0~ Bk °XP [2(1+K)tl]1r0

€

€2
7 ©XP [ (1+|<)t1]11

. :
;—fexp[(lﬂ)tl]no . (2.62)

[e K expl (14%) (£ - tl)]{-]i'-exp[(1+|<)tl]— -2—]"-<-exp[(1+1<)tl]-

2 &
2exp[—(l+|<)tf]—;-exp[(l+l<)tf]} + {2exp[- (1) (B = £)] + eg)
K €2
Eexp[(1+|<) (tf - tl)] S—Kexp[2(1+|<)t1]]1r0
= {2exp[-(1+k) (tf - tl)] + 63}—1—6exp[(1+|<) (tf + tl)]no
€y e
L g exp [.2(1+K)tl]“0 A (2.63)

We define E'TD(t) by (2.45) for the error estimation of the time-
decomposition algofithm. Then,

I) For O0c< t;tl,

EZ () = [95,(t,0) + ¢3,(£, 0)162

° 2

2 €
] K4:21 exp[2(1+¢) ¢] 2exp[2(l+|<)t ]n (2.64)
and therefore
Epp(t) & 1|€2||Tf lexp [ (1+6) (¢ + )1 . (2.65)
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I) For t <t=<t

1=r="p
2 -
Ezp(E) = (08;,(t, £)8 + 0., (£, £)6,12 + [0, (£, £)6 + 8, (2, £,)6,1%)
2 2
= (52 4 S 4 2K g Jexp 20140 (£ - £))]

1- I<2 52 1- 52] + [K 241 2 + k241 52 K2+l

- 42 - 4

+ [ 2%2

exp[2(1-k) (¢ - tl) ].

Since, from (2.61) and. (2.63),

2 2
K+l .o +l 2 ., K +1 _k 241 2
L i el Pl ol CUICICPY)
0
) K241 €2 exp[4(1+c) ¢, ]
64x2 “2 °XP 1

and

1-k2 ,  1- K262

;] 2¢2 02 22[(6)2'52]_0

we obtain

2
2 (8 = S 22 (41t exp 2010 (8 = £
thus,
Epp(®) = T e [Ing lexp[(1-0)E + (1430081,

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Now we examine the above mentioned result by using the result of

Example 2.1. The exact values <. ‘and p(t‘i‘), the numerical values x, and

1

p(t‘i‘). and 6 and 6,  are

2 0

- 3T =

1



@, = 0.45399929763128-4, p(¢}) = 0.2269996488093E-3 ,
@, = 0.4539603683907E-4, p(t}) = 0.2269801841891E-3, (2.71)
§ = -0.389292405E-8 , 8§, = 0.194646202E-7.

2
(2.71) shows that the relation 62==-K6 is nearly satisfied by the

numerical solution. Substituting (2.71) into (2.61), we obtain

€, = -0.1457141E-19 €2.72 )

Figure 2.2 shows the results discussed above. In the figure, the dot
represents the error norm of the solution by the superposition principle
and the cross represents the one by the time-decomposition algorithm. The
exact value of Eﬁw(t) is also shown by the solid line. It is seen that
the numerical error is much reduced by the time—decompésition algorithm and

that the numerical error is analyzed effectively by the above discussion.

2.7. Concluding Remarks

In this chapter, the time-decomposition algorithm is proposed for the.,
solution of a.stiff linear TPBVP. The algorithm belongs to the multipoint
approach method. The algorithm first divides the prescribed overall
interval into several subintervals. Then, assuming the values of some of
variables at torn times, suﬁ-TPBVP's are solved in each subinterval.
Finally, the assumed values are corrected so as to ensure the continuity
of the solutioq? at the torn times. It is shown that the algorithm can be
applied to the problem, so long as it has a unique solution in each sub-
interval.

The algorithm succeeds in overcoming the difficulty which the super-
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position principle encounters. That is to say, the missolution caused by
the stiffness of the given problem and/or the length of the integration
interval is much reduced by the proposed algorithm.

In the discussion of this chapter, only the linear TPBVP is dealt with.
This may seem a serious limitation of the time-decomposition algorithm.
However, since the nonlinear TPBVP can be reduced to a sequence of linear
ones by the interaction-coordination algorithm and the quasilinearization
method, the limitation is not so serious. The combined algorithm will be
used in the subsequent chapter.

In Ref. 71, querts and Shipman have pointed out important questions
to be resolved for the multipoint approach method: that is, (i) How many
multipoints? (ii) Where shall the multipoints be specified? (iii) How shall
the initial wvalues at the multipoint be selected? They have suggested
that (i) the number of multipoints should be as few as possible to make
the size of matrix to be inverted as small as possible, (ii) the points

should be specified near the region of numerical instability if the problem

<

has round-off or instability difficulties, and (iii) the easiest way to ¢

choose the initial trial values for the internal points is to select the

missing initial conditions at ¢, and integrate forward until ¢ _.. They

0 7
have treated the nonlinear TPBVP as it is and they must solve nonlinear
sub-problems by the shooting method. Therefoge, the selection of the
multipoints and the initial conditions has significant influence on the
convergence of the algorithﬁ.

In use of the proposed time-decomposition algorithm, we may answer to

the above question as follows: (i) The number of multipoints (torn times)

had better be as few as possible. However, since the size of matrix to be

-
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inverted is half as large as that of Roberts and Shipman, more points may
be specified. For the determination of the maximum length At of sub-
intervals, Meile et al. [47] have proposed to make exp[lmaxAt] sufficient-
ly small, where Amax is the maximum eigenvalue of the system matrix. If
Af is too large, the solution obtained may contain serious discontinuities
at torn times. (di) and (d4ii) Since in each subinterval the superposition
principle is applied, the selection of the multipoints and the initial
conditions is not a so serious matter, so long as the length of each sub-
interval is suitable. When the initial condition is chosen to be near the
exact solution, of course, the numerical error is much reduced as we have
seen in Section 2.6. Thus, the proposed algorithm is applied much easily

to TPBVP's than the algorithm of Roberts and Shipman.
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Subinterval 1 Subinterval 2

—— e - -—-bp—
¥
p(t;) r
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Fig. 2.1. Solutions by time decomposition.
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o: without time decomposition
- (o]

x: with time decomposition ©
107 0

107 0

Fig. 2.2. Dependence of error norms of the

numerical solutions on time €.
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Chapter 3

Solution of Nonlinear Optimal Control Problems
by Use of the Time-Decomposition Algorithm

3.1. Introduction

The optimal control of physical systems has been a matter of central
concern in the control problem and many workers have developed algorithms
for the solution of the problem of various types. Since, except for a
minority of current engineering problems, it is difficult to solve such a

problem by pure-analytical methods [12, 36, 39, 44], the practical interést"
has been layed on the development of numerical techniques.which enable us
to solve such a problem on a digital computer.

This chapter is concerned with showing the application of the time-
decomposition algorithm developed in the precgding chapter to the solution
of nonlinear optimal control problems in conjunction with the linearization
method such as the quasilinearization method [4, 42] and the interaction-
coordination aigorithm [55, 61, 63]:

The system considered in this chapter is described by a set of non-

linear differential equations and the objective is to minimize a perform-
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ance index of a quadratic type in state and control. For such an approach
based on the state-space formulation, the perfect information about the
system ‘to be controlled must be available and this is one of reasons why
some researchers have claimded that the transfer function method which can
be used only with a partial information about the system is superior to the
state-space approach [29]. There are, however, many problems to which the
state-space approach can effectively be applied. Especially in the field
of aerospace engineering, the approach is effective by nature of the
problem. Also in other fields, many workers have made efforts in the
application of the approach [53].

We consider in ;his chapter the following nonlinear optimal control

problem. The dynamical system is governed by the differential equation:
& = A(t)x + B(t)u + f(t, x) » ) (3.1)

where x(t) is an 7n-dimensional state vector, u(t) is an m-dimensional
control vector, and A(t) and B(t) are matrices of compatible order. f is
an n-dimensional nonlinear function of €2 with respect to . Both cases:
are considered that A4, B, and f are continuous in ¢ and that they are
piecewise continuous. The objective is to transfer the state of the system
from a certain manifold to another manifold so as to minimize an associated
perforﬁénce index: =

7
J [2'Q(E)x + u'R()uldt , (3.2)

%o

J =

N =

where Q(t) and R(t) .are positive semidefinite and positive definite

matrices, respectively, of compatible order. The control funection u is
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assumed not to be subject to any constraint such as (1.4).

For the solution of the problem, many algorithms have been proposed.
They can be classified into two categories: (i) the direct method [8-11,
15, 34, 35, 46, 48, 50, 65] and (ii) the indirect method [4, 6, 16, 17, 41, 42,
55, 63, 73]. The direct method generates a sequence of control functions so
that the performance index may successively be optimized. The control
function is generated by correcting the preceding control function by using
the solution of the adjoint equation. For this approach, main questions
are how to choose the initial approximation of the control function and
how to correct it.

On the other hand, the indirect method reduces the problem into a
two-point boundary—vélue problem (TPBVP) by applying the minimum principle
or the variational principle and the optimal control is determined by its
solution. Therefore, for the indirect method, the main question is how to
solve nonlinear TPBVP's.

For the solution of nonlinear TPBVP's, many algorithms have been
proposed, such as the shooting method [2, 40, 64, 70, 72], the invariant
imbedding [5, 23], the quasilinearization method ( or the generalized
Newton-Raphson method )[4, 42, 49], and the interaction-coordination
algorithm [55, 61, 63]. The former two methods treat the nonlinear problem
as it is, while the latter two methods reduceé the nonlinear problem into
a sequence of linear problems. The TPBVP derived by the minimum principle
often has a stfff s;ructurei The numerical error affects much the
convergence characteristics of the linearization method for such a problem.
Therefore, in this chépter, the nonlinear TPBVP is solved by the method,

i.e., the quasilinearization method and the interaction-coordination

-

- 45 -



algorithm, with the additional use of the time-decomposition algorithm.

In the former half of this chapter, the solution of a nonlinear
regulator problem with continuous quantities 1s considered. That is to say,
matrices A and B, and the vector function f are assumed to be continuous
in ¢. The derived TPBVP is linearized by the quasilinearization method
or the interéction—coordination algorithm. In Refs. 55 and 63, we have
shown that even the TPBVP with strong nonlinearities can be solved by the
interaction~coordination algorithm, by choosing appropriate values of
parameters, called weights.and that by experience one must choose a large
value for one of the weights to attain fast convergence for such a problem.
However, since the reduced TPBVP's have a stiff structure with large
values of weights, there is a limitation to the available values of
weights and therefore, to the convergence range of the algorithm. The
quasilinearization method also fails to obtain the solution of the problem
with Jacobian matrix characterized by large positive and large negative
eigenvalues [47]. We show in this chapter that the convergence character-
istics of these methods are far improved by the additional use of the time:
decomposition algorithm,

In the latter half of this chapter, the case is considered that
matrices A and B, and the vector function f contain discontinuities at
several intermediate points of the overall coétrol interval and moreover
some of the state variables may be specified at these points. These points
are called 'corner times.' Such a problem is called an optimal control
problem with discontinuities [30, 32, 75] or a multiple-target problem [56,

57, 74, 76] because of‘the additional conditions on the state.

By applying the minimum principle, we obtain a nonlinear multipoint

o i =



boundary-value problem (MPBVP) as the necessary condition for optimality.
Since the corresponding solution to the adjoint equation is discontinuous
at the points where the state variables are specified? it is impossible to
integrate the given differential equations in series. Therefore,
decomposition of the overall interval into several subintervals at several
points is essential to the solution of such a problem. These points are
called 'torn times.' The set of torn timeés includes all of the corner times.
The time-decomposition algorithm decomposes the overall interval into
several subintervals. The boundary values at torn times are initially
chosen arbitrarily and then corrected so as to make the solutions
compatible at torn times. Then, the algorithm is effectively applied to
the MPBVP in conjunction with the linearization method. The specified
values of the state variables at the corner times are chosen as the initial
estimates and the correction is made except for these variables. Even to’

the case that the corner times are also the parameters to be optimized, the

time-decomposition algorithm can be applied. The corner times are first

«,

e
assumed arbitrarily and the algorithm is applied together with the lineari-

zation method. Then, their optimal corrections are made by a gradient
method.

In- Section 3.2, a nonlinear regulator problem of continuous type is
discussed. 1In Section 3.2.1, the problem is éormulated and the TPBVP is
derived to obtain the optimal control. In Section 3.2.2, two lineari-
zation methods, the. interaction-coordination algorithm and the quasi-
linearization method are briefly sketched and the applicability of the
time-decomposition aléorithm to the TPBVP linearized by the former

algorithm is discussed. The combined algorithm is applied to two physical

Y
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problems in Section 3.2.3.

Following the continuous case, the discontinuous case, the multiple-
target problem is discussed in Section 3.3. The problem considered is
stated and the necessary condition for optimality is derived in Section
3.3.1. Then, in Section 3.3.2, the time-decomposition algorithm of
Chapter 2 is médified to solve the derived MPBVP. 1In Section 3.3.3, two
linear problems and a nonlinear problem are solved by the proposed
algorithm and the solutions to linear problems are compared with the

T

analytical one.

3.2. A Nonlinear Optimal Control Problem

3.2.1. Problem Statement
Consider the nonlinear control system defined by (3.1). The objective
is to control the system so as to minimize the performance index, starting

the initial state x(t0)=1T where 7_ 1is a prescribed constant vector.

0’ 0

The initial time to and the terminal time tf are assumed to be specified.

The terminal condition on X may be or may not be specified, but, for
simplicity, we assume it is specified as x(tf ==ﬁf in the following
formalization. Both cases are treated in examples.

Define the Hamiltonian H of (3.1) and (3.2) as follows:

P =-%(x'Qx +u'Ru) +p'(Ax + Bu + f), (3.3)

where p is an°n—dimensionéi costate vector. Then, due to the minimum

principle, a necessary condition for optimality is derived as follows:
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%= (%)' = A@t)x + B(t)u + f(¢, 2) , (3.4.1)
%=‘(%)' = -Q(t)x - A" (E)p - (%‘E)'p, (3.4.2)
(g—z)' = R(t)u + B'(t)p = 0, C3-4:3)
x(ty) = m4 5 x(tf) =Te. £a.5)

Therefore, substituting u==-R_lB'p into (3.4.1), we obtain the following
nonlinear two-point boundary-value problem:
al® x

dE = D(¢) + h(t, x, p) (3.6)
p p

with the boundary condition (3.5), where,

A(E), -B(R L(£)B' (£)
D(t) = ’ (3.7)
~Q(t). -A'(t)

. || Bt F(t, )
h(t,x, P) = = > (3-8)
hz(t, By 1) -(%‘E)'p

and higt’ x,p) 1is an n-dimensional vector function (=1, 2).

3.2.2. Linearization of the Nonlinear TPBVP

Since it is usually impossible to solve the nonlinear TPBVP analyti-
cally, one must resort to n;merical techniques for the solution. In this
section, two linearization methods, the quasilinearization method [42] and

the interaction-coordination alforithm [55, 63] are briefly sketched in

view of the additional use of the time-decomposition algorithm.

0y
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(a) the quasilinearization method

Let (k_lx', k—lp')' be (k-1)-th approximation to the solution of

(3.5) and (3.6). Then, first-order Taylor series expansion of (3.6) about

it is
kx . kx
d _ k k
'd? k —D(t) k +h(t’ Xy p)
p p
‘ k k-1
k-1 k-1 k-1 k-1 r - x
. dh(t, = p) dh(t, "=z, "p)
= [D(8) + [ * 3 11} +
ox d k k-1
3 p-"p
k-lx )
-1 -1
D) gy |+ 0 K, (3.9)
p
k _ k -
x(to) = “0’ x(tf) Trf'
where (kx',kp')' is the value of the k-th iteration. Therefore, the
solution of (3.5) and (3.6) is obtained by the following algorithm: !
Step 1: Assume nominal values 1z and 1p of x and p, respectively,
which satisfy x(to) =1Tp and x(tf) =1Tf. Set k=2.
Step 2: Compute k.'c and kp by solving (3.9).
Step 3: 1If kx and kp are sufficiently close to k—lx and k_lp,
respectively, that is, if kG defined by
?f :
kg = {-J i - L2 gty - Flyy Bgli2 (3.10)
%

is sufficiently small, the calculation is terminated. Otherwise, replace
g s . ;

K x and k lp by kx and kp, respectively, and replace k by k+l.
Then, return to Step 2.

-
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The above algorithm is called the quasilinearization method or the
generalized Newton-Raphson method [4, 42].
(b) the interaction-coordination algorithm

Next, we consider another linearization method. We introduce scalar
parameters B and «k, called weights, and vector variables Yy () and q(%),

called interaction variables. Using these, we modify (3.6) as follows:

Al . 'y
a9t D* (%) + [D(2) - D*(¥)] +h(t,y,q) , (3.11)
P p %

-

where

A(t). - BB(H)R L(£)B' (8)

D*(¢) (3.12)

- kQ(t), -A'(¢)

Then, for the solutions & and p of (3.11) with the boundary condition

(3.5) to be optimal, the additional constraints:

t=y, p=gq (3.13)
must hold.
Since (3.11) is linear in x and p, we can easily solve the TPBVP,
once the values of y and g are provided. If the solutions & and p
satisfy (3.13), they are the solutions to the TPBVP of (3.5) and (3.6).

However, generally, it is nct the case, that is to say, the interaction

balance:

x(t) - y(t)
r(t) A =0, tg [to, tf] (3.14)
p(t) - q(?)

is not satisfied. The interaction-coordination algorithm adjusts y and

q as follows:

LY
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k+1 k
Y

Y k
e = | % +ar , (3.15)
q q
until
¥ tf
kG A [Eﬁ(t_l-_t_)J kr' ('Ib)klﬂ(t)dtll/2 (3.16)
f o t

is reduced to zero or sufficietly small value, where k is the iteration
number and o is a positive constant step size.

By experience, we know that a large value must be chosen for one of
the weigths to obtain fast convergence. However, the larger the value is,
the stiffer (3.11) is. Therefore, there is a limitation on the availble
value for weights in view of the numerical error. As we mentioned in
Chapter 2, the time~decomposition algorithm is effective in reducing the
numerical error, the additional use of it remarkably is expected to improve

the convergence characteristics of the interaction-coordination algorithm.

Remark 3.1.

' The transition matrices of linear TPBVP's derived by the interaction-
coordination algorithm are the same to each other. Therefore, we need to
calculate the transition matrix, consequently T of (2.16). only once in
the whole iterations. On the other hand, those of linear TPBVP's derived
by the quasilinearization method are different from each other and
therefore we szt calculate them and T at every iteration. Thus, the
additional use of the time-decomposition algorithm is a less burden to the

interaction-coordination algorithm than to the quasilinearization method.
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In the rest of this subsection, we show the applicability of the time-
decomposition algorithm to the linear TPBVP of (3.5) and (3.11) in the case
that 4, B, @, and R are constant matrices. To this end, it suffices to

pro've the following theorem.

Theorem 3.1.

Assume that A, B, @, and R in (3.11) are constant matrices. Let ¢

be the transition matrix of
- = D% P
> D*(t) - (3.17)

Then, ¢12(t, 0), the element matrix of ®, is nonsingular for arbitrary ¢

(t#0), if the pair (4, B) is controllable.

To prove the theorem, we begin with the following lemma, due to

Wonham [79].

Lemma 3.1.
Assume that the pair (4, B) is stabilizablet and the pair (C, 4) is
detectablett. Then, for arbitrary § (>0) and R (>0), the matrix Riccati

equation

PA+7A'P - PERYB'P +0'QT = 0 (3.18)
a ]
£ »

has a unique nonnegative solution P.

From Lemma 3.1, we see that for 4, B, @, and R in the hypothesis of

Theorem 3.1, there exists a unique ‘nonnegative solution P to (3.18).

+: there exists a mattix K such that A+BK is stable.

++: there exists a matrix K such that A+KC is stable.

=53 =



Now we prove the theorem.

Proof of Theorem 3.1.
First, we prove the theorem for &=0. In this case, from (3.17),

p(t) is given by
p(t) = exp[-4'tlp, , (3.19)
then,

# & fg = eBR':lB'exp[-A't]po (3.20)

and

t
z(t) = exp[At]:Jc0 - BJ expl[A(t - 'r)]BR—lB'exp[A'(t - 1) ]ldt-
0 .

exp[-zl't]p0 . (3.21)

where xo and po are the initial conditions of x and p, respectively.

Therefore,

z .
(¢, 0) = - BJ exp[A(t - T)]BR_lB'exp[A'(t - 1)]dtexp[-4"¢] . (3.22)
0

¢12
Since exp[-A't] is nonsingular, we consider the nonsigularity of

t
ff,lz(t, 0) = I exp[A(t - T)]BR_lB'exp[A'(t - 1)]dt (t#0) . (3.23)
0

Assume, to the contrary, that 512(751, 0) is not nonsingular. Then, there
exists a non-zero vector Py such that

$1,(t;, 0p; = 0. (3.24)

Then,
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t
1
J piexp [A(tl - 1) ]BR_lB'exp [4' (tl = ) ]Pld’f
0

'..

-
‘1

J 8" expla® (£, - 0lp; ||R_ld'r = 0. (3.25)
0

Since R is positive definite, (3.25) means that
. ¥
plexp[At]B =0, te [0, 7‘;1]. (3.26)

Differentiating (3.26) with respect to t, we obtain

n-1

pjlB, 4B, ..., 4"77B] = 0, (3.27)

which contradicts the controllability of the pair (4, B). Thus, ¢12(t, 0)
(t#0) is nonsingular.

Next, we consider the case @ >0. Define a 2nxX2n-dimensional matrix

I,0

By L,

5 _ (3.28 )

where P is the above mentioned solution to (3.18). Then S_l is identical

21 &
N p| (3.29)
2

o4 |®] 1[71]
%l:z] = SD%S [z] . (3.30)

to S. -Let

then, from (3.17)
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Here,

1 A-BR-]'B'P, BR 1B’
SD%S — = q . (3.31)
0, - (A-BR B'P)'

Thus, this case is reduced to the case & =0. Assume that ¢12(t,0) is not

nonsingular, then we deduce that the pair (A--B}?r'ml

B'p, B) is not control-
lable, wgich contradicts the controllability of the pair (4, B)[80]. Thus,
the theorem is proved.

Q.E.D.

3.2.3. Illustrative Examples

In this section, we examine the numerical solution of physical
problems in order to illustrate the application of the algorithm described
in the preceding subsection. For the numerical integration of the differ-
ential equations, the fourth-order Runge-Kutta-Gill method is employed,
where use is made of one hundred grid points. The criterion for conver-

gence is set equal to 5.0x10_5.

Example 3.1 [54].
The following equations approximately describe a three-axis attitude-

control system of an orbiting space vehicle.

xl = xz 5. e
xz = ex4 + ex4x6 + ex3u3 + ul,
. =2, 5
3 4 (3.32)
£4.=-—ex2 - ex2x6 - exlu3 + uz,
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£5‘= x6,

e
]

g = Sy T Uy YRy s

where € 1is a parameter introduced for convenience. The performance index

is taken to be
6 3

I('Xx?% + ) u2)de . (3.33)
7,= =

The initial condition is 2(0) =[1,0, 1, 0, 1, 0] and the terminal condition
is not specified.

To solve this problem by the interaction-coordination algorithm, the
overall system is decomposed into the three subsystem of [xl, .'L'zl, [x3,x4],
and [xs,x6] [55, 63]. For solving one of the subsystems, the variables of
the other subsystems and those in the nonlinear terms are replaced by

interaction vectors. The necessary condition for Subsystem 1 is described

by
il =%, .
572 = -sz + (B—l)qz + e[y4(1+y6) = y3(€y3qZ—€yIQ4 + q6)]:
(3.34)
f)l = - KT, + (|<—1)y:L + €2[ = Y4449, + yl(qz + qg)] .
pz = -K%, - Py + (K-—i)yz + e[q4(1-+y6) - y4q6].

Similar problems obtained for Subsystems 2 and 3 are omitted here.

As an example, let € =6. The terminal condition is given by p(tf)

=0. Figure 3.1 shows variations of G defined by (3.16) with the comput-

ing time T when the problem is solved by the interaction-coordination
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algorithm with the initial estimates 1y and Hq being solutions x and
p, respectively of the homogeneous part of the reduced linear TPBVP.
In the figure, L denotes the number of subintervals. For L =2, conver-
gence rate is very poor since the value of weights is limited small
because of the numerical error. When L=3 and B= 20, convergence is
obtained but for f=30, G is oscillatory. When L=4 and B=30, G
converges quite rapidly without oscillation. In this case it takes 46
iterations to converge. In the figure, we show the best data for a.
Figure 3.2 shows variations of G defined by (3.10) of the quasi-
linearization method with the computing time T for e=3.2. The initial
estimates are taken to be the same as that of the interaction-coordination
algorithm with B=k=1. When L=1, that is, the time decomposition is
not applied, G is divergent. When L =2, the variation of G is

oscillatory because of the numerical error. The value of

6

{.Zl[pi(z.sm) - p;(2.5-0)12}
1,=

172

at the end of the first iteration is 0.031 which is to be zero. When
L = 4, convergence is obtained with the above value 0.002. It takes 12

iterations to converge. For €>3.2, the method diverges even with L =10.

Figures 3.3 and 3.4 show the optimal trajectory and time history of

the optimal control, respectively, for e =6.

Example 3.2 [60].
Next we consider the following minimum-energy transfer of a low-

thrust propulsion vehicle between circular orbits:

= Bff =



X, =&

1 T2

& =z -el2x, +a /@2 +22 + 2232 4

3 % A T e Uy »

x3=x4,

‘ R (3.35)
x4-x3+e[2x2—x3/(xl+x3+x5) ]+u2,

.1':5=.'L'6,

. 5 o 5. ps32

&, eacS/(ac1+x3+x5) +u3,

where € is a parameter introduced for conveniece. The objective is to
transfer the state of the system from x(0) =T to x(m) = “f so as to

minimize the performance index:

m
X2 4.2 442
J 2J(ul+uz+u3)d’t. (3.36)
0
To solve the problem by the interaction—coqrdination’ algorithm, the
overall system is decomposed into the three subsystems in the same manner

as Example 3.1. The derived equations for Subsystem 1 are as follows:
:f:l =z,

- - _ _ _ 2 2 2 3/2
z - Bp, + (8 l)q2 2ey, eyll(yl +yz t ys) .

8
!

A
= - _ 9.2 2 L .9y _
Py = —kxy —py vy +elq, (297 +y3 +yg) - 3y (yqa, +ysag)l/

5/2
@y tyd)T, (3.37)
Py = —KkZ, - Py + Ky, = 2e:q4 .

where - |<.'Jc1+ KYq and - Kx2+|<y2 of the third and the fourth equatiomns,
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respectively, are artificially added terms to accelerate the convergence
[55]. Similar equations for Subsystems 2 and 3 are omitted here.

By way of example, let L [0,0,1,0,0,0] and n =[%*, -0.75, 1.5, 0,
0, n/5], that is to say, xl(ﬂ) is set free. Then, pl(n)=() is obtained
from the necessary condition for optimality. Figure 3.5 shows variations
of G with the computing time T for € =4. When L=1, that is, when
the time decomposition is not applied, (G 1is divergent. The reason is
that the values of the:weights are to be bounded small because of the
limitation of numerical accuracy. On the other hand, the variation of
with L=2 is osciilatory. Since in this case larger values of the weights
can be used than in the previous case, the divergent tendency is suppressed,
but convergence is not attained. When L =4, since the algorithm can use
much larger values of the weights without loss of numerical accuracy,
convergence is obtained.

The problem is solved also by the quasilinearization method. Figure
3.6 shows variations of G with the computing time T for e€=4. We see
from the figure that, since the TPBVP derived by the quasilinearization
method is not so stiff, the appication of the time-decomposition algorithm
has only disadvantage of consuming time.

In Figures 3.7 and 3.8, the optimal trajectory and time history of

the optimal control, respectively, are shown for e =4.

Remark 3.2.
It should be noted that it has no advantage to apply the time-
decomposition algorithm to the TPBVP to which the ccnventional super-

position principle can offer a satisfactorily accurate solution, but,
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to the contrary, has the disadvantage of consuming more computing time.

3.3. A Multiple-Target Problem

Next, we consider the case that the system equation contains dis-
continuities at corner times and that some elements of the state variable

are specified there [56,57].

3.3.1. Problem Statement
In this section, we discuss a solution of the following multiple-

target problem. The system equation is described by

& =4Oz + By (Du + fi(t,2), b, <t<t; (i=1,2,...,0),(3.38)

.where x(t) is an n-dimensional state vector, u(t) an m~dimensional
control vector, Ai and Bi.are nxn~ and nxm-dimensional matrices, respec-
tively, and févis an 7n-dimensional vector function of the class (2 with
respect to x and these are continuous in te [ti—l’ ti]' The boundary

conditions are given by
Lﬁ%tﬁ =T (2=0,1, ..., N), ) € 3..39)

where ﬂi is an ri-dimensional prescribed vector and Li is an rixn—
dimensional matrix containing only one nonzero element in each row, and
it is assumed that ti is not specified and is a parameter to be deter-
mined (Z=1,2, ..., N-1).

The objecEive is to minimize the following performance index of the

quadratic type:

. N )
J = -;-J [2'Q(t)x + u'R(E)w)dE (3.40)

.0
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with respect to u and ti (2z=1,2, ..., N-1), where Q(t) is an nxn-
dimensional symmetric positive semidefinite matrix and R(%f) an mxm-
dimensional symmetric positive definite matrix.

Now define the Hamiltonian H of (3.38) and (3.40) as

i
H=—%(x'Qx+u'Ru)+1:le'(Aix+Biu+fi). (3.41)

Then, according to the variational principle, the necessary conditions for

optimality are obtained as follows [1, 12].

2% )
z = (ap )' = A (@&)x + B (B)u + f.(t, ), (3.42)
: o) , of; telt; g0 %)
P -G = meWE A - (s (36
aH(i)
(Bu )' = R(B))u + B%('b)p =0, J (3.44)
gtiéﬂ(tg) ‘-H(t%'-*) =0 (2=1,2, eeey, N-1) (3.45:).

L

with the boundary conditions

Lix(ti) = (1=05 15 anes W) 5
(3.46)
pj(t;;) = pj(tz) = Vg (if xj(ti) is not specified;<=1,2, ...,8-1),
where p;];(ti) denotes the j-th element of p(ti) and vji is a Lagrange
multiplier which is to be détemined so as to make xj continuous at t=t1:.
Substitution of u=—R-lB1':p into (‘3.42) yields the following multipoint

boundary-value problem (MPBVP):
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x A.(t), -E.(B) || = h,.(t, x)
sz? =1 * v $ | 12 (2=1,2, .., W) (3.47)

constrained by the boundary conditions (3.46) and the optimality condition
1 ,
for ti (3.45), where Ei =BiR B1':, hli(t’ x) = fi(t’ x), and hzi(t’ x,p)=
oz,
-Gz )P
Once the ti's are assumed, the problem is reduced to solving the
MPBVP of (3.46) and (3.47).with discontinuities at the specified corner
times. The solution to the MPBVP, however, does not necessarily satisfy

the optimality condition (3.45). Then, the assumed values of the ti's

are to be corrected by an appropriate algorithm. In our algorithm, they

are corrected by

2+1 L

PR nsign[g’g 3« =152, seng =1
1 t

)’ (3.48)

until (3.45) is attained, where £ denotes the iteration number and n is
a positive constant step size which is reduced according to the change of .
the sign of ge.-

7

Thus, the multiple-target problem is solved by a three-level

algorithm. The. objective of the highgst level is the optimal correction
of the corner times, that ié, tfs are corrected according to (3.48), using
the solution to the MPBVP with specified corner times obtained in the
lower levels. The nonlinear MPBVP is reduced to a sequence of linear
MPBVP's at the intermediate level and they are solved at the lowest level

by a discontinuous version of the time-decomposition algorithm. In the

following, the interaction-coordination algorithm is adopted for the
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linearization,

3.3.2. Modification of the Time-Decomposition Algorithm

In this section we xpodify the time-decomposition algorithm of
Chapter 2 to solve linear MPBVP's. Hereafter, for simplicity, the dis-
continuity is assumed to occur only once during the overall control
duration. Then, let N=2 and let the corner time '!:=t1. Also, for
simplicity, we restrict our discussion to the case where the boundary

conditions are given in thé form:

) 1y ED = %100y ED |

b e, 201 = | T2 %) - =0 (£=0,1,2), (3.49)

| %30 %) T F30) (t:E)_

where xj(i) is an rj(i)—dlmenSJ.onal vector with rl('i) +r2(i) +r3(i) =n
(7=0,1,2). (3.49) means that some elements of the state variable &z
are specified at t=t1 and that x is continuous in ¢.

In this case, the necessary conditions for optimality (3.42)n(3.46)

can be written as:

] Subinterval 2: te [t‘l, tz]

Subinterval 1l: te [to, tl

’ \ . 3
& = Alx + Blu + fl(t,x), & = Azx + Bzu + fz(t,:z:),

f1 . 3f2
p=-dzr - Ap - GG (3.50:1) p =-Qz - A)p - (G~ 2)'p, $(3.50.2)
(1) (2)
oH i _ Yoo _ oH . P
()" = Ru +Bp = 0,] (gg—)' = Fu+Bp=0,]

@) =-;‘—(:::'Qx + u'Bu) +p'(Ax + Bu+ f) (¢=1,2),
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z(t) = T, z)(8) = T,
x,(8) = 7, z(t,) = T,

&(3.51.1) (3.51.2)
pl(tl) = Vlls . pl(tl) = vll’
p3(t)) = Vg, P3(t)) = vyps

J a

(1) (2)

A e @)y -2 @) =o. (3.52)
gtl-j 1 1

Therefore, the problem is reduced to finding the boundary conditions
xl(tl) and x3(t1) which guarantee the continuity of pl(t) and p3(t) at
t= tl, and also to finding the optimal corner time tl which satisfies
(3.51).

Once tl is assumed, the MPBVP of (3.50) and (3.51) can be solved
with use of both the interaction-coordination algorithm and the time-
decomposition algorithm. Suppose that (3.50) is linearized as (3.47).

~—— o —
Let p,(t%) and p,(tf) be the values of the solutions p, and p, at
1'71 3771 1 3
“
t= t]i_, respectively, to the TPBVP's with the boundary conditions x(to) =Ty
TN N )
xl(tl) —xl(tl) s xz(tl) =Ty x3(tl) —x3(tl)-,_ and x(tz) =T,- Then, from

Theorem 2.1,

N e = -
Py (#]) - P (& ) (£9) T19™ Wy

. - =T o + . + E ~ €3.53)
P4(t7) - p3(¥]) Tqily 271 3

where rij is an ri(l)x r‘j(l)—dlmen51onal matrix, Wi is an ri(l)-

dimensional vector with
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Ty10 T120 Ty5 a
« |T11° T13 v e e :
Psyw Tygs Pl = T B = . LWL E = V. (3.54)

. 310 T33
312 U322 T3

Hence, similarly to Corollary 2.1, the exact solution X¥=[xi(t1),x5(tl)]'
is given by
X=X-T B, (3.55)

where X=(21(2,), 231", B= 1G5 -5, (B, G, -5, "1,
Then, the linear TPBVP's are solved again with the exact bouﬁdary condi-
tions. The interation-coordination algorithm is iterated until the solu-
tion reduces (3.16) to zero or a sufficient small value.

After the lowest and the intermediate level calculations, the corner
time t1. is corrected by (3.48). The highest level calculation is carried

out until 9e is reduced to zero or a sufficient small value.
1

3.3.3. Summary of the Algorithm
In this section, we summarize the results obtained above into the

form of an algorithm.

S~—— T —
Step 1: Set &=1, k=1. Assume !t . Let 1x1(1t1)=1x3(1t1)=0, y(t) =

1
J'q(f:) =0,te [to, t2]. Choose appropriate values of B, k, a, and n.
Step 2: Solve the homogeneous part of (3.50) .with the boundary conditions
¥=e , the v-th unit vector, z(t;) =0, ,('t;) =0, and =(¢£,) =0. - Then,
the differencg P represents the v-th columm of I'. Calculate I'—l.

Step 3: Solve each linear TPBVP of the subintervals with the boundary

conditions
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Subinterval 1:

N
2t) = 1 @y (8) = KB B, my(8) =, wmy(e) = K (),

(3.56)
Subinterval 2:

Y i ]
z () = kxl(tl)’ 2y () = M, z3(8)) = k@?’ x(t,)) =m,.

& /\_/+ /\1
Let us denote the solutions P, and py at t==ti as pl(ti) and p3(ti),
respectively.
Step 4: By (3.55), determine the exact solution x(tl). Solve the sub-
interval TPBVP's again with use of x(tl) and L and Tye Let us denote
the solution as kx and @p.
Step 5: 1f kG of (3.16) is small enough, proceed to Step 6. Otherwise,
O
correct ky and kq by (3.15), replace kx (t,) and ké“?%’) by kx k)
1'71 3'71 1'°1
and kx3(tl), respectively, and replace k by k+l. Then, return to Step 3.
Step 6: Compute ‘q’gtl by (3.52). If jz'gtl is small enough, the optimum is

attained and the calculation is terminated. Otherwise, correct zt by

1
(3.48), replace & by 2+l, and return to Step 2.

3.3.4 Illustrative Examples

Three physical problems are examined to illustrate the applications
of the present algorithm. For the .numerical integration of the differ-
ential equations, the fourth-order Runge-Kuttg-Gill scheme is employed,

where use is made of one hundred grid-points in the overall interval.

Example 3.3 [76].

Let us consider the problem of minimizing the functional:
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2

Jlul = J u?dt (3.57)
0
with respect to the control # and the corner time tl. The state equa-
tions governing the system are
| él =z, , él =x,,
te [0, t,) “(3.58.1) te[t.,2] (3.58.2)
T, =u ; x, = 2u L
2 ’ ’ 2 >
and the boundary conditions are
xl(O) =1, xl(2) =0,
(3.59.1) (3.59.2)
%,(0) =1, x,(2) =0,
xl(tl) = 0.5. (3.60)

(3.58) implies that the mass of the article is reduced by a half at the
corner time t..
1 =
For this problem, the necessary conditions for optimality are written

as follows:

£ =% £ = %> W
.'i:z=-0.5p2, & ;f:2==-2p2,
te [0, ) (3.61.1) } te[t),2] (3.61.2)
b =0, B, =0,
By = -py> : Py =Pyp>
/ 7
2 (0) =2,(0) =1,  (3.62.1) £ (2) =2,(2) =0, (3.62.2)
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z (t) = 0.5, (3.63)
p,(t]) = p,(t]D) , (3.64)

u= -O.Sp2 , (3.65.1) u = —p2 , (3.65.2)

gy, = UEDE +p D=y (8) +p, EDuE) - uED? - py (D, (5)) -

2p2(t’lf)u(t”1f) =0. ' (3.66)

It is easily shown that the general solutions to (3.61) are given by

EN

z () = [clt3 = 3c2t2 + 12, + 12¢,1/12,
= 2 _
z,(t) = [et 2e,t + b, 1/4, |
? (3.67.1)
pz(t) = —Clt + Cz ’
/
- 3 _ 2 *
) (£) = [d;t3 - 3e,t? + Mt +3d,1/3,
_ 2 _
.'cz(t) = dlt 2d2t + .d3 ,
? (3.67.2)
pl(t) = dl S A )
pz(t) = -dlt + d2 g
J

where clf\:c4 and dl'\:d4 are constants.

Now let us follow the algorithm of Section 3.3.3.

Step 1: Let 1t1=tl.' Since the problem is linear, it is unnecessary to

utilize the interaction-coordination algorithm.

.
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Step 2: T is obtained as follows: Solve (3.61) with the boundary condi-
tions xl(O) =x2(0) =xl(tl) =:1:1(2) =x2(2) =0, and xz(tl) =1. The

coefficients e and d’i are obtained as follows:

e, =12/t3, e, =4/t;, cy=c, =0,
= - 2 = — 2

d1 3/(1r,-l 2)2, cl2 (7:1+4)/(1;1 2)=, (3.68)
= — 92 = - _9y2

cz3 4(t1+l)/(tl 2)2, d4 Atll(tl 2)2 .

Hence,
/\/ I~
I = p,(8]) - py(t]) = —egty + e, +dit, - d,

o —
Step 3: Let xz(tl) =0. The solutions to (3.61) with the boundary condi-

N ~—
tions xl(O) =x2(0) =1, acl(tl) =0.5, xz(tl) =x2(t1), and xl(Z) =x2(2) =0

yield
= 3 = 2 = =
e 12(t1+l)/t s 2 2(4t1+3)/t » ey = ¢, 1,
= -2)3 = ~-92)3 . 5
dl 3/(tl 2) 2, d2 3(tl+2)/2(tl 2) 7 (3.70)
= -2)3 = - -2)3
d3 6tl/(t1 2)2, d4 (6t1 4)/(#1 2)3.
Hence,
TN~

— /'\1
Py (t]) = Py (t]) = —cyty) + oy + dyty - dy

@B 2 — 2 -2)2 .
( 8ti+17t1+16tl 48)/21;1(1t1 2)2., (3.71)

Step 4: Substitution of (3.69) and (3.71) into (3.55) yields
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N e ’ TN
zy(8) = 2y(8) = T [p,(BD) - py(ED)]

_ 843 2 - - -
( 8t1 + 17t1 + 1615l 48)/4t1(t1 2)(37&l 8) . (3.72)

Again solve the TPBVP's (3.61) with the boundary conditions thus obtained.

Then, the constants are obtained to be as follows:

- 9 _ gD 3¢ - -
ey = (1263 - 8182 + 728 + 48)/t3(¢; - 2)(3¢t; - 8),

= 3 - 2 : 2 = -
e (16'1:1 77'[;1 + 607‘:1 + 48)/t1(tl 2)(31;1 8),

- _8+3 2 - - 2)3 -
d 3( 8t1 + Stl + 48t1 : 48)/4t1(t1 2) (37‘:1 8), (3.73)

d, = (- Stll* - 33£3 + 96t§ + 112t

- - 2)3 -
i 192)/4t1(t1 2) (3t1 8),

1

= (-8t - 3 2 o a - 3 -
d ( 8tl 9t1 + 81'[;l 32t1 48)/t1(t1 2) (31:1 8),

= 3 2 _ - 3 -
d (8t1+tl 76t +8)/(t1 2) (37&1 8) .

1

Step 5: This step is skipped since the interaction-coordination algorithm
is not utilized.

Step 6: The gradient gtl is given by
= (1) - (2) - 2 2 -\ +

-3
= Z(‘cltf'cz)z + (ey - dpz,(£) . (3.74)

with (3.72) and (3.73). (3.74) is a rational function of ¢ It is not

1
difficult to solve 9y =0 with the aid of a digital computer. Figure 3.9
1
shows the dependences of 9t and J on tl. It can be seen from the
1
figure that the optimal tl is 1.377---.

The algorithm is also carried out on a digital computer. The initial
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estimate of tl is 1.0 and the step size n in (3.48) is set to 0.1. When

the sign of 9t is changed, n is reduced by a fifth. Figure 3.10 shows
1

.the variations of tl, gt » and J with the computing time 7. The criterion
1

for convergence is set at 9t =1.0x10 °, After 16 iterations the algorithm
1

converged. As seen from Figure 3.10, too severe criterion for the opti-

mality with respect to 'I:l contributes only to the computing time.

Figures 3.11 and 3.12 show the optimal trajectory on the x.-x, plane

1 72

and time history of the optimal control u, respectively.

Example 3.4 [75].

\
Next, we consider the optimal control of the system with Coulomb

friction. The system equation is described by

27 oy T Ly

x2>0 (3.75.1) x
% u+u, :1'72 U - U,

e
]

X

2;0 (3.75.2)

A constraint on u of saturation type is contained in the original problem
but is omitted here. The objective is to transfer the state of the system'

from [a, b] to the origin so as to minimize

(f
;J=J udt . (3.76)
0

The corner time tl at which the system equation turns from (3.75.1) to

(3.75.2) is determined by

z,(t)) = 0. (3.77)

The analytical solutions can be obtained in a similar way to
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.Example 3.3 as follows:

@, (t) = [clt3 = 35, = 2u)t2 + 12¢.t + 1204]/12]
@, (t) = [clt2 - 2(c, - 2m)t + 4eyl/s,
' >te [0,¢,) (3.78.1)
pz('b) = —clt +e,,
5 o
Ph 3 _ 2 ]
., (8) = [dlt 3(d2+2u)t + 12d3t + 12d4]/12 ,
2, () = [dt? - 2(d,+20)¢ + 4d 1/4,
>te [£)5 2,1 (3.78.2)
pl(t) = dl’
pz(t) ='—d1t + dz, )
where
ey = 12(1::&l + 2q - 2111) /t3, *
c, = [12(a- 171) + 8b1;1 + Zuti]/tz . ; > (3.79.1)

dy = 24m [ (to = £)3,  dy = 20+ t)m/(Bom )] = 2u,

i

©(3.79.2)
d3 = 6tltfn1/(tf-tl)3, d4 = t]% (tf— 3t1)1rl/(tf—-f;1)2,
and ’
= - _ o+ 3 _ 3
X, = xl(tl) = 0..5ti[2a + b(tf .-l)]/[tl + (tf t;) 1. (3.80)

As an example, let [a, b]=[0.5, 1.5], tf=3.0, p=-0.2. Figure 3.13
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shows the dependences of 9 and J on tl. The optimal corner time
1

t1=0.8181. The problem is solved by the proposed algorithm where the

initial estimate of tl is set to 1.5, n is set to 0.1, and the integra-
tion step size is set to 0.015. Figure 3.14 shows the variations of tl,
gtl, and .J with the computing time T. Figures 3.15 and 3.16 show the
optimal trajectory on the xl—xz‘ plane and time .history of the optimal

control u, respectively.

Example 3.5.

Finally, we consider the problem whose system equation contains non-
linearities. The problem is discontinuous version of the three-axis
attitude-control problem. The sytem equations are described by (3.32).

Suppose that the parameter € changes dis.continuously from 1.0 to 2.0

1

satisfied. The objective is to find the control u and the corner time tl

at t=t%t, at whlch. :cl(tl) =0.1, x3(tl) =0.15, and xs(tl) =0.005 are to be

which minimize (3.33), starting from «(0) =[1,0,1,0,1,0]".

Figure 3.17 shows the variations of t'l, gt , and J with the itera- )
1 ¥
tion number % for correcting the corner time tl. It takes 4.8 seconds to

attain convergence. The parameters chosen are B=x=1, a=1.0, n=0.5,

1t1= 2.5. n is reduced by a half when the sign of g, is changed.
1

Optimal corner time . is obtained as 3.25. The optimal trajectory and

1
time history of the optimal control are shown in Figures 3.18 and 3.19,
respectively.

The examples could be solved by the direct éethod such as a' steepest-
descent method which will be summarized in the following chapter. Then,

however, we must adjust both the corner time 7‘;1 and the control function

-74 -



at the same time or seqﬁéntially, which makes the convergence charac-
teristics of the method worse. Moreover, to make the solution satisfy the
boundary conditions, the idea of penalty function must be employed, which
makes the convergence characteristics still worse. Therefore, for the
problem without control constraint, the indirect method such as the

proposed method is more effective than the direct method.

3.4. Concluding Remarks

In this chapter, nonlinear optimal control problems are solved by use
of the time-decomposition algorithm in conjunction with the linearization
method.

In the former half of the chapter, the optimal control problem of
systems described by a differential equation without discontinuity is
considered. The time-decomposition algdrithm is additionally employed to
reduce the numerical error in solving linear TPBVP's derived by the
linearization method, i.e., the quasilinearization method and the
interaction-coordination algorithm. K

Additional use of the time-decomposition algoritha with the quasi-
linearization method has the advantage that the numerical error is reduced
and therefore the convergence region is widened nearly to the theoretical
one. H;wever, the widened region is at most the theoretical one. The
comLined algorithm has the disadvantage of consuming computing time,
because the transition matrix and the matrix for correcting boundary values

must be recalculated at each iteration.

On the other hand, when the time-decomposition algorithm is used with

the interaction-coordination algorithm, the transition matrix and the

-
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correction matrix need be calculated only once. It is empirically known
that the convergence characteristics of the interaction-coordination
algorithm is much improved by modifying the TPBVP stiffer. Thus, the
additional use of the time-decomposition algorithm is much more suitable
to the iﬂteraction—codrdination algorithm than to the quasilinearization

method.

In the latter half of the chapter, the solution of a multiple-target
problem is discussed. The system equation contains discontinuities at
several unspecified intermediate points called 'corner times' and some
elements of the state variable are specified at corner times as well as at
the initial and the terminal times. The problem is reduced to a nonliﬁ;;r
MPBVP with unspecified corner times. Assuming the values of corner times,
the nonlinear MPBVP is solved by the 1inea;ization method with the
additional use of a discontinuous version of the time-decomposition
algorithm. The optimal correction of corner times is made by a gradient
method. Since, different from the algorithm of Ref. 75, the proposed
algorithm does not employ the idea of penalty function, the solution
satisfies the specified boundary condition exactly. The algorithm can
offer analytical solutions to linear problems as well as the method of
Ref.76; Moreover, the algorithmﬂcén treat nonlinear problems on a digital
computer. ]

The proposed algorithm can be applied to the state-constrained problem

[15, 21, 26, 31, 41] by assuﬁing the number of corner times.
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Chapter 4

A Modified Direct Method for So]ving.Nonlinéar
Optimal Control Problems with Control Constraint

4.1. Introduction

In the preceding chapter, we have considered nonlinear optimal control
problems where no constraint is imposed on the control function. Such a
problem is reduced to the nonlinear multipoint boundary-value problem and
then we have shown that the algorithm combining the time—decompositi;n
algorithm and the linearization method.is effective for its solution.

In a practical sense, however, a certain constraint is often imposed
on the control function, for example, a constraint on the magnitude, or a
constraint on the total energy. Theoretically speaking, the indirect
method, the approach of reducing the problem %nto two-point (or multi-
point) boundary-value problem (TPBVP or MPBVP) by the direct use of the
minimum principle, can bé employed for the determination of the optimal
control. However, the derived TPBVP generally contains very strong non-
linearities which result from necessary conditions for optimality and is

often practically impossible to solve. Therefore, the indirect method is
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generally not employed except for the linear problem of small order.

The direct method, on the contrary, can easily be applied to such a
problem since the method adjust the control function directly. However,
when the terminal condition is specified, the method becomes less effec-
tive. For example, the steepest-descent method [35] suffers fr;m poor
accuracy of the solution and the method proposed by Bryson and Denham [iO]
involves additional integration procedures, including the integration of
matrix differential equation, for determining the Lagrange multipliers.
The solutions obtained by these methods do not satisfy the specified
terminal condition until the optimum is attained. Thus, both the direct
and the indirect methods as they are have defects to be settled and it is
desirable to develop a new algorithm which remedies the defects.

The requirement for the new algorithm is to have the property that
the control function is easily adjusted to satisfy the control constraint
and, at the same time, to make the state of the system satisfy the spec-
ified boundary conditions. Recently, Miele et al. have proposed a
sequential gradient-restoration algorithm [20, 24-26, 48, 50]. The algc-
rithm is composed of the alternate succession of gradient phases and
restoration phases. In the gradient phase, nominal functions x and u
satisfying the differential equation and the boundary condition are varied
so as to reduce the value of performance inde;. In the restorvation phases,
the obtained functions which satisfy ‘the constraints to the first order
are corrected so as to be consistent with all the differential equation
and the boundary condition. At the end of restoration phase which

involves several iterations, the solution is feasible one and this is one

of major merits of the algorithm. Turning inside out, excessive restora-
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tion phases must be carried out to obtain the optimal solution.

In this chapter, another algorithm is proposed which has the property
mentioned above. The basic idea of the algorithm is to combine the
steepest-descent method with the interaction-coordination algorithm dis-
cussed in the preceding chapter. The system equation for the ;teepest—
descent is modified to be a linear TPBVP with respect to the state and
the costate variables by introducing interaction variables. In the modi-
fied equation, the control variable is explicitly contained. Once values
of the control variable and the interaction variables are provided, the
TPBVP is easily solved. Then, by using the obtained solution, these
variables are corrected so that the control variable may satisfy the
optimality condition and the interaction variables may agree with the
corresponding state or costate variables. Contrary to the sequential
gradient-restoration algorithm, the solution at each iteration is in-
feasible except for the final one. This is the defect that all the
indirect methods have. But the excessive corrections as the sequential
gradient-restoration algorithm has can be avoided to obtain the optimal
solution.

The proposed algorithm, of course, can be applied to problems without
control consgraint.

In Section 4.2, a modified direct method.is proposed for solving
control-constrained problems. In Section 4.2.1, the problem is formulated.
Combining the steepest—deséént method with the interaction-coordination
algorithm, the proposed algorithm is constructed in Section 4.2.2. The
algorithm is summarizéd in Section 4.3.2. Section 4.2.4 discusses a

sufficient condition for convergence.
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In Section 4.3, the proposed algorithm is applied to several examples.
The first and the second examples are the same examples as in Chapter 3
except for the additional control constraint. In the third example, a
problem with additional state constraint is examined. The performance
indices of these examples are taken to be quadratic in state aﬁd control.
In the fourth, i.e., the final example, the problem whose performance

index is given by the total fuel of control is considered.

4.2 A Modofied Direct method

4.2.1. Problem Statement

In this chapter, an optimal control problem formulated in state-space
form is dealt with. The problem is to find the control function, con- -
strained in magnitude, which steers the system from the initial state to
the specified terminal state so as to minimize an associated performance

index.

Consider a dynamical system governed by the following equation.
& = A(t)x + B(t)u + f(t, x) , (4.1)

where x(t) is an #-dimensional state vector, u(t) is an m-dimensional
control vector. A4 and B are nxn- and nxm-dimensional matrices, respec-
tively, continuous in time ¢. f is an n-dimensional nonlinear vector
function of the class C? with respect to x and continous in ¢. The
objective is to find the coptrol u which transfers the state frdm x(t0)=

T to x(tf)==ﬂf subject to (4.1) under the control constraint:

|ui(t)|;,Mi, telty, tol (2=1,2, ..., m) (4.2)

f

and, in so doing, minimizes the performance index:
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L

oJ = J [2'Q(t)x + u"R()uldt . (4.3)
t

N

0

In the above, L and 1Tf are both n-dimensional vectors prescribed, and
the symmetric matrices @Q(t) and R(t), both continuous in ¢, e'xre positive
semidefinite and positive definite, respectively. The initial time to
and the terminal time ¢ £ are assumed to be fixed.

A necessary condition for optimality of the problem is derived by

using the minimum principle. So long as (4.1) is satisfied, (4.3) is

identical to

¢
{%—[x'Q(t)x + wRE)u] + p' (8) [A(E)x + B()u + F(t,x) - &]}dt(4.4)

L
"
[
<+ ke

with an arbitrary n-dimensional costate vector p(t). Define the Hamil--

tonian H as :

H=+=(x"Qx + u'Ru) + p'"(Adxc + Bu + f) . (4.5)

N

Then, the first variation §J of J is given by [12]:

t
. !
& = p'(to)éx(to) = p'(tf)d:n(tf) + J {(—g—g + p')éx + :—Z Suldt. (4.6)
+ .
0
Now let p satisfy
p=-(30), ' (4.7)

then, since x(to) and x(tf) are specified, 8J is rewritten into
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t.
57 = fﬁadt
auu . (4.8)

%o

Thus, the necessary condition for optimality is obtained as follows:

& = Az + Bu* + f, (4.9)

p=-@-4p- (%g)'p (4.10)
with the boundary condition:
x(to) =Ty x(tf) = "f’ (4.11)

where u* satisfies

% = e
>0,  uk(t) M,

:i.comp[--lZ 1

0, J|ux(®)]| < M. (4.12)
u*(t) 7 1

A

0, ui(t) =m,

and icomp[-] denotes the Z-th component of the argument vector.

When the terminal point x(tf) is not specified, the boundary condi-
tion at t=tf in (4.11) is replaced by p(tf) =0. In this situation, a
common means to find such a control variable u* 1is the steepest-descent
method which adjusts the control variable directly until the optimum is

v

attained.

However, when x(tf) is specified, the steepest-descent method can
not be applied to the problem withqut certain modifications, as (4.1)
becomes overdetermined. One typical technique is to reduce the problem to

the one with unspecified terminal condition by introducing an appropriate
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terminal cost in the performance index, and another is the one proposed by
Bryson and Denham [10]. However, the former often suffers from poor
accuracy of the obtained solution and the latter involves additional
integration procedure, including the integration of matrix differential

equation, for determining the Lagrange multipliers.

4.2,2, Solution Procedure

As mentioned above, the ‘direct method, as it is, is not effective to
the problem with specified terminal condition. On ghe other hand, if the
control variable is not constrained, the indirect method can effectively be
applied to such a problem. Therefore, in this section, an idea of the
indirect method is introduced to overcome the difficulty caused by the
direct method. To begin with, let us summarize the steepest-descent method
adopted in our method in the form of an algorithm for a problem with

unspecified terminal condition.

Step 1: Set k=1 and assume Lyt) te [to, tf].

Step 2: Solve (4.9) with the initial condition x(t0)=1r and u*==ku.

0 -
Step 3: Using the solution kx and ku, solve (4.10) backward from 'tf to
to with the initial condition p(th==0.
3H 3H . e k
Step 4: Calculate " If B satisfies (4.12), "u is the optimal

control. Then, the iteration is terminated. .Otherwise proceed to Step 5.

Steps5: Correct the control variable as:

My = Fu) - g, telgy, td, (4.13)

f

where k denotes the jiteration number, n is a positive step size and

kg(t) is the function defined by
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.
o, icomp[ﬁ ]1>0 and ku.(t)=-M., or
ou ku(t 7 7

)

icomp[kg(t)] = < icomp[%g |k ]<0 and kui_(t) = Mi , (4.14)

u(t)

:[c:omp[g—[;7 |k ], otherwise.
\ u(t)
k+1 o '
When ui(t) thus obtained does not satisfy (4.2), it is replaced by the
boundary value Mi or —k% in accordance with its sign. Replace k by

k+l and return to Step 2.

When the terminal point x(tf) is specified as x(tf) =1rf., the above
algorithm can not be applied as it is. In this case the problem is
reduced to a problem with unspecified terminal condition by introducing a

terminal cost into the performance index as follows:

T o= - 2
J=dJ+ ;{x(tf) 1rf} " (4.15)

where Z is a penalty parameter. Then the terminal condition of p is given
by p(t f') = zc{x(t f) —154.} and the above mentioned algorithm i§ utilized. ~

Now we construct an algorithm for solving the problem given by (4.1)n
(4.3) by combining the steepest-descent method with the interaction-

coordination algorithm. Let us rewrite (4.9) and (4.10), using the inter-

action variables y and g, as follows:

& =A4x - E(p-q) + f(t,y) + Bu, (4.16)
pﬁ=—KQx—A'p-(%§—(i’—y—2)'q+(K—l)Qy, (4.17)

where F 1is an arbitrary nxn-dimensional matrix. We adopt BBR-]'B' for it

corresponding to (3.11). Once the control variable yu and the interactiop

-103 -



variables y and q are provided, (4.16) and (4.17) with the boundary
condition (4.11) is a linear TPBVP. When the solution does not satisfy
the interaction balance (3.14) and/or the optimality condition (4.12), the
interaction variables are corrected according to (3.15) and the control

vector u(t) is also corrected according to (4.13).

Remark &4.1.

Due to Theorem 3.1, we see that the linear TPBVP of (4.11), (4.16),
and (4.17) with E==BBRb1B' has a unique solution, provided that the pair

(4, B) is controllable.

4.2.3. Summary of the Algorithm

We now summarize the result of the preceding subsection in the form of

an algorithm.

Step 1: Set k=1, and prescribe the parameters o, n, B, and k. Assume

1

the initial function “u, 1y, and 1q.

Step 2: Solve the linear TPBVP as given by (4.11), (4.16), and (4.17).

Step 3: Upon use of the solution k.'c and kp, compute R
i by
kg = {,—L—[ij Kpr ()% p()dt + lj ko (kg yae1?  (s.18)
\t -t ) 2n m )
F o ‘t t
0 0

where *G, and R@ are defined by (3.14) and (4.14), respectively. To

obtain kg, g—Z=Ru+B'p is calculated with u=-ku and p=k+1q. 1f kG<o
(0: a small positive number prescribed ), the calculation is terminated.

Otherwise, proceed to Step 4.

Step 4: Correct ky énd kq according to (3.15), ku according to (4.13).
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Replace kX by k+l and return to Step 2.

Remark 4.2.

If the nonlinearity is weak, the solution to the unperturbed equation,
that is, the system equation without nonlinearity, is close to that to the
perturbed équation. Therefore, as the initial estimates ly and 1q, it is
reasonable to choose the solutions x and p, respectively, to the linear
TPBVP derived by the optimality condition for the unperturbed system. The

initial estimate of u is then calculated by (4.13) and (4.14) with 0u=0,

n=1.0, and k=0, using lgq.
4.2.4 Convergence Proof

In this section, we consider a sufficient condition for the conver-
gence of the proposed algorithm in case that the control function is not
constrained. The case that it is constrained remains unsolved.

Let z=[z',p']" and w=[y', q']", then (3.15), (4.11), (4.13), (4.16),

and (4.17) can be rewritten as follows:

ke o 0%+ 0% + 0.+ nee, Ry (4.19)
1 2 3
[1,,, 012(ty) = g,  [T,,0]a(t) = 7, (4.20)
k+1w = kw +—q,kr'l 3 ] (4.21)
tl, = Ky, akrz , (4.22)
where
' kr1=kz—kw, (4.23)

- 105, =



k k k+1

.p2= u+D4 W, (4.24)
and
4, -8BB'| 0, BBB' B
D, = , D= y By . D, =1[0,B'],
"KQ’ -A (K—l)Q, 0 0

(4.25)

Wt 0) = LF' (6s 1) -q'<—§-§—“-’—y-))1' .

In (4.19) to (4.25), we assun;e R(t) to be identity matrix without loss of
generality and we set n of (4.13) equal to «a.
We begin with some definitions.
Definition 4.1. The norm ||x|| of vector function z(t) is defined by
”x” A max [ .'x:'(t)atr(f:)]]'/2 and the norm ||AH of matrix function A(%¢, 1)

by ”AH A max [trace A(Z, 1)A' (¢, 1.')]1/2.
t,T E [to, t'f]

Definition 4.2. ®(t, 1) denotes the transition matrix of the homogeneous

part of (4.19).

Definition 4.3. Scalar quantities a, and a, denote l|¢|| and max[[lDzll,F"

“D3 ||1, respectively.

Definition 4.4. We define the closed region @ and U as

- 2= {w] - v

A

28},
’ (%.26 )

i

U= {u| |lu-u*|| <28},

where w* and u* are the optimal solutions to the problem and § is a
positive constant.

On the function (¢, w), we make the following assumption.
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Assumption 4.1. For arbitrary wl and w2 belonging to £, there exists

a scalar constant bl such that

llh(t,wl) - h(t,w,) | < b1||w1 - w, | (4.27)
Therefore, for arbitrary Lﬁ_ and Ups the following relation holds.
Inet, 0)) - R, 0 ) || < By lllwg -w, | + luy = u, l17 . (4.28)

Let us now consider the convergence of the algorithm.

The solution to (4.19) and (4.20) can be written as

¢
z(t) = o(¢, to)zo(kw, ku) + I o(t, 1) [Dzkw + D

%o

k

3 U + h(t,kb)]dr. (4.29)

Taking (4.19) to (4.22), Definitions 4.1 to 4.4, and Assumption 4.1 into

account, we see that there exists a constant b2 such that

llzo(wl, uy) = 2y, uy) | < bz(tf- to)[llwl—wzn + Hul—uzlll , (4.30)
w.eN, uie:U (2=1,2).

Therefore, since

7<+1’g _ kz - o(t, to)[zo(kﬂw’ k+1u). B zo(kw, ku)] 1
. )
J 8(t, 1) [Dz(k+lw _koy +D3(k+1u o s ntr, Sy —hie, T4k
%

{4.31)

we obtain
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k+1 = k+l

(i lelkllag o, ¥y = 20, | +

%l

A

ol 21 2 LD, P = o + [l I+~ o] +

lnce, ¥y - e, Ry ||

lA

ay (o= tg) (ay + b +))1 1 R & 1 -l

k
aay (ta- t0) @y +by +b ) L e [ 41, 11

< 27 5 (4.32)

where ugal(tf—to)(a2+bl+b2), k?gmax [Hkrlll, “kl"2”]~ By the defini-

tion,
kr - kz _ kw
1
o R R b (4.33)
and
kr2 - ku o D4k+1 5
_ k—lu _ ak_lrz + D4(kw + akrl)
= Kl 4 Dakw_ - ak_lrz + GD4kI’l
) = (l—d)k-ll"z + aDAkz’l, ’ (;"34)
then,

e k-1—
e Il < 2077 + (1= a7

A

[|1-a| + Al ' (4.35)
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.and

A

k k-1 k
P21l < 1= al 7 e, | + allp, [ 172y

fIa

|1- a|k—l; ¥ aaz[ll-al + Zua]k;l;

(1-a| + aa,l|1-a] + 20]¥ 5, (4.36)

therefore, we obtain

%% = max %2, II, %z, |1
= max{|1-a| + 2ua, [1-a| + aa,[|1-af + el 5, . (4.37)
Let
¢(0) = max{|1-a| + 2ue, [1-o| + ag,[|1-a] + 2ual}, (4.38)

then, from the above discussion, we see that a sufficient condition for the

mapping (4.19) to (4.22) to be a contraction mapping is that

(51): There exists an o (0<a<1l) such that 0<¢(a) <1
and

(s2): 1f kweQ and ku elU, then k+lwe$2 and k+1ueU
are to hold at the same time.

Now we consider the conditions (S1) and (S2). For (S1), we have the

following lemma. .

Lemma 4.1.

Assume that <% and "a2<?1ﬁ. Then (S1) holds.

Proof.

Assume that ¢(0) <1 holds for a=a* (0<a*<1l). Then
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1-oa* 4 2uo* < 1, (4.39)

1 - a% + aa*(l - o + 2ua%) < 1. (4.40)

Therefore,
(1-2wa* >0, (4.41)
ct*{cz2 -1- a2(1—2u)a*} <0. (4.42)

Since O0<a* <1, (4.41) and (4.42) imply

W<z, (4.43)
a2-1
E;?I:TZB <a*<1. (4.44)
From (4.44), we obtain
a2<2—1u. (4.45)

Thus, the condition (S1) holds if u and a, satisfy (4.43) and (4.45).

2
.

Q.E.D.
Next, we consider the condition (S2). 1In the following, we make

additional assumptions:

, 1 1
Assumption 4.2. H<y and a2<2u. .

Assumption 4.3. ||w-w*|| <68 and || u-u*|| <s.
Assumption 4.4. 0<¢(a)<1.

Assumption 4.5. vgmax[lllrlll, ||Ir2||];[1—¢(a)]6/a.

Then, the following lemma holds.
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Lerma 4.2.

On the Assumptions 4.1 to 4.5, following relations hold.

kweQ, kueU, (4.46)
1% - %2|| < 20mie(@ 1%, (k=1,2, ...). (4.47)
e < vis@ ¥t _ (4.48)

Proof.
We prove the lemma inductively.

First, by the assumptions,
e, lwev, Y7 =maxl|lr|l, 2,11 = (4.49)

and from (4.32),

|22 - 1z]|| < 2aulr < 2avu, (4.50)

thus, (4.46) to (4.48) hold for k=1.

Second, we assume (4.46) to (4.48) hold up to k=<. Then,

P - wx]] < 15 - Bl 1B - TRl e+ [ - ]

av
l_¢(a)+6;26, (4.51)

G 2
sal I'rll +8 <
=1

< 1B - B - T e+ [ - u]|

<
%
A

A

g
c;Lgllllr’zll t 8T t 28, (4.52)

and from (4.32) and (4.37),
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B < s < vt )’ T = vitay 1%, (4.53)

" L : ,
I*72 - * lz” < 200" 5 < 2avu[¢(a)]1”. (4.54)

(4.51) to (4.54) show that relations (4.46) to (4.48) hold for k =1+1.

Thus, the lemma is proved.

Q.E.D.

We are now ready to establish the following theorem.

Theorem 4.1.

On the Assumptions 4.1 to 4.5, the sequences {kz} and {kw} converge

to the limit function w* uniformly, and the sequence {ku} to u*

as k->om.

Proof.

From (4.48) of Lemma 4.2 and Assumption 4.4,

1im||% - Rl = a1ia|e || = 0, (4.55)
k -+ k>

%

k . - "
therefore, the sequence {kz} agrees to { w} in the limit. Further, since

k+m k k+m k+m-1 k+m-1 k+m-2
4% = Fall < 157 - Tt 4 Yy - R ey
k+1 k
1% - %ol
k+m-1 k-1
L
sa Dl )l 2PE— .55

and
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k = - "
” -i-mz _ kz“ < ”k'i‘ﬂ'lz _ k-+m 12“ + ”k-i-m lz _ k+m 23“ g oeee 4
k+1
1% - ey
k4m-2 . k-1
<20 ) [¢(a))" ¢ Zouleta)] (4.57)
T dsk-l = =gy ¢ '

the sequences { z} and { w} are Cauchy sequences. As kz and kw are
continuous in ¢t and the spagg of the function 2z and w with the defini-
tion of fhe norm is complete. Thus, the sequences {kz} and {kw} have
w* as a limit. From (4.22), then, {ku} has a limit u*.

. Q.E.D.

From the above theorem, it is seen that if the nonlinearity is weak

and the control duration (tf-to) is sufficiently short, the algorithm
converges with the initial estimates Yy, ¢, and u as recommended in

Remark .4.2.

Remark 4.3.
When the control is constrained, the convergence is not ensured by
the theorem. However, then, better convergence characteristics might be

expected, since the norm of the control function is bounded smaller.

4.3. TIllustrative Examples

In this section, some numerical problems "are presented to show the-
effectiveness of the present algorithm. For the numerical integration,
a fourth-order Runge-Kutta-Gill scheme is employed with the step size of
the integration routine A% =0.025 kExample 4.1), w/100 (Example 4.2),
0.005 (Example 4.3), and 0.001 (Example 4.4). Example 4.4 is solved in

double precision arithmetic. The initial estimates of y, gy and u are
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determined according to Remark 4.2.

Example 4.1 (Control-Constrained and Unspecified
Terminal-Condition Problem).
We consider again E}.<amp1e 3.1 where the additional control constraint
Iui(t) I ;Mi is imposed (Z=1,2,3). Corresponding to (4.16) and (4.17),

following equations are obtained for Subsystem 1:

xl=x2,

8
|

2 = "By +ely (Aryg) - yyleuya, - eyyq, + ] * vy
(4.58)
By = k(@ myp) - yy + e l-yya,9, + Yy (g + aQ],

3
()
|

= -x@,-yy) - py - Y, +elqg,(I+y,) - y,q.1,

where B(p2 —qz) in the right hand side of the second equation corresponds
to E(p2 —qz) of (4.16). Similar equations are obtained for Subsystems 2
and 3 but are omitted here.

By way of example, let xl(O) =x3(0) =x5(0) =1 and xz(O) =x4(0) =x6(0?
=0 and the terminal condition x(5) be not specified as same as Example ’
3.1. The bound M’i is set equal to 0.8 (Z=1,2,3). The weights B and
k and the step size o of (3.15) and n of (4.13) are set equal to unity.

Variations of G defined by (4.18) with the computing time T is shown
in Figure 4.1 for e€=0.1. It takes 6 itratio;ls for the proposed algorithm
to attain convergence with the convergence criterion SXIO-S. In order to
check the effectiveness of -the proposed algorithm, the problem is solved
also by the steepest-descent method with the initial estimate of u bein_g

zero. The step size n is set to 0.01. For calculating G of the

steepest-descent method, the first term in the right hand side of (4.18)
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is omitted. The proposed algorithm converges much faster than the

steepest—descent method. In the figure, the variation of G by our method

is also depicted where €e=1, B=5, and k=1. Tor this case, the steepest-

descent method fails to converge. Figure 4.2 shows time histories of the

optimal control u, in case of Mi being 0.8 and 0 (Z=1, 2, 3) for

e=0.1.

Example 4.2 (Control-Constrained and Specified
Terminal-Condition Problem).
Next, we consider the problem of Example 3.2 with additional control
constraint Iui(t) | ;Mi (7=1,2,3). 1In this case the derived TPBVP for

Subsystem 1 can be written as

T, =x

1 z#
b= - B, ~a,) - 2ey, - ey /G2 + 2 + g2 4
2 - % B ™ g Yy = Y1/ Wy T Y3 T Ys 1’
R - 2 2 2y
by = —p, + elg,(-2y] + y3 +y3) - 3y, (a, + Ysa5)1/ (4.59)
2 2 2 5/2 _ o

by =-pPy - 2e:q4 + K(xz—yz) 5
where K(xl—-yl) and |<(:Jc2 -yz) in the right hand side of the third and
the fourth eqution, respectively, are artificially added terms to accel-
erate the convergence rat;e. Similar problems for Subsystems 2 and 3 are
omitted here.

By way of example, let xl(O)‘=x2(0) =x4(0) =x5(0) =x6(0) =0, x3(0) =
1, xz(ﬂ) =-0.75, x3(1rl) =1.,5, x4(1r) =x5(1r) =0, x6(1r) =7/5, and xl(n) be

free. The bound Mi on the control is set equal to 0.5 (2=1,2,3).
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The weight B and the step size a of (3.15) and n of (4.13) are set equal
to unity.

In order to check the effectivenss of the present algorithm, the
problem is solved also b& the steepest-descent method with the initial
estimate of u being zero. Since the steepest-descent method as it is
can not be applied to specified terminal-condition problems, the problem
is reduced to a free terminal-condition problem by adding a terminal cost

in the performance index (3.36):
J=dJ+ t{lx, () +0.75]2 + [xy(m) - 1.5]% + x, (M2 + 2o ()2 +

[x6(1r)-1r/5]2}, (4.60)

where 7 1is a positive scalar parameter. Then, the algorithm of Section
4.2.2 is applied.

Figure 4.3 shows variations of (G defined by (4.18) with the computing
time T for e=1 with k=0 and k=1. For calculating G of the steepest-
descent method, the first term in the right hand side of (4.18) is omitted.
It takes 61 (k=0) and 55 (k=1) iterations for the present algorithm to .
attain convergence with the criterion ¢ being SXIO-S, while 722 iterations
are needed for the steepest-descent method with n=0.01. For larger values
of n, the steepest-descent method diverged.

For the steepest-descent method, 7 is sét equal to unity and the
resultant terminal values of xz, x3, x4, xs, and x6 are -0.774, 1.435,
0.026, 0.037, and 0.51, respectively, which are faf from the desired

solutions. The greater ¢ is, the more iterations it takes to converge.

Time histories of the optimal control u are shown in Figure 4.4
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in case of Mi (2=1,2,3) equal to 0.5 and .

Example 4.3 (State- and Control-Constrained Problem) [31].
Now we consider a problem with constraints in both the state and the

control is examined. The system dynamics is given by

L, = x,, xl(O) =0,
. (4.61)
&, = -z, +u, x,(0) = -1,
and the performance index is taken to be
1
J = I (xi + x% + 0.00542)dt . (4.62)
0

In addition to the control constraint |u(t)|<M, the following state

constraint is imposed:

S(t, x,)) = x,(t) - 8(t-0.5)2 + 0.5 <0. (4.63)

The problem without control constraint is a well known test problem to the
A,
algorithms for solving state-constrained problems [31].
By using a well known penalty function method [14, 41], the problem

is reduced to an ordinary control-constrained problem. To begin with,

define a penalty function L by:

0, (5<0)
L(S) = (4.64)
B's?, (5>0)

s

where Z; is a penalty parameter. Then, the follwoing TPBVP is obtained:
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. =z

l 2’ x1(0)=0,
5(:2 =-x, - B(pz-qz)/0.01 +u, xz(o) =-1,
(4.65)
pl = - 2le + Z(K - 1)y1 > pl(l) =0 3
D, = =-2kx, - p, + + 2(xk-1) . (1)=0
2 2 " P1 7P Y2 ~ x| > Py ’
2 xz—yz

When the penalty parameter Pe tends to infinity, the solution to (4.65)
satisfying the interaction balance (3.14) and the optimality condition
(4.12) tends to that of the given constrained problem [37, 41].

As an example, let M be 5.0, Pe=125, B=0.01, k=15, a=n=0.4 in
our method, and n=0.001 in the steepest-descent method. Figure 4.5
shows variations of G with the computing time 7. When the step size
of the steepest-descent method is taken to be 0.005, it does not converge.
The optimal trajectory x, in this case is shown in Figure 4.6, which
satisfies the state constraint with sufficient accuracy. Figure 4.7 shows

time histories of the optimal control u# in case of M equal to 5.0 and m.

Example 4.4 (Minimum—~Fuel Problem) [54].

Finally, let us examine a problem with another type of performance

index. The objective is to minimize the following functional:

t

f 2
J = J Y u.(t)|de - (4.66)
i=1 *
0
sui)ject to
X = Ax + Bu, (4.67)
x(0)=1ro, x(tf)=0, (4.68)
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where x(t) 1is a four-dimensional state vector and u(t) is a two-

dimensional control vector. The matrices 4 and B are given by

» (4.70)

© O K
O O O O
o = Q O
o O = O
= O O O

o O O O
!
Q

This problem is derived by linearizing the problem of a minimum-fuel
control in a reaction gas jet system [54].

Subject to (4.16) and (4.17), we obtain the following TPBVP:

xl=x2,

&y = ox, - Blpy-qy) tup,
33 = .'1:4,

x, = -cx, - B(p4-q4) Uy, )

(4.71)

pl—o’
p2=—pl+cp49
- p3=0’

Py = =%y " Py

Here, the matrix E in (4.16) is taken to be BBB'. Due to the minimum

principle, the necessary condition for optimality on the control variable

is given by
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signlp, ()1,  |p,(0)] 21

ui(t)= (2=1,2), (4.72)
0, Ip0)] <1

and therefore (4.13) is modified as
o1 sigl 01,  Mgmlz1
ui(t) = ' (i=1,2), (4.73)
k+1

0, Ml )] <1

where qi is an interaction variable corresponding to p; (7=1,2).

As an example, let "o [0.1, 0.0, 0.15, 0.0], t,.=1, ¢=0.1. The

f
weight B and the step size a are taken to be unity. After 8 iterationmns

with 7.856[sec] computing time, the optimal switcing sheme is obtained

as shown in Table 4.1.

Table 4.1. The switching scheme of the optimal control.

O;t<tl tl;t<t2 tZ;t<t3 t3ét<t4 %;t;l
Uy -1 0 0 0 1
U, = 1 =1 0 1 1
(tl=0.106, t2=0.190, t3=0.822, t4=0.880)

The value J of the performance index is 0.594. The switching times of

=0.189, ¢t,=0.821, and £,6 =

=0.105, ¢ 4

the exact solution are given by tl 2 3

0.880 with J=0.592. 1In calculating analytical values, the terms of
order higher than the first in ¢ are neglected [54]. Figure 4.8 shows

optimal trajectory on the x -z, plane.

1
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4.4. Concluding Remarks

An algorithm combining the steepest-descent method with the
interaction-coordination algorithm is proposed to solve the constrained
optimal control problems in nonlinear systems. By introducing the
interaction variables, the problem is reduced to a sequence of linear
TPBVP's preserving explicitly the terms of the control variable in the
system equations. Then, the'interaction variables and the control
variable are adjusted so as to attain the optimality, using their solutioms.

Since the proposed algorithm adjusts the control variable directly,
it is not difficult to treat a control-constrained problem. Moreover,
unlike other direct methods, it can easily deal with terminal constraints,
since at each iteration stage, the problem is reduced to a linear TPBVP.
Thus, the algorithm is successfully applicable to the control-constrained
problems with specified terminal condition as well as to those with
unspecified terminal condition.

A sufficient condition for the convergence of the algorithm is derive%
for unconstrained problems. The convergence proof for constrained problems
remains unsolved.

Illustrative examples show that the present algorithm converges much
faster than the steepest-descent method, and Qhat it can also deal with
problems with constraints both in state and control by addition of a

penalty function and with on-off type problems.
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10
\ ———— : present algorithm
\\ (a=n= ].0)
0 \ T~ — : steepest-descent
‘ 100 \ method (1 =0.01)
: (e=0.1)
107 [
« O
1072
1073
1074
-5 l ' :

Fig. 4.1. Variations of G with the computing

time T (Example 4.1).
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Fig. 4.2. Time histories of the optimal

control U, (Example 4.1).
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10
\ . .
\ ——: present algorithm
\ (a=n=1.0)
1001\
\ — — — —: steepest-descent
. method (n=0.01,z=1.0)
10
i
1073
1074
-5 N SRS N N NN N B
10 % 2 4 6 8

Fig. 4.3. Variations of G with the computing

time T (Example 4.2).
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Fig. 4.4. Time hitories of the optimal

control u (Example 4.2).
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Fig. 4.5.

: present algorithm
(a=n=0.4)

— — — — —: steepest-descent
method (n=0.001)

T [sec] ——>»

Variations of G with the computing

time T (Example 4.3).
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15.0}

10.0

5.0

0.0

Fig. 4.7. Time histories of the optimal

control u (Example 4.3).
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Fig. 4.8. The optimal trajectory on the

xi_xi+1 plane (72 =1, 2; Example 4.4).

- 129 -



General Conclusion

In this text, we have considered the numerical solution of optmi-
zation problems in nonlinear systems. The developed algorithms cover many
problems formulated in state-space form: with relatively strong non-
linearigies and/or long control duration, with discontinuous parameters in
system equations, and with control constraint.

In Chapter 2, the time-decomposition algorithm with multi-subintervals
is developed for tbe solution of stiff linear TPBVP's. It is shown that
the necessary and sufficient condition for the algorithm to be applicable
is that the TPBVP has a unique solution in each subinterval and then in
the overall interval. The algorithm is successfully applied to two
illustrative examples. Based upon the hypothesis that the missolution of
the prcblem by the superposition principle is due to the numerical error
in taking the inverse of a transition matrix,.we have made an error
analysis through the example and shown that the time-decomposition
algorithm reduces the error norm, i.e., the distance between the exact
solution and the numerical solution, in the latter half of the integration

interval, when the overall interval is divided into two subintervals.

-130 -



In Chapter 3, nonlinear optimal control problems without control
constraint are solved by the time-decomposition algorithm in conjunction
with the linearization methods, i.e., the quasilinearization method and
the interaction-coordination algorithm. In the former half of the chapter,
problems with continuous parameters are considered. The problem is reduced
to a nonlinear TPBVP by the minimum principle and further to a sequence of
linear TPBVP's by the linearization method. It is shown that the time-
decomposition algorithm can be applied to the problem so long as the linear
part of the system equation is controllable. The effectiveness of the
combined algorithm is illustrated through examining tyﬁical examples.

The latter half of the chapter deals with problems with discontinuous
parameters. Some of the state variables are also specified. at the cormer
times at which the discontinuities occur. By dividing the overall interval
at these corner times, the time-decomposition algorithm is applied. The
optimal selection of the corner times is attained by the steepest-descent
method, using thus-obtained solution. Since the idea of penalty function
is not employed, the solution satisfies the boundary conditions exactly

and convergence is rapid.

The last chapter develops an algorithm for the solution of optimi-
zation problems with control constraint of saturation type. Adding the
costate variable to and subtracting the corre;ponding interaction variable
from the state equation, the problem is reduced to the solution of a
sequence of linear TPBVP's. The interaction variables and the control
variable are corrected so as to attain the optimality condition. Control

constraint is easily made to be satisfied since the control variable is
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directly adjusted, and the specified boundary conditions are exactly
satisfied. The algorithm is applied to several examples including a
problem with additional state constraint and an on-off type problem, and
satisfactory results are obtained.

As seen in the text, the optimal control is calculated based upon the
perfect information of the system considered. However, it is generally
impossible to idenﬁify practical systems perfectly, except for some systems
in the aerospace engineering. Moreover, the optimal control is a critical
control in the sense that a little identifying error of the parameters of
the system may cause a serious effect to the action of the system.

This is a reason why recently many researchers have shifted their
practical interest from the optmization problem as discussed in the text to
the stabilization and the pole-assignment problems using state—feed back
control.

Thus, to implement the optimal control theory, further reseaches
must be made in the field of system identification theory and so called

robust control theory.
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