
THEORETICAL INVESTIGATIONS OF NONLINEAR EFFECTS

IN LOWER HYBRID WAVE HEATING

ATSUSHI FUKUYAMA

19 3 0





THEORETICAL INVESTIGATIONS OF NONLINEAR EFFECTS

IN LOWER HYBRID WAVE HEATING

ATSUSHI FUKUYAMA

19 8 0





CONTENTS-

Chapter 1 : INTRODUCTION 1

Chapter 2 : SURVEY OF THE LINEAR THEORY OF LOWER

HYBRID WAVES 5

2-1 Accessibility condition 6

2-2 Linear mode-conversion 12

2-3 Summary 18

Chapter 3 : NONLINEAR COUPLING OF A PHASED WAVEGUIDE

ARRAY WITH LOWER HYBRID WAVES 20

3-1 Linear theory of coupling 23

1. Wave field in the waveguide

and in the vacuum

2. Wave field in the plasma

3. Linear coupling equation

4. Numerical results

3-2 Density profile modification due to

a ponderomotive force 38

1. Formulation

2. Basic equations

3-3 Effects of the one-dimensional density

modification 45

1. One-dimensional model

2. Numerical analysis

3-4 Discussion 57

Chapter 4 : NONLINEAR PROPAGATION OF LOWER HYBRID WAVES 60

4-1 Basic formulation 62

1. Model and basic equation

2. Nonlinear propagation far from the

linear mode-conversion point

23

26

29

33

38

42

45

49

62

66



4-2 Nonlinear behaviour near the linear mode

conversion point 70

1. Linear analysis

2. Model equation

3. Numerical analysis

4-3 Discussion 80

Chapter 5 : STOCHASTIC HIGH-ENERGY TAIL FORMATION BY A

SINGLE WAVE IN A MAGNETIZED PLASMA 82

5-1 Intrinsic stochasticity in RF heating 84

5-2 Hamiltonian formulation for the motion

of a charged particle 86

1. Hamiltonian of a test particle

2. General formulation

5-3 Case of oblique propagation 92

1. Analysis of the primary resonance

2. Analysis of the secondary resonance

3. Results of numerical analysis

5-4 Case of perpendicular propagation 110

1. Analytical treatment

2. Results of numerical computations

5-5 Discussion
･ ･ ･ ･

127

Chapter 6 : SUMMARY AND CONCLUSIONS 130

Acknowledgements 134

Appendix A 135

Appendix B

References .

136

137

70

73

75

36

88

92

97

104

110

117



Chapter 1

INTRODUCTION

The problem of plasma heating has been, and is, considered to

be one of the central problems in thermonuclear fusion research, in

order to ignite magnetically confined plasmas produced in such

large-scale devices as tokamaks. For long, the principal heating

scheme has relied upon ohmic heating. The ohmic heating alone has

been recognized, however, as doubtful, in order to attain an igni-

tion temperature, mainly because plasma heating due to the plasma

resistivity, proportional to f with T the electron tempera-

ture, is overcome by heat loss due to Bremsstrahlung which is

1/2proportional to T , when T increases. Actually, an electron

temperature, attainable by ohmic heating alone, is predicted to be

3 KeV, since a large current, required to render the ohmic heating

efficient, is limited by the MHD stability criterion.. In order to

produce a high-temperature plasma in which a-particle heating

becomes effective, an auxiliary heating scheme has been called for.

At present, the supplementary heating methods currently

investigated are a neutral-beam injection, a wave heating (electron

cyclotron, lower-hybrid, ion cyclotron and shear Alfven waves),

a magnetic compression and a turbulent heating. Because of its

simple physical mechanism, the effectiveness of the neutral-beam

injection has been experimentally confirmed as a tool of high-

power heating in present-day tokamaks. Future devices containing

larger-size and higher-density plasmas require, however, a higher-

energy neutral beam which may be capable of heating a central part

of the plasma. But it is known that a neuralization effeciency
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decreases notably at such a high energy regime. Among various wave

heating methods, heating by lower-hybrid (LH) wave is considered to

be one of the most promising for supplementary heating which requires

an input power of more than several 10 MW. Heating by LH waves with

frequencies near 1-2 GHz is particularly advantageous, mainly

because we can use phased-arrays of waveguides as a coupling struc-

ture instead of a coil system installed near the plasma surface.

A number of experimental studies of the LH wave heating have

been reported both on linear ' and toroidal ~ machines. Recent

experiments on tokamaks with a RF power input of more than 100 KW

have demonstrated efficient heating of bulk plasma ions with no

deleterious effect on a plasma confinement. ''' ' In the latest

experiment on JFT-2,
12)

a parallel temperature of ions has been

observed to increase by about 300 eV during 15 ms RF pulse of 200 KW,

accompanied with a slight increase of the electron temperature.

These results suggest that an absorbed wave energy has been ther-

malized and that neither deterioration of the confinement nor

enhancement of impurity influx comes about.

In spite of these encouraging experimental results, a heating

mechanism is still far from obvious. While a great deal of theoret-

ical effort has been devoted to the study of the linear mechanism

of the LH heating, applicability of a linear theory is seriously

limited by various nonlinear effects. Because of an intense

electric field required for a high-power LH heating, it sounds

indeed essential to properly take account of them.

The purpose of this thesis is to analyse several important

nonlinear effects encountered in the LH heating, and thereby to

estimate their influences on actual heating experiments carried out
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on both present and near-future fusion devices.

The mechanism of RF heating is roughly divided into three

processes : coupling, propagation and absorption. The coupling of

an external wave source with an electromagnetic field in a plasma

is a primary factor which determines the heating efficiency. Since

an area of access ports mounted on a vessel wall is limited, a power

density transmitted into a plasma has to be as large as possible.

Problems of how to obtain an optimum coupling and how to maximize a

transmitted power density become, therefore, of central interest.

On the other hand, propagation characteristics predict a region

where wave energy is absorbed. If the wave energy is dissipated

near a plasma surface, a rapid energy loss will reduce the heating

efficiency. Furthermore, the steepening of a wave packet due to

nonlinear effects may generate high-energy particles, while its

spreading due to dispersion effects may probably reduce various

nonlinear effects. Therefore, analysis of the trajectory of the

wave packet and of the deformation of its shape turns out to be the

main problem. The absorption mechanism may also determine a

position of energy deposition. In a high-temperature fusion plasma,

it is natural that the modification of a velocity distribution

function of plasma particles has to be taken into account because

of very weak collisional effects.

We shall investigate important nonlinear effects originating

from each of these three processes, but shall not deal with such

parametric phenomena as parametric decay and nonlinear Landau

damping. The parametric instabilities of the LH wave have been

analysed by a number of authors.
17-20)

As for tokamak plasmas,

we quote the extensive study by Porkolab ' who has calculated the
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growth rate and the threshold for parametric decay, taking into

account the effects of inhomogeneities, such as a density gradient,

a finite pump width and a magnetic shear. In fact, decay spectra

have often been observed in the LH wave heating experiments on

tokamaks,
5 - 8,10,15)

but recent experiments on JFT-2
11)

suggest

that an amplitude of the decay wave tends to saturate at rather low

level with increasing transmitted power. Since a theory which

allows to predict a saturation level of the decay-wave amplitude

is not yet well established, however, a role played by parametric

instabilities in the heating mechanism is still left controversial.

The thesis is organized thus.

In Chapter 2, we briefly survey the linear theory of LH waves

in toroidal devices. Nonlinear coupling of a waveguide array with

LH waves is analysed in Chapter 3, by taking account of a static

density depression due to a ponderomotive force. The existence of

an upper limit on the transmitted power density is demonstrated.

Chapter 4 deals with the nonlinear propagation of LH waves, specif-

ically near the linear mode-conversion point where an electric

field is expected to be strengthened. The deformation of wave

packet is shown in both linear and nonlinear regimes. Chapter 5

is devoted to the study of the formation of a high-energy tail on

the velocity distribution, due to a monochromatic wave propagating

through a magnetized plasma. The threshold of a wave amplitude for

the onset of an intrinsic stochasticity, which results in the tail

formation, is analytically calculated and compared with numerical

results. In the last chapter, we present concluding remarks.

4 -



Chapter 2

SURVEY OF THE LINEAR THEORY OF LOWER HYBRID WAVES

A feasibility of the auxiliary plasma heating by means of LH

21)waves, first proposed by Stix , has been granted as most prospec-

tive, thanks to an effective absorption of electromagnetic energies

through the conversion of the LH wave into a short wave-length mode

which easily couples with plasma particles. Since then, a number

of works have been devoted to the theory of the linear LH waves.

In this chapter, we shall briefly survey the linear theory of LH

waves to revisit their fundamental linear properties required, in

the subsequent chapters, to analyse their nonlinear behaviours.

An accessibility condition ; to the LH resonance is discussed

in §2-1, within the framework of the cold-plasma approximation.

This condition provides the lower limit of a parallel refractive

index in order for externally-excited LH waves to be accessible

to the resonance. Section 2-2 deals with the linear mode-conver-

21)
sion near the LH resonance with the aid of the electrostatic

approximation. In the last section, we shall summarize the linear

theory of the LH heating mechanism.
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§2-1
23)

Accessibility condition

A local property of plasma waves in a weakly inhomogeneous

plasma can be explained to a great extent by means of a dispersion

relation for a homogeneous plasma. This section deals with the

local dispersion relation of plasma waves with frequencies near the

LH frequency.

We shall consider a plasma slab immersed in a static magnetic

field BQz. The plasma is uniform in the y-z plane, while the plasma

density n increases in the ar-direction. It is assumed that the

plasma wave, with amplitude small enough for a linear theory to

apply, has a form of a stationary plane wave, exp i(k±x + k,, z - wt);

such quantities as u and k,, which can be controlled externally are

assumed to be real and only kL is considered to be complex.

In the cold-plasma approximation, the dielectric tensor e

takes the form,

Where

e_, = 1 -

£, = 1 -

i g

0

* 9

0

2

L 2 2 >

a co - oo

2
CO

ca

I

a

_pa

2

, r pa co
and. g - I -5 2―

'
o ii)(u - u )

0 ＼

o (2.1)

(2.2)



V and w stand for the plasma and the cyclotron frequencies of

the a-th species, respectively. The wave-number vector k and the

angular frequency w of an electromagnetic wave must satisfy the

dispersion relation

D(u,t) = detV(u,t) = 0 ,

where the dispersion tensor D is defined by

?

V(u3t) =

a

(1)

(t t - k2+T) + e

(2.3)

(2.4)

When the waves propagate perpendicularly to the static magnetic

field (k,,=0), they can be split into the ordinary and the extraordi-

nary modes. The latter mode

≫2,-

72 2
k ,o

2

2 2
e,-9

(2.5)

0) £,

shows hybrid resonances where £^=0. It has two branches, the

resonance frequency of which are called the upper hybrid (UH) fre-

quency Wjjjj(o)yjj>|uj |) and the lower hybrid (LH) frequency

u)Trj (/to .Ia) r>u)TTT>oo.)/ respectively- While the UH resonance is
Ln Cl ' Ce i-in- Cl

mainly related to the motion of electrons, both electrons and ions

participate to the LH resonance (LHR). If we assume that

a) .≪u)≪|oj |/ the LH frequency, <DtH. can be approximated by

.2
≪

"Pi

ULH 2

1 +
^
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and, alternatively, for a given frequency co</oj .|w | , the LHR
OX CS

occurs where the plasma density satisfies

2 2

where

"ce uce

<? t

2 2 2 2 2
(ui - u) .jfl-(n /id J oj

ci ce

raJci'aicel-a)2;ri + me/mi; ^ci^ce1 "
^

(2.7)

(2.8)

The suffix r indicates the value at the LHR. The extraordinary

wave cannot, however, propagate in a region where go < u>per

Therefore the wave cannot reach the LHR from the outside of a con-

fined plasma.

On the other hand, when there exists nonzero k,, determined

by a wave source, the LHR is accessible to the wave from the lower

density side. The accessibility condition is obtained in the

following way. The dispersion relation, eq. (2.3), is a quadratic

2
equation with respect to k ,

approximated by

and the coefficients (2.2) may be

e , = 1 - h, e , = 1 - &h and g = ah ,

where

h =

a =

2

^per

2

per

U (JOce

2

Q(Vm./m )
1 e

(i)
and e = P^r = O(m./m ) ,

2. 1 e '

(2.9)
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in the frequency range to << oj<<|u> |. Except in an extremely low
C1 C6

density region go ^co, the solution to eq. (2.3) can be simplified,

by virtue of the assumption $h>>l, as

N2 =
f nI

- (1-h+qh) ±V{N2,- (1-h+qh)}2 -H(l-h)qh
]

(2.10)
2(l-h) I J

with N,,= klfc/u. Remark that the slow mode related to the LHR takes

the upper sign. In order that the wave can propagate without con-

siderable reflection, the right-hand side (r.h.s) of eq.(2.10) must

be real and positive. The sufficient condition for such a solution

to exist can be easily obtained from eq. (2.10) ,

N,. > / 1 - h + / qh , (2.11)

and, for 0< h < 1, the r.h.s. takes its maximum value /1 +q at

h= q / (1 + q ). Therefore the accessibility condition of the LHR from

the lower density side is expressed as

"I > *"acc
= 1 + q (2.12)

If this condition is not satisfied, a slow mode launched by

an external wave source may be converted to a fast mode before

reaching the LHR and will be reflected back to the lower-density

region. Near the plasma boundary tope 'v-oj, the solution to eq.(2.3)

which describes the slow mode accessible to the LHR is approximated

by

N2, = (&h -1)(N2,- 1)

9 -
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It should be noted here that the wave which satisfies the accessi-

bility condition is evanescent where to <u>.

When the wave approaches the LHR, the ^-component of the

electric field E as well as k, increases, so that the solution
x -

obtained from the electrostatic approximation

1

&h

h

102

H
2

10

1

0

≫2. (2.14)

0.5
<^pe

1.0

Fig.2.1 Comparison of the solutions to the electromagnetic

dispersion relation (2.3) with those obtained from the electrostatic

approximation.
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can be a good approximation. Comparing eq.(2.14) with eg.(2.10),

we obtain a condition for the electrostatic approximation.

Nn ≫ ･ 1 - h + / q h . (2.15)

Therefore if the accessibility condition, eq.(2.12), is well satis-

fied, the electrostatic approximation can be employed in the study

of the LH waves.

Comparison of the exact real solution to eq.(2.3) with that

obtained from the electrostatic approximation is illustrated in

Fig.2.1, where, as an example, we choose ou/ w . =30 and a mass

number A=L. In this case the accessibility condition (2.12) shows

N,= 1.4. Although there still exists a narrow evanescent gap for

#,,= 1.4, the figure shows that the approximate criterion (2.12)

proves to be satisfactory-

- 11 -



§2-2. Linear mode-conversion
23)

With increasing kl3 the effect of a finite Larmor radius becomes

important in the dispersion relation of plasma waves. Assuming that

the electrostatic approximation can be applied, we shall investigate

the longitudinal dispersion in a magnetized collisionless plasma

composed of electrons and one species of positive ions with

Maxwellian velocity distributions. The longitudinal dispersion

relation derived from a set of the Vlasov and the Poisson equations

is
24)

DL

where

Zan

t t

A (＼
n a

with I
n

= 1 + Xe + X± = 0 ,

1 +

00
I

(Jj

n=-co u-nu

/

ca

c

; exp (-＼ )

X

x - Z

exp (-

{wrz ; - 1} a (x
an no

to

/

2
x

2

CO

12 -

(2.16)

(2.17)

dx , (2.18)

2

#.

7

ai - "uca

k≫vTo

} - Tnaa

(＼ ) the modified Bessel function of the first kind and

uT r=/27 /m J the thermal velocity of the a - th species. The plasma

dispersion function W (z) is defined by

1
wrz; = ―

/2iT



where the contour C is chosen, so that the point z lies-always

above C.

In the frequency range u ≪ |o> |, only the n=0 term is retained

in the sum for the electronic susceptibility x ･ As f°r the ionic

susceptibility, we can separate it into a slowly varying part which

becomes dominant for a warm plasma and an oscillating part which is

apparently singular at the ion cyclotron harmonics, under the con-

dition fe,,yT.≪io.t<k ,v~.≪a). This condition is usually satisfied

for a plasma with equal temperatures (TQ - T^) near the LH reasonance,

because otherwise the electron Landau damping prevents the wave

from penetrating into a higher-density region. Consequently, we

may approximate IL as

DL = 1 +

where p

+

2

k2

2
%±

k2

1±

25)

1+ {W(

Re W (

X { COt

U)

k,,vTe

kivT±

0)

uci

TT -
I

n

) -1} A o(kA>)

ImW (

(1)

U)

k.v

1

)

Ti

― w(

rtTT

ci

(2.19)

u-nu) .

13 -

k,,v
Ti

C=uT /co ) is the Larmor radius. This dispersion clearly

indicates that a wave energy is absorbed by ions through the ion

cyclotron harmonic damping, so far as a small-amplitude wave is

concerned. We note that in a magnetized plasma the ion Landau

damping takes place if k,,p.>l or if a small-angle scattering due to

the Coulomb collision destroys a phase correlation of the cyclotron

motion. In a high-temperature plasma, realizable in a present or

a future tokamak, however, the collisional effect may be negligibly

small.



In order to discuss the linear mode-conversion near the LHR,
,1/2

we introduce an approximation valid for a warm plasma, ksp.< (W^qj/ ･

If this condition is fulfilled, the effect of ion cyclotron harmonics

in eq.(2.19) can be neglected, since ImW (u/k^v^.) is small compared

with unity. Furthermore, assuming that X = ksp^ (TQ/T^) (m^/m^)^- 1,

we obtain

Re DT = -

03

+

1
i

%,＼

4 to tn
ce e

2

"ce

2

0)

Then, dispersion relation Re DT =0 yields

Li

2

0) =

2

1 + 2 l

i,
2

J

(I +
m±

2

r

kl k

m k±

+ 3

2

ii 2

2 2

2
0)

nl

).

]･

(2.20)

(2.21)

The dispersion curve, together with that obtained from the cold-

plasma approximation, is illustrated in Fig. 2.2. It is clear that7

for values of k,p. smaller than some critical value, the phase

velocity oi/k, and the group velocity du/dk ,, both perpendicular to

the magnetic field, have opposite signs (backward wave) , and__that/t

for larger k±p., they have the same signs (forward wave). But these

same waves are known to be always forward waves along the magnetic

field. In order to obtain the density dependence of krp. for given

toand k,,p., we may transform eq. (2.20) to a dimensionless form

ji 1-fc m. 1

e ^

14 -

J s2
(k,,p ;" = o , (2.22)



where

50

40

31J

20l
0 10 20

Fig.2.2 Dispersion relation derived from eq.(2.2l)

2 n r
s = 3 [

1+q

<7

+
1

4

q

l+q

, fMei|Mcel
- 1 I 2

03

+

1

uci

2

"ce

). (2.23)

At the critical density oj , smaller than id'' , the cold-plasma mode

is converted to a mode with larger k,p. and its group velocity

changes sign. When the density is lower than w , , there exist two

2 2real positive kfp.r while, in a higher-density domain, there are

complex conjugate solutions corresponding to spatially damped oscil-

lations. The density and the value of k±p. at the critical point

(mode-conversion point) can be easily obtained as the double root

to eq.(2.22),
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2

ce

72
2

kip±

q

1+ 2(l+q)k

m

2 2
pe pet

,,p

i

me 3

2
to

uce＼(l+2krrp±s) - a)
/

(2.24)

(2.25)

When k,,p. increases and/or w decreases, the mode-conversion point

p
shifts to the lower-density side. Since w must be smaller than

a) .|ooceI / the electron temperature does not considerably alter a

location of the mode-conversion point, unless T ≫2*.. The density

dependence of k,p. is illustrated in Fig. 2.3 for various values

of fc,,p..

10

5'

i6'l

0 0.25

Fig.2.3 Values of k,p.

0.75

as a function of plasma density for

various values of k,,p.. Crosses denote the approximate value

calculated from eqs.(2.2H) and (2.25).
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In view of analysing the behaviour of the LH wave near the

linear mode-conversion point, we have to take into account an

inhomogeneity of the medium. Since the usual WKB approximation

breaks down in the vicinity of the mode-conversion point where

dfe,/dx diverges, analysis of a differential equation describing

21 2 3 26―30)
the linear propagation of LH waves is required. ' '

In the case of a plane wave, the wave equation may be reduced to

the fourth-order differential equation with respect to x. Four

asymptotic solutions of the equation can be connected to each other

at the mode-conversion point by means of the saddle point method.

If no damping occurs, the incoming LH wave is completely converted

to the ion plasma mode. When such damping mechanisms as the

collisional, the electron Landau or the ion cyclotron harmonic

damping come into play, a considerable part of the wave energy is

absorbed in the vicinity of the mode-conversion point where the

23 28)group velocity in the ar-direction approaches zero. '

After the mode-conversion, the ion plasma mode is greatly

affected by the ion cyclotron harmonics because of large values of

ksp±.
23,31,32)

Accounting for an inhomogeneity of the static

23)
magnetic field, we can show that the ion plasma mode is converted

to the ion Bernstein mode and that the latter may be eventually

absorbed at a stronger magnetic-field side of the resonance point

of the ion cyclotron harmonic.
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§2-3 Summary

We now summarize the propagation characteristics of the linear

LH wave.

An electromagnetic field, launched by an external wave source,

can propagate beyond a thin cutoff layer (w <w) close to the vessel

2wall, if N,,>1. when the accessibility condition (2.12) is not

satisfied, the incoming slow mode couples with a fast mode and is

2 2
reflected back to the plasma surface. Waves with Nn>Nnacc pene-

trate, however, deep into a plasma along the resonance cone which

stems from a weak #,,-dependence of the angle between the group

velocity and the static magnetic field. Therefore a well-designed

slow wave structure, to be used as an external wave source, is

required for an efficient penetration of the wave, as long as the

linear theory is concerned.

Since the LH wave is a backward wave, when viewed as a wave

propagating in a perpendicular direction, the perpendicular compo-

nents of the group velocity and the phase velocity have opposite

signs. The cold-plasma theory shows that a group velocity of the

LH wave is at a right angle to a phase velocity. Therefore, as

the perpendicular wave number k, increases with a plasma density

near the LH resonance, the wave propagates mostly along the magnetic

field. In a tokamak plasma, the LH wave usually has to go round

the torus several times along the magnetic axis before reaching

the LH resonance.

As kj_p. becomes large, thermal effects have to be taken into

account near the LH resonance. The warm plasma analysis predicts

the mode-conversion from the cold LH mode to an ion plasma mode on

18 -



the lower density side of the LH resonance. Near the mode-conversion

point, the perpendicular group velocity becomes small, while the

electric field of the wave has a maximum value. The reflected ion

plasma mode is converted again to the ion Bernstein mode and an

energy associated with any of the two is eventually dissipated by the

ions at the ion cyclotron harmonic resonance, if an inhomogeneity

of the static magnetic field is taken into account. On the other

hand, when k,,is large enough to satisfy u><3k,,v^, electrons

absorb the wave energy through the electron Landau damping, even

if the mode conversion does not occur.

Ray trajectories in a toroidal plasma have been analysed in

several literatures. ' ' The cylindrical configuration does

not seem to essentially modify the analysis for a slab plasma except

that the wave field is concentrated at the center of a plasma column.

Toroidal effects, i.e., a shift of the resonance surface and a

decrease of k,,3 become important near the resonance surface, but the

thermal effect has the tendency of shifting a trajectory apart from

the resonance surface and reduces the toroidal effect on the inci-

dent LH mode. A recent work
35)

suggests, however, that the

accessibility condition may be considerably modified due to a change

of k,,during the rotation around the magnetic axis.

So far we have surveyed the LH heating mechanism within the

framework of the linear theory. These linear pictures may be

modified to include nonlinear effects which will be treated in the

subsequent chapters. The individual concepts, such as the accessi-

bility condition and the linear mode-conversion, remain, as we

shall see, indispensable to the nonlinear analyses.

- 19 -



Chapter 3

NONLINEAR COUPLING OF A PHASED WAVEGUIDE ARRAY WITH

LOWER HYBRID WAVES

The coupling of an external wave source with an electromagnetic

field in a plasma is one of the most important problems in the

studies of RF heating, because it is a primary factor which deter-

mines the heating efficiency and a maximum power-density transmitted

into a plasma.

A phased waveguide array, which is a wave source composed of

many waveguides with appropriate phase differences between them,

was first proposed by Lallia
36)

in order to preferentially excite

slow waves with parallel refractive index N, satisfying the

accessibility condition (2.12), N"J, > N'J.
3.CC

It also has advantages

that an efficient coupling can be obtained without complicated

adjustments and that no structure within a vacuum chamber is

required. The latter reduces the impurity influx due to the

bombardment of high energy particles. Linear coupling of a phased

waveguide array with LH waves was recently analysed by Brambilla

and developed by several authors.
38-41)

37)

Their results have shown

that the reflection coefficient R seen from the wave source depends

on both the relative phase difference A$ of adjacent waveguides

and the density profile near the plasma surface, and have been

recognized to be in satisfactory agreement with low-power experi-

ments on linear and toroidal machines. ' '

When the RF power-density increases, however, the experimental

results deviate from the linear theory: the reflection coefficient

has usually decreased with the power density and in several

20 -



experiments it becomes almost independent of A$. The recent

9)
experiment with high power-density in Petula has shown that the

2
reflection increases when the power density exceeds about 4 KW/cm

and that it still depends on A$.

In order to explain these nonlinear behaviours of the coupling,

we consider the effect of a static density perturbation due to a

ponderomotive force of the electromagnetic field on the propagation

of the LH wave. It was first treated by Morales and Lee
43)

and

a number of works on it have been done as they will be refered to

in Chapter 4. In a low-density and low-temperature plasma in a

scrape-off layer, such nonlinear effects are more essential because

the electromagnetic pressure can be comparable to the kinetic

pressure in high power-density heating experiments. The effect on

44)
the coupling was first analysed by Morales as a time-dependent

problem. The density modification, however, is a very slow process

compared to the wave propagation, since the former is specified by

a characteristic length along the static magnetic field and the

sound velocity. Therefore it seems appropriate to treat the density

modification as a static process. The one-dimensional problem of

the nonlinear coupling due to the static density perturbation has

45)
been analysed by Chan and Chiu ' with a simplified model. The

effect of two-dimensional density ripples due to the finite size

and/or the higher modes of the waveguide array has been suggested

in some literatures, but no concrete work has yet been done.

In this chapter, we wish to clarify a power-density dependence

of the coupling and an existence of the upper limit of the trans-

mitted power, by taking account self-consistently of the nonlinear

modification of the density profile near the plasma surface. In the
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first section, the linear theory of the LH wave launching is

summarized and some numerical results are presented. By the use of

an appropriate ordering, we derive the nonlinear wave equation in

§3-2. The case of a one-dimensional density modification is treated

in §3-3, by considering only the fundamental mode of the waveguide

array. The numerical computation starting from an asymptotic

solution shows the nonlinear behaviour of the reflection to be

consistent with the analytical result of an approximation model.

The last section is devoted to the discussion of the results obtained.
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37)
§3-1. Linear theory of coupling '

§§3-1-1. Wave field in the waveguide and in the vacuum

We consider a waveguide array which is composed of Np wave-

guides and mounted on a plane metal wall at x= 0. Each waveguide

has a width b parallel to the static magnetic field pointed to the

3-direction and the separating metal wall has a width d, as are

illustrated in Fig. 3.1. For simplicity, we neglect the i/-dependence

of the array by assuming an infinite height of the waveguide. It

has been shown in Ref.47 that the finiteness of the height a can be

2
approximated by reducing the wave frequency co to co{1 - (ire/ma) }

so long as the ^..-spectrum is not localized around N..= l. We

1/2

have also assumed a slab geometry in spite of the complex geometry

of actual devices, expecting the characteristic length of the device

to be larger than the wave length in vacuum.

X

Fig.3.1 Geometry of a model of the phased waveguide array.
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The field in the waveguide (x< 0) may be expressed as a sum of

transverse magnetic modes which easily couple with slow modes in a

plasma: "･"

4

where

and

E
viz

vy

E
war

S^'^-t^^-^'^^-T^
' <3-1)

p oo irn＼ . . m＼(z-z )fv.,
I ( ](. .^---B .-^--).in――^ ,

p=l r n=0 2?y ^

k = u/fl,

Yn =-

p ?

2
P

/b2

2

0

= (p -l)(b +d)

,1/2

1/2

for ■n < k b/v ,

for n > k ob/,.

The step function 9 (z) has a value of unity only in the p-th

waveauide,

f 1 for z < z < z + b ,
V P

K. 0 for elsewhere.

The complex amplitudes a of the incident components are assumed

to vanish for evanescent modes n > kQb/-n. Our aim is to calculate

the complex amplitudes 3 of the reflected components which

result from the modes excited by a discontinuity at the waveguide

We have assumed a time

dependence or the form e
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mouth (x= 0) and by an inhomogeneity of the plasma (x > 0).

In the vacumm region between x= 0 and the plasma surface x= x ,

it is convenient to write the wave field as a superposition of plane

waves with different k.,,

4

where

2?v2=
＼"

Zk,,eik≫z{o(klf)eikix + v(k,,)e-ikix) ,

B =
raklteik"z f^)(a(kH)

eik±x- Q(kn)e~lkix) ,
vy Loo ok,

E =

rdk,,eik"z
(― ){o(k,,)eikix- P(ktt)e-ikix) ,

vx J-c° k,

k = "
1

1*1 - *l)ln

% (k,,
k2)1/2

- v

for

for

*2.

*2.

<* /

>*?･

(3.2)

If the plasma is homogeneous along the z-axis, no coupling among

components with different k,, values takes place and the.simple

relation p(k,,)= I(k,)o(k,) holds by the use of the reflection

coefficient Y(kn) seen from the vacuum region. The density ripple

along the magnetic field, however, gives rise to the coupling and

complicates matters.

The boundary conditions imposed on the x= 0 plane are that

the tangential electric field E is continuous everywhere and that

the magnetic field 3 is continuous only in front of the waveguides.

The discontinuity on the metal wall is due to the surface current on

it. The orthogonality property of the waveguide eigenmodes to the
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plane waves being applied to the boundary conditions, we obtain the

relations:

≪

where

and

o(klt) + p(krr) =

'p

p=l

4-rry

a -3 = ―2
mq mq be

m

n=0 r

.CO

dk,,

i―00

1

fcr

1 - (-1)

) F (kn) ,
nipJ nip "

(a(kfl) -p(k,,)) F

n -iknb
lv rt ~ l ―'

F (k,,) = 5 5― e

,.{
2

1

for

for

§§3-1-2. Wave field in the plasma

-ik ,,z

m = 0 ,

m > 1 .

(k,,) ,

(3.3)

We consider a cold plasma immersed in a uniform magnetic field

B s with an inhomogeneous density profile n (x). Since the wave

1 /p
frequency lies in the LH frequency regime, go . ≪ co -v-(ui . | u | j <k|go |

and the plasma density near the surface is low enough to satisfy

2
the condition, (ix> /&) ≪ Ioj |/go, the slow and the fast modes are

decoupled. Then the wave equation for the electric field E of

the slow mode is approximated by
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82

da;
2?psr*jZ;+ (*2 = o , (3.4)

as it shall be discussed at length in §3-2. The coupling with the

40 41)
fast mode ' as well as the TE mode in the wavequides have been

included in analysis in recent literatures.
38)

It has been shown

that the reflection coefficient and the N , -spectrum above N , ace

are not drastically modified by these effects. By the use of the

Fourier transform of E ,
yz

*p. ■

.00

dfcw

J―oa

eik"z

the wave field may be expressed as

E(k,,3x) ,

r ik z ikn
n = dfr e " ―

y J-°° ck,

E
f

dkneik≫"

■L_co

dE(k,rix)

8x

ik,, dE(k,rJx)

*5 3x

I

･

(3.5)

In order to simplify the discussion, we assume a linear density

profile, such that the surface density is y times the cutoff
s

2 2density n = m e^u) /e and the density gradient is characterized

by the length L ,

no
(x) x

CO
n

Ln

+ ys (3.6)



By substituting eqs.(3.5) and (3.6) into eq.(3.4), we obtain the

ordinary differential equation for the Fourier component,

d2
[x-x +L (y -1)) E(k,,tx) = 0 . (3.7)

A general solution to eq.(3.7) is expressed by a linear combination

of the two Airy functions, Ai and Bi.
48) Since the solution has to

satisfy the radiation condition which means that there exists no

wave source deep in the plasma, we obtain the solution in the form,

where

E(k,l3x) = C(k,,) P(kr,3x) ,

P(k.,3x) =

b rs; = Birs;

<3 =

Ln

A:L[kc(x - x + L
s n

rvg-i;)]

B [<(x - x + L
- s n

i A±(E) ,

(va-U)-＼

for kl < k2

for *5 >*l

(3.8)

(3.9)

and C(kn) is a complex function of k.. to be determined by the bound-

ary condition at x= x In the deep interior of the plasma, the

asymptotic forms of Ai and Bi are applicable and we can write
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Mr?; ^

B (V *

1

2/iF

1

rl/≪ exp [-
2

3

K 3/2,

C-U"1/4 exp [-£(―

3

<-v
3/2 +

for £ -*■°°
/

(3.10)

TT
―)] for ?--≫.
4

The former evanescent mode decays exponentially and the latter

travelling mode approaches to a backward wave which transports

wave energy in the x-direction.

§§3-1-3. Linear coupling equation

The continuity of the tangential components of the electro-

magnetic field at the plasma surface x= x
s

o(k,,) + p(k,t) = C(kn)[P(kn3x ) cos k ,x -
s

~
s

o(k,J -p(k,J = -I C(k.,)L

where P'(k,,,x
s ; = dP(k,,3x)/dx＼

P'(kH,x )

fc,

x=x s

yields the relations,

P'(k,,,x )

k>

cos k

sin k

^xs
+ P(k,,,x

(3.11)

; sinfejx ] ,

Finally, substituting eqs. (3.11)

into eq.(3.3), we obtain the linear coupling equation for a

%
as

11

p n
^nm

6
P<7

+ k )s = y
nmpq np L

29 -
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where

and

K
nmvq

R = (

R =

X

J_co

1

lP'(knJx

I

p

Zs-X

Zs

Zs = -

+1

Z0

F (k..) F* (k.,)

)/k1 ]cosfe,rc + p(k,,ax_) sin k^x

(3.13)

(3.14)

(3.15)

P(k,,3x J cos
s

k

j,xs
- ＼_P'(k,,3x )/k±~]sin k^x

and 5 , =1 for a = b and 0 for a^b. We can calculate from eq.(3.12)
ab

the reflection coefficient R defined by

n n

with n the largest integer not exceeding k-b/it.

In order to elucidate a qualitative behaviour of the reflection

coefficient, we restrict ourselves for the moment only to the funda-

mental mode of the waveguide array- If a number of waveguides is

sufficiently large, the power spectrum emitted by the array has a

peak around fc,,= A$/i>. In this case the reflection coefficient is

approximately expressed in terms of the surface impedance Z normal-
s

ized by the impedance in vacuum ZQ = (＼i/e )

2

E
z

B
y

= 1

k2 -k2
Ko "

x=0 ko

E
2

z

30 -
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= i

*s-

ko

*2.
P(k,,3O)

P'(kn30)

If there is no vacuum region, i.e. a; =0, Z may reduce to

the limit of a mild density gradient ( {k^-kll^3 L 2/3|yc -l|≪i; :
u n o

z - -
s

-iQB(±-N,,)
2/3 <w1/3

e^SB(≫I-D2/3 CVn>1/3

and to the high density limit (＼T<-Q-

Zs * -

-i (1-tf?,)
1/2

(u-1)

for N.. < 1,

for Nn > 1,

kl＼1/Hn^(us-i>≫i> =

-1/2

(,5-1)1/2 iv x,-l/2

with QB= 3~1/3T(l/3)/T(2/3) = 1.3717 .

for *2n < 1,

for Nn > 1,

(3.16)

(3.17)

2
When N, < 1, Z becomes pure imaginary and therefore E is

s

unity, as is expected from the fact that such a mode cannot propagate

2 2 2into the plasma beyond the cutoff point f u = uj K Even if N , > 1,

i? approaches to unity for y =0 when L is either extremely small

or large, because Z becomes zero or pure imaginary, respectively.s

Consequently, R is expected to have a minimum when the gradient

assumes an optimum value. This may be explained thus: When the

gradient gets smaller, the cutoff point is shifted into the interior

of the plasma, resulting in an increase of the width of an evanescent

region and therefore in an enhancement of the reflection coefficient
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On the contrary, when the gradient gets steeper, a matching is

hardly obtained due to an abrupt mode-conversion and thus an

increase of the reflection coefficient may be expected.

The electric field in front of the waveguide array and in the

plasma can be expressed in terms of a and $ as
YlP firJs

and

E(kn30) = 11

p n
<v + *

E(k,,jx) = P(k,,3x)

for x > x .

*l I

p n

r (k,,) =

) F (k..)
np np "

(a +6
nv n

(3.18)

(3.19)

I

(3.20)

(3.21)

P(kIIJxs ) cos k ,x - [P t(k,tJxs)/kI'} slnk_,xs

The power density of the LH wave is calculated from the

x-component r of the Poynting vector. If we assume that a quantity

X varies in time as X= X(x.z)e
-iu>t

+ c .c . , r is given by

U r = 2 Re(ExB*) = -2Re(E B*) .
OX z y'

Remark that, if the time dependence of the form X = Re[X(x, z)e ]

is assumed, the factor 2 in eq.(3.20) should be replaced by 1/2.

Our definition of E (x,z) gives a half of the peak value of the

actual E . The fc,,-spectrum of the power density F (klf),

defined such as r = / dfc,,r(k,,), may be expressed as

U-rrfe
0 r E(knax)E' (k,,,x)^

K0 K"
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It is easy to show that r (k,,) vanishes whenever k^,< k^ and that

the phase velocity of E in the ^-direction must be negative for
2

r to be positive. The latter is consistent with the backward

character of the LH wave. Also can we readily demonstrate, by

differentiating eq. (3.21) with respect to x and using eq.(3.7),

that r (k,,) does not depend on x. By the use of this conservation

property and the asymptotic form of eq.(3.10), we may rewrite

eq. (3.21) as

Tx(klr) =
n*k0 ＼c(kj＼2

7j ≪*-&"%*

§§3-1-4. Numerical results

for k
2

0
･ (3.22)

In this subsection, we summarize numerical results on the

linear coupling. Various parameters used here have been chosen to

simulate the experiment in JFT-2. They are: the wave frequency

/=750MHz, the cutoff density nQ ^ 7 x 10 m , the number of wave-

guides N =4, the width of a waveguide b= 0.014m and the width of

a metal wall d= 0.001m. In numerical calculations, we have taken

16 modes in a waveguide and have assumed spatial periodicity along

the magnetic field with a period 64 times longer than the array so

that numerical errors are estimated to be less than about 1%.

Figures 3.2 to 6 show the reflection coefficient R as a

function of the phase difference A*. The position x of the plasma

surface is set to zero except in Fig.3.6. The dependence on the
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1.0

≪= 0.5

0.0
0° 90° 180°

Fig.3.2 Reflection

coefficient R versus

AO with y = 0 : for

(1) £ =lx 10 m,
n -S

(2) L =2x10 ?m,

(3) L = 5><10"5m,
n i

(k) L = lx 10 m,
n

(5) L = 2* 10"
n

(6) L = 5>< 10
n

k

-k

m,

m and

(7) L = lx io"3m
n

density gradient L for ＼i= 0 is illustrated in Fig. 3.2. In case

where A$ = 0, R increases with decreasing L , since, for a steeper

gradient (small L ), components with small N, are reflected at

the cutoff point and come back to the array. On the other hand,

they remain between the cutoff point and the metallic wall of the

vessel on both sides of the array for a small gradient (large L ).

On the other hand, in case where A$ =it, the evanescent region

(a) < a)) becomes larger for a smaller gradient, and thus the

reflection coefficient increases.

When y
s

7*0, as are seen in Fig.3.3 (y = 20) and Fig.3.4 (y =

100), we can observe that R becomes less sensitive to L as y
3

increases. This is a reasonable result, because the inhomogeneity

is less important if the total density is large enough. The results
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Fig.3.3 Reflection

coefficient R versus

A$ with u = 20, for
5

the same values of L
n

as in Fig.3.2.

Fig.3.^ Reflection

coefficient E versus

A$ with u = 100 : for

(1) L =lx io~5
n

(2) L =2xio
n

(3) I =1x10
n

-5

-3

m,

m and

m
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Fig.3.5 Reflection

coefficent R versus

(i) uB

(2) u

= 100,

= 50 and
s

(3) y =20
s

Fig.3.6 Reflection

coefficient R versus

and x = u /L where
s s s

£s=2x 10~6m, for the

same values of ＼i as
s

in Fig.3.5.



0.2

t- 0.1

0.0

0.0 5.0 10.0

N//

15.0 20.0

Fig.3.7 Power spectra versus Nlt with u = 20 and

L =5xl0~＼n : for (l) A$=0°, (2) A$= 90° and (3) A$=l80°.
n

of the low-power experiment (3 KW) in JFT-2 are indicated by crosses

in Fig. 3.4. The surface density n "VlOOn is consistent with the
3 s co

scrape-off layer density measured by means of an electrostatic

probe.
49)

It should be noted that this density is rather high, com-

2
pared with the assumption (go /go) <<|u I/a). Even if this

1 ce '

inequality does not holds, we may neglect the coupling to the fast

≫ 1. Therefore the effect of the fast mode on

the reflection is expected to be small for large A$.

In Fig.3.5 and 6, the influence of a thin vacuum layer in

front of the waveguide array is considered. The coupling is found

to vary appreciably only for large values of both y and A*.
s

-4
The power spectra for u =20 and L = 5 x 10 m are shown in

Fig. 3.7. The peak of the spectrum shift toward large .V,, with

increasing A$ Since only the fraction of the power satisfying

2 2
N, < N, can penetrate deep into the plasma, larger A? is pref-

3.CC

erable for the heating of a central part of the plasma column.
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§3-2. Density profile modification due to a ponderomotive force

§§3-2-1. Formulation

We start from a set of Maxwell and two-fluid MHD equations.

The former is required to deal with the coupling between an

electromagnetic field and a low-density plasma, while the latter

is relevant to the neglect of the wave-particle interaction.

They read as

^x£ ≪ -

^x£ =

3na

dt

at

zt

1

a

dt

at

/

+ %
I

a

+ V-(na?a) = 0 ,

+ (y '^)v
o o

ma

n v
o a a

50)

(3.23.a)

/

0 + v x b) -

(3.23.b)

(3.23.C)

― $( Inn ) , (3.23.d)

where m , q , n , v and T denote, respectively, the mass, the

charge, the number density, the fluid velocity and the temperature

of the a-th species. The unperturbed density profile nQ(x) at

z ->±°°,where there exists no electromagnetic wave, is assumed

to increase in the x-direction. A uniform magnetic field Bn is

applied along the 2-axis and the temperature gradient is neglected

for the sake of simplicity. The electromagnetic field excited

by the external wave source has no y-dependence and is assumed

to propagate in the x - z plane.

In order to obtain a nonlinear equation which accounts for
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a nonlinear coupling of the LH wave with the low-density, low-

temperature plasma near the wave source, the wave amplitude is

assumed to be of the order of e and the temperature to be of

the order of e , with e a small expansion parameter. Thus

we assume the ratio of the electromagnetic pressure to the

kinetic pressure at the cutoff to be of the order of unity,

i.e. e 1*1 2/n
CO

2"^ 0 (1) with n

for a solution of the form

X(x3z3 t) = X
(0)

(x, z) +
n

CO
the cutoff density. Now we look

2

I
c" I X, (x,z) e t£a)* +c.c. , (3.24)

1 4=-2

for a wave frequency oj.

In order to properly take into account the effect of the

ponderomotive force, we have to persue a calculation up to the

2
order of £ . Substituting eq.(3.24) into eqs.(3.23), we obtain

to the first order in e the dispersion relation for a cold plasma

r.t[u

where

e '

i

+

9

2
o

03

82

- ^ g

0

ew
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9s^
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32 ＼ /
p(l)

3
/

(3.25)

to 3x33

c2 a2

03 dx3x9z

a/0)2
e2 = 1 - I ^V ,

a a) - a)ca



V

and

and a)
ca

v pa co

a w(u - w._)
c o

are the plasma and the cyclotron frequencies of the

a-th species, respectively- Next, eq.(3.23.d) with n=2 and 1=0

yields

Lv ">･*#>' [5<i>'*tf<i>-

*

In order

3p> and

(3

to express n in
a

P from the

.23.d) and then bring

The result is

m 00
a

ma

lLt(l)
lxSl

[*$2>+*SW

"a

terms of ?5 ,

0

(3.26)

we first calculate

n =＼l＼= 1 version of eqs. (3.23.a) and

them into the z -component of eq.(3.26).

alF(1)l2

33
°3

-(-
a

0)
ca

~ 2 2

U)((i) - 03 )
ca

1

03

3

3s

1

~~2 T~
00 - CO

CO

9

33

r,ff(l)

93 !y lx

l^l^'l2]

9

82

ly la;
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(0
a

･
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(2)
Now, eliminating E ' from the electron (a= e) and the ion (a= i)

uz

equations, using the charge neutrality condition n = n＼ -n

and integrating over z with n^ ＼x,z^±co) =nQ(x), we obtain

In

n

no(x)

z)

T a=e,iU (w -u^ ) Lx xy

iMCQ ,. (1) (1)* (1)'(1

(3.27)

m a)
a

a).

where T = T + T. . Eqs.(3.25) and (3.27) give a closed set of non-

linear equations to the order of e. The density profile n ,

given by eq.(3.27), describes well the circumstance that the plasma

is pushed away by the 3-component of the ponderomotive force.

The thermal dispersion, the drift due to the perpendicular compo-

nents of the ponderomotive force and the effect of higher harmonics

are neglected, because they are the second-order effects in e.

In the small amplitude limit, it is easy to show that this expression

coincides with the generalized formula for the quasi-static density

perturbation. Sn =-e

Gary and Pereira
51)

0
w2-°2 IsI 1/T, recently derived by Kaufman,

Remark, however, that the usual electrostatic

p
approximation, Sn=-en＼E＼ /T, which would be valid in a high-density

plasma with e,,≫ 1 and e, ≪1, may not be justified in our case,

unless N,.≫1.
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§§3-2-2. Basic equations

The frequency range of our concern lies near the lower hybrid

1/2
frequency wLH, i.e., u>cl≪u < (u>cl|b>ce| ) f |u>ce|. Though a

condition for the heating of a plasma center requires co^ coLH ^

(*>_,.,,,,, we restrict ourselves to consider a low-density region

in the scrape-off layer where (w /wf ≪ U I /co holds. The latter
pe ' ce '

condition, rather stringent, enables us to decouple the slow mode and

the fast mode. The rigorous condition which allows to neglect the
2 ? ?

coupling with the fast mode is given by |(c, - N,)(e, - N, - N ) ＼≫

2 4 2 2
to

^

, which thus enables us to neglect the effect of the

fast mode for waves with large Nlt. These assumptions kept in mind,

the coefficients of various terms in eqs.(3.25) and (3.27) can be

simplified and we obtain the dispersion relation

T-S'1' -

1

2
Q

1+-

to

0

a2
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0

0
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dxdz

together with the expression for n
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(XjZ)
]E (x,z) = 0 (3.30)

CO

no

In order for a launched wave to be coupled efficiently

with the slow mode in a plasma, we have to excite an electro-

magnetic field with no E - component. Moreover, it is easily

shown that the two terms in eq.(3.29) which do not contain the

component E are related to each other by

1

2 2~]m.u)

E (x3z) + lk2n

m (j
e

2

~2 ^si-i

when the dispersion relation for a uniform plasma is used. Thus,

2 1/2
unless N, - 1 < (m /m.) , the first term can be neglected

(1) 2compared with the term involving ＼E-: | . Therefore, eqs. (3.28)

and (3.29) are further simplified to give

n
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≪<°> (x3z) = n (x) exp [- S ＼E (x3z) |

where k = oo/c and 3 = e
2/m

u
2

2], (3.31)

T= en/n T, and the scripts of E
U G O Z

have been suppressed for brevity. These are the basic nonlinear

equations for the subsequent analysis. We note that similar

equations have previously been derived in slightly different ways

without rigorous ordering. ' '
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§3-3. Effects of the one-dimensional density modification

§§3-3-1. One-dimensional model

50)

45)
The simplest approach first treated by Chan and Chiu is

to consider only the fundamental mode of the waveguide array. We

assume that the electric field has a sharp spectrum with respect

to the parallel wave number k,,1^A $/2> where A$ is a phase differ-

ence between adjacent waveguides and b the parallel width of a

waveguide. We also assume that the accessibility condition,

2 2N, > N, , be satisfied. The former is well satisfied if the array
3.CC

is much longer than the parallel wave length 2ir/fe,,. These assump-

tions enable us to write E (x3z) =E (x)e " and to reduce the
z z

basic equations (3.30) and (3.31) to the ordinary differential

equation

d2

d^

2

n
0

n

(x)

CO

exp[-B|£ ro;;|2]]£ (x) = 0 . (3.32)

We should remark that, although the z - dependence does not appear

explicitly in eq. (3.32), E (x) is assumed to vanish at z -≫■±<=°,inz

order that the plasma be pushed away in the z-direction, resulting

in a density depression. Using the linear density profile given

by eq.(3.6) and normalizing various quantities to simplify the

notations, we obtain

d2
7?

S -£_ +u_£
E + [

L

£e-l≪l -1] E -0 for £ > E (3.33)

and
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d2

P E - E = 0

dr

where E = &
1/2

E (x)3K = (K-k-)

for 0 < £ < £s

1/2x and L = (kl-k2Q)1/2Ln

/

Since the basic equation (3.33), including the nonlinear

term, is not analytically tractable, we try to solve it by using

an approximation model with y = 0. When an electromagnetic field
s

is applied, the plasma is pushed away along the magnetic field,

resulting in a change of the density profile. Our first task is

then to evaluate an effective shift length in the x- direction

defined as a shift length of the cutoff point, which is given by

1/2
kx. We assume that this global shift of the plasma

does not alter the density gradient. According to this model, the

region £ < E,< £ + A£ becomes empty and, in place of properly

accounting for an exact density profile, we approximate it by a

shifted one. Thus neglecting the nonlinear term in eg.(3.33), we

can rewrite eg.(3.33) as

d2 5 - U_ + AC) -L
-yZ + S_ E = 0 for £ > I +A£ . (3.34)

First of all, we wish to evaluate the shift length. Assuming

the electric field in a plasma to be approximated by its asymptotic

form (3.10) even at the vicinity of the plasma surface, we may

determine a cutoff point on a shifted density profile. By means

of eqs.(3.10) and (3.20), the electric field intensity at

£= ? + L + A£is evaluated as
s
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＼e
1 p

2

= l1/2 (An"1/2 r
/

where r is the normalized power-density, (see eq.(3.20))

r = -i-p a (nI-i)1/2 g r = im [ e (d//dc ) ] .

Therefore the density modified by the nonlinear effect may be

approximated as

n

"co

a,
2a

n
CO

[1 - ＼E
p

2
A?

1 = [―

L

+ 1][1-

L1/2

(3.35)

Using the cutoff condition n =n , we can determine A£ as a

function of the power density r, i.e., as a solution to the equation

C ― ]3/2 - r [ ― + i 7 = o .

The electromagnetic fields in the plasma are now given from

eq.(3.34) as

E (K) = CB_[ -

BP
(I) = -

U-L-ls-^)L~1/3 ) ,

ikoc
BJ - (E -L- E -AE) I"173] ,

1/3 "

(3.36)

(3.37)

where B = Bi -i Ai and the prime denotes the derivative with respect

to the argument. On the other hand, since the fields in vacuum are

represented by
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(3.40)

(3.39)

4

E (Z) = La e
K

+ p e
?]

I

v≫-.(≫i.≫W"'c-'>at1'

(3.38)

the continuity conditions of the tangential electromagnetic fields

on the plasma surface (E,= E, +A£) yields

■4

ae-(5s+A5) + pe(eS+AC)

a e -US+AO
P e

c b_Ll

t^s+AO = _CB IL

2/3
] ,

2/3, L-1'*

We can then determine the squared amplitude of the electric field

IV0)|2 at the waveguide mouth (5=0) as well as the surface

impedance Z defined by (3.15) as
s

and

＼Ev(0)|2 = ＼a+ p|2 = ttT Ll/3

x |B [L2/3] cosh (E +A5) -b'[L2/3]L"1/3 sinh (? +A?)|2 ,
~ s

― s

zs = -i
ko a - p

1 /3 '
0 1/o

B L ' -B tanh (E. +AE)
= ,･ far -1) ' ― = ^

B - B L ' J tanh (£ +A£)
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2
It is readily verified that the expression (3.16) for N,,>1 is

recovered when L
2/3

<<1, since B_(O)/B^(O) = QB e"^3. in case

where E, + A£≫ 1, Z becomes pure imaginary and therefore the
s * s

reflection coefficient approaches unity.

The above calculations show that, given a power density Y,

we can determine, as a function of r, the shift length A?, the

electric field intensity at the waveguide mouth and the reflection

coefficient.

§§3-3-2. Numerical analysis

We now wish to solve numerically the basic equation (3.33) in

its normalized form. Since a solution must represent a travelling

wave with r >0, as was discussed in §§3-1-3, the asymptotic

-1/4
solution to eq. (3.33) for E,->-°°,correct up to the order of n ' ,

reads

E 'V.

a

"172 n
1T

-i/h
[1 +

2
a

4tt

n-1/2

x exp [ -i(

+

32,2

2

3

n

-1
n

3/2

]

2
a

2ir

where a and <j>are real constants and r＼= E,/L

Tl ~

1/3

4
a

n
1/2

(3.41)

+ *)] ,

Numerical anal-

ysis has been proceeded as follows: The electric field E and its

derivative 6.E/6.E,at an initial point, chosen to be located far from

the plasma surface, is calculated by means of eq.(3.41). After

preparative calculations, eq. (3.33) is solved toward the waveguide
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mouth £= 0 with the aid of the Adams-Moulton method. The electric

field at the waveguide mouth enables us to compute the reflection

coefficient R. In the course of numerical calculations, we have

confirmed that the power density r is conserved and that absolute

values of the electric field decreases monotonically in the positive

direction. The latter ensures that there is no reflected wave

component which would otherwise originate from a wave source at £-*■<*>.

Fins ."3.8 t-n 11 i1 1listi-at-.n̂umerical results obtained with

10 2

u u1

10°

10° 101
10 2

IEv C0 >I 2

Fig.3.8 Energy flow T versus ＼E(0)| for numerical

results (Solid line) and for analytical results of the

approximation model (Broken line).
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u = 0. In Fig.3.8, a relationship between the power density r

and the squared amplitude of the electric field ＼E(0)| at the

waveguide mouth is plotted for different values of L, the character-

istic length of the density gradient, whenever ＼E(0) | is small,

r increases linearly with it (linear regime) but, as soon as

＼E(0)| > 1, r tends to saturate, as is shown in Fig.3.9 for L= 0.01,

due probably to an increase of the width of the cutoff region

(n < n
CO ). The broken lines in Fig.3.8 denote analytical results of

o
u

0.0

Fig.3.9

with L = 10"2

0.5

s
1.0 1.5

Power-density dependence of the density profile

and u =0 : for (l) T=0, (2) T=0.68,
s

(3) T=2.56, (h) r=5.2O 5 (5) r= 6.60 and (6) T= 8.36
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the approximation model. Although the density profile delicately

differs in the analytical and the numerical models, results obtained

with the analytical model are accidentally in satisfactory agreement

with the numerical results. When ＼E(0)| >>1, a plasma in front

of the waveguide mouth is pushed away and thus the electric field

decays almost exponentially as in a vacuum up to the shifted cut-

off point where the reduced density exceeds the cutoff density.

Since the amplitude of the electric field at this point is

determined by the cutoff condition and has only a weak dependence

on ＼E(0) | , the power density r increases very little with

IVO)|2.

In Fig.3.10, the power reflection coefficient R is given

as a function of T with N, = 5 and for different values of L. In

a region where T is small (linear regime), the steeper the density

gradient (i.e. the smaller the values of L ), the smaller the

reflection coefficient. This implies that the width of the cutoff

layer decreases with increasing density gradient. If L is too

small, however, a mode conversion may occur abruptly and a matching

between the wave source and the plasma bulk can hardly be obtained.

With further increasing r, the reflection coefficient increases for

any value of L. This can be explained as an increase of the width

of the cutoff region due to the density concavity in the £-direction.

In Fig.3.11, we depict the reflection coefficient as a function of

Nn for different values of I" = (N2 - 1)~1/2T, since r1 is indepen-

dent of N,,. Results suggest that the coupling efficiency becomes

-2
optimum with Nn = 2 ^ 3 for this case (with kQL =10 ), and

consequently the reflection coefficient varies little with

increasing r.
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1.0

* 0.5

0.0

0.0

0.0

10°

r

10 1

Fig.3.10 Reflection coefficient R versus T with

N,,= 5 and Ug = 0 : for (l) ^=2x10
2,

(3)fe^n=2xio"U and (U) fc^= 2 x io"5

5 0
10.0
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10 2

(2) knL = 2x io"3
U n

Fig.3.11 Reflection

coefficient R versus

N,, with kQLn= 10"2

for

(i) r<=r^,-ir1/2r

(2)

(3)

(U)

(5)

(6)

= 0.05,

r- = o.i,

r> = 0.2,

v = o.u,

r' = 1.0 and

r*= 7.0.



□£

0

10"1 10°

r

10 1

Fig.3.12 Reflection coefficient R versus V with

N,,= 5, k L =3><10"3 and y = 100.

Several results obtained with y =100, x = 0 and Nn = 5 are
s s

shown in Fig.3.12 and 13- The reflection coefficient (see Fig.3.12)

decreases until the power density T exceeds 7 and then quickly

increases up to unity. The modified density profiles depicted in

Fig.3.13 indicate that the coupling is optimized when the surface

plasma density y is reduced to 20^30. This result is consistent
s

with that of the linear analysis given in §§3-1-3, which states,

by virtue of eq.(3.17) for the high-density limit, that the normal-
_ 2

ized surface impedance Z becomes unity for y = N., and that

therefore the reflection coefficient R vanishes. In case where

N,,=5, an optimum coupling is expected to occur when the surface

density decreases to y =25- For a higher power-density, a cut-
s

off region reappears and then the reflection increases.
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o
u

300

200

100

0

0.0 1.0

4

2.0 3.0

Fig.3.13 Power-density dependence of the density

profile with k.L = 3 * 10
u n

-3
and u =100 ; for (l) T= 0,

u n s
(2) r=1.92, (3) T=U.O9, (U) T=6.72, C5) T=7.65,

(6) r=9.5O, (T) r=10.U and (8) T=12.1.

The parameters in Figs.3.12 and 13 are chosen to simulate the

JFT-2 experiment and the result of the linear analysis in §§3-1-4

For the choice of parameters: f= 750MHz, dn/dx= 3.5 x 10 m,

T = T
1
+ Te-30eV and N, = 5 for A<D=tt/2,

we obtain n ^7xio15m"3,

L^ -＼,2 x 10

we

7 x

CO
m, 8^ 8.4 xio^Vv2 and F^5 xio6r Wn"2. Therefore

may conclude that, if the surface density is assumed to be about

10 m~ , the reflection coefficient decreases until the power
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density V exceeds 3.5 kw/cm and that the maximum transmitted

2
power-density is about 5 kW/cm . Since the transmitted power xn

actual experiments in JFT-2 is less than 2 kW/cm , it seems natural

that the reflection coefficient tends to decrease with the increasing

power density-
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§3-4. Discussion

Taking account of a static density depression due to the pon-

deromotive force, we have derived a nonlinear wave equation which

governs the electromagnetic field near a plasma surface. Numerical

computations on the one-dimensional model have shown the power-

density dependence of the coupling with the LH wave of the phased

waveguide array.

When the surface plasma density is lower than the cutoff

one, the reflection usually increases with increasing power

density, since the cutoff region gets wider under the influence

of the ponderomotive force. Since the power-density spectrum

_4/o
described by eq. (3.22) is proportional to k,, for a given fixed

amplitude of the electric field which characterizes a magnitude of

the density depression, the upper limit of the transmitted power-

density tends to decrease for larger values of k , (see Fig.3.11).

Therefore the electron heating which requires large values of k,,

seems to be unfavourable in order to maximize the transmitted

power-dens ity.

If the surface plasma density exceeds the optimum value which

is N, times the cutoff density, the reflection coefficient will

be minimized under the action of the ponderomotive force which

lowers the surface density to the optimum value. This result may

explain the power-density dependence of the reflection coefficient

9＼measured in the LH heating experiment on Petula.

Finally, we shall briefly discuss the effects of the two-

dimensional density rippling. Not only an actual waveguide array

has a finite width along the static magnetic field, but the
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Fig.3.1^ Absolute

values of the electric

field in front of the

waveguide array with

L = 5 x 10"U
n

m and

y = 20 : for
s

(a) A<K=O°,

(b) A$=90° and

(c) A$=l80°.



electric field in front of the array has strong peaks around a

metal edge of the waveguides. Profiles of the electric field in

front of a four-waveguide launcher calculated by linear theory is

illustrated in Fig.3.14 for parameters deduced from experimental

data on JFT-2.
10)

If the density perturbation due to the pon-

deromotive force has a period 2u/fe , which is typically a width

of the waveguide, the electromagnetic field with parallel wave

number kr, excites new modes with k,,±k , which can propagate

beyond the cutoff point even if k^,< k'z.. A reduction of the

reflection coefficient and/or a modification of the N,- spectrum

are plausible. The power-density spectrum given by eq. (3.22)

suggests, however, that the contribution of large- Nir components

-4/3
to the power-density is small because of the factor k,,

Also, large- N, components tend to be attenuated in the cutoff

region localized around the metal edge. Therefore this problem

would require further careful and self-consistent analyses.

In addition to the two-dimensional effects, the wave-particle inter-

action in this intense localized electric field and parametric

phenomena are left open to further studies.
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Chapter 4

NONLINEAR PROPAGATION OF LOWER HYBRID WAVES

The problem of the nonlinear propagation of large-amplitude

LH waves has received since several years a great deal of atten-

tion. In this chapter, we intend to elucidate this problem and

especially wish to focus our attention to characteristic behaviour

of these LH waves near the linear mode-conversion point.

Before reaching an inner region of a confined plasma, a LH

wave has to propagate a long way nearly along the static magnetic

field. If a certain nonlinear mechanism could affect the propa-

gation characteristic and/or give rise to a localization of the

electric field (filamentation or self-focussing), the linear theory

is incapable of predicting the deposition of the wave energy to the

medium, since the intense localized electric field can be respon-

sible for a local heating and for a generation of high-energy

charged particles. Specifically, if such a filamentation occurs

near the plasma surface, not only the absorbed energy is fated

to be lost rapidly, but also the unconfined high-energy particles

may enhance an impurity influx.

Nonlinear propagation of the LH wave was first treated by

Morales and Lee
43)

as the problem of the two-dimensional steady-

state propagation in a homogeneous plasma. Taking account of

the competition between a thermal dispersion and a density

depression due to the ponderomotive force, they have shown that the

wave field is governed by the complex modified Korteweg-de Vries

(CMKdV) equation, which has not vet been solved analytically. ^)

In the limit of a rapid phase variation, Newell and Kaup

60 -
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reduced the CMKdV equation into the nonlinear SchrSdinger (NLS)

equation, which is soluble by means of the inverse scattering

method
55)

and has envelope-soliton solutions. Several authors have

tried to extend the theory to an inhomogeneous plasma.
56-58)

Since a group velocity perpendicular to the magnetic field

becomes zero at the linear mode-conversion point (see §2-2), it is

expected that an electric field has a large amplitude there. Sanuki

56)
and Ogino have analysed the case of an inhomogeneous plasma,

including the LH resonance point. Their numerical computation

suggests that the nonlinear distortion of the wave packet which

occurs near the LH resonance point renders the electric field spiky.

Their analysis may not, however, describe the linear mode-conversion

since a finite-temperature effect is treated only as a perturbation

to the wave trajectory derived from the cold-plasma dispersion.

In the first section, we describe a model and derive a basic

equation. The nonlinear propagation far from the mode-conversion

point is also discussed. In §4-2, linear properties of the wave

equation is analysed and the WKB solutions are connected at the

conversion point with no recourse to the usual asymptotic solution

of the fourth-order differential equation. Incorporating the non-

linear term in the linear equation, it is shown that a nonlinear

behaviour of the LH wave packet near the mode-conversion point is

governed by the NLS equation involving a linearly increasing

potential, which is the same equation as that describing the wave

near the plasma cutoff in an inhomogeneous unmagnetized plasma.

Numerical results are also presented. The last section is devoted

to the discussion of the results.
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§4-1 Basic formulation

§§4-1-1. Model and basic equation
59)

We consider a plasma immersed in a uniform static magnetic

field i = BQ~z. The unperturbed plasma density nQ is assumed to

increase slowly in the x- direction but the temperature gradient

is neglected for the sake of simplicity. So far as a low- 3 plasma

is concerned, the diamagnetic effect due to the density gradient

is also neglected. Since the density depression due to the

ponderomotive force is a temporally slow process, characterized by

a spatial extent of the wave packet along the static magnetic

field and the sound velocity, we deal with a steady-state two-

dimensional problem.

Three-dimensional effects, which may become important

whenever there exist such nonzero-k modes as parametrically excited

waves, will be referred to in §§4-1-2.

As is illustrated in Fig.4.1, an incoming wave packet is

assumed to be localized along the 3-axis and its k -spectrum to be

also localized around a certain value k,, which is determined by an

external wave source. This model simulates an actual heating experi-

ment with a finite-length slow wave structure such as a waveguide

array. The parallel wave number k,, is assumed to be large enough

2 2to well satisfy the accessibility condition (2.12), N, > N, ,
3.CC

and thus the electrostatic approximation is applicable (see §2-1).

Remark, however, that it is not too large neither to neglect the

wave-particle interaction. With these considerations in mind, we

start from the two-fluid MHD equations for electrons and ions and
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the Poisson equation,

3n
a

3%

at

V

+ ?.(≫ V

2 i
<J> =

zo

I

a

o
≫ ■ °

'

V a

Va

In these equations, N

m
a

<-^-vv -

a' ≫

nomc
K ' (4.1)

and T are the density, the fluid

velocity and the temperature of the species a, respectively,

and d> is the electrostatic potential.

z

/

/

*CONV

Fig.l+.l Geometry of the model.
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In order to obtain a nonlinear equation which accounts for

both the thermal dispersion and the density depression, the thermal

effect as well as the wave amplitude are assumed to be of the order

of £ with e a small expansion parameter. To be precise, the

ratio of an excursion length to the wave length is assumed to be of

the order of £ and the quantity q$/T is regarded as of the order of

unity. In contrast to the ordering in §§3-2-1, this ordering

enables us to include the lowest-order thermal dispersion effect.

Now we look for a solution of the form

X(xtB) = X
(0)

(x.z) +

2

n=l I

2

I

=-2

n)
(x3 z) exp {-Host) . (4.2)

Substituting eg. (4.2) into eqs.(4.1), we obtain to the second order

in e the electrostatic dispersion relation

(0)

a

no

%

+ v.

4―>･

qo lum*1 1 >

2

0)

~2 2~~

64 -

dx

2

+

9s

/

(4.3)

(4.4)

■in

e a)

0)
%

V

and the density perturbation

T a

where
*＼i is

the mobility tensor for the cold plasma, defined by



m a)
a

and T = T + T. .
e i

2
to

~2 2~~
(A) - 0)

CO

ca

2 2
0) - 0)

ca

0

■tO)U)
eg

2 2
0) - OJ

CO

2

~2 2~

(l) - CO
CO

0

0 ＼

0

1

/

The third term in eq.(4.3) comes from the density

depression due to the ponderomotive force and the fourth term from

the thermal dispersion through the kinetic pressure. Combining eqs.

(4.3) and (4.4), we derive the basic equation accurate up to the

order of e , which is equivalent to eq.(9) of Ref.56,

2 2 2
3 3<j> 3 <j> 3 3 <j>

―[e ,―] + £,―p + ―2"Cct―2] +

3.-r "3a: 3z 3a: 3a:

where

£,= 1-

3
_j.

dx

3

+ ―

33

2

*■ 2
cr w - a)

a =

2

CO

!-£_, )[(!-£_,

l-e,,)[(l-e,)

3 a3A

―[2$ =･] +

3a; dxdz

3<fr

dx

2

+ (l-eff)

3<j)

9a;

2
+ (1-e,,)

3%

dz

3<j>

dz

34>

32

2

+

2
]

u , d 1 dn,,

a to 6.x n da:

3 3<J>
―[a<?―J

dx dx

― (4.5)

dx >

― = 0 ,

3s '

],

2 2 2 2

y 9. "pj s
- Y ―

^

v - v

T° ^P0

1 2,2 2 ,2 ' ^ i 2 ~2 2~ 5 Y " i 2 ~T '
a 772 a) (C0-U3; am (1) u -to amcou

o ca a ca a

with oj
pa

frequency,

and a)
CO denoting the plasma frequency and the cyclotron

respectively.
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§§4-1-2. Nonlinear propagation far from the linear mode-conversion

point

We wish to derive first the CMKdV equation for the LH wave far

from the mode-conversion point, in parallel with Ref.56. To this

end, we introduce the stretched coordinates £ and n defined by

K = 6

n = 6

1/2

3/2

[ jx q(x') dx' - z ] ,

3
f

and expand <b(E,,r＼) as <(>=<(>
(0)

+ SctP1 . The quantity q U)
+

(4.6)

designates

an angle between the group velocity and the static magnetic field

in the x - z plane, which will be determined later. Within the

WKB approximation, that is, when the inequalities

3

|― In* | >>

8

3£
In e , and |

3

3?

lnq＼ -v 0 (6)

hold, we obtain to the lowest order in 6

r≪2

p
Since 3 <f>

32(}>(0)

(V e,(Z) + zn(V ] 5― = 0 .
95

(0) /as2

e

q (V = -

7*0, £7(C ) must satisfy the relation

,,(V

e, (V

/

(4.7)

(4.8)

which characterizes the propagation cone for the LH wave in an in-

homogeneous plasma. Introducing now a function i|;(£,n)=( 3/H H (.?
/Ti),

the second-order equation with respect to 6 takes the form

More precisely, arctanlq(x)^. - 66 -



where

and

3i|>

an

+ A

A(%) =

C(E) =

9

as

n T

(1*1

u2

2
q

-2e,,

2<M
+ B

+ 1)

-2e,,

3e_,

3£

2

3
3tp

―- + C ty = 0 ,

9^

> o, B(V =

-2elf

2

+ Y
> 0

(4.9)

In a homogeneous plasma, eq.(4.9) is reduced to the CMKdV equation,

since A and B are non-zero constants and C vanishes. Morales and

Lee have treated ^ as a real quantity in their pioneering paper
43)

and derived the modified KdV equation, which has been shown to have

exact N-soliton solutions. ' If ij;is real, however, the solu-

tion has been proved to be a stationary wave and thus no energy

flow takes place, which is not applicable to the present discussion

on the propagation of the externally excited wave. Karney et al

have studied the properties of the CMKdV equation and, by means

53)

of numerical analysis, have found two types of solitary waves, the

one with a constant phase and the other with an envelope pulse.

These two pulses are not identified, however, as solitons.

The limit of a rapid phase variation of the CMKdV equation

has been treated by Newell and Kaup.
54)

Introducing new variables.

? = ? + 3<2n/ x = 6<n/B and ^ (C,n) = (6/ab)1/2uU fx)exp[-i (<£+ <3n/s) ],
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they have obtained

i
du 1 92u i 33u i 3
― + o+ l≪l" + y + (|m| ≪) =0 .
3* 2 3? 6k 3^ k 3r

In the limit |3 lnu/3?| << k, this equation reduces to the NLS

equation

%

3u

+

1 9 u
?

p + ＼u＼ u = 0 ,

2 9c
(4.10)

which, like the modified KdV equation, is soluble by the inverse

scattering method and has envelope solitons.

In an inhomogeneous plasma, an additional term iCu/6 k has to

be included in eq.(4.10). This case has recently been investigated

58)
by Leclert, Karney, Bers and Kaup, ' who have concluded that the

inhomogeneity suppresses the occurrence of solitons for such

parameters (power density, plasma density and temperature gradient)

of the LH heating as will be envisaged for present and future

tokamak plasmas. The original equation (4.9) is, however, valid

only far from the mode-conversion point, because the stretching

(4.6) is implicitly based on the assumption that

[ ag + 2B≪72 + Y ]
TT ≪ eff

32<j)(0)

H2
I

which is not satisfied near the LH resonance point, where q

diverges. The propagation near the LH resonance point or, more

precisely, the mode-conversion point will be discussed at length

in the next section.
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Three dimensional effects on the nonlinear propagation of the

LH waves have been studied by several authors.
57,62,63)

They have

shown that the two-dimensional soliton solution to the NLS equation

is linearly unstable for the transverse envelope modulation

(3/3j/＼■0), though the e-folding growth distance is estimated to be

rather long compared with a plasma size for a reasonable wave-energy

density e^|ff| ≪ nQT. Another three-dimensional effect is relevant

to the coupling due to the Ex B drift motion of electrons. If

there exists such a nonzero-fe mode as a parametrically excited

wave, the daughter wave grows through this parametric coupling at

the expense of a pump wave. The depletion of the pump wave can be

in fact quite large and the self-modulation discussed above can be

completely masked, if the daughter wave saturates with an amplitude

comparable with that of the pump wave
63)

However, the saturation

level of the parametric decay is not yet well known, even in a

homogeneous plasma. As for the threshold of parametric phenomena,

it is rather high for the LH wave with a finite pump width in an

18)

inhomogeneous plasma, compared with the homogeneous case. Therefore

the three-dimensional effects will not be considered in the subse-

quent sections because of its complexity, especially near the

linear mode-conversion point where the effect of the inhomogeneity

becomes strong.

69 -



§4-2. Nonlinear behaviour near the linear mode-conversion point

§§4-2-1. Linear Analysis

In this subsection, we shall study, by means of the WKB

approximation, the linear behaviour of the LH wave near the

conversion point, by using the linear version of eg.(4.5), in

which the last two nonlinear terms are deleted. The linear local

dispersion relation derived from eg. (4.5) is expressed as

1

a

[ Ej - 2&k2n Ik2, +

1

a

[-£,, + ykn

which has four real solutions ±fe. and ±k~

Ifc? = o ,

59)

(4.11)

on the lower-density

side of the conversion point (Fig.4.2). When two wave numbers k-.

and k~ are combined as

1

k+ ■
2

[ k + k ] > 0 , (4.12)

it is shown that k vanishes at the conversion point. Furthermore,

calculation of the group velocity shows that the branches -k +k_

and -k - k correspond to the incoming LH mode and the outgoing ion

plasma mode, respectively. Other two modes are irrelevant to

externally excited LH waves.

The phase of the potential § rapidly oscillates near the

conversion point because of the condition k >> k . As for k ,

it is localized around k , , as was assumed in §§4-1-1. Therefore

we can define a new ordering parameter 6 and a slowly varying

amplitude ＼bas
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K

X

k

Fig.U.2 Behaviour of local wave numbers perpendicular

to the magnetic field as a function of x.

2 f
x

<j>(x, z) = ip(8xj 6 z) exp [ - i ＼ k (x ') dx ' + ik ,,z ] (4.13)

Since we consider a region near the conversion point where

k < 5k holds, we obtain, upon substituting eq.(4.13) into eq.

(4.5), the lowest-order equation in 6 as

*L> ―――

2k
II

[ 1 +

2Bfcff ykl W 3

a k

2

+ jj-] ― + ―p + k A> = 0

a k dz 3x

71 -
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In this equation and in the sequel, x and z should obviously be

interpreted as stretched asymptotic variables as are defined by

eq.(4.13). We note that terms proportional to the density

gradient are neglected in eq. (4.14) because of the weak inhomogeneity,

that is, (k+Ln)

where L

-1

= d Inn-

is assumed to be at most of the order of 6 ,

In the remaining part of this subsection, we wish to determine

two coefficients which appear in a WKB solution of the linear

version of eq.(4.5), which is briefly discussed in Appendix A in

the plane-wave limit d^i/ds=0. This WKB solution, valid far from

the conversion point and generally expressed as a linear combination

of two independent WKB solutions representing, respectively, the

incoming and the reflected (outgoing) waves, has to be connected

with an asymptotic solution of eq. (4.14), valid near the conversion

point where dk ,/dx diverges. The latter can be exactly obtained

if we choose the conversion point as the origin of the x-axis and

assume the small density gradient

k - -
X

h a L
n

(4.15)

In the plane-wave limit, a solution of eq.(4.14), which satisfies

the boundary condition ip-*■0 as x-*-°°,can thus be expressed in

terms of the Airv function as

ty(x) = C k±(x / xr)
L

f (4.16)

where xL = (liaLn) /3 and the constant C will be determined below

by connecting it, in an asymptotic region, with a solution

pertinent to the incoming wave. The result is
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f r
tyCx) = (4.17)

rexp I if k lx'> dxi iJr/1| exp [ -if k (x')dx'l .in/n]

where r denotes the incoming power-density (W/m

(2e . ,1/2 v , 72 .
x = 0

2
and C = [irxrr/

U

―1/2
] ･ This is nothing but the asymptotic

23 27 30)
solution of the fourth-order differential equation, ' ' which

usually needs a lengthy calculation. The simple treatment given

above applies also to such other linear mode conversion as between

the upper-hybrid mode and the Bernstein mode, where a converted

wave is reflected at the conversion point.

§§4-2-2. Model Equation

In order to investigate the nonlinear effect, we substitute

eq.(4.13) into the basic equation (4.5). If we assume q$/T to be

of the order of 5, the lowest-order equation becomes

<

*

<
2k,,

3* ^
2 E0

kt
2 2 2

― + ―p + k V + ― ―H+Kad } d＼^＼^ = 0 , (4.18)
3s dx ~ n T 4a

2 2 k 2
where d = 1 + 2&kt,/ak + ykll/ak . Near the conversion point (x = OJ

where we may use eq. (4.5) with n n evaluated at x = 0, eq.(4.18) is

simplified and expressed in a normalized form as
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(4.20)

i

8z

+

1

2 dx2

i i 2
x }＼) + | if! ^ = 0 , (4.19)

where x, z and i> are normalized, respectively, by z , z and

ty which are defined by

where

<n

(Jj

mJ,

me P'j_S

J

1/3 1 m
2

i *n
3 ~* ――― ――

n 4s m
e

2

r = -＼

03

pi

i i 2

ci' ce' . e

s = 2 + ~

formation
65)

£ = x +

GJ

1

2

and

=
[l

+ 2fcwp

x=0 v.

and

( z - so

i

64)

T

V Ln '

2
0)

is-

2
pi

"ci "eel

miMei

-1

By the simple trans-

3-2
0

"ciKe'

In the above, the approximation d―± is used, which is valid for

typical experimental conditions, i.e., whenever k ,,p.<< 1. The NLS

equation with a linearly increasing potential, eq.(4.19), has been

extensively studied in connection with resonant absorption of

laser light in a non-uniform plasma

2

1 o
and ty(xtz) = u(r,,x) exp { i [i (2-3.) + ― (s-s.)]} ,

0 6 °

eq.(4.19) can be reduced to the usual NLS equation with no potential

term, eq.(4.10), the initial-value problem of which is analyticaly

soluble by means of the inverse scattering method. It has been
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proved
66)

satisfies

that there is no soliton solution if an initial profile

00
|≪(CjO;| d? < 0.904 .

―00

(4.21)

Although this is nothing else than the threshold condition for a

filamentation, it will be a difficult task to rewrite it for ty(x,z)

at a certain initial point in the x-direction. Therefore we shall

content ourselves to present numerical results in the next sub-

section.

§§4-2-3. Numerical analysis

In order to visualize the behaviour of a wave packet near

the mode-conversion point, we have numerically solved the model

equation (4.19) by using the difference method. In view of

realizing an actual experimental set-up, a finite-size wave source

with width V is assumed to be located at x = -8 and has a particular

spatial profile

i|/ = a sin [ its / Z] for 0 < 3 < I . (4.22)

The computation is carried out in the region -16 < x < 12 and s > 0.

To reduce the effect of spurious reflections at both boundaries,

an extra damping term is added to eq.(4.19) in the regions -16<

x< -12 and 8< x< 12. In Figs. 4.3 to 7 the envelopes of the

potential are plotted. The actual potential is, of course, given

by a carrier expf-ifc x + ik ,,z- iut) modulated by i>.
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i) Small-amplitude case (a=0.01)

For a large-size wave source (1=6.0), a standing wave is

built up near the conversion point (x = 0) and its shape is similar

to the Airy function, eq. (4.16), weighted with the spatial profile,

eq.(4.22), as is illustrated in Fig.4.3. On the other hand, in

Fig.4.4, we can see that the wave packet produced by a small-

size wave source (1=1.0) diffuses due to thermal dispersion.

Since the k -spectrum of the incoming wave has a relatively

-8 0

X

13

11

+8

Fig.U.3 Potential profile for a small-amplitude wave

with a =0.01, launched by a large-size wave source with

1-6.0. The solid line indicates the envelope ＼ib＼and

the broken line the real nart of di.
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Fig.U.U Potential profile

for a small-amplitude wave with

a= 0.01, launched by a small-size

wave source with 1=1.0.

Fig.U.5 Potential profile

for a large-amplitude wave with

a - 1.0 and 1= 1.0.



-8
4

X

0 +4

8

Fig.U.6 Potential profile

for a large-amplitude wave with

a = 2.0 and I = 1.0.

broad peak around k =kn , the mode conversion of the k -

component with k > k, occurs on the lower-density side, while
z

the components with k < k, penetrate, beyond the conversion point,
z

deep into the higher-density side. Therefore the wave packet

spreads and the maximum amplitude decreases monotonically.

ii) Large-amplitude case (a > l.OJ

When an amplitude becomes so large that the nonlinear effect

(steepening) competes with the dispersion effect (broadening),

even the wave emitted by a small-size wave source remains localized
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X

+8

13

11

Fig.U.T Potential profile

for a large-amplitude wave with

a = 1.0 and 1= 6.0.

after the conversion (Fig.4.5). This explains the formation of

an envelope soliton, as is suggested by its sech-like profile.

When the amplitude is increased further (a= 2.0J, the wave packet

splits into two solitons (Fig.4.6). For a large-size wave source

(I = 6.0J, the Airy-function-like peaks are enhanced by the non-

linear effect and some of the sharp peaks penetrate beyond the

conversion point.. However, they spread after the conversion and

no soliton is clearly observed within our limited system-size of

the computation (Fig.4.7).
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§4-3. Discussion

So far, we have derived and solved the model equation describ-

ing the weakly nonlinear LH wave propagating near the linear mode-

conversion point. Although our treatment is based on the assumption

of the rapid phase variation, the model equation accounts well for

the linear mode conversion, which was not examined with scrutiny

in the past.
56)

According to our numerical results, a small-amplitude wave

packet diffuses due to thermal dispersion, in the case of a small-

size wave source. As the amplitude increases, the stable localized

wave packet is set up (a^l) and then splits into solitons, namely,

the filamentation occurs (a >2). For a large-size wave source,

the standing wave, built up near the conversion point, is composed

of several peaks on the envelope. These peaks get larger with

increasing amplitude. However, it is observed that the formation

of solitons requires a longer propagation length, compared with

the case of the small-size wave source.

As an example, we may recall the LH heating experiments carried

out on the JFT-2. Relevant parameters are
10)

nQ= 2 x 1019m"3, fl =1.3T, T = TQ + T±= 900 eV, /= 750 MHz , k,,c/u= 5 ,

L =0.25m, L =0.056m and L = 0.29m, where L and L are then z V z y

sizes of the wave-guide array- When we estimate from eq.(4.16) the

incident power P( = TL L ) so that ＼＼>= 1, we obtain P= 40 kw, which
x y

is much lower than the experimentally observed value P< 135 kW.

Even with this power, a filamentation is not expected to occur

because the small-size of the wave source, l=L /z = 0.09, acts to

spread the wave packet due to strong thermal dispersion and reduces
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its amplitude rapidly. The tendency for a filamentation to occur

more and more difficult with decreasing I has also been confirmed

by numerical analysis. It may be observable, however, when a power

is increased and/or a waveguide array is lengthened.

Finally, let us remark that it is easy to include in the model

the effect of collisional damping which cannot be neglected in a

low temperature plasma such as a linear machine. Using the electron

collision frequency v , we find that the damping term i (v /u>)

<
L/x n ]

',e^Ln/xn^ should be added to eg. (4.19). Since the factor

is larger than unity under the usual experimental condition,

this enhanced effect of damping as well as the thermal dispersion

would obstruct an experimental detection of the converted wave.
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Chapter 5

STOCHASTIC HIGH-ENERGY TAIL FORMATION BY A

SINGLE WAVE IN A MAGNETIZED PLASMA

The formation of a high-energy tail in a perpendicular velocity

distribution of ions has often been observed in LH wave heating

experiments. ' Existence of the high-energy tail is now con-

sidered to be essential to LH wave heating, because wave energy

seems to be absorbed by bulk ions through collisional relaxation of

the high-energy tail. Although production of high-energy ions

enhances a fusion reaction rate in a well-confined plasma, it has

a drawback of also increasing energy loss by yielding poorly-confined

or banana particles, especially in present-day experimental devices.

Therefore a satisfactory explanation on the mechanism of the tail

formation has been called for.

Recently, it has been argued that nonlinear interaction of

charged particles with a monochromatic wave can be responsible for

their stochastic motion in a uniform magnetic field. In the case

of an oblique propagation, Smith and Kaufman
67)

have shown the

occurrence of a stochastic acceleration along a magnetic field,

which is followed by a perpendicular acceleration because of energy

conservation in the wave frame. Since a threshold of the wave

amplitude is very large when knv~. << oi ., however, their results

are not applicable to the tail formation by a LH wave. In order to

explain the case of a LH wave, we shall consider an electrostatic

wave with a frequency lying near a cyclotron harmonic and demonstrate

that, if the wave amplitude exceeds a threshold of reasonable

magnitude, the motion of ions becomes stochastic even if k , = 0
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(perpendicular propagation) and that the formation of a high-energy

tail may be expected.

In this chapter, a nonlinear motion of charged particles is

extensively studied in the presence of both a uniform magnetic

field and a monochromatic electrostatic wave for the cases of an

oblique and a perpendicular propagation. Appearance of secondary

islands in phase space as well as primary ones is discussed. The

overlapping of secondary islands taken into account, a wave ..

amplitude required for the onset of a stochasticity is estimated

analytically. The results are in good agreement with numerical

results. For the case of the perpendicular propagation, it is

shown that production of high-energy particles is most efficient

if the wave frequency is a multiple of the cyclotron frequency.

As the wave amplitude increases, numerical calculations show that

a steady velocity distribution is insensitive to the wave frequency-

In the first section, we survey the concept of the intrinsic

stochasticity and its application to RF heating. In §5-2, we

introduce a Hamiltonian of the test particle and formulate in its

most general form the overlapping of secondary islands. The case

of the oblique propagation is analysed in §5-3 and the case of the

perpendicular propagation in §5-4. The last section is devoted to

a discussion of the results obtained.

83 -



§5-1. Intrinsic stochasticity in RF heating

In the range of a density and a temperature appropriate for

a controlled nuclear fusion, a Coulomb mean free path is extremely

long compared with a device size and an anisotropy in the particle

velocity distribution is relaxed only slowly through long-range

Coulomb collisions. It is then reasonable to ask on what time scale

RF energy is absorbed by a plasma, since the argument of quasi-

linear theory shows that RF interaction tends to produce local

plateaus in a space-averaged velocity distribution. Recently it

has been shown
68)

in a number of RF heating processes that trapped

adiabatic orbits in RF waves (superadiabaticity) can be destroyed

by collision-free stochasticity as effectively as by Coulomb

collisions. Since this stochasticity originates in nonlinearity

of the deterministic equation of motion and relies on neither an

external random force nor statistical average, the term "intrinsic

stochasticity" has recently come into use. This mechanism is called

as universal instability, ' ' or Arnold diffusion, in the field

of dynamical systems. A peculiar feature of this mechanism results

in an irregular, or stochastic, motion of the system as if the

latter were influenced by a random perturbation even though, in

fact, the motion is governed by purely dynamical equations. This

stochasticity generally takes place for very special initial

conditions (inside the so-called stochastic layers) which are,

however, everywhere dense in the phase space of the system.

The concept of intrinsic stochasticity has been introduced

into Plasma Physics in order to explain a mechanism of destruction

of magnetic surfaces by magnetic-field irregularities.
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Recently, destroyed magnetic surfaces have been studied by several

authors in relation to anomalous electron heat transport in

72 73)
tokamaks. ' Until now, analyses based on intrinsic stochasti-

city have been worked out in various fields of Plasma Physics:

electron cyclotron resonance heating in a mirror field, '

adiabatic invariance of particles' motion in mirror machines,
76)

instability saturation in a coupled three-wave system, onset of

MHD turbulence and so on.
77)

Intrinsic stochasticity in the wave-particle interaction was

first treated by Zaslavskii and Filonenko. ' They have treated

the motion of a charged particle trapped by two electrostatic waves

with different phase velocities and discussed the stochasticity of

particles with reference to a quasilinear process. Recently, Smith

and Kaufman ' have demonstrated that, in a magnetized plasma, a

single electrostatic wave propagating obliquely to a uniform magnetic

field can give rise to a stochastic motion of charged particles and

can produce a tail in a velocity distribution. Since their analysis

is valid only in the order of approximation where primary islands,

first appear, the threshold obtained by them gives a rough estimate

of the wave amplitude for the onset of the intrinsic stochasticity.

A portion in phase space becomes stochastic for amplitudes smaller

than the threshold and an other portion remains adiabatic even if

the amplitude becomes several times the threshold value. In order

to estimate an area of a phase space where the motion becomes

stochastic, we shall take account of an overlapping of secondary

islands in subsequent sections.
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§5-2 Hamiltonian formulation for the motion of a charged particle

§§5-2-1. Hamiltonian of a test particle

We consider the motion of a charged particle, with mass m and

charge e, placed in a uniform magnetic field B~z and subject to a

monochromatic electrostatic wave <j>cosCk.,x + k,,z-ut). In order to

analyse systematically the formation and the overlapping of islands,

we make use of the Hamiltonian formalism.

The Hamiltonian of a test particle takes the form,

H =

where co
c

1
―[P
2m

2

x
+ (p, - moo x)

c
+ P ] + e<j)cos (k ,x + k,,z - tot) , (5.1)

/m is the cyclotron frequency. The quantities P , P
x u

and P = mv . Since H is independent of y, the momentum P is

a constant of the motion. Defining the normalized magnetic moment

P. and the cyclotron phase ty by the relations

<

p* ^
2

+ (P - mui x)

x - P /mm .
y ci

･ 2P./ma> .

^ ) , as
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m v
2

2
/

V

v

X

(5.2)

t (5.3)

1

2mo)

Tp = arcsin

from (x3 Px) to (P

2 Mc

arctan

we can rewrite the Hamiltonian, after the canonical transformation

P J2P~
H(tysz3P aP at) = w P + -2- + e(})cos (k , /―^sinij; + k ,,z - cot )

* Z C * 2m "7^03

° (5.4)



= 0) P,
c to

+

2m
) cos (ni|> + k,,z - ut) ,

where the cosine function is expanded on the basis of the Bessel

function J .

This equation indicates that, for a small-amplitude wave, a

charged particle in a static magnetic field moves as if there exist

a number of waves with frequencies co- nu . If the motion of a
c

particle is subject to the resonance condition

h"Pz
n a) + - a) = 0

m
for any integer n , (5.5)

the particle will be trapped in a potential well and thus the

trajectories of trapped particles in a phase space form an island

enclosed by a separatrix. In the case of obliquely propagating

waves, the width of the island increases with the wave amplitude

and, when two separatrices of the adjacent islands with harmonic

numbers n and n + 1 approach to each other, the interaction of the

two islands results in a formation of secondary islands near the

separatrices. This is explained by an interaction between the

nonlinear motion of particles in the n-th primary island and the

(n + 1) - th cyclotron harmonic. Although primary islands never

overlap in the case of perpendicularly propagating waves (k,,= 0) ,

the secondary islands are produced near the separatrices of the

primary ones. They also grow with the wave amplitude and the

higher-order islands are generated whenever the secondary ones come

to overlap. In view of analysing this hierarchic structure, a

general formulation is presented in the next subsection.
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§§5-2-2. General formulation
79)

In terms of the action-angle variables (paQ), the. Hamiltonian

is assumed to consist of two parts and is qiven by

E(p3dat) = H (P) + e I Hmn(p) exp [ i (nti -mwt)]
fmn

where #,

(5.6)

(p) represents the unperturbed part and e is a small number.

The unperturbed motion is simply expressed as

<

■<

at

dt

v -

N

= o ,

= % (p) .

(5.7)

*mn(p) exp
[*[-

88 -

w + (
nM

N
- m)dit ]

(5.8)

(5 9)

9zD

dp

If the unperturbed frequency tin(p) is close to a resonance, i.e

NttQ-Mui- 0(e),it is appropriate to make use of a canonical trans-

80)
formation in a rotating frame

w = N fi - M id t ,

Since the new coordinate w varies slowly compared with w>t, the

transformed Hamiltonian

H(p,w, t) = HQ(p) - Miap + e I

mn

can be averaged over cot to give



H(p3w) = H (p) - M dip + e p≪ ^N(p) exp ( i I w ) (5.10)

When the nonlinear motion describable by R(p,w) is periodic, it

may be expressed in terms of the new action-angle variables,

J =

1

2tt

{

p dw and

and the new Hamiltonian hQ

dJ

= 0
and

e =
3

3J

w

V
dw

/

(I) =H yields the equation of motion

de

dt

dfc (I)

dJ

E Q(I)

(5.11)

(5.12)

These equations describe a nonlinear oscillation which takes place

when only one of the primary resonances comes into play.

Then we go back to the exact Hamiltonian, eq. (5.9), and treat

eqs.(5.11) as a canonical transformation from (p,w) to (I,Q).

Though p and w are periodic with respect to 9, the quantity

H (pJexp(inw/N) is not in general periodic, since nw/N may change

by 2irn/iV during a period of 9. The dominant contribution comes,

however, from periodic terms when ＼n-N＼ << N. This is the case of

our primary interest. The procedure of retaining the periodic term,

B (p(I3Q)) exp [inw(I,Q)/Nl^ L h (I)exp(isQ), yields
tnn ―s mns

H(I.Q.t) = h Q(I) + e L hmns (I) exp i [s6 + ( m) ait]I
mns ＼ m j '

(5.13)

where T,' indicates that terms with n = IN and m = IM are deleted

for all integers I. It should be noted that eq. (5.13) bears

similarity to eq.(5.6), except that perturbations which figure in
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the former has components of the lower frequency, u/N,. Repetition

of the above procedure will lead to an appearance of a dense

frequency spectrum of the perturbation and this in turn affects the

renormalized nonlinear oscillation.

If the nonlinear oscillation, derivable from h^(I), resonates

with the perturbation at 1 = 1

nM

re'

s Q(I ) + ( ― - m ) a) = 0 .
rS

N

i.e. ,

(5,14)

the secondary island is generated on the primary resonant trajectory.

Taking account of only the resonant perturbation and expanding both

0.(1) and h (I) in Taylor series around J , we can reduce the

Hamiltonian (5.13) into the form

B (I3B,t)

where AI = I - I

+

ho'W

dtt(I ) (AJ)
vs

dl 2

2

2£l^narJrS;lCOs(sA6) '

and A9 = 9 - (nM/N - m) (ut/s.) + tt/s + [arg h

*
rs

and the relation h
-m,-n}-s

= h

mns

has been used. The reduced
mns

(5.15)

(Irs

Hamiltonian enables us to estimate the width of the secondary

■io "1a v≫̂ a o

In the derivation of eq. (5.15), we have neglected the term

)]/s,

(5.16)

2 e (dh
mns /dJjAIcosfsA9j , compared with (dtt/d.1)(LI) 2/2 . Therefore

the estimation (5.16) is justified a posteriori if the perturbation

satisfies the condition
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2 e

(dfl/dJ)fc
mns

(5.17)

which usually holds near the separatrices of primary islands where

dft/dJ approaches infinity.

When the adjacent secondary island of width AJ * is separated

by 61 *=|J *-I I from the trajectory with J=J , the overlap
ss ' rs rs1 rs

condition for the secondary islands, known as Chirikov's criterion

for the onset of intrinsic stochasticity, is given by

K = [(AJ + AJ
s s* ss* I 1
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§5-3. Case of oblique propagation

§§5-3-1. Analysis of the primary resonance

When an amplitude of the electrostatic wave is small, we may

regard the Hamiltonian (5.4) of a test particle as a sum of an

unperturbed Hamiltonian #_ and a perturbation V , that is,

where

H = HQ + V

Ho

P2

_ z_

2m

V = e d>

/

+ CO

00
I

n=-°°

(5.19)

cP＼b '

Jn(?c_,/2p /mcJc) cos (k,,z + nty - tot) ,

The canonical equations of H-

motion,

z =
1*1

m

p = p
z

t + z
0 '

immediately give the unperturbed

^

zO
and p*

V + *o '

Fty0 '

(5.20)

where the suffix 0 designates the initial value. Inserting eqs.

(5.20) into the perturbation V , we obtain the first-order
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00
V * e<j> I J (fc,/2P./77Hi> ) cos [(fc P /m + nu -u)t + kwsn + ni|;.] .

n=―oo

(5.21)

This expression indicates that a resonant term, satisfying the

resonance condition (5.5), is responsible for the motion of a

particle, since the contribution of non-resonant terms vanishes

by taking the time-average over an time interval longer than the

cyclotron period.

We now transform to the new variables (E.^ z,s P 3 P ) ,

using the generating function

S(z3^3P

Ac,, fe,,

In terms of the old variables, the new ones turn out to be

E, = k,.z + Nty - mt + tt ,

£ = l|> ,

P5 =

p

z_

p = p

+

moo

if

(5.22)

(5.23)

I

/
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Nmw
"If

NP
z

k,,

with an integer N satisfying the condition N ^ Coj- kltP /m)/u
2 C

This canonical transformation serves as passing simultaneously to

the wave frame moving along the magnetic field with the phase

velocity co/fc,,and to the rotating frame discussed in §§5-2-2.

The new Hamiltonian now reads



ECE,^,V V )

2m
A. + wcP. - e<j>I Jn(fe_,p) cos [g + (n -if)? 1 #

n
(5.24)

which is independent of time. The Larmor radius p which satisfies

the relation

2

P =

ma)c
rrnii

,72
mu) N

― [ P + NP % 1

C
""

(5.25)

is not taken to change considerably from the initial value p. .

Then we divide the Hamiltonian into two parts: the one independent

of the rapidly varying phase z, and the other dependent both on

£ and on p i.e.,

Ho = + U(jp -e*Js(kxp0) cose
#

(5.26)

(5.27)

in v as
2
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2m

#=-g<J) I J (fe,p) cos [ I + (n - N) Z, ]
1 n?N

- e <{)[ J^Cfe^P) - J/^Pfl)! cos 5

We first consider in detail the averaged Hamiltonian H~.

There are two constants of the motion; the time-independent Hamil-

tonian ff itself and the canonical momentum P conjugate to the

cyclic coordinate z,. Since ff - u P is a constant, it is
U C s

obvious that eq.(5.26) is equivalent to the Hamiltonian of a simple

pendulum. When H - caP becomes smaller than |ecf>J(k ,p )| ,

the particle is trapped in a potential well with the half-width



z
m

AP^ = 2 |

e<t>

m

W*>l1/2

around the resonance velocity,

2

0) - Nui
c

(5.28)

(5.29)

as is illustrated in Fig.5.1. As the width of this primary island

in a phase plane (%,, P ) is proportional to <f>' , the adjacent

7T<N-I) >

Vz
N

p

w

Fig.5.1 A sketch of primary resonances on the

phase t)lane (P, W).
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islands with N and N - 1 may overlap above a critical amplitude.

Smith and Kaufman
67)

have argued that Chirikov's criterion which

allows to predict a disappearance of the constant of motion is

given by the overlapping condition

Au
(N)
z 2

or, equivalently,

16

> V

2
m CO

c

(N-l)
z

> 1 ,

V
(N)

=
z k,,

(5.30)

if two Bessel functions J^ and J .. have comparable amplitudes.

This simple formula gives a rough estimate of the threshold for

the onset of a stochastic motion. As will be shown later in the

light of numerical computations, however, the motion becomes

stochastic in only a portion of phase space if the above criterion

is fulfilled. In the following subsections, we shall develop

an analysis which accounts for an appearance of the secondary

islands, in order to predict an area of phase space indicating

nonadiabatic motions.
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§§5-3-2. Analysis of the secondary resonance

The averaged Hamiltonian (5.26) may be simplified, by the use

of the normalized bounce frequency w , to give

where

kl P2

p =

% =

mo3c

1

( knv + N bi - (jj ) ,
c

1/2
*

COS W ,

W = E and

(5.31)

c

In order to analyse the nonlinear oscillation, it is conven-

ient to introduce the action-angle variables,

4

I =

1

2-rr

i

P dw =
1 , 1

2
W ..

― 4 2 to q [1 - -p- sin ― ]
x/ ^

dV ,
2tt J ° q* 2

― ＼p dw ,
0 3J

where the quantity q , defined by

2

q. =

1

2

1 +
/

(5.32)

vanishes at the center of the island and becomes unity on the

separatrices and will be used as the parameter of the elliptic

functions. The action I is proportional to an area of phase space
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enclosed by the trajectory and the angle 6 corresponds to a phase

on the trajectory (see Fig.5.2). The equation of motion for I

and 0 is simply expressed by eq.(5.12). Note also that the

quantity 9,(1), corresponding to a bounce frequency which depends

on I , approaches zero near the separatrix where a period of the

oscillation goes to infinity.

We now summarize a solution to the equation of motion, without

giving computational details. Several useful formulae of the

Jacobian elliptic functions, sn, en and dn, are found in Appendix B.

For a trapped particle with 0 < a < 1 , we obtain

p

w

Fig.5.2 Illustration of the relationshop between the

action-angle variables (I, Q) and the original ones (P, W)
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p = 2 o)bq cn(a>be/f2) ,

sin W = 2 sn(ajb9/n) dn(o3be/fi), cos W = 1 - 2 q2 sn2(u>b9/Q),

J =

8

ir

?
dhn(I)

[ E - (1 - ? ) F ] u and flfi; = ―^
D dJ

2F

a)b , (5.33)

where F(q) and E(q) denote the complete elliptic integral of the

first kind and of the second kind, respectively. For an untrapped

particle with q > 1 and P > 0 , we find

P = 2 ub q dhC^e/n) ,

sin V = 2 sn(<7wb6/ft)cn(<7(o.e/n).,cos V = 1 - 2 sn2 (<?ox9/fi),

I =

■n

F 0) and nrr; =

F
03b , (5.34)

where, tildes on the elliptic functions and the elliptic integrals

indicate that the parameter a in the corresponding functions

should be replaced by q """.

Since the perturbed Hamiltonian ff retains a number of terms

periodic in r, which varies approximately as oj t , the nonlinear

periodic motion due to ff_ may resonate with the perturbation and

thus may give rise to secondary islands on the resonant trajectory.

The total Hamiltonian in the normalized form becomes
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where

H(Wal,P3P

pc -

; =

P2

2

-1
n

0), COS W +

2 Jn(k
%

and

JN

P - I Yn^cos [il/+(n-iV)U

J(kd90)

(k,p0)

Yn =
Jn

JN (klPo)

cos IW + (n - 17) C 1 , (5.35)

Assuming the variation of k ,p to be small, i.e.,

J (klP) - Jn(k2P0)＼ ≪ ＼Jn(k2pQ)＼ (5.36)

which serves to neglect the last term in eg.(5.35), we may express

the Hamiltonian as

H(W3z,PaP ) =

P2

2

2
cos W +

h
(5.37)

£ Y w, [ cos W cos (n - N)c, - sin W sin (n - N) c,~＼.

Taking account of the differential identities of the Jacobian

elliptic functions and their Fourier expansions, recalled in

Appendix B, we may rewrite eq.(5.37), in terms of the action-angle

variables I and 0 , as
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E(I3QaZ,P ) = hQ (I) +

2

2 ( 2(F-E)
*r ~ I VV [1

+

+

TT oo 2S a
~2 I pS" cos[2s9 + (n - tf)?J

2
TT 00

I

s=―°°

for a trapped particle and

H(I,B3z,P ) = hQ (I) +

(5.38)

(2s+l)as+1/2

P^+T cos[(2s+l)6 + (n -iOe]1 + a +1

h n?N
Ynub

r 2(
ci ―

F -E)q2

F

2q2tr2 ≫ 2s 5s
+ ―-zo- I or { cos[s9 + (n -i7)?] (5.39)

F^ s=l l-adS

for an untrapped particle, where

ttFfi/l- q2)r tt r ( y± -

a = exp -
^ ?(q)

+ a2s cos[s6 -in -ilOcJ }]

Ff/l -1/q2)r "Ittf( V± - 1

and a = exp -
*■ F(l/q)

It is obvious from eqs.(5.38) and (5.39) that the secondary

resonance occurs on the trajectory 1 = 1

sQ,(I
vs ) + (n -N) = 0 for n t N ,
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Qs+1

AQ

s

is satisfied for certain integers s . In order to estimate a width

of the secondary island, we may single out only one resonant term,

approximate £ by to t and reduce the Hamiltonian to the simpler

form
/

H(I3Qsx) = hn(I) - h (I) cos[ s9 + (n-i7)T]
U YIS /

(5.41)

with x = (D t . Following the similar procedure discussed in §§5-2-2,

the half-width of the secondary island is estimated to be

AI =
s

4 h (I
ns rs

dnrx

)

;/<aj

1/2

in the action variable or

s
4 vs h (I )

ns rs

1/2
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(5.42)

(5.43)
dl

Js+1

I
s

Fig.5.3 A sketch of the half-width Aftof the secondary

island and the frequency spacing 6ftbetween adjacent

secondary resonances.



in the normalized bounce frequency, where dtt(I
rs J/dJ stands for

dfi/dJ|7-_r . On the other hand, the frequency spacing 6£2
1 rs

between adjacent secondary resonances becomes

5ft =
s

^2a "

n
s

fl2≪+l

fl -LIs + 1

%

a.

n - N ir a),
_ D

4 s2 4P2 n - ff

2 2 2
n - N tt <7 u),

_ D

s F n - N

(trapped) ,

(untrapped)

(5.44)

if the condition s ≫ 1 is fulfilled (see Fig.5.3). Finally, we

introduce a quantity K which gives an indication to an overlapping

of the secondary islands and express Chirikov's criterion for the

onset of a stochastic motion as

K =

K =

2
2

>

E

1 ,

b
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for n < N ,

for n > N .

(5.45)

(5.47)

An
s

6J3
s

The stochastic parameter K for a trapped particle ( 0 < q < 1 ) is

defined by

8 1 E-(l-q2)F rl b / b ^
2

K = -3-tt;―2- ^n + Y2i7.n) U-―2+ J-rrTz] (5-46)

it A,, q (1 - q ) Wl-o V 1 + o ;

and for an untrapped particle ( q > 1 ),

4 1

tt a＼ q(q2 -1) H 1 -&4

4 1 E b3

n A＼ q(q2 -1) n 1 -S4



where

A - b
"■II ~ '

＼n-N＼

and

b = exp

b = exp

F(/l-<?2)

An

F(/l -l/qd

A,,

']

We have so far classified the motion of untrapped particles in

two groups, according as whether n < N or n > N , because a pertur-

bation ( n < N ) propagating with a phase velocity (co- noo )/k , ,c

greater than the phase velocity (00- Nui )/k,, at the primary

resonance, may affect the motion of the untrapped particles ( P > 0 )

more strongly than that with a slower phase velocity ( n > N ) .

§§5-3-3. Results of numerical analysis

Numerical calculations, based on the exact Hamiltonian (5.1),

has been carried out with the purpose of confirming analytical

results given in length in the previous subsections. In order to

visualize the numerical result, we have made use of the surface-

of-section method. Since a phase point moves with time on a three-

dimensional energy surface which is contained in the four-dimen-

sional phase space, a trajectory has to be well plotted in a two-

dimensional phase plane so that we can easily understand whether

a motion is adiabatic or not. To this end, we plot in a £- V-

plane the intersection of a trajectory with a phase surface defined

by the cyclotron phase C = it. If there exists another constant

of the motion in addition to energy, the trajectory lies on a
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o_
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1

0

-1

2

1

0

-1

0

0

w

w

%

≪..- 0.025

Or= 0.075

･

It

a.

Q_

2

1

0

1

2

1

0

-1

■'i

0

w
n.

0L= 0.050

OU- 0.100

m^x rf~s

0

., . Jv,

X

w

Fig.5.*+ Numerically calculated trajectories for

k_,PE=1.U8 are plotted "by the use of the surface-of-

section method at ip=ir. 15 particles with different

initial conditions are tracked until T=300.
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two-dimensional phase surface and its intersection with the surface

of section £= it is a curve in ( £, P£J P ) space. A set of plotted

points falls on a curve in the £- P plane, while the points fill

an area if no other constant of the motion exists.

Fig.5.4 shows the surface of section for various values of

a., which is related to the wave amplitude as

a,, = k'j,e <j>/ m w^ .

The propagation angle of the wave with respect to the static

(5.48)

magnetic field is it/4 , i.e. k,,= k, , and the energy is given by

kIpE = k1(2HQ/m)
1/2

/cj =1.48 for any initial condition,
c

The motion of a particle is followed in the wave frame moving with

the phase velocity. With a,,= 0.025
/
we can see that a constant

of the motion indeed exists and two primary islands with N= 0

and -1 are formed. As the amplitude increases, secondary islands

appear in the primary island ( a,,= 0.05 ) and the motion of several

particles near the separatrix becomes nonadiabatic ( a,,= 0.075 )･

Further increase of the wave amplitude causes a chaotic motion of

the phase points over almost all the phase plane accessible for

the constant energy fc,p =1.48 , except near the center of

primary islands.

In order to compare numerical results with the analytical one,

we have estimated an area of the primary island filled up with

the phase points. The areas normalized by the total area of the

primary island are indicated by crosses in Fig.5.5. The solid

lines show the normalized area S for various values of
K

Y = y +Ypj7_ / where Chirikov's criterion (5.45) holds.
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1.0

0.8

0.6

0.1

0.2

0,0

0.0 0.05 0.10

A,1

0.15

Fig.5.5 The normalized area Sv satisfying
K

Chirikov's criterion vs. the normalized wave
2amplitude A,,(<*§). Crosses indicate the result

obtained from numerical computations. At the

center of the island (P=L) which we have

observed, the coefficient Y takes a value of l.Qk

As soon as A^ [ = ct,,J(k ,p) } exceeds the threshold value, 0.02,

a stochastic layer suddenly appears at the vicinity of the

separatrix and grows rapidly with A , . In the small- A,, limit,

the area of the stochastic laver is approximated by
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12
SK * ―jj- Y exp [ - ir / 2 A , ] , (5.49)

which is non-analytic at the vicinity of A,,= 0 . Compared with

the rough estimate of the threshold derived from the overlapping

2
of the primary islands, A,,= 1/16 = 0.0625 , it is obvious that the

above analysis which takes into account the secondary islands gives

a more accurate description of an onset of the stochastic motion.

109 -



§5-4. Case of perpendicular propagation

§§5-4-1. Analytical treatment79'81'82)

Since the LH wave has a small parallel wave number, results

of the previous section for the obliquely propagating wave anticipate

an extremely high threshold of the wave amplitude for the onset of

stochastic motions. In this section, we wish to show that another

mechanism, which a monochromatic wave with k , -0 may be responsible

for, can bring about a stochastic motion of high-energy particles

with v , > bi/k±.

To simplify the analysis, we assume a wave propagating per-

pendicularly to the static magnetic field. The effect of a finite

klt will be discussed in §5-5. Since P is also a constant of the

motion in case where k,,= 0, the Hamiltonian (5.4) may be reduced

■ho

H(^P3 t) = 0) P,
c ＼b

+ e<f> I J (fc_,/2F /row ) cosing -bit) . (5.50)

By the use of a canonical transformation similar to eq. C5.8),

w = Nib - tot and p =

217m a)

with an integer N nearest to w/cd ,

c

the Hamiltonian (5.50) is

expressed as the sum of the time-independent part H

time-dependent one H,(p,w,i:) ;

110 -

(5.51)

q(P,w) and the



H (p3w) = 6 p + a,J (r) cos w ,

n
#..(-p3w3x) = a , I J (r) cos[ ― w +
1 ~n/N n

N

with x = a)
c

t , V =O)/lO ,

2

Hamiltonian HQ

eq.(5.52) read

dx

dw

. dx

= 6 + a,

N

'(r) cos w .

Ill -

n N

^] ,

v2/uc and

(5.52)

(5.53)

(5.54)

N

6 = N - v, r = /2Np = k,

Let us first consider a motion derived from the averaged

(p,w). ' The equations of motion obtained from

Qualitative phase trajectories (#n - const) are illustrated in

Fig.5.6. We see that several particles are trapped whenever

r>N, if the frequency mismatch 6 is smaller than a,max[NJ'(r)/r ].

with 6 approaching zero, untrapped regions diminish and, finally,

all ions are trapped in rectangular cells, which are enclosed by

separatrices represented by w = ±tt/2 and r = r*, where J^Cr*) = 0.

In contrast to the case of the oblique propagation, however,

rectangular cells or primary islands never overlap, because an

equi - #0 surface in phase space is one-dimensional. Since no

stochasticity appears in this order of approximation, we are led

to pursue an analysis of the secondary island which is essential

in the case of the perpendicular propagation. In order to obtain

an analytic expression for the motion due to H~, we shall consider



the case of high-energy particles with u, >>co/fc,and waves with a

frequency lying near a cyclotron harmonic. The former condition,

r >> N, enables us to use the asymptotic expansion of J , :

JN -v a ( 2/^rQ

2tt

3 IT

0

2 IT

3 TT

0

)1/2 cos v ,

r

JN =0 V
0

JN=0 Vo

r

(a)

(b)

Fig.5.6 Qualitative phase trajectories derived from

the time-independent part H (p,w) for (a) 6^0 and (t>) 6 = 0
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where r_ satisfies J^ (rQ) = 0 and r = v - rQ <<:^g. The quantity a

takes the value ±1 depending on a value of rQ. Making use of the

bounce frequency w. evaluated at the center of the trapping region,

N

a)t = a_,―

rO
Jtf

2l/2 N

(ro} l^ai^72 ^372 ' (5.55)

we may express the latter condition as 6 <<a)+-* Under these

conditions, the equation of motion of particles in the cell may

be simplified to give

dr

dx
＼

r 2 . 2~ , 1/2
[ a - sin r ] . (5.56)

the solution of which is given, in terms of the Jacobian elliptic

functions, as

sin v = q sn(co x) ,

sin w = q

cn(u

dn(aj

)

)

/

The parameter q defined by

cos r = dn(u). t) ,

COS W =

/T7

dn((jo. t)

･

(5.57)

vanishes at the center of the cell and becomes unity on the sepa-

ratrix. It has been suppressed in the expressions for both the

Jacobian elliptic functions and the elliptic integrals which will

be introduced below.
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p

Taking account of the periodicity of the elliptic functions,

we can express the motion derived from ffQ

angle variables (I,Q) :

dJ

dx

= 0 and
de

dr
= 0,(1) =

2

IT

F(

in terms of the action-

(5.58)

The relationship between the old and the new variables is given by

the equations

<

I(HQ ; =

1

2tt

d(w,H ) =
9

3J

o p dw =

p dw =

uu

TT

2

0

TT

2

TT N JQ a-
W/2

P<?)iq '

tt P[arcsin(q~ sinu ),ql

2
/

(5.59)

F(<7)

r = r

Fig.5.7 Illustration of the relationship between the

action-angle variables (I, Q) and the original ones (p3 w)
3
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where the complete and the incomplete elliptic integrals of the

first kind are denoted by F(q) =F(-n/2,q) and F(E,,q), respectively.

It is readily seen from Fig.5.7 that a phase space area enclosed

by a trajectory is equal to the action 2ttJ and an angle 9 sig-

nifies a phase on the trajectory, 1= constant.

Since, in addition to the periodicity already involved in

v and w, the time-dependent part ff has the period (N - n)v/N, a

force derived from H, can resonate with particles in periodic

motion which is determined by eqs.(5.58) and can form secondary

islands on a resonant trajectory. When we use the asymptotic

expansion of J , fl, is approximated by

Hl' 2"t
^0

N

CO
I

cos r cos w cos―
2

cos m

777TT
- sin r sinw sin― sin m

2

W + VT

N

W + VT

N

(5.60)

In the case of our present interest, N>>1, the temporal variation

of v/N ^ 0 Co)./N) may be neglected. Then the transformation of

variables to (I,B) gives the total Hamiltonian of the form

where

H(I3B3T) = HQ(I) +

H (I) = 0).
ms t

N

00
I

00
I

m = -co S = -oo

(-l)m
2tt

F(q)

H (I) exp i[2(2s+l)9 - (2m+l)vT/tf] ,

(5.61)

2s+l
a

1 - a2C2S+l)
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and a = exp[-irF(VI - q )/F(q)]. Also we have used the Fourier

expansion of the Jacobian elliptic functions (Appendix B) . The

resonance condition for the secondary resonance is then given by

2(28+1) flfJ ) = (2m + l)u> / Nimc ^ 2m + 1 (5.62)

and therefore the frequency spacing of adjacent resonances can be

approximated, for a integer s >>1, as

6n = nrirjS-l > - *(Irs ) *

*2

F2(<?)

2

2m + 1

･ (5.63)

Following the discussion of §§5-2-2, we may estimate the width of

secondary islands as

Aft = 2 2 H (I )
ms vs

1/2
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(5.64)

(5.65)

Finally, we obtain the stochastic parameter

16 1 E - (1 - q2) F b

,2
fl

2,1/2 2 . ,2 '
ir 4 , (1 - <? ) q 1-6

where A , = 03 /＼2m+l＼, b = exp[-F(Vl - q )/A ,1 and E denotes the

complete elliptic integral of the second kind. If the condition

K > 1 is fulfilled, secondary islands overlap and phase points are

expected to move chaotically.



§§5-4-2. Results of numerical computations '

The exact Hamiltonian (5.1) has been solved numerically for

the case of the perpendicular propagation, k,,= 0. Since there

exists no adequate wave frame, we have worked out in the laboratory

frame. Before illustrating exact numerical results by means of the

surface-of-section method, it would be instructive to show in

Fig.5.8 an averaged motion derived from H~ for 6=0 and 6^0,

in view of visualizing an existence of the primary islands which

never overlap.

In Fig.5.9, numerically calculated phase points for 6=0

53.37

s_

49.51

45 AS

■

-~ ■ "**"*･■

0 w *

(a)

53.37

*- 19.51

45.45

V.

f^^%xQ//

0 n
w

(b)

Fig.5.8 Examples of the trajectories derived from

E with a) v= 30.00, t>) v= 30.23 and a_,= 6. The

broken line denotes the separatrix and the dotted line

the dft/dJ=0 trajectory.
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Fig.5.9 Numerically

calculated phase points for

v= 30.00 are plotted by the

use of the surface-of-section

method at ^=Tr. 22 particles

with different initial

conditions are tracked until

T= 200.
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Fig.5.10 The normalized area S satisfying
A.

Chirikov's condition vs. the normalized amplitude

A, (<= <$>). Crosses indicate the value observed in

numerical computations. (We have estimated A, for

the dominant perturbation m= 0 and -1 .)
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are plotted as the intersection of the trajectory with a surface

of section ty= it. When the wave amplitude is small, most of par-

ticles move adiabatically in the primary islands. As the amplitude

increases, secondary islands overlap near the separatrix and the

motion becomes stochastic. Finally particles begin to wonder from

one primary island to another. The normalized area 5, introduced

in §§5-3-3is indicated in Fig.5.10. Numerical results are also

shown. If A, << l, the ratio S, is approximated by a function

non-analytic at the vicinity of A , = 0 which reads

SK
^ ( 32 / -n2A3t ) exp( - tt / 2 A.x ) ･ (5.66)

It suggests that, for a small value of A ,, S, is nonzero but

extremely small. In Fig.5.10 we can observe abrupt increase of 5, ,

as soon as A ,

results.

exceeds 0.15/ which agrees well with the numerical

On the other hand, when the frequency mismatch is not negli-

gible, i.e., 6 ^A , , a situation changes considerably. A momentum

v of particles in nonlinear periodic motion described by H~(I) is

limited between zeros of Bessel function J≪ and secondary islands

appear on the trajectory where particles in periodic motion

resonates with the perturbation. But they never overlap on the

trajectory where 0,(1) takes an extremum, dfi(U/dJ=0 (see Fig.5.8

(b)), since the secondary islands with the same mode number s lie

regularly on both sides of this trajectory. The topological

development of the secondary islands in this region is illustrated

in Fig.5.11, for a perturbation symmetric with respect to this

trajectory. Here A denotes the frequency mismatch from the
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Fig.5.12 Numerically calculated phase points for

v= 30.23.

121 -

0W.5



s_

s_

54

50

us

54

50

15

W 30.23

V =30.23

0

0

w

w

7T

%

aj.-i.75

0^=3.0

s≫

s_

≫

50

45

54

50

45

V- 30.23

W -30.23

Fig.5.12 (conti.)

122 -

0

0

w

w

%

%

a.-1.15

ax-i.o



secondary resonance sJ2 ,_ - (nM/N-mju (see §5-2-2) and A is
J max c

proportional to the perturbation amplitude. In order to obtain a

condition that this layer be stochastic, it is necessary to take

account of the higher-order resonance. It should be noted, however,

that the same analytical difficulty due to the presence of

dSl(I)/dI = 0 trajectory survives in higher-order approximations

except the case A=A , in which two chains of islands contact to

each other. Fig.5.12 shows the numerical result : When a, =1.5,

secondary islands (s = 4j begins to grow at the dQ.il)/dJ = 0

trajectory and its shape is similar to the case 0 < A < A , as is

seen in Fig.5.11. As the amplitude increases, s=4 islands are

separated and eventually overlap with s=5 islands. However, the

dtt(l)/dl = 0 trajectory is adiabatic and particles cannot go across

the stopping band until a , =4.0. For a , =4.0, the stopping band

(r-^kf) is cleared but another one (r^51) prevents particles

from obtaining higher energy.

Including the case of cyclotron off-resonance, Karney and

Bers 85)
has examined the stochastic threshold numerically and

obtained the condition for the onset of stochastic motions in a

fraction of phase space of order unity, A±>Q.25i which is inde-

pendent of 6. However, the above discussion suggests that the

stochastic threshold which determines a maximum energy a particle

would gain, depends on 6 to some extent, since there exists no

layer which hardly becomes stochastic if 5 <<A ,.
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We have carried out numerical calculations on the particle

distribtuion for various frequencies. Initially 100 particles are

distributed randomly between r=33>5 and 33.5+ 2tt. Figure 5.13

shows the distributions during the time interval from t = 300 to

350 for a relatively small amplitude a, =4. For a cyclotron

resonance v =30.00, a fraction of particles, acclerated, enter

into a higher-energy region v = 64 (in ^ 0.19J along the narrow

stochastic layer near the separatrix. On the other hand, a stopping

V= 30,00

10-3

0

'"^'･-.

""■･■■･._

-** "
― * ,･･**･･*■

fl
0 50

r

100

T-300
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T-200

T-150

T = 100

T- 50

T= 0

V -30.23

'"■■■'■■'-･

･･-･-.

* *****―v.

■**･･%

L
0

50

r

100

Fig.5.1k Time dependence of the distribution function,

normalized by I /"･rdr=l in the case of a large amplitude

a_,= 12.
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band near v = 44 (os ^O.33J hinders particles from being further

accelerated for an off-resonant case v= 30.25. That rather higher-

energy particles are produced in the case v =30.50 is expected to

be attributed to a half-integer cyclotron resonance which is of the

2order of cj). Another important feature to be mentioned is an

attainable lowest energy which determines a number of stochastic

particles in a Maxwellian plasma, because of the abundance of

particles with low energy. Also in this respect, a wave with

frequency close to cyclotron harmonics picks up the lowest-energy

particles in spite of the slowness of the motion.

When the wave amplitude is sufficiently large, we find that

the 6- dependence of the maximum energy becomes less important.

It is partly because the particle number in such a high-energy

regime is small and partly because it takes a long time for

particles to obtain high energy. Note also that a velocity

distribution of stochastic particles becomes almost independent

of 6 and that the time dependence of the distribution indicated

in Fig.5.14 is insensitive to the wave frequency.
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15-5 Discussion

We have investigated the problem of the intrinsic stochasticity

of charged particles subject to a uniform magnetic field and an

electrostatic wave and have confirmed that results obtained from

analytical study on the overlapping of secondary islands are in

good agreement with the numerical results. In this section, we

shall discuss the stochastic tail formation in LH wave heating.

Since the LH wave in a central part of the plasma column has

a very small but finite k,, compared with k , , we have studied this

finite- kir effect in Refs. 86 and 87. The result shows that, if

we define 5 = N - v + k,,v /to and the condition
3 C

*1

*2,
≪

k2M

Tmw

[1-

N2

~2
V

] - -£

2 2

^ NJ' i N NJ17
(5.67)

is satisfied, the analysis of §5-4 is not altered. Since (k,,/k,)
2

is of the order of m /m. , the condition (5.67) may be satisfied

in most of phase space where v ,£u>/fc_,, except at the vicinity of

the separatrices of primary islands. Another effect of finite k,,

is a frequency mismatch which increases with increasing perpen-

dicular kinetic energy- The energy conservation in the wave frame

leads to the relation.

A 6 = A| 5 I ^
_c.

valid for A6 << u/oi

order of (w /m.

1

A^'l

2 *･ a) ^
c

(5.68)

2 2
Since the factor Ck,,/k ,) (in /&) is of the

)^' for the LH wave, however, increase of the

perpendicular energy may be very large, before the frequency
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mismatch becomes serious.

In the case of the perpendicular propagation, it has been shown

in §5-4 that the condition for the appearance of a stochastic layer

is given by cu.:>0.15 ･ This condition may be interpreted as a

condition which determines an upper bound of the high-energy tail,

0)

<

k±v ,

123 -

(5.69)

uc

The lower bound is given by the condition that the Bessel function

Jjijhave a considerable magnitude. Although we have assumed that

6 << u).in §5-4-1, numerical calculations have shown that, if

o>.>0.33* particles are accerelated independently of 6. Recently,

87)Abe et al ' have numerically analysed the tail formation of ions

which initially have a Maxwell velocity distribution. They have

carefully discussed the effect of finite k , and the dependences

of an acceleration mechanism on both 6 and to/ai.

In the LH wave heating experiment on JFT-2, a high-energy tail

of -the ion perpendicular-energy distrubtuion has been observed at

above 2 KeV. This lower-bound energy corresponds to a wave number

k±-V8 x 10 m~ for a wave frequency 750 MHz. If we try to estimate

a minimum wave amplitude for the onset of the tail formation by

eq. (5.69), we obtain a potential <j>as small as 3 V. This low

threshold is due to the relatively large wave number and a weak

magnetic field (B =1.3Tj. For the wave amplitude cj>=30 V, the

maximum attainable energy is calculated to be about 30 KeV. If a

power density is roughly estimated as r 'v-u^ .e_|E ,| , we obtain

T^12.5 W/cm2 for <b= 30 V. The total power 250 kW, considered

to be transmitting through a surface of a torus with v = 5 cm



and R = 90 cm, is not far from 125 kw observed in actual experiments,

if we take account of a nonuniformity of the wave on the torus

surface.

In order to calculate a tail temperature and an absorbed

power, we have to include in the analysis the effect of a colli-

sional relaxation on the high-energy tail. This problem has

recently been attacked by Karney,
88)

who approximated the stochastic

process by a simple Fokker-Planckequation. Although we have treated

only a plane wave, sharply localized electric fields have also been

proved to produce a high-energy tail. Extension of our results

to an inhomogeneous case is left open for further studies.
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Chapter 6

SUMMARY AND CONCLUSIONS

In Chapter 3, we have investigated the coupling of a wave-

guide array with electromagnetic fields in a low-density low-

temperature surface plasma. The linear coupling analysis has

shown that the reflection coefficient, seen from a wave source,

depends on both the relative phase difference A$ and the density

gradient in front of the waveguide. When a density at the plasma

surface well exceeds the cutoff density, the coupling becomes

insensitive to the density gradient for large A$. Taking account

self-consistently of the static density depression due to the

ponderomotive force, we have derived a nonlinear wave equation

which governs the propagation of LH waves in a surface plasma.

The power-density dependence of the reflection coefficient has

been obtained by solving numerically the nonlinear wave equation

which has been reduced to a one-dimensional form by retaining

only the fundamental mode of the waveguide array- Results reveal

the existence of an upper limit of the transmitted power-density,

2
typically of several kW/cm , which may be attributed to an enlarge-

ment of the cutoff region. Since there exists an optimal surface

density imposed by a parallel refractive index N,,, the reflection

coefficient decreases with increasing power-density, whenever the

unperturbed surface density exceeds the optimal value. As soon

as the power density passes by an optimum corresponding to the

optimum value for the surface density, however, the reflection

coefficient rapidly increases and approaches unity.

In view of realizing an efficient high-power LH heating,
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results of our analysis will serve as an indispensable guide for

the design of an optimized waveguide array which launches LH waves

with a desirable tf,,-spectrum at as high as possible power-densities.

In Chapter 4, we have analysed the nonlinear propagation of

LH waves in a high-density plasma core. First, we have derived

the nonlinear equation which well describes the competition between

thermal dispersion and density depression due to the ponderomotive

force. In a homogeneous plasma, the equation can be reduced to the

complex modified Korteweg-de Vries equation, and, in particular, in

the limit of a rapid phase variation, to the nonlinear Schrodinger

equation. In an inhomogeneous plasma, it has been shown that, near

the linear mode-conversion point, a wave packet is governed by the

nonlinear Schrodinger equation with a linearly increasing potential.

Numerical solutions suggest that, when the wave amplitude is small,

a wave packet with a small width in the direction of the magnetic

field easily spreads out near the mode-conversion point and its

amplitude decreases immediately- On the other hand, a large-

amplitude wave packet forms a soliton which preserves its shape

even after the mode-conversion. Further increase of the wave

amplitude causes a filamentation.

Proper estimate of the parameters taken from actual experi-

mental data on JFT-2 has indicated that, even with sufficiently

large power-density, a limited spatial extent of the waveguide

array parallel to the magnetic field acts to spread the wave packet

before it reaches the mode-conversion point and thus prevents it

from forming filaments. Since a longer density scale-length may

lead to a further spreading due to thermal dispersion, the
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filamentation near the mode-conversion point is not expected to be

observable in large-scale fusion devices, unless the extent of the

waveguide array be chosen long enough along the magnetic field.

In Chapter 5, the formation of a high-energy tail on a velocity

distribution, due to a monochromatic wave propagating through a

magnetized plasma, has been extensively analysed, with emphasis

laid on a threshold for the onset of stochastic motions. According

to the Hamiltonian formulation for the motion of a charged particle,

we have treated the cases of both oblique and perpendicular propa-

gations. The onset of an intrinsic stochasticity has been estimated

with the aid of Chirikov's criterion which dictates an overlapping

condition for the secondary islands in phase space. The analytical

prediction of an area of phase space, where the motion of particles

becomes non-adiabatic, is in good agreement with results of

numerical computations based on the exact Hamiltonian.

Since the parallel wave number k,, of the LH wave is very

small compared with the perpendicular wave number k, in the central

part of a plasma column, analysis of the perpendicular propagation

can be applied to the LH wave. A threshold for the amplitude of

an electric field which is responsible for the onset of an

intrinsic stochasticity is therefore proportional to k~ . As the

threshold decreases near the linear mode-conversion point where k ,

increases considerably, the LH wave after the mode conversion may

readily produce high-energy ions at the vicinity of the resonance

points of the ion cyclotron harmonics. Since the wave energy is

converted mainly into the perpendicular kinetic energy of ions,

we may expect the formation of a high-energy tail in the
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perpendicular velocity distribution, as is often observed in actual

experiments. It should be noted, however, that the intrinsic

stachasticity is not a sole mechanism which is responsible for the

tai1 formation.

So far, we have investigated several important nonlinear

effects in the problem of LH wave heating. From the engineering

point of view, we believe that our results allow us to explore an

efficient method for the high-power heating of a magnetically

confined plasma by means of the LH wave. This does not mean that

all essential problems have been thoroughly understood. We have

to be aware of the actual states of art that a number of difficult

nonlinear problems are still left open to a future study.
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Appendix A. WKB solution to the linearized version of eq. (4.5)

In the plane-wave limit (dty/d.z= 0), we shall consider the

linearized version of eq.(4.5). Denoting by L the scale length of

the density gradient and assuming the small quantity 1/(k L ) to

be of the order of 6 , we obtain an equation correct up to the

order of 6 ,

*2
+ i

2k+

*≪

K

3
+ i [

2k+

^

+

K

k
2

+

+

k

a'
― ]
a

a'

a

+ [1-

]i|/+ { 2

k2_ 324>

2^]

32ib 1 a'

3x2 2k2+
a

i 3
3it>

――― + _― ■

8x
2 k 3x3

k'
― +[1-
k

^3
= o ,

1
4?

3%

"to?

k2 a' 9ij>
-^1 ― }― (A.I)
2K2

+
a dx

where the dash stands for the derivative with respect to x. Now,

setting

ty(x) = fix) exp [ +
r

k_(x') dx' ]

and using the WKB approximation with the subsidiary ordering

dlnf/dx ^ O(l/Ln), we obtain

1

dx

ty = A

[afc

k' k' 1 k' T k'

2k+

+kJk+

2k

+ fe_)j

2

1/2

1

2

a'

a

[afc k_(k -fe_)l

(A.2)

(A.3)

k

Accordingly, the WKB solution to eq= (A.I) is given by
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90)
Appendix B. Formulae of the Jacobian elliptic functions

1. Relations between the functions

2 . 2
en u = 1 - sn u

2 2 2
dn u = 1 - q sn u

2. Differential identities

Function

sn u

en u

dn u

Derivative

en u dn u

sn u dn u

3. Series expansions in terms of the nome: a- exp[-irF(/l-q )/F(q)]

sn u =

en u =

dn u =

2
sn u =

0 8+1/2
― I p-ry sin[(2s+l) ―]

qF s =0 1 -a 2P

2ir °° a iru
~~ E

2J+T
cos[(2s+l) ―]

qF s =0 l + aS1 2P

it 2tt °° aS ttu
― + ― I

P-
cos[ 2s ― ]

2F F 8=1 1 + a 2F

F -E
77

2tf2

77

CO
I

S =

sas ■nu

5"- cos[ 2s ― ]
1 1 - a 2P

The last formula can be derived by combining eqs. (17.2.10),

(17.4.28) and (17.4.38) in Ref. 90.
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