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PREFACE

It has widely been recognized that some new available

energy should be developed so as to take the place of petroleum

in the near future. In this respect, the device to realize

nuclear fusion in laboratory plasmas must be one of the greatest

projects in this century. Besides nuclear fusion research,

plasma that does not naturally exist on the earth is now thought

to be quite important for manv technological purposes.

In actual systems, there are a wide variety of plasmas from

laboratory plasmas to space plasmas. various phenomena are

accordingly caused by various plasmas, and they are frequentlv

too complicated to be easily understood. In researching plasmas,

there are now well established the following three methods,

namely, theoretical study on the basis of analytical calculations,

laboratory experiment or observation by rockets and artificial

satellites, and computer experiment by computer machines. In

recent days, we are recognizing that computer experiment becomes

more and more important since mathematical treatments are very

complicated and laboratory experiments are usually not easily

performed; also, observations of phenomena occurring in space

reveal many important features of plasma.

In understanding complicated plasma processes, one of the

key mechanisms is plasma acceleration mechanism. In fact,
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mechanisms causing increase in plasma energies are essential in

many plasma devices, for instance, in yielding high-energy ion

beams and in heating plasma in order to realize nuclear fusion,

as well as in many distinct phenomena occurring in space. In

a very simple case, an externally applied electric field can

readily cause plasma acceleration. On the other hand, there

may be another important situation where plasma gains energy

without externally applied electric field. In this case enerc

conversion should occur self-consistently because of remarkable

properties inherent to plasma itself. In such a plasma proces

magnetic field may play a crucial role since it can largely coi

plasma behaviors.

The present thesis studies by computer experiments large-

scale conversion of magnetic energy into plasma energies. We

are interested in only macroscopic properties of plasma. We

note that magnetically stored energy should be released in a 1,

scale region when a magnetic field configuration of high poten-

energy topologically relax into another one of lower potential

energy. It should be kept in mind that "magnetic field line 1

connection" involves topological translation of magnetic field

configuration and may hence be essential in large-scale energy

conversion process.

In chapter 1, the background of the present problem is

generally described. The concept of magnetic field line re-

connection is introduced in a rather intuitive manner. it she
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be recognized that the basic mechanism of the energy conversion

by field line reconnection is, at least in principle, the same

as the well-known energy conversion mechanism involved in electric

machines such as generator and motor. Also, recent laboratory

reconnection experimens are referred to, and major observations

concerning large dissipative events in space, such as solar

flares and magnetospheric substorms, are shortly mentioned.

Chapter 2 systematically examines theoretical models on the

fast reconnection process that have been proposed during the last

two decades. Most analytical studies have concentrated on steady-

state reconnection processes in incompressible fluids. They

succeeded in showing some essential physical mechanisms required

for the rapid energy conversion by field line reconnection but

not in a convincing manner. In fact, many fundamental

reconnection processes remain masked because of mathematical

difficulties. We discuss limitation of analytical calculations

and refer to important problems concerning the fast reconnection

that should be solved.

Chapters 3-6 show and discuss our computer experiments.

We investigate the temporal dynamics of reconnection, which is

of high current interest in actual systems. In chapters 3 and

4, a development of fast reconnection from a neutral current sheet

is demonstrated. The condition for occurrence of the fast re-

connection process can be clarified. It is found that remarkable

conversion of magnetic energy into plasma energies in fact results

without specially imposed external condition. In the quasi-steady

-v-



configuration a finite electric field is spontaneously set up

almost uniformly in space. Chapter 5, on the other hand, exai

influences of an externally imposed electric field on the re-

connection process. It is shown that the fundamental structu:

of the steady reconnection can scarcely be influenced by the

imposed electric field. Chapter 6 again examines the spontam

developing reconnection process and shows that the finally set'

up electric field has a weak (logarithmic) dependence on the

magnitude of electrical resistivity. Note that this consequei

assures that the energy conversion process can effectively prc

even in highly conducting fluids.

In chapter 7, important consequences derived from the com;

experiments are summarized and extensively discussed. It is

suggested that the fast reconnection process should basically 1

regarded as a gross instability inherent to the current sheet

system itself. We then apply the numerical results to flare

phenomena and show that they are in fact in good agreement wit.

observations. We also suggest that the effective magnetic em

conversion by field line reconnection should be available for

many plasma devices.
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GENERAL INTRODUCTION

§1. Introduction

Chapter 1

In the real physical world, there are various forms of

energy, and energy conversion is essential in many technological

devices. Simple forms of energy can easily be provided by

natural resources such as petroleum and coal, which are converted

into other forms of energy according to practical purposes.

In plasma devices plasma acceleration or heating is quite

essential as well known. In this respect, it should be noted

that magnetic field may have a crucial role in determining

macroscopic plasma processes. The present chapter thus gives

general remarks on the basic mechanism of plasma acceleration

that results from interaction with large-scale magnetic field.

In §2 we describe the basic concept of "magnetic field

line reconnection". We note that by field line reconnection

magnetic field may modify its configuration in a large-scale

region. One may thus expect that field line reconnection would

be essential in large-scale conversion of magnetic energy into

plasma energies.
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§3 refers to the principle of conversion between electrical

and mechanical energies. We then consider the energy conversion

by field line reconnection on the basis of the general principle

of energy conversion.

In §4 we mention recent laboratory experiments of reconnection

and observations of phenomena in space that have been considered

to be associated with field line reconnection. In fact, to show

evidence of reconnection in actual plasmas will lead to a deeper

understanding of the present problem. Some observational data

will be employed to compare with our numerical results in the

last of the present thesis.

§2. Basic Concept of Magnetic Field Line Reconnection

In order to visualize field line reconnection, we should

identify individual field lines of force and their motion (Stern,

1966) . Newcomb(195 8) showed that any velocity v^ given by

*~ Vx(vxB) = 0
at ~ ~ ~'

(1.1)

satisfies conditions associated with the concept of the motion of

lines of force, such as line preservation and flux preservation.

As a matter of fact, it seems more instructive to describe

field line reconnection in an intuitive manner. Generally, any

magnetic field lines should be closed and a loop must be formed
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since magnetic field B^ satisfies the solenoidal condition (

^.Bj=O). However, it should be noted that a magnetic field line

loop may be broken at a magnetic neutral point where field strength

vanishes. This could readily be recognized if one considers that

magnetic field has no definite direction where ,B,=0. With this

in mind, consider a pair of magnetic field line loops which

approach each other. If they meet and toutch each other at

a neutral point, they will be broken and then "reconnect"

with each other at the neutral point, which should result in

formation of a new field line loop. The implication is certainlv

that magnetic flux transfers with the overall field configuration

beeing modified topologically.

In actual physical systems such a magnetic flux transfer

is not surprising but rather popular. Suppose, for instance,

that bar magnets are placed in vacuum. Since there is no

electrical current in vacuum, the problem is trivial. Magnetic

field configuration produced by the magnets can easily be modified

by varying the disposition of the magnets or by reversing their

polarities. The magnetic field reconfiguration should obviously

result from magnetic flux transfer due to "field line reconnection".

In plasmas, on the other hand, the problem becomes extremely

complicated since electric currents can now easily flow. Changes

in magnetic field configuration may directly influence plasma

behaviors, so that field line reconnection should be accompanied

with some drastic plasma processes. To study such plasma processes

is the main theme of the present thesis.
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It should be noted that the presence of magnetic neutral

point is essential in the proceeding of field line reconnection.

It is well known that there exist two types of neutral points,

namely X-type and O-type neutral points (Dungey, 1953). Fukao

et al. (1975) further showed that in the general three-dimensional

case there can exist other types of neutral points such as spiral-

type and node-type neutral points. In the three dimensional

system magnetic field configuration, and hence the reconnection

process, may become much complicated. The present thesis will

study, for simplicity, two-dimensional aspects of plasma processes,

and only X- and O-type neutral points will be considered.

§3. Basic Mechanism of the Energy Conversion by

Magnetic Field Line Reconnection

As seen from the foregoing discussion, magnetic field line

reconnection allows a magnetic field configuration of high potential

energy to topologically relax into another one of lower potential

energy. In view of the remarkable magnetic energy conversion

involved, this problem must be one of the most fundamental subjects

in plasma physics. As will be shown in detail in the next chapter

several theoretical models of fast reconnection have been proposed

during the last two decades, but there remains considerable

confusion concerning the basic concept on the physical mechanism.
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The detailed features of the fast reconnection are generally

too complicated to be easily understood since the process involves

strong nonlinear effects. In what follows, let us systematically

examine the fundamental problem on the basis of the general prin-

ciple of energy conversion.

The simple version of the Ohm's law is given by E^ + uxB =

^^J, where ^ is the electrical resistivity, which can usually

be written as E + u x B ~0 in cosmic plasmas. The energy

conversion rate per unit volume is in general given by Ji/J/

which becomes E>J = u≪(JXB) + Vj iu.(JxB) by using the Ohm's

law. As well known, if E*J >0 , a motor effect is represented

by which electrical energy is converted into mechanical energy;

on the other hand, if E-J<0 , a generator effect is described

such that mechanical energy is utilized so as to generate an

electric field E In considering the physical mechanism

releasing the magnetic potential energy stored in the current

sheet system, a most fundamental problem apparently lies in how

a large-scale electric field can ultimately be established in the

system.

Consider an X-type field configuration, which is thought to

have developed from an initially antiparallel field, where a

steady fast reconnection (for instance, see Petschek (1964) ) is

proceeding, as schematically shown in Fig. 1 The region is of

scale dimension 2L X2L , and the problem is assumed to be two-

dimensional as usual. The origin 0 is the position of both the

magnetic neutral point and the plasma stagnation point. Note
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I

CM

Vi Bxo

- 2LX *"

Fig. 1. Schematic illustration of magnetic-field (solid lines

and plasma-flow (broad arrow) configuration where steady-

state fast reconnection is proceeding.

that magnetic diffusion is important only in a small region near

the neutral point. There must now be global plasma flows: at

(x, y)=(L , 0) the field component B =B , and the outflow

velocity ux=Vq ; at (x, y)=(0, L ) the field component B =B Q

and the inflow velocity u =-V. . Also, there is a constant

electric field E =-E,
7. 1

where En^V.B _£s.V b ,
1 1 xO― o yl

Integrating

E>jJ over the region in the first quadrant only, we may describe

the energy conversion rate as E,I = W_ + W, , where
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wo E.I
0

/ ln =―i―
rX
B (x, y=L )dxck―^

0 ^o Jo x y /<o

where we consider B Cz

wl = -El

B . at y=L
xO y

L_fL

≪0 Jo

/ and

yB (x=L , y)dy.
y x

L
x , (1.2)

(1.3)

Here we take it into account that the total current I in the

region can be written as I = -IQ + I (usually IQ^>I1) where

-I_ is the current associated with the initial antiparallel

field B , and I, is the one associated with the B field

resulting from the reconnection. Obviously, Wfi is positive and

corresponds to the annihilation rate of the antiparallel field;

on the other hand, W, is negative and hence indicates a generator

effect such that part of the resultant plasma energy is utilized

so as to generate the electric field E, . As can be seen from

Eq. (1.3), the generator mechanism is effective in the inner region

(near the x-axis) since as will be shown later the B 'field

decreases with increasing y ; hence, this mechanism can be

considered to come from the intrinsic properties involved in the

current sheet system itself. In fact, in order to produce the

B field in the system, there should be some active mechanism

yielding localized enhancement of magnetic diffusion near the

neutral point.
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§4. Laboratory Experiments and Observations

4.1 General remarks

We note that there is a large difference between

laboratory plasmas and space plasmas in the scale of space

where plasmas exist. Laboratory plasmas are confined by rather

small apparatus; on the other hand, space plasmas exist in the

enormous cosmic space and interact with planetaries. There

are in fact a much wide variety of plasma phenomena in space,

and simulating space plasmas by laboratory plasmas usually

involves many technological difficulties. Recently, much

effort has been given by many experimenters and notable progress

has been made. The problem of magnetic field line reconnection

which originated from flare phenomena in space, has increasingly

attracted much interest with respect to laboratory experimets

too. Let us show below important consequences, associated with

magnetic reconnection, that have been obtained from laboratory

experiments as well as from observations of phenomena in space.

4.2 Laboratory experiments

Important reconnection experiments that have been reported

are mostly associated with tearing modes and Petschek modes.

These experiments were extensively discussed and reviewed by

Baum & Bratenahl(1977). Tearing modes have been considered of

qreat importance in researching pinch, stellarator and tokamak
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where instability of magnetic field configurations has been

observed (Colgate & Furth 1960; Stodiek et al. 1962 ).

Theoretical studies on tearing modes have been presented by

many workers (Furth er al. 1963; Gross & Van Hoven 1971; Dobrott

et al. 1977). In tearing modes a neutral current sheet develops

into many X- and O-type neutral points, and in the classical

theory the sheet is infinitely long and is perturbed by random

wavelength disturbances .

In a tubular pinch, Anderson & Kunkel(1969) showed that

circular field lines, oppositely directed on the inner and outer

sides of the pinch, are broken and that alternating X-, and

0- type neutral points are formed. An experiment by Alideeres

et al. (196 8) showed evidence of reconnection in a hard core

theta pinch, but no classical tearing mode was observed. Also,

an experiment by Ohyabu et al. (1974) which treated a neutral

current sheet, is taken as evidence for the tearing mode (

Ohyabu & Kawashima 19 72). However, we may note that it would

not present the classical tearing mode since the classical

tearing mode does not evaluate the influence of finite boundaries

(Baum & Bratenahl 1977).

In fact, theoretical study on the nonlinear development

of tearing modes is quite essential in understanding the

experiments, but it has not convincingly be shown yet. Van Hoven

(19 76) hypothesized that the classical Petschek mode may approximate

the nonlinear tearing mode since both the tearing mode and the

Petschek mode develop from a neutral current sheet. However,
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it may be noted that there is an apparent discrepancy between

the classical tearing mode and the classical Petschek mode in

how the associated electric field exists. In the Petschek-

mode geometry there should be a large-scale electric field in

the whole region as shown in Fig.l, while it is apparent that

such a large-scale uniform electric field cannot exist in the

tearing-mode geometry. We may hence consider that nonlinear

tearing modes would not be so effective in large-scale conver-

sion of magnetic energy stored in the current-sheet system.

An experiment by Baum, Bratenahl and others has researched

a reconnection process in the Petschek-mode geometry (

Bratenahl & Yeates 19 70; Baum et al. 197 3 a, b, c, d; Baum &

Bratenahl 1974 a, b, 1975). The device is called the double

inverse pinch device (DIPD). It should be noted that the

experiment is different from the usual turbulence experiments

(cf. Hamberger & Jancarik 1972) in that electric field which

leads to turbulence develops from the plasma flow rather than

from the application of an external electric field (Baum et al.

1973 c).

The DIPD is shown in Fig. 2. Fig. 2(b) shows the initial

formation of cylindrical return current sheets around the rods

which propagate radially outward. Fig. 2(c) illustrates a

potential field produced by the two rods which define three flux

cells. As the rod current changes, flux is transferred from

cells 1 and 2 into cell 3 or vice versa. Every flux transfer

is accompanied by field line reconnection. The rod currents
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(a)

0°

r

(b)

(c)

Fig. 2. The double inverse pinch device (DIPD). (a) Device

side view. (b)Top view of two cylindrical inverse pinches,

(c) Potential field from two rods difining three flux cells.

are directly driven by capacitor banks but that the neutral point

current system is inductively driven (Baum & Bratenahl 1977)

They argued by measuring current density contours that slow

shocks similar to Petschek's form are set up. As a matter for

regret, however, the shock structure does not sufficiently develop

and is not so definite, since the plasma is confined in rather

a small region. One may in fact note that it is impossible to
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achieve a steady state reconnection process in the geometry

shown in Fig. 2(c) under any conceivable set of boundary condi-

tions (Baum et al. 1973 d). But certainly the experiment

must be quite important in understanding the Petschek-type

reconnection in actual plasmas.

One of the most important consequences obtained from the

DIPD may be that an anomalously high electrical resistivity is

caused in the vicinity of the neutral point due to plasma

turbulence. This may indicate that the effective resistivity

near the neutral point is closely related to the proceeding of

field line reconnection. Baum & Bratenahl (1974 b) in fact

concluded that the impulsive reconnection event observed in the

experiment is cuased by an abrupt resistivity increase. One

will see later in this thesis that the experimental result

is, at least in essence, in good agreement with our computer

experiments.

4.3 Observations of phenomena in space

4.3.1 Remarks

Historically, the study of magnetic field line reconnection

grew out of suggestions by Giovanelli (1947, 1948) that charged

particles responsible for solar flares and the aurora, respectively,

could be accelerated at X-type neutral points. Recently,

remarkable progress of observational means such as rockets and
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artificial satellites has enabled us to gain much more informa-

tion as to phenomena occurring in space, and reconnection process

has now been recognized to be essential in various astrophysical

systems, for instance in the formation of chromospheric spicules

(Uchida,1969), in the detachment of the magnetic field of an

interstellar cloud from the surrounding field (Mestel &

Strittmatter 1967) and in galactic flares (Sturrock & Barnes

1972) .

Special concern has been paid to explosive plasma phenomena

occurring in the solar and the terrestrial atmospheres. Solar

flares are now well understood to be caused by some mechanism

of releasing the energy stored in sunspot magnetic fields.

In magnetospheric substorms, the magnetic energy stored in

the geomagnetic tail is suddenly released into plasma energies.

In what follows, let us briefly summarize observations concerning

solar flares and magnetospheric substorms and show their possible

interpretations in terms of magnetic field line reconnection.

4.3.2 Solar flares

In recent years, cinematophometric and magnetographic

studies have enabled complex structures of the solar atmosphere

to be observed (Cheng & Widing 1975; Kabler et al. 1975). The

energy of solar flares originates in complex rotational and

convective motions in the photosphere, being stored temporarily

as an excess magnetic stress in sunspot fields. Sunspot fields

may thus be largely twisted and be likely to be sheared before
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the onset of solar flare (Tanaka & Nakagawa 1973). However,

as a matter for regret, the detailed internal structures of

sunspot fields are not well identified yet.

A variety of theoretical models have been suggested with

respect to the remarkable magnetic energy conversion occurring

in the solar flare phenomenon (cf. Gold & Hoyle 1960; Sturrock

1966); Gold(1961, 1962) suggested a topological transfer of

solar fields due to reconnection. But most theoretical models

that have been proposed are rather qualitative, and it may be

said that the basic physical mechanism causing solar flares is

not well understood.

At present, theoretical models, not to mention detailed

observations, should be needed that can systematically explain

the major processes associated with the solar flare phenomenon.

The following two plasma processes seem especially noteworthy,

namely the abrupt plasma heating and the subsequent ejection

of plasma clouds. The plasma heating may well be caused by

some abrupt onset of anomalous electrical resistivity due to

microinstabilities; on the other hand, the plasma ejection

should result from some large-scale plasma instability. It

should hence be kept in mind that any theory applicable to

the solar flare phenomenon may be desired to provide some

physical connection between anomalous resistivity and large-

scale plasma instability.

It seems instructive to show some major observational

evidences concerning the solar flare phenomenon in order to have
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Item

Energy source

Energy storage

Growth phase

Explosive phase

Flare ejecia

Energy release

Sun

Pholospheric motions

(Rotation)

Sunspot field

Coronal condensation

plage-filaments

twistand winding

T = ?

Ha flash

Ribbon flare

r~103s

Radio bursts

Solar cosmic rays

Shock wave

Plasma cloud

1030^ |032 erg

Earth

Solar wind

(E=-VxB)

Magnetotail

Tail field

Plasma sheet

Plasma convection

r=l~2h

Aurora break-up

Auroral surges

Electrojet

t~I03s

ULFVLF emissions

Energetic particles

Plasma cloud

IO2°~IO-2erg

Table 1. Characteristics of solar and auroral flares.

an overall picture of it Obayashi(1975) recognized that flare

phenomena in the solar atmosphere and in the terrestrial

magnetosphere exhibit many similarities. According to him,

important characteristics of solar and auroral flares may be

shown in table 1.

4.3.3 Magnetospheric substorms

It is now convinced that field line reconnection plays a

crucial role in plasma processes occurring in the terrestrial

magnetosphere. Especially, distinct plasma behaviors in the

dayside magnetosphere and in the geomagnetic tail have attracted
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Fig. 3. Interplanetary plasma flow in a plane containing

neutral point.

much interest with respect to the reconnection process. In

this respect, it is noteworthy to show Dungey's reconnection

model of the magnetosphere (Dungey 1961), which is shown in

Fig.3. In this model the interplanetary magnetic field (IMF)

is convected towards the geomagnetic tail due to reconnection

when its field component is directed southward.

Dungey's suggestion has been observationally supported by

the dependence of the magnetic activity in the auroral zone on

the southward component of the IMF (e.g., Fairfield & Cahill

1966; Rostoker & Falthammar 1967; Arnoldy 1971). Also, decrease

in the total magnetic flux, as revealed by the dayside

magnetopause observations (Aubry et al. 1970; Maezawa 1974) as

well as low-altitude polar cusp observations (Burch 1972, 1973),

occurs only when the IMF is directed southward. This is of

course in agreement with the Dungey's reconnection model. For

more detailed observational evidences of reconnection in the

dayside magnetosphere the readers are referred to Maezawa(1975).
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In the magnetotail the energy obtained from the solar wind

is stored, and the stored magnetic field energy is converted

explosively into the kinetic energy of charged particles, which

leads to a magnetospheric substorm (Nishida 1978). It is widely

believed that the onset of a substorm is a consequence of, and

is closely associated in time with, the onset of rapid magnetic

reconnection in the tail (Hones, 1977).

One of the basic signatures of the magnetotail substorm is

rapid decrease in the field magnitude in the tail lobe (Aubry

& Mcpherron 1971). The start of this decrease is coincident,

within a range of several minutes, with the appearance of an

expansion-phase signature on the ground, namely with the earliest

onset of a low-latitude positive bay (Nishida & Nagayama 1973;

Caan et al. 1973). At the corresponding moment the tail diameter

starts to decrease (Maezawa 19 75), and hence the flux content

of the magnetotail is indeed reduced by the occurrence of a

substorm. This certainly supports that some field line reconnec-

tion process builds up in the tail. In this respect, one may

note that there should be formed an X-type magnetic neutral

line. The neutral line model has been developed by several

groups by putting various pieces of evidences together (e.g.,

Russell & McPherron 1973; Hoffman & Burch 1973; Hones et al.

1973; Terasawa & Nishida 1976; Hones 1976), although the precise

position of the neutral line is not identified because of

technical difficulties.

Table 1 summarizes major characteristics of magnetospheric
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substorms In addition, the following may be kept in mind
In

the near-earth polar region, energetic particles are precipitated

from the magnetosphere to the ionosphere. In the polar ionosphere,

there is the formation of an intense westward electrojet.

Field-aligned currents as well as field-aligned electric fields

are observed, which, together with the electrojet in the ion-

osphere, form a closed current loop in the ionosphere-

magnetosphere system. These plasma processes seem to suggest

an existence of some "battery" in the tail that drives the current

systems: this battery would have a voltage of several tens of

kv according to the observations. For the plasma processes

during a substorm near the ionosphere see, for instance, a

review paper by Falthammar(1977).
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Chapter 2

SURVEY OF THEORETICAL RECONNECTION MODELS

§ 1. Introduction

The present chapter examines the theoretical reconnection

models that have been proposed during these two decades.

Major points to be discussed are the following. Firstly, we

are interested in what field geometry is suitable for the one

where magnetic energy is critically stored. Secondly, important

consequences derived from the analytical studies, as well as

significant ideas introduced in the models, are shown, and also

some limitations involved in the analytical treatments are pointed

out. Finally, we raise a question what physical mechanism the

reconnection process should be regarded as.

Historically, the dynamical behavior of a highly conducting

plasma in the vicinity of the X-type neutral point was first

studied by Dungey(1953). He found that the two branches of the

separatrix, which initially intersect almost at right angles (

i.e., there is approximately no net electric current), approach

each other with the current being concentrated near the neutral

point. Simultaneously, of course, the magnetic field lines as

well as the plasma quantities are accumulated in the vicinity of
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the sheet-like geometry. However, it may perhaps be noted that

for attaining a deeper understanding of such a plasma process

the problem should not be restricted to a local region near

the neutral point; the associated overall process of the whole

system should be taken into account. Dungey's mechanism might

then suggest that if some external mechanical forces work on a

system containing a magnetic neutral point the associated energy

would be stored in the current-sheet geometry finally formed

within the system, although this suggestion is different from

Dungey's original idea that regarded the process as a local

electrical discharge near the neutral point. Dungey's mechanism

has extensively been studied and discussed (cf. Uberoi 1963;

Imshennik & Syrovatskii 1967; Forbes & Speiser 1978), but the

overall process describing the whole system has scarcely been

investigated.

The next step was the model proposed by Sweet(1958) and

further developed by Parker(1957, 1963). This model was the

first to treat quantitatively the reconnection process in relation

to large-scale conversion of magnetic energy into plasma kinetic

energy. They considered as a possible cause of releasing magnetic

energy only the magnetic diffusion due to finite electrical

resistivity, and found the reconnection rate too small to account

for the solar flare phenomenon. Petschek(1964) first recognized

for the fast-reconnection problem the importance of MHD slow waves

that can give, independently of magnetic-field diffusion, another

way of reducing the magnetic field and increasing the plasma
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energy. His basic idea was incorpolated by Sonnerup(1970) and

Yeh & Axford(1970) who independently proposed exact similarity

solutions.

In what follows, let us examine these theoretical studies

that concentrated on seeking possible solutions of the MHD

equations that describe steady-state fast-reconnection processes.

It should be kept in mind that the analytical models mostly

assume the phenomena to be two-dimensional; namely, every quantity

depends only on x and y coordinates and not on z , and there

is no magnetic field nor fluid velocity in the z direction.

Also, plasma is usually assumed to be incompressible. For the

detailed mathematical treatments involved in the models see an

excellent review paper by Vasyliunas(1975).

82. Sweet-Parker Model

Fig. 4 shows the sKetch of Sweet-Parker model. Elementary

considerations predict that, when two oppositely directed magnetic

fields are pressed together, the plasma is squeezed out from

between the fields, permitting the fields to approach each other.

In the region |y|<2 8 where magnetic field notably changes its

polarity the electric current flows in the z-direction (perpen-

dicular to the paper). This region is called the field reversal

region Parker(1963) considered that in the field reversal reaion
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Fig. 4. Sweet-Parker

reconnection model.

The electric current

flows only in the

thin region |y(<2§ .

Plasma flows into the

region with speed

V and is ejected

with speed VL R J

only the magnetic field diffusion due to finite resistivity

is dominant, so that in this model the field reversal region is

entirely identified with the so-called diffusion region.

In this simple field geometry the plasma inflow velocity V

and the plasma outflow velocity V can readily be estimated

as follows If the magnetic force (JX B) is assumed negligible

in the field reversal region we obtain the outflow velocity V.,

from Bernoulli's law: fv^/2 = PQ - Pb , where f is the mass

density, P is the gas pressure at the origin and P, is the

gas pressure at large distances from the origin. The pressure

2
balance across the field reversal region gives P~ - P. Cz.B ,/2 W.

if V is very small, where B Q is the field strength outside

the field reversal region. These equations lead to V^i^V,

where V, = B /(PL/)1/2 is the Alfven speed. Also in a

steady state the magnetic field must continuously be carried in
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by the plasma inflow of velocity V at the same rate as that

at which the field lines diffuse away due to finite resistivity

''j in the diffusion region. This means from the x-component

of the diffusion equation

v = 1/( MQ§ ) (2.1)

where S is the half-width of the diffusion region. Considering

the mass conservation law of an incompressible plasma gives

VL = V § , we finally obtain

Mo = v/v,c± r"1/2A m
(2.2)

where R = M_LV /^ is the magnetic Reynolds number.

Eqn. (2.2) gives the dimensionless Alfve'n Mach number which

is defined as the plasma inflow velocity divided by the Alfven

speed. This is conventionally regarded as the reconnection rate.

We can readily see that the reconnection rate is strongly dependent

on the magnitude of resistivity. Considering that the magnetic

Reynolds number is usually extremely large in cosmic systems,

we may recognize that the reconnection rate given by Eqn.(2.2)

is too small to account for the solar flare phenomenon. Note

that this result comes from the basic assumption that magnetic

energy is decreased by the finite resistivity only.
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§3. Petschek's Model

ii;Z-Q:-f-l^^-f:rl^E

Fig. 5. The

Petschek mode

calculated by

Vasyliunas.

The solution iq

Y^-s^iz=rZ- shown onlv for

:r^~r---iH£;the convection

region.

Petschek (1964) first recognized that MHD waves would realize

a much faster reconnection rate than that predicted by the

Sweet-Parker model. Fig. 5 shows the Petschek-type configura-

tion that was accurately calculated by Vasyliunas(1975). There

are four standing slow shocks (shown in dotted lines in the

figure) attached to the diffusion region which is now restricted

to a small region in the vicinity of the neutral point.

According to Vasyliunas, the existence of the slow shocks

can be expected from the following consideration. Consider a

problem in ordinary fluid dynamics: collisions of two oppositely

directed jets. If the two jets approach each other at supersonic

speed, no deflection can take place until the flow has been made

subsonic by a shock transition; thus a pair of shocks must exist
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in the flow field. In the reconnection problem the relevant

waves are not sound waves (or fast waves) but slow mode waves:

they are the ones that carry the information about the presence

of the field reversal region. Since the slow wave speed

approaches zero as the propagation direction becomes perpendicular

to the magnetic filed, the plasma flow is supersonic with

respect to the slow wave in any region where Y'H approaches

zero, including in particular the vicinity of the y axis in

the present problem. Thus magnetic reconnection can be regarded

as the collision of two jets of plasma carrying oppositely directed

magnetic fields; in the vicinity of the neutral point they

approach each other at a speed that, no matter how small, is

always supersonic with respect to the MHD slow wave, and hence

their collision is expected to give rise to slow shocks. Since

slow shocks cannot propagate perpendicular to JB, either, they

must remain attached to the diffusion region.

Vasyliunas precisely computed the steady-state Petschek mode

in an incompressible fluid by a perturbation expansion for small

reconnection rates. He gave analytical solutions in the limit

of R -≫ixj for the convection region that corresponds to the

large-scale region surrounding the diffusion region. In the

diffusion region, on the other hand, the results shown in the

previous section are simply assumed to be directly applied.

In order to obtain the entire solution, he postualted that the

size of the diffusion region would adapt to any imposed external

flow and then matched the solution for the convection region to
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the solution for the diffusion region.

Recently, Soward & Priest(1977) independently presented

mathematical solutions for the steady Petschek mode. Fig.6

shows the reconnection rates for the Petschek mode shown by

Priest & Soward(1976). In obtaining the results the same

postulate as above is also introduced. This figure shows the

relations between the Alfven Mach number at the distance Lg ,

the characteristic scale length of the whole region to be

considered, (denoted by M which may be identified with the

reconnection rate) and the same quantity just outside the diffu-

sion region (denoted by M. ) on the y axes. In the figure

the relation between M. and M is shown using R (= /tnLeVA/'77)

as a parameter. It should be noted that for a given R anyme

0.3

Me

0.2

0.15

0.1

0.05

0.0
0.2 0.4 0.6 0.8 1.0

'°6
106

10'
108

Fig. 6 Relation between the

Alfven Mach number M at the
e

distance L and the same

quantity M. just outside the

diffusion region, caluculated by

Soward and Priest.
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reconnection rate is considered to be possible from zero to an

upper limit. This conclusion certainly comes from the basic

postulate prescribed in order to match the convection region to

the diffusion region.

§4. Similarity Models

Sonnerup(1970) and Yeh & Axford(1970) incorpolated Petschek's

basic idea and developed the similarity models. These authors

approximate for simplicity that the solutions should have a

property of similarity and obtained exact solutions for incom-

pressible fluids with zero resistivity- Yeh & Axford obtained

an entire family of solutions of MHD equations for the reconnec-

tion problem, and Sonnerup independently obtained one solution

that is the sole nonsingular member of the family. But, the

singular similarity models must be discarded as extraneous

solutions of the mathematical equations that cannot be realized

in the physical world (Vasyliunas 1975).

Fig.7 shows the nonsingular similarity model proposed by

Sonnerup. As seen in the figure, there appear four outer

discontinuities outside the slow shocks. These outer disconti-

nuities in fact appear to be physically unrealistic. Sonnerup

(1973) concluded that "one would not expect the outer disconti-

nuities actually to be present. Rather the outer discontinuities

should be viewed as a mathematical model, lumping all of the
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Fig. 7. Nonsingular similarity model proposed by Sonnerup.

The suggested corners of Sonnerup at the edges of the system

are also shown.

MHD interactions in front of the Petschek waves into one line."

Also noted is the special boundary condition imposed at the

edges of the system: the suggested corners of Sonnerup, shown in

Fig. 7 , is considered as bounding the system with impermeable

walls on the sides. It seems doubtful whether such a boundary

condition can be provided in actual physical systems, but

Sonnerup's model may be an illustrative solution of the governing

equations that serves to demonstrate another possible configuratior

of fash recnnnentinn different from the Petschek mode.
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§5. Discussion

The theoretical studies have taken many serious assumptions

in order to make the problem analytically tractable but have

revealed several fundamental physical mechanisms that would be

crucial in realizing rapid large-scale conversion of magnetic

energy into plasma energy due to field line reconnection.

Especially, Petschek's basic idea that standing slow shocks

should be important for the present problem may resolve the

question raised by Parker. It is now well recognized that the

Petschek mode is the only workable model for the fast reconnec-

tion process (Priest & Soward 1976).

It seems instructive to show some major limitations involved

in the analytical treatments for the present two-dimensional model.

These may be summarized as follows.

(1) Fluid compressibility

Most analytical treatments assume that the plasma is in-

compressible. However, it should be noted that the whole region

under consideration consists of the two characteristic regions,

namely the field reversal region and the external flow region.

Since magnetic field is rather weak in the field reversal region

but, on the other hand, sufficiently strong in the external

region, the plasmas existing in the system must range from low-@

to high-B plasmas. Hence, the above assumption is questionable

in the real physical system. It is quite important in under-

standing the fast-reconnection process to study a compressible
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plasma, especially so in analyzing the shock structure.

(2) Matching between the convection region and the diffusion

region

The analytical studies mostly concentrated on seeking the

fast-reconnection solutions in the convection region where the

resistivity effect was assumed to be negligible. In order to

construct the entire solution, they intended to match the obtained

convection region to the diffusion region. However, the

detailed structure of the diffusion region which should be

matched to the external flow has not as yet been shown in a

convincing manner (Vasyliunas 19 75) .

(3) Temporal dynamics of fast reconnection

The suggested models of fast reconnection were concerned

with steady-state configurations. There may hence arise a

most fundamental question whether or not the Petschek mode can

eventually be established in actual plasma systems. If possible,

one may then ask what is the ultimate cause of realizing the

Petschek mode and what physical factors controll the reconnection

rate. These essential questions could not be answered in any

convincing manner without examining the temporal dynamics of

fast reconnection by solving the governing equations as an

initial-boundary problem.

There remain many fundamental problems still unsolved be-

cause of mathematical difficulties, since the reconnection process

involves strong nonlinear hydromagnetic effects. Without doubt,

computer experiment may provide a useful means for such a problem.
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The following chapters show our recent computer experiments

that deal with the temporal dynamics of fast reconnection in

order to elucidate fundamental problems of the Petschek mode.
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Chapter 3

MAGNETIC FIELD-LINE RECONNECTION BY LOCALIZED

ENHANCEMENT OF RESISTIVITY;

EVOLUTION IN A COMPRESSIBLE MHD FLUID*

§1. Introduction

The present chapter studies by computer experiment the

temporal dynamics of field-line reconnection in a conducting

fluid. As an initial static equilibrium we consider a

compressible plasma permeated by an antiparallel magnetic

field. Suppose a situation such that the effective resis-

tivity is somehow suddenly enhanced locally in the current

sheet because of some micro-instabilities. The only and the

most fundamental assumption is, as will be discussed later,

that such an indentation of anomalous resistivity is maintained

with the growth of merging process, and then the full set of

MHD (magnetohydrodynamic) equations is numerically solved by

computer. Both the time and spatial domains for computation

are taken so large that the hydromagnetic nonlinear effects

are fully taken into account. Field-line reconnection begins

in the above situation in the initial stage, and then the plasma

* See Uaai and Tsuda (1977)
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bulk flow grows as a result of the reconnection. The strong

hydromagnetic nonlinear effects of the system can bring about

the build-up of the X-type field configuration occupying an

extended region, as well as the global flow pattern with

sufficiently large outflow and inflow velocites. The rapid

release of magnetic energy into kinetic and thermal energies

occurrs and then the remarkable ejection of enhanced plasma

energy through the field reversal region follows. The required

configuration can spontaneously be set up without any specially

imposed boundary condition, so that the progress of reconnection

is strongly influenced by the local condition near a magnetic

neutral point. This is quite different from the analytical

results for the steady state process which state that the

boundary conditions are the major influence (e.g., Vasyliunas

1975)

§2. Governing Equations

The MHD equations are written in the form

DS/Dt = - f 7-u,

f Du/Dt = - ＼7P + J X B ,

3B/St - ^X(UXJB) = -VX C>/£),

/ ― x
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P De/Dt = -P^'Jti + °],J '

V-B = 0,

where we have employed the usual convention, D/Dt = 3/9 t +

n-U , and assumed the Ohm's law, E + (u xB) = V)J . Here

e is the internal energy per unit mass and 7] is the electrical

resistivity. We assume the gas law

P = ( X - 1) f e

where T is the specific heat ratio. Since, from (3.1),

9(7fJB)/9t = 0, the solenoidal condition is necessary only

at the start of computation.

Next, we perform scaling on the variables. In selecting

the characteristic quantities for scaling, we employ those based

on the initial data that will be given in §3. Distances x,

etc., are normalized by L , the perpendicular half-width of

the current sheet; magnetic filed J3,, mass density f and

1/2
fluid velocity ^ by BQ , fQ and VA (= BQ/{/tQ f>Q)

the Alfven speed), respectively, each pertaining to the respective

quantity outside the current sheet. Time t is thus normalized

by L/V , the time required for an Alfven wave to cross the

half-width of the current sheet. Accordingly, energy density
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is normalized by Bq/(2KJ / electric field by bqva' current

density by B_/(yU0L), and so forth. Hereafter, unless other-

wise specified, all the variables that appear are understood

to have been normalized in this way Also, the electrical

resistivity ^ that depends on space variables in our model

is normalized by V~ , the ambient resistivity at distances

from the co-ordinate origin that will be the neutral point of

magnetic field.

In the present experiment, we assume that the phenomenon

we study is two―dimensional; namely, there is no magnetic field

nor fluid velocity in the z direction and every quantity

depends on x and y co-ordinats and not on z . Electric

current flows in the z direction onlv. The numerical scheme

adopted here requires a further transformation of (3.1) to a

conservation form. After some manipulation, the set of

ecruations to be solved can be witten as

Here

u =

3U/3t + 3F(U)/3x +9G(U)/3y = 0

?

fux

Pu
i y

B
x

Pu
J x

35 -
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(3.2)

f u
■> y

fu u -B B
J x y x y

J>uJ+(P+b2-B2)/2

u B -u B +R~1y) J
y x x y m ( f



where

＼:i % Wx-C vj °

I ＼
G /

ET = P/(r-l)+ j>(u* + u£) + (B^ + B*),

F= rPux/(r-D+ fux(u2+uJ)+2(uxB2-uYBxBy-R;1'7 JBy) ,

g= rpu /(r-u+ fu (ux+u2)+2(u bx-uxbxby+r;1'Yjbx)

and J = a B /a x - 3B /3y .

Also, R is the magnetic Reynolds number defined as

R
m /Val/1o ･

(3.2')

(3.3)

The sixth component of (3.2) corresponds to the energy conserva-

tion equation. We may note there that E is the total energy

(normalized by B /2 M _ ) and that F and G are the total

energy-flux densities (normalized by V B^/2A( ). The Ohm's

law we have employed gives the electric field

E = E = -(u B - u B ) + R
1l7j

z x y y x ml
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S3. Numerical Experiment

We first recapitulate the fundamental assumptions of our

model, and then describe our somewhat simplified initial-

boundary conditions, together with the numerical scheme adopted

3.1. Assumptions of our model

An antiparallel magnetic field, or a current sheet, is

supposed to exist in an initial equilibrium. if the condi-

tions are favourable, a number of micro-instabilities can

eventually grow in the current sheet, giving rise to a con-

siderable increase of resistivity due to their turbulent effects

(Coppi and Friedland 1971). The time scales of micro-

instabilities are in general much shorter than macroscopic

times, and thus an anomalous resistivity would be established

almost instantaneously- In addition, the actual magnetic field

configuration in an equilibrium state would not be strictly one-

dimensional, so that a resistivity increase would, in actual

systems, be confined to the region where the conditions are most

satisfactory. We hence suppose a situation such that the

resistivity is suddenly enhanced locally in the current sheet.

Let some point in the middle of the current sheet be the

origin 0 ; this will be the magnetic neutral point (see Fig.

8 ). We then assume the enhanced resistivity ^7 in the

simple dimensionless form given by
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X

Fig. 8. Actual region for computation with 57X57 mesh

points. Numerical solutions are required for the domain

of size 2.0X2.0, enclosed by thick lines. Origin 0

is the magnetic neutral point at which there is an enhance-

ment of anomalous resistivity over the circular region

r^l. The electric current Jn that forms the antiparallel

magnetic field Bn points vertically into the plane of the

figure. At boundaries 7~＼ (midplane of the current sheet

with null magnetic field) and TT, , symmetry conditions hold.

Boundaries ~f~Tand J~Z are free boundaries.
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= 1

where r = (x

3

+ v2

1

1/2

(2r3 - 3kr2 + s for r ≪i k ,

for r^k,

I

J

is the distance from the origin.

(3.5)

This means that ^ smoothly increases with decreasing r and

becomes S times larger at the origin than in the background.

The half-width of this enhanced resistivity is r = 0.5 for

k = 1 and S^>1 . It is assumed in our model that throughout

our computation the resistivity ^ is maintained in the form

of (3.5) .

3.2. Initial-boundary conditions

The antiparallel magnetic field
^Bn
= (B ,, B _) is

initially assumed as

Bx0(x, y) = y for (y| 4 1 ; BxQ = ±1 for y| + l ;"

[(3.6)

ByQ(x, y) - 0.
)

Therefore, the current density J- = J _ = -1 for |y|< 1 and

J~ = 0 for |y|>l initially. The equilibrium state requires

that the initial gas pressure P be consistent with the

balance condition
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po(x, y) = i + Po - b2xQ ,

where (3. is, in our dimensionless form, the initial gas

pressure (i.e., the ratio of the kinetic pressure to the

magnetic pressure) outside the current sheet. The mass

density y_ and the flow velocity u^ = (u n, u _) are

initially assumed to be such that

(3.7)

<fQ(x, y) = 1 , uxQ(x, y) = 0 , u Q(x, y) = 0. (3.8)

The symmetry of our present problem allows us to restrict

the solution to the first quadrant only. In Fig. 8 the

boundaries are labelled by T~^ (i=l,2,3,4). On T^ and J^

the symmetry condition is imposed, but |_ and ＼. are free

boundaries: the values on ~J~7and J~7 are simply extrapolated

from the values at the nearest points immediately inside. More

exactly, we assume

5// 9 x = 9 u / 3 x = a u / 9x= 9B /9x =3P/3x = 0
x Y Y

on T~^ , and

on r3

3?/3 y = 9Ux/3 y

7 B
x

= 3U/3Y= 3B/ay 5>P/P y = 0

on TT. and B on /T are given by the

solenoidal condition This means that the plasma can flow
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freely across jT and j ' in accordance with the states of

the inner region.

3.3. Numeriacl scheme

The conservation form of the MHD equations, for the case

of two Cartesian variables x and y , is given in (3.2) .

Let Ax and ^y denote the mesh sizes in the x and y

directions respectively and 4t denote the time step. The

two-step Lax-Wendroff scheme, which is adopted in our computa-

tion, first provides the auxiliary variables at time t = (2m

+ 1) At with the equation

2m+l -L ,r72m ,
TT2m rT2m TT2m N-2j,i =T(J2j+i,i +J2j-i,i +≪Hj,i+i +-Hj,(-i)

,~2m ~2m .
(£j,i+l " ^j^-l5'

(where the first subscript is for space variable x and the

second for y ), and then gives the physical variables at time

t = (2m + 2) At by the equation

T.2m+2
_ n2m _ At ,£2m+l _ ~2m+l . _

At
~2m+l _p2m+l >

However, in the present case the fourth and the fifth com-

ponents of (3.2) contain diffusion terms due to R t7j .

natural arrangement is to ignore these diffusion terms in

constructing the auxiliary variables at time t , and only
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bring them in at the second step using (R

physical variables are recomputed at time t

Y[ j) 2m when the

2m+2
This rule

is not observed in computing (3.2') where terms with "7 are

retained throughout the first and second steps.

The above scheme will be numerically stable if it satisfies

|u| + c) At/A < 1/2
1/2

for the hyperbolic terms (here A = Ax = Ay , and c and

u are, respectively, the local wave speed and the fluid

velocity), and

Rm1S(2At)/(2A)2 < 1/4 (cf. max(R
1

jrl m
r] )=R;1s)

for the parabolic terms (where the resistivity ^J is given

by (3.5)). The numerical errors were checked by calculations

with two different time steps, At = 0.003 and At = 0.0045 .

We then found that the results of the two agreed at all times

to within a small fraction of 0.1 % even after several

hundred time steps. In addition, we may use the energy con-

servation law for checking errors. The details will be

argued in §5; here we simply note that the energy conservation

was correct to within 2-3 % after a few thousand time steps.
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§4. Evolutionary Process of Field-Line Reconnection

In analytical studies of the steady states of reconnection,

the domain of interest is divided into the diffusion region

where lines of force decouple from the flow and the convection

region where the flow is frozen in the magnetic field. This

concept is also valid in the present time-dependent process.

The present experiment, as mentioned above, initially supposes

a localized enhancement of resistivity and no plasma flow, so

that the start of the evolutionary process is triggered by

field-line reconnection due to diffusion in the neighborhood

of the magnetic neutral point. The plasma bulk flow will

then arise in accordance with, the change of the field configura-

tion and a global flow pattern will be set Up. The evolutionary

process now at issue may thus be characterized by two stages:

the initial diffusive stage and the subsequent hydromagnetic

stage. The most significant features of the hydromagnetic

stage are the strong nonlinear interactions between the

diffusing field-lines near the neutral point and the convection

of them in the adjacent region. With this in mind, the

numerical results will be shown and discussed.

All the numerical results shown below are for the typical

case At = 0.0045 , T= 2 , $Q = 0.1 , Rm = 1000 , S = 100

and k = 1.0 . By varying the values of S and k , we see

that the results do not change qualitatively. Note that be-
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cause of the axisymmetry of the present problem the co-ordinate

origin remains a magnetic neutral point and a stagnation point

of the flow in the course of the evolutionary process.

4.1. Diffusive stage

Prior to the very complex nonlinear effects in the

hydromagnetic stage, we have the mechanism of initiating field-

line reconnection by the localized enhancement of resistivity.

We expect, from the consideration of magnetic-field diffusion,

that the slippage velocity of the lines of force will be

faster where the resistivity is larger (Stern 1966), so that

LEGEND TO Fig. 9

Fig. 9. Configurations in the
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negligibly small. (a)
Computer

A rawn mannpf if ■Fi'p>1rlrnnf imirsf inn . T.imac
a t-q rrinfmir & =

constant (for araohical
purpose onlv, the

vector potntial

^ w.i.4.^
, unc vet-tor potential

A^=(0, 0, A) is obtained by numerically
integrating b= VxA )

and shown with ocontour
interval of 0.05. (b)

Current density
distribution. Lines are contour

J=constant and shown with
contour interval of

0.16 (this figure is shown
only for the

narrow reainn pnnlnseri
bv rlntfpri 1 inps si'nnp

in fhp T-pmainin
_-
~s ^^^.^^kj. iiues since in the remaining

recrion the
Quantity of interest

chanaes verv little:
similar

remarks apply to Figs. 12, 13 (a) and ^ (fa)
,f .. , _ ,_ ' ' ~11U iJw aiso). The dot

,
!!
,!"

"°ttom 1S thS
^Si≪°" °^ both the ,_ic

neutral point and the stagnation
point of the fluid

un]p,e ,.. . " * t'u-l"L Ui tne riuid. Hereafter

appe ar

TSe SPeClfiSd' a" the
SimilSr fi9UrSS th≪ ≪"

appear are shown in the same way.

― 44 ―



y

200

1-80

1-60

1 40

1 20

100

0-80

0-60

040

0-20

000

000 0-20 0-40 0-60 0-80 100 1 20 140 1-60 180

x

1 20

100

0-80

, 060

040

0-20

000

Fig. 9

2 00

4

0-27
II- 7S

000 0-20 0-40 0-60 0-80

X

For legend see page 44

45 ―

100 1 20 1 40

(a)

(b)



the localized enhancement of resistivity given by (3.5) will

produce an apex in the lines of force in the region of enhanced

resistivity and thus immediately initiate the field-line

reconnection. Certainly, a rippling mode due to resistive

instability may simultaneously be involved.

Figs. 9(a) and (b) show the field configuration and the

contour lines of current density, respectively, at time t =

0.9 when the plasma flow velocity is still negligibly small;

hence this time corresponds to the diffusive stage. We can

see that the reconnection in fact builds up, although the

resulting formation of an X-type field configuration at this

stage is rather local in the region of enhanced resistivity.

Also, we can see from Fig. 9(b) that the current density

grows along the region where the resistivity increases. This

is obviously owing to the field-line kink resulting from the

bending of field lines in the local region of enhanced

resistivity. No significant conversion mechanism of magnetic

energy beyond the Joule dissipation is involved at this stage

in the absence of plasma bulk flow.

4.2. Hydromagnetic stage

The hydromagnetic stage arises when the plasma flow has

grown sufficiently large and strongly modifies the field con-

figuration. On the basis of the complex numerical results,

we show below the temporal dynamics of field-line reconnection
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indicates the boundary of the diffusion region given
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by D <■Iaxj/dClvi j)I ) = 10.

in this stage.

Fig . 10 is the computer-drawn configuration of magnetic

field at time t = 14.4 . Note that there are two different

classes of field lines bounded by the separatrix; namely, the

field lines prior to reconnection and those post reconnection.

The X-type field configuration, which formed rather locally

near the neutral point in the initial time range, grows spatially

because of the strong hydromagnetic effects. It should be



remarked that the separatrix stretches out almost straight.

Figs. 11(a) and (b) show the temporal behaviour of flow

vectors. We can first confirm from (a) that the fluid is

in fact accelerated in bulk because of the initial field-

line reconnection. In this figure a vortex of fluid is formed

near the neutral point where the magnetic field is very weak.

This seems to be a reaction to the initial abrupt reconnection

by the indentation of resistivity, which disappears with time,

as shown by Fig. 11(b). For a possible interpretation of

this phenomenon, see §6. Fig. 11(b) shows that, if the

anomalous resistivity is sustained, then the plasma bulk flow

further grows because of the hydromagnetic effects, and we

can see that the global flow pattern is set up over the whole

region. We may remark that the plasma flow out of the region

rather than into the region grows in the initial time range,

and that the incoming flow is eventuallv induced to a hiah

LEGEND TO Fig. 11

Fig. 11.

t=14.4.

Temporal variations of flow pattern. (a) t=3.6; (b)

The magnitude of the velocity at each rear end of arrows

is measured by the distance from there to the center of the

associated triangle. Length of 0.07 by the scale of the co-

ordinate axes corresponds to 0.1 in the magnitude of normalized

velocity.
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Fig. 12. Contour lines showing the current density

distrihnUnn fl-h +■= 14.4.

speed to compensate for the rapidly growing outflow.

Fig. 12 shows the contour lines of current density at

time t = 14.4 . At t = 0 , the current density J = -1

in [y(<l and =0 in |y|>l . The figure clearly shows

how the initial current sheet collapses as the reconnection

proceeds. At early times, such as t = 3.6 , we see that

there exist two regions of enhanced currents below and above

the separatrix. One near (x, y) = (1.0, 0) is obviously

due to the accumulation of the reconnected field lines, since

up to that time diffusion from within rather than outward

convection of field lines has been the dominant process there

Such an accumulation will be shown more quantitatively shortly

(see Fig. 14). The other region of enhanced current densit

extends along the field lines from the vicinity of (x, y) =
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(0, 0.8). This seems due to the fast wave that can be excited

by the bending of field lines owing to the enhanced resistivity

and which propagates along the magnetic field, since there

exists a sufficiently strong zero-order magnetic field to allow

for the growth of MHD waves. From Fig. 12, however, it can

be seen that the nearly current-free region has broadened

with time in the shape of a down-coming wedge in accordance

with the build-up of the X-type field configuration and the

growth of the inflow. Note that the uppermost contour line

corresponds to a positive value of 0.05, which means the

current flows in the inverse direction there.

Figs. 13(a) and (b) show the temporal behaviour of mass

density distribution. At t = 0 the distribution of mass

density is set to P = 1 over the whole region. From 13(a),

we can observe that a thin transition region gradually appears,

within which the mass density considerably changes, and extends

with time along the field lines from the vicinity of (x, y) =

(0, 0.8). Note that at the front tip of the region [i.e.,

near (x, y) = (0, 0.65) in the case of Fig. 13(a)] the mass

density is notably rarefied. This is obviously because, as

may be seen in Fig. 11(a), at this point the plasma flow

turns its direction to the positive x direction to eject

the fluid along this thin region. It can further be observed

from Fig. 13(b) that the change of mass density becomes steeper

and somewhat oscillatory in the y direction and that the

front of the long thin transition region shifts towards the
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Fig. 14. Profiles of B for different times along the

field reversal region in accordance with the rapidly growing

inflow.

4.3. Further remarks

We now examine more quantitatively the important features

of the evolutionary process from other angles.

Figs. 14 and 15 show respectively the variation with x

of the normal magnetic field component B and the outflow

velocity u at different times. The reconnected field lines

are initially accumulated within the region of enhanced resis-

tivity, since, as already mentioned, the reconnection is diffusively
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A
x-axis.

initiated before the outflow velocity grows. Note that the

current density tends to decrease where B increases and

increases where B decreases. Hence such an accumulation
y

of the reconnected field lines obviously tends to check the

field diffusion near the neutral point and push the plasma by

the JXB force. This will result in the excitation of

fast-mode MHD waves due to B that carry the plasma away

from the neutral point. These tendencies are more and more

apparent with the passage of time.

Figs. 16 and 17 show respectively the variation with

y of the inflow velocity u and the magnetic field component

B at different times. In the initial time range, Bx

decreases near the neutral point owing to the diffusion of
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y

for different times along the

field lines. The inflow velocity, however, grows in accordance

with the growing outflow mentioned previously, and B in

turn increases near the neutral point owing to the convection

of field lines. Such a convection of field lines evidently

reinforces the current density near the neutral point that

has been initially depressed (see Fig. 18) and thus furthers

the magnetic field diffusion.

In Fig. 18, we show how the mass density j> , the gas

pressure P and the current density J (muptiplied by -1 in

the figure) vary with time at the magnetic neutral point.

This figure clearly indicates the following process in the

immediate vicinity of the X-line. The mass density decreases
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because of the fluid escape from the vicinity of the neutral

point. The gas pressure initially increases due to Ohmic

dissipation near the neutral point and then decreases

because of the fluid expansion there. This decrease of gas

pressure near the neutral point can then trigger the plasma

flow towards the field reversal region. The current density

initially decreases owing to the diffusion of magnetic field

lines by the local enhancement of resistivity and then increases

owing to the convection and accretion of field lines by the

growing inflow velocity.

The hydromagnetic nonlinear effects promote the growth

of field-line reconnection, which, as will be shown in the
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next section, involves a remarkable release of magnetic energy.

In particular, the interdependence between the diffusion of

field lines near the neutral point and the convection of field

lines in the surrounding region seems significant in the above

evolutionary process. Hence, it may be worthwhile to see

more quantitatively the distinction between the diffusion

region and the convection region. For this purpose, we may

simply examine the values of D~|u.XB/(Rm ^.J)! at some points

and consider that D<X1 holds in the diffusion region and

that D ^ 1 holds in the convection region. The calculated

results at time t = 14.4 are, for example, as follows.

Along the y axis, D~l/16 at (x, y) = (0, 0.2) and 3:46

at (0, 1.0); and along the x axis, D~l/3 at (x, y) =
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(0.4, 0) and ~ 49 at (1.0, 0). Also, the boundary of the

diffusion region given by D = 10 is indicated in Fig. 10.

We thus wee that, as the plasma flow grows, the diffusion

region virtually "shrinks" to a smaller region in the

neighbourhood of the neutral point, an interesting effect

due to the interactions between the flow and the field.

§5. Magnetic Energy Conversion

Another significant aspect of the reconnection problem,

in addition to the question of field-line topology, is the

magnetic energy conversion. In the analyses of steady plasma

flows, the magnetic field-line reconnection rate, which is

proportional to the energy conversion rate, is measured by the

magnitude of the inflow velocity of plasma at distances far

from the field reversal region on the basis of the Povnting

flux. In the present time-dependent process, however, the

magnetic energy content in the region of numerical solution

will vary with time because of the temporal variations of the

field configuration as well as the Poynting fluxes across the

boundaries. Hence, we will quantitativelv examine the temporal

behavior of each form of energy and directly see the process

of energy conversion using the energy conservation law described

by the sixth component of (3.2).

The Poynting vector theorem in our dimensionless form
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becomes

9
3t
B2 + 2 V≪(EX B) + 2E ･J = 0

Here the electric eneray is neglected. Note that T.-J indicates

the exchange of energy between the magnetic field and the

plasma and that EXB indicates the magnetic energy flow.

Remembering the elctric field E given by (3.4), we can

readily see that the second term on the left-hand side of the

above equation is none other than the third terms of F and

G , on the right-hand side of (3.2') . As expected, Jj/jJ.

does not appear explicitly in the energy equation, since the

change of magnetic energy due to this quantity should be

compensated by that of other forms of energy. It may be

noted that the first, the second and the third terms of ET ,

F and G , on the right-hand side of (3.2'), correspond to

the convection of the thermal energy E , the kinetic energy

ER and the magnetic energy E , respectively.

Let S denote the whole region of numerical solution

(see Fig. 8). Integrating the energy equation over this

region, we obtain

_L.f E_ dS = - F dy - Gdx

3tJs
k k

― 59 ―
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)

Here we have used the fact that thprp is no enercrv flow across

] ' and | ' because of the axisyiranetry. The first term on

the right-hand side of (3.9) gives the temporal energy flow

into the region across boundary T"/i

integration of this term with respect

The results of numerical

to y at different

times are shown in Fig. 19 separately for each form of energy,

i.e. thermal (plasma) energy Ep , magnetic energy EM and

kinetic (flow) energy ER . Note that the negative value

indicates the energy flow out of the region. From this

figure, we see that each form of energy, especially the thermal
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energy, flows out of the region in accordance with the growth

of plasma outflow at ＼. (see Fig. 15). The second term on

the right-hand side of (3.9) gives the energy flow across

boundary | -. . Its temporal variations are shown also in

Fig. 19 separately for each form of energy We can see from

this figure that the magnetic energy rapidly flows into the

region across boundary | , after the plasma inflow grows

(see Fig. 16). Note here that, since the p-ratio is small

near this boundary, the inflow of thermal energy is much

smaller. We may consider that the energy inflow across

boundary r. is virtually uniform, since, as seen from Fig. 11,

the plasma flows in almost uniformly at distances far from

the field reversal region.

Further integration of (3.9) with respect to t gives

where

EST

EST(t) - EST(0) = - I ( F dy + G dx ) dt, (3.10)
Jo )＼i )r5

EST
(t) =

Js
(t) dS .

(t) indicates the energy content at time t in the region.

which is shown in Fig. 20 for each form of energy The

thermal energy content initially increases by a small amount

due to Ohmic dissipation and then notably decreases because

of its rapid escape across boundary r4 The magnetic energy
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content becomes remarkably reduced in spite of the rapidly

increasing flow of this energy into the region. This is

obviously because, through the convection and reconnection

of field lines, the field configuration is transformed and the

field intensity decreases. Remember that the net amount of

magnetic energy released in the region during a given interval

of time is the amount of decrease of the magnetic energy

content plus the total amount of the magnetic energy injected

into the region over this time interval. These results show

therefore that, in the present evolutionary process, the

magnetic energy is quite efficiently released into kinetic

and thermal energies through field-line reconnection and that

the enhanced energy of the plasma is rapidly ejected along
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the length of the field reversal region, i.e. the x axis.

Equation (3.10) states that the total energy content

increases by the total amount of energy injected into the

region. The numerical errors may be examined on the basis

of this fact. We have numerically calculated each term of

(3.10) and examined the energy conservation relations by

the percentage

100 X

EST
(t) +
: k F dy + ＼ G dx ) dt - E

ST
(0)

･

: J
r.
F dy +

t
G dx ) dt

It is then found that the energy conservation was correct to

within 2-3 % throughout the present computation.

§6. Concluding Remarks

We now give physical interpretations to the two interesting

facets of the evolutionary process observed in the numerical

experiment: first, the mechanism by which the MHD flow, initially

quiescent, is induced and, second, the generation and

propagation of MHD waves near the neutral point.

The peculiar two-layered flow toward the positive x

direction observed near (x, y) = (0.3, 0.7) and (1.0, 0.0)
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of Fig. 11(a) could occur as follows. In the diffusive stage

( t£ 1 ) there is a local pressure rise (and, hence, a

temperature rise) at the neutral point due to the Joule

dissipation (see Fig. 18) which allows the fluid to expand

away from the neutral point

force (in the form of JB

This, together with the JXB

, with B produced by reconnec-

tion) , drives the fluid to the right at x>1.0 on the x

axis. See the confluence from above and below at about

(x, y) = (0.0, 0.7) that gives rise to the rightward motion

of the other flow- The flow pointing downward to (x, y) =

(0.0, 0.7) seems to be due to the JXB force (a downward

force) where J is the current enhanced by the erosion

of magnetic field. Note that Fig. 17 in fact indicate this

erosion due to magnetic field diffusion or in other words

the local increase of magnetic field gradient. The flow

pointing upward to (x, y) = (0.0, 0.7) can be driven not

only by the already mentioned expansion force due to the

Joule dissipation at time t^l but also by the local decrease

of magnetic field gradient near the neutral point (see Fig. 17).

In the present evolutionary process MHD waves must have

played crucial roles. For instance, the fast wave propagat-

ing along the magnetic field must have been excited by the

field-line kink due to the locally enhanced resistivity, to

form the extended X-type field configuration, and the fast

mode expansion wave propagating upward must have been excited

by the erosion of magnetic field due to the enhanced resis-
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tivity to allow for the persistent inflow of plasmas. Also,

the rapidly growing inflow observed in Fig. 11 (b) may suggest

the appearance of a magnetic merging mechanism shch as the

slow mode compression wave that propagates upward from the

field reversal region, and is also convected toward it by

the plasma inflow (see, for instnace, Vasyliunas 1975). The

slow wave, if any, would form a standing shock structure in

the steady state, although it is difficult, at least at the

present stage, to confirm unambiguously its existence from

the compressional wavy structures seen in Figs. 13(a) and (b).

This will be discussed in the next chapter.

In summary, the present numerical experiment has revealed

many interesting and important features of reconnection processes.

The compressible MHD fluid model, simple as it is, is a

useful tool to study the realistic aspects not accessible to

analytical methods. All the results, in contrast to the

analytical results of the steady state process, show that the

evolutionary process of field-line reconnection can be strongly

influenced by the local conditions near a magnetic neutral

point.
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§1. Introduction

QUASI-STEADY PROCESS*

Chapter 4

In the previous fast-reconnection models, most attention

has been focused on the convection region where the field

lines are frozen into the plasma. Surrounded by this convec-

tion region, there is the diffusion region where the field

lines slip through the plasma. In recent years the importance

of matching the variables between these two regions has been

stressed (Priest and Cowley 1975), and more sophisticated

treatments have been given (Priest 197 3; Roberts and Priest

1975 ); but there is as yet no completely satisfactory method

of matching (Vasyliunas 1975). There remain many interesting

problems about the details of the self-consistent configuration

of fast reconnection in compressible plasmas, and, more

essentially, how the reconnection process can eventually be

established and maintained in the system. The purpose of

this chapter is to study these problems quantitatively by

* See Tsuda and Ugai (1977)
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means of numerical experiment.

It has already been shown in the foregoing chapter that,

if a sudden local increase in the electrical resistivity

occurs in a current sheet, then the reconnection process

simultaneously takes place. This results in the formation

of an X-type magnetic field configuration involving the global

plasma flow. In this chapter it is shown that, as time

passes, the evolution is checked and a quasi-steady configura-

tion is finally established. To cover this time range, however,

some modification of the numerical scheme is mandatory as

will be described in §2. The present reconnection process

provides a large-scale mechanism of releasing magnetic energy

into plasma energy without any external cause taken into accourit

and, therefore, may be regarded as a gross instability in

which the current-sheet system is involved by itself. (See

the emerging flux model of the solar flare phenomenon (

Heyvaerts, Priest and Rust 1977).)

The spatial domain of interest is usually divided into

the diffusion region and the convection region; the latter

may further be divided into the field reversal region where

the field and flow properties notably change in both direction

and magnitude and the external region where they change only

slightly (cf. Fig. 24(a) ). In the diffusion region, the

magnetic field lines slip through the plasma and bend towards

the magnetic neutral point owing to the locally enhanced

resistivity (see chapter 3), which results in an increase of

― 67 ―



magnetic tension in the system; in the field reversal region,

the plasma is accelerated outwards by the magnetic tension

and the outflow velocity grows to relax the magnetic stress;

in the external region, the magnetized plasma is sucked into

the inner region and is accelerated to compensate for the

plasma ejection from the system. The quasi-steady reconnec-

tion process should proceed in a self-consistent way such that

the effects in each region counterbalance and accommodate

themselves to those in the other regions. Here the term

"quasi-steady" is used in the sense that the overall structures

of field and flow patterns have ceased changing with time,

except for minor fluctuations, and become more or less stabilized.

In this chapter we shall study the numerical solution of

the quai-steady reconnection and quantitatively discuss the

field and flow configurations in connection with the analytical

results for steady reconnection. Above all, it will be

remarked that the MHD properties across the boundary of the

field reversal region can be characterized by a slow mode

compression wave, and those in the external region by a

fast mode expansion wave, so that the present quasi-steady

configuration that has been set up from an antiparallel magnetic

field will be found to be similar to that proposed by Petschek

(1964) (cf. Vasyliunas 1975).

68 ―



^2. Numerical Experiment

The numerical experiment will now be briefly described.

All the basic equations, notations and numerical techniques are

the same as in chapter 3 except that a viscosity term must

be added to the two-step Lax-Wendroff scheme in the way shown

below to carry out numerical computation over a time range

beyond that of chapter 3. Readers are referred to §3 of

chapter 3 for details other than this modification.

For smooth flows, the two-step Lax-Wendroff method,

adopted in the computation of chapter 3, gives excellent

results; however, for some problems, numerical instabilities

show up in regions of rapid change and quickly swamp the

entire solution, unless a viscosity term is used (Richtmyer

and Morton 1967). In the present problem we find that the

computational scheme of chapter 3 suddenly meets a numerical

instability at about time t=16.5 , when, as shown later, the

plasma flow has grown so remarkably and rapidly changes across

the field reversal region. Let us describe below the remedy

for such an instability by introducing a viscosity term; for

details the readers are referred to Richtmyer and Morton (1967).

As already shown, Eq.(3.1) can be transformed to the

conservation form

au/?t + 3F(u)/&x + 3jG(u)/3y = o
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in the present two-dimensional case (see Eq.(3.2) of chapter 3)

The Lax-Wendroff scheme consists of two procedures: first, the

auxiliary variables are provided at time t = (2ro + 1) At

( At denotes the time step); second, the physical variables

are computed at t = (2m + 2) At . The viscosity term adopted

here takes the form

[AOx(QxAOx3i) + Aoy(QyAoyU)]'
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At

2&

where, for any f(x, y) , 2 AOxf(x, y) = f (x +A, y) - f(x-A,

y) , and similarly for /＼Q ( A ( = Ax = Ay ) is the mesh size)

Here Q and Q are given by
x y

<Qx>j +l,il = KhVj+2,1 - (ux>j,A| '

(Vi,l+l =*|(Vj.A+2 - (Vj,iM '

where X. is the viscosity coefficient. This viscosity term,

with U interpreted as U ( n = 2m ), is simply added to the

right-hand side of the equation at the second step when the

physical variables are computed.

With this modified numerical scheme, we find that the

calculations are indeed stable for sufficiently large X .

Note that the viscosity term is chosen in such a way that it

gives the dissipative effect desired for numerical stability



when the spatial changes of JJ_ are very large, but it is

negligible when they are small; in the present case, we find

by a number of computations that for smaller X. the flow

properties change more steeply across the field reversal region

but involve rather more oscillations (when and where changes

in flow properties are small , these results are of course

almost the same). It should perhaps be pointed out that the

dissipation does not represent any loss of energy or other

conserved quantities (Richtmyer and Morton 1967 ); indeed,

throughout the present computation the energy conservation is

correct up to a small fraction of about 2 % .

In chapter 3 the computed results were shown and discussed

up to time t = 14.4 as meaningful in light of precision

considerations. Actually the numerical experiment had been

pursued with the previous numerical scheme (before modification)

till time t = 16.5 when the numerical instability was seen

to blow up suddenly. With the above modified numerical scheme,

therefore, the computation is continued in this paper from

time t = 14.4 onwards to obtain a quasi-steady solution.

The magnitude of the viscosity coefficient is X = 1.0 ,

and all the other parameters are, of course, the same as in

chapter 3; namely, ^t = 0.0045 , T= 2.0 , g. = 0.1 , R
i u m

( = /CqLV /77 , the magnetic Reynolds number) = 1000 and,

for the locally enhcanced resistivity V given by (3.5), S

= 100 and k = 1.0 .
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§3. General Remarks

The steady process of magnetic field-line reconnection

has been studied by several authors. The diffusion region,

the field reversal region and the external region are indicated

in Fig. 24(a), where the division is made on the basis of our

numerical results, described later. Historically, most of

efforts, directed to the fast-reconnection problem, have been

focused on the analysis of characteristic MHD properties of

each region, and also on the way of matching distinct regions

self-consistently to find the possible reconnection rate.

Sweet (1958) and Parker (1963) first considered that,

when two oppositely directed magnetic fields are pressed

together, the plasma is squeezed out by the plasma-pressure

gradient between the neutral point and the boundary at a large

distance from it. If the system is in a steady state, then

the magnetic field must continually be carried in by the

plasma inflow with velocity u. at the same rate as that

at which the field lines diffuse away owing to finite resis-

tivity in the diffusion region; in our dimensionless form,

this means

-lrr
u. = R
in m VjT ' (4.1)

where J{_* is the half-width of the diffusion region and where

V is the resistivity >7 averaged over the diffusion region
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It should be noted that this condition must hold in any steady-

state reconnection process.

The importance of an MHD slow mode compression wave was

first recognized by Petschek (1964) concerning the fast-

reconnection problem. He realized that changes in MHD

properties across the field reversal region can be accomplished

by such a wave (which would be a shock in a steady state)

bounding the field reversal region, and after computing the

field amd flow configuration by a perturbation expansion for

small reconnection rates, then found the allowable maximum

rate of reconnection, sufficiently large for solar flares.

Fig. 21 illustrates the changes in flow properties across a

switch-off shock (shown by a dotted line), which is the

strongest possible slow shock. Since we require it for the

interpretation of numerical results later, let us give below

a quantitative description of the shock structure. For a

detailed discussion, see Kantrowitz and Petschek (1966).

Consider that, as shown in Fig. 21, the shock propagates in

the positive y direction only and exists steadily in a co-

ordinate system moving with the shock velocity, and denote

the flow properties ahead of and behind the shock by the

subscripts 1 and 2 , respectively- The jump conditions

across the shock, determined by the conservation of the fluxes

of MHD quantities, can give all the conditions behind the

shock if those ahead of it are known. For doing this, making

use of (3.1) (only the terms related to d/3y remain in this
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Fig. 21. Change of magnetic field lines ( across a

switch-off shock ( ). Ahead of the shock, vxl IS

supposed to vanish. 'Qk shows the direction of propagation

of the shock.

case), the conditions of the switch-off shock (in which B _

vanishes) are readily determined as follows:

vyi
-b
y

r V
~x2

b
x
w (4.2)

1/2
where b = B /( Wn P. ) ' ( B remains constant across the

shock) and

bx = Bxl/^0fl)1/2 '

and if ahead of the shock the conditions

By/Bxl)2≪l and P±≪ B^/2 flQ

hold , then we obtain after some algebra

(4.3)

Vy2 ^ "V2 ' ?2± 2?1 ' ^-W^O ' (4-4)
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In the similarity model, the structure of the field

reversal region is similar to that of Petschek's model (namely,

the slow shock is the dominant process there), but in the

external region there is another discontinuity in contrast to

Petschek's model. With respect to this discrepancy between

the similarity model and Petschek's, Vasyliunas (1975) points

out that the physical process occurring within the external

region corresponds to a slow mode expansion in the similarity

model and, on the other hand, a fast mode expansion in Petschek's

model.

In both the similarity model and Petschek's model, most of

the augument concerned the convection region; they considered

that the resistive effect determines the extent and structure

of the diffusion region but has no other significant influence

upon the configuration (Vasyliunas 1975). However, Priest

and Cowley (1975) suggested that the diffusion region does not

necessarily adjust its size automatically to accommodate any

inflow; rather, it may provide a subtle feedback to the inflow.

Above all, as shown by the present numerical experiment, the

locally enhanced resistivity can finally bring about the X-

type field configuration involving the fast-reconnection process,

and this exemplifies the vital importance of the diffusive

effect in constructing the required configuration. We may

note that the major difference between the present model and

the previous analytical models lies in the treatment of the

diffusion region.
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Fig. 22. Temporal variations of current density ( J ),

mass density ( j3 ) and gas pressure ( P ) at the magnetic

neutral point.

With these in mind, we shall discuss numerical results in

|4 . Note that we are investigating the effect on a current

sheet of a sudden local increase of resistivity. This is

quite different from those situations considered by many

previous authors, who start with pressing the antiparallel

magnetic field lines by external causes. Nevertheless, the

reader will see that the quasi-steady configuration that we

ultimately reach is quite similar to the one proposed by

Petschek.

§4. Quasi-Steady Process of Reconnection

Let us now examine whether the present reconnection process
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in fact approaches a steady state. Fig. 22 shows the temporal

behaviour of the plasma density f , the plasma pressure P

and the current density J (multiplied by -1 in the figure)

right at the magnetic neutral point; also, Fig. 23 shows the

temporal behaviour of magnetic field components Bx and B

and the flow velocity components u and u at some typical
x y

points of space. In chapter 3 the numerical results were

shown up to time t = 14.4 We can see from these figures

that the process of reconnection apparently contains a stage

at which the plasma flow grows very rapidly with time,

accompanied by notable changes in the other physical quantities;

finally , the growth of the plasma flow is quenched (at t ^

16.0 ) by some nonlinear effect, and the changes of all the

quantities turn out to be reductions.

On the basis of the quasi-steady configuration that has

thus resulted, we investigate below the characteristic MHD

properties in the diffusion, field reversal, and external regions,

respectively, and also their mutual dependence; in Fig. 24(a)

these regions are marked on the magnetic field configuration

at time t = 18.0 , when the evolution of reconnection has just been

checked and the system tends to be steady. Findings are that,

thereafter, the typical dimension and structure of each region

does not vary much, although, as shown below, the field reversal

region is somewhat depressed towards the x axis by the impact

of the plasma inflow that has grown so large. Also, Figs. 24

(b), (c), (d), and (e) show the flow pattern, the current density
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distribution, the gas pressure distribution and the mass density

distribution, respectively, at time t = 18.0 . To see the

smoothing effect of the artificial viscosity X , note that in

Fig. 24(c) the spacing between the two groups of dense contour

lines that intersect ~＼a gives the approximate width of dis-

continuity. If we use viscosity coefficient X= 3 , then

this width is reduced by about one fourth. The computation
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Fig. 24. Field and flow configuration at time t = 18.0 .

The dot at the origin is the position of both the magnetic

neutral point and the stagnation point of the plasma. (a)

The magnetic field configuration; the boundaries are labelled

by "p. (i=l,2,3,4) and the whole region is divided into: I,

the diffusion region (bounded by contour D (= I u X B/R ""1J 1 )

= 1 and 10 ); II, the field reversal region (where escape

flow velocity is makedly high); and III, the external region,

(b) The flow pattern. The magnitude of the velocity at the

rear end of each arrow is measured by the distance from there

to the center of the associated triangle. Length of 0.07

on the scale of the co-ordinate axes corresponds to 0.1 in

the magnitude of normalized velocity. (c) Contour lines of

current density distribution with contour interval of 0.16.

(d) Contour lines of gas pressure distribution with contour

interval of 0.05. (e) Contour lines of mass density

distribution with contour interval of 0.15 .

81 ―



with X = 1 meets numerical instability and therefore does not

make any sense.

4.1. The diffusion region

Concerning the convection region, the field and flow con-

figurations required for fast reconnection have been investigated

by previous authors; but the detailed structure of the diffu-

sion region actually formed in the course of reconnection, is

still not well understood (e.g. Cowley 1975). We^ will discuss

the crucial role of the diffusion region in the development of

the present reconnection process.

The ultimate cause of the present reconnection process

is the locally enhanced resistivity, which is assumed to be

sustained in the form given by (3.5). The direct effect of

this can most readily be seen in the diffusive stage discussed

in 4.1 of chapter 3: the field lines bend towards, and re-

connect at, the magnetic neutral point. This implies that the

horizontal magnetic field component B is eroded, whereas

the vertical field component B is enhanced. This process

concludes with the formation of an X-type field configuration

near the neutral point, and is obviously accompanied by a

decrease in the current density near there. There is also a

decrease in the magnetic field diffusion, since its rate is

proportional to the current density. So long as the diffusion

reaion is concerned, the reconnection will soon be checked.
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Note, however, that the most interesting aspect of the recon-

nection arises from the nonlinear hydromagnetic interactions

in the outer region and this contributes to increasing the

current density near the neutral point. That is, while the

field component B is carried away by the plasma outflow

from the diffusion region towards the field reversal region,

the field component B is carried in by the plasma inflow

to the diffusion region from the external region.

The temporal behaviour of the electric current density

at the magnetic neutral point, shown in Fig. 22, may thus

indicate which effect, the diffusion or the convection of

magnetic field lines, is predominant: when the field diffusion

dominates over the field convection in the outer region, then

the current density will decrease at the magnetic neutral point,

and vice versa. Fig. 22 thus shows the following process: in

the initial time range the current density rapidly decreases

since the diffusive effect is dominant then; but, as the plasma

flow grows (see Fig. 23), the current density increases because

of the increasing convection of the field lines and arrives at a

peak value at about time t = 16.0 , when the evolutionary

process is cheked; then it begins to decrease again but more and

more slowly than before.

For reconnection to proceed efficiently, the X-type field

configuration must be established over a large region, which

is found to be the case in our model (see Fig. 24 (a)). This

must be because the field component B , produced through
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field-line reconnection in the diffusion region, is continuously

carried away to the outer region where B =0 initially.

One may interpret this as follows: fast mode waves propagating

along the field lines into the external region (similar to

Alfven waves in the general case where the z component also

exists) can continually be excited by the bending of field

lines in the diffusion region, which will necessarily cause

the field lines to decline in the external region where there

exists a strong magnetic field; in the field reversal region,

where the magnetic field is weak, the field component B can

be transported by a sufficiently large outflow of plasma.

In those reconnection models studied to date, it is

usually argued on the diffusion region that the pressure

gradient accelerates the plasma whereby the ejection is performed

along the field reversal region. In our model, however, the

resulting pressure distribution does not act in such a way,

but instead the magnetic tension, produced through field-line

reconnection, accelerates the plasma outflow. Indeed, we

see from Fig. 24 (d) that the pressure gradient rather decelerates

the plasma outflow in the immediate vicinity of the x axis

spanning the field reversal region. Notice that in our case

the plasma is subject to a remarkable expansion near the

magnetic neutral point during the evolutionary process (Fig. 22)

and that the decrease in the plasma density as well as the plasma

pressure is largest at the neutral point (see also Fig. 24 (e)).

This discrepancy may have arisen from the difference of our
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model from the analytical models: in our model, as described

later, the ambient field-lines are sucked into the inner region

as a result of the plasma ejection, out of the inner region

rather than pressed inwards by external causes.

4.2. The field reversal region

The plasma energy acquired in the reconnection process is

ejected away through the field reversal region. This region

is essentially composed of high-(3 plasma (i.e. the magnetic

energy is smaller than the plasma energy); and in this region,

as defined before, the magnitude of both the field component

B and the outflow velocity u are sufficiently large and

the field lines are frozen to the plasma.

Note that by the Lorentz force, not by the pressure

gradient, the plasma is accelerated outwards. In Fig. 23(a)

the temporal variations of B and u are shown at two

points along the x axis, namely, at the point (x, y) = (0.8,

0) located just outside the diffusion region, and at the

point (1.6, 0) located within the field reversal region. We

observe that, as the reconnection suddenly takes place in the

initial time range , B (0.8, 0) rapidly increases, giving

rise to the Lorentz force (JXB ) to accelerate the plasma

outwards; and with the growth of ux , B (1.6, 0) also starts

increasing due to the convection of field lines, which in turn

reinforces the Lorentz force in the field reversal region (
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Fig. 25. Profiles of u at different times along the line

x = 2.0 (boundary T^ )･ (1) t = 14.4 , (2) t = 18.0 ,

thus, this time interval corresponds to the growth stage of

the reconnection process); but, as the plasma outflow becomes

very large, B is found to decrease since the field lines

are convected away faster than they are produced in the diffu-

sion region, and, as the rates of the convection and the

diffusion of magnetic field lines get closer to each other,

then these quantities tend to be constant. In short, this

procedure may be restated as follows: the field-line reconnec-

tion occurring in the diffusion region produces the magnetic

tension in the system which acts on the field reversal region

to accelerate the plasma outwards; the outflow velocity grows

so as to relax the magnetic stress energy stored in the system,

which provides the continual process of reconnection.

Consider now Petschek's suggestion that the flow properties

across the field reversal region can be those of slow mode MHD
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compression wave In Figs.26 (a) and (b) the horizontal field

component B and the inflow velocity u are shown at

different times along the two lines x = 0 and x = 2.0 (

boundary J~^; see Fig. 24 (a) ). Also, in Figs. 25, 27 and 28 the

outflow velocity u , plasma density P , and plasma pressure

P are shown similarly along the line x = 2.0. From these

figures, it follows that flow properties along the line x =

2.0 , which traverses the field reversal region, change very

markedly towards the boundary of the field reversal region;

and we may note that these changes possess the same properties

as those that a slow wave requires. However, the wave has a

width of about 0.25 due to the effects of artificial
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x = 2.0 (boundary T4 > ･ (D t = 14.4 , (2) t - 18.0 ,

(3) t = 22.5 .

numerical diffusion.

To compare these numerical results with the flow properties

of the idealized switch-off shock described in §3, let us make

use of the MHD quantities along the line x = 2.0 at time

t = 18.0 ; then we observe that the quantities above (or, in

shock-wave terminology, ahead of) the field reversal region (

denoted bv subscript 1 ) are given by

fl-0-6 ' Bxl- 0.67 , P1 C2r 0.04 , u Cz. 0 ,

where some oscillations have been smoothed. The magnitude of

B
y changes considerably in the y direction
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ent from the type of shock now at issue, where B should
be

constant everywhere. Therefore, for B , we tentatively

take its mean value across the boundary of the field reversal

region, then

B ^0.15
Y

If the switch-off shock, shown in Fig. 21, is supposed to be

present along the field reversal region, then the quantities

behind the shock can be obtained as described in §3 ; substitut-

ing the above quantities for those ahead of the shock, we

see that the conditions given by (4.3) in fact hold approximately

and then the switch-off shock solutions given by (4.2) and

(4.4) become in the dimensionless form:

vyi

vy2

= -b ) --0.19 , vx2
(

b .
x2
) £* 0.87,

/-^* -0.095 , f CzLl.2 , P ^ 0.45

(4.5)

Hence, we see that essentially the present numerical results

agree well with the requirements given for the switch-off

shock, only with some quantitative difference. This differ-

ence may have come from the discrepancy of the basic situations

between the present reconnection process and the above idealized

switch-off shock: namely, in our case, the system is neither

strictly steady in the sense 3/ 3t = 0 nor one-dimensional;
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furthermore, u must always vanish on the x axis by the

symmetry condition imposed on our system (in terms of the

shock, v 9 must be zero), and, as already mentioned, B

changes considerably in the y direction, as also does the

propagation speed of the slow wave accordingly.

There is in fact the nonlinear slow wave standing along

the boundary of the field reversal region, although numerical

diffusion due to artificial viscosity might have somewhat

obscured the slow shock. Fig. 24 (c) apparently indicates a

remarkable increase in the current density across the boundary

of the field reversal region inside which B vanishes

because of the slow wave Note also that the plasma density

J3 is notably rarefied immediately near the x axis (see

Fig.24(e)), which implies that the plasma temperature,

proportional to P/^> , is much enhanced there. Therefore

an interesting result in the present reconnection process is

that the plasma experiences an efficient heating when cross-

ing the field reversal region from above and/or when passing

through the diffusion region.

In analytical studies for the steady reconnection, the

magnitude of the outflow velocity is usually given by the

Alfven speed just outside the diffusion region (Vasyliunas

1975). To examine this, take, for instance, the Alfven speed

V at point (x, y) = (0, 0.6) and time t = 22.5 . We

can then obtain VAD = B^/§1/2 ^L 0.59 , considering Bx(0f 0.6)

2ii 0.45 (cf. Fig. 23 (b)) and ?(0, 0.6) ~0.58 at this time.
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In the present quasi-steady reconnection, the outflow velocity,

shown in Fig. 23(a), thus agrees with Va , as it should do.

4.3. The external region

In our model, the magnetic energy initially stored in the

external region (including the regions external to the domain

of computation) is spent for the reconnection process to

proceed persistently- This region is essentially composed of

low-£> plasma (the magnetic energy is larger than the plasma

energy), and the spatial changes of physical quantities are

small as compared with the other regions.

With regard to the temporal variations of inflow velocity

u shown in Fig. 23(b) , let us discuss how the plasma inflow,

whereby the field lines are carried in, arises from the process

occurring in the inner region. In Figs. 29(a) and (b), the

2
variations of the sum P + B in the direction parallel to

the y axis are shown at times t = 14.4 and 22.5 , res-

2pectively. This quantity, P + B , may approximately represent

2 2
the total pressure, since B is much smaller than B . At

Y x

time t = 14.4 , when the plasma flow is rapidly growing (Fig.

23 ), we can observe the total pressure is notably reduced in

the inner region, especially in the middle of the system, since

the high-energy plasma has been ejected away from the inner

region. Hence, the magnetized plasma in the external region

can be more and more accelerated inwards. The rapidly growing
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Fig. 29. Profiles of P + E" along different lines in the

y direction at times (a) t = 14.4 and (b) t = 22.5 . (i)

x = 0 . (ii) x = 0.8 . (iii) x = 2.0 .

plasma inflow thus causes a significant increase in the plasma

energy in the inner region, hence a decrease in the magnetic

energy in the external region The accelerated inflow initially

depresses the field reversal region, but the inflow is then

subduced at a certain level,

that the inflow velocity u

We thus observe from Fig. 23(b)

decreases at about t = 16.5

at the point (x, y) = (0, 0.6) and, with some delay, at the

point (0, 1.6), because the upward propagation of information
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from below always requires some time We further see from

Fig. 29(b) that, at t = 22.5 , the spatial variations of the

total pressure become rather smooth, so that the system tends

to become steady -

Hence, in the external region the magnetized plasma is

persistently "sucked" into the inner region, where in the diffu-

sion region field-line reconnection proceeds and where in the

field reversal region the plasma is ejected away. Such a

process in the external region can obviously be accomplished

by a fast mode expansion (see Kantrowitz and Petschek 1966).

The propagation of fast mode exansion waves always results in

a decrease of the magnetic-field intensity as well as a decrease

in the plasma

component B

In fact, Fig. 23(b) shows that the field

, at the point (x, y) = (0, 1.6) within the

external region, decreases with time, while Figs. 27 and 28

indicate that the plasma density j> and the plasma pressure P

decrease in the external region from their initial values PQ

1 and PQ j5n) = 0.1, respectively

The fast mode expansion waves, which cannot stand in the

subsonic flow, successively propagate through the external

region, modifying the entire configuration. Therefore, at

distances far from the neutral point where the fast waves have

just arrived, there must be a significant modification of

the configuration as was seen in the evolutionary phase of re-

connection (see chapter 3). If, however, as in the present

model , the domain under consideration is restricted to the
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vicinity of the neutral point, where the changes of physical

quantities become small with time as we have seen in this

chapter, the reconnection process can be considered to be in

a quasi-steady state. This state should be compared with

those analytical models for steady reconnection that have been

studied by several authors.

The fast mode expansion, occurring in the external region,

can proceed by the previously mentioned sucking mechanism of

the diffusion region; on the other hand, the resulting plasma

inflow in turn expedites the reconnection because of the

convection of magnetic field lines into the diffusion region.

Any steady process of reconnection requires that the above two

effects be well matched to each other and therefore that, as

shown in §3, the inflow velocity u. be given by (4.1).

Applying this equation to our present case, we may roughly take

£* 2i.0.5 (in view of the ambiguity in defining the diffusion

region, X* maY be taken for the scale length of magnetic

field variation; see Fig. 26 (a)), Rm = 1000, and ^=80 (cf

(3.5)); then we obtain u. ^0.16 One sees from Fig. 23 (b)

that, as the system approaches the quasi-steady state, the

inflow velocity u at the point (0, 0.6), just outside the

diffusion region, is nearly the same as this steady-state inflow

velocity, u. . This implies that in our quasi-steady con-

figuration of the diffusion region the rate at which the field

lines are carried in by the plasma inflow is well adapted to

the rate at which they diffuse away owing to finite resistivity.
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&5. Concluding remarks

We have investigated by numerical experiment the effect

on a current sheet of a sudden local increase in electrical

resistivity. It has been found that a quasi-steady configura-

tion of field-line reconnection can ultimately be established

from an initially antiparallel magnetic field. By examining

this configuration in detail, we discussed the outstanding

MHD characteristics manifested in the diffusion, field reversal

and external regions. Namely, in the diffusion region, the

field lines bend towards, and reconnect at, the magnetic neutral

point due to the locally enhanced resistivity; hence, the

horizontal field component B is eroded, and simultaneously

the vertical field component B is enhanced in this region.

In the field reversal region, the slow mode compression is

the dominant process; the resulting plasma outflow carries away

both the enhanced plasma energy and the field component B .

In the external region, the fast mode expansion is the key

process; the resulting plasma inflow transports the field

component B into the inner region from the surrounding.

Hence, the quasi-steady configuration presented in this

chapter is similar to that proposed by Petschek (1964).

Recall that any steady configuration requires a precise

matching of variables among the above three regions. For

instance, the field component B must continually be produced

in accordance with the election of it by the plasma outflow
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in order to sustain the configuration (especially, in order for

the slow wave to be persistently standing along the field

reversal region); in our case this can be accomplished by none

other than the bending of the field lines towards the neutral

point. To see how the matching is done among the above

three regions, let us examine the dimensionless electric field

E ( = - (u B -uB)+R
n K v x y y x' m "^J ) about the diffusion region

Table 2 shows the temporal variations of E at three typical

points of space, namely at (x, y) = (0, 0) (the magnetic neutral

point), (0, 0.6) (on the boundary between the diffusion

and the external regions), and (0.8, 0) (on the boundary

between the diffusion and the field reversal regions). The

geometrical dimension of the diffusion region here considered

is based on that shown in Fig. 24 (a) . The respective values

of E at the above three points may be considered to be the

reconnection rate of magnetic field lines at the neutral point,

the rate of field line injection into the diffusion region,

and the rate of field line ejection from the diffusion region.

This statement holds after the plasma flow has grown sufficiently

large. From the table the temporal development of the re-

connection process is seen from another angle: the electric

field, which is initially much larger in the immediate vicinity

of the neutral point than in the surrounding because of the

sudden local increase in resistivity (note that E(0, 0) =

-0.1 at time t = 0 ), becomes soon reduced owing to the

rapid magnetic-field diffusion; then, in the evolutionary stage
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E{0, 0)

E{0, 0-6)

E(0-8, 0)

t

1-8

-0033
-0023
-0013

90

-0-027
- 0033
-0-028

12-6

-0055
-0069
-0063

16-2

-0092

-0096

- 0-089

19-8

-0-076
-0-072
-0-078

23-4

-0-067
-0065
-0068

Table 2. Temporal variations of electic field E , given

"7J , at three typical points: (x, y) = (0, 0),
(0, 0.6) and (0.8, 0)

with growing plasma flow, the electric field increases every-

where till the evolution is checked; and, after the quasi-

steady configuration is established (i.e. t £i16.5 ), the

electric field on the whole tends to decrease again, and its

spatial uniformity prevails with time as expected. Note that,

in a steady state ( 9/ 3t = 0 ), E = constant everywhere.

We have presented in this chapter,- within the framework

of MHD approximation, the numerical solution that exemplifies

the quasi-steady reconnection process involved in an "isolated"

current-sheet system. In other words, in this system the

energy was supplied in the form of an initially given current

sheet, which thereafter was free to decay with a time scale

much longer than that of the reconnection process. The trigger-

ing mechanism of the evolutionary process resided in a local

area that was to be identified with the neutral point. In

actual systems, however, some external conditions would also

be important in maintaining the process of reconnection, so

that there remains the problem of how the external region,
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together with the diffusion and field reversal regions

presumably, will adapt themselves to some specific boundary

conditions. This problem will be examined in the following

chapter.
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Chapter 5

CONTROLLING FACTORS OF FAST RECONNECTION*

§1. Introduction

In this chapter, the numerical computations will shed

light on the effect of special boundary conditions; namely,

it is assumed here that there is persistent injection of

magentic fluxes across the inflow boundary at a constant rate,

this injection being forced by some external agency. Three

cases of boundary values are examined, such that the rates of

magnetic flux injection are higher than, comparable with, and

smaller than, the intrinsic reconnection rate up to which

the process of reconnection spontaneously evolves by a local

resistivity enhancement in the absence of such externally

given boundary conditions (see ^3 of this chapter). It is

shown that in each case the system ultimately arrives at a

stationary state involving some oscillations with time so long

as the effective resistivity is enhanced locally near the

neutral point. In addition, we also examine the case in which

the condition of local resistivity enhancement is suddenly

removed in an X-type field configuration , where the

* See Uqai and Tsuda (1979 a)
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evolutionary process of reconnection has been going on, with

resistivity kept uniform in space. We then find that the

global X-type field configuration can no longer be sustained;

with time the angle between the two X-lines of magnetic field

becomes much reduced near the neutral point, the magnetic

field thus regaining the initial antiparallel configuration.

From the present numerical results, the following will

be remarked. In so far as the local resistivity enhancement

is maintained near the neutral point, the reconnection process

adapts itself to any of the imposed boundary conditions; thus

the amount of the magnetic field lines that reconnect per unit

time in each of the resulting stationary configurations is

determined by the respective influx of field lines at the bound-

ary. Note that in the ordinary theoretical treatments the re-

connection rate is defined to be the inflow speed at large

distance from the neutral point scaled by the local Alfven

speed. With this in mind, we examine the local Mach numbers

at a point on the inflow boundary in individual stationary

configurations and find that they are similar in magnitude.

This suggests that the reconnection rate in the theoretical

sense can hardly be influenced by the boundary values; in the

theoretical studies , on the contrary, it has so far been

predicted that the reconnection rate, defined as such, is

determined by the boundary conditions.
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§2. Numerical Experiment

The procedure of the present numerical experiment is

different from the previous ones of chapters 3 and 4 in the

treatment of initial-boundary conditions > but in the other

respects remains the same.

The initial state of physical quantities with which the

present computations begin is the one where the reconnection

process has grown from an initially antiparallel field con-

figuration because of the local resistivity increase; the

details of such an evolutionary process of reconnection are

shown in chapter 3. For this purpose the state of physical

variables at time t = 14.4 , previously obtained as a result

of numerical calculation, is considered. See, for instance,

Fig- 10 of chapter 3 for the corresponding field configuration.

In what follows all the numerical computations start with this

configuration on which the special boundary condition, described

below, is imposed.

The boundaries are labelled by j. (i=l,2,3,4) as shown

in Fig. 31(a). Let us suppose a situation where some external

agency forces magnetic field lines at a large distance to

approach the neutral point. In order to have such a situation

in our computer experiment, it is assumed that there is per-

sistent magnetic flux injection at a constant rate as dictated

by the external agency. This condition may equivalently be
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given by having UVBX = constant along the boundary f"7 since

the field should almost be frozen into the fluid near there.

In practice, inflow velocity u at that boundary is calculated

every time step so that uyBx is kept constant there. On

those boundaries other than "|~T, all the conditions are the

same as before; namely, on J~^ and j~7, the symmetry conditions

are given, and TT is the free boundary across which the plasma

can freely flow in or out according to the states of the inner

region (see 3.2 of chapter 3). Similarly the boundary J~T.

is a free boundary for physical quantities other than u .

Throughout the present computations the domain for compu-

tation is reduced in the y direction to the one of size

2.0X1.2 (cf. Fig. 31 of this chapter), while the size of

the previous ones was 2.0 K2.0 (cf. Fig.8 of chapter 3 ).

Such a reduction of the domain size for computation can con-

siderably reduce the computation time. This truncation is

justifiable, because as already seen in chapters 3 and 4 the

spatial changes of physical quantities are very small at

distances from the neutral point. All the physical and

numerical parameters are of course kept the same as in chapter

3 ; namely, T =2.0 , R (the magnetic Reynolds number) =

1000, Ax ( = Ay , the mesh size) = 0.04 , At (time step)

= 0.0045 , and so forth.
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^3. Some Remarks on the Present Model

In general the rate of energy exchange per unit volume

between the magnetic field and the plasma can be given by E'J^

(in the present model the electric energy is neglected). There

is a sheet of electric current concentrated between two

oppositely directed magnetic fields. If there exists over

the whole region a large-scale electric field in the same

direction as the current, a concentrated release of magnetic

energy will therefore be realized. Any fast-reconnection

process must involve such a strong large-scale electric field.

A question may then arise as to how and under what conditions

such a large-scale electric field can eventually result: this

is a fundamental probelm in studying the controlling factor

and the mechanism of fast reconnection. From this viewpoint,

let us reconsider the present numerical model below.

The recent critical review by Vasyliunas (1975) summarized

the general features of the previously proposed hydromagnetic

models with the following conclusion about the problem now at

issue: the configuration is determined by the boundary condi-

tions; resistive effects, on the other hand, determine the

extent and the structure of the diffusion region but have no

other significant influence on the configuration. Obviously,

the previous authors have expected that an electric field,

generated at a large distance by some external agency, can enter
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and ultimately permeate the whole region, especially the

region in the immediate vicinity of the neutral point; and

this region will be identified with the diffusion region, its

size being controlled by the magnitude of the electric field.

However, it may be remembered that in the previous analytical

treatments two significant problems still remain unsolved

because of mathematical difficulties. One is that of match-

ing; namely, there is as yet no completely satisfactory

method of matching between the diffusion region and the con-

vection region in the steady configuration of fast reconnection

(Vasyliunas 1975) . The other, which is more fundamental, is

that of the temporal dynamics of reconnection. Although the

theoretical models have indeed succeeded in describing some

of the configurations in the convection region that are required

for the growth of fast reconnection, they obviously failed in

making clear whether or not these configurations could in fact

be maintained in actual systems without any special local

condition near the neutral point. In fact, if one leaves

aside this problem, which necessarily involves the time-dependent

process of reconnection, then one may not attain perfect

understanding of the major factors that control the fast re-

connection.

It may be noted that the quasi-steady reconnecting situa-

tion, argued in chapter 4 , describes quite a different situa-

tion from the one considered in the above conventional theoretical

models. We remind the reader that the quasi-steady confirura-
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tion can eventually be estabished and maintained because of

the locally enhanced resistivity without any specially imposed

boundary condition. The resulting large-scale electric field

in the initial time range is the so-called induction electric

field due to 3B/ 5t , the temporal variations of magnetic

field configuration. Ultimately together with the flux

transport it grows and overspreads outwards from near the neutral

point with increasing time because of the hydromagnetic wave

effects. Such a reconnecting situation can obviously provide

a mechanism whereby the energy critically stored in the magnetic

field is suddenly released by an occurrence of anomalous resis-

tivity. This mechanism may hence be responsible for large

dissipative events such as solar flares. See, for instance,

the emerging flux model of the solar flare phenomenon by

Heyvaerts, Priest and Rust (1977).

The purpose of the present numerical model is to study

the effect of persistent injection of magnetic fluxes as

already mentioned. Let that value u B which is kept con-

stant on the boundary J * be denoted by E, . Note that

E, is the approximate value of the electric field at the

boundary, since near the boundary the term u B is found

much larger in magnitude than the other terms in the Ohm's lav

throughout the computation. Hence the present model , in

contrast to our previous ones, is designed to examine another

significant reconnecting situation such that: an externally

generated electric field permeates the reconnection region in
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the vicinity of the neutral point. With this computer model,

we wish to clarify the controversial points in the fast-reconnec-

tion theories, mentioned above, by investigating the temporal

dynamical processes of reconnection. In the following, it

will be shown and discussed how the configuration is influenced

by different boundary values Eb's and by the local resistivity

increase near the neutral point.

§4. Results

The reconnection process, such as the one modelled in

this chapter, describes a decay process of the current-sheet

system ; in particular , this decay takes place much more

rapidly in the presence of the locally enhanced resistivity

at the neutral point than in its absence. We may hence con-

sider as the intrinsic reconnection rate (which is denoted by

EQ ) the maximum value of the electric field at the neutral

point up to which the induction electric field grows because

of the strong hydromagnetic effects in the evolutionary process

of reconnection. From Fig. 22 of chapter 4, we can readily

observe that the current density J right at the neutral point

grows up to about -1 (at time t ~ 16 ) through the evolutionary

process. Hence, we obtain Eq^h-O.I by considering that the

electric field at the neutral point is given by R SJ with

parameter values R =1000 and S = 100 . In what follows
m
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Fig. 30. Temporal variations of current density (multiplied

by -1 in the figure) right at the neutral point (namely,
at (x, y) = (0, 0)) for the three cases corresponding to

the boundary values (a) Eb = -0.2 , (b) Efa = -0.1 and (c)

Eb = -0.05 .

we first examine three choices of E, of the order E_ , suppos- -

ing the same form of the local resistivity increase as before,

with S = 100 and k = 1.0 in (3.5 ); and next, we consider

a case where the condition of the local increase in resistivity

is removed, in order to assess the effect of this important

condition on the global configuration.

In order to have an overall picture of the solution,

it may be instructive to observe the time-sequential variations

of the current density at the nutral point. This is shown

in Fig. 30 for each of the three boundary values, i.e. F, =

-0.2 , E, = -0.1 and E = -0.05 . In the figure two major

features are conspicuous. First, we find that in each case

the current density becomes ultimately stationary after a
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certain time interval. Here, the term "stationary" is used

in the sense that the mean value with respect to time is almost

constant. Second, it is observed that there appears an

oscillation with time corresponding to each of the imposed

boundary values. The resulting periods and amplitudes are

distinct for the respective oscillations; namely, with larger

E, the period becomes shorter and the amplitude larger. It

should also be noted that in each of these stationary configura-

tions the other physical quantities at any spatial point

oscillate in the same manner as the current density.

Such an appearance of oscillations may be interpreted as

follows. Note that in an ordinary oscillatory system there

must be forces that counteract each other. In the present

numerical model, there are in fact two such factors. As

already seen in chapters 3 and 4 , the localized enhancement

of resistivity can always cause a significant expansion in

the plasma over the whole reaion through field-line reconnec-

tion. On the other hand, the forced injection of magnetic

fluxes may obviously tend to compress the plasma into the

inner region in accordance with the magnitude of E, . These

two forces act on the system through fast-mode MHD waves (

expansion and compression) to counterbalance each other

alternately, which should result in an oscillation in the system.

In addition, for the larger value of Eb the above two compet-

ing forces must obviously be stronger. Note that the magnetic-

field diffusion should then proceed more rapidly near the
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-0-2 (t = 36-0)

-01 (I = 270)

-005 {t = 30-6)

p

1-55

0-811

0-510

106

0-C02

0-388

-0-197
-0108
-0134

(=JB,.p-l) uJVA

0-851 -0-231
0-609 -0-251
0-543 -0-247

Table 3. Characteristic physical quantities at (x, y) =

(0.0, 1.2), a point on the boundary

respective stationary configurations

~[~1, in each of the

corresponding to the

boundary values Eh = -0.2, -0.1 and -0.05.

neutral point since there is a larger current flow as seen

from Fig. 30 ; therefore the resulting expansion effect becomes

stronger. Also, the local Alfven speed at distances from

the neutral point becomes faster with larger E, as can be

observed from table 3 t where characteristic quantities at the

spatial point (x, y) = (0.0, 1.2) on the boundary fT are

shown in each of the stationary configurations. Upward

transmission for the expansion and downward transmission for

the compression may thus be faster for larger values of E, .

We therefore expect that for larger values of E, the amplitude

of the oscillations is larger and their period is shorter; this

is in fact consistent with the results shown in Fig. 30 and

table 3. Table 3 gives the relative magnitude of V (which

is proportional to the Alfven travel time) for E, = -0.2, -0.1

and -0.05. The ratio of V between these three cases

coincides with that of periods of oscillations observed in

Fig. 30 . This is consistent with the preceding interpretation.

Now let us consider how the overall configuration is
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Fiq. 31. For legend see page 112.
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(a)

influenced by the different boundary values . Figs. 31(a) ,

(b) and (c) show the resulting stationary field configurations,

in which the corresponding flow patterns are also shown,

for the cases E, = -0.2, -0.1 and -0.05, respectively, at

times when the current densities at the neutral point have

nearly the top values during the respective oscillations (cf.
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Fig- 31. Field and flow configurations in the stationary

states that correspond to the boundary values (a) E, = -0.2

(at time t = 36.0 ), (b) Efa = -0.1 (at t = 27.0 ) and (c)

Ffc = -0.05 (at t = 30.6 ). In (a) of the figure the

boundaries are labelled bv 7~T (i=l,2,3,4). In each of the

figures, the dot at the origin is the position of the magnetic

neutral point, and at the top the scale of velocity is

Fig. 30) . It may be observed that each configuration has

wavy structures in both the x and y directions and is more

complicated than the quasi-steady configuration shown in chapter

4 . By comparing these configurations, we can readily see

that for larger values of E, more magnetic field lines are

piled up in the external region; on the other hand, the plasma

flow speeds are not so different from each other, so that the

same is true of the sizes of their diffusion regions. See

also Figs. 32 and 3 3 , where the field component B and the

inflow velocity u are respectively shown along the y axis

in each of the stationary configurations. From the figures,
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Fig. 32. Profiles of B along the y axis in the stationary
configurations corresponding

to the boundary values (a)
E, =-0.2 (at time t = 36.0

), (b) Eb = -0.1 (at t = 27.0
) and

it is more clearly observed that the relative structures of

the spatial variations of these quantities are not much influenced

by the different boundary values; but their absolute magnitudes,

especially of the magnetic field, are largely influenced by

them.

We can see from the above numerical results that the amount

of the magnetic field lines that are reconnecting per unit time

in each of the stationary configurations can indeed be controlled

by the imposed boundary values, Efa : this is primarily be-

cause the field strength in the external region is largely con-

trolled by them. However, it should be recalled that the

theoretical study of the reconnection rate has been based on
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Fig. 33. Profiles of u (multiplied by -1 in the figure)

along the y axis in the stationary configurations corres-

ponding to the boundary values (a) E, = -0.2 (at time t =

36.0 ), (b) R = -0.1 (at t = 27.0 ) and (c) E, = -0.05
b b

(at t = 30.6 ).

a mathematical model in which the plasma and field conditions

at large distances from the neutral point are assumed to be

the same for any of the configurations under consideration;

thus, in the ordinary theoretical treatments the reconnection

rate is given by the inflow speed at distances far from the

neutral point measured in terms of the local Alfven speed

(Vasyliunas 1975). It may therefore be instructive in the

-1/2
present case to calculate the local Mach number u /(B j> ' )

on the boundary ~＼~Lat x = 0 (namely, at the spatial point

(x, y) =(0.0, 1.2)). This is shown in table 3 for each of
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the above stationary configurations. From the table we can

see that the local Mach number at a distance from the neutral

point is scarcely influenced by the difference between the

boundary values of E^ . As already mentioned in §3 , in the

theoretical arguments based on the analytical results, it has

so far been predicted that the reconnection rate (measured by

the local Mach number at large distances from the neutral point)

in the steady configuration is determined by the boundary con-

ditions; this statement does not agree with the present

numerical result. Our mumerical experiment may rather suggest

that the reconnection rate (in the theoretical sense) would

be determined not by the boundary conditions, but, perhaps,

by the local conditions in the vicinity of the neutral point.

Next, let us exemplify briefly the process of magnetic

energy conversion in the present stationary configuration.

In Fig. 34 the temporal variations of the energy flow rates

across the boundaries To and ]~~(̂see Fig. 31(a)) are shown

only for the case E, =-0.2 for each form of energy (magnetic,

dynamic (bulk flow), and thermal (plasma) energies are denoted

by E , E and E , respectively). The energy flow rates

shown in the figure are given by integrating the respective

2
energy flux densities (normalized by VAB0/2^0 ) over the

boundary J~Z or T? : for details, see §5 of chapter 3, where

the mathematical treatments are the same except for the

difference in the size of the computational region. As expected,

each form of energy flows into the region across "P3 , on the
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Fig. 34. Temporal variations of flow rates of magnetic

energy ( KM ), dynamic (flow) energy ( F ) and thermal

(plasma) energy ( F ) across the boundaries "fT (shown above

the horizontal axis), and ~]~T(shown below), in the case

Eb = -0.2 .

other hand, across ]~＼it is ejected away because of the re-

connection process proceeding in the region (note that the

negative value indicates the flow out of the region). It may

be interesting to examine how much each form of energy is en-

hanced in the region through the stationary reconnection process.

For this purpose, let us consider the quantity

Irate of ejection (across "["4)~ rate of injection (across
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for each form of energy, which may be averaged over times in

the neighbourhood of t ^36.0 : this quantity may well be

regarded as the mean value that each form of energy gains per

unit time in the restricted region now at issue while the

plasma is passing through the region. These quantities can

readily be estimated from Fig. 34 as follows: the gain of E
M

^ -0.8 , that of EDC^0.3 and that of Ep £±0.5 (the

negative gain of the magnetic energy, in fact, indicates the

loss of the energy). We can hence see that the reconnection

process proceeding in that stationary configuration presents

quite an effective mechanism for releasing the magnetic

energy into the plasma energy; also, in this case now at issue

the rate of the enhancement of thermal energy E is observed

to be about twice as big as that of dynamical energy E .

For the above results so far shown, the local resistivity

enhancement has been assumed to be sustained in the form

given by (3.5 ) as in the previous chapters. Finally, we are

now interested in how the dynamical process of reconnection is

influenced by the removal of the effect of such a local resis-

tivity enhancement. For this purpose, putting S = 1 in

(3.5), and R = 20 in order to avoid numerical limitation,
m

with the resistivity remaining now uniform in space and raised

by a factor of 50 (note that previously R = 1000 ), and

adopting the boundary value Eb = -0.1 , we start the computa-

tion with the configuration at time t = 14.4 just as in the

previous computations in this chapter. In Fig. 35 the result-
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Fig. 35. Field line configuraion
at time t = 27.0 where

there has been no local increase
in resistivity since

t =14.4 , with resistivity spatially
distributed uniformly anc

raised by a factor of 50 (i.e

value E. = -0.1 is assumed.
Rm ~ 20 } '" the boundary

ing field configuration is shown
at time t = 27.0 . As

illustrated in the figure, we
have found that the large-scale

X-type field configuration (which was indeed present at
t =

14.4 ; see Fig.10 of chapter
3 ) can no longer be retained:

the field line configuration
becomes merely more and more

flattened with increasing time.
The field lines and the plasm;

are simply more and more piled
up in the region, which results

in diminishing the plasma
global flow: this can readily

be
seen from Fig. 36 where

the temporal behaviour of
the inflow

velocity u at x =
0.0 , y = 0.6 and the outflow

velocity
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Fig. 36. Temporal variations of ux at (x, y) = (1.6, 0.0)

and u at (0.0, 0.6) where there has been no local increase

in resistivity since t = 14.4 ; the boundary value Eb=-0.1

is assumed.

u at x = 1.6, y=0.0 are shown. It seems quite natural

that in such a flat field confiauration the plasma, which is

persistently being injected across "["7,, is accumulated in the

region since it can no longer be efficiently ejected away-

owing to the magnetic body force in the form JXB (note that

in the large-scale X-type field configuration the resulting

magnetic tension effectively accelerates the plasma away from

the region to retain the quasi-steady process of fast reconnec-

tion; see chapter 4).

Such a flattening of the magentic field line configuration

may have the following explanation. In the first place, we

recall that the maior effect of the local resistivity enhancement
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lines in bending the field lines towards the magnetic neutral

point in the diffusion region. As a result, MHD wave effects

can lead to the consecutive ejection of the locally bent

field lines from near the neutral point . This promotes the

evolution and also the maintenance of the large-scale X-type

field configuration in the whole region. For the details of

this argument, readers are referred to chapters 3 and 4. In

the absence of local resistivity enhancement, however, the X-

type field line configuration becomes more and more flattened

with increasing time from the vicinity of the neutral point,

since there is then no continuous bending of the field lines

that are convected with the inflow of plasma and are

successively approaching the neutral point; the outward trans-

mission of field-line bend can never occur. It may be noted

that this dynamical process is similar to that of Stevenson

(1972). He considers an initially hyperbolic magnetic field

line configuration where there is a persistent injection of

constant momentum flux (not magnetic flux, different from our

model) from top and bottom. He finds that, as the system

evolves, the configuration becomes flatter and that magnetic

and fluid pressures continue to increase everywhere with no

indication of approaching asymptotic values, just as seen here.

It seems quite apparent that these two models, Stevenson's

and ours, describe no true reconnection process; if there is

any reconnection it is the small amount expected from the finite

resistivity Hence, a local increase in effective resistivity
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near the neutral point should be required for the growth of

fast reconnection; otherwise, the large-scale X-type field con-

figuration could not be sustained.

§5. Concluding Remarks

In chapters 3 and 4, we examined the effect of a local

resistivity increase on the current sheet system under no

special boundary conditions. In this chapter, we have shown

how the configuration of fast reconnection is controlled by

a persistent injection of magnetic flux into the reconnection

region. This injection is assumed to be forced by some

external agency. We have also studied how the global con-

figuration is affected by the disappearance of the local resis-

tivity increase. The following significant consequences,

derived from the present numerical models, should be noted,

(i) Distinct imposed boundary values give correspondingly

distinct stationary configurations that are established in the

presence of a local resistivity increase near the neutral

point. The resulting stationary configurations involve the

individual oscillations with time. The amount of the magnetic

field lines that are reconnecting per unit time in each of

the stationary configurations is determined in accordance with

the corresponding boundary value: this seems consistent with

the observations in the dayside magnetosphere. On the other
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hand, the reconnection rate, which is given by the inflow speed

measured in terms of the local Alfven speed at a distance from

the neutral point, can hardly be influenced by the different

boundary values; on the other hand, in the theoretical arguments

for the analytical models, it has been said that the reconnec-

tion rate, defined in the above sense, is determined by

externally imposed boundary conditions. Our numerical results

may suggest that the reconnection rate would probably be con-

trolled by the local conditions near the neutral point rather

than the boundary conditions.

(ii) But for the local enhancement of the effective resis-

tivity near the neutral point considered in the present com-

putation, the large-scale X-type field configuration can no

longer exist; with increasing time the field configuration becomes

simply more and more flattened, the field lines and the plasma

being more and more accumulated in the region. Note that the

large-scale X-type field configuration is reauired for the arowth

of fast reconnection since without such a field line confiauration

the plasma could not effectively be ejected away bv the Lorents

(JXB) force (Petschek 1964) . The numerical result thus suagests

that a local increase in effective resistivity in the neighbor-

hood of a neutral point may be needed for the growth of fast re-

connection in actual systems.

The results obtained from the somewhat idealized computa-

tional models illustrate the fundamental effect of a local

increase in effective resistivity in the vicinity of the neutral
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point upon the occurrence and growth of fast reconnection.

The increase in effective resistivity may well result from, for

instance, anomalous and/or inertial effects in the local region

near the magnetic neutral point; however, this problem should

in essence require that the complex microscopic behaviour of

plasmas be studied, which is outside the scope of the present

hydromagnetic approach.
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DEPENDENCE OF FAST RECONNECTION ON *

THE MAGNITUDE OF RESISTIVITY

§1. Introduction

Chapter 6

The present chapter will further examine how the

fundamental configuration of fast reconnection is controlled

by various resistivity enhancements, imposed locally in the

vicinity of the magnetic neutral point. We shall argue that

the present numerical results are essentially consistent with

the previous theories of fast reconnection, once the problem

is reconsidered from another point of view.

In the present numerical procedure all the conditions are

the same as in chapters 3 and 4, and for several different

resistivity enhancements, which are assumed to have been

suddenly triggered locally in the vicinity of the magnetic

neutral point, the corresponding solutions are sought. It

is shown that according to the initially indented local resis-

tivity increases the respective quasi-steady Petschek-type

* See Ugai and Tsuda ( 1979 b)
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configurations are eventually set up without any special

external agency in a similar manner to that shown in chapters

3 and 4. In order to estimate the efficiency of the result-

ing fast reconnection, we may introduce the intrinsic reconnc-

tion rate for each case, which is defined as the maximum value

of the electric field at the neutral point up to which the

induction electric field grows because of the strong hydro-

magnetic effects involved in the system. It is found that

the intrinsic reconnection rate thus defined has a weak

dependence on the resistivity in the diffusion region. Note

that this implication is essential in studying the fast reconnec-

tion problem as argued by previous authors (Petschek 1964, for

instance). Such a weak dependence of the efficiency of the

fast reconnection process on the resistivity in fact results

from the fact that the fundamental structure of the established

quasi-steady configuration is directly controlled by the

initially imposed localized enhancement of resistivity; namely,

for the smaller value of locally enhanced resistivity the size

of the diffusion region becomes smaller and hence the current

density more enhanced in the diffusion region. It should be

remarked that how the diffusion region size is eventually determined

in real plasmas is one of the most significant keys to any

realistic mechanism of fast reconnection.

We may now clarify how the present numerical results are

related to the previous theoretical work in both qualitative

and quantitative aspects. As argued in chapter 5, there is
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an apparent discrepancy between the numerical models and the

analytical models concerning the basic question of which specific

conditions (either far from, or near to, the neutral point)

are essential in determining the fundamental structure of the

Petschek-type configuration. Nevertheless, it should be noted

that most of the analytical results could still be applicable

to any steady configuration of fast reconnection regardless

of how it originated. This is apparent if one takes it into

account that the analytical studies have not considered the

temporal evolution of fast reconnection but rather have only

found various steady-state external flow configurations which

yield fast reconnection. We shall see later in this chapter

that this conceptual difference has the follwing consequence:

in the analytical treatments any reconnectioni rate is possible

up to an upper limit that is determined by the given resis-

tivity in the diffusion region, since it is postulated there

that the diffusion region size is freely adjusted to any given

external flow, whereas in the present numerical experiment the

reconnection rate should be uniquely determined by the resis-

tivity, locally enhanced in the diffusion region. We shall

then point out that each of the quasi-steady configurations,

obtained by the numerical experiments, is equivalent to none

other than the Petschek-type configuration that corresponds

to the allowable maximum reconnection rate for the relevant

magnetic Reynolds number based on the resistivity in the diffu-

sion region. This conclusion is of actual importance in
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applications of the mechanism of fast reconnection, since it

is now well known that the maximum reconnection rate of the

petschek-type configuration is sufficiently large to be applied

to large dissipative events in cosmic plasmas.

In the present experiment, all the numerical methods are

the same as those of chapters 3 and 4. For the basic equations

and the normalization procedure, see §2 of chapter 3 ; also,

for the numerical scheme see 3.3 of chapter 3 and 2.3 of

chapter 4. The initial and boundary conditions are described

in 3.2 of chapter 3. In the following computations, the value

of k is fixed at 1 , and taking various values of S (see

Eqn. (3.5) of chapter 3 ) we seek the corresponding solutions.

The other paramerers have the following values: the domain for

computation is of size 2.0X2.0 and the mesh size Ax ( =

Ay ) = 0.04 (see Fig.8 of chapter 3 ), the time step /＼t

is appropriately chosen so as to satisfy the numerical stability

condition (cf. 3.3 of chapter 3). In addition, it is again

assumed that the specific heat ratio Y= 2.0 and the initial

ratio of the gas pressure to the magnetic pressure outside the

current sheet (3Q = 0.1 ; also, Rm ( = /foLVA(/''7o ' the

magnetic Reynolds number) = 1000.

§2. Results

In order to have an overall picture of the development
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Fig. 37. Temporal variations of current density ( J ), mass

density ( f ) and gas pressure ( P ) right at the magnetic

neutral point, corresponding to the local resistivity

enhancements (a) S = 200 , (b) S = 50 , (c) S = 25 and (d)

S = 10 .
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of fast reconnection, in Fig. 37 are shown, as before, the

temporal evolution of the mass density P , the plasma pressure

P and the current density J (multiplied by -1 in the

figure) right at the magnetic neutral point for each of the

distinct local resistivity enhancements (characterized by S ),

From the figure, we can readily see that qualitatively the

evolution of each reconnection process is quite similar to

that already shown in chpaters 3 and 4. In the quantitative

aspect, however, some distinct features should be remarked.

First, we may see that for a smaller value of S the corres-

ponding time needed for establishment of the configuration

of fast reconnection becomes longer (notice that immediately

after the current density attains its peak value the quasi-

steady configuration of fast reconnection is established;

see chapter 4). It may be noted that magnetic tension is

produced in the system through the initial diffusive effect

due to locally enhanced resistivity (diffusive stage; see

chapter 3 ), which in turn causes the global plasma flow.

For a weaker enhancement of resistivity, the smaller the initial

diffusive effect, so that the growth of plasma flow of course

requires more time. This is consistent with the implication

of Fig. 37 since it is the resulting global flow that plays

a crucial role in constructing the overall configuration. We

next notice from the figure that the peak value of the current

density during the evolutionary process is larger for smaller

values of S . In this connection , it should be noted that
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the resulting plasma flow in turn reinforces the diffusive

effect by enhancing the current density in the diffusion

region until the diffusive effect becomes comparable with the

hydromagnetic effect, when the quasi-steady configuration is

set up (for details see chapter 4). This result, obtained

numerically, originates in the very complicated nonlinear

interactions between the hydromagnetic effect outside the

diffusion region and the diffusive effect inside it. This

result obviously indicates that, as will soon be seen more

directly, the diffusion region becomes smaller in a configura-

tion corresponding to smaller resistivity in the diffusion

region, which has a most important consequence in the problem

of fast reconnection.

We find that for the variously imposed values of S the

corresponding configurations strongly support Petschek's

mechanism in the same manner as shown in chapter 4. Let us

exemplify the quasi-steady configurations for two extreme

cases of S = 25 and S = 200 (in the case of S = 10 the

size of the diffusion region is so much reduced that the

corresponding quasi-steady configuration seems to be somewhat

obscured, especially in the inner region, because of the coarse

grid taken in the present numerical scheme). In Fig. 38 the

field and flow configuration and in Fig. 39 the current density

distribution are shown for each of these cases. The fundamental

difference between these quasi-steady configurations is quite

apparent from these figures. In the configuration correspond-
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ing to S = 25 , the diffusion region is more contracted to

the vicinity of the neutral point. Hence the slow shock,

which stands in the external flow region and is attached to

the diffusion region, is more depressed as seen in Fig. 39 (

note that the current density is notably enhanced where the

shock stands).

For the purpose of seeing more directly how the correspond-

ing sizes of the diffusion regions in the established quasi-

steady configurations differ from one case to another, it seems

relevant to examine the spatial variations of the magnetic field
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Fig. 38. Field and. flow configurations in the quasi-steady

states corresponding to the local resistivity enhancements

(a) S = 200 (at time t = 17.4 ) and (b) S = 25 (at t =

27.0 ). In (a) of the figure the boundaries are labelled

by ~J~7(i=l,2,3,4). In each of the figures, indicates

the boundary of the diffusion region given by D (s jj^XB/

(R Ylj) ＼ ) = i and at the top the scale of velocity is
in '"* i
indicated. The dot at the origin is the position of the

magnetic neutral point.

component B along the y axis for each configuration, which

is shown in Fig. 40. It is apparent from the figure that the

size of the diffusion region, where the magnetic field shows

a large variation, becomes smaller corresponding to smaller

values of S . It should especially be remarked that the
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Fig. 39. Contour lines of current density distributions

in the quasi-steady states with contour interval of 0.3,

corresponding to the local resistivity enhancements (a) S =

200 (at time t = 17.4 ) and (b) S = 25 (at t = 27.0 ).

fundamental structure of the final configuration is largely

controlled by the magnitude of the enhanced resistivity, which

suddenly appeared at the initial time locally in the vicinity

of the neutral point.

As argued in chapter 4, the process of the development

of fast reconnection should be viewed as a gross instability,

inherent to the current sheet system itself. We may now con-

sider quantitatively how the magnitude of such a gross instability
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Fig. 40. Profiles of B along the y axis in the quasi-

steady confiqurations corresponding to the different resis-

tivity enhancements. (1) S = 200 (at time t = 21.0 ),

(2) S = 100 (at t = 22.5 ), (3) S = 50 (at t = 26.4 ),

(4) £ = 25 (at t = 30.0 ) and (5) S = 10 (at t = 36.0 ).

depends on the locally enhanced resistivity. For this purpose

let us introduce an intrinsic reconnection rate (denoted by

E. ) for each of the temporal dynamical processes of reconnec-

tion as already defined in % 1 of this chapter (remember that

Eo thus defined is the same as in chapter 5 ) We may well

measure the magnitude of the reconnection process simply by

Eq . By observing that the electric field is given by R SJ

at the neutral point, E≪ can readily be obtained from Fig. 37.

In Fig. 41 is shown the dependence of the intrinsic reconnec-

tion rate En on the local resistivity enhancement characterizd

by S . in this figure we take into account that when S = 1

(i.e. there is no resistivity increase), En must nearly equal
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Fig. 41. Dependence of the intrinsic reconnection rate Fn

on the local resistivity enhancement, characterized by S .

is defined as R^SJ (0, 0) , where R ( = MnLVan/y?n ,

the magnetic Reynolds number) is taken as 1000 and

J (0,0) is the maximum value of the current density at
max
the magnetic neutral point during each of the evolutionary

processes of fast reconnection.

zero since there is no gross instability (although some resis-

tive instabilities would take place). Note that the abscissa

shows S on a logarithmic scale. We can thus see that E~

has a weak dependence on S . It should be noted that such

a weak dependence of the magnitude of the fast reconnection

rate on the local resistivity near the neutral point has

directly resulted from the fact that the diffusion region

becomes smaller as the magnitude of the local resistivity en-

hancement becomes smaller. A similar consequence has been
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suggested in the previous theoretical studies under a certain

assumption in calculating the reconnection rate. With respect

to this, more systematic arguments will be given in the follow-

ing section.

§3. Discussion

One of the most fundamental problems concerning the fast

reconnection process is to seek the possible maximum reconnec-

tion rate. In the Sweet-Parker model, magnetic energy is

released only becuase of magnetic field diffusion due to finite

resistivity. The reconnection rate, hence, is strongly

dependent on the resistivity and is found to be too small to

be applied to solar flares, since in cosmic plasmas the magneic

Reynolds number is usually extremely large. In Petschek's

model the diffusion region is restricted to a small region in

the vicinity of the magnetic neutral point, so that the re-

connection rate depends weakly on the resistivity and the

allowable maximum rate is sufficiently large for solar flare

phenomena. With this in mind, one may note that one of the

keys to the basic mechanism of fast reconnection lies in how

the diffusion region can eventually be reduced to a small region

near the neutral point through the temporal dynamical process

involved in the system. Therefore in studying the fast re-

connection problem we should take into consideration the physical
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grounds on which the diffusion region is constructed. Note,

however, that in previous analytical treatments, which mostly

gave steady-state configurations, the detailed structure of

the diffusion region which should be matched to the external

flow has not as yet been shown in a convincing manner. In

obtaining the definite reconnection rate, it was postulated

that the size of the diffusion region adapts to any imposed

external flow; thus the external conditions at large distances

from the neutral point largely determine the overall con-

figuration of fast reconnection.

There may arise a question whether or not the basic

postulate prescribed in the analytical treatments in fact holds

in the real physical world. Of course, any convincing answer

to this question requires the careful study of distinct char-

acteristics involved in the temporal dynamics of fast reconnec-

tion. Parker (1973) pointed out that Petschek's configura-

tion required some extra mechanism that can produce an apex

in the field lines as they approach the neutral point. As a

matter of fact, it seems quite difficult to envisage a situa-

tion where some external agency far from the neutral point

can cause any bend of the lines of force that appear in the

external region, because they could readily be smoothed by the

resulting Alfven-wave transmission. Also, our numerical

experiment, shown in chapter 5, directly examines the effects

of persistent injection of magnetic fluxes, forced by some

external agency, upon the process of fast reconnection. As
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pointed out there, the numerical results did not support such

an analytical postulate; that is, the external agency cannot

have any significant effect upon the fundamental structure of

the Petschek-type configuration. It seems therefore question-

able in real plasmas that the diffusion region adapts itself

to any given external flow by varying its size.

On the other hand, all the present numerical results have

shown that local resistivity enhancement is essential to

establishing and, further, to sustaining, the overall con-

figuration of fast reconnection. (Note that locally enhanced

resistivity in fact produce an apex in the lines of force as

required by Parker (1973); for details see chapter 3.) In

this case , the fundamental structure of the established con-

figuration is determined accordingly by initially imposed local

resistivity enhancement, which also determines the correspon-

ding reconnection rate. Obviously, this situation is in-

consistent with the basic consideration that results from the

analytical studies. However, as already pointed out, the

analytically obtained mathematical solutions are relevant only

to established steady configurations with no regard to their

evolutionary development. For this reason, it is not surpris-

ing that the quasi-steady configurations, obtained by the

present numerical experiment, are in good agreement with the

theoretically derived Petschek-type configuration (see also

chapter 4) .

We may now quantitatively examine the relation between
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the present numerical' results and the previous theoretical

works. Note that in usual analytical treatments the effect

due to finite resistivity is taken into account only in the

diffusion region Hence, to compare with the analytical studies,

the magnetic Reynolds number R is defined, by the effective

resistivity in the diffusion region, as

R = (L /L)S
me e m

Here, L is the characteristic scale length of the whole

region to be considered, L the half-width of the initial

(6.1)

current sheet as before and Rm ( s H qLV^T? q ) the previously

defined magnetic Reynolds number; also, the mean value of resis-

tivity in the diffusion region is taken to be S **?_ for

simplicity In the analytical treatments the reconnection

rate can be parametrized by the values of R
me

As mentioned in §3 of chapter 2, the analytical studies

presented the mathematical solutions on the steady Petschek-

type configurations in incompressible fluids and calculated

the relations between the Alfve'n Mach number M at the
e

distance L and the same quantity M. just outside the

diffusion region on the y axes. See, for instance. Fig. 6,

which is based on the result by Priest and Soward (1976), in

which the relation between M. and M is shown using R ,
i 6 rn.6

as a parameter. According to Vasyliunas' statement, the re-

connection rate M may lie anywhere on the corresponding
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curve and has the allowable maximum value when M. reaches

unity. Note that this conclusion is a direct outcome of the

basic postulate prescribed in their models. However, one

may notice that there is some ambiguity in this analytical

result. Consider the case of M. = 1 , which corresponds to

the maximum value of M according to the above result. But,

it is obvious from the consideration of the diffusion region

by these authors that when M. = 1 the inflow and outflow

speeds just outside the diffusion region are equal to each

other. Therefore, the inflow- and outflow-side dimensions of

the diffusion region must also be the same because of the mass

conservation of incompressible fluid. Obviously, this indicates

that there exists no net current flow in the diffusion region

as can be seen by taking the curl of B^ . This in turn implies

that no effective reconnection can take place in the diffusion

region. This apparent paradox seems to have resulted from

a lack of detailed examination of the precise structure of the

diffusion region especially in the case when M. is not much

less than unity. It should therefore be remarked that not

every reconnection rate up to the upper limit could necessarily

be realized in the real physical world.

In the present numerical experiments, on the other hand,

the reconnection rate is uniquely determined by any given Rme

as already pointed out. Table 4 shows characteristic quantities

on the y axis just outside the diffusion region in each of

the quasi-steady configurations that correspond to the local
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Table 4. Characteristic physical quantities at (x, y) =

(0, y.) on the y axis, just outside the diffusion region,

and at tine t , in each of the quasi-steady configurations

corresponding to the local resistivity enhancements S = 200,

inn sn . ?=; and i n

resistivity enhancement, S In the table, the numerically

obtained local Alfven Mach number (denoted by M. in accordance

with the analytical treatments) is defined as lu /V . which

is calculated for each quasi-steady configuration. We find

that the temporal variation of M. is sufficiently small

during each of the quasi-steady processes. Suppose that the

present numerical solutions could be extended to some larger

region of characteristic scale length L , although the region

for the numerical solutions has been restricted to a rather

small region near the diffusion region because of numerical

limitations. Note that the analytical solutions are given

for the external flow of characteristic length L . The

present numerical results may thus be applied to the theoretically
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developed Petschek's models, though the analytical models are

usually highly idealized.

In spite of some differences in basic mathematical treat-

ment between our numerical and the analytical models (such as

fluid compressibility, etc. ), let us directly apply the

numerical results shown in table 4 to Fig. 6 (see chapter 2).

We may first note in Eqn. (6.1) that R = 1000 in the present

numerical computations and that Lg/L is usually much larger

than unity. Table 4 gives the numerical value of M. for a

given value of S , which also determines the value of R (
me

see Eqn. (6.1)) Given a pair of values of M.

f M is found in Fig. 6.

and R
me

r

the relevant value of Me is found in Fig. 6. Each value

of M thus found corresponds to the maximum (or plateau)

value of M . It is therefore concluded that quasi-steady

configurations that have evolved from the indentation of local

resistivity increase are none other than the Petschek-type

configuration with the allowable maximum reconnection rate.

This conclusion seems to be of fundamental importance in actual

systems, since Petschek's mechanism is the only workable model

for fast reconnection (Priest and Soward 1976).

§4. Summary

We first recall that attention has been directed primarily

towards discovering the basic physical mechanism by means of
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which the magnetically stored energy can be released as rapidly

as large dissipative events such as solar flares and magneto-

spheric substorms. The first to set up such a mechanism was

Petschek (1964) who recognized the importance of MHD slow

shock for this probem. Since Petschek's suggestion, most

analytical studies have concentrated on more sophisticated

mathematical solutions for the external flow region by

incorporating his basic idea. It is now established that

the Petschek-type configuration that corresponds to the allowable

maximum reconnection rate is most applicable to these flare

phenomena. Unfortunately, however, the analytical school

has failed to elucidate the temporal dynamics of Petschek's

mechanism. In order to calculate the reconnection rate, it

is simply postulated in the analytical treatments that the

diffusion region size can be freely adjusted according to any

given external flow. It should be recognized that this

fundamental postulate is not based on a firm mathematical

foundation but rather is an ad hoc prescription. The validity

of such a postulation is in fact highly questionable, so that

the analytical calculation of the upper limit also seems obscure.

We have argued that in most major respects the present

numerical results are entirely consistent with theoretical

studies on the fast reconnection problem. Specifically, we

have shown: (i) the quasi-steady configurations, established

according to variously imposed localized enhancements of resis-

tivity, exactly describe Petschek's mechanism; (ii) the re-
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connection rate, which is uniquely determined for each of the

quasi-steady configurations, corresponds to the allowable

maximum reconnection rate of Petschek-type configuration for

the relevant magnetic Reynolds number; (iii) the reconnection

efficiency is weakly dependent on the resistivity in the diffu-

sion region just as required for the fast reconnection problem.

Note that such a weak dependence on the resistivity has

resulted from the fact that the, size of the finally constructed

diffusion region is in each case determined by the initially

imposed local resistivity enhancement through the hydromagnetic

effects during the evolutionary process. Nonlinear hydro-

magnetic effects in fact do play a crucial rolo in constructing

the overall configuration; however, it should be emphasized

that the ultimate cause is the localized enhancement of resis-

tivity. The occurrence of anomalous resistivity in the

vicinity of the neutral point was observed in agreement with

our numerical results by the reconnection experiments (see,

for instance, Bratenahl and Baum 1976 ); also, Amano and Tsuda

(1978) recently suggested that current-induced instabilities

can easily occur both in the geomagnetic tail and in the

solar atmosphere.

All our numerical investigations have shown that, in

contrast with the analytical predictions, the local conditions

near the neutral point are important in accomplishing fast

reconnection. In view of the ambiguity of the basic posulate

in the analytical treatments, we suggest that in the real
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physical world the fast reconnection process should be regarded

as a sort of gross instability, inherent to the current sheet

system itself, which can be triggered by some local onset of

anomalous resistivity.
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SUMMARY AND DISCUSSION

§1. Summary of the Computer Experiments

Chapter 7

A series of our computer experiments have studied the

two-dimensional temporal dynamics of field-line reconnection,

which is a probelm of hiqh topical interest in fast reconnection

mechanism In fact, nothing other than the eventual solutions

could convincingly clarify the actual mechanism of fast re-

connection in the real physical world ( Parker 19 73 ). Now

let us summarize below the major points that we have argued

in a series of chapters 3-6.

Chapters 3 and 4 demonstrated in a typical case a non-

linear development of the Petschek mode fromi the current sheet.

By the onset of anomalous resistivity in the local region to

be identified with a magnetic neutral point the quasi-steady

Petschek mode can eventually be established on the nonlinear

saturation level. This process may well be regarded as a

decay process, through which the energy stored in the initially

antiparallel magnetic field that extends to infinity is

brought in across the boundaries and rapidly released, owing
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to a gross instability inherent in the current sheet system

since there is no special boundary condition in the model.

Chapter 5, on the other hand, examined the effects of

persistent externally forced injection of magnetic fluxes.

It showed that, corresponding to fixed rates of magnetic flux

injection, specified on the inflow boundary, there are

stationary configurations in each of which such an external

influence is ultimately matched to the inner reconnection

process. It was pointed out there that the external agency

has little significant influence upon the fundamental structure

of the spatial changes of variables; also, the Petschek-type

configuration is no longer sustained if the local resistivity

increase near the magnetic neutral point disappears.

Chapter 6 further examined the dependence of the Petschek-

mode development on the resistivity magnitude in the immediate

vicinity of the neutral point. It was shown that the re-

connection efficiency, which, is determined for each of the

Petschek modes, established according to variously imposed

localized enhancements of resistivity, has a weak (logarithmic)

dependence on the resistivity in the diffusion region. This

conclusion in fact assures that even in highly conducting

plasmas large-scale conversion of the magnetic potential energy

stored in the current sheet system into plasma energies can

effectively be realized ; the initially antiparallel magnetic

field configuration can rapidly be translated topologically

into the large-scale X-type field configuration due to magnetic
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field reconnection.

§2. Comparison with Fast-Reconnection Theories

Previous analytical treatments concerning the fast-re-

connection problem mostly gave steady-state configurations, and

the evolutionary process of fast reconnection has not been

shown in any convincing manner. There is an apparent con-

ceptual discrepancy between our computer models and analytical

models concerning the basic question of how the Petschek mode

can eventually be established in actual plasmas. Nevertheless,

the computer experiments succeeded in obtaining almost all

the important consequences derived from the analytical studies.

Now let us summarize below the major controversial points.

C＼＼SlnM-shnrV frnrma+■i on

One of the most important consequences, suggested by the

theoretical studies, is that in order for the fast reconnec-

tion to be realized slow shock should stand in the steady con-

figuration. The present computer experiments in fact showed

that the slow shock can eventually stand in the quasi-steady

configuration.

(2) Controlling factors

This problem necessarily requires that the temporal

dynamics of reconnection be studied The analytical studies

merely postulated that the external conditions at large
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distances from the neutral point could largely determine the

overall configuration of fast reconnection. The computer

experiments, on the other hand, showed that the fundamental

structure of the Petschek mode is little influenced by external

conditions ; rather, it is determined by the resistivity,

locally enhanced in the vicinity of the neutral point. Ob-

viously, in the analytical studies, the reconnection process

was considered to be, so to say, such a passive mechanism

that externally given energy, in the form of large-scale

dynamical plasma motion, concentratedly flows out through the

thin layer (namely the field reversal region) ; on the other

hand, in our computer models, it was regarded as a very active

mechanism such that the critically stored magnetic energy is

suddenly released as a result of a gross instability inherent

to the current sheet system.

Theories predicted on the basis of the above postulate

that for the Petschek mode any reconnection rate is possible

from zero to an allowable maximum rate according to external

conditions ; the maximum rate is determined by a given magnetic

Reynolds number. On the other hand, our computer experiments

showed that the reconnection rate is uniquely determined, in-

dependently of external conditions, by a given magnetic

Reynolds number ; the resulting configuration corresponds to

none other than the Petschek mode with the allowable maximum

reconnection rate.
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§3. Applications to Phenomena in Actual Plasmas

The present numerical results may be applied to phenomena

occurring in the real physical world. In §4 of chapter 1

we showed typical phenomena, associated with magnetic field

reconnection, that were observed in laboratory plasmas as well

as in space plasmas. We may first refer to the reconnection

experiment, called the DIPD, by Baum et al.. As shown in

4.2 of chapter 1, they found that anomalously high electrical

resistivity, due to ion-sound waves, is caused locally in the

vicinity of the neutral point during the reconnection process.

This is entirely consistent with our numerical results ( Raum

private communication) .

In the solar atmosphere, sunspot fields, which are likely

to be sheared, are usually very complicated as shown in 4.3.2

of chapter 1. Hence, the present two-dimensional reconnec-

tion process could not directlv applied to the solar flare

phenomenon. But, it should be noted that the major plasma

processes involved in a solar flare consist of the impulsive

plasma heating due to, perhaps, occurrence of anomalous resis-

tivity and the subsequent large-scale plasma instability.

We have in fact seen in this thesis that these properties are

quite well provided by the fast-reconnection development.

In the geomagnetic tail, on the other hand, the field

geometry is rather simple and can be approximated by an anti-

parallel field, so that the present numerical results may
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well, in essence, be applied to magnetospheric substorms. In

the following, therefore, we shall intend to construct a simplified

model for the substorm on the basis of both our computer

results and the major observational evidences concerning the

substorm which were mentioned in 4.3.3 of chapter 1.

Suppose that the fast reconnection is proceeding in a

finite region inside the tail during the explosive phase.

The reconnection region, shown in Fig. 1 (see chapter 1), must

then have a finite width, |z|< Z say, outside which there

is no reconnection disturbance. Fig. 42 (a) illustrates a

simple version of the three-dimensional process in the (x, z)-

plane. Note that the z-axis corresponds to an X-type magnetic

neutral line in the reconnection region. In the coordinate

system, the y-axis is directed northward and the x-axis

directed towards the earth. We may consider here only the

region corresponding to x^ 0 and y > 0 in the figure;

hence, the electrical quantities E, , I, and I_ are all

the same as those shown in Fig. 1. Remark that the current

density I, associated with the B field in the reconnection1 y

region should flow along both its sides due to 3B /9 z as

shown in the figure. The ionosphere, represented as a variable

resistance in the figure, may well be connected to the reconnec-

tion region by the field lines that pass through the reconnec-

tion region. Fig. 42(b) hence shows the reconnection process

working as a dynamo in the tail and the associated current

system that could link the tail to the ionosphere.
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Fig. 42(b) shows that a westward electrojet may well be

caused in the polar ionosphere. The behavior of auroral

electrojet would be determined by how the electric field develops

in the tail. As have been seen, in the fast reconnection

process the associated electric field spreads from the inner

region towards the external region; also, the width of the re-

connection region Z would become larger with time in actual

systems. Accordingly the connected region in the ionosphere

would become extended in the east-west direction and move pole-

ward, which is consistnet with the well-known behavior of

auroral electrojet.

In reality such an electrical connection of the ionosphere

to the tail will certainly have some influence on the reconnec-

tion process in the tail. However, this problem should involve

very complicated plasma processes, so that for simplicity we

may assume here that the reconnection (especially the associated

electric field E, would not so much be influenced by the

feedback In Fig. 42(b), therefore, the dynamo is tentatively

thought to be a constant voltage source. In order to give

quantitative examinations, we may employ the present numerical

results, that give typically B Cz.

where VAQ = B

0.1B and V c* 0.6V
yi xu o

(M MN )~1//2 is the Alfven speed in the

AO '

tail; NQ and M are the number density and the proton mass,

respectively. We thus obtain the voltage V, = E Z~6X10~2

Bx0VA0Z
On -hhp. othp.r hand. hhf≫ amount of maanetic field

annihilation in the region during the explosive phase, denoted
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by WT , can be calculated by WT = WQZ T = VI t (see

Eqn. (1.2)), where T is the duration of the explosive phase

Considering the typical values in the tail N C±5X105 m~3

and BxQ Cz. 25 X 10 Wb/m , assuming T ^io3 sec , L ^ 1OR
x E

and Z ^10RE ( R is the earth radius), we obtain V
~

7X104 Volt and W <± 0.9X 10 erg Here. we should note

that the actual amount of magnetic energy release in the whole

region of the tail is at least 4 times larger than W and

21
hence larger than 4 X 10 erg. These estimates are in

good agreement with the observations shown in table 1 of

chapter 1. We hence confirm that the basic process of fast

reconnection, derived form our computer experiments, is quite

snnii'r'ahlp f-n ^nrnrai nhprnnipns .

§4. Conclusion

Let us conclude the present thesis with remarking some

important problems concerning magnetic field reconnection that

remain still unsolved.

(1) Being initiated by a resistive disturbance, the

fast reconnection develops from the current sheet without any

special external agency- The fast-reconnection development

may hence be viewed as a sort of resistive instability whose

nonlinear saturation corresponds to none other than the Petschek

mode where large-scale conversion of magnetic energy is
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realized. In this respect, one may be reminded of the

tearing mode, a well known resistive instability, that also

develops from the current sheet due to finite resistivity.

In studying the fundamental problem of magnetic reconnection,

hence, it may be quite important to elucidate some definite

connection between the tearing mode and the Petschek mode.

(2) In actual systems, there are many important situa-

tions where magnetic fields are likely to be sheared. Hence,

magnetic field reconnection in a sheared field, or more

generally three-dimensional reconnection process, should be

elucidated in applications to actual plasmas.

(3) It is now obvious that occurrence of anomalous

resistivity is essential for the fast-reconnection develop-

ment. Hence, physical conditions for triggering increase

in effective resistivity in the current-sheet geometry should

be examined in a variety of actual systems. This problem

certainly requires that microscopic plasma behaviors be examined

during the temporal dynamics of (macroscopic) field-line re-

connection.

Further researches of these probelms will lead to a

deeper understanding of magnetic field reconnection. We

believe that, because of the remarkable electrodynamical

energy conversion involved, magnetic field reconnection will

certainly become more and more important in applications to

various plasma devices as well as to interpretations of various

distinct plasma phenomena observed in space.
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