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ABSTRACT

This dissertation develops the optimal logic structure of

safety monitoring systems composed of sensors with two kinds of

contradictory failures; a failed-dangerous (FD) and a failed-safe

(FS) failure. The dissertation is divided into three parts.

The first part considers a safety monitoring system composed

of several channels. Each of them consists of identical sensors

and supervises a specific plant state, e.g., temperature or

pressure. When a state becomes abnormal, the corresponding

channel issues a channel alarm and activates protective actions.

The problem is to design the optimal coherent structure for each

channel, minimizing an expected total loss. For a one-channel

safety monitoring system as the simplest case, the optimal

structure is proven to be k*-out-of-n:G structure, and a simple

formula to obtain k* is also given. Further, we discuss how the

optimal k* varies, depending on the FD and FS failure

probabilities of the sensor, the failure probability of the

plant, and the losses caused by the FD and FS failures of the

safety monitoring system. For the multi-channel safety monitoring

system, the optimal channel structure is proven to be k-out-of-

n:G structure, and the problem is formulated in non-linear

integer programming (NLIP). The NLIP problem is then solved by

the extended Lawler and Bell's method.

The second part deals with a safety monitoring system

composed of various types of sensors. An appropriate protective

procedure is activated on the basis of the output of the sensors.

The problem is how to obtain the optimal Boolean structure to
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combine the sensors, in the sense it minimizes an expected total

loss caused by FD and FS failures of the sensors. A simple rule

to determine the optimal structure among all the Boolean

structures is given by a switching function. Some properties of

the switching function is proven for the following three

situations: 1) all the sensors monitor the same plant state and

their failures are statistically independent, 2) sensors monitor

several statistically independent plant states and fail

statistically independently, and 3) sensors supervise several

statistically dependent plant states. Then, the similar property

of the optimal structure for each situation gives a simple

systematic search method to determine it and a simple expression

of the structure function. A non-coherent structure can be

optimal in some case. Analytic solutions are also obtained for

the one-plant monitoring safety systems composed of identical

sensors.

The last part discusses an optimal shut-down logic for the

overall protective system, which is composed of 1) a sensing

section, 2) a judging section, and 3) a driving section. The

previous two parts consider only FD and FS failures of the

sensing section. In this part, each section has two kinds of

failures: FD and FS failures. The problem here is to obtain the

optimal Boolean shut-down logic that minimizes an expected total

loss caused by failures of the overall protective system. The

optimal shut-down logic is determined by a simple switching

function. A path set expression of the optimal logic is also

shown. For an overall protective system with reliable judging and

driving sections, the switching function becomes equivalent to
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the switching function in the second part; the optimal shut-down

logic is determined by the reliability of the sensing section.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION AND HISTORICAL REVIEW

In recent years, such systems as chemical plants, nuclear

plants, and electric power supply systems, have shown a rapid

trend toward increased size and complexity. Once an accident

occurs in these systems, it incurs a great loss of life and

property, and further produces environmental disruptions. The

losses caused by it are now becoming impossible to estimate. In

order to reduce the damage to a minimum, various kinds of

protective systems are used. These systems are modeled as shown

in Fig. 1.1. In normal operation, the plant is regulated by its

control system and its protective system is on standby. When an

unlikely emergency or a given type of failure occurs in the

plant, or when the control system gets out of order, the

protective system must shut down the plant to prevent an

accident. The protective system is composed of three sections;

sensing, judging, and driving sections. The sensing section is

composed of sensors and monitoring the state of the plant. The

judging section processes all the signals from the sensing

section to decide whether the driving section should be

activated or not. The driving section is activated by the

command from the sensing section, shutting down the plant. In
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this dissertation, the safety monitoring system is defined as a

subsystem of the protective system, which consists of the sensing

and judging sections. Thus, the most essential function of the

safety monitoring system is to detect premonitory symptoms of an

accident as quickly as possible, make an alarm, and activate an

appropriate protective procedure. The first requirement is to

generate an alarm under an abnormal state of the plant.

Let us consider the case where the plant monitored by the

safety monitoring system is normal. The generation of an alarm in

this case yields unnecessary protective actions such as a plant

shut-down, leading to a reduction in the availability of the

system. Spurious alarms are not considered to be harmless from

the economical point of view. Further, the frequent occurrence of

spurious alarms weakens not only the effectiveness of alarms, but

also the function of the safety monitoring systems. For example,

in a modern high building two or three thousands of fire

detectors are set up, which yield so many spurious alarms as to

introduce great confusion into the fire fighting. The second

requirement is to issue an alarm only in case of emergency.

According to the above two requirements, sensors used in

protective systems, alarm systems, etc., have two kinds of

contradictory failures; a failed-dangerous (FD) failure and

failed-safe (FS) failure. The former implies that the sensor does

not yield its sensor alarm when the state of the plant monitored

is abnormal, while the latter implies that the sensor yields the

spurious sensor alarm when the plant state is normal. Table 1.1

[S2] shows an example of failure rates of these two failures of a

sensor in protective systems. It is interesting to note in Table

3



Table 1.1

Item

Failed-dangerous rate and Failed-safe rate [S2]

Failed-safe rate
(spurious
faults/year)

Process

connection

Diff. pressure
transmitter

Signal line
interface

Pressure
switch

Channel wiring
and relay to
logic

Totals

0.21

0.31

0.03

0.10

0.02

0 0.67

Failed-dangerous

rate

(faults/year)

0.15

0.14

0.007

0.03

0.02

3 47

4



Fig. 1.2 Simplified protective system logic [L2]
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1.1 that the FS rate is twice as high as the FD rate. A safety

monitoring system composed of a single sensor has limit in its

reliability. Thus, in order to obtain a system with higher

reliability, safety monitoring systems composed of more than two

sensors must be considered and the FS failure must be considered

in design as well as the FD failure.

Consider a protective system of a nuclear power plant. Fig.

1.2 [L2] shows a simplified logic diagram to initiate safety

systems. There are various events which lead to a plant shut

down. In Fig. 1.2, for example, "containment isolation" is

activated when the corresponding event, "containment

contamination", is detected. This event is defined by an OR

combination of abnormal states of the plant; either "containment

pressure" or "containment radioactivity" entering an unacceptable

range will trip the reactor and cause an appropriate protective

procedure, "containment isolation". Thus, different types of

sensors which monitor pressure, temperature, flow, flux, level,

etc., are applied in these large-scale plants. An orderly

protective procedure takes place based on the output of these

various types of sensors.

In this dissertation, we consider the optimal logic

structure of the safety monitoring system composed of sensors, in

the sense it minimizes an expected total loss caused by two kinds

of failures of the system.

As typical examples of such a device with two kinds of

contradictory failures, there exist fluid flow valves and

electric components such as diodes, relays, switches; electric

components have "short-circuit" and "open-circuit" failures.

6



valves are failed in either "stuck-closed" or "stuck-open". The

optimal structure design of such a system has been studied in

various configurations. These works are summarized in Table 1.2

from the viewpoint of the system configuration. Case 1 analyzed

the system composed of identical components and considered the

optimal structure in each configuration. Case 2 studied the

system composed of several subsystems, each of which consists of

identical components. In the lower row of Table 1.2 the system

configuration is, the number of structures considered becomes

larger. In case 1, the class of coherent structure includes all

the other five structures as a part. Kaufmann, Groucho, Cruon

[Kl] obtained the result that k-out-of-n:G systems are preferable

to any other coherent system in case of 3 identical components.

More general result was obtained by Phillips [P2]: the k-out-of-

n:G systems are preferable to any other coherent system in terms

of maximizing the reliability. Further, Ansell, Bendell [Al]

recently generalized Phillips' result [P2] to the case where

components fail s-dependently. On k-out-of-n:G systems, Ben-Dov

[B5] found the optimum k-out-of-n:G system that maximizes the

reliability given a fixed number of components. Thus, the optimal

structure among coherent systems that maximizes the reliability

is analytically obtained by the formula in [B5], In case 2, both

the allocation of components to each subsystem and the

determination of subsystem configurations are considered. Kolesar

[K10] formulated the problem to minimize one of two failure

probabilities in integer linear programming (ILP). Tillman [T3]

presented the reliability optimization problems with several

failure modes, where these failure modes are classified into two

7



Table 1.

Case

2 Classification I of works on optimal structure design

System
configuration

Subsystem
configuration

Series or

1

parallel

Series-parallel
or

parallel-series

Hammock networks

Two-terminal
parallel-series

k-out-of-n:G

Coherent
structures

2

Series

Series

Series

Works

[G2],
[B3],

(array),
, [Nil

[Bl], [P31

[C2],
[B2],
[K12]

[M5]

[L3]
[PI]
[M4]

[Jl], [S3],
[M2], [B5]

[Kl], [P2],
[Al]

[K10], [H2]

[T3], [H3]

Parallel

Parallel or
series

Series, parallel, [Gl]
parallel-series or
series-parallel
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Table 1.

(1)

2)

(3)

3 Classification II of works on optimal structure design

Optimality criterion

Maximization of the reliability

Maximization of the expected

time to failure

9

Works

[M5], [G2 ], [Bl]

[B2], [B3], [T3]
[H3], [PI], [Kl]
[K12], [P2]f [B5J

[Bl], [B2], [B3]

[K10]

[P3].
[H2],
[Gl],
, [Al]

[T3], [H2], [H3], [Nl]

Minimization of one-mode
failure probability

(4) Minimization of investment cost



classes: the class of failure in which the subsystem fails if one

component fails, and the class of failure where all the

components in the subsystem fail before the subsystem fails.

Henin [H2] applied a branch and bound algorithm to a similar

problem to [T3]. Hyun [H3] treated [T3] as a 0-1 linear

programming (ZOLP) problem and solved it by an implicit

enumeration method. Gopal, Aggarwal, Gupta [Gl] proposed a

heuristic method for [T3]. However, Nakagawa, Hattori [N2]

discussed Tillman's treatment [T3] and concluded that [T3], [H3]

and [Gl] include a common serious error. From the viewpoint of

the optimality criterion, these studies are classified as in

Table 1.3. Most of the works concentrated on the maximization of

the system reliability.

We develop a new optimization problem in the following

points compared with the previous studies:

(1) A wider range of system configurations

For the problem of case 1 in the first classification, we

first obtain the optimal structure among coherent structures, and

further among Boolean structures. In case 2, we do not place a

limitation on the system configuration, but we only assume that

subsystem structures are coherent at first. Then, we relax this

assumption and find the optimal structure among all the Boolean

structures. Further, we consider not only the system and

subsystems composed of identical components, but also those

composed of non-identical components.

(2) A new objective

The objective is to minimize an expected total loss caused

by two kinds of contradictory failures of the safety monitoring

10



system. This objective function expresses the system

unreliability as a special case.

Now, we review the studies on protective systems or safety

monitoring systems from the viewpoint of the reliability or

safety analysis. These studies are roughly divided into two

classes: 1) reliability analysis and 2) maintenance or inspection

optimization.

1) Reliability analysis:

Kawaguchi, ItC [K2] analyzed reactor instrumentations in

view of the reliability, considering various kinds of redundancy.

Booth [B7] also considered the effect of variation in redundant

tripping logic on the present worth of revenue requirements in

electric power generating stations. Nieuwhof [N4] discussed the

reliability of "ladder" and "railing" type relay contact

arrangements which produce the majority-vote signal in 2-out-of-

3:G and 3-out-of-4:G systems. Singh, Patton [S4] described a

model of a system and its associated protective system, and then

derived suitable relationships for the unreadiness probability

and the mean duration of undetected faults. Takami, Inagaki,

Sakino, Inoue [Tl] considered a problem to allocate fault

detectors to find component failures. Kontoleon [K13,K16]

analyzed a model of the safeguard with an adequate amount of

built-in reliability through the use of redundancy which has a

dynamic nature. Kontoleon [K15] presented an overall reliability

assessment of an m-out-of-n:G temperature-trip-amplifier system

withFD and FS failures. Kontoleon [K17,K18] designed a computer

program to analyze the FD and FS probabilities. Kumamoto, Inoue,

Henley [K21] developed a computer code which produces time

11



profiles of expected number of normal trips, spurious trips, and

destructive hazards. Kumamoto, Ohtsuka, Inoue [K22] gave formulae

to obtain these expected numbers for several systems. Takami,

Inoue, Sakino, Kumamoto [T2] dealt with the problem to standby

configurations of k-out-of-n:G systems from the viepoint of the

cost-effectiveness, considering the FS and FD failures. The

effect of failure of majority voters on the reliability of N-

tuple modular redundancy systems was analyzed by Mine, Hatayama

[M3] .

2) Maintenance or inspection optimization:

Kontoleon [Kll] studied the availability of a protective

system subject to supervisions by a Markov process, considering

nothing but FD failures. Chay, Mazumder [Cl] considered the

problem of determining the test frequency of components of the

safeguard, in such a way that an adequate level of readiness is

maintained. Kontoleon [K14] analyzed the optimum inspection

strategy of an m-out-of-n:G nuclear reactor system with non-

identical units, determining both the order and the interval.

Inagaki, Inoue, Akashi [II] dealt with multi-component protective

systems with staggered supervision schedules.

On the shut-down logic or configurations of protective

systems or safety monitoring systems, most of these studies

assumed majority-voting or k-out-of-n:G systems. Little on

the preference of these configurations has been analyzed

qualitatively and quantitatively.

With advent of digital and linear integrated circuits, not

only a higher reliability but also a better system performance

can be achieved in the trip logic and shut-off rod drop modules.

12



The employment of solid state devices throughout the system

achieves both a much faster system response and a better

reliability. From the practical point of view, several studies

have studied on these systems. Ozkaynak [01] devised a new

nuclear safety system through improvements in electrical and/or

electronic parts of the system. Harbert [HI] described an

automatic protective system which shuts down the plant quickly in

a logical sequence following a power failure or a hazard, without

damaging the plant. Todd [T4], however, expressed the views about

a set of rules constraining the reliability of post-trip cooling

systems and the risk of common-mode failures limits the extent to

which the microprocessor technology can be employed. Nakamura

[N3] introduced a new monitor and alarm system of gas leakage,

which uses micro-computers. Kimura, Hasegawa, Sekiguchi [K3]

proposed a microprocessor based system for processing redundant

instrumentation signals, which has many advantages such as the

capacity of performing flexible and complex functions and self-

testing features to increase the system reliability. Thus, the

trip logic can be selected from a wider range of structures than

the conventional majority vote, i.e., k-out-of-n:G systems. We

consider all the possible Boolean logic structures in the end to

obtain the optimal one, which may be implemented by the use of

microprocessors.

1.2 SCOPE OF THE DISSERTATION

The subject of this dissertation is to optimize the logic

structure of safety monitoring systems with two kinds of

contradictory failures; a failed-dangerous (FD) and a failed-safe

13



(FS). The main part of the dissertation is divided into three

parts. CHAPTER 2 is concerned with the mathematical preliminary.

The first part, which consists of CHAPTERS 3 and 4, deals with

the optmization of channel structures among coherent structures.

The second part consists of CHAPTERS 5, 6, and 7 and is devoted

to the optimization of Boolean logic structures to combine sensor

signals. The last part, CHAPTER 8, is concerned with the optimal

shut-down logic for protective systems which include safety

monitoring systems as a part.

CHAPTER 2 presents a mathematical preliminary for the

reliability analysis of safety monitoring systems, which will be

used in the succeeding developments. Fundamentals of the

qualitative and quantitative analyses of safety monitoring

systems are given. Typical structures of safety monitoring

systems are also introduced.

CHAPTER 3 considers the simplest safety monitoring system

that supervises a specific plant state, e.g., temperature or

pressure, with n identical sensors. We prove that the optimal

coherent structure minimizing an expected total loss is k*~out-

of-n:G structure and give a simple formula to find the optimal

k*. We also discuss how the optimal k* varies, depending on the

FD and FS probabilities of the sensor, the probability of the

plant failure and the losses caused by FD and FS failures of the

system. One method to obtain the optimal number of sensors is

shown in an illustrative example.

CHAPTER 4 is devoted to the optimization of multi-channel

safety monitoring systems, where each channel monitors a specific

plant state. When some states become abnormal, an "event" occurs.

14



The channels which monitor these abnormal states then initiate

appropriate safety systems. Several different events are assumed.

Sensors are either normal or FD or FS. More than one sensors are

available for each channel. The problem considered here is to

allocate sensors to each channel and to obtain the optimal

coherent logic structure for it. The optimal logic structure for

each channel is proven to be k-out-of-n:G structure, and then the

problem is formulated in non-linear integer programming (NLIP).

The NLIP problem is then solved by the extended Lawler and Bell's

method.

In CHAPTER 5, we consider the case where a specific plant

state is monitored by several kinds of sensors, which are not

necessarily identical. The safety monitoring system yields the

system alarm based on the output of sensor alarms and activates

an appropriate protective procedure. The optimal logic structure

that minimizes an expected total loss is obtained by a simple

switching function, considering all possible Boolean structures

which include non-coherent structures. This is an extension of

CHAPTER 3. Several properties of the optimal logic structure are

derived; a non-coherent structure can be optimal in some case. We

propose a simple systematic search to determine the optimal

structure. Analytic solutions are also obtained for systems with

identical sensors.

CHAPTER 6 develops the optimal logic structure for the

system which supervises several plant states. Each plant state is

monitored by several kinds of sensors. The system alarm is

generated on the basis of all the sensor alarms. The similar

switching function as in CHAPTER 5 gives the optimal Boolean

15



logic structure. The same development follows.

CHAPTER 7 extends the results of CHAPTERS 5 and 6 into the

case where plant states fail statistically dependently. The plant

is assumed to suffer losses when any plant state becomes

abnormal. We propose a classification of sensors into two

classes: "positively reliable" and "negatively reliable". The

optimal logic structure is shown to have monotone properties with

respect to sensors, depending on the reliability of them. The

analytic solutions are also obtained for a system composed of

identical sensors.

CHAPTER 8 studies the safety monitoring system combined with

safety systems, i.e., the overall protective system. The system

considered here is composed of driving, judging, and sensing

sections.Each section fails in two ways: FD and FS. The problem

is to obtain the optimal shut-down logic that minimizes an

expected total loss caused by failures of the system. The optimal

shut-down logic is determined by a switching function, which

becomes equivalent to the switching function of CHAPTER 6 if the

driving and judging sections are reliable.

CHAPTER 9 is a concluding chapter. We summarize the main

results obtained in this dissertation, and then states an

interesting topic for further research.

CHAPTERS 2 to 8 are partially based on [12], [13], [14],

[K4], [K5], [K6], [K7], and [K8] .

1.3 PRELIMINARY

e

I

Basic element of

Given (qiven that); used only with operators like
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Ea

Pr{ }

Pr{ I

0

s-

Y > X

}

Pr{ }, E{ }; the condition is on the right;

conditional events, per se, are not defined.

Statistically expected value (arithmetic mean, mean,

average, first moment); expectation is with respect to

the random variable a; the a can be omitted when a is

obvious.

Probability

Conditional probability

Number of combinations of n things taken m at a time

implies 'statistical(ly)'

i - n (i-xi)

Yi 1 Ki (i = l,...,n)

Y4 1 X. (i = !,...,n) with Y. > X. for some i
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CHAPTER 2

FUNDAMENTALS OF LOGIC STRUCTURE

OF

SAFETY MONITORING SYSTEMS

2.1 INTRODUCTION

The sensor or the safety monitoring system fails in two ways

as shown in CHAPTER 1. In the usual reliability analysis, the

component or the system is either working or failed. Thus, the

usual two-valued analysis cannot be applied to the reliability

analysis of the safety monitoring system directly.

In this chapter, we attempt to bring together some of the

basic concept of the logic structure of safety monitoring

systems. First, the logic structure is modeled by a Boolean

function, called "structure function". The concepts of "path" and

"cut" are given in the following section. An important class:

"coherent structure" is introduced. The FD and FS functions,

which show the relationships between the FD and FS failures of

the system and those of the sensors, are explicitly expressed in

terms of the structure function in section 2.6. The FD and FS

probabilities are evaluated by the FD and FS functions,

respectively. A "reliability function" is introduced in section

2.7, which plays an important role in calculating the FD and FS
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probabilities for the case where sensors fail s-independently.

Typical logic structures of safety monitoring systems are

introduced in section 2.8, where their FD and FS functions are

also shown.

2.2 STRUCTURE FDNCTION OF SAFETY MONITORING SYSTEMS

Assume a safety monitoring system composed of n sensors

which are not necessarily identical. Define a binary indicator

variable Y. for sensor i:

1, if sensor i is generating its sensor alarm,
Yi = {

0, otherwise.

Similarly, the safety monitoring system is indicated by a binary

indicator variable f as follows.

1, if the safety monitoring system is generating its system

f = { alarm,

0, otherwise.

The state of the safety monitoring system is determined

completely by the state of the sensors, so that

f = f(Y), (1)

where Y = (Y, ,...,Y ); the n-dimensional vector Y specifies an

overall state of the n sensors. The function f(Y) is called an

structure function because it tells us how the safety monitoring

system generates its system alarm based on the state of the

sensors.

The structure function is represented by

f(Y) = I [ n {X.Y.+(1-X.)(1-Y.)} ]f(X),
x i=l 1

x
(2)

where the sum is extended over all the binary n-dimensional
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vector X.

Given a structure function f(Y), we define its dual

structure function f (Y) by

fD(Y) = 1 - f(L-Y), (3)

where 1-Y = (1- Y-i i ･ . ･ f 1―Y^) .

The concept "dual structure" is useful in analyzing the

reliability of systems composed of components subject to two

kinds of contradictory failures: FD and FS.

2.3 PATH AND CUT OF SAFETY MONITORING SYSTEMS

Define two exclusive state i and i for sensor i.

i : sensor i is generating its sensor alarm.

i : sensor i is not generating its sensor alarm.

The variable Y. is the indicator variable for state i. Define by

Y- an indicator variable for state i. Then, Yj is obviously the

complement y＼of Yi#-y＼= 1-Y^

A path vector is a vector Y such that f(Y_)=l. The

corresponding path set is the set of individual state i or i

indicated by the vector Y. A path set ensures the generation of

the system alarm. The path set P is minimal if there exists no

other path set in P. In other words, the minimal path set P is

no longer a path set if some elements are removed from the set P.

Assume that the structure function f(Y) has m minimal path sets

Pl'"*"Pm* The sYstem alarm is generated if and only if some

sensors have all the states in at least one minimal path set.

Thus,
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m

f(Y) = Ji ( n Y(j) )

where

Y(j) = {
Yif if j=i,

Yif if j=I.

(5)

(6)

This expression is called a minimal path representation of the

structure function. The second product term takes on the unity

value if and only if all the states in set P. occur

simultaneously.

A cut vector is a vector Y such that f(Y)=0. The

corresponding cut set is the set of individual sensor state i or

i in Y. A cut set ensures the non-existence of the system alarm.

The cut set K is minimal if there exists no other cut set in K.

In other words, the minimal cut set K is no longer a cut set if

some elements are removed from K. Assume that the structure

function f(Y) has s minimal cut sets K ,...,IL . The system alarm

is not generated as long as some sensors create all the states in

at least one minimal cut set. Thus, the structure function f(Y)

is expressed as:

s
f(Y) = n (

k=l

it Y(j) )

jcKk

(7)

This is called a minimal cut representation of the structure

function. The second union takes on the unity value if and only

if some state in set K. does not occur.

Clearly from the definition of the dual structure

function: eq. (3), if Y is a path vector for f(Y), then 1-Y is a

cut vector for f (Y), and vice versa. A set of complement states

for a minimal path set P. of f(Y) is a minimal cut set for f (Y)
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and vice versa.

A path set and a cut set are called an "implicant" and an

"implicate", respectively in the Boolean algebra, while the

minimal path set and the minimal cut set are termed as "prime

implicant" and "prime implicate".

2.4 COHERENT STRUCTURE

We now introduce the "coherence" [B4,B6] of the safety

monitoring system.

The structure function is coherent if and only if the

following two conditions are satisfied:

(1) Monotone Property:

The structure function is monotone increasing; if Y i Y1 ,

then f(Y) 1 f(Y1).

(2) Relevance:

For any sensor i, there exists a state Y(i) =(Y,,...,Y. .,

Yi+1,...,Yn) such that

f(O.:Y(i))=O,

and

f(l.:Y(i))=l,

where (a i:Y(i)) = (Y1,...,Yi_1,a,Yi+1,...,Yn).

NOTE: The i-th sensor is irrelevant to the structure function if

f(Y) is constant in Y^ that is , f(li :Y(i) )=f(0i :Y(i) ) for all

Y(i). Otherwise, the i-th sensor is relevant to the structure

function.

The causality is derived from these two conditions:

f(Y=(0,...,0)) = 0,

f(Y=(l,...,!)) = 1.

(8)

(9)
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We can remove irrelevant indicator variables from the arguments

of f(Y). Thus, the relevance can be restored if some variables

are relevant. The monotone property is the most essential

requirement for the coherent structure function.

The monotone increasing function has a simple structure.

(A) A minimal path vector Y is a path vector such that Y'<Y

implies f(Y')=0. The corresponding minimal path set is

C,(Y)={i|Y^=1}. Physically, a minimal path set is a minimal set

of sensor state i which ensures the generation of the system

alarm.

(B) A minimal cut vector Y is a cut vector such that Y<Y' implies

f(Y')=l. The corresponding cut set is C_(Y)={i|Y0=0}. A minimal

cut set is a minimal set of sensor state i which prevents the

generation of the system alarm.

2.5 FD AND FS FUNCTIONS

The combinations of the state of the safety monitoring

system and the state of the plant are:

1) f(Y)=l and X=l,

2) f(Y)=l and X=0,

3) f(Y)=0 and X=l,

4) f(Y)=O and X=0,

where X is a binary indicator variable for the state of the

plant:

1, if the plant to be monitored is abnormal,
X = {
0, otherwise.

States 1) and 4) are the normal states of the safety monitoring

system. State 2) is a FS state and state 3) is a FD state of the
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safety monitoring system. The failures in states 2) and 3) are

respectively called a FS failure and a FD failure of the safety

monitoring system.

Similarly, four combinations of the state of the i-th sensor

and the state of the plant are:

1 ･) YjL=l and X=l,

2') Y.=1 and X=0,

31) Yi=0 and X=l,

41) Yi=0 and X=0.

States I1) and 41) are the normal states of the i-th sensor.

State 21) is a FS state and state 31) is a FD state of the i-th

sensor. The failures in states 2') and 31) are called a FS

failure and a FD failure of the i-th sensor, respectively.

As shown above, the failures of the safety monitoring system

and the sensor can be defined only if the environment monitored

by them is specified. A sensor is not failed if it does not

generate the sensor alarm under the normal state of the plant,

while it is failed if it does not under the abnormal state.

Now we obtain the relationship between failures of the

sensors and those of the safety monitoring system. Consider the

FS failure first.

Assume that the safety monitoring system is placed in a safe

environment. The sensor state Y is now conditioned by the safe

environment. Define the FS function f,, of the safety monitoring

system:

1, if the safety monitoring system is FS,
fFsW = {

0, otherwise,

where
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1, if sensor i is generating its sensor alarm under

Y^ = { the safe environment, i.e., the i-th sensor is FS,

0, otherwise under the safe environment.

The FS function obviously coincides with the structure function

f(Y) where state vector Y is now conditioned by the safe

environment:

fFS(Y) = f(Y). (10)

Assume that the safety monitoring system is placed in an

unsafe environment. The sensor state Y is now conditioned by the

unsafe environment. The variable Y.=l-Y., the complement of Y.f

tells whether sensor i is FD or not:

1, if sensor i is not generating its sensor alarm under

Y. = { the unsafe environment, i.e., the i-th sensor is FD,

0, otherwise under the unsafe environment.

The FD function of Y=(Y1,...,Yn) is defined by

1, if the safety monitoring system is FD,

fpD(Y) = {
0, otherwise.

The safety monitoring system is FD if and only if it fails to

generate the system alarm under the unsafe environment: f (Y)=1

is equivalent to f(Y)=0, where Y = 1-Y. Therefore

fFD(Y) = 1 - f(l-Y).

Note that the FD function f

2.6 FD AND FS PROBABILITIES

In

(Y) is the dual of f(Y).

(11)

this section we give expressions of FD and FS

probabilities of the safety monitoring system. They can be

calculated, given the structure function f(Y).
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First, we define FD and FS probabilities of the sensor.

Assume that the sensor i monitors the plant. Sensor i is FS if

and only if it generates the sensor alarm under the normal state

of the plant. Thus, the conditional FS probability q^ of sensor

i is:

q = PrCYj-lIX^}.
(12)

Sensor i is FD if and only if it fails to generate the sensor

alarm under the abnormal state of the plant. The conditional FD

probability q. . of the sensor i is:

qli = Pr{Yi=O|X=l}-

The safety monitoring system is FS if and only if

(13)

it

generates the system alarm under the normal plant state. Thus,

the conditional FS probability Q2S is:

Q2S = Pr{fFS(Y)=l|X=0}

= E{f
FS
(Y)|X=0}. (14)

Eq. (10): f^-lY^ffY) yields the expression in terms of the
CO ― ―

structure function f(Y) :

Q, = E{f(Y)|X=0}

= I f(Y)Pr{Y|X=O}.
Y

(15)

The conditional FS probability is the expected value of the

structure function under the safe environment.

The safety monitoring system is FD if and only if it fails

to generate the system alarm under the abnormal state of the

plant. The conditional FD probability Q,s is

Qls = E{fFD(Y)|X=l}. (16)

Eq. (11) yields the expression of Q,g in terms of the structure

function f(Y):

Qls = E{l-f(W) |X=1}
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= 1 - Z f(Y)Pr{Y|X=l}.

Y ~
(17)

2.7 RELIABILITY FUNCTION

Let h(Y) be a sum of product (S.O.P) expression of the

structure function f(_Y). Two methods are typically used to obtain

h(Y):

(1 ) Truth Table Approach

The function h(Y) is obtained by picking up from the table

the exclusive combinations of the sensor state Y such that

f(Y)=l.

h(Y) z

u

n

f(0)[ n {Y.U. + (1-Y.)(l-U^)} ] .
i=l x x 1 1

(18)

This expression is a canonical form of f(Y).

(2) Expansion Approach

The function h(Y) is obtained by expanding the minimal path

representation or the minimal cut representation or any form of

f(Y), with the simplification rule: Yi2=Yi.

The function h(Y) is called "reliability function" because it can

express various reliability parameters on the system level in

terms of the reliability parameters on the component level.

If the sensors fail s-independently, the probabilities Q,g

and Q2S can be calculated in terms of the reliability function

h(Y) as follows:

Qlg = 1 - hll-^),

Q2g = h(q2),

where 1^ = (l-qi;L ,... ,l-qln) and q2 = (q21f ･ ･ ･ '<32n) *
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2.8 TYPICAL STRUCTURE OF SAFETY MONITORING SYSTEMS

In this section, we introduce typical structures of the

safety monitoring systems: "series structure", "parallel

structure",

structure".

"k-out-of-n:G structure", and "k-out-of-n:F

1) Series Structure

A series structure generates its system alarm if and only if

each sensor generates its sensor alarm. The structure function is

given by

f(Y) =

n
n

i=l
Yi- (21)

2) Parallel Structure

A parallel structure generates its system alarm if and only

if at least one sensor generates its sensor alarm. The structure

function is given by

n
f(Y) = 11

i=l
Yi (22)

3) k-out-of-n:G Structure

A k-out-of-n:G structure generates its system alarm if and

only if k or more of its n sensors generate sensor alarms. The

structure function is given by

f(Y) = {

1, if S(Y) 2 k,

0, if S(Y) < k,

where S(Y)

(23)

Note that a series structure is an n-out-of-n:G structure, and a

parallel structure is a l-out-of-n:G structure.

A＼ Ir―i-mt-―nf―n･P Rf rnrtnro
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A k-out-of-n:F structure generates the system alarm if and

only if k or more of its n sensors do not generate sensor alarms.

The structure function is given by

f(Y) = {

1, if S(Y) i. n-k,

0, if S(Y) > n-k.

(24)

Obviously, this structure is non-coherent because it does not

satisfy the monotone increasing property. On the other hand, the

previous three structures are coherent.

For a series or parallel structure, the reliability function

coincides with the expression of the structure function: eq. (21)

or (22). The k-out-of-n:G and k-out-of-n:F structures have the

following reliability functions, assuming that all the sensors

are identical.

k―out―of―n;Gstructure;

h(Y) = I (y)Yi(l-Y)n"i,
i=k 1

k-out-of-n:F structure:

h(Y) = E (?) (l-YjV1-1.
i=k 1

(25)

(26)

Lastly, we introduce two typical non-coherent structures;

one is a safety monitoring system with continuous alarm and the

other is a safety monitoring system without alarm. The structure

function of continuous alarm is:

fc(Y) = 1, for all Y. (27)

There is only one minimal path set which is empty; the system

alarm is generated all the time irrespective of the sensor

states. This system is not failed-dangerous, while it is always

failed-safe. The system without alarm has the following structure
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function:

fN(Y) =0, for all Y. (28)

There is no path set since the system alarm is never generated.

The system is always failed-dangerous, while it is never failed-

safe. The continuous-alarm system is considered to be a 0-out-of-

n:G or a 0-out-of-n:F structure and the no-alarm system is

considered to be an (n+1)-out-of-n:G or an (n+1)-out-of-n:F

structure.

Table 2.1 shows FD and FS functions for the systems

described in this section, where all the sensors are identical.

Table 2

Series

Parallel

.1 FD and FS functions of safety monitoring systems

FD function

1

k-out-of-n:G

k-out-of-n:F

Continuous-Alarm

No-Alarm

n

I (

i=k

n

Z
i=k

d-Y)n

Yn

^(l-Y)1?11"1

"JY1(1-Y)

0

1

n-i

FS function

1

n

2 (

i=k

n
E
i=k

Yn

1-Y)n

J> Y1(l-Y)
n-i

(?)(l-Y)iYn"i

1

0
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CHAPTER 3

OPTIMAL COHERENT STRUCTURE

OF

ONE-CHANNEL SAFETY MONITORING SYSTEMS

3.1 INTRODUCTION

The safety monitoring system composed of identical sensors

is considered as the simplest case. All the sensors supervise the

same state of the plant, e.g., temperature or pressure. Through

CHAPTERS 3 and 4, a channel means a group of these identical

sensors, monitoring a specific state of the plant. Thus, the

safety monitoring system considered here is called "one-channel",

while we deal with "multi-channel" systems in the next chapter.

The optimal logic structure that minimizes an expected total

loss caused by FD and FS failures of the system is analytically

obtained among all the coherent structures composed of n

identical sensors. A simple formula is given in section 3.3.1 to

find the optimal structure. We discuss how the optimal structure

changes, depending on the FS and FD probabilities of the sensor,

the probability of the plant failure, and the losses caused by

the FD and FS failures of the safety monitoring system in the

following section. The number of sensors used for the system is

also optimized in an illustrative example.
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3.2 PROBLEM STATEMENT

3.2.1 Assumptions

1 The safety monitoring system is composed of one channel, which

consists of n identical sensors.

2 The safety monitoring system supervises a specific state of the

plant.

3 The safety monitoring system is coherent.

4 Sensors fail s-independently.

5 Sensors are reliable: q, . + q2 ■< 1.

3.2.2 Notation

q, , q, . conditional FD probability of a sensor

g2' q2i conditional FS probability of a sensor

l-ql

*2

Q1S

Q2S

C1S

C2S

Js

p

<l-qnr...,l-qln)

(q21,...rq2n)

conditional FD probability of the safety monitoring

system

conditional FS probability of the safety monitoring

system

FD loss: loss caused when the safety monitoring system

fails to generate the system alarm, the plant state

being abnormal.

FS loss: loss caused when the safety monitoring system

generates the system alarm, the plant being normal.

s-expected total loss caused by failures of the safety

monitoring system

probability that the plant state is abnormal.
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h(Y)

INTFkl

reliability function of the safety monitoring system,

minimum integer that is larger than or equal to k; for

a positive integer k, INT[k] can be either k or k+1.

From assumptions 1 and 4, conditional probabilities Q-,gand Q2S

are:

Qls = 1 - hU-qj),

Q = h(q2).

(1)

(2)

The problem is to obtain the optimal coherent structure that

minimizes an s-expected total loss caused by failures of the

safety monitoring system.

3.3 PROBLEM SOLUTION

3.3.1 Optimal Coherent Structure

The plant suffers losses both when the safety monitoring

system fails to function under the abnormal state of the plant,

and when the safety monitoring system generates the system alarm

with the plant being normal. Then, the s-expected total loss Ig

is:

XS ■ C1SPQ1S + C2S(1-P)Q2S' (3)

Whatever values C,s, C2s' anc* p ma＼ take onr the k*-out-of-

n:G structure is proven to be optimal among all the coherent

structures composed of n identical sensors. Furthermore the

optimal k* is found by the following simple formula.

THEOREM :

Let q, be the FD probability and let q- be the FS

probability of the sensor. Assume n sensors. The k*-out-of-n:G

structure is optimal in the sense that it minimizes Ig among all
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the coherent structures composed of n identical sensors. The

values of k* is:

1) k* = n, if ClsP(l-q1)n i C2s(l-P)q2n.

2) k* = 1, if ClsP(l-q1)q1n"1 2 C2s(l-P)q2(l-q2)n"1,

3) k* = INT[k], otherwise,

where

C9q(l-P) 1-q,

d-qi) a-q?)
ln bn^~

(4)

Proof :

The reliability function h(YJ of a coherent structure of n

identical sensors is

h(Y) =

n
i n-i

Z A.Y1(1-Y)n 1,

i=0 x

where A

(5)

.: the number of ways we can select i(£n) sensors such

that if these are generating the sensor alarms and the remaining

are not generating the sensor alarms, then the safety monitoring

system is yielding the system alarm. The causality of the

coherentstructure (see section 2.4 of CHAPTER 2) shows thatAQ=0

and A=l≫ From the definition of A.,

<K Ai i (?) . (6)

From eqs. (1), (2), (5) and assumption 4, the s-expected total

loss Is is

xs - cisp -

n

E
i=l
V cisp(1-^iJ^i

n-i
- C2s(l-P)q21(l-q2)n"i }.(7)

From assumption 5, we may easily see:

1) If ClsP(l-q.)n i C2s(l-P)q2n, then
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ClSP(1"ql)lgin~1 " C2S(1"P)q2i{1"q2)n 1 < °'for i < "'

2) If ClsP(l-q1)q1n"1 2 C2g(1-P)q2(l-q2)n~＼ then

ClSP(1"ql)lqin'1 " C2S(1~P)q2i(1"q2)I1~i2 °'for L y 1'

3) Otherwise, there exists k such that C, P(l-q,)kq1n~k =

C2S(l-P)q2k(l-q2)n"k and if i 2 k, then

ClSP(1"ql)iqin"i ■ C2S(1"P)q21(1"q2)n 1 1 °'

Consequently, the following inequality holds;

xs * cisp - { C^Pd-q^^11"1 - C2s(l-P)q2i(l-q2)n"i },(8)

where k* is determined as the theorem. The equality in eq. (8)

holds if and only if A^^ = 0. for all i < k*.

Further, from eq. (6).

{Right hand side of eq. (8)}

1 C1SP - I (J){ClsP(l-q1)1g1n X - C2s(l-P)q2i(l-q2)n"i}- (9)

The equality in eq. (9) holds if and only if A. = ("?)i tor all i

2 k*. The right hand side of eq. (9) is the minimum of Ic.

Thus, the s-expected total loss Ic takes the minimum if and
o

only if Ai = 0, for i < k*, and Ai = ("), for i2 k*. In this

case, the optimal reliability function h*(Y) is:

h*(Y) = I (")Yi(l-Y)n"i.
i=k* x

This is the reliability function of the k*-out-of-n:G structure

(see eq. (25) in section 2.8 of CHAPTER 2).

O.E.D.

For a special case where Cls = C2g and P = 0.5, Ben-Dov [B5]

obtained the same result.
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Reliability Rc of the safety monitoring system with two

kinds of failures is defined by

Rs = 1 - PQ1S - (1-P)Q2S. (10)

This is the probability of the normal operation of the safety

monitoring system. The optimal structure that minimizes R is

obtained by the theorem with C,R = C2q = 1.

3.3.2 Properties of Optimal Coherent Structure

We now discuss how the optimal k* varies, depending on q,,

g2, P or ciS/C2s i-n this section.

By differentiating k (eq. (4)) with respect to each of the

variables, we have

9<3l l-qx

n-k
)/ln
(l-qi)(l-q2)

ak k n-k d-q-iMi-qo5

3q2 q2 l-q2 qnq2

9k 1 (1-qiHl-q,)
-UL. = i /In 1 ?―,

8P P(l-P)

c c
3(--!£_) ls

C2S

qlq2

qxq2

t (11)

(12)

(13)

(14)

Since 0 < P < 1 and q1 + q2 < 1 in eq. (13), 3k/ 8P < 0.

Similarly, 8k/ 3(C1S/C2S) < 0. Therefore, the optimal k* has the

following properties.

1) k* gets closer to 1 as the demand probability P gets larger.

2) k* gets closer to 1 as the FD loss C,g gets larger.

3) k* gets closer to 1 as the FS loss C2S gets smaller.

These trends are consistent with the property of k-out-of-n:G
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structures that the FD probability becomes lower and the FS

probability becomes higher as k gets closer to 1. Such monotone

trends do not hold for the FD and FS probabilities of the sensor.

Counter examples exist (see EXAMPLE 3 in section 3.4).

3.4 ILLUSTRATIVE EXAMPLE

EXAMPLE 1 :

Values of Clg, C2S, q.^, and q2 are:

C2S
= lxlO2 P = 0.1,

q1 = 0.05, q2 = 0.10.

Table 3.1 shows the optimal structure where n ranges from 2 to 5

Table 3.1

n

2

3

4

5

Optimal structures of EXAMPLE 1

Optimal structure

l-out-of-2:G

2-out-of-3 :G

2-out-of-4:G

3-out-of-5:G

Expected total loss

19.600

9.770

5.188

1.928

As shown in Table 3.1, the s-expected total loss becomes smaller

as the number of available sensors gets larger. The theorem shows

this property, because the reliability function h(Y), eq. (5),

can express all the possible coherent structures composed of at

most n sensors.
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EXAMPLE 2 :

The s-expected total loss becomes smaller as the number of

sensors gets larger as shown in EXAMPLE 1. On the other hand the

investment cost of the safety monitoring system becomes higher.

From the economical point of view, this cost must be balanced

with the s-expeted total loss. The minimization of objective

function I ':
o

V = C1SPQ1S + C2S(1-P)Q2S + C(n)'

where C(n): investment cost function of the safety monitoring

system; it is monotone increasing with respect to

n,

is now investigated. For a given n, the optimal structure that

minimizes Ig = ClgPQls + C2s^1~P^2S is analvtically obtained by

the theorem. So the optimal structure is easily found by

searching the optimal number of sensors, n*, that minimizes Io'-
o

In this example, let C(n) = en, where c is the cost of a
s s

sensor. Suppose that values of Clg, C2g, P, cs, q^, and q2 are:

Clg = 1x10',

q, = 0.05,

P = 0.1,

q_ = 0.15.

Table 3.2 shows the searching process to obtain n*. The optimal

structure is 2-out-of-3:G structure with I ' = 42.717.
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Table 3.2 Searching process of EXAMPLE 2

n

1

2

3

4

5

Optimal structure

l-out-of-l:G

l-out-of-l:G

2-out-of-3:G

2-out-of-4:G

3-out-of-5:G

xs

63.500

27.475

12.717

10.338

3.553

V

73.500

47.475

42.717*

50.338

53.553

========:= = =::==:=:=:=: = =; = = =:=: = =:==:= = :=:===: = =:==: = =;==;===:=== ==:=:== = = =:= =

*.
Optimal structure of EXAMPLE 2

EXAMPLE 3 :

From eqs. (11) and (12) , whether k* gets closer to 1 or not

as the FD or FS failure probability of the sensor gets larger

depends on values of the FD loss, the FS loss, the failure

probability of the plant, and the number of sensors. We give a

counter example to show that the monotone trend does not hold for

the FD or FS probability of the sensor.

Suppose that values of Clg, C2g, P, q±, and n are:

Cls = lxlO4, C2S = lxlO2, P = 0.1,

q1 = 0 .0 5 r n=5.

Consider the optimal structure for the following three different

values of the FS probability of the sensor: q2.

Case 1: q, = 0.4, Case 2: q2 = 0.6, Case 3: q2 = 0.8.
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The results are shown in Table 3.3

Table 3.3 Optimal structure of EXAMPLE 3

Optimal structure

Case 1

Case 2

Case 3

3-out-of-5:G

4-out-of-5:G

3-out-of-5:G

Expected total loss

29.728

52.919

85.945

We observe that the value of k* does not always get closer

to 1 as q gets smaller. A similar counter example exists for q ,

the FD probability of the sensor. However, if q-, and q2 are

sufficiently small compared with 1/n, then eqs. (11) and (12)

show that 8 k/8q, < 0 and 8k/9q2 > 0, respectively. In this case,

the optimal k* gets closer to 1 as q^ gets higher, while the

optimal k* gets closer to n as q2 gets higher.
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CHAPTER 4

OPTIMAL COHERENT STRUCTURE

OP

MULTI-CHANNEL SAFETY MONITORING SYSTEMS

4.1 INTRODUCTION

As shown in Fig. 1.2 of CHAPTER 1, the large-scale safety

monitoring system involves different types of sensors which

monitor pressure, temperature, flow, flux, etc. An orderly shut-

down procedure takes place based on the output of these channels.

Thus, we develop an optimal structure of multi-channel safety

monitoring systems, where channels of different types are

logically connected to initiate safety systems.

The problem considered here is to obtain the optimal

coherent sensor structures for the channels. A theorem is proven

in section 4.3.1, and a non-linear integer programming (NLIP)

problem is devised to minimize an expected total loss. The

extended Lawler and Bell's method is applied to the resulting

problem through a coordinate transformation. An illustrative

example of a three-channel safety monitoring system is given to

show this procedure in detail.

4.2 PROBLEM STATEMENT
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4.2.1 Assumptions

1 The safety monitoring system is composed of N channels.

2 Channel i is a coherent structure of n.^identical sensors of

type i.

3 Each channel supervises a specific plant state.

4 The logic structure between channels is specified.

5 Sensors fail s-independently.

4.2.2 Notation

xi

X

Yii

Y.
―i

zi

qli

Qli

Q2i

i!5ii

binary indicator variable for plant state i.

1, if plant state i is abnormal,
X = {
0, otherwise.

(X^,...rXjj)

binary indicator variable for sensor j of type i.

1, if sensor j of type i is yielding the

Y. . = { sensor alarm,

0, otherwise.

(Yi;L,...,YiN^)

binary indicator variable for channel i.

1, if channel i is yielding the channel alarm,
Zi = {
0, otherwise.

(Z^,...,ZN)

conditional FD probability of a sensor of type i.

conditional FS probability of a sensor of type i.

Pr{Z.=0|X.=1}: conditional FD probability of channel i

Pr{Z^=l |Xi=0 }: conditional FS probability of channel :

d-q-i,,...,1-q, ,)
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52i

hi£i>

C(X,Z)

ni'

n

k

nio

csi

CS0

ki

(q2if･･.'^i^

reliability function of channel i

loss function of plant states and channel output

states, indicating loss caused by failures of the

safety monitoring system.

decision variables specifying k.-out-of-n.:G structure

(n^,...,nN)

(m i･･･i^m)

upper bound of n.

cost of sensor i

upper bound of total investment cost for sensors

s-expected total loss caused by the failures of the

safety monitoring system

binfc(k;p,N) survivor function of binomial distribution;

N
binfc(k;p,N) = Z (7)p1(l-p)N"1.

i=k x

From assumption 2, the FD and FS probabilities; Q, . and C^ are:

Qli = 1 - Vl-q,,),

Q2i = Vfei*'

(1)

(2)

The problem is to obtain, for each channel, the coherent

structure that minimizes an s-expected total loss caused by

failures of the safety monitoring system.

4.3 PROBLEM SOLUTION

4.3.1 NLIP Problem Formulation

The s-expected total loss is the sum of losses over all the

plant states and channel states:

IQ = I I C(X,Z)Pr{Z}Pr{Z|X}- (3)
s xz - -
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The constant C(X,Z) can be specified when the plant state X and

the channel state Z^are known. See Table 4.2 for example.

From assumption 4,

Pr{Z|X}
N
= n Pr{Z.|X.}
i=l 1

x

Since PrCZ^X^ = X±[ Z^r {Zi=l IX±=X > + (1-Z^ Pr {Z^O |Xi=l} ]

(1-Xi)[ ZiPr{Zi=l|Xi=0} + (l-Zi)Pr{Zi=0|Xi=0} ], Qli

Pr{Z.=0IX.=1}, and Qo. = Pr{Z.=1|X.=0}, we have
11 bl 11

N
prUlx} = n [xi{zi(i-Qli) + (i-zi)Qli}

+ (l-Xi){ZiQ2i+(l-Zi)(1-Q2i)}]. (4)

+

From eqs. (3) and (4), the s-expected total loss Ig is a multi-

linear function of the FD and FS failure probabilities of the

channels. It further satisfies

8%

= 0, for all i.

3Qli9Q2i

(5)

The following theorem holds for a multi-linear function which

meets the requirement of eq. (5) .

THEOREM :

2Let F(QlfQ2) be a multi-linear function satisfying 9 F/ 8Qli

3Q2. = 0, for all i. In the opitmal safety monitoring system

that minimizes F(Q, ,Q2), each channel forms k-out-of-n:G

structure.

Proof :

From the assumption in the theorem,
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F = FliQli + F2iQ2i + F3i' (6)

where F, ., F?i' an^ F3i are Itlult:'-~linearfunctions of FD and FS

probabilities except Q,. and Q2■･ If the structure of the

channels except channel i are fixed, then F, ., F2i, and F3. are

constant. According to the appendix in [P2], a reliability

function h(Y) of any coherent structure composed of n identical

components can be expressed as

h(Y) =

where u

n
E

k=l

n

akuk n*-*' for ak ^ Of k=1'""n and s ak = lf ^7^

K ~J.

k n(Y): reliability function of k-out-of-n:G structure.

From eqs. (1), (2), (6) and (7),

ni ni
F = PU{ 1 - I akukfn (1-q^) } + F2i{ I a^^ (q2i) } + F3i

K~~J- 1 K ^ J. 1

n.

*!" ak{ Fli - FliUk,n.(i!Sli> + F2iukfn.(S2i) + F3i >
K ―J. X 1

2 min { PU - FliVn (1-q^) + F^u^ (q^) + F3i } , (8)
K X x

where min { a, } indicates the minimum of a. with respect to k.

Thus, the

structure,

channels.

optimal structure of channel i must be k.-out-of-n.:G

The theorem can be proven by induction on the

Q.E.D

According to the theorem, channel i can be assumed to be k.-

out-of-n-:G structure, and the problem can be formulated as:

PROBLEM :
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Minimize : Ic
n,k S

N
subject to: Z csini ^ cso'

ni * nio'
i = 1,...,N.

Q1:L = 1 - binfc(ki;l-qli,ni) ,

Q2i = binfc(ki;q2i,ni),

4.3.2 Solution Method

i

i

= 1,...,N,

= lf...,N.

(9)

(10
)

Eqs. (9) and (10) indicate that Q, . is monotone increasing

with respect to k., and that Qo. is monotone decreasing in k..

Simple calculations in Appendix 1 shows that Q, . is monotone

decreasing in n., and that Q-. is monotone decreasing in n..

Converting k. to ni o+l~k.j'f Q-m becomes monotone decreasing in

V and Q2. becomes monotone increasing in k.1. Thus, Q is

monotone decreasing and Q2. is monotone increasing with respect

to n. and k.', i=l,...,N.

Since I_ is a multi-linear function of Q, . and Q^jf ^c can

be expressed by a sum of products of Q, . and Q-･, i=l,...,N.

Applying the transformation rules in Table 4.1 to the sum of

products expression, Ig can be written in the form:

fjtnrjt1) - f2(n,k/) where f^ and f_ are monotone increasing in

each variable.

The constraint functions can be also transformed into the above

form. Thus, the problem can be solved by the extended Lawler and

Bell's method [Ml].

4.4 ILLUSTRATIVE EXAMPLE
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Table 4.1 Transformation rule: f(X) = f, (X)
f2
(X)

f (X)

g(x)h(x)

-g(X)h(X)

mi>

cg(X)

g(X){c-h(X)}

f2(X)

g(X){c-h(X)}

cg(X)

Notes:

1

2.

3.

4.

f, (X), f2(X): monotone increasing

g(X): monotone increasing (20)

h(X): monotone decreasing

c: positive constant ( 2 max h(X) )

X
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Flow-Decrease

Channel 1

High-Pressure

Channel 2

High-Temperature

Channel 3

Fig. 4.1 Single-event safety monitoring system
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Table 4.3 Probabilities of channel states for a given plant state

Xl X2 X3

0 0 0

0

0

0

1

0

1

1

0

1

0

1

0

Yl

0

1

1

1

1

Y2

1

0

0

1

1

0

1

1

1

1

1

0

0

1

1

0

1

1

1

1

1

0

0

1

1

0

0

0

0

0

0

1

Y3

1

0

1

0

1

1

0

1

0

1

Pr{Y|X}

(1-Q21)Q22Q23

Q21(1-Q22)(1-Q23)

Q21(1"Q22)Q23

Q21Q22(1"Q23>

Q21Q22Q23

(1-Q21)Q22(1-Q13)

Q21(1-Q22)Q13

02l(1-Q22)(1-Q13)

Q21Q22Q13

Q21Q22(1-Ql3}

1

0

1

0

1

0

0

1

0

(1-Q 21)(1-Q12)Q23

Q21Q12{1-Q23J

Q21Q12Q23

Q21(1-Q12)(1-Q23)

Q21(1-Q12)Q23

(1-Q21>Ql2Ql3

(1-Q21)Q12(1-Q13)

(1-Q21)d-Q12)Q13

0
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0

1

1

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

1

0

0

1

0

0

1

0

Q11(1-Q22)Q23

Qll<l-Q22>Q13

Qu(l-Q22)(l-Q13)

Q11Q22Q13

Q11Q12Q23

Q11(1-Q12)(1"Q23)

Q11Q12Q13

Q11Q12(1-Q13J

Qn(l-Q12)Q13

51
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Consider a single-event safety monitoring system shown in

Fig. 4.1. An inadvertent event is defined as {Flow-Decrease} OR

{High-Pressure AND High-Temperature}. Channels 1, 2, and 3

monitor flow-decrease, high-pressure, and high-temperature,

respectively. If {channel 1} OR {channel 2 AND channel 3} detect

abnormal plant states, then the safety monitoring system yields a

system alarm and activates an appropriate safety system. Table

4.2 shows losses over all the plant states and the channel

states. The FD loss: C,, is caused if the inadvertent event

takes place with the safety monitoring system yielding no system

alarms. On the other hand, the FS loss: C2S is caused when the

safety monitoring system generates a spurious system alarm, the

plant being normal. Table 4.3 shows the probabilities of the

plant states and the channel states, under which either FD or FS

loss is caused. As discussed in section 4.3.2, the s-expected

total loss I is a multi-linear function of Q, . and Q-■,

satisfying 9

Of Q

Iq/9Q, .8Q2- =0. Expanding I_ as the sum of products

and Q2., every term can be written in one of the following

three forms:

a) a product of only Qj^r

b) a product of only Qp-;/ an(3

c) a product of Q-^ and Q2-j≪

A term in the form of a) or b) has the monotone property with

respect to ni and k^1. Since Q^. = 1 - (1-Qtj) and Q≪. = 1 - (1-

Q2^)f a product term in the form of c) can be transformed into a

sum of products which are:

1) a product of Q-,ir

2) a product of Q_ .,
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3) a product of Qli and (1-Q2-), and

4) a product of Q2- and (1-Q1:L) .

All these terms also have the monotone property. Thus, the s-

expected total loss !,

TS - fol " fo2'

where

can be written as:

fol = C2S[ Pr^=(0,0,0)}(Q21+Q22Q23)

+ Pr{X=(0,0,l)}{Q22(l-Q13)+Q21}

+ Pr{X=(0,l,0)}{(l-Q12)Q23+Q21} ]

- Cls[ Pr{X=(O,l,D d-Q21)Q12Q13

+ Pr{X=(l,0,0)}Qi;L(l-Q22)(l-Q23)

+ Pr{X=(l,0,l)}Q11(l-Q22)Q13

+ Pr{X=(l,l,0)}QirQ12(l-Q23)

+ Pr{X=(l,l,l)}Q11Q12Q13 ]

fo2 = C2S[ Pr{X=(0,0,0)}Q21Q22Q23

+ Pr{X=(0f0,l)}Q21Q22(l-Q13)

+ Pr{X=(0,l,0)}Q21(l-Q12)Q23 ]

- Cls[ Pr{X=(0fl,l)}{(l-Q21)Q12+(l-Q21)Q13}

+ Pr{X=(l,0,0)}{Q11(l-Q22)+Q11(l-Q23)}

+ Pr{X=(l,0,l)}{Q11(l-Q22)+Q11Q13}

+ Pr{x=(i,1,0)}{Q11Q12+Q11(i-Q23)J

+ Pr{X=(l,l,l)}{Q11Q12+Q11Q13}.

(12)

(13)

The functions f , and f
~
are monotone increasing in each of

decision variables; n., k.1, i=l,2,3. The data in Tables 4.4 and
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C1S

cso

100

40

54

= 10000

Table 4.4 Probabilities of plant states

Xl X2

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

x3 Pr{X}

0

1

0

1

0

1

0

1

0.980

0.002

0.002

0.004

0.002

0.003

0.003

0.004

Table 4.5 Values of qlif q2i

― ^£2"=:=: ===―= = = = = =:=;=:= = =:= ==:= ― ―:= ===:==:==: = ==;= = ===:= = = == === === === = = =

i

=sss=s==:==: ==s

1

≪Jli

csi

nio

0.003

0.006

6

4

2

0.001

0.005

8

4

' csi' nio' CS0

3

0.005

0.010

4

4

' C1S' & C2S



4.5 are assumed. The optimal structure for each channel is:

Channel 1: 2-out-of-3:G structure,

Channel 2: l-out-of-l:G structure,

Channel 3: 2-out-of-3:G structure,

and the minimum of Ic

APPENDIX

1

is 17.976. The total investment cost is 38.

Property of Q, . and Q2i with respect to n.

From eqs. (9) and (10),

k .-1

Qii =
jfo
(iil(1-qii)JqiiVJ'

Q2i = 1 - ^ (5i)q2iJd-q2i)ni":.

Let <3Q,. be the perturbation in Q, . when n. changes to n.+l.

Then,

dQn ■

"f01(niV)(i-qii)jqiini+1"j
-
^V^ii'V1^-

Since (n^) = (n) + (^J and ("J1) = (J) , we have

ki-l
dQu = Z [ {(5i)+(5i1)}(l-qli)Jqlini+1-:≫ - (^d-qnlSi"^]

krl
4 (?i)d-qii)j+1qiini-j - .iQ (?i)d-qii)j+1qiini-j

■ - <k"i1"1-"li'k^lini+1"ki < "･

Similarly, let dQ2i be the perturbation in Q2i when ni changes to

n.+l. Then,
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dQ2i - { 1 -

k.-l

j=0
i^-w

ni+l-j }

- { i - z (ii)q2ij(1"q2i)ni 3 ]
j=0 J

Thus, Q, . is monotone decreasing in n^ and Q2i is monotone

increasing inn..

2

Extended Lawler and Bell's Method [Ml]

The extended Lawler and Bell's method can be aDDlied to an

NLIP problem, that can be put into the form:

Minimize: folW - fo2 '

subject to: f
^ (X)
- fj2(x.) 2 0, j = l,...,m,

where 1) X = (Xlf...,Xn) and Si £ Xi < K± for Si, Mif Xi Z+ =

{0 ,1,2,....}, i=l,...,n.

2) f -,, fo2≫ f^-i/ and f-2 (j=l,...,m) are monotone

increasing in each of the decision variable.

Let us use the same notations as in [SI]. The method obtains

the optimal solution by examining part, of n■"i U'-~S.+1) possible

solutions in a numerical order [LI], beginning with X =

(Slf...,Sn) and ending with X = (Mlf...,Mn). Let X denote the

vector that is currently being examined, and let X° be the

optimal solution among the vector that have been examined. The

method is described as follows:

Step 1: If fol(X+) - fo2(X) 1 fol(X°) " fo2(X°>, then skip to

X . Otherwise, go to step 2.

Step 2: If fjo^CX"1")- t^W) < 0, for some j, then skip to X*.

Otherwise, go to step 3
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Step 3: If fol(X) - fq2(X) 2 fol(X°) - fo2(X°), then skip to

X . Otherwise, go to step 4.

Step 4: If f-,(X) - f.~(X) < 0, for some j, then skip to X++.
31 ― jz ―

_

Otherwise, let X° be X and skip to X

++ *
The method terminates the search when X or X is greater than

X = (M, ,...,M ) in the numerical order.
―infix x n
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CHAPTER 5

OPTIMAL BOOLEAN STRUCTURE

OF

ONE-PLANT-STATE MONITORING SYSTEMS

5.1 INTRODUCTION

Considering common-mode failures among sensors, it is better

to use several kinds of sensors for monitoring the state of the

plant. However, through CHAPTERS 3 and 4 v/eassumed coherent

structures and channels of identical sensors. From this chapter

on, we extend the optimal structure design to cases involving not

only general components, but also non-coherent structures.

A Boolean structure is equivalent to a truth table. Thus,

the number of structures composed of n components is equal to

≫2n. Table 5.1 shows the cases where n ranges from 1 to 5. The

structures remarkably increase as the more components become

available. A simple termwise search for the optimal structure is

thus impractical. A new method should be developed.

This chapter considers the safety monitoring system where

all the sensors supervise a specific state of the plant. A simple

rule to determine the optimal structure is devised in section

5.3.1. Three properties of the optimal structure are then derived
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Table 5.1 Number of Boolean structures

n

1

2

3

4

5

number of structures

59

4

16

256

65536

4294967304



in section 5.3.2, considering sensor reliabilities; a non-

coherent structure can be optimal in some case. In section

5.3.3, a systematic method is applied to determine the optimal

structure. This requires at most 2n simple iterations, rather

than 22n- Analytic solutions are obtained in section 5.3.4 where

simplification of the expression of the optimal structure is also

discussed. An illustrative example in section 5.4 shows that

using more sensors is not necessarily better in terms of

minimizing an s-expected total loss.

5.2 PROBLEM STATEMENT

5.2.1 Assumptions

1 The safety monitoring system is composed of n sensors, which

are not necessarily identical.

2 All the sensors supervise a specific state of the plant.

3 Sensors fail s-independently.

5.2.2 Notation

Yi

Y

Y(i)

a^YJi)

f(Y)

h(Y)

binary indicator variable for sensor i

1, if sensor i is generating the sensor alarm,
Yi = {

0, otherwise.

(Y1,...,Yn)

(Y1,...,Yi_1,Yi+1,...,Yn)

(Yn ''"' i-l '^' 1+1 '' **' n '

structure function of the safety monitoring system

f(Y) = {

1,

o,

if the safety monitoring system is

generating the system alarm,

nfhpruise.

reliability function of the safety monitoring system
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<*2i

Q1S

Q2S

P

C1S

C2S

csi

cso

zs

INTfk]

conditional FD probability of sensor i

(l-qlir...,l-qln)

conditional FS probability of sensor i

(q21""^2n)

conditional FD probability of the safety monitoring

system

conditional FS probability of the safety monitoring

system

probability that the plant state is abnormal

FD loss: loss caused when the safety monitoring system

fails to generate the system alarm, given inadvertent

plant state in the plant

FS loss: loss caused when the safety monitoring system

generates a spurious system alarm, given that the

inadvertent plant state does not exist in the plant

cost of sensor i

upper bound of total investment cost available for

sensors

s-expected total loss caused by failures of the safety

monitoring system

minimum integer that is larger than or equal to k; for

a positive integer k, INT[k] can be either k or k+1.

From assumptions 2 and 3, the probabilities Qlg and Q2g are:

Qlg = 1 - hll^),

Q2S = h{52) '

(1)

(2)

The s-expected total loss Io is the same as that in CHAPTER 3:

h ' C1SPQ1S + C2S(1-P)Q2S'
(3)

The problem is to determine the structure function f(Y) that
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minimizes Ig among all the Boolean structures.

5.3 PROBLEM SOLUTION

5.3.1 Optimal Boolean Structure of One-Plant-State Monitoring

Systems

The reliability function of any Boolean structure composed

of n sensors is expressed as eq. (2) of CHAPTER 2:

h(Y) = e f(x)[ n { xiYi + (i-xi)(i-Yi) } ],
(4)

where the sum is extended over all the binary vector

X= (X-.,. ..fX ).

From eqs. (1)-(4),

XS = C1SP - Eyf(^)[ ^J^V1"^^"^!!*

Define g(Y) as

g(Y) = C1SP

C2S
(1-P) n {Y.q-.+(l-Y )(l-q2.)} ]. (5)
i=l x 2l x £1

i=l 1 J-1 i xi

c2s(i-p).;1tYi*2i+(i-Yi)(i-q2i≫- (6)

Then,

Ig = C1SP - Z f(Y)g(Y). (7)

The first term on the right hand side of eq. (7) indicates the

loss caused in the plant without the safety monitoring system.

The second term implies the reduction of the loss through the

application of the safety monitoring system. If we set f(Y) = 1
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for any Y satisfying g(Y) > 0, then Io attains its minimum. The

optimal structure f*(Y) is:

f*(Y) = {

We call

f*(Y).

1, if g(Y) > 0,

(8)
0, otherwise.

g(Y) the switching function of the optimal structure

This structure is optimal amonq all the Boolean

structures. The optimal f*(Y) can be expressed as:

f*(Y) = Z {

Z

^

eP

where

P = {

(zi) }

Y I

Yi

g(Y) > o },

Yi'
(z.) = { J

if Zi = 1,

otherwise.

Here set P implies the set of path vectors of f*(Y) ･

5.3.2 Simplification of Optimal Boolean Structure Function

The function g(Y) has the following property.

(9)

(10)

(11)

PROPERTY :

(PI) If q1L + q2i i 1 and g(Oi:Y(i)) > 0, then g(l.:I|i)) > 0

(P2) If q,i + q2i > 1 and gd^YJi)) > 0, then g(0i:Y(i)) > 0

Proof :

From eq. (6), g(0.:Y(i)) and g(l.:Y(i)) can be written as:
1 ~~" 1

g(Oi8T(i)) = C1qli - C2(l-q2i),

gd^YU)) = Cj^l-q^) - c2q2i,

where

Cl = ClSPjJi{YJ(1-qlJ)+(1-YJ)qlJ}'

C2 = C2S(1-p)jJ!1tYjq2j+(1-Yj)(1-≪2j)}-
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We now prove the property (PI) first. Since g(Oi:Y(i)) > 0,

the following inequality holds:

C2(l-q2.)
< 1. (14)

cl*li

Factoring C1(l-qli) out of the right hand side of eq. (13), we

have

C,q7i

gdi:y(i)) = c^i-q^H l - }.

C1(l-qli)

Eq. (14) and the assumption: q.,
^
+ q5i £1, yield the inequality:

C2<*2i

cl(i-qii)

C2(l-q2i) ≪Jli

= ' X- ■X
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^21
< 1.

cl*li i-^i ^li

Thus, g(l.:Y(i)) > 0 is proven. The property (P2) can be proven

in a similar way.

O.E.D.

This property shows that the function g(Y) has a different

property depending on whether q^ + q2i £1 or not. So we

consider the optimal structure in the following three cases,

respectively:

Case 1: q^ + q2^ i 1/ for i=l,...,n.

Case 2: q^ + q2i > lr for i=l,...,n.

Case 3: qli + q2i i 1, for i=l,...,nlf and q1^ + q2i > 1,

for i=n^+l,...,n.

1) Case 1

The property (PI) shows that g(Y) > 0 implies g(Y_') > 0 for

any Y1 2 Y. We see from eq. (8) that the optimal structure



function f*(Y) is monotone increasing:

YiY' ====> f(Y) i f(Y1).

Define subset P.^* of set P by

P * = { Y | g(Y) > 0 and if Y > Y1, then g(Y') 10 }, (15)

The set P, * is the set of minimal path vectors of the optimal

structure. Each minimal path set of the optimal structure f*(Y)

now becomes a subset of {lf2f...,n}, because the optimal

structure satisfy the most essential requirement of the coherent

structure, i.e., "monotone property" (see section 2.4 of CHAPTER

2). Thus,

f*(Y) = ji { n y. )
^eP1* jeC^U) 3

(16)

where

(^(1) = { i | Zi = 1 }. (17)

2) Case 2

The property (P2) shows that g(Y) > 0 implies g(Y') > 0 for

any Y1 ^ Y. On the contrary to Case 1, the optimal structure

function f*(Y) is monotone decreasing:

Y ^ Y1 ====> f*(Y) 2 f*(Y').

Define subset P,* of set P by

P2* = { Y | g(Y) > 0 and if Y < Y1, then g(Y') 10 } (18)

The set P2* corresponds to the set P,* in Case 1. In this case,

each minimal path set of the optimal structure f*(Y) becomes a

subset of {l,2,...,n}, because the optimal structure has monotone

decreasing property. Thus, the optimal structure f*(Y) is:

f*(X) - JL { n y.

^£P2* jeC(l) J

where

C0(l) = { i I Zi = 0 }.

(19)

(20)
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Note that the optimal structure becomes non-coherent.

3) Case 3

This is a combination of Case 1 and Case 2. Let Y^ denote

(Ylf...,Yn ) and Y2 denote (Yn +1'･･･'Yn)･ Then, the property

proves the following two implications.

!･ g(Ii≫I2> > ° ====> gtli1'^1 > °* if -I' 2 -1'

2. g(Yx,Y2) > 0 ====> g(Y1,Y2I) > 0, if Y^ < Y^

Hence, the optimal structure function f*(YlfY2) is monotone

increasing with respect to Y^, while it is monotone decreasing

with respect to Y_2.The following set P3* can be defined as

P3* = { {^1'^2) ' 9<Ii'l2)>0 and; if -1 > -I*' then g(^l''Y-2) * °

and; if Y2* > Y2, then gfY-^Y^1) i 0 } (21)

Each minimal path set in this case is a subset of

{1,... ,n,,n,+1,... ,n}. The optimal structure function f*(YlfY2)

can be expressed by

f*(Y1fY,) = Jl {( II Y.)( n Y. )}. (22)
"■" (ll'Z2)eP3* 3eCi<!i> keC0(^2)

5.3.3 Systematic Method of Obtaining Minimal Path Sets

When a functional form of f*(Y) is given, we can implement

the logic f*(Y) as a hard-wired circuit or as a computer program.

In order to obtain the functional form of f*(Y), we must obtain

the minimal path sets. Then, we propose a systematic method to

obtain the minimal path sets.

Consider Case 3 in section 5.3.2 as a general case.

Obtaining the minimal path sets is equivalent to obtaining the

set P3*. Converting Y2 to 1-Y2', g(YirY2') becomes now monotone

increasing with respect to (Y-^Y^1). Hence, we assume without

loss of generality that g(Y) is monotone increasing.
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The proposed method obtains set P3* by examining 2n possible

elements in numerical order [LI]; for example, in two-dimensional

case, (0,0)->(l,0)->(0.1)->(l,l). The method begins with Y =

(0,...,0) and ends with Y = (1,...,1). Let Y denote a vector that

is currently examined, and let YP=(Y, p,...,Y p) be an element of

set P3* among the vectors that have been examined.

Step 0: Let Ig be ClgP and let P3* be empty.

Step 1: Calculate g(Y) and check whether g(Y) > 0.

1) If g(Y) 10, then calculate g(Y) for the next vector.

2) Otherwise, subtract g(Y) from I_ and go to Step 2.

Step 2: Compare Y with all vector Yp in P *-

1) If Y > Yp for some Yp, then let Y be the next vector and

go to Step 1.

2) Otherwise, let Y be an element of set P3* and let Y be

the next vector. Go to Step 1.

Through calculations described above, the set P3* and the optimal

value of !, can be obtained at the same time.

5.3.4 Optimal Boolean Structure of Identical Sensors

In this section, we consider the cases where some sensors

are identical, where the optimal structure f*(Y) can be

simplified.

We first assume that all the sensors are identical. The same

theorem as the theorem of section 3.3.1 in CHAPTER 3 is obtained.

THEOREM :

Let q, be the FD probability and let q2 be the FS

probability of the sensor. Assume n identical sensors.
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1) If qx + q2 < 1.

a) it is optimal not to use any safety monitoring system , if

k 1 n,

b) the safety monitoring system which is always generating the

system alarm is optimal, if k < 0,

c) k*-out-of-n:G structure is optimal, otherwise.

2) If qx + q2 = 1,

a) it is optimal not to use any safety monitoring system, if

C2S(1-P) 2 C1SP,

b) the safety monitoring system which is always generating the

system alarm is optimal, if C2S(1-P) < ClgP.

3) If qx + q2 > 1,

a) it is optimal not to use any safety monitoring system, if k

i 0,

b) the safety monitoring system which is generating the system

alarm is optimal, if k > n,

c) k**-out-of-n:F structure is optimal, otherwise.

Notes:

1.

2.

3.

k =

c2sa-p)

C1SP *1

In―――――― + n≫ln

In

(l-ql)(l-ql)

%q2

k* = INT[k],

k** = INT[n-k].

I (23)

Proof :

Since all the sensors are identical, the switching function
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g(Y) is modified into

itm) = ClgP(l-qi)＼M - C2s(l-P)q2m(l-q2)n-m,

uhprp

m =

n

Z

i=l
Yi ; number of l's in Y

(24)

Factoring CKpIHi)＼n
m out

of the right hand side of eq

g(m) = ClsP(l-qi)mqin~m{l-h(in)}f

where

C2S(1-P) 1-q

h(m) =

C1SP 9,

qxq2

(l-qi)(1-q )

}m.

(25)

(26)

Eq. (25) shows that g(m) > 0 <====> h(m) < 1.

Here the function h(m) has the following property:

PI) h(m) is decreasing with respect to m, if q. + g_ < 1,

P2) h(m) is increasing with respect to m, if q. + q_ > 1,

P3) h(m) is constant, if q, + q_ = 1.

Consider the unique number k such that h(k) = 1; the

explicit expression of k is given by eq. (23) when q, + q≫£ 1.

If q, + q, < 1, then according to PI), h(m) < 1 for any m > k.

Assume that k < 0. Then the optimal safety monitoring system

always generates the system alarm. This suggests that the plant

is too dangerous to operate. Assume k 2 n. Then the optimal

system is always nullified. For other k, the optimal safety

monitoring system is k*-out-of-n:G structure. If q, + q2 > 1,

then h(m) < 1 for any m < k, according to P2). The theorem can be

proven similarly to the case of q1 + q2 < 1. Consider finally the

case of qx + q2 = 1. Then h(m) = C2S(1"P)/C1SP* If C2S(1"P) ^

C, _P, then g(m) £ 0 for any m. The optimal safety monitoring
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system is always nullified in the plant in this case. If C2g(l-P)

< ClgP, then g(m) > 0 for any m. The optimal system always

generates the system alarm.

Q.E.D.

In cases l)-b), 2)-b), and 3)-b), the inadvertent plant

state is too dangerous and it is optimal not to activate the

plant. In cases l)-a), 2)-a), and 3)-a), the safety monitoring

system is too poor in reliability to be used as a protective

system.

Let us consider the case where n. sensors are available for

sensor i. The switching function g(Y) is modified as:

_ m, n.-m.
g(B) - C1SP{ ^ (l-qi.) ＼. i i }

n
m. n.―m.

" C2S(1"P){ ^ *2i 1<1"≪2i) }'

where m. : number of sensor i's yielding the sensor alarm,

m : (m, ,...fm ),

From eqs. (7) and (27), the s-expected total loss Io is

I_ = C,_P - Z f(m)i(m){ H ("i)}.
S 1S m ~ ~ i=l mi

(27)

(28)

The product of the second term on the right hand side of eq. (28)

means the number of vector Y which has the same value of g(m). By

this modification, the number of iterations in the proposed

method can be reduced to n1?. (m.+l). Vector m of the set p * in

this case indicates an AND combination of m.-out-of-n.:G or m.-

out-of-n^:F structures of sensor i's. Thus, the optimal structure

becomes an OR combination of AND combinations of m.-out-of-n^rG
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or m--out-of-n.:F structures.

5.4 ILLUSTRATIVE EXAMPLE

EXAMPLE 1 :

Consider the optimal structure composed of sensor 1 and

sensor 2. The number of all the Boolean structures is ,2 = 16.

Assume the values of parameters in Table 5.2. Table 5.3 shows the

value of the switching function for each sensor state.

Thus, the set P,* and the minimum of I,, are:

Px* = { (1,0) },

Is = 36.

The simple form of the optimal structure is

f*(Y) = Yim

The optimal structure is a single-sensor system composed of

sensor 1. This example shows that safety monitoring system

composed of two sensors are not necessarily better than a single-

sensor system: this is a specific characteristic of the systems

composed of non-identical components.

EXAMPLE 2 :

Consider the optimal structure composed of three kinds of

sensors, under a constraint of the investment cost. The problem

is formulated as:

Minimize:

subject to:

IS^nl'n2'n3^'

.;,c8ini ^ cso'

ni inio'

71



i

1

2

Yl

0

1

0

1

Table 5. 2 Values of qli, q2j/ Clgf C

≪Jli

0.001

0.003

q2i

0.002

0.004

C1S

10000

2S'
and P

C2S

100

p

0.01

Table 5.3 Values of the switching function g(Y)

Y2

0

0

1

1

g(D

72

C1S^11≪12 " C2s(l-P)(l-q21)(l-q22) =

ClsPd-qn)q12 - C2s(l-P)q21(l-q22) =

ClsPqn(l-q12) " C2s(l-P)(l-q21)q22 =

ClsP(l-qn)(l-q12) - C2s(l-P)q21q =

-98.406

0.102

-0.296

99.600



Table 5.4 Values of q^, q2i, n., c .,

i

1

2

3

cso
= =2s ==^s: ==:

qli

0.10

0.05

0.08

100
C1S

q2i

0.30

0.10

0.30

10000

CS0' C1S' C2S'

nio

5

5

5

C2S
100

csi

10

20

15

& p

P = 0.2
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where n. : number of sensors of type i,

n. : upper bound of n..

The physical condition, space or weight, places a restriction on

the number of available sensors. Both the number of sensors of

each type and the optimal structure are to be determined.

The objective function Ic is monotone decreasing with

respect to n, , n2, and n,, because more sensors become available

as n,, n_, or n, gets larger. Thus, the problem can be solved by

the Lawler and Bell's method [Ml,SI], Assume the data shown in

Table 5.4. The number of sensors and the set P, * are obtained

as:

(nirn2,n3) = (0,5,0), P^ = { (0,3,0) }.

The optimal structure is 3-out-of-5:G structure composed of

sensors of type 2. The minimal s-expected total loss I * is:

Is* = 3.001.
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CHAPTER 6

OPTIMAL BOOLEAN STRUCTURE

OF

MULTI-PLANT-STATE MONITORING SYSTEMS

"~ ^^"-"""" "~― ･―― ― ―･―･≫― ･･■■― ― ― ― ―.―
__ _ _ _^ ―_.

≫≪..̂ ^_.
_ _
^__

6.1 INTRODUCTION

We consider a safety monitoring system which supervises

several plant states such as pressure, temperature, etc., again.

In this chapter the safety monitoring system generates the system

alarm based on the output of these sensors of different types,

while based on the output of channels in CHAPTER 4. Further, we

assume that several kinds of sensors are available for monitoring

each plant state. The result of CHAPTER 5 is extended to the case

where the plant to be monitored has many plant states.

The optimal logic structure to combine the sensors is

developed here in order to minimize an expected total loss caused

by the FD and FS failures of the system. A simple rule to

determine the optimal structure among all the Boolean structures

is obtained in section 6.3.1. Some properties of the optimal

structure are shown, and then the same development as CHAPTER 5

follows in section 6.3.2. An illustrative example considers a

three-plant-state monitoring system.
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6.2 PROBLEM STATEMENT

6.2.1 Assumptions

1 The safety monitoring system is composed of N types of

sensors.

2

3

4

N. sensors of type i monitor plant state i.

Sensors fail s-independently.

Failures of sensors monitoring plant state i is s-independent

of the other plant states, although those are s-dependent on

plant state i.

5 Plant states malfunction s-independently.

6.2.2 Notation

xi

X

X(i)

ai:x(i)

Yij

*i<

aij

Y

j

･

binary indicator variable for plant state i

1, if plant state i is abnormal,
Xi = {

0, otherwise.

plant state vector: (Xir...,XN)

(X,
, .･･ ,X. _^ ,

j+i ' ･･' u'

(X^ ,...,X^_^,a'^i+l'･* *'^N'

binary indicator variable for sensor j of type i

1, if sensor j of type i is generating the

Y. . = { sensor alarm,

0, otherwise,

negation of Y..; = 1-Y..

(Yil""'YiNi)

(Yil'･'*'Yij-1'Yij+1'*･''YiN.]

Ii(3) <Yil Yij-l'a'Yij+l YiN.)

(Y, ,...,Yj.)

Y(ij) (Y^,...,Y^_i/Y^(j)/Xi+ii･･･'＼fi)
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a1;J:Y(iJ)

f(X)

cx(x)

C2(X)

Js

pi

ij

*2ij

(Y^,... 'Ki_i'ai j:Y_i(J) '―i+1'**''^fcp

structure function of the safety monitoring system

f(Y) = {

If

o,

if the safety monitoring system is

generating the system alarm,

o1-Vi£>rwiat*

FD loss: loss caused when the safety monitoring system

does not generate the system alarm under plant state X

FS loss: loss caused when the safety monitoring system

generates the system alarm under the plant state X

s-expected total loss caused by the failures of the

safety monitoring system

Prtt^l}

conditional FD probability of sensor j of type i:

Pr{Yij=0|Xi-l}

conditional FS probability of sensor j of type i:

Pr{Yi.=l|Xi=0}

k-out-of-n:G safety monitoring system which yields the system

alarm if and only if k or more of its n sensors

generate the sensor alarms. For k 2 n+1, it implies

that the safety monitoring system is nullified. For k

<L 0, it implies that the safety monitoring system

always generates the system alarm.

k-out-of-n:F safety monitoring system which yields the system

alarm if and only if k or more its n sensors do not

generate the sensor alarms. For k 2 n+1, it implies

that the safety monitoring system is nullified. For k

£ 0, it implies that the safety monitoring system

always generates the system alarm,

77



The problem is to obtain the optimal Boolean structure that

minimizes an s-expected total loss caused by the failures of the

safety monitoring system.

6.3 PROBLEM SOLUTION

6.3.1 Opitmal Boolean Structure of Multi-Plant-State Monitoring

Systems

The s-expected total loss Ig is a sum of losses over all the

plant states and the output states of sensors:

I. = E Z [ CL (X){l-f(Y)} + C9(X)f(Y) ]Pr{X}Pr{Y|X}- (1)
S x y 1 l

The terms (^ (X){1-f(Y)} and C2(X){1-f(Y)} represent the FD loss

and the FS loss, respectively. Since £, Pr{Y|X} =1, I_ is

expressed as:

Js = z c
X X
(X)Pr{X} - z

X

z

Y
{Cj(X)-C2(X)}Pr{X}Pr{Y|X}.

Define G(Y) as:

G(Y> = I {C, (X)-C9(X)}Pr{X}Pr{Y|X}-
X X 2

Then,

I = Z C (X)Pr{X} - Z G(Y)f(Y).

(2)

(3)

(4)

The first summation in eq. (4) means the loss caused in the plant

without the safety monitoring system, while the second summation

means the gain from implementing the safety monitoring system to

the plant. If we set f(Y) =1 for any Y satisfying G(Y) > 0, then

I attains its minimum. The optimal logic structure f*(Y) is:

1, if G(Y) > 0,
f*(Y) = { (5)

0, otherwise.

The function G(Y) is called the switching function of the optimal
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safety monitoring system. This structure is optimal among all

the Boolean structures. The optimal f*(Y) can be expressed as:

N N.

fMY) = z n { n y..(z. .) },
Z_eP i=l j=l J 3

where

(6)

P = { Y I G(Y) > 0 }, (7)

Y , if Z.. = 1,
Y..(Z .) = { _x^ ^ (8)
3 J Y±.r otherwise.

Eq. (5) shows that set P is the set of path vectors of the

optimal logic structure f*(Y).

6.3.2 Properties of Optimal Boolean Structure

The switching function G(Y) has the following property.

PROPERTY :

On the assumptions 1-5, these two properties hold:

(PI) If qUj + q2ij £ 1 and G(0i;.:Y(ij)) > 0, then 6(1.,..:Y(ij) )

> 0.

(P2) If qlij + q2ij > 1 and G(lij:Y(ij)) > 0, then G(Oij:Y(ij))

> 0.

Proof :

From the assumptions 3-5 and eq. (3), G(0■■:Y(ij)) and

G(l..:Y(ij)) can be written as:

G(Oi:J:Y(ij)) = C^P.q^PrnrUHX^l}

+ c2(i-Pi) (i-q2ij)^{Yi(j) ix^o},

G(lij:Y(ij)) - C1Pi(l-qlij)Pr{Ti(j)|Xi=l}

+ C2(l-Pi)q2ijPr{Yi(j)|X±=0},

where
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cl -

C2 "

I

X=(liSX(i))

X=(0 ^Xfi))

{C1(X)-C2(X)}Pr{X(i)}Pr{Y(i)|X(i)}, (11)

{C1(X)-C2(X)}Pr{X(i)}Pr{Y(i)|X(i)}, (12)

Pr{X(i)} = n { X.P. + (l-X.)d-P.) },

Pr{Y(i)|X(i)}

+ (1-X

Pr{Yi(j)IXi=l} =

PrO^U) IXi=O} =

(13)

i>f*jhq2jh+<i-Vu-q2jh)n], (14)

hj.
< ^h^-w + (^ih^lih}' (15)

Jjj { Yih<32ih+ <1-Yih><1-<W ≫' (16^

Suppose a natural assumption on C, (X) and C2(X): C, (X) is

monotone increasing with respect to X, while C_(X) is monotone

decreasing with respect to jC. Then, from eqs. (11) and (12), C, >

C2' Let us prove the property (PI) first. The two cases are

possible;

Case 1: C, > 0 and C, 2 0. Case 2: C, > 0 and C, < 0.

In case 1, it is obvious that G(l-.:Y(ij)) > 0 because 0 < P- <

1, 0 < qxij < 1, 0 < q2ij < 1, Pr{Yi(j)|Xi=l} > 0, and

Pr{Yi(j)|Xi=0} > 0 in eq. (10). In case 2, the same proof as that

in section 5.3.2 of CHAPTER 5 can be applied. The property (P2)

can be proven in a similar v/ay.

Q.E.D.

The function G(Y) has the same property as that of the

function g(Y) in CHAPTER 5. Replacing g(Y) by G(Y), the same

development holds for this case.

Now we consider Case 3 as a general case. Let Y, denote the

vector of indicator variables for sensor j of type i such that
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q + q2i. 1 1. Let Y^ denote the vector of Y^. such that qli- +

q . . > 1. Then, the property proven here shows that the optimal

structure function i*{,Y.,Y^) is monotone increasing with respect

to Y, , while it is monotone decreasing with respect to Y,. That

is,

II > -I' ====> f*(Xi'X2) * f*(*ilr^2)f

h. > Z2' ====> f*(Il'l2') ^ f*{li'l2]-

The set of minimal path vectors can be defined as:

P* = { (Y, ,Y_) | G(Y1,Y?)>0 and; if Y. > Y, ', then G(Y',Y2)1G

and; if Y2 < Y2', then GfY^Y^'KO }.

The simple expression of the structure function f*(Y) is

f*(Y) = ii {( n Y,,)( n Y. )},
(ZlfZ2)≪P* (ij)£C1(^1) 1D (ij)eCQ(Z2) 13

where

C, (Z) = { (ij) I Z, . = 1 },
x ― j.j

CQ(Z) = { (ij) I ZAj = 0 }.

(17)

(18)

(19)

(20)

The minimal path vectors of f*(Y) can be obtained by the same

systematic method as in section 5.3.3 of CHAPTER 5 with G(Y) in

place of g(Y).

If the safety monitoring system supervises only one plant

state, then C,(X,=0) = 0 and C2(Xj=l) = 0 because the normal

operation of the safety monitoring system does not cause any

loss. In this case, the function G(Y) has the same form as that

of g(Y). Thus, G(Y) is a natural extension of g(Y).

Consider the case where n.. sensors are available for sensor

j of type i. Then, the function G(Y) is modified by assumptions

3-5 as follows:

G(m) = I {C, (X)-C-(X)}Pr{X}Pr{ni|X},

where
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m. . : number of sensor j of type i which is yielding the

sensor alarm,

m
^mll f***flnlN '･･* 'mNl' * * * 'mNN ^

N Ni nij-mij mij
Pr{m|X} = n [ X.{ n g .. d-^i-i) >

i=l 1 j=l 11:) ±1J

Ni
+ (i-x.){ n
1 j=i

The s-expected total loss I_ is:

xs =
x

mij

*2ij (1"q2ij)

N Ni
nc (X)Pr{x} - z t n { n ("i

1 m i=l j=l mi
)}]G(m)f(m) .

n -mij
} ] . (22)

(23)

Vector m in the set of minimal path vectors reduces to an AND

combination of m..-out-of-n..:G or m..-out-of-n..:F structures.

Thus, the optimal structure f*(Y) in this case results in an OR

combination of AND combinations of m..-out-of-n..:G or m..-out-

of-nij :F structures.

6.4 ILLUSTRATIVE EXAMPLE

Consider a safety monitoring system, which supervises flow

X,, pressure X~,and temperature X.,. If {loss-of-flow} OR {high-

pressure AND high-temperature} take place in the plant, then the

plant suffers a considerable loss. There are 8 possible

combinations of the plant parameters X.., X2, X.,. FD and FS

losses over all the plant states are shown in Table 6.1, where X,

= 1 indicates that {loss-of-flow} takes place in the plant.

Similarly, X- = 1 and X3 = 1 indicate the occurence of {high-

pressure} and {high-temperature}.

Table 6.2 shows failure probabilities of sensor i and plant
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Table 6.1 Losses over each plant state

xl

0

1

0

1

0

1

0

1

X2

0

0

1

1

0

0

1

1

x3

0

0

0

0

1

1

1

1

Table 6

i

1

2

3

C,(X)

0

2000

0

7000

0

8000

5000

10000

.2 Values of q,.,,

ql il

0.

0.

0.

03

01

05

92 il

0.006

0.008

0.010

q2il'

C2(X)

100

0

50

0

80

0

0

0

& pi

pi

0.02

0.03

0.01
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state i. Assume that 3 identical sensors are available for each

type i. In this case, the optimal structure can be determined by

G(m) more easily than G(Y). In Table 6.3, G(m) indicates values

of the modified switching function G(m) multiplied by number the

of equivalent sensor states Y. Then the minimum of I_ turns out

to be: I * = 1.141. The set of P*1 of the optimal structure is:
o

P*' = { (2,0,0),(0,2,2) }.

The optimal safety monitoring system yields the system alarm and

activates the corresponding safety system, if {2 or more sensors

of type 1} OR [{2 or more sensors of type 2} AND {2 or more

sensors of type 3}] yield the sensor alarms.
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CHAPTER 7

OPTIHAL BOOLEAN STRUCTURE

OF

STATISTICALLY-DEPENDENT-PLANT-STATE MONITORING SYSTEMS

7.1 INTRODUCTION

In CHAPTER 6, we assumed that plant states malfunction s-

independently. However, the s-independence of failures does not

hold in practice. Common-mode failures such as a flood cause all

supposedly redundant components to fail simultaneously. As

another example, consider the structure in which components share

the load. Then, the failure of one component results in increased

load on each of the remaining components; the failure of a

component contributes to the failure of the remaining components.

Thus, in this chapter we consider the safety monitoring system,

supervising s-dependent plant states.

The plant is assumed to suffer losses when any plant state

becomes abnormal. The optimal logic structure is determined by a

switching function in section 7.3.1. We propose a clssification

of sensors into two classes: "positively reliable" and

"negatively reliable", in the following section. The monotone

property of the optimal structure is proven with these two terms.

Section 7.3.4 deals with the case where several sensors are
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identical. The optimal logic structure is also analytically

obtained when all the sensors are identical. An illustrative

example in section 7.4 considers a glass-lined reactor, where

three s-dependent phenomena are supervised by the safety

moniotorinq system.

7.2 PROBLEM STATEMENT

7.2.1 Assumptions

1 The safety monitoring system is composed of N types of

sensors.

2 Sensors of type i monitor plant state i.

3 Each sensor is either generating the sensor alarm or not.

4 Failures of sensors of type i are s-independent of the other

plant states except i, although they are s-dependent on plant

state i.

5 The plant suffers losses when any plant state becomes

abnormal.

7.2.2 Notation

X^ binary indicator variable for plant state i

1, if plant state i is abnormal,
X = {

0, otherwise.

X plant state vector : (X,,...,XN)

X(i) ' I '* **' i―1' i+1'* **' N

Y. . binary indicator variable for sensor j of type i

1, if sensor j of type i is generating the

Y.. = { sensor alarm,

0, otherwise.
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system alarm if and only if k or more of its n sensors

generate the sensor alarms. For k^n+1, it implies that

the safety monitoring system is nullified. For k^O, it

implies that the safety monitoring system always

generates the system alarm.

safety monitoring system which generates the

k-out-of-n:F

88

safety monitoring system which generates the

y

Y(ij)

negation of Y..; = 1 Yii

^1 l'***f^1N '･"''^Nl'* * *

(Yn,...,Y1N ,..., *ij-l'

'ynnJ
N

Yij+1'""YN1'***'YNN

a±j--Hi3) (yii'*'*'yin '･･*fYij-l'a'Yij+l"**fYNlf ･*"YNNN)

f (Y)

C,(X)

C2(X)

*s

qlij

q2ij

binary indicator variable for the safety monitoring

system

1, if the safety monitoring system is

f(Y) = { generating the system alarm,

0, otherwise.

FD loss: loss caused when the safety monitoring system

fails to generate the system alarm under plant state X

FS loss: loss caused when the safety monitoring system

generates the system alarm under plant state X

s-expected total loss caused by the failures of the

safety monitoring system

conditional FD probability of sensor j of type i:

Pr{Yij=0|Xi=l}

conditional FS probability of sensor j of type i:

Pr{Yij=l|Xi=0}

k-out-of-n:G



system alarm if and only if k or more of its n sensors

do not generate the sensor alarms. For lOn+1, it

implies that the safety monitoring system is

nullified. For k<fi, it implies that the safety

monitoring system always generates the system alarm.

The problem is to obtain the optimal Boolean structure that

minimizes an s-expected total loss caused by the failures of the

safety monitoring system.

7.3 PROBLEM SOLUTION

7.3.1 Optimal Boolean Structure of Statistically-Dependent-

Plant-State Monitoring Systems

The s-expected total loss Ig is :

Is = E I [C, (X){l-f(Y)}+C9(X)f(Y)]Pr{X}Pr{Y|X}
XY1" ~ ^ ~ -

(1)

The similar development as in section 6.3.1 of CHAPTER 6 holds:

I = Z C, (X)Pr{X} - z G(Y)f(Y),
x x ~ - I ~" ~

G(Y) = E {C, (X)-C9(X)}Pr{X}Pr{Y|X}.
X1"2-

The optimal logic structure f*(Y) is:

1, if G(Y) > 0,
f*(Y) = {

0, otherwise.

The optimal f*(Y) can be expressed as:

f*(Y) =

where

N N.

E

?'"ii(zii1!'
Z£P i=l j=l

P = { Y I G(Y) > 0 },

'≪≪･≪>- <,;;;
if Zij = 1,

otherwise.
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For the s-dependent case, the structure function can be

simplified by a prime implicant algorithm [K19].

7.3.2 Definitions of "Positively Reliable" and "Negatively

Reliable"

Before demonstrating the monotone property of the optimal

structure, we introduce here the concepts of "positively

reliable" and "negatively reliable" sensors.

Sensor j of type i is called positively reliable if the

following inequality is always satisfied:

Pr{Yij=l|Y(ij),Xi=l} 2 Pr{Yij=l|Y(ij),Xi=O}. (8)

The positively reliable sensor is equally or more likely to

generate the correct alarm than it generates the false alarm. If

failures of sensors are s-independent, then eq. (8) becomes

9lij + q2ij *X- (9)

Sensor j of type i is called negatively reliable if the

following inequality always holds.

Pr{Yij=l|Y(ij),Xi=l} < Pr{Yij=l|Y(ij),Xi=O}. (10)

The negatively reliable sensor is equally or more likely to

generate the false alarm than it generates the correct alarm. If

sensors fail s-independently, then eq. (10) becomes

*lij + q2ij > 1' <n>

7.3.3 Monotone Property of Optimal Boolean Structure

The switching function G(Y) also has a similar property to

that in section 6.3.2 of CHAPTER 6.

PROPERTY :

On the assumptions 1-5, the following properties hold:
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(PI) If sensor j of type i is positively reliable and

G(0,.:Y(ij)) > 0, then G(l..:Y(ij)) > 0.

(P2) If sensor j of type i is negatively reliable and

G(lij:Y(ij)) > 0, then G(0i:j:Y(ij)) > 0.

Proof :

From eq. (3), G(0i;. :Y(ij) ) and GCL^ :Y(ij)) can be written

as:

G(0i;j:Y(ij) ) = CxPr {Yi:j=0 |Y(ij) ,X±=1 }+C2Pr {Yi
j=0 |Y(ij)

,Xi=0} ,(12)

G(li:j:Y(ij)) = C1Pr{Yij=l|Y(ij)fXi=l}+C2Pr{Yij=l|Y(ij)rXi=0}r{13)

where

cl =

C2 "

I
X=(liSX(i)}

I
X=(O.:X(i))

{C^XJ-C (X)}Pr{X,Y(ij)},

{C,(X)-C (X)}Pr{X,Y(ij)}.

From assumption 5, the loss functions C, (X) and C,(X) are:

^(X) = 0 and C2 (X) > 0, for X = (0f...,0),

C-MX) > 0 and C,(X) = 0, for X/ (0,...,0) ,

(14)

(15)

(16)

because the plant suffers damage 1) when any plant state gets

abnormal and the protective system does not work and 2) when the

protective system shuts down the plant under the normal state of

the plant, where all the plant states are normal. Then, eq. (14)

shows that C, > 0. Let us prove the property (PI) first. Since

G(0..:Y(ij)) > 0 and C, > 0, the following inequality can be

obtained from eq. (12):

Pr{Y. .=O|Y(ij),X.=l}

2 1
Pr{Yij=l|Y(ij),Xi=O}

Then,
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G(lij:Y(ij)) > C1Pr{Yij=l|Y(ij),Xi=l}x

Pr{Y..=l|Y(ij),X.=O}Pr{Y..=O|Y(ij),X.=1}
tl iJ = i U = i ]. (18)
Pr{Yij=l|Y(ij),Xi=l}Pr{Yi;j=O|Y(ij),Xi=O}

The assumption that sensor j of type i is positively reliable

implies the inequalities:

Pr{Y,.=l|Y(ij),X.=O}
U = i £ lf

Pr{Yij=l|Y(ij),Xi=l}

Pr{Y,,=O|Y(ij),X.=l}
iJ i ^ 1#

Pr{Yij=O|Y(ij),Xi=O}

(19)

(20)

Eqs. (18)-(20) show that GCU .:Y(ij)) > 0. The property (P2) can

be proven in a similar way.

Q.E.D.

According to the property, the optimal structure function

f*(Y) has a monotone property which is similar to the s-

independent case in CHAPTER 6.

MONOTONE PROPERTY :

The optimal structure function f*(Y) has the following

properties on assumptions 1-5.

(PI) The function f*(Y) is monotone increasing with respect to

the indicator variable Y.. of positively reliable sensor:

f*(Oi;j:Y(ij)) i £*(li;.:Y(ij)).

(P2) The function f*(Y) is monotone decreasing with respect to

the indicator variable Y. . of negatively reliable sensor:

f*(lij:Y(ij)) £ f*(Oij:Y(ij)).

The monotone property implies that the systematic search in

section 5.3.3 of CHAPTER 5 can be also applied to obtain minimal
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path vectors.

7.3.4 Optimal Boolean Structure of Identical Sensors

Let us consider the case where n.. sensors are available for

sensor j of type i. Since the identical sensors have the same

statistical characteristic, the probability that a specific set

of m.. sensors are issuing the sensor alarms whilst the remaining

(n. .-m..) are not doing must be the same for all sets of m. .

components. In this case, the function G(Y) is modified into

G(m) = X {C, (X) - C9(X)}Pr{X}Pr{m|X},
X ~

where

(21)

m. . : number of sensor j of type i which is yielding the

sensor alarm,

m
(mll' ･ #･ rmlH " ' *'mNl " * *'mNNN)

The s-expected total loss !, is:

Ts

N Ni
n -

[ n { n ("ij)}]G(m)f(m).
i=l j=l mij " ~

(22)

Then, the optimal logic structure can be more easily determined

by the modified switching function G(m). Element m in the set

of minimal path vectors implies an AND combination of m..-out-of-

n..:G for a positively-reliable sensor and m..-out-of-n..:P for

a negatively-reliable sensor. Thus, the optimal logic structure

is expressed by an OR combination of AND combinations of m..-out-

of-n
ij
:G and m^. -out-of-n ij

:F structures.

Sensors in practical applications satisfy the positively

reliable condition. In this case, the safety monitoring system

generates the system alarm if and only if n^ . or more of sensor j

of type i yield the sensor alarms for all i and j.

93



As a special case, we consider again the safety monitoring

system composed of n identical sensors, supervising a specific

plant state. Since the normal operation of the safety monitoring

system does not cause any loss, the loss functions C,(X) and

C2(X) become:

(^(X-l) = Clg > 0,

C (X=0) = 0, C2(X=0) = C > 0

According to the monotone property proven in the previous

section, a similar theorem as in section 5.3.4 of CHAPTER 5 holds

for this case.

THEOREM :

Assume n identical sensors. On assumptions 1-5, the optimal

Boolean structure that minimizes the s-expected total loss Ig

(eq. (22)) is determined as:

(1) If the sensor is positively reliable, then k*-out-of-n:G

structure is optimal.

(2) If the sensor is negatively reliable, then (n-k**)-out-of-

n:F structure is optimal.

Note a) k* is the minimum integer k such that g(k) > 0.

b) k** is the maximum integer k such that g(k) > 0.

c) g(k) = ClsPr{X=l}Pr{m|X=l} - C, Pr{X=0}Pr{m|X=0}.

For the s-independent case, g(k) becomes equivalent to eq. (24)

Of CHAPTER 5

7.4 ILLUSTRATIVE EXAMPLE

Consider a chemical process which chlorinates a hydrocarbon
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gas in a glass-lined reactor as shown in Fig. 7.2 [K20]. The

possibility of an exothermic, runaway reaction occurs whenever

the Chlorine/Hydrocarbon gas ratio is too high, in which case a

detonation occurs, since a source of ignition is always present.

There are three unsafe phenomena: a high chlorine flow X,, a low

hydrocarbon flow X,,, and a high chlorine to hydrocarbon gas

ratio X3 in the reactor. The chlorine flow must be shut off when

an unsafe state is detected by the safety monitoring system,

reducing the Chlorine/Hydrocarbon ratio.

There are eight possible combinations of the plant

parameters X,, X-, and X3, as shown in Table 7.1. The FD loss

C,(X) is caused when the safety monitoring system does not shut

off the chlorine flow at the plant state X = (X,,X2,X_). The zero

value of C-,(X) implies that no loss results at state X = ( 0,0,0)

even if the safety monitoring system does not shut off the

chlorine flow. The FS loss C2(X) indicates how much cost is

caused when the chlorine is shut off at plant state X. The

absolute values of C,(X) and C9(X) are not always required; the

ratio C, {X)/C2[X^ =(0,0,0)) are sufficient to identify the

signum of the switching function G(Y), reflecting a trade-off

between the FS loss and the FD loss. We must ask ourselves how

many FS failures are equivalent to the single FD failure at a

given state of the plant. We answer for the glass-lined reactor

that 100 spurious shut-downs can be traded off by one event of

failing to shut down, yielding the loss values in Table 7.1.

The demand probability Pr{X} denotes the likelihood of the

plant state, which can be obtained from the plant operating data.

The probability in the second row of Table 7.1 is zero since X, =
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Hydrocarbon
gas

(H＼ MHj

Chlorine
from

^. vaporizer

To next stage in process

Ficr. 7.1 Glass-lined reactor
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Table 7.1 Values of C, (X) , C2(X), and Pr{X}

xl

0

0

0

0

1

1

1

1

X2

0

0

1

1

0

0

1

1

X3

0

1

0

1

0

1

0

1

cl(X)

0

100

100

100

100

100

100

100

c2(x)

1

0

0

0

0

0

0

0

Pr {X}

(1-2.4x10 4 )(1-1.4x10 5)

0

0

(l-2.4xlO~4)

(2.4x10 4)

(2.4xlO~4)

(1.4x10 5)

0

(l-1.4xlO~5)

0

(1.4xlO~5)

Table 7.2 Values of q... and q2ii

i

1

2

3

qlii

0.

0.

0.

25

25

25

qlij

4.3xlO"5

4.3xl0"5

4.3xlO"5
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0 AND X~ = 0 implies X3 = 0. The other zero probabilities can be

interpreted similarly. Note in Table 7.1 the s-independence

between X, and X2/ and the complete s-dependence of X, on X, or

x3.

Assume that 3 identical sensors are available for monitoring

each plant state i. Table 7.2 shows the conditional FD and FS

probabilities of sensors of type i. Probability Pr{Y|X} can be

Pr{Y|
3

x} = n n IX^.d-q ) + Y qn }

i=l j=l

+ V^ij + W^W* (21)

The optimal logic structure function f*(Y) is shown in Fig.

7.3. This consists of a stand-alone part and a cross-reference

part. In the former, any 2-out-of-3:G majority rule over the

sensors of the same type can shut down the plant. In the latter

part, two l-out-of-3:G are ANDed to generate the system alarm. We

observe the following points:

The 1/3 logic of type 1 is ANDed by the 1/3 logic of type 3

in the cross-reference part. The 1/3 logic of type 1 is more FS

than the 2/3 logic in the stand-alone part. This trend is

compensated because the alarm signal from the 1/3 logic of type 1

is doubly checked by the alarm signal from the 1/3 logic of type

3. The abnormal plant state X3, i.e., high gas ratio in reactor,

should be detected simultaneously with the plant state X^, i.e.,

high chlorine flow. The 1/3 logic structures of type 1 and 2 are

not cross-referenced because plant state X.^and X2 occur s-

independently, and such a double checking is not justified. The

cross-reference of type 2 and type 3 can be interpreted similarly
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to the cross-reference of types 1 and 3
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CHAPTER 8

OPTIMAL SHUT-DOWN LOGIC

OF

OVERALL PROTECTIVE SYSTEMS

― ――■―･―･-■―■■-―― ― ―･― v-_
_. _ __. _ ____

^m- ―~.^_._ ^__ ―≪.≫ ―≫.≫_

8.1 INTRODUCTION

An overall protective system is composed of sensing,

judging, and driving sections, as shown in Fig. 8.1. The state of

the plant is monitored by the sensing section which consists of

several types of sensors. If some state becomes abnormal, the

corresponding sensor issues its sensor alarm. The judging section

decides whether the driving section should be activated or not,

examining all the signals from the sensing section, and the plant

is shut down. The plant and the protective system constitute a

closed-loop.

In the previous chapters, we considered the sensing section

combined with the judging section as the safety monitoring

system, assuming that the judging section does not fail. Here, we

relax this assumption, and assume that each section has two kinds

of contradictory failures: FD and FS. This chapter develops how

to generate a command to the driving section, considering all

failures of the three sections. The optimal shut-down logic is

obtained by a switching function in section 8.3.1. A Boolean
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expression to implement the logic is also obtained. The

evaluation of FD and FS probabilities of the judging and driving

sections are shown in section 8.3.2.

8.2 PROBLEM STATEMENT

8.2.1 Assumptions

1 The protective system consists of a sensing, a judging, and a

driving section.

2 The plant to be protected has N states.

3 Each plant state is either normal or abnormal.

4 Plant state i is monitored by N. sensors of type i.

5 Each sensor is generating the sensor alarm or not.

6 The judging section is either issuing a command signal or not.

7 The driving section is either shutting down the plant or not.

8 Each section fails s-independently.

8.2.2 Notation

xi

X

Yij

y

f(Y)

binary indicator variable for plant state i

1, if plant state i is abnormal,
X. = {

0, otherwise.

plant state vector: (X,,...,X )

binary indicator variable for sensor j of type i

1, if sensor j of type i is generating the

Y. .
1J
= { sensor alarm,

0, otherwise.

negation of Y..; = 1 - Y. .

(Y11,...,Y1 ,...,YN1,...,ynnn)

shut-down logic
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z

w

a

b

c

d

cx (X)

C2(X)

zs

1, if the judging section issues a command

f(Y) = { signal to shut down the plant.

o, otherwise.

binary indicator variable for the judging section

I, if the judging section is issuing a command

z = { signal,

0, otherwise.

binary indicator variable for the driving section

1, if the driving section is shutting down the

W = { plant,

0, otherwise.

conditional FD probability of the judging section:

Pr{Z=0|f(Y)=l}

conditional FS probability of the judging section:

Pr{Z=l|f(Y)=0}

conditional FD probability of the driving section:

Pr{W=0|Z=l}

conditional FS probability of the driving section:

Pr{W=l|Z=0}

FD loss: loss caused when the driving section is not

shutting down the plant under plant state X^

FS loss: loss caused when the driving section is

shutting down the plant under plant state X

s-expected total loss for a given shut-down logic f(Y)

The problem is to determine the optimal shut-down logic

that minimizes an s-expected total loss caused by failures of the

protective system.
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8.3 PROBLEM SOLUTION

8.3.1 Optimal Shut-Down Logic

The s-expected total loss !,
b

protective system is:

caused by failures of the

zs =ZHI {C (X)(1-W)+C (X)W}Pr{W,Z,Y,X}.
XYZW z

(1)

The term (^(XJd-W) indicates the FD loss, while C2(X)W indicates

the FS loss. The probability Pr{W,Z,Y,X} is expressed by the

decomposition rule: Pr{A} = Pr{AB} + Pr{AB}, the production rule:

Pr{AB} = Pr{A|B}Pr{B}, and assumption 8, as follows:

Pr{W,Z,Y,X} = I Pr{W,Z,f(Y),Y,X}
f(Y)

Z Pr{W|Z}Pr{Z|f(Y)}Pr{f(Y)|Y}Pr{Y|X}Pr{X}.
f(Y)

The probability Pr{f(Y)|Y} is deterministic, i.e., Pr{f(Y)=l|Y} =

f(Y). Then,

Pr{W,Z,Y,X} = Pr{W|Z}Pr{Z|f(Y)=l}Pr{Y|X}Pr{X}f(Y)

+ Pr{W|Z}Pr{Z|f(Y)=O}Pr{Y|X}Pr{X}{l-f(Y)}. (2)

By eq. (2), Io can be expressed as:
o

L=H ( Cn (X)[ Pr{W=O|Z=l}Pr{Z=l|f(Y)=l}f(Y)
S X Y X ~ ~

+ Pr {W=0 | Z=l} Pr {Z=l |f(Y) =0}{1-f (Y)}

+ Pr{W=0|Z=0}Pr{Z=0|f(Y)=l}f(Y}

+ Pr {W=0 | Z=0} Pr {Z=0 |f(Y) =0}{1-f (Y) }]

+ C2(X)[ Pr{W=l|Z=l}Pr{Z=l|f(Y)=l}f(Y)

+ Pr{W=l IZ=l} Pr{Z=l |f(Y) =0}{1-f (Y)}

+ PrfW=llZ=0>PrfZ=0lf(Y)=lif(Y)

+ Pr{W=l|Z=O}Pr{Z=O|f (Y)=O}{l-f (Y) } ] )

xPr{Y|X}Pr{X}.

Substitute a = Pr{Z=0|f(Y)=1}, b = Pr{Z=l|f(Y)=0}.
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Pr{W=O|Z=l}, and d = Pr{W=l|Z=O} into eq. (3), and we have Ig

written as:

Is = S [ C1(X)+{C2(X)-C1(X)}(b+d-bc-bd) ]Pr{X}

- I Z (1-a-b) (1-c-dHC, (X)-C9(X)}Pr{Y|X}Pr{X}f (YJ. (4)
X Y L

z

Define the function GO(Y) as

GO(Y) = (1-a-b)(1-c-d) E {C, (X)-C,(X)}Pr{Y|X}Pr{X}. (5)

Then,

Is = £ [ C1(}y+{C2(X)-C1(X)}(b+d-bc-bd) ]Pr{X} - I GO(Y) f(Y) .(6)

The first summation on the right hand side of eq. (6) is

independent of the logic f(Y). Thus, Ic attains its minimum if we

set f(Y) =1 for any Y satisfying GO(YJ > 0. The optimal logic

f*(Y) is:

1, if GO(Y) > 0,
f*(Y) = { (7)

0, otherwise.

We call GO(Y) the switching function of the optimal shut-down

logic f*(Y). This logic f*(Y) is optimal among all the Boolean

logic structures.

The judging and driving section are reasonably reliable in

practical applications. The inequality, (1-a-b)(1-c-d) > 0,

holds. Then, the switching function GO(Y) becomes equivalent to

the switching function to determine the structure function in

CHAPTER 7; the optimal shut-down logic is determined by the

reliability of the sensing section. Thus, the results in CHAPTERS

5, 6, and 7 apply to the design of the shut-down logic.

The optimal shut-down logic f*(Y) can be implemented by the

following Boolean function:
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f*(Y) =

where

N

z { n

P≪S i=l
(Pij))}, (8)

S = { Y I GO(Y) > 0 } : set of path vectors of f*(Y),(9)

Yij'

if Pij = 1,

otherwise.
(10)

The sum of product expression, eq. (8), can be simplified by a

Prime implicant alaorithm FK191.

8.3.2 FD and FS Probabilities of Judging and Driving Sections

The FD and FS failure probabilities of the judging and

driving sections can be similarly evaluated to those of the

safety monitoring system. Clearly from Fig. 8.1, we make the

following assumptions on these two subsystems:

(J-l) The components of the judging section get the same input

signal from the sensing section.

(J-2) The judging section is composed of m components.

(D-l) The components of the driving section get the same

command signal from the judging section.

(D-2) The driving section is composed of k components.

For example, a component of the judging section is a

microcomputer processing instrumentation signals, and a component

of the driving section is a shut-down valve.

Consider the judging section first. Let Z^ denote the state

of component i:

1, if component i is issuing a command signal,
Zi = {
0, otherwise.

The state of the section is completely determined by Z =
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{zir...,zm)i

Z = f_(Z) . (ID
J ―

The function fT(Z) is called the structure function of the
u ―

judging section, representing how the judging section generates a

command signal based on the state of its components.

If the components fail s-independently, the FD and FS

probabilities, a and b, are calculated by the reliability

function h-r(Z) of the judging section in the same way as the

safety monitoring system:

a = 1 - h7

b = hj

where

(b),

(1-a),

a. : FD failure probability of component i:

Pr{Zi=0|f(Y)=l},

b. : FS failure probability of component i:

Pr{Zi=l|f(Y)=0},

(12)

(13)

1-a : (l-a1,...,l-ajn) ,

b : (b^ ,... ,t>m).

The same development follows in case of the driving section.

The indicator variable for component i is defined by

1, if component i is shutting down the plant,
W = {

0, otherwise.

The state of the driving section is denoted by the structure

function fD

W = fD(W) ,

(W):

(14)

where W= (W^r...rW^).

The reliability function hD(W) expresses both FD and FS

probabilities as follows in the case where failures of the
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components are s-independent:

c = 1 - hD(l-c), (15)

d = hD(-5 ' (lg)

where

c.^ : FD failure probability of component i:

Pr{Wi=0|Z=l},

d^ : FS failure probability of component i:

Pr{Wi=l|Z=0},

1-c : (1-c^ ... ,1-c^) ,

d : (d^,...,d^)

If failures of the components are not s-independent,

probabilities a, b, c, and d can be evaluated by the structure

functions fj(Z^) and fD(W) , using Markov models (for example, see

[Dl]).
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CHAPTER 9

CONCLUSION AND RECOMMENDATION FOR FURTHER RESEARCH

We developed the optimal logic structure of the safety

monitoring system, in the sense it minimizes an expected total

loss caused by the fail-dangerous (FD) and failed-safe (FS)

failures of the safety monitoring system. The dissertation was

roughly divided into three parts.

The first part, consisting of CHAPTERS 3 and 4, considered

the safety monitoring system composed of several channels. Each

of them consists of identical sensors and supervises a specific

state of the plant. The problem is to obtain the optimal coherent

structure for each channel. The optimal one-channel structure is

proven to be k*-out-of-n:G structure in CHAPTER 3 and a simple

formula to find optimal k* is given. The monotone trends of k*

with respect to the failure probability of the plant, the FD and

FS losses, are also shown. CHAPTER 4 dealt with multi-channel

systems. The optimal logic structure for each channel is proven

to be k-out-of-n:G structure, and then the problem is formulated

into a non-linear integer programming (NLIP) problem. The NLIP

problem can be solved by the extended Lawler and Bell's method

throough a coordinate transformation.

The second part, CHAPTERS 5, 6, and 7, dealt with the safety

monitoring system composed of sensors of different types. An
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appropriate protective procedure is activated on the basis of the

output of the sensors. The problem is how to obtain the optimal

Boolean structure to combine the sensors. A simple rule to

determine the optimal structure is given by a switching function.

CHAPTER 5 considered the case where all the sensors monitor a

specific plant state. The monotone property of the optimal

structure with respect to the sensor shown in this chapter gives

a systematic search method to determine it. Analytic solutions

are also given for the case where all the sensors are identical.

CHAPTER 6 studied the case where the system supervises several

plant states. The similar switching function as in CHAPTER 5 is

obtained, and the same development follows. CHAPTER 7 extended

the results of CHAPTERS 5 and 6 into the case where failures of

plant states are s-dependent. A classification of sensors into

two classes, "positively reliable and "negatively reliable", is

proposed. The monotone property of the optimal structure with

respect to the sensor is shown to depend on its reliability.

The last part, CHAPTER 8, discussed the optimal shut-down

logic of the overall protective system, which is composed of

driving, judging, and sensing sections. Each section fails in two

ways: FD and FS. The optimal shut-down logic is obtained by a

switching function. For the system with reliable judging and

driving sections, the switching function becomes equivalent to

that of CHAPTER 7. This means that the results of CHAPTER 5, 6,

and 7 may apply to the design of the shut-down logic.

The topic recommended for further research is a dynamic

logic structure. We dealt with a kind of dynamic logic: the

probabilistic logic in [K9] where the structure is randomly
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changing independent of the plant state. However, what we

recommend now is another kind of dynamic logic structure, where

the logic is changing on the basis of the monitored data. The

development in this dissertation is a static optimization at a

given time from this point of view, not considering the history

of the data. The safety monitoring system is usually supervising

its environment continuously with time. Then, the previous data

monitored by the sensors are available not only for predicting

the future phenomena of the plant, but also for detecting the

failure of sensors. The logic should be changeable so that the

output of the sensor estimated to be either FS or FD can be

excluded. Such a dynamic logic can be implemented through the use

of microcomputers. The problem is how to change the logic

structure, depending on the history of monitored data. This study

may be applied to the problem to change the shut-down logic in

case of an inspection or maintenance of sensors.
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