<table>
<thead>
<tr>
<th>Title</th>
<th>CATIONIC POLYMERIZATION OF VINYL ETHERS AND STYRENE DERIVATIVES---STRUCTURE AND REACTIVITY OF MONOMER AND PROPAGATING SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Masuda, Toshio</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1973-09-25</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.r2388</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
CATIONIC POLYMERIZATION
OF
VINYL ETHERS AND STYRENE DERIVATIVES
——— STRUCTURE AND REACTIVITY
OF MONOMER AND PROPAGATING SPECIES

TOSHIO MASUDA
<table>
<thead>
<tr>
<th>Page</th>
<th>Line</th>
<th>Wrong</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>24</td>
<td>author</td>
<td>author</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>SnCl₄.TCA with</td>
<td>SnCl₄.TCA than with</td>
</tr>
<tr>
<td>47</td>
<td>Table IV</td>
<td>Table I and III</td>
<td>Tables I and III</td>
</tr>
<tr>
<td>77</td>
<td>24</td>
<td>determing</td>
<td>determining</td>
</tr>
<tr>
<td>78</td>
<td>8</td>
<td>increase</td>
<td>increases</td>
</tr>
<tr>
<td>128</td>
<td>6</td>
<td>in this paper</td>
<td>in this study</td>
</tr>
<tr>
<td>134</td>
<td>Table III</td>
<td>CH₂=CHOCH₂H₂</td>
<td>CH₂=CHOCH₂H₅</td>
</tr>
<tr>
<td>137</td>
<td>Table V</td>
<td>Cβ x Cα</td>
<td>Cβ + Cα</td>
</tr>
<tr>
<td>139</td>
<td>3</td>
<td>onto</td>
<td>on to</td>
</tr>
<tr>
<td>159</td>
<td>22</td>
<td>influence</td>
<td>inference</td>
</tr>
<tr>
<td>177</td>
<td>14</td>
<td>of the catalyst</td>
<td>of the kind of catalyst</td>
</tr>
<tr>
<td>207</td>
<td>5</td>
<td>as</td>
<td>as to</td>
</tr>
<tr>
<td>216</td>
<td>2</td>
<td>system</td>
<td>systems</td>
</tr>
</tbody>
</table>
CATIONIC POLYMERIZATION OF VINYL ETHERS AND STYRENE DERIVATIVES

— STRUCTURE AND REACTIVITY OF MONOMER AND PROPAGATING SPECIES

TOSHIO MASUDA
CONTENTS

INTRODUCTION .. 1

PART I. CATIONIC COPOLYMERIZATION OF 2-CHLOROETHYL VINYL ETHER WITH STYRENE DERIVATIVES 11
 Chapter 1. Characteristics in the Copolymerization of a Vinyl Ether with Styrene Derivatives 13
 Chapter 2. Temperature Dependence of Monomer Reactivity Ratios 35
 Chapter 3. Effects of Solvent and Catalyst on Relative Reactivity 51

PART II. SUBSTITUENT EFFECT IN CATIONIC POLYMERIZATION OF VINYL ETHERS AND STYRENES 65
 Chapter 4. Effect of β-Substituents on Reactivity 67
 Chapter 5. Effect of α-Substituents on Reactivity 81
 Chapter 6. Reactivity of 2-Alkoxybutadienes 99
 Chapter 7. Comparison of Polar Bromination with Cationic Polymerization 113

PART III. STRUCTURE AND REACTIVITY OF MONOMERS IN CATIONIC POLYMERIZATION 123
 Chapter 8. Theoretical Consideration on the Reactivity of Vinyl Ethers and β-Substituted Vinyl Ethers 125
 Chapter 9. Molecular Properties and Reactivity of Vinyl Ethers and Styrene Derivatives .. 145

PART IV. SALT EFFECT ON POLYMERIZATION RATE AND ON MOLECULAR WEIGHT DISTRIBUTION OF THE POLYMER 163
 Chapter 10. Salt Effect in the Polymerization by Various Catalysts 165
 Chapter 11. Salt Effect in the Polymerization by Iodine .. 183
 Chapter 12. Molecular Weight Distribution of Polystyrene Formed in Two-counterion Systems 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>215</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>223</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>224</td>
</tr>
</tbody>
</table>
INTRODUCTION

The cationic polymerization of vinyl compound belongs to the reactions in which a linear polymer with carbon skeleton is formed, like radical and anionic polymerizations. In the mechanistic aspect of organic chemistry, the propagation reaction of the cationic polymerization is one of the electrophilic addition reactions to carbon-carbon double bond, and is of the same kind as the addition reaction of a protonic acid or a halogen to an olefin.\(^1\) The propagating species is a carbocation. Therefore, it is in close connection with the intermediate in a solvolysis reaction which is one of the most familiar reactions for a chemist, and with the carbocations which have been extensively studied by Olah and his collaborators.\(^2\) Further, a variety of Lewis acids and Brönsted acids have been used as the initiator in cationic polymerization, so that the polymerization has some aspects in common to acid-catalyzed reactions like the Friedel-Crafts reaction.\(^3\) Thus, cationic polymerization is related to many fields in organic chemistry.

In general, the factors affecting a reaction is divided into two main classes, medium effect and substituent effect.\(^4\) The former is the effect of external factors such as solvent, catalyst and temperature, and the latter the effect of internal factors, that is, structure of a substrate. In order to study cationic polymerization from the viewpoint of physical organic chemistry and to gain an insight into the reaction mechanism, it is necessary to investigate in detail the influence of these individual factors on the reaction. Especially, studies on substituent effect frequently give a more direct information than those on medium effect do, and play a great role in the
understanding of reaction mechanism. The Hammett rule is representative of the studies, and in consequence has been one of the expressions most frequently used by physical organic chemist. The knowledges on the molecular orbital and molecular properties (ionization potential, excitation energy, bond length etc.) of a compound are indispensable for the sake of deeper and more exact understanding of the substituent effect. Molecular orbital theory has made a rapid progress with the aid of digital computers. For instance, Pople has devised semiempirical LCAO MO methods such as CNDO and INDO, and has succeeded in applying them to many organic molecules.\(^5\) As to molecular properties, uv and visible spectra give information on the state of conjugation, photoelectron spectroscopy on the ionization potential, and \(^{13}\)C nmr on electron distribution. The advance of these instruments seems to promise more direct analyses of molecular structure and properties.

The addition polymerization of a vinyl compound comprises several elementary reactions such as initiation, propagation, termination and transfer reactions. The propagation reaction is the most characteristic of these in polymerization because the polymer is formed thereby. Accordingly, many of the studies on the reaction mechanism have been focused on the propagation reaction. In fact, there have been many investigations on the propagation rate constant in radical and anionic polymerizations. However, very few methods to determine precisely the propagation rate constant have been established in cationic polymerization. This delayed the development in kinetic study of cationic polymerization. On the other hand, the monomer reactivity ratio can be easily determined also in cationic polymerization. This ratio indicates the relative reactivity of two monomers in a propagation
reaction under a given condition. Accordingly, the reactivity in propagation reaction has been successfully discussed in terms of monomer reactivity ratio.

There are a number of compounds which possess a carbon-carbon double bond polymerizable by cationic mechanism. These include alkyl vinyl ethers, styrene derivatives, N-vinylcarbazole, indene, cyclopentadiene, and isobutene. Of these monomers, an alkyl vinyl ether is a typical monomer which has a polar substituent, and styrene is a representative monomer which has a conjugating substituent. Therefore, their behaviors in cationic polymerization could be different from each other. It would be of great interest to compare the nature of these monomers and their behaviors in cationic polymerization.

Not only a monomer but also a propagating carbocation and a counterion participate in the propagation reaction of cationic polymerization. Taking account of this, an investigation on the properties of a propagating species will be no less important than a study on the structure and the reactivity of a monomer in order to elucidate the reaction mechanism. However, a direct study of the nature of active species is most difficult. In this respect, a study on salt effect in cationic polymerization seems to be attractive, because the effect of added salt has been evidenced in a number of ion-molecule reactions.

On the basis of the viewpoint mentioned above, the present investigation deals with three subjects on the cationic polymerization of vinyl monomers: 1) studies on the difference in behaviors of alkyl vinyl ethers and styrene derivatives in cationic polymerization by means of copolymerization, 2) studies on the change in reactivity of alkyl vinyl ethers and styrene derivatives caused by substituent, and 3) studies on the
dissociation of a propagating ion pair by means of the salt
effect on the reaction rate and on the molecular weight distribu-
tion of the polymer obtained.

In the studies described in Part I, the mechanism of propa-
gation reaction of an alkyl vinyl ether and styrene derivatives
is investigated by means of copolymerization. As the first
investigation on the copolymerization of monomers having
different substituents, Overberger, et al., have carried out the
cationic copolymerization of isobutene and p-chlorostyrene.6
They clearly showed the difference in behaviors between these two
compounds. In the succeeding chapters, 2-chloroethyl vinyl ether
is employed as a vinyl ether, and p-methoxystyrene, α-methylstyrene
and p-methylstyrene as styrene derivatives. This choice of mono-
mers was made to use a vinyl ether and styrene derivatives possess-
ing close reactivities each other, since vinyl ethers are usually
more reactive than styrene derivatives.

In Chapter 1, the formation of true copolymers in the copoly-
merization was confirmed at first. For, attempts of ionic copoly-
merization of monomers possessing very different structures some-
times result in a mixture of two homopolymers. Next, the shape of
copolymer composition curves was investigated, and the large
dependence of the relative reactivity on the reaction condition
was shown.

In Chapter 2, the temperature dependence of monomer reactivity
ratios in these systems was examined. When styrene or a vinyl ether
was copolymerized with a homologue, there was almost no temperature
dependence. On the contrary, remarkable temperature dependences
were observed when a vinyl ether was paired with a styrene deriv-
ate. The differences in the activation enthalpy and the activa-
tion entropy between both types of compounds were evaluated from
the temperature dependence of the monomer reactivity ratios.
In Chapter 3, the effects of catalyst and solvent on the relative reactivity in the copolymerization were investigated. When a strong catalyst and/or a polar solvent are used, a propagating ion pair is thought to be more dissociable. Under these conditions, styrene derivatives proved to have large reactivities. To interpret the experimental result the propagation reaction was tentatively divided into two steps, and the behavior of both monomers in each step was discussed.

Part II is concerned with the substituent effects on the cationic polymerization of alkyl vinyl ethers and styrene derivatives. Introduction of a substituent usually brings about an appreciable change in the reactivity of a compound, and a part of the change must be a reflexion of the nature of transition state of the reaction. However, it should be taken into account that electronic and steric effects of the substituent are always involved. In the following chapters, the change in reactivity with introduction of a substituent is studied in considerable detail.

In Chapter 4, the reactivities of the β-alkyl-substituted vinyl ethers and styrene derivatives were compared with unsubstituted ones. The dependence of the relative reactivity on the nature of solvent and catalyst, and on temperature was large and evident. In every case, the reactivity of β-substituted monomers became close to that of unsubstituted ones under conditions which promote the reaction. The results were explained in terms of the reduction of selectivity and the localization of charge.

In Chapter 5, the reactivities of α-methyl-, α-ethyl-, α-ethoxy- and α-phenyl-substituted vinyl ethers and styrene derivatives were studied. The substituents influenced the reactivity not only electronically but also sterically. Due to
the steric hindrance of α-substituents in propagation reaction, it was difficult to obtain high polymers in homopolymerization of these monomers except α-methyl-substituted ones. In some cases alternating copolymers were produced in the copolymerization with corresponding unsubstituted monomers. The changes in reactivity with the introduction of an α-methyl group in several electrophilic reactions were summarized and discussed.

In Chapter 6, the structure and reactivity of five kinds of 2-alkoxybutadienes were studied. 2-Alkoxybutadiene did not form a high polymer in homopolymerization. The alkoxybutadienes were copolymerized with ethyl vinyl ether. 2-(tert-Butoxy-)butadiene showed peculiarities in copolymerization behavior and molecular properties, which were ascribed to the bulkiness of the substituent.

In Chapter 7, the polar bromination reaction of vinyl ethers and styrene derivatives was studied and compared with cationic polymerization. A considerable increase in reactivity was observed on α-methyl substitution, while the change in reactivity with β-methyl substitution was small. From the results obtained, it was concluded that the polar bromination reaction is very similar to the propagation reaction in cationic polymerization among many electrophilic addition reactions to carbon-carbon double bond.

Part III describes the relationship between molecular orbital or molecular properties and the reactivity of olefins in cationic polymerization. To elucidate a reaction mechanism, it will be very useful to investigate the substituent effect on molecular orbital and molecular properties.

In Chapter 8, a few models of the transition state of propagation reaction in cationic polymerization were proposed and examined on the basis of the calculation by the extended Hückel method. The reactivities of vinyl ethers, propenyl ethers and 1,2-dialkoxy-
ethylenes were invoked to test the models proposed.

In Chapter 9, the relationship between molecular orbital, ionization potential or ^{13}C nmr chemical shift of various monomers and the reactivity in cationic polymerization was studied. When a methyl group is introduced into α- or β-position of ethyl vinyl ether and styrene, remarkable changes in their reactivity and molecular properties were observed. The reaction mechanism in cationic polymerization was discussed on the basis of the intimate correlation observed between the reactivity and molecular properties.

Part IV deals with the studies on the nature of a propagating species. For this purpose, the salt effect on the reaction rate and on the molecular weight of polymers produced was investigated. It is well known that an added salt has a large influence on an ionic reaction, and studies on the salt effect are frequently made to clarify the nature of active species. Studies on salt effect seem to be meaningful also in cationic polymerization. But it must be kept in mind that deliberate analysis of the experimental results is required in cationic polymerization because it comprises a variety of elementary reactions.

In Chapter 10, salt effects on reaction rate and on molecular weight in cationic polymerization were studied for several of the most usual catalysts. Furthermore, salt effect on copolymer composition in the copolymerization of a vinyl ether and a styrene derivative was examined. Conspicuous influences of the added salt were explained principally in terms of exchange of a counterion.

In Chapter 11, the inference drawn in Chapter 10 was ascertained by using iodine, a relatively weak catalyst. The presence
of a salt of an acid stronger than the catalyst used will lead to an increase of reaction rate and molecular weight. As was expected, the rate of the iodine-catalyzed reaction increased remarkably with the addition of tetra-n-butylammonium perchlorate or fluoroborate. This result supports the exchange of a counterion or the metathesis between catalyst and salt.

In Chapter 12, the molecular weight distribution of polystyrene obtained by various catalyst systems was studied. Firstly, by use of either two catalysts or a catalyst and a salt, a polymerization system in which two counterions coexist was devised, and the molecular weight distribution of the polymers formed was examined. Secondly, it was found that molecular weight distribution of polystyrene obtained by acetyl perchlorate is bimodal. The experimental results made a definite estimation possible about the tightness of bonding between carbocation and counterion.

The investigation which constitute the present thesis deals with the propagation reaction in cationic polymerization of vinyl ethers and styrene derivatives. The cationic polymerization was apprehended as one of the electrophilic addition reactions, and the emphasis is laid on the treatment of the experimental results on the standpoint of physical organic chemistry. For the present investigation to be complete, further extensions of the studies are needed. The author, however, believes that the present studies have contributed to the elucidation of the propagation reaction in cationic polymerization to a considerable extent. The experimental results will be explained in turn in the succeeding chapters.
References

PART I

CATIONIC COPOLYMERIZATION OF 2-CHLOROETHYL VINYL ETHER WITH STYRENE DERIVATIVES
Chapter 1

Characteristics in the Copolymerization of a Vinyl Ether with Styrene Derivatives

Introduction

Styrene derivatives and vinyl ethers are representative monomers which are polymerized in cationic mechanism and have been made use of widely for the study of cationic polymerization. Many cationic copolymerizations between styrene derivatives have been carried out, and the products of monomer reactivity ratios (MRR), $r_1 \times r_2$, were found to be approximately unity.1,2 This holds also in the copolymerization between vinyl ethers,$^{3-7}$ though data are not abundant.

On the other hand, it was found that the copolymer composition curves show an appreciable S-shape (namely, $r_1 > 1$ and $r_2 > 1$) in the copolymerization of vinyl ether with p-methoxystyrene (pMOS) and p-methylstylene (pMS) by iodine.5 However, Marvel4 and Pepper8 copolymerized α-methylstyrene (αMS) or its derivatives with 2-chloroethyl vinyl ether (CEVE), finding the result that the product $r_1 \times r_2$ was not much greater than unity. Pepper suggested that the difference in the results was partly due to the difference of the polymerization conditions, e.g., the kind of catalyst.

However, the phenomenon that both r_1 and r_2 are larger than unity was observed also in the cationic copolymerization of isobutene with styrene.9 This suggests that the cross-propagation is difficult in the cationic copolymerization between monomers with a different type of substituent.
In this chapter, to elucidate the cause of discrepancies of the kinetic behavior between ring-substituted styrenes and αMS in cationic copolymerization with CEVE, it will be first studied whether or not a copolymer is produced in the cationic copolymerization of CEVE with styrene derivatives. After the copolymer formation is confirmed, these monomers are copolymerized in various conditions and the behavior of ring-substituted styrenes is compared with that of αMS. Further, the dependence of MRR on the kind of solvents and catalysts used will be discussed.

Experimental

pMOS and pMS were synthesized from anisole and toluene, respectively, through acetylation, reduction and dehydration procedures. These monomers and commercial αMS were purified by washing with 10% aqueous solution of sodium hydroxide and with water, drying over sodium sulfate and distilling two or three times over calcium hydride under reduced pressure (bp: pMOS 70°C (5 mm); pMS 51°C (15 mm); αMS 52°C (10 mm)). CEVE (Fujiwara Factory) was washed with aqueous sodium hydroxide solution and water, dried over potassium hydroxide and distilled twice over calcium hydride (bp 109°C). The purities of these monomers were found to be more than 99.9% through gas chromatography.

Toluene (Guaranteed Reagent) was washed with 10% sulfuric acid solution, water, 10% aqueous sodium hydroxide solution and water, dried over calcium chloride, and distilled firstly over sodium metal and secondly over calcium hydride (bp 111°C). Methylene chloride (Guaranteed Reagent) was washed with 10% aqueous potassium carbonate solution and then with water, dried
over calcium chloride and distilled over phosphorus pentoxide and next over calcium hydride (bp 40°C).

Boron trifluoride etherate (BF₃OEt₂)(Extra Pure) was refined by distilling commercial material (bp 125°C). Stannic chloride (SnCl₄)(Guaranteed Reagent) was distilled into a weighed small ampoule (bp 114°C). Trichloroacetic acid (TCA) (Guaranteed Reagent) was applied as the cocatalyst of SnCl₄ without further purification.

Procedures
a. Polymerization

The copolymerization was initiated by adding the catalyst solution from a syringe through a rubber stopper into an Erlenmeyer flask containing the monomer solution. After a given time, the copolymerization was stopped by adding methanol containing a small amount of diethylamine. The concentration of each residual monomer was determined by gas chromatography (Yanagimoto Model GC 550T). Column materials and internal standards were selected so as to suit the determination of each monomer. For example, measurement conditions of CEVE-pMOS system were as follows:

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Carrier gas</th>
<th>Column material</th>
<th>Internal standard</th>
<th>Column temp, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEVE</td>
<td>H₂</td>
<td>25% PEGa)</td>
<td>Toluene</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500 C-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.5m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMOS</td>
<td>H₂</td>
<td>25% PEGa)</td>
<td>Nitro-benzene</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 C-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.75m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Poly(ethylene glycol)
b) 2 vol% of reaction solution
As it was confirmed that the consumed monomers were quantitatively converted to a methanol-insoluble copolymer, copolymer composition was determined from each monomer consumption. To avoid experimental error at determining each monomer consumption from the amount of residual monomer, total conversion was made to fall in the range of 20\textdegree{}-30\textdegree{}. The arithmetically mean value of the initial and final monomer concentrations was adopted as monomer concentration to obtain a copolymer composition curve. It afforded a much better result than using the initial monomer concentration as monomer concentration. MRR were evaluated by the Fineman-Ross’ method. In all cases, CEVE is taken as M_1.

b. Molecular weight of polymer

Viscosity number (\(\eta_{sp} / C; C = 1.00 \text{ g/100 ml solution} \)) was measured in benzene solution at 30\textdegree{}C. Molecular weight was measured at 60\textdegree{}C in a cyclohexanone solution by the osmometric method.

c. Confirmation of copolymer formation

The turbidimetric titration was carried out with a Shimadzu TG21 turbidimeter. Nmr spectra of polymer were measured by a JEOL 3H-60 Spectrometer.

Results

Confirmation of Copolymer Formation

a. Viscosity and molecular weight

Methanol-insoluble polymer was produced in the copolymerization of CEVE and styrene derivatives. The yield of the methanol-insoluble polymer coincided with monomer consumption within \(\pm 2\% \) error. The dependence of viscosity number on monomer composition is shown in Figures 1 and 2. As is seen in the
Figure 1. Relationship between monomer composition and viscosity number of CEVE-pMOS copolymers ([M]₀ 0.50 mol/l, solvent CH₂Cl₂, -78°C, conversion > 80%; catalyst, a(◊) BF₃OEt₂, b(△) SnCl₄·TCA). Molecular weight of polymers (the osmotic pressure method): No 1 165000, 2 49000, 3 37700.

cationic copolymerization of styrene derivatives with isobutene, the molecular weight of copolymer was smaller than that expected for homopolymers.

b. Fractionation

Fractionation of polymers obtained at high conversion was carried out to determine whether or not copolymer is formed in the polymerization of a vinyl ether and styrene derivatives. The polymer obtained in the copolymerization of CEVE with pMOS was separated with an equivolume mixture of acetone and methanol into soluble and insoluble parts at 30°C. Composition of each part is shown in Table I.
Table I. Fractionation of CEVE-pMOS polymera)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BF$_3$OEt$_2$</td>
<td>BF$_3$OEt$_2$</td>
<td>SnCl$_4$·TCA</td>
<td>—</td>
</tr>
<tr>
<td>Monomer ([CEVE]$_0$: [pMOS]$_0$)</td>
<td>40:60</td>
<td>60:40</td>
<td>70:30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fractionsc) (wt %)</th>
<th>Soluble part</th>
<th>Insoluble part</th>
<th>Soluble part</th>
<th>Insoluble part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.0</td>
<td>78.0</td>
<td>21.5</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>57.1</td>
<td>38.1</td>
<td>47.0</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>47.0</td>
<td>47.0</td>
<td>20.6</td>
<td>45.1</td>
</tr>
<tr>
<td></td>
<td>53.5</td>
<td>78.0</td>
<td>49.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEVE content in polymer (wt %)</th>
<th>Original polymer</th>
<th>Soluble part</th>
<th>Insoluble part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.4</td>
<td>62.7</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>53.5</td>
<td>78.0</td>
<td>45.1</td>
</tr>
<tr>
<td></td>
<td>65.3</td>
<td>80.1</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>49.2</td>
<td>95.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

a) Polymerization conditions, [M]$_0$ 0.50 mol/l, Solvent: CH$_2$Cl$_2$, -78°C, Conversion 70-90%.

b) A mixture of equal weight of poly(CEVE) and poly(pMOS).

c) Loss of polymer in this procedure was ca. 5 wt %.
Figure 2. Relationship between monomer composition and viscosity number of CEVE-αMS copolymers ([M]₀ 0.50 mol/l, solvent CH₂Cl₂, catalyst BF₃OEt₂, -78°C, conversion > 80%).

As is seen from Table I, poly(pMOS) was scarcely dissolved in this solvent and poly(CEVE) was dissolved completely. On the other hand, both soluble and insoluble parts of the polymer obtained in the copolymerization contained both CEVE and pMOS units. Similar results were observed in the polymers obtained in the copolymerization of CEVE with αMS and of CEVE with pMS. These results show the formation of the true copolymer in the cationic copolymerization of styrene derivatives with CEVE.

c. Turbidimetric titration

The change of turbidity was measured during the course of the continuous addition of petroleum ether as nonsolvent to a benzene solution of the polymer obtained in CEVE-αMS copolymerization. As is seen from Figure 3 the curves for the polymers
Figure 3. Turbidimetric titration curves of CEVE-αMS copolymer and the mixture of poly(CEVE) and poly(αMS) at room temperature. Polymer concn, 8 mg/dl in benzene; a, poly(CEVE)(cryst)-poly(αMS) mixture; b, poly(CEVE)(amorph)-poly(αMS) mixture; c and d, CEVE-αMS copolymer obtained in CH₂Cl₂ by SnCl₄·TCA and BF₃OEt₂, respectively.

obtained in the copolymerization were very different from those for the mixtures of homopolymers; although the copolymer solution began to be turbid at the same γ-value (the volume ratio of nonsolvent to the sum of solvent and nonsolvent) as that of poly(αMS), the change of turbidity was slow as in poly(CEVE) and the endpoint of precipitation (\(\tau_{rel} = 1.0\)) was observed at a higher γ-value than the mixture of homopolymer.

d. Nmr spectra

Copolymer formation was also confirmed by nmr spectroscopy. The spectra are shown in Figures 4 and 5 for CEVE-αMS and CEVE-pMS polymer, respectively. Figure 4a shows the spectrum of a mixture of poly(CEVE) and poly(αMS), which coincides well with superposition of the spectra of each homopolymer.
On the other hand, in CEVE-αMS copolymer many other peaks (τ 6.53, 6.91, 8.74, and 9.38) based on the difference of the neighbouring monomer unit were observed and two peaks at τ 8.22 and 8.38 became one broad peak at τ 8.30. These changes of nmr spectra suggest the formation of a true copolymer. The peaks at τ 6.53 and 6.91 are considered to be the shifted ones of alkoxy and/or methine protons through shielding by phenyl groups on either or both sides. The peak of α-methyl protons at τ 9.81 was also shifted to τ 9.38 and 8.74 by the change of the neighbouring monomer unit.

As to CEVE-pMS polymer (Figure 5c), a new peak at τ 6.60 which was absent in both homopolymers was observed. This is
thought to appear because of shifting of alkoxyl and/or methine protons due to the presence of pMS units on either or both sides. In the case of CEVE-pMOS polymer, the production of a copolymer was not confirmed by nmr spectroscopy because of the overlap of peaks of alkoxyl, methine and p-methoxyl protons.

Relative Reactivity of CEVE and Styrene Derivatives in the Cationic Copolymerization

a. Copolymerization of CEVE with ring-substituted styrenes

Methylene chloride and toluene were used as polar and nonpolar solvents, respectively. $\text{BF}_3\cdot\text{OEt}_2$ and $\text{SnCl}_4\cdot\text{TCA}$ were used as catalysts. Polymerization was carried out at -78°C. Although the reaction system contained 1-2 mmol/l of water in this case, the small amount of water did not affect MRR.
In Figure 6 are shown copolymer composition curves of CEVE-pMOS copolymerization. pMOS was more reactive than CEVE in equimolar copolymerization. It is also apparent that the composition curves are typically S-shaped, which means that MRR, both r_1 and r_2, are greater than unity and that cross-propagation is difficult. Copolymer composition was unaffected by the kind of solvent, but affected by the kind of catalyst.

As is clear from Figure 7, pMS was less reactive than CEVE. In this case, also the tendency that the product $r_1 \times r_2$ exceeds unity was observed. pMS content in the copolymer was larger in methylene chloride than in toluene, and with SnCl$_4$·TCA with BF$_3$OEt$_2$. The relative reactivity of pMS against CEVE was about half in methylene chloride with SnCl$_4$·TCA, but surprisingly small in toluene with BF$_3$OEt$_2$.

Figure 6. Copolymer composition curves of CEVE with pMOS ([M]$_0$ 0.50 mol/l, -78°C). a(o), BF$_3$OEt$_2$, toluene; b(△), BF$_3$OEt$_2$, CH$_2$Cl$_2$; c(●), SnCl$_4$·TCA, toluene; d(△), SnCl$_4$·TCA, CH$_2$Cl$_2$.

-23-
In order to compare the reactivity of vinyl ether and styrene derivatives for a cationic reagent other than carbocation, chlorine was added to the mixture of CEVE and pMS. It was confirmed that chlorination occurred on the vinyl group under the conditions shown in Figure 8. Figure 8 shows the relationship between reactant and product compositions. The reactivity of CEVE was appreciably larger than that of pMS irrespective of reactant composition, and the composition curve in Figure 8 was not S-shaped as had been the case in copolymerization. Therefore, the S-shape in copolymerization may be due to the existence of two types of carbocation, i.e., the propagating chain ends produced from CEVE and pMS.

MRR (M1:CEVE) are listed in Table II. The products $r_1 \times r_2$ were 11-16 in CEVE-pMOS and 3-5 in CEVE-pMS, which were clearly
Table II. Monomer reactivity ratios and a and K values calculated from eq 1 for the copolymerization of CEVE with pMOS and pMS \(^a \)

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_1 \times r_2)</th>
<th>a</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEVE</td>
<td>BF(_3)OEt(_2)</td>
<td>Toluene</td>
<td>2.81±0.30</td>
<td>4.37±0.30</td>
<td>12.3</td>
<td>1.54</td>
<td>0.70</td>
</tr>
<tr>
<td>pMOS</td>
<td>SnCl(_4)•TCA</td>
<td>Toluene</td>
<td>1.73±0.19</td>
<td>6.93±0.50</td>
<td>12.0</td>
<td>1.54</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH(_2)Cl(_2)</td>
<td>1.56±0.04</td>
<td>7.80±0.20</td>
<td>12.2</td>
<td>1.58</td>
<td>0.29</td>
</tr>
<tr>
<td>CEVE</td>
<td>BF(_3)OEt(_2)</td>
<td>Toluene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.3</td>
<td>27</td>
</tr>
<tr>
<td>pMOS</td>
<td>SnCl(_4)•TCA</td>
<td>Toluene</td>
<td>8.80±0.45</td>
<td>0.40±0.03</td>
<td>3.52</td>
<td>1.24</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH(_2)Cl(_2)</td>
<td>10.1±1.8</td>
<td>0.50±0.07</td>
<td>5.05</td>
<td>1.32</td>
<td>7.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.31±0.17</td>
<td>1.12±0.06</td>
<td>3.71</td>
<td>1.27</td>
<td>2.10</td>
</tr>
</tbody>
</table>

\(^a \) [M] \(_0\) 0.50 mol/l, -78°C.
Figure 8. Relationship between the composition of initial products and that of monomers in the chlorination of CEVE-pMS mixture ([M]₀ 0.50 mol/l, catalyst SnCl₄·TCA, solvent CH₂Cl₂, -78°C; chlorine was bubbled slowly with oxygen into the solution).

As is clear in Figure 9, the linearity between log ([M₁]/[M₂]) and log (d[M₁]/d[M₂]) was realized; the eq 1 proposed by O'Driscoll¹¹,¹² held in these systems:

\[
\frac{d[M_1]}{d[M_2]} = K \left(\frac{[M_1]}{[M_2]}\right)^a
\]

a was 1.5-1.6 in the CEVE-pMOS and 1.2-1.3 in the CEVE-pMS system. K varied significantly, depending on the type of solvent and catalyst used.
Figure 9. Relationship between $\log (M_1/M_2)$ and $\log (dM_1/dM_2)$ in the copolymerization of CEVE (M_1) with styrene derivatives (M_2) ([M]₀ 0.50 mol/l, catalyst SnCl₄·TCA, solvent CH₂Cl₂, -78°C). a(○), CEVE-pMOS; b(▼), CEVE-pMS; c(■), CEVE-aMS.

b. Copolymerization of CEVE with aMS

Polymerization conditions were the same as in the case of copolymerization with ring-substituted styrenes. As shown in Figure 10, the reactivity of CEVE was larger than that of aMS except the case of the SnCl₄·TCA-methylene chloride system. The effects of solvent and catalyst were conspicuously great. aMS content in the copolymer was larger in methylene chloride than in toluene, and by SnCl₄·TCA than by BF₃OEt₂. These results were similar to those obtained in CEVE-pMS system.

The values of MRR determined by the Fineman-Ross’ method are listed in Table III. The product $r_1 \times r_2$ was close to unity in all cases, which means that CEVE-aMS copolymerization is "ideal", that is, the relative reactivity of a monomer is
Table III. Monomer reactivity ratios and a and K values calculated from eq 1 for the copolymerization of CEVE with αMS

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>r_1</th>
<th>r_2</th>
<th>$r_1 \times r_2$</th>
<th>a</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>5.72±0.70</td>
<td>0.31±0.05</td>
<td>1.77</td>
<td>1.05</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>CH$_2$Cl$_2$</td>
<td>2.05±0.33</td>
<td>0.68±0.14</td>
<td>1.39</td>
<td>1.02</td>
<td>1.70</td>
</tr>
<tr>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>3.46±0.25</td>
<td>0.46±0.07</td>
<td>1.59</td>
<td>1.03</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>CH$_2$Cl$_2$</td>
<td>1.02±0.10</td>
<td>1.00±0.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

a) $[M]_0$ 0.50 mol/l, -78°C
Figure 10. Copolymer composition curves of CEVE with αMS ([M]₀ 0.50 mol/1, −78°C) a(o), BF₃OE₂₉, toluene; b(△), BF₃OEt₂, CH₂Cl₂; c(●), SnCl₄·TCA, toluene; d(▲), SnCl₄·TCA, CH₂Cl₂.

independent of the type of growing carbocation. Plots of log \(\frac{dM_1}{dM_2} \) against log \(\frac{M_1}{M_2} \) gave straight lines, whose slopes were unity. a and K values are also shown in Table III.

Discussion

Formation of Copolymer

In order to study the effect of polymerization conditions on the values of MRR in cationic copolymerization, it is convenient to select a pair of monomers whose reactivities are not so different, because the alternating tendency has not been observed in ionic copolymerization.² The cationic polymerizability of vinyl ether is, in general, greater than that of styrene. Therefore, CEVE was used as vinyl ether, and
styrenes with a electron-donating group were chosen as a styrene derivative.

In the copolymerization of CEVE with these styrene derivatives, no product other than methanol-insoluble polymer was found. Formation of the copolymer was confirmed by fractionation and nmr spectra in the monomer pairs used here. Moreover, the molecular weights of the polymers produced were more than several thousands as shown in Figures 1 and 2. Therefore attention is focused on the kinetic behavior in the copolymerization.

The Difference in Behavior between Ring-substituted Styrene and αMS

The difference between ring-substituted styrenes and αMS was clearly observed in the copolymerization with CEVE under the same conditions; the product $r_1 \times r_2$ showed values larger than unity for ring-substituted styrenes, i.e. pMOS and pMS, while it proved that the values are close to unity for αMS irrespective of polymerization conditions.

On the other hand, in competitive chlorination CEVE was more reactive than pMS regardless of reactant composition. Therefore, it is concluded that the difference in selective reactivities of CEVE and pMS cations can be ascribed to the character of the carbocation itself, and not to the influence of the counter-anion and solvent. One of the reasons for the difference in the behavior between ring-substituted styrenes and αMS might be that the αMS cation is more stable than the pMOS and pMS cation. In gas phase, it was reported that the stabilization energy of the carbocation $\text{CH}_3\text{OCH}_2^+$ was almost the same as that of the isopropyl carbocation. Therefore, the stability of $(\alpha\text{MS})^+$ seems to be similar to that of $(\text{MVE})^+$, but
that of (ring-substituted styrene)$^+$ will be less than that of (MVE)$^+$.14

The possibility that the steric hindrance of aMS cancels the tendency of block propagation ought to be considered as another reason of randomness in CEVE-aMS copolymer. Further study and experiment will be necessary before this problem can be resolved.

The Effect of Polymerization Conditions on the Relative Reactivity of Both Monomers

The relative reactivity of the monomer can be easily estimated from MRR in the CEVE-aMS system, as $r_1 \times r_2 \sim 1$. The reactivity of CEVE is 1.7-5.0 times larger than that of aMS except the case of SnCl$_4$·TCA-methylene chloride in which both reactivities are equal.

The relative reactivities of the monomers were changed by the type of propagating ends in the CEVE-pMOS and the CEVE-pMS systems. In this case the relative reactivity can be tentatively considered as the polymer composition in the copolymerization of equimolar monomer composition. The K values in eq 1 could be used as its index. According to K values, CEVE had smaller reactivity than pMOS (K = 0.3-0.8), and larger than pMS (K = 2-27).

It is well known that the kind of solvent and catalyst used affects MRR in ionic copolymerization. A tendency was recognized in the influence of the catalyst in this study: the styrene derivative content in the copolymer increased in every system irrespective of the relative reactivity of monomers, whenever SnCl$_4$·TCA was used instead of BF$_3$OEt$_2$. When SnCl$_4$·TCA was used as catalyst, the relative reactivity of both monomers in the CEVE-aMS and CEVE-pMS system approached
unity, while the difference in reactivities of both monomers became rather larger in the CEVE-pMOS system. Therefore, this catalyst effect cannot be explained by the concept proposed by Tobolsky, et al.,15 that the selectivity for monomers decreases with the increase in the reactivity of growing ions. It is concluded that SnCl\textsubscript{4}·TCA is more favorable in the polymerization of styrene derivatives than BF\textsubscript{3}OEt\textsubscript{2}, though the reason for this is not clear at present.

The CEVE content in the copolymers was large when a nonpolar solvent was used in the copolymerization with nonpolar monomers, such as αMS and pMS. There have been two possible explanations for the influence of solvents on copolymer composition.15,16 One of them is "the decrease in the selectivity of the addition of an ion for each monomer with the increase in the reactivity of an ion", proposed by Tobolsky, et al.15 The other is "the selective solvation to propagating end by a polar monomer in a nonpolar solvent", proposed by Overberger, et al.16 Considering the catalyst effect, the former explanation seems to be unsuitable. It is, therefore, suggested that "selective solvation" is the predominant factor in the solvent effect in these reactions.

References

 b) R.F. Nystrom and W.G. Brown, J. Amer. Chem. Soc., 69, 1197 (1947);
Chapter 2

Temperature Dependence of Monomer Reactivity Ratios

Introduction

It was made clear in the first chapter\(^1\) that in the cationic copolymerization of 2-chloroethyl vinyl ether (CEVE) with styrene derivatives, (1) the relative reactivity of both monomers depended largely on the kind of catalysts and solvents used, and (2) the product of the monomer reactivity ratios (MRR), \(r_1 \times r_2\), was greater than unity in the copolymerization of CEVE with ring-substituted styrenes, although a copolymer was produced.

The differences in the activation parameters are obtained by studying temperature dependence of monomer reactivity ratios. In radical copolymerization, a linearity holds between \(\log r\) and \(1/T\) and the line passes near the origin.\(^2\) This means that the activation entropies are equal at the addition of different monomers to the same propagating end, that is, the reaction mechanism is similar in both monomers.

On the other hand, plots of \(\log r\) vs. \(1/T\) do not pass the origin in cationic polymerization,\(^3\) although few reliable data are available. The cationic copolymerization of CEVE with \(\alpha\)-methylstyrene (\(\alpha\)MS) is a typical example, in which both \(r_1\) and \(r_2\) become far from unity as polymerization temperature is raised.\(^4\)

In this chapter, the temperature dependence of MRR and of their product \(r_1 \times r_2\) is investigated in detail in the copolymerization of CEVE with styrene derivatives to elucidate the
difference of the reaction mechanism between CEVE and styrene derivatives.

Experimental

p-Chlorostyrene (pCS) was synthesized in a similar manner to p-methoxystyrene (pMOS) and p-methylstyrene (pMS) (see the previous chapter). Isobutyl vinyl ether (IBVE) and styrene (ST) were commercially obtained and purified in the same manner as the monomers synthesized.

The purification of the other materials and the procedure of copolymerization are the same as were used in the first chapter.\(^1\)

MRR were estimated by the Fineman-Ross' method. The mean square errors of MRR were in the range of \(+5\%\).

Results and Discussion

Temperature Dependence of MRR

The copolymerization of CEVE with pMOS was carried out with BF\(_3\)OEt\(_2\) in toluene at -78, -36 and 0\(^\circ\)C. The copolymer composition curves are shown in Figure 1. The composition curves in Figure 1 are sigmoidal and the CEVE content in copolymer increased as the temperature was raised. As the dielectric constant of toluene is almost independent of temperature, the temperature dependence observed is not based on the change in the dielectric constant of the system. The shift of the composition curves with temperature, moreover, was much larger than those in radical copolymerization of various monomers and those in cationic copolymerization of
Figure 1. Composition curves for the copolymerization of CEVE with pMOS (BF₃OEt₂, toluene, [M]₀ 0.5 mol/1). Temp: a(●), -78°C; b(●), -36°C; c(●), 0°C.

Figure 2. Composition curves for the copolymerization of CEVE with pMOS (BF₃OEt₂, methylene chloride, [M]₀ 0.50 mol/1). Temp: a(●), -78°C; b(●), 0°C.
Figure 3. Composition curves for the copolymerization of CEVE with pMS (SnCl₄ • TCA, methylene chloride, [M]₀ 0.50 mol/l). Temp: a(●), -78°C; b(○), 0°C.

Figure 4. Composition curves for the copolymerization of CEVE with aMS (BF₃OEt₂, methylene chloride, [M]₀ 0.50 mol/l at -78°C, [M]₀ 1.0 mol/l at -23°C). Temp: a(●), -78°C; b(○), -23°C.
monomers having a similar substituent. When methylene chloride was used as solvent, the shift of the composition curves was also large and in the opposite direction to the case of toluene as solvent (Figure 2).

Figure 3 shows the composition curves in the copolymerization of CEVE with pMS by SnCl₄·TCA in methylene chloride at -78 and 0°C. Here, SnCl₄·TCA indicates that trichloroacetic acid (TCA) is used as the cocatalyst of stannic chloride in equimolar ratio. A similar change in copolymer composition with temperature was observed when toluene was used as solvent (see Table I). A characteristic of this copolymerization is that the more reactive the monomer is, the more reactive it becomes with increasing temperature. This phenomenon cannot be explained only in terms of the difference in activation energy of the propagation reaction.

The copolymerization of CEVE with αMS was carried out at -23 and -78°C, taking account of the ceiling temperature of αMS. The CEVE content in the copolymer considerably increased by increasing the polymerization temperature in the copolymerization of CEVE with αMS in methylene chloride, as shown in Figure 4. The CEVE content in the copolymer increased by increasing the polymerization temperature also in toluene, though the change was not so large as in methylene chloride (see Table I). In this case, composition curves did not show S-shape at -78°C in spite of the copolymerization of monomers with very different structure; at -23°C, however, the composition curve became slightly sigmoidal.

Copolymerization between homologues was performed to compare with the above results. The results are shown in Figure 5.
Table I. The dependence of MRR on temperature in the cationic copolymerization of vinyl ether with styrene derivatives and of homologues

<table>
<thead>
<tr>
<th>No.</th>
<th>Monomer pair</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, °C</th>
<th>r_1</th>
<th>r_2</th>
<th>$r_1 \times r_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CEVE(M_1)-pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>0</td>
<td>9.32</td>
<td>1.55</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>-36</td>
<td>5.06</td>
<td>2.36</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>-78</td>
<td>2.81</td>
<td>4.37</td>
<td>12.3</td>
</tr>
<tr>
<td>2</td>
<td>CEVE(M_1)-pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>0</td>
<td>1.63</td>
<td>9.25</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>-78</td>
<td>3.08</td>
<td>4.55</td>
<td>14.0</td>
</tr>
<tr>
<td>3</td>
<td>CEVE(M_1)-pMOS</td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>-78</td>
<td>1.24</td>
<td>12.1</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>0</td>
<td>1.56</td>
<td>7.80</td>
<td>12.2</td>
</tr>
<tr>
<td>4</td>
<td>CEVE(M_1)-pMS</td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>0</td>
<td>18.2</td>
<td>0.40</td>
<td>7.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>-78</td>
<td>10.1</td>
<td>0.50</td>
<td>5.05</td>
</tr>
<tr>
<td>5</td>
<td>CEVE(M_1)-pMS</td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>-78</td>
<td>8.00</td>
<td>0.88</td>
<td>7.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>0</td>
<td>3.31</td>
<td>1.12</td>
<td>3.70</td>
</tr>
<tr>
<td>6</td>
<td>CEVE(M_1)-αMS</td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>-23</td>
<td>5.00</td>
<td>0.42</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>-78</td>
<td>3.46</td>
<td>0.66</td>
<td>1.59</td>
</tr>
<tr>
<td>7</td>
<td>CEVE(M_1)-αMS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>-23</td>
<td>6.02</td>
<td>0.42</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>-78</td>
<td>2.05</td>
<td>0.68</td>
<td>1.39</td>
</tr>
<tr>
<td>8</td>
<td>CEVE(M_1)-αMS</td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>-23</td>
<td>2.50</td>
<td>0.76</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>-78</td>
<td>1.02</td>
<td>1.00</td>
<td>1.02</td>
</tr>
<tr>
<td>9</td>
<td>ST(M_1)-pCS</td>
<td>SnCl$_4$·TCA</td>
<td>Toluene/</td>
<td>30</td>
<td>2.82</td>
<td>0.43</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>Benzene a)</td>
<td>-23</td>
<td>2.72</td>
<td>0.48</td>
<td>1.31</td>
</tr>
<tr>
<td>10</td>
<td>IBVE(M_1)-CEVE</td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>0</td>
<td>2.17</td>
<td>0.58</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SnCl$_4$·TCA</td>
<td>Toluene</td>
<td>-78</td>
<td>2.17</td>
<td>0.58</td>
<td>1.26</td>
</tr>
</tbody>
</table>

a) Toluene: Benzene = 40:60
Figure 5. Composition curves for the copolymerization between homologues. ST-pCS (SnCl₄•TCA, toluene: benzene = 4.0:6.0, [M]₀ 1.0 mol/l) Temp: a(s), -23°C; b(o), 30°C. IBVE-CEVE (BF₃OEt₂, toluene, [M]₀ 0.50 mol/l), Temp: c(△), -78°C; d(▽), 0°C.

No difference of polymer composition was observed in the copolymerization of IBVE with CEVE by BF₃OEt₂ in toluene at -78°C and 0°C. Also, there was no change in the ST-pCS system by SnCl₄•TCA in a mixed solvent (toluene:benzene (volume ratio) = 40:60) at -23 and 30°C. It is concluded that in the copolymerization between homologues, copolymer composition hardly changes with temperature. It presents a striking contrast to copolymerization between monomers with different structures.

The MRR, together with their product r₁ × r₂, are listed in Table I. These values were calculated on the basis of the Mayo-Lewis equation, assuming the first Markov chain model. This will be proper from the following reasons: i) the presence of cross-propagations was confirmed by nmr spectra of the
resultant polymer even in the case $r_1 \times r_2$ became fairly larger than unity, as was described in the previous chapter, and (ii) the linearity of the Fineman-Ross' plot held well.

In the copolymerization of CEVE (M_1) with styrene derivatives (M_2), r_1 increased and r_2 decreased by increasing the polymerization temperature in any pair of monomers by both BF$_3$OEt$_2$ and SnCl$_4$.TCA in both toluene and methylene chloride except for the copolymerization of CEVE with pMOS. In the case of CEVE-pMOS, r_1 decreased and r_2 increased by increasing the temperature in methylene chloride. In general, it was observed that the difference in the reactivities of monomers becomes larger as the temperature is raised.

The temperature dependence of r_1 and r_2 in toluene was smaller than in methylene chloride in the CEVE-pMOS and CEVE-αMS systems. r_1 and r_2 was dependent on temperature with both catalysts, BF$_3$OEt$_2$ and SnCl$_4$.TCA.

Activation parameters were calculated from the results of Table I. They are tentatively obtained from the line connecting two values observed at two different temperatures. The values are shown in Table II. The following conclusions can be obtained from Table II: (1) The values of ($\Delta H_{ii}^+ - \Delta H_{i2}^+$) have a positive sign except the CEVE-pMOS-CH$_2$Cl$_2$ system. This means that vinyl ether is less reactive in terms of enthalpy, though vinyl ether is in general more reactive than styrene derivatives. (2) Both values, ($\Delta H_{i1}^+ - \Delta H_{i2}^+$) and ($\Delta S_{i1}^+ - \Delta S_{i2}^+$), in the copolymerization of CEVE with styrene derivatives especially those of $i=1$ are considerably greater than those of the copolymerization between homologues. (3) In most cases, ($\Delta S_{i1}^+ - \Delta S_{i2}^+$) X T is larger than ($\Delta H_{i1}^+ - \Delta H_{i2}^+$) in the copolymerization of CEVE with styrene derivatives, which indicates that
Table II. The activation parameters of MRR (from Table I)

<table>
<thead>
<tr>
<th>No.</th>
<th>Monomer pair</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>$\Delta H^{+}{11} - \Delta H^{+}{12}$</th>
<th>$\Delta H^{+}{21} - \Delta H^{+}{22}$</th>
<th>$\Delta S^{+}{11} - \Delta S^{+}{12}$</th>
<th>$\Delta S^{+}{21} - \Delta S^{+}{22}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CEVE-pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>1.9</td>
<td>1.6</td>
<td>11</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>CEVE-pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>-0.97</td>
<td>-1.1</td>
<td>-2.5</td>
<td>-8.3</td>
</tr>
<tr>
<td>3</td>
<td>CEVE-pMOS</td>
<td>SnCl$_4$ • TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>-0.35</td>
<td>-0.66</td>
<td>-0.78</td>
<td>-7.3</td>
</tr>
<tr>
<td>4</td>
<td>CEVE-pMS</td>
<td>SnCl$_4$ • TCA</td>
<td>Toluene</td>
<td>0.09</td>
<td>0.34</td>
<td>9.0</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>CEVE-pMS</td>
<td>SnCl$_4$ • TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>1.4</td>
<td>0.38</td>
<td>9.1</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>CEVE-αMS</td>
<td>SnCl$_4$ • TCA</td>
<td>Toluene</td>
<td>0.77</td>
<td>0.19</td>
<td>6.3</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>CEVE-αMS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>2.1</td>
<td>1.0</td>
<td>13</td>
<td>5.9</td>
</tr>
<tr>
<td>8</td>
<td>CEVE-αMS</td>
<td>SnCl$_4$ • TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>1.9</td>
<td>0.53</td>
<td>9.5</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>St-pCS</td>
<td>SnCl$_4$ • TCA</td>
<td>Toluene/Benzene</td>
<td>0.0</td>
<td>0.33</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>10</td>
<td>IBVE-CEVE</td>
<td>SnCl$_4$ • TCA</td>
<td>Toluene</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

a) Toluene: Benzene = 40:60
copolymerizations are rather entropy-controlled reactions.

These results are followed by a deduction mentioned below, on a difference in transition states of vinyl ether and styrene derivatives. It may be assumed that the propagation reaction is subdivided into two elementary reactions.\(^5\)

\[
P_n^+ A^- + M \xrightleftharpoons{K} (P_n M)^+ A^- \xrightarrow{k} P_{n+1}^+ A^-
\]

Reactions in which the total number of molecules changes are usually attended by a large entropy of activation.\(^6\) On the other hand, the change from \(\pi\)-complex into \(\sigma\)-complex will be accompanied with an enthalpy term rather than an entropy term. Therefore, the large entropy term will mean that the first step is important in the above mechanism and the enthalpy term will depend predominantly on the second step. Consequently, it is concluded that vinyl ether suffers the first step more easily than styrene derivatives, but vice versa as to the second step. This inference will be supported by solvent and catalyst effects in the copolymerization of CEVE with styrene derivatives, as will be described in the third chapter.

The Temperature Dependence of the Product of MRR

As described in the previous section, the change in MRR with temperature suggests the difference of the transition state in addition reaction of CEVE and styrene derivatives to the carbocation. In the same way, it is expected that the temperature dependence of the product of MRR suggests the difference of behavior of the carbocation in the propagation reaction, as is shown in the following discussion.
Chūjō7 proposed a method for determination of the existence of the penultimate unit effect in stereospecific polymerization, which is based on the relationship between the activation free energy and polymerization temperature. The same concept will be applied to copolymerization. By plotting Δε vs. T in eq 1, the existence of the propagating-end effect, the difference of activation enthalpy and activation entropy based on the kind of a growing chain end, can be examined, as Furukawa also suggested.8

\[Δε = -kT \ln \left(\frac{r_1}{r_2} \right) = ΔH - TΔS \]

where

\[ΔH = (ΔH_{11}^+ - ΔH_{12}^+) - (ΔH_{21}^+ - ΔH_{22}^+) \]

\[ΔS = (ΔS_{11}^+ - ΔS_{12}^+) - (ΔS_{21}^+ - ΔS_{22}^+) \]

The products of \(r_1 \) and \(r_2 \) at different temperatures are shown in Table I as to our data and in Table III as to those from other references. In the ionic copolymerizations between homologues (Table I, No. 9, 10; Table III, No. 6), the temperature dependence of \(r_1 \times r_2 \) is almost negligible. On the other hand, in the ionic copolymerization of the monomers with different structures (Table I, No. 1-8; Table III, No. 1-5), the product \(r_1 \times r_2 \) changes significantly and gets away from unity with the rise of temperature.

\(ΔH \) and \(ΔS \) are calculated and summarised in Table IV. ST-pCS systems gave similar values of \(ΔH \) and \(ΔS \) (No. B-3-6 and B-1-9 in Table IV) in spite of the different experimental conditions and workers. A good agreement was also observed in the
Table III. The products of MRR in cationic copolymerization and their temperature dependence

<table>
<thead>
<tr>
<th>No.</th>
<th>Monomer 1</th>
<th>Monomer 2</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, °C</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_1 \times r_2)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IB(^{a)})</td>
<td>ST</td>
<td>AlCl(_3) (0.5%)</td>
<td>CH(_3)Cl</td>
<td>-30</td>
<td>2.51(\pm)0.05</td>
<td>1.21(\pm)0.06</td>
<td>3.04</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AlCl(_3) (0.5%)</td>
<td>CH(_3)Cl</td>
<td>-90</td>
<td>1.66(\pm)0.02</td>
<td>0.42(\pm)0.02</td>
<td>0.70</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>IB</td>
<td>ST</td>
<td>AlCl(_3) (0.14%)</td>
<td>CH(_3)Cl</td>
<td>-30</td>
<td>2.36(\pm)0.06</td>
<td>0.76(\pm)0.13</td>
<td>1.79</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AlCl(_3) (0.14%)</td>
<td>CH(_3)Cl</td>
<td>-90</td>
<td>1.79(\pm)0.02</td>
<td>0.24(\pm)0.02</td>
<td>0.43</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>ACN(^{b)})</td>
<td>nBVE(^{c)})</td>
<td>BF(_3)O(_2)(_2)</td>
<td>Benzene</td>
<td>30</td>
<td>0.38(\pm)0.04</td>
<td>1.30(\pm)0.3</td>
<td>0.4-0.7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BF(_3)O(_2)(_2)</td>
<td>Benzene</td>
<td>0</td>
<td>0.24(\pm)0.04</td>
<td>4.2 (\pm)0.08</td>
<td>0.7-1.4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BF(_3)O(_2)(_2)</td>
<td>Toluene</td>
<td>-20</td>
<td>0.14(\pm)0.03</td>
<td>6.0 (\pm)1.0</td>
<td>0.8-1.1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BF(_3)O(_2)(_2)</td>
<td>Toluene</td>
<td>-78</td>
<td>0.04(\pm)0.02</td>
<td>(\sim)20</td>
<td>(\sim)0.8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>CEVE</td>
<td>MS(^{a)})</td>
<td>BF(_3)(_2)(CH(_2)Cl(_2))</td>
<td>(CH(_2)Cl(_2))</td>
<td>0</td>
<td>3.9 (\pm)0.15</td>
<td>0.48(\pm)0.04</td>
<td>1.87</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BF(_3)(_2)(CH(_2)Cl(_2))</td>
<td>(CH(_2)Cl(_2))</td>
<td>-30</td>
<td>2.0 (\pm)0.2</td>
<td>0.75(\pm)0.07</td>
<td>1.50</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MS(^{a)})</td>
<td>pCS</td>
<td>SnCl(_4)</td>
<td>—</td>
<td>0</td>
<td>15.5(\pm)1.5</td>
<td>0.35(\pm)0.05</td>
<td>5.42</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SnCl(_4)</td>
<td>—</td>
<td>-78</td>
<td>28 (\pm)2</td>
<td>0.12(\pm)0.03</td>
<td>3.36</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>ST</td>
<td>pCS</td>
<td>SnCl(_4)</td>
<td>CCl(_4)</td>
<td>30</td>
<td>2.2 (\pm)0.3</td>
<td>0.35(\pm)0.1</td>
<td>0.770</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SnCl(_4)</td>
<td>CCl(_4)</td>
<td>0</td>
<td>2.5 (\pm)0.5</td>
<td>0.30(\pm)0.03</td>
<td>0.750</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SnCl(_4)</td>
<td>CCl(_4)</td>
<td>-20</td>
<td>2.15 (\pm)0.2</td>
<td>0.35(\pm)0.05</td>
<td>0.753</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^{a)}\) IB, isobutene; \(^{b)}\) ACN, acenaphthylene; \(^{c)}\) nBVE, \(n\)-butyl vinyl ether.
Table IV. The activation parameters of the product of MRR in cationic copolymerization

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Monomer 1</th>
<th>Monomer 2</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>ΔH, kcal/mol</th>
<th>ΔS, e.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>CEVE</td>
<td>pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>~0.27</td>
<td>~6.3</td>
</tr>
<tr>
<td>1-2</td>
<td>CEVE</td>
<td>pMOS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>0.11</td>
<td>5.8</td>
</tr>
<tr>
<td>1-3</td>
<td>CEVE</td>
<td>pMOS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>0.32</td>
<td>6.5</td>
</tr>
<tr>
<td>1-4</td>
<td>CEVE</td>
<td>pMS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>Toluene</td>
<td>0.56</td>
<td>5.9</td>
</tr>
<tr>
<td>1-5</td>
<td>CEVE</td>
<td>pMS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>0.99</td>
<td>7.5</td>
</tr>
<tr>
<td>1-6</td>
<td>CEVE</td>
<td>aMS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>Toluene</td>
<td>0.58</td>
<td>3.8</td>
</tr>
<tr>
<td>1-7</td>
<td>CEVE</td>
<td>aMS</td>
<td>BF$_3$OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>1.1</td>
<td>6.8</td>
</tr>
<tr>
<td>1-8</td>
<td>CEVE</td>
<td>aMS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>CH$_2$Cl$_2$</td>
<td>1.39</td>
<td>6.8</td>
</tr>
<tr>
<td>3-1</td>
<td>IB</td>
<td>ST</td>
<td>AlCl$_3$(0.5%)</td>
<td>CH$_3$Cl</td>
<td>2.2</td>
<td>11</td>
</tr>
<tr>
<td>3-2</td>
<td>IB</td>
<td>ST</td>
<td>AlCl$_3$(0.14%)</td>
<td>CH$_3$Cl</td>
<td>2.1</td>
<td>9.9</td>
</tr>
<tr>
<td>3-3</td>
<td>CEVE</td>
<td>nBVE</td>
<td>BF$_3$OEt$_2$</td>
<td>Benzene or Toluene</td>
<td>~1.6</td>
<td>~7.9</td>
</tr>
<tr>
<td>3-4</td>
<td>CEVE</td>
<td>aMS</td>
<td>BF$_3$(CH$_3$CO$_2$H)$_2$</td>
<td>(CH$_2$Cl)$_2$</td>
<td>0.96</td>
<td>4.8</td>
</tr>
<tr>
<td>3-5</td>
<td>aMS</td>
<td>pCS</td>
<td>SnCl$_4$</td>
<td>Toluene</td>
<td>~0.63</td>
<td>5.9</td>
</tr>
<tr>
<td>1-9</td>
<td>ST</td>
<td>pCS</td>
<td>SnCl$_4$$\cdot$TCA</td>
<td>Toluene/</td>
<td>~0.3</td>
<td>~0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
<td>b)</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>IBVE</td>
<td>CEVE</td>
<td>BF$_3$OEt$_2$</td>
<td>Toluene</td>
<td>0</td>
<td>0.46</td>
</tr>
<tr>
<td>3-6</td>
<td>ST</td>
<td>pCS</td>
<td>SnCl$_4$</td>
<td>CCl$_4$</td>
<td>~0.12</td>
<td>~0.20</td>
</tr>
</tbody>
</table>

a) Numbers refer to those of Table I and III.
b) Toluene: Benzene = 40:60,
CEVE-\(\alpha\)MS system (see No. B-3-4 and B-1-7 in Table IV).

\(\Delta c\) is, in general, independent of \(T\) in radical copolymerization. This means that the propagating-end effect at the addition of both monomers is hardly controlled by the entropy term, that is, there is no difference of activation entropy due to the kind of growing chain end.

In the cationic copolymerization between homologues, \(r_1\times r_2\) is constant and close to unity irrespective of temperature. This means that \(\Delta H\) and \(\Delta S\) approximately equal zero. As is seen from Table IV, both \(\Delta H\) and \(\Delta S\) of group B are very small. Therefore, there is no difference in reactivities of both propagating ends for monomers. This agrees with the absence of the alternating tendency in cationic copolymerization.

In the cationic copolymerizations of the monomers with different structures, \(\Delta H\) and \(\Delta S\) are usually different from zero (Table IV, Group A). Moreover, \(T\Delta S\) is nearly equal to \(\Delta H\) or is larger than \(\Delta H\) in contrast to radical copolymerization. This means that the difference in reactivities of both propagating ends for monomers is controlled rather by the entropy term than by the enthalpy term. The great value of \(\Delta S\) suggests the difference in the correlation between the propagating end, the counterion and monomer in the transition state.

In the previous chapter,\(^1\) the results that the product \(r_1\times r_2\) was about unity in the copolymerization of CEVE with \(\alpha\)MS at \(-78^\circ C\) was explained by the similar stability of two carbocations formed from both monomers. It may be, however, only fortuitous that \(r_1\times r_2\) is close to unity in the copolymerization of CEVE with \(\alpha\)MS at \(-78^\circ C\). For, \(\Delta H\) and \(\Delta S\) have considerably larger values than those of the copolymerization between homologues.
As is seen from Group A in Table IV, ΔH has a positive sign, and $T\Delta S$ has generally a larger positive value than ΔH in the copolymerization of monomers with different structures. This means that the higher the temperature, the higher the blocking tendency. The tendency is very conspicuous and consistent in all systems.

The above-mentioned difference in reactivities of both propagating ends for monomers is summarized as follows:

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Structure of monomers</th>
<th>ΔH</th>
<th>ΔS</th>
<th>$\Delta \epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical</td>
<td></td>
<td>>0</td>
<td>~ 0</td>
<td>≥ 0</td>
</tr>
<tr>
<td>Cationic</td>
<td>Similar</td>
<td>~ 0</td>
<td>~ 0</td>
<td>~ 0</td>
</tr>
<tr>
<td></td>
<td>Dissimilar</td>
<td>>0</td>
<td>>0</td>
<td>≥ 0</td>
</tr>
</tbody>
</table>

It is concluded that vinyl ether is less reactive in terms of enthalpy and more reactive in terms of entropy than styrene derivatives; this suggests the difference between the transition state of the addition of vinyl ether and that of styrene derivatives. Further, in general, r_1, r_2 and $r_1 \times r_2$ change remarkably with temperature in the cationic copolymerization of monomers with different structures. This means that the reaction is controlled not only by the enthalpy term but also by the entropy term, and indicates that the complex formation is not negligible and that three elements, a propagating carbocation, a counterion and a monomer are concerned at the transition state.

The above discussion was based on the assumption that the copolymer composition was controlled by a polymer chain end, because the presence of the penultimate effect could not be confirmed. Further studies on the sequence distribution in copolymers are necessary in order to elucidate the details of the mechanism.
References

Chapter 3

Effects of Solvent and Catalyst on Relative Reactivity

Introduction

In the previous chapters,1,2 it was shown that monomer reactivity ratios (MRR) were very sensitive to reaction conditions in the cationic polymerization of 2-chloroethyl vinyl ether (CEVE) with styrene derivatives, and the temperature dependence of MRR was investigated in detail.

A remarkable change in MRR is often caused by varying reaction conditions in anionic polymerization, for example, in the copolymerization of styrene with methyl methacrylate3 or isoprene.4 On the other hand, there are relatively few cationic copolymerizations in which MRR greatly depends on reaction conditions. The copolymerization of isobutene with styrene derivatives5 is one of the examples.

The studies on the dependence of relative reactivity of two compounds on reaction conditions, such as solvent and catalyst, often contribute to the elucidation of reaction mechanism. Therefore, it will be very interesting to investigate the influences of solvent and catalyst on the relative reactivity of two monomer in the cationic copolymerization of CEVE with styrene derivatives. In this chapter, the changes in the relative reactivity of CEVE and styrene derivatives with the type of catalyst and solvent will be discussed.
Experimental

Aluminum bromide (Guaranteed Reagent) was purified by sublimation under reduced pressure.

Acetyl perchlorate (AcClO$_4$) was prepared as follows: silver perchlorate (Guaranteed Reagent) was dried at 70$^\circ$ for two hours under a vacuum. 100 cc of elaborately purified methylene chloride and 0.010 mole of freshly distilled acetyl chloride were successively added to 0.011 mole of the silver perchlorate. The mixture was stirred overnight at room temperature in the dark. The formed supernatant acetyl perchlorate solution was preserved in ampoules at -20$^\circ$. The concentration was determined spectroscopically on the basis of reaction (1) $[\text{(C}_6\text{H}_5\text{)}_3\text{C}^+; \epsilon_{435} = 3.69 \times 10^4 \text{ l/mole}]$:

$$\text{(C}_6\text{H}_5\text{)}_3\text{COH} + \text{AcClO}_4 \rightarrow \text{(C}_6\text{H}_5\text{)}_3\text{C}^+ + \text{ClO}_4^- + \text{AcOH} \quad (1)$$

Nitroethane (Guaranteed Reagent) was washed with aqueous solution containing 25g each of sodium bicarbonate and sodium bisulfite per liter, 5% sulfuric acid solution, and water, successively. Then, it was dried over calcium chloride and twice distilled over calcium hydride.

The synthesis and purification of the other materials and the copolymerization procedure are the same as those described in the previous chapters. The relative reactivity in copolymerization was determined by measuring the residual monomers in the reaction system by gas chromatography.
Results

The copolymerization of CEVE with styrene derivatives was carried out at -78°C in equimolar monomer ratio (total monomer concentration: 0.50 mol/l). AlBr₃, stannic chloride with equimolar trichloroacetic acid (SnCl₄•TCA), boron trifluoride diethyl etherate (BF₃OEt₂) and AcClO₄ were used as catalysts. Toluene was used as a nonpolar solvent, and methylene chloride and nitroethane as polar solvents.

Table I shows the relative reactivity of CEVE against styrene derivatives. The relative reactivity was obtained from the ratio of initial slopes in time-conversion curves of both monomers. The values in Table I are the averages of three or four experimental values, and the residual error was less than 10%.

In the copolymerization of CEVE with p-methoxystyrene (pMOS) in toluene and methylene chloride, the relative reactivity of pMOS decreased in the following order of catalysts: AlBr₃ > SnCl₄•TCA > BF₃OEt₂ > AcClO₄. An opposite tendency, however, was observed in nitroethane solvent. When BF₃OEt₂ and AcClO₄ were used as catalysts, the relative reactivity of CEVE decreased with increase in the dielectric constant of a solvent.

In the copolymerization of CEVE with p-methylstyrene (pMS), the relative reactivity in toluene changed from 8.5 to > 40 when AcClO₄ was used instead of AlBr₃. The relative reactivity of the toluene-AcClO₄ system which was determined by gas chromatography, was confirmed by the fact that no pMS unit was obtained at low conversion. On the other hand, it decreased from 1.8 to 0.43 in nitroethane. The relative reactivity of CEVE decreased with an increase in the polarity of solvent,
Table I. Relative reactivity of CEVE against styrene derivatives in the equimolar copolymerization ([M]₀ 0.50 mol/l, -78°C)

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Solvent</th>
<th>Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AlBr₃</td>
</tr>
<tr>
<td>CEVE-pMOS</td>
<td>Toluene</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Methylene chloride</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Nitroethane</td>
<td>0.51</td>
</tr>
<tr>
<td>CEVE-pMS</td>
<td>Toluene</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>Methylene chloride</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Nitroethane</td>
<td>1.7</td>
</tr>
<tr>
<td>CEVE-αMS</td>
<td>Toluene</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Methylene chloride</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Nitroethane</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Table II. Relative reactivity of ST against pMS in the equimolar copolymerization ([M]₀ 1.00 mol /l, 30°C)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>AlBr₃</th>
<th>SnCl₄•TCA</th>
<th>BF₃OEt₂</th>
<th>AcClO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.79₀</td>
<td>0.34₅</td>
<td>0.43₂</td>
<td>—</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>0.52₂</td>
<td>0.41₀</td>
<td>0.43₀</td>
<td>0.35₁</td>
</tr>
<tr>
<td>Nitroethane</td>
<td>0.36₈</td>
<td>0.38₀</td>
<td>0.33₉</td>
<td>0.38₆</td>
</tr>
</tbody>
</table>

and a large change in MRR was observed in copolymerizations using BF₃OEt₂ and AcClO₄. It is surprising that the relative reactivity changed from 40 to 0.43, that is, by a hundred times, with change in solvent from toluene to nitroethane, when AcClO₄ was used as a catalyst.

The results of the copolymerization of CEVE with α-methylstyrene (αMS) showed tendencies similar to the CEVE-pMOS and CEVE-pMS systems. That is, the relative reactivity of CEVE against styrene derivatives increased greatly in toluene and methylene chloride, when AcClO₄ was used as catalyst. However, the difference in the relative reactivity with the kind of catalyst was small in nitroethane. When BF₃OEt₂ and AcClO₄ were used as catalysts, the relative reactivity of CEVE decreased with increasing solvent polarity.

The copolymerizations of styrene (ST) with pMS and of isobutyl vinyl ether (IBVE) with CEVE were carried out under similar conditions in order to know whether such large effects of catalyst and solvent are observed in the copolymerization between monomers of similar structure.

Copolymerization of ST with pMS was carried out at 30°C and the total monomer concentration was 1.00 mol/l. As shown
Table III. Relative reactivity of IBVE against CEVE in the equimolar copolymerization ([M]₀ 0.50 mol /1, -78°C)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>AlBr₃</th>
<th>SnCl₄ – TCA</th>
<th>BF₃OEt₂</th>
<th>AcClO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>1.6₄</td>
<td>1.6₇</td>
<td>1.8₆</td>
<td>1.8₉</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>2.5₇</td>
<td>2.6₈</td>
<td>1.9₀</td>
<td>2.2₇</td>
</tr>
<tr>
<td>Nitroethane</td>
<td>1.4₆</td>
<td>1.5₇</td>
<td>1.3₆</td>
<td>1.5₅</td>
</tr>
</tbody>
</table>

In Table II, the relative reactivity of ST, taking that of pMS as unity, was in the range of 0.3₄-0.5₂ except for the case of the AlBr₃-benzene system. Tobolsky and his coworkers reported that the ST content became larger with a stronger catalyst and in a less polar solvent such as the SbCl₅-toluene system.⁷ Substantially, as is seen from Table II, the relative reactivity of ST with pMS did not vary significantly with the kind of catalyst and solvent.

Copolymerization of IBVE with CEVE was performed at -78°C and the total monomer concentration was 0.50 mol/l. As shown in Table III, large effects of solvent and catalyst were not observed in the copolymerization of IBVE with CEVE. The values are 2.6 and 2.7 in the CH₂Cl₂-AlBr₃ and CH₂Cl₂-SnCl₄ – TCA systems. In other cases the values are 1.4 to 2.3. This change is much smaller than in the CEVE-styrene derivative systems.

Discussion

In Table IV the changes in the relative reactivity of styrene derivatives against CEVE with different solvents and catalysts are
Table IV. Summary of the changes in the relative reactivity of styrene derivatives against CEVE in copolymerization

<table>
<thead>
<tr>
<th>Fixed</th>
<th>Strength or polarity</th>
<th>Relative reactivity against CEVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Polar solvent</td>
<td>Catalyst ↑</td>
<td>pMOS → pMS → qMS</td>
</tr>
<tr>
<td>b Nonpolar solvent</td>
<td>Catalyst ↑</td>
<td>pMOS ↑ pMS ↑ qMS</td>
</tr>
<tr>
<td>c Strong catalyst</td>
<td>Solvent ↑</td>
<td>pMOS ↑ qMS ↑ pMS ↑</td>
</tr>
<tr>
<td>d Weak catalyst</td>
<td>Solvent ↑</td>
<td>pMOS ↑ qMS ↑ pMS ↑</td>
</tr>
</tbody>
</table>

summarized. The relative reactivity of styrene derivatives did not change significantly in a polar solvent such as nitroethane (a in Table IV).

The order, \(\text{AlBr}_3 > \text{SnCl}_4 > \text{BF}_3\text{OEt}_2 \), in the catalyst activity was observed in cationic polymerization of isobutene and other monomers. Further, \(H_0 \) (Hammett acidity function) of \(\text{HBF}_4 \) was found to be -16.6, while the \(H_0 \) of anhydrous protonic acid is from -11 to -10. Therefore, the following order of catalyst activity is settled: \(\text{AlBr}_3 > \text{SnCl}_4 \cdot \text{TCA} > \text{BF}_3\text{OEt}_2 > \text{AcClO}_4 \) although it is well known that the order of catalytic activity of metal halides varies with particular reactions.

As shown in b of Table IV, the relative reactivity of styrene derivatives increased with the catalyst strength in a less polar solvent such as methylene chloride and toluene. The relative reactivity of styrene derivatives increased and then decreased with the polarity of solvent using strong
catalysts such as AlBr₃ and SnCl₄·TCA (c of Table IV). It increased consistently with increases in the polarity when weak catalysts such as AcClO₄ were used (d of Table IV).

Higashimura¹⁰ accounted for the changes of MRR in the cationic copolymerization of styrene with p-methylstyrene⁷ in terms of two quantum-mechanically calculated energies, E^π and E_{rs}, which, respectively, are measures of complex formation between monomer and carbocation, and resonance stabilization of the transition state as a result of incipient bond formation.

The above-mentioned results may also be discussed in a similar manner. The propagation reaction of cationic polymerization was assumed to divide into two elementary reactions:¹¹

\[
P_n^+A^- + M \xrightleftharpoons[K]{k} (P_nM)^+A^- \xrightarrow[k]{k} P_{n+1}^+A^- \tag{1}
\]

The propagation rate constant k_p can be given as in eq 2, supposing K << 1.

\[
k_p = \frac{kK}{K[M] + 1} \approx kK \tag{2}
\]

K and k are related to the energy terms E^π and E_{rs},

\[
\ln K = (\text{const})' - \frac{E^\pi}{RT} \tag{3}
\]

\[
\ln k = (\text{const})'' - \frac{E_{rs}}{RT} \tag{4}
\]

where E^π is the energy contributing to stabilization in the formation of π-complex between propagating ion and monomer, and E_{rs} is the stabilization energy accompanying bond formation.
between carbon r of a propagating ion and carbon s of a monomer. Accordingly, the partial activation energy due to \(\pi \)-electrons of propagating reaction, \(E^\pi \), is related to \(E^\pi \) and \(E_{rs} \):

\[
E^\pi = (\text{const}) - (E^\pi + E_{rs})
\]

\(E_{rs} \) and \(E^\pi \) are dependent on the coulomb integral, \(\alpha_r \), on an atom r. \(\alpha_r \) is dominated by a charge on carbon r, so that it will vary with the distances of carbon r from a counterion and from a basic solvent. This concept leads to

\[
\alpha_r = \alpha - \delta \beta - \delta' \beta
\]

\[
\delta = \text{const} \cdot \frac{Q_r e^2}{R}
\]

\[
\delta' = \text{const} \cdot \frac{Q_r Q_N e^2}{R'}
\]

where \(\alpha \) is the coulomb integral for chain end cation unperturbed by a counterion or solvent; \(\delta \) and \(\delta' \) are measures of the influence of the electrostatic field of the counterion and solvent, respectively, on the atom r; \(Q_r \) and \(Q_N \) are the net charges on the carbon r of chain end and on the nucleophilic site of a solvent, respectively, and \(R \) and \(R' \) are the distances between the carbon r and the counterion or solvent, respectively. \(\delta \) decreases as the dielectric constant of a solvent or the strength of a catalyst increases. \(\delta' \) increases with the increase in the nucleophilicity of solvents. As \(E_{rs} \) and \(E^\pi \) are functions of relative \(\delta \) and \(\delta' \) values, they can be calculated as described by Higashimura.\(^{10}\) \(E_{rs} \) and \(E^\pi \) were proved to become larger as
Table V. The dependence of δ, δ', and E^* on the kind of solvents and catalysts

<table>
<thead>
<tr>
<th>Fixed</th>
<th>Strength or polarity</th>
<th>δ</th>
<th>δ'</th>
<th>E^Π, E_{RS}</th>
<th>E^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Polar solvent</td>
<td>Catalyst \uparrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>b Nonpolar solvent</td>
<td>Catalyst \uparrow</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>\uparrow</td>
<td>\downarrow</td>
</tr>
<tr>
<td>c Strong catalyst</td>
<td>Solvent \uparrow</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>d Weak catalyst</td>
<td>Solvent \uparrow</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
</tbody>
</table>

δ decreased. Similar behavior is assumed also with regard to δ'.

The change in rate of homopolymerization to be expected is shown in Table V. Here, toluene, methylene chloride, and nitroethane were used as solvents; the last has not only a large dielectric constant but also a considerable nucleophilicity. As a distinct example of the influence of nucleophilicity, neither monomer was consumed in the copolymerization of CEVE with styrene derivatives in diethyl ether because of a large nucleophilicity of the solvent.12 Such a change in reactivity, controlled not only by solvent polarity but also by solvent nucleophilicity, is also seen in the polymerization of N-phenylethyleneimine.13

The change of relative reactivity of CEVE against styrene derivatives will be decided by the relative importance of the change in E^Π or E_{RS} with polymerization conditions in the polymerization of these monomers. As vinyl ethers have a
larger solvating power than styrene derivatives,14 it is supposed that the reactivity of vinyl ethers is hardly affected by the kind of solvent and catalyst used. Therefore, the change of relative reactivities in the copolymerization of CEVE with styrene derivatives should be mainly controlled by the styrene derivatives. This means that the difference of E^π or E_{rs} (ΔE^π or ΔE_{rs}) in the copolymerization of styrene derivatives with CEVE will change similarly to that of the styrene derivatives.

On the basis of this concept, the expected and observed changes in relative reactivity are shown in Table VI. The agreement is good. For example, when a weak catalyst was used, the relative reactivity of styrene derivatives increased consistently with increasing polarity of solvent, as δ decreased sharply with the solvent polarity (d in Table VI). When a

Table VI. Expected and observed dependence of relative reactivity of styrene derivatives on the kind of solvents and catalysts

<table>
<thead>
<tr>
<th>Fixed</th>
<th>Strength or polarity</th>
<th>δ</th>
<th>δ'</th>
<th>Relative reactivity of styrene derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Polar solvent</td>
<td>Catalyst↑</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>b Nonpolar solvent</td>
<td>Catalyst↑</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>$\not\rightarrow$</td>
</tr>
<tr>
<td>c Strong catalyst</td>
<td>Solvent↑</td>
<td>\downarrow</td>
<td>$\not\rightarrow$</td>
<td>$\not\rightarrow$</td>
</tr>
<tr>
<td>d Weak catalyst</td>
<td>solvent↑</td>
<td>\downarrow</td>
<td>$\not\rightarrow$</td>
<td>$\not\rightarrow$</td>
</tr>
</tbody>
</table>

* Complicated but not a large change (cf. Tables I and IV).
strong catalyst was used, however, the influence of a solvent was more complex (c in Table VI) because the counterion produced from a strong catalyst may easily dissociate. A nucleophilic solvent may easily solvate a dissociated ion and decrease the reactivity of a growing chain.

It is concluded that the rate-determining steps in the propagation reaction of vinyl ether and styrene derivatives are not the same, mainly owing to the difference in the solvating power of monomers, and that in consequence the relative reactivities of these monomers are much affected by the kind of catalyst and solvent.

References

4. e.g., a) D.J. Kelley and A.V. Tobolsky, J. Amer. Chem. Soc., 81, 1597 (1959);
5. a) C.G. Overberger and V.G. Kamath, J. Amer. Chem. Soc., 81, 2190 (1959);
 b) C.G. Overberger and V.G. Kamath, J. Amer. Chem. Soc., 85, 446 (1963);

PART II

SUBSTITUENT EFFECT IN CATIONIC POLYMERIZATION
OF VINYL ETHERS AND STYRENES
Chapter 4

Effect of β-Substituents on Reactivity

Introduction

It is well known that the β-alkyl-substituted vinyl ethers and styrenes are polymerizable by cationic mechanism. This presents a striking contrast to the reluctance of α,β-di-substituted ethylenes in radical polymerization. The following knowledges have been obtained so far concerning to the reactivity of β-methyl-substituted vinyl monomers in cationic polymerization:2-6 a) a propenyl ether is more reactive than the corresponding vinyl ether in general, but β-methylstyrene is less reactive than styrene, b) the cis isomer of a propenyl ether is more reactive than the trans isomer, irrespective of the nature of the propagating end, while trans-β-methylstyrene is more reactive than cis-β-methylstyrene in the copolymerization with styrene, but the cis isomer is more reactive than the trans isomer in the mutual copolymerization of geometric isomers of anethole.

In this chapter, the influences of solvent, catalyst and temperature on the relative reactivity of β-methyl-substituted vinyl ethers and styrenes were examined in detail. One of the purposes in this investigation is to know how the effects of solvent, catalyst and temperature come out in the polymerization reaction of α,β-disubstituted ethylenes. And, another purpose is, if possible, to find a more general tendency as to
the relative reactivity of α,β-disubstituted ethylenes.

Experimental

Isobutyl propenyl ether (IBPE) was synthesized by elimination of alcohol from the pertinent acetal which was prepared from isobutyl alcohol and propionaldehyde. The geometric isomers were separated by fractional distillation through a spinning band column of over 70 theoretical plates. The isomeric purities of cis-IBPE and trans-IBPE were 98.5 and 99.1 %, respectively. cis-Anethole was synthesized by decarboxylation of p-methoxy-β-methylcinnamic acid which was prepared from p-anisaldehyde by Perkin reaction. The cis isomer was separated from the trans isomer by fractional distillation. The composition of anethole after the distillation was 91 % cis isomer and 9 % trans isomer (bp 98-102°C (16mm)). p-Methoxystyrene (pMOS) was synthesized as described before. Isobutyl vinyl ether (IBVE) and trans-anethole was commercially obtained. The purifications of these monomers, solvents and catalysts are the same as described in previous chapters.

The detail of the copolymerization procedure is also described in a previous chapter. Monomer reactivity ratios were calculated by means of the Ezrielev's method, an improved Fineman-Ross' method. The calculation was carried out on a FACOM 230-60 computer at the Data Processing Center of Kyoto University.

Results

Solvent Effect

Toluene and nitroethane were used as nonpolar and polar
solvents, respectively. Figure 1 shows the composition curves in the copolymerization of IBVE with IBPE catalyzed by BF$_3$OEt$_2$ at -78°C. It is clear from Figure 1 that cis-IBPE has a greater reactivity than IBVE, but trans-IBPE is rather less reactive than IBVE in toluene. When nitroethane is used as solvent, the relative reactivity of cis-IBPE decreases and that of trans-IBPE increases. Thus, the reactivities of cis-IBPE, IBVE and trans-IBPE become appreciably close each other. The monomer reactivity ratios of these systems are summarized in Table I. As M_1 is IBVE in the copolymerization, $1/r_1$ means the relative reactivity of IBPE to IBVE for the propagating end consisting of IBVE unit.

The same conclusions as mentioned above can be drawn from the

![Figure 1](image_url)
Table I. Monomer reactivity ratios in the copolymerization of IBVE with IBPE

<table>
<thead>
<tr>
<th>No.</th>
<th>Monomers</th>
<th>Solvent</th>
<th>Catalyst</th>
<th>Temp, °C</th>
<th>r_1</th>
<th>r_2</th>
<th>$1/r_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBVE, cis-IBPE</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>0.21±0.05</td>
<td>2.38±0.26</td>
<td>4.76</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>Nitroethane</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>0.67±0.06</td>
<td>0.78±0.05</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>Toluene</td>
<td>SnCl$_4$·TCA</td>
<td>-78</td>
<td>0.70±0.16</td>
<td>1.47±0.31</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>0</td>
<td>0.30±0.04</td>
<td>0.76±0.08</td>
<td>3.33</td>
</tr>
<tr>
<td>5</td>
<td>IBVE, trans-IBPE</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>1.72±0.11</td>
<td>0.60±0.04</td>
<td>0.58</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>Nitroethane</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>1.36±0.10</td>
<td>1.01±0.08</td>
<td>0.74</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>Toluene</td>
<td>SnCl$_4$·TCA</td>
<td>-78</td>
<td>1.51±0.15</td>
<td>0.47±0.06</td>
<td>0.66</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>0</td>
<td>1.84±0.10</td>
<td>0.44±0.05</td>
<td>0.54</td>
</tr>
</tbody>
</table>
values of $1/r_1$ in Table I.

Figure 2 shows the results about solvent effect in the copolymerization of pMOS with anethole. As is clear from Figure 2, trans-anethole is more reactive than cis-anethole in the copolymerization with pMOS. Further, when nitroethane is used as solvent instead of toluene, the relative reactivities of both cis- and trans-anetholes increase and approach that of pMOS. The monomer reactivity ratios in the copolymerization of pMOS (M_1) and anethole (M_2) are listed in Table II. r_2 is nearly zero, which indicates that pMOS has a much larger reactivity than anethole for anethole propagating end. This does not mean $k_{22} = 0$.

Figure 2. Solvent effect on copolymer composition of pMOS with anethole by BF$_3$OEt$_2$ at -78°C. cis-anethole: a(*) toluene, b(o) nitroethane; trans-anethole: c(A) toluene, d(Δ) nitroethane.
Table II. Monomer reactivity ratios in the copolymerization of pMOS with anethole

<table>
<thead>
<tr>
<th>No.</th>
<th>Monomers</th>
<th>Solvent</th>
<th>Catalyst</th>
<th>Temp, °C</th>
<th>r_1</th>
<th>r_2</th>
<th>$1/r_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pMOS</td>
<td>cis-An a)</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>9.03±0.65</td>
<td>0.00±0.02</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>"</td>
<td>Nitroethane</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>4.42±0.27</td>
<td>0.00±0.02</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>"</td>
<td>Toluene</td>
<td>SnCl$_4$·TCA</td>
<td>-78</td>
<td>3.60±0.23</td>
<td>0.00±0.02</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>"</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>0</td>
<td>7.73±0.57</td>
<td>0.00±0.03</td>
</tr>
<tr>
<td>5</td>
<td>IBVE</td>
<td>trans-An</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>3.17±0.05</td>
<td>0.00±0.01</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>"</td>
<td>Nitroethane</td>
<td>BF$_3$OEt$_2$</td>
<td>-78</td>
<td>1.40±0.10</td>
<td>0.00±0.03</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>"</td>
<td>Toluene</td>
<td>SnCl$_4$·TCA</td>
<td>-78</td>
<td>1.71±0.09</td>
<td>0.01±0.02</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>"</td>
<td>Toluene</td>
<td>BF$_3$OEt$_2$</td>
<td>0</td>
<td>2.11±0.24</td>
<td>0.00±0.07</td>
</tr>
</tbody>
</table>

a) An: anethole.
because anethole can produce a homopolymer. $1/r_1$ in the copolymerization of pMOS with cis- and trans-anetholes in toluene are 0.11 and 0.32, respectively, which are considerably small than unity. The relative reactivities of cis- and trans-anetholes to pMOS increases by about two times using nitroethane as solvent.

Catalyst Effect

In a polar solvent the influence of a counterion on the propagation reaction is estimated to be small on account of large solvation effect. Therefore, catalyst effect was investigated in toluene. Stannic chloride with equimolar trichloroacetic acid as cocatalyst ($\text{SnCl}_4\cdot\text{TCA}$) was used as a catalyst to compare with $\text{BF}_3\cdot\text{OEt}_2$. The former catalyst is, in general, accepted to be stronger than the latter. As shown in Figure 3, the relative reactivity of cis-IBPE to IBVE decreased by use of $\text{SnCl}_4\cdot\text{TCA}$ as catalyst. $1/r_1$ reduced to one third (see Table I). On the contrary, the relative reactivity of trans-IBPE to IBVE was almost unaffected by the kind of catalysts.

Figure 4 shows the catalyst effect in the copolymerization of pMOS with anethole. In both cis- and trans-anetholes, the relative reactivity of anethole catalyzed by $\text{SnCl}_4\cdot\text{TCA}$ is higher than that catalyzed by $\text{BF}_3\cdot\text{OEt}_2$ by 2-3 times. It is interesting that the direction of the change in relative reactivity of anethole with the kind of catalysts is opposite to that of IBPE.

Temperature Effect

To gain an insight into the temperature dependence of relative reactivity, the copolymerization was carried out at
Figure 3. Catalyst effect on copolymer composition of IBVE with IBPE in toluene at \(-78^\circ\text{C}\). cis-IBPE: a(\(\bullet\)) BF\(_3\)OEt\(_2\), b(\(\circ\)) SnCl\(_4\cdot\)TCA; trans-IBPE: c(\(\triangle\)) BF\(_3\)OEt\(_2\), d(\(\Delta\)) SnCl\(_4\cdot\)TCA.

Figure 4. Catalyst effect on copolymer composition of pMOS with anethole in toluene at \(-78^\circ\text{C}\). cis-anethole: a(\(\bullet\)) BF\(_3\)OEt\(_2\), b(\(\circ\)) SnCl\(_4\cdot\)TCA; trans-anethole: c(\(\triangle\)) BF\(_3\)OEt\(_2\), d(\(\Delta\)) SnCl\(_4\cdot\)TCA.
-78°C and 0°C in toluene using BF₃OEt₂ as catalyst. The results are shown in Figures 5 and 6. A distinct temperature dependence of relative reactivity was observed in the copolymerization of IBVE with cis-IBPE. 1/r₁ changes from 4.76 to 3.85. In the case of trans-IBPE, the relative reactivity of IBPE increased slightly with the increase in polymerization temperature. Concerning to anethole (Figure 6), the influence of temperature is considerably small in both geometrical isomers. In both cases, the reactivity of anetholes seems to increase slightly at a higher temperature.

The results obtained in this investigation is summarized as follows: a) The order of reactivities in the vinyl ethers is
cis-IBPE > IBVE > trans-IBPE. When solvent polarity increases, catalyst strength increases, or temperature is elevated, then the relative reactivity of cis-IBPE decreases considerably and so approached to that of IBVE. However, the same changes in polymerization conditions gave rise to small and equivocal changes in relative reactivity of trans-IBPE. b) The reactivities of the p-methoxystyrenes lay in the order pMOS > trans-anethole > cis-anethole. As solvent polarity and catalyst strength increase or temperature is raised, the relative reactivities of both cis- and trans-anethole to pMOS increase.

Discussion

The influence of a polar substituent in the para position

Figure 6. Temperature dependence of copolymer composition of pMOS with anethole in toluene by BF$_3$OEt$_2$. cis-anethole: a(●) -78°C, b(o) 0°C; trans-anethole: c(▲) -78°C, d(△) 0°C.
of phenyl group is usually explicable by electronic effect. Meanwhile, the introduction of an alkyl group into β-position of a vinyl group has not only electronic but also steric influence on a reaction. Cis and trans isomers derived by β-methyl substitution may suffer similar changes electronically from unsubstituted one, but steric states are appreciably different each other. While trans isomer is affected usually only by intermolecular steric hindrance on a reaction, neither inter- nor intra-molecular steric hindrance can be disregarded in cis isomer.

When a more polar solvent is used, following influences are expected to turn out in cationic polymerization: a) a propagating ion pair becomes looser, and in consequence more reactive, so that the selectivity of the ion pair for reactants reduces, b) as the charge of the carbocation is liable to localize on the α-carbon, the influence of a β-substituent becomes small, c) a monomer which has a large intermolecular steric hindrance becomes more reactive owing to the looseness of the ion pair, and d) the reactivity of a more basic monomer reduces relatively. It is, however, not necessary to take account of (d) in the present system because the basicities of β-substituted and unsubstituted ones are little different. This presents a contrast to the copolymerization of a vinyl ether and a styrene derivative in which (d) is a main factor determining the relative reactivity. When a stronger catalyst is applied, a), b) and c) are anticipated. A higher temperature may give rise to following consequences: a) as the reactivity of a propagating ion pair increases, the selectivity of ion pair decreases, and b) the reactivity of a monomer which is less reactive in terms of enthalpy is enhanced.
The results of the present study is summarized as follows: when the copolymerization of IBVE with IBPE or of pMOS with anethole is carried out in a more polar solvent, by a stronger catalyst or at a higher temperature, the relative reactivities of the two monomers approach each other, in general. The following two explanations seem probable for this trend.

One of the interpretations is "reduction of selectivity", that is, the reactivity of ion pair increase with the change in reaction conditions as described above, its selectivity for reactants reduces, and consequently the relative reactivity approaches unity. Another is represented as "localization of charge"; a carbocation whose charge is localized on the α-carbon is favored in a polar solvent and/or with a strong catalyst, so that the transition state of propagation reaction is changed, more or less, in the direction from model I to model II. The influence of a β-substituent seems to be small in model II compared with model I. Thus, the reactivity of a β-substituted monomer approaches to that of the corresponding unsubstituted monomer.

Reference

Chapter 5

Effect of α-Substituents on Reactivity

Introduction

In general, α,β-disubstituted ethylenes are impossible to polymerize under radical mechanism, but are often capable of cationic polymerization. The influence of a substituent at β-position of vinyl monomers on cationic polymerizability has been studied, and the transition state of propagation reaction has been discussed in detail on the basis of the electronic and steric effects of a substituent.1,2

As for α,α-disubstituted ethylenes, isobutene and α-methyl-styrene have great cationic polymerizabilities, so that the kinetics of polymerization of these monomers has been studied widely. However, there have been few works in which the cationic polymerizability of α,α-disubstituted ethylenes has been compared with that of monosubstituted ethylenes. Therefore, it seems important at this stage to investigate how the introduction of α-substituents affects reactivity, in order to obtain more information about the mechanism of cationic polymerization.

In this chapter, the reactivity of several α-substituted vinyl ethers and styrenes in cationic homopolymerization and copolymerization will be dealt with. The observed reactivities are discussed on the basis of the electronic and steric factors of α-substituents. Moreover the differences in the α-methyl-substituent effect in cationic polymerization of vinyl ether and
styrene, and the differences in the \(\alpha \)-methyl-substituent effect in several electrophilic addition reactions are also discussed.

Experimental

Materials

Ethyl \(\alpha \)-methylvinyl ether (ethyl isopropenyl ether; \(\text{EaMVE} \)) was prepared by the dealcoholation of acetone diethyl ketal under the catalysis of sulfanilic acid. Acetone diethyl ketal was prepared by Hurd's method. \(^3 \) bp 61\(^\circ \)C, \(n^2_0 = 1.5301, \ d^2_0 = 0.950 \) (lit bp 61.9\(^\circ \)C, \(n^2_D = 1.3927^4 \)).

Ethyl \(\alpha \)-ethylvinyl ether (\(\text{EaEVE} \)) was synthesized according to the following formulae:

\[
\begin{align*}
\text{CH}_2=\text{CHO}C_2H_5 + \text{Br}_2 & \rightarrow \text{CH}_2\text{Br-CHBrOC}_2H_5 \\
\text{CH}_2\text{Br-CHBrOC}_2H_5 + C_2H_5\text{MgBr} & \rightarrow \text{CH}_2\text{Br-CH(C}_2H_5\text{)OC}_2H_5 \\
\text{CH}_2\text{Br-CH(C}_2H_5\text{)OC}_2H_5 & \underset{\text{KOH}}{\rightarrow} \text{CH}_2=\text{C(C}_2H_5\text{)OC}_2H_5
\end{align*}
\]

\(\alpha,\beta \)-Dibromoethyl vinyl ether was prepared by adding equimolar bromine to ethyl vinyl ether at 0\(^\circ \)C slowly so that the temperature did not rise. The second and third steps were carried out substantially in the manner of Lauer and Spielman. \(^5 \) The dehydrobromination by reflux of isopropanol solution was much more effective than that by distillation over potassium hydroxide. bp 86\(^\circ \)C, \(n^2_0 = 1.3996, \ d^2_4 = 0.7808 \) (lit bp 85-87\(^\circ \)C, \(n^2_{24.5} = 1.4011^5 \)).

Ethyl \(\alpha \)-phenylvinyl ether (\(\text{EaPVE} \)) was prepared in a similar manner to ethyl \(\alpha \)-ethylvinyl ether. bp 69\(^\circ \)C (8mm), \(n^2_0 = 1.5301, \ d^2_4 = 0.950 \) (lit bp 96-98\(^\circ \)C (19mm), \(n^2_{26} = 1.5271^5 \)).

The synthesis of \(\alpha \)-ethylstyrene (\(\alpha \text{ES} \)) was as follows: at first 2-phenyl-n-butanol was synthesized by reducing 2-phenyl-n-
butyric acid with lithium aluminum hydride. Then it was dehydrated by the catalytic action of a 10:1 mixture of sodium and potassium hydroxides and the distillate at 70°C (15mm) was collected. bp 67°C (15mm), $n_D^{20} = 1.5285$, $d_4^{20} = 0.9579$, $\lambda_{\text{max}} 241\text{m} \mu$, $\varepsilon_{\text{max}} 1.03 \times 10^4$ (lit bp 85-86°C (30mm), $n_D^{26.5} = 1.5260^6$).

1,1-Diphenylethylene (DPE) was synthesized from phenylmagnesium bromide and acetophenone, modifying the Allen's method. bp 120°C (5mm), $n_D^{20} = 1.6099$, $d_4^{20} = 1.0115$ (lit bp 123-125°C (5mm), $n_D^{20} = 1.6085^7$).

The synthesized and commercial monomers (ethyl vinyl ether: EVE; styrene: ST) were refined, care being taken to remove water. The catalysts and solvents used were purified as described elsewhere.8,9

Procedures

The polymerization was carried out in an Erlenmeyer flask under a dry nitrogen atmosphere. Feeding of materials was carried out with hypodermic syringes. The polymerization rate and relative reactivity were determined by measuring the consumption of monomers by gas chromatography. Nmr spectra of polymers were measured in 10% solution in carbon tetrachloride at ambient temperature. Monomer reactivity ratios were calculated by the Ezriefev's method.10

Results

Homopolymerizability
a. α-Substituted vinyl ethers

Ethyl α-methylvinyl ether can be polymerized easily to
produce a methanol-insoluble polymer at -78°C in toluene or methylene chloride by various catalysts. Figure 1 shows time-conversion curves in the polymerization with several catalysts. It was confirmed that the consumed monomer is converted quantitatively to a methanol-insoluble polymer. As the \(\alpha \)-unsubstituted vinyl ether polymerizes at 30°C at a similar rate, ethyl \(\alpha \)-methylvinyl ether was estimated to have a large reactivity. The viscosity numbers of the polymers obtained were very different: 0.1-0.9 according to the change of catalyst, with those of the ferric chloride catalyst being especially large (Figure 2). All the polymers proved to have an exclusively
syndiotactic structure independent of the kind of catalyst and solvent, which is in fair accord with the reported structure of poly(methyl α-methylvinyl ether).11 This result means that the steric structure of the polymer is not controlled by a counterion existing near the propagating end but controlled by the substituents of the monomer and propagating end, that is, substituent-controlled and not counterion-controlled.

Next, the influence of bulkier substituents than the methyl group was studied. Ethyl α-ethylvinyl ether reacts at -78°C in toluene at a much smaller rate than that of ethyl α-methylvinyl ether and does not form a methanol-insoluble polymer (Table I). It is reported that ethyl α-ethoxyvinyl ether (ketene diethyl acetal) reacts, by acids as weak as cadmium and zinc chlorides
Table I. Possibility of homopolymerization of several \(a,a \)-disubstituted monomers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Catalyst</th>
<th>[Cat], mmol/l</th>
<th>Time, hr</th>
<th>Conversion, %</th>
<th>Monomer consumption</th>
<th>MeOH-insol polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{EaEVE})</td>
<td>(\text{I}_2)</td>
<td>1.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(\text{BF}_3\text{OEt}_2)</td>
<td>10</td>
<td>0.5</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{EaES})</td>
<td>(\text{AcClO}_4)</td>
<td>5.0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(\text{BF}_3\text{OEt}_2)</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{EaPVE})</td>
<td>(\text{AcClO}_4)</td>
<td>5.0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(\text{BF}_3\text{OEt}_2)</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Polymerization conditions: Solvent, toluene; \(-78^\circ\text{C}; [M]_o, 1.0\text{ mol/l.}\)
into a glassy polymer. Ethyl α-phenylvinyl ether is not consumed at all at -78°C in toluene with various catalysts though the system is colored red (Table I). The color seems to be due to a stable carbocation formed from the monomer.

b. α-Substituted styrenes

As is well known, α-methylstyrene gives easily a methanol-insoluble polymer with acidic catalysts. α-Ethylstyrene was not consumed under mild conditions as shown in Table I. Its dimerization, however, takes place without difficulty as reported by Overberger. α-Ethoxystyrene (ethyl α-phenylvinyl ether) has already been mentioned in the above section. Evans has investigated the dimerization of 1,1-diphenylethylene which does not polymerize. These results demonstrate that α-substituted styrenes are, in general, difficult to polymerize by an acidic catalyst owing to steric hindrance.

Copolymerizability

a. α-Methyl substitution

In Figure 3 are shown the copolymer composition curves in the copolymerization of ethyl vinyl ether (M₁) with ethyl α-methylvinyl ether (M₂) and of styrene (M₁) with α-methylstyrene (M₂). In both cases α-substituted monomers have a fairly larger reactivity than the unsubstituted ones. \(1/r_1\) of the vinyl ether system, the relative reactivity of α-methylvinyl ether to vinyl ether for the vinyl ether propagating end, is about 8 (see Table II). \(1/r_1\) of the styrene system is about 4, and smaller than that of the vinyl ether system.

b. α-Ethyl substitution

Figure 4 shows the composition curves in the copolymeriza-
Figure 3. α-Methyl substitution effect in the copolymerization in methylene chloride at -78°C, $[M]_o 0.50$ mol/l. a(o), EVE-$E\alpha MVE(BF_3Et_2)$; b(o), ST-$\alpha MS(SnCl_4 \cdot TCA)$.

Figure 4. α-Ethyl substitution effect in the copolymerization in methylene chloride at -78°C, $[M]_o 3.0$ mol/l. a(o), EVE-$E\alpha EVE(BF_3Et_2)$; b(o), ST-$\alpha ES(SnCl_4 \cdot TCA)$.

-88-
Table II. Monomer reactivity ratios in the copolymerizations between
\(\alpha \)-substituted and unsubstituted monomers

<table>
<thead>
<tr>
<th>Monomer 1</th>
<th>Monomer 2</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, (^\circ)C</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(1/r_1)</th>
<th>(r_1 \times r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVE</td>
<td>EaMVE</td>
<td>BF(_3)OEt(_2)</td>
<td>CH(_2)Cl(_2)</td>
<td>-78</td>
<td>0.13±0.04</td>
<td>29.3±3.5</td>
<td>7.7</td>
<td>3.8</td>
</tr>
<tr>
<td>EVE</td>
<td>EaEVE</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.11±0.05</td>
<td>13.8±1.6</td>
<td>9.0</td>
<td>1.5</td>
</tr>
<tr>
<td>EVE</td>
<td>EaPVE</td>
<td>"</td>
<td>Toluene</td>
<td>"</td>
<td>((r_1 = r_1'))~0.5(^a)</td>
<td>((r_2'))~20(^a)</td>
<td>~2</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>(\alpha)MS</td>
<td>SnCl(_4)·TCA</td>
<td>CH(_2)Cl(_2)</td>
<td>"</td>
<td>0.25±0.08</td>
<td>20.6±3.5</td>
<td>4.0</td>
<td>5.2</td>
</tr>
<tr>
<td>ST</td>
<td>(\alpha)ES</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.53±0.17</td>
<td>3.2±0.5</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>ST</td>
<td>DPE</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.88±0.08</td>
<td>0.03±0.03</td>
<td>1.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\(^a\) The penultimate model and further \(r_2 = 0, r_1 = r_1' \) assumed.
tion of α-substituted (M₂) with unsubstituted (M₁) monomers, and the monomer reactivity ratios are given in Table II. In the copolymerization of ethyl vinyl ether (M₁) and ethyl α-ethylvinyl ether (M₂), r₁ is 0.11 and r₂ 13.8. The reactivity is not so elevated by α-ethyl substitution as by α-methyl substitution. This may be due to the steric effect of the ethyl group because the ethyl group is more electron-donating and so enhances reactivity electronically more than the methyl group. In the copolymerization of styrene with α-ethylstyrene in methylene chloride, dimerization also proceeds during polymerization when the α-ethylstyrene content is large in the feed. Accordingly, r₂ is only apparent, since M₂ does not homopolymerize. On the other hand, 1/r₁ conforms to the copolymerization theory, and the value of 1/r₁ indicates that α-ethyl substitution brings about an increase in the reactivity only by two times.

c. α-Phenyl substitution

In the copolymerization of α-phenyl-substituted monomers with unsubstituted ones, unusual copolymer composition curves are obtained owing to the bulkiness of the substituents (see Figure 5). Copolymer of ethyl vinyl ether and ethyl α-phenylvinyl ether always contains more than 33 mol % ethyl vinyl ether, as was expected by Lüssi. When the vinyl ether content is less than 20 mol % in feed, the copolymer formed is expected to have a regular structure of \(\left\langle M_1 M_2 M_2 \right\rangle^n \) sequence. The monomer reactivity ratios were obtained by a curve-fitting method assuming the penultimate model and \(r_2 = 0, r_1 = r_1' \). The system was colored red by adding catalyst and discolored as the polymerization was stopped with methanol.
Figure 5. α-Phenyl substitution effect in the copolymerization at -78°C, [M]0 3.0 mol/1. a(o), EVE-EaPVE (toluene, AcClO4); b(\(\square\)), ST-DPE (CH2Cl2, SnCl4-TCA) (a'(o), b'(u): Copolymer composition analysis by nmr).

In the case of styrene-diphenylethylene copolymerization, the steric effect becomes more outstanding and 1:1 alternating copolymer is obtained when the styrene content is less than 20 mole % in feed. The copolymer compositions were determined by nmr spectroscopy. The value of 1/r1 is about unity, which means the relative reactivity of both monomers for styrene propagating end is about equal. The polymerization system was colored red.

Discussion

The above-mentioned results are summarized in Table III. Ethyl α-methylvinyl and α-ethoxyvinyl ethers homopolymerize, but α-ethyl- and α-phenyl-substituted vinyl ethers do not. α-Substituted styrenes, except α-methylstyrene, cannot produce
Table III. The cationic polymerizability of α-substituted vinyl ether and styrene relative to unsubstituted monomers

<table>
<thead>
<tr>
<th>α-Substituent</th>
<th>Vinyl Ether</th>
<th>Styrene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homopolymerizability</td>
<td>Copolymerizability a)</td>
</tr>
<tr>
<td>CH₃</td>
<td>>>1</td>
<td>7.7</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>0</td>
<td>9.0</td>
</tr>
<tr>
<td>O₂C₂H₅</td>
<td>>>1 b)</td>
<td>>>1 b)</td>
</tr>
<tr>
<td>C₆H₅</td>
<td>0</td>
<td>~2</td>
</tr>
</tbody>
</table>

a) 1/r₁ (M₁: unsubstituted monomer) is used as the measure.

b) Expected from the data in ref 12.

homopolymers. These results mean that steric effect is very important in the cationic homopolymerization of α,α-disubstituted ethylenes. The extent of steric hindrance by the α-substituents is greater in styrene than in vinyl ether, as is clear from the homopolymerization of α-ethoxy-substituted monomers and from copolymerization of α-phenyl-substituted monomers (see Table III).

The relative reactivity of the α-substituted vinyl monomer to the corresponding α-unsubstituted vinyl monomer is, as shown in Table III, made greater by methyl and ethoxy substitution, but not so great by ethyl and phenyl substitution. The increase in reactivity by substitution might be expected to lie in the order of C₂H₅O > C₆H₅ > CH₃ ~ C₂H₅ electronically, but the actual reactivity becomes complex according to the superposition of steric effect.
When the methyl group is introduced at β-position the reactivity in cationic polymerization of vinyl ether becomes 1-4 times greater and that of styrene about 0.1-0.7 times. Comparing this with the results for α-methyl substitution, it is clear that α-substitution for the methyl group is more effective to the enhancement of reactivity than β-substitution in cationic polymerization.

In Table IV are listed the changes in reactivity with α-methyl substitution of vinyl ether and styrene in several reactions. Protonation reactions (hydrolysis, hydration and alcoholations) are accelerated by \(10^2-10^4\) times by substituting for the methyl group at α-carbon. On the contrary, the acceleration is no more than 3-13 times in the bromination and cationic polymerization. Further, the equilibrium constants of complex formation with silver ion or iodine molecule hardly changes or becomes smaller when the methyl group is substituted for. This tendency suggests that the smaller and the harder the electrophilic reagent, the greater the relative reactivity of the α-methyl-substituted reactant. This is explained as follows: by substituting α-proton for the methyl group, the electron density on β-carbon in a double bond increases and that on α-carbon decreases, that is, the introduction of the methyl group induces an imbalance of electron density distribution in the double bond. Then the olefin will be more susceptible to attack by a hard acid such as proton, since the acid will act selectively only on the β-carbon of a double bond. The effect will not be so great in the case of a soft acid like silver ion or iodine because the acid attacks both carbons of a double bond at an early stage of the rate-determining step. It can be said that the substituent effect in
Table IV. α-Methyl substitution effect on the reactivity of vinyl ether and styrene in various cationic and related reactions

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Reaction</th>
<th>Ratio (^{a)}) of (k) or (K)</th>
<th>Reaction conditions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl</td>
<td>Hydrolysis</td>
<td>1.9x10(^4)</td>
<td>(25^\circ\text{C}, \text{HClO}_4,) \text{dioxan}-\text{H}_2\text{O}(80:20)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>1.3x10(^4)</td>
<td>(25^\circ\text{C}, \text{HCl},) \text{dioxan}-\text{H}_2\text{O}(80:20)</td>
<td>16</td>
</tr>
<tr>
<td>Vinyl</td>
<td>Bromination</td>
<td>3.0</td>
<td>(0^\circ\text{C},) \text{CCl}_4</td>
<td>17</td>
</tr>
<tr>
<td>Ether</td>
<td>"</td>
<td>3.2</td>
<td>(0^\circ\text{C},) \text{O}_2\text{Cl}_2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Polymerization</td>
<td>9.1</td>
<td>(-78^\circ\text{C}, \text{BF}_3\text{OEt}_2,)</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>Argentation</td>
<td>((\text{K}) 1.0)</td>
<td>(0^\circ\text{C},) \text{CH}_2\text{Cl}_2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^\circ\text{C},) \text{(CH}_2\text{OH})_2</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>Hydration (^{b)})</td>
<td>1.1x10(^2)</td>
<td>(25^\circ\text{C}, \text{HClO}_4,) \text{H}_2\text{O}</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Alcoholation</td>
<td>6.2x10(^2)</td>
<td>(60^\circ\text{C}(\text{extrapolated}),) \text{H}_2\text{SO}_4, \text{methanol}</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>9.1x10(^2)</td>
<td>(60^\circ\text{C}(\text{extrapolated}),) \text{H}_2\text{SO}_4, \text{ethanol}</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Bromination</td>
<td>12.6</td>
<td>(0^\circ\text{C},) \text{CCl}_4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>4.8</td>
<td>(0^\circ\text{C},) \text{CCl}_4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Polymerization</td>
<td>4.0</td>
<td>(-78^\circ\text{C}, \text{SnCl}_4 \cdot \text{TCA},) \text{CH}_2\text{Cl}_2</td>
<td>This work</td>
</tr>
</tbody>
</table>
Argentation (Kₐ)₀.₄₁
(K₁)₀.₉₂
π-complexation (Kₙ)₀.₅₃
with I₂
O°C, H₂O
room temp.
isooctane

a) The ratio of rate or equilibrium constant (k or K) of α-methyl-substituted reactants to that of α-unsubstituted ones.

b) Reactant: p-methoxystyrene.

cationic polymerization and bromination occupies the intermediate state of protonation and complexation with silver ion or iodine.

This study shows that ethyl α-phenylvinyl ether (α-ethoxy-α-phenylethylene) does not produce a homopolymer under cationic mechanism. On the contrary, it is reported that ethyl β-phenylvinyl ether (α-ethoxy-β-phenylethylene) does homopolymerize cationically. Therefore, it may be concluded that α,a-di-substituted ethylene suffers more steric hindrance than the α,β-disubstituted one does. On the other hand, many α,a-disubstituted ethylenes form homopolymers in radical polymerization, but the corresponding α,β-disubstituted ethylenes do not, with the exception of fluorine as a substituent. This leads one to suppose that the disposition of a propagating species and a monomer in the transition state of cationic polymerization differs from that of radical polymerization. The stage of complex formation between a carbocation and a double bond is concerned with the
rate-determining step in cationic polymerization, and it is probable that an \(\alpha,\alpha \)-disubstituted ethylene draws near to the active species with more difficulty than the corresponding \(\alpha,\beta \)-disubstituted ethylene does. Accordingly, an \(\alpha \)-substituent may hinder the reaction more than a \(\beta \)-substituent does in cationic polymerization. On the other hand, as a radical attacks \(\beta \)-carbon directly, so a \(\beta \)-substituent of a monomer hinders the approach of the active species more than an \(\alpha \)-substituent does. For this reason, the case may become the reverse in radical polymerization.

Reference

1. T. Okuyama, T. Fueno, and J. Furukawa, J. Polym. Sci., 6, 993 (1968), and the succeeding papers.
17. Chapter 7 in this thesis.
Chapter 6

Reactivity of 2-Alkoxybutadienes

Introduction

There have been a lot of investigations on the structure-reactivity relationship in cationic polymerization of alkyl vinyl ethers.1,2 The presence of oxygen adjacent to the vinyl group leads to a unique reactivity of alkyl vinyl ethers. Electrophilic addition reactions of linear conjugated dienes have also been investigated; the cationic polymerizations of butadiene3 and 2,4-hexadienes,4 and the structure,5 electrophilic reactions,6 and cationic polymerizations7 of 1-phenyl- and 1-alkoxybutadienes.

2-Alkoxybutadiene is regarded as an alkyl vinyl ether as well as a butadiene derivative. For the former case the \(\alpha \)-vinyl group is a substituent, and for the latter case the 2-alkoxy group is a substituent. The importance of each substituent is dependent on the nature of the reaction. Studies on the effect of substituent in such a compound may, therefore, shed light on the nature of a reaction. For instance, Fedor has investigated whether 4-methoxy-3-buten-2-one and several 3-alkyloxycrotonates are hydrolyzed as a vinyl ether or as a vinyl ketone.8

The lone-pair electrons of oxygen in a vinyl ether migrate to the double bond and makes a vinyl ether peculiarly reactive in electrophilic reactions. It is interesting to know how this effect is manifested in a reaction of 2-alkoxybutadiene.
Another point of interest is that the coplanarity between diene and alkoxy groups, hence the reactivity, is affected by increasing bulkiness of alkyl group. It is not known how reactive a 2-alkoxybutadiene is in cationic polymerization and whether it produces a high polymer.

In this chapter, the molecular structure, properties, and cationic polymerizability of several 2-alkoxybutadienes are studied. The results are discussed in comparison with those of alkyl vinyl ethers.

Experimental

Materials

Five 2-alkoxybutadienes, that is, 2-methoxybutadiene (MOBD), 2-ethoxybutadiene (EOBD), 2-isopropoxybutadiene (IPOBD), 2-(tert-butoxy)butadiene (tBOBD), and 2-(2-chloroethoxy)butadiene (CEOBD), were prepared by the Petrow’s method in the following process:

\[
\begin{align*}
\text{H}_2\text{C} = \text{CH} & \rightarrow \text{CH}_2 \quad \text{I}_2/\text{ROH} \\
\text{H}_2\text{C} - \text{CH} - \text{CH} = \text{CH}_2 & \rightarrow \text{I}_\text{OR} \\
\text{H}_2\text{C} = \text{C(OR)} - \text{CH} & = \text{CH}_2 \\
\end{align*}
\]

Boiling points and refractive indices of the 2-alkoxybutadienes prepared are given in Table I.

Tungsten hexachloride (extra pure) and iodine (E. Merck, resublimed reagent) were used without further purification. Titanium tetrachloride was purified by the distillation of commercial material (bp 136°C). Other catalysts and solvents
Table I. Boiling points, refractive indices, and uv spectrum data for 2-alkoxybutadienes

<table>
<thead>
<tr>
<th></th>
<th>bp, °C (lit)</th>
<th>(n_D^{20}) (lit, (n_D^{15}))</th>
<th>(\lambda_{\text{max}}, \text{nm}^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBD</td>
<td>75.0 (74.0-75.5)</td>
<td>1.4453 (1.4480)</td>
<td>233</td>
</tr>
<tr>
<td>EOBD</td>
<td>94.5 (92.5-93.5)</td>
<td>1.4417 (1.4430)</td>
<td>234</td>
</tr>
<tr>
<td>IPOBD</td>
<td>106 (105 -107)</td>
<td>1.4400 (1.4410)</td>
<td>237</td>
</tr>
<tr>
<td>tBOBD</td>
<td>125</td>
<td>1.4379</td>
<td>234</td>
</tr>
<tr>
<td>CEOBD</td>
<td>74 (30 mm)</td>
<td>1.4534</td>
<td>233</td>
</tr>
</tbody>
</table>

a) concn, 0.0500 mmol/1.

were purified as described in the previous chapters.

Procedures

Uv spectra of the alkoxybutadienes were measured in n-hexane (reagent for spectroscopy) on a Shimadzu MPS 50 spectrophotometer. Ir spectra of a neat sample were obtained by a Shimadzu IR27G grating spectrophotometer.

\(^1\)H nmr spectra were measured in 10 V/V % solution in carbon tetrachloride on a Varian HA-100 spectrometer. \(^13\)C nmr spectra were measured at 25.14 MHz on a JEOL PFT-100 spectrometer. The spectrum of a neat liquid was taken with accumulation of 100 scans by the Fourier transform method.

Polymerization procedure is similar to that described in a previous chapter.\(^{10}\)
Method of Calculation

MINDO/2 formalism devised by Dewar11 was used for the theoretical method and parametrizations without further modification. The convergence was judged from the energy level criterion of 1.0×10^{-3} eV in all the orbital energies. The atomic coordinates used for the 2-alkoxybutadienes and alkyl vinyl ethers are as follows: $-\text{C}=$-1.34, $=\text{C}-0$-1.40, $-\text{C}-0$-1.43, $=\text{C}-0$-1.48, $=\text{C}-\text{H}$ 1.08, $-\text{C}-\text{H}$ 1.09; $\angle C-0-C$ 110°, $\angle C-C-C$ $\angle C-C-0$ $\angle C-C-H$ 109.5°, $\angle C=C-C$ $\angle C=C-0$ $\angle C=C-H$ 120°. The s-trans conformation of $=\text{C}-0$- bond in alkyl vinyl ether, and the s-cis of $=\text{C}-0$- bond and s-trans of $=\text{C}-C$- bond in 2-alkoxybutadienes were assumed. Computations were made on a FACOM 230-60 computer at the Data Processing Center of Kyoto University.

Results and Discussion

The Molecular Structure and Properties of 2-Alkoxybutadienes

2-Alkoxybutadienes show a broad absorption in the uv region whose maximum is located in the range of 233-237 nm (see Table I). It is evident in Table I that the absorption shows a small red shift with increasing bulkiness of the alkyl group from methyl to isopropyl. The same trend has been found for alkyl vinyl ethers.12,13 tBOBD, however, shows an unexpected blue shift, which is quite different from tert-butyl vinyl ether. This could be explained in terms of the displanarity between the conjugated double bond and 0-alkyl bond owing to steric hindrance.

IR spectra of 2-alkoxybutadienes are shown in Figure 1. Absorptions due to symmetrical stretching vibration of the...
Figure 1. Ir spectra of 2-alkoxybutadienes. a, MOBD; b, EOBD; c, IPOBD; d, tBOBD; e, CEOBD.
Table II. 1H chemical shifts and spin coupling constants of 2-alkoxybutadienesa)

<table>
<thead>
<tr>
<th></th>
<th>τ_A</th>
<th>τ_B</th>
<th>τ_C</th>
<th>τ_D</th>
<th>τ_E</th>
<th>J_{CD}</th>
<th>J_{CE}</th>
<th>J_{DE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBD</td>
<td>5.94</td>
<td>5.97</td>
<td>3.95</td>
<td>4.99</td>
<td>4.52</td>
<td>10.6</td>
<td>17.1</td>
<td>-2.1</td>
</tr>
<tr>
<td>EOBD</td>
<td>5.97</td>
<td>5.99</td>
<td>3.95</td>
<td>4.99</td>
<td>4.50</td>
<td>10.5</td>
<td>17.4</td>
<td>-2.2</td>
</tr>
<tr>
<td>IPOBD</td>
<td>5.96</td>
<td>5.97</td>
<td>3.98</td>
<td>5.03</td>
<td>4.53</td>
<td>10.5</td>
<td>17.2</td>
<td>-2.3</td>
</tr>
<tr>
<td>tBOBD</td>
<td>5.71</td>
<td>5.72</td>
<td>3.97</td>
<td>5.06</td>
<td>4.60</td>
<td>10.3</td>
<td>17.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>CEOBD</td>
<td>5.93</td>
<td>5.95</td>
<td>3.93</td>
<td>4.98</td>
<td>4.49</td>
<td>10.5</td>
<td>17.1</td>
<td>-2.2</td>
</tr>
</tbody>
</table>

a) ^{1}H chemical shifts and spin coupling constants of 2-alkoxybutadienes.

$; 10 \text{ V/V} \%, \text{CCl}_4 \text{ solution, room temp.}$
ether linkage are observed at 1097 cm\(^{-1}\) in MOBD, and at 1120 and 1090 cm\(^{-1}\) in EOBD, while they are split and shifted in a complex manner in IPOBD and tBOBD. Asymmetrical stretching vibration of the ether linkage in a bulkier alkyl group shows a lower-frequency shift (MOBD 1312 cm\(^{-1}\), tBOBD 1305 cm\(^{-1}\)).

Chemical shifts and coupling constants in the \(^1\)H nmr spectra of 2-alkoxybutadienes are given in Table II. \(J_{AB}\) could not be determined, as the chemical shifts of \(H_A\) and \(H_B\) are very close. It is noteworthy that \(\tau_A\) and \(\tau_B\) of tBOBD are exceptionally small as compared with other 2-alkoxybutadienes. This could also be accounted for by the destruction of the coplanarity between diene and 0-alkyl bonds by steric hindrance.

The \(^13\)C chemical shifts of 2-alkoxybutadienes are listed in Table III. Carbon 1 in 2-alkoxybutadienes is highly shielded and the value is very close to that of \(\beta\)-carbon in a corresponding alkyl vinyl ether.\(^{14,15}\) However, the chemical shift of carbon 1 in tBOBD indicates a distinct deshielding in comparison with other 2-alkoxybutadienes. This is also explained in terms of lesser conjugation of the lone-pair electrons in oxygen. The resonance peak of carbon 2 appears in low-field region. This is the case also for tBOBD, which implies the predominance of the inductive effect over the resonance effect for the shift of carbon 2. The chemical shifts of carbons 3 and 4 are comparatively insensitive to the kind of alkyl group.

The results of molecular-orbital calculation are shown in Table IV. The calculated ionization potentials of 2-alkoxybutadienes are smaller than those of alkyl vinyl ethers. The bulkier the alkyl group, the smaller the ionization potential in both classes of compounds. Total electron density on carbon 1 is large in a 2-alkoxybutadiene and that on carbon...
Table III. 13C chemical shifts of 2-alkoxybutadienes a)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBD</td>
<td>86.18</td>
<td>159.61</td>
<td>133.55</td>
<td>113.99</td>
<td>54.34</td>
<td></td>
</tr>
<tr>
<td>EOBD</td>
<td>86.61</td>
<td>158.79</td>
<td>133.89</td>
<td>113.79</td>
<td>62.78</td>
<td>14.44</td>
</tr>
<tr>
<td>IPOBD</td>
<td>87.44</td>
<td>157.09</td>
<td>134.57</td>
<td>113.79</td>
<td>68.61</td>
<td>21.67</td>
</tr>
<tr>
<td>tBOBD</td>
<td>95.69</td>
<td>155.83</td>
<td>136.61</td>
<td>114.04</td>
<td>77.00</td>
<td>28.56</td>
</tr>
<tr>
<td>CEOBD</td>
<td>87.05</td>
<td>158.59</td>
<td>133.60</td>
<td>114.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4
\[\text{C} = \text{C} - \text{C} = \text{C} \quad \text{neat, room temp.} \]
\[\text{O} - \text{C} - \text{C} \]
\[\text{5 6} \]

b) In ppm downfield from tetramethylsilane (192.8 ppm upfield from carbon disulfide).

2 is small. The same trend has been found with alkyl vinyl ethers, but the difference between carbon 1 and carbon 2 is more marked with 2-alkoxybutadienes. The total electron densities on carbons 1, 2, 3 and 4 tend to be alternating. Contrary to the total electron density, the electron density in \(\pi \)-orbital on carbon 1 decreases as the alkyl group becomes bulkier.
Table IV. Highest occupied energy level and electron densities of alkyl vinyl ethers and 2-alkoxybutadienes

<table>
<thead>
<tr>
<th></th>
<th>Highest occupied level, eV</th>
<th>Total electron density</th>
<th>π-Orbital electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C<sub>1</sub> b)</td>
<td>C<sub>2</sub></td>
<td>C<sub>3</sub></td>
</tr>
<tr>
<td>MVE<sup>a)</sup></td>
<td>-9.4744</td>
<td>4.1250</td>
<td>3.6490</td>
</tr>
<tr>
<td>EVE</td>
<td>-9.4336</td>
<td>4.1271</td>
<td>3.6462</td>
</tr>
<tr>
<td>IPVE</td>
<td>-9.3092</td>
<td>4.1285</td>
<td>3.6525</td>
</tr>
<tr>
<td>tBVE</td>
<td>-9.3034</td>
<td>4.1284</td>
<td>3.6585</td>
</tr>
<tr>
<td>MOBD</td>
<td>-9.0104</td>
<td>4.2073</td>
<td>3.6259</td>
</tr>
<tr>
<td>EOBBD</td>
<td>-8.9866</td>
<td>4.2082</td>
<td>3.6239</td>
</tr>
<tr>
<td>IPOBBD</td>
<td>-8.7327</td>
<td>4.2323</td>
<td>3.6198</td>
</tr>
<tr>
<td>tBOBD</td>
<td>-8.4450</td>
<td>4.2717</td>
<td>3.6061</td>
</tr>
</tbody>
</table>

b) Carbons are numbered as follows: C = C₁, C = C₂ - C₃ = C₄.
Table V. Cationic homopolymerization of EOBD

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, °C</th>
<th>Conversion, %</th>
<th>Monomer consumption</th>
<th>MeOH-insol. polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC_6Cl_6·TCA</td>
<td>Toluene</td>
<td>-78</td>
<td>7.2</td>
<td>~3</td>
<td></td>
</tr>
<tr>
<td>AcClO_4</td>
<td>"</td>
<td>"</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>"</td>
<td>"</td>
<td>4.8</td>
<td>~3</td>
<td></td>
</tr>
<tr>
<td>TiCl_4·TCA</td>
<td>"</td>
<td>"</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC_6Cl_6·TCA</td>
<td>"</td>
<td>0</td>
<td>46.8</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>AcClO_4</td>
<td>"</td>
<td>"</td>
<td>55.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC_6Cl_6·TCA</td>
<td>n-Hexane</td>
<td>"</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>CH_2Cl_2</td>
<td>"</td>
<td>82.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>Nitroethane</td>
<td>"</td>
<td>~100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>CCl_4</td>
<td>"</td>
<td>54.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) [M]_o 1.0 mol/l; [C]_o 5.0 mmol/l (-78°C), 2.5 mmol/l (0°C); polymn time 2 hrs.
Figure 2. Copolymerization of ethyl vinyl ether (M₁) with 2-alkoxybutadienes (M₂) (-78°C, [M]₀ 1.0 mol/1, BF₃OEt₂, toluene). M₂: 1, MOBD; 2, EOBD; 3, IPOBD; 4, tBOBD; 5, CEOBD.

Table VI. Monomer reactivity ratios for the copolymerization of ethyl vinyl ether (M₁) with 2-alkoxybutadienes (M₂) a)

<table>
<thead>
<tr>
<th>M₂</th>
<th>r₁</th>
<th>r₂</th>
<th>r₁ x r₂</th>
<th>1/r₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBD</td>
<td>0.79 ± 0.06</td>
<td>1.28 ± 0.10</td>
<td>1.0</td>
<td>1.27</td>
</tr>
<tr>
<td>EOBD</td>
<td>0.49 ± 0.07</td>
<td>1.92 ± 0.17</td>
<td>0.94</td>
<td>2.04</td>
</tr>
<tr>
<td>IPOBD</td>
<td>0.28 ± 0.04</td>
<td>3.38 ± 0.40</td>
<td>0.93</td>
<td>3.57</td>
</tr>
<tr>
<td>tBOBD</td>
<td>1.24 ± 0.11</td>
<td>4.70 ± 0.38</td>
<td>5.82</td>
<td>0.81</td>
</tr>
<tr>
<td>CEOBD</td>
<td>0.65 ± 0.11</td>
<td>1.96 ± 0.26</td>
<td>1.23</td>
<td>1.54</td>
</tr>
</tbody>
</table>

a) [M]₀ 1.0 mol/1, BF₃OEt₂, toluene, -78°C.
Reactivity of 2-Alkoxybutadienes in Cationic Polymerization

The cationic homopolymerization of EOBD was carried out using various catalysts and solvents (see Table V). The consumption of monomer was fairly rapid under the conditions described in Table V. However, only a small amount of methanol-insoluble polymer was produced. High-boiling components which are acceptable for dimers were not detected in the polymerization system through gas chromatography, so that most of the product is considered to be a methanol-soluble oligomer. The homopolymerization rate was similar to or a little smaller than ethyl vinyl ether.

Copolymerizations of 2-alkoxybutadienes with ethyl vinyl ether were attempted in order to know the relative reactivities of 2-alkoxybutadienes. The copolymerizations were performed in toluene by boron trifluoride diethyl etherate (BF₃OEt₂) at -78°C, total monomer concentration being 1.0 mol/l. The copolymer composition curves and monomer reactivity ratios are given in Figure 2 and Table VI, respectively. The products of r₁ and r₂ in the copolymerizations are approximately unity except for tBOBD. Reciprocal of r₁ increases in the order of MOBD < CEOBD < EOBD < IPOBD. This change with the kind of alkyl group is in the same direction as that of alkyl vinyl ethers but the effect of alkyl group is smaller in 2-alkoxybutadienes.²,¹⁶ With tBOBD, 1/r₁ is peculiarly smaller and r₁ x r₂ is much larger than unity. The result that only tBOBD gives a sigmoidal composition curve may be in close connection with the peculiar properties of tBOBD as shown in Tables I, II and III. For, a sigmoidal copolymer composition curve has often been found in the ionic copolymerization of monomers.
which have a different kind of conjugation.10,17 As 2-
alkoxybutadienes except for tBOBD assume a coplanar structure
between diene and O-alkyl bonds, they behave similarly to
alkyl vinyl ethers. However, the vinyl-ether-like character
of tBOBD is weakened, and in consequence tBOBD might not co-
polymerize randomly with ethyl vinyl ether.

The investigations on the structure of oligomer of
2-alkoxybutadienes would help ascertain the polymerization
mechanism, though it was not done in this experiment. Further,
the structure of bromination product of 2-alkoxybutadienes is
also interesting, since the polar bromination of an olefin
proceeds under a comparatively similar mechanism to that of
cationic polymerization.18

Following conclusions are drawn from the present investi-
gation: 2-alkoxybutadienes have the molecular structure and
properties similar to alkyl vinyl ethers, and highly reactive
in cationic polymerization. tBOBD, however, behaves differently
from other 2-alkoxybutadienes in cationic polymerization since
the coplanarity between diene and O-alkyl bond cannot be
maintained owing to steric hindrance.

References

1. e.g., chapter 8 in this thesis, T. Higashimura, T. Masuda,

2. e.g., H. Yuki, K. Hatada, and M. Takeshita, J. Polym.

3. N.G. Gaylord, Pure Appl. Chem., 23, 305 (1970), and the
 references therein.
15. Chapter 9 in this thesis.
18. See chapter 7.
Chapter 7

Comparison of Polar Bromination with Cationic Polymerization

Introduction

Electrophilic addition reaction to an olefin involves acid-catalyzed hydration, the addition reactions of hydrogen halides and halogens, cationic polymerization, and so forth. Electrophilic complexation with olefins comprises complex formations of iodine or silver ion. It has been noticed that substituent effect is very much dependent on the nature of these reactions. For instance, α-methyl-substituted vinyl ethers or styrenes are 10^2-10^4 times as reactive in protonation and 0.4-1.0 times as reactive in argentation as the corresponding unsubstituted ones. Further, β-methyl-substituted vinyl ethers are more reactive in cationic polymerization but less reactive in hydrolysis or argentation than the corresponding unsubstituted ones. These results seem to offer a clue to elucidate the transition state in reactions of an olefin with an electrophile.

The hydrolysis of an alkyl vinyl ether and the hydration of styrene have been studied with keen interest of many physical organic chemists, and it has been established that the rate-determining step is the irreversible proton attack to β-carbon of the double bond. Yates has investigated the substituent effect in the polar bromination of styrenes in detail. It was concluded on the basis of the large ρ value observed that the substantial charge is localized on the α-carbon at the
transition state. With regard to an alkyl vinyl ether, there have been few studies on polar bromination. In general, it can be said that the feature of substituent effect in polar bromination in an aprotic solvent is not clear enough yet.

In this chapter, substituent effect in bromination is investigated making use of alkyl vinyl ethers and styrenes as reactant. The results are compared with corresponding data in cationic polymerization.

Experimental

Materials
tert-Butyl and isopropyl vinyl ethers (tBVE, IPVE) were synthesized by vinyl trans-etherification between ethyl vinyl ether and the pertinent alcohols. Methyl vinyl ether (MVE; Mitsubishi Kasei Co.) was used after drying by potassium hydroxide. The syntheses and purifications of other vinyl ethers (ethyl vinyl ether (EVE), ethyl propenyl ether (EPE), ethyl isopropenyl ether (EIPE), and 2-chloroethyl vinyl ether (CEVE)) and styrenes (styrene, α-methylstyrene (αMS), β-methylstyrene (βMS), p-methoxystyrene (pMOS), p-methylstyrene (pMS) and p-chlorostyrene (pCS)) were described in the previous chapters.

Solvents (carbon tetrachloride, methylene chloride, and acetic acid) were purified in the usual manners.

Procedure

Relative reaction rate of two vinyl compounds was determined by a competitive reaction at 0°C in carbon tetrachloride and
methylene chloride or at 25°C in acetic acid. A bromine solution was added dropwise to the reactant solution under vigorous stirring. On addition of the bromine solution, the color of bromine faded almost instantaneously in methylene chloride and acetic acid solution, but remained for some time in carbon tetrachloride solution. At given intervals of bromine addition, the aliquot sample was taken out of the solution with a micro-syringe and the concentrations of reactants were determined by gas chromatography. The relative reactivity was determined by the next equation assuming the first-order dependence on the concentration of vinyl compounds:

\[\frac{k_2}{k_1} = \ln \left(\frac{[R_2]_0}{[R_2]} \right) / \ln \left(\frac{[R_1]}{[R_1]_0} \right) \]

where \([R_1], [R_2] , [R_1]_0, [R_2]_0\) mean the concentrations of two kinds of reactants after and before the reaction, respectively.

Results

Dependence of Relative Reactivity on Bromine Concentration

A stoichiometric amount of bromine was consumed by the olefinic double bond. The absence of the isomerization of cis- and trans-β-methyl compounds during the reaction was confirmed by gas chromatography. The present reaction is considered to be electrophilic since hydroquinone and oxygen did not affect the relative reactivity.

The influence of bromine concentration in the styrene-aMS system is shown in Table I. Here, "bromine concentration" refers to the concentration of the added bromine solution.
Table I. Effect of reaction conditions on k_2/k_1 value in the styrene (R_1)-αMS(R_2) system at 0°C

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$[R]_0$, mol/1</th>
<th>$[\text{Br}_2]$, mol/1$^{a)}$</th>
<th>k_2/k_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>0.50</td>
<td>0.50</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>"</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.30</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>0.125</td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>0.063</td>
<td>4.70</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.025</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>"</td>
<td>4.55$^{b)}$</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>0.50</td>
<td>0.50</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>0.30</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>0.125</td>
<td>8.83</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>0.063</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.025</td>
<td>12.6</td>
</tr>
</tbody>
</table>

a) $[\text{Br}_2]$: the concn of bromine solution added.

b) Hydroquinonone is added.

The bromine concentration in the reaction mixture must be more dilute, since the slow addition and the vigorous stirring enables a homogeneous mixing. The relative reactivity of αMS increases with the decrease in bromine concentration both in carbon tetrachloride and methylene chloride. It was, however, unaffected when the bromine concentration is lower than 0.060 mol/1. Thus, further experiments were performed at 0.025 mol/1.
of bromine concentration.

The Reactivity of Various Styrene Derivatives and Alkyl Vinyl Ethers

The relative reactivities of several styrene derivatives in reference to styrene, k_2/k_1 are shown in Table II. As is seen from Table II, oMS is 4-13 times as reactive as styrene. cis-8MS is less reactive, but trans-8MS is more reactive than styrene. The relative reactivity of oMS does not change in methylene chloride and acetic acid but increases in carbon tetrachloride. The relative reactivities of three ring-substituted styrenes were also determined. They were correlated better with Hammett's σ value than with Brown's σ^+ value. The ρ values were -4.06, -1.99 and -3.22 in carbon tetrachloride, methylene chloride and acetic acid, respectively.

The k_2/k_1 values of vinyl ethers are listed in Table III. Here, EVE is used as the reference compound. α-Methyl substitution enhances the reactivity by ca. three times. cis- and trans-8-methyl substitution reduces the reactivity slightly. As to the change in the alkoxy group, for instance, tBVE is 4-5 times more reactive than EVE. The relative reactivities of alkyl vinyl ethers were correlated well with Taft's σ^* value. ρ values were -2.9 and -3.6 in carbon tetrachloride and methylene chloride, respectively. Solvent effect was small although only two solvents were tested.

A large solvent effect has been observed in the cationic copolymerization of CEVE with styrene derivatives, as described in a previous chapter. In order to know whether a similar effect is found in polar bromination, solvent effect on k_2/k_1
values of pMOS, pMS and αMS (R2) in reference to CEVE (R1) was examined (see Table IV). Clearly, the reactivities of the styrene derivatives relative to CEVE become greater in polar methylene chloride than in nonpolar carbon tetrachloride. The change with solvent is the greatest for pMS as a styrene derivative which has the poorest reactivity in the three styrenes.
Table III. \(\frac{k_2}{k_1} \) value of vinyl ethers
\((R_1: EVE)^a \)

<table>
<thead>
<tr>
<th>(R_2)</th>
<th>(\text{CCl}_4)</th>
<th>(\text{CH}_2\text{Cl}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIPE</td>
<td>2.96</td>
<td>3.19</td>
</tr>
<tr>
<td>cis-EPE</td>
<td>0.73</td>
<td>0.94</td>
</tr>
<tr>
<td>trans-EPE</td>
<td>—</td>
<td>0.69</td>
</tr>
<tr>
<td>tBVE</td>
<td>3.89</td>
<td>4.97</td>
</tr>
<tr>
<td>IPVE</td>
<td>2.09</td>
<td>2.51</td>
</tr>
<tr>
<td>MVE</td>
<td>0.53</td>
<td>0.42</td>
</tr>
<tr>
<td>CEVE</td>
<td>0.36</td>
<td>0.54</td>
</tr>
</tbody>
</table>

\(\rho \) = -2.9 \quad \text{and} \quad \rho = -3.6

\(r = 0.997 \quad \text{and} \quad r = 0.994 \)

a) \([Br_2], 0.025 \text{ mol/l}; [R]_0, 0.20 \text{ mol/l}; 0^\circ\text{C.}\)

Table IV. \(\frac{k_2}{k_1} \) value of CEVE \((R_1) \) and substituted styrenes \((R_2)^a \)

<table>
<thead>
<tr>
<th>(R_2)</th>
<th>(\text{CCl}_4)</th>
<th>(\text{CH}_2\text{Cl}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMOS</td>
<td>0.68</td>
<td>0.99</td>
</tr>
<tr>
<td>pMS</td>
<td>(\infty)</td>
<td>0.20</td>
</tr>
<tr>
<td>(\alpha \text{MS})</td>
<td>0.08</td>
<td>0.40</td>
</tr>
</tbody>
</table>

a) \([Br_2], 0.025 \text{ mol/l}; [R]_0, 0.20 \text{ mol/l}; 0^\circ\text{C.}\)
Discussion

The bromination was performed with 0.20 mol/1 of total olefin and 0.025 mol/1 of bromine. This condition was chosen because the change of the reagent concentration in this range did not affect k_2/k_1, and cationic polymerization is often carried out in this concentration range. Carbon tetrachloride and methylene chloride are aprotic and often used in cationic polymerization. The real bromine concentration in the reaction seems to be considerably smaller than 0.025 mol/1. The substituent effect observed in this investigation is, however, not so large as that reported by Yates. Therefore, it is probable that the reaction is second-order with respect to the bromine concentration under the present condition.

α-Methyl substitution enhances the reactivity of styrene by ca. 5-12 times and that of EVE by ca. three times. The corresponding values in cationic polymerization are 4.0 and 7.7 with styrene and EVE, respectively. The β-methyl substitution induces rather small changes of reactivity in polar bromination as well as in cationic polymerization. From these results, it can be said that the relative reactivities of olefins in polar bromination are in good agreement with those in cationic polymerization but very different from those in protonation.

The relative reactivities of ring-substituted styrenes in polar bromination correspond well to those in cationic polymerization, though the value of pMOS is rather small. ρ for a series of alkyl vinyl ethers is ca. -3 - 3.5, which is less negative than ρ in hydrolysis (-4.5) and cationic polymerization (-4.3).
The solvent effect observed on the relative reactivity of CEVE to styrene derivatives is similar to the solvent effect observed in cationic polymerization, \(^{11}\) that is, a styrene derivative becomes more reactive in a more polar solvent. This is explained in terms of the selective solvation of an ionic species by a vinyl ether in a nonpolar solvent.

It is concluded from the results obtained in this study that the bromination of a vinyl ether and a styrene exhibits a substituent effect smaller than protonation and especially similar to cationic polymerization in electrophilic addition reactions. This is reminiscent that the positive charge may not localize on the \(\alpha\)-carbon at the transition state under the conditions in this experiment in polar bromination.

References

1. See Chapter 5 in this thesis.
10. Chapter 4 in this thesis.

PART III

STRUCTURE AND REACTIVITY OF MONOMERS
IN CATIONIC POLYMERIZATION
Introduction

In radical polymerization, α,β-disubstituted olefins are reluctant to polymerize because of the steric hindrance between the β-substituent in a growing polymer end and that in an incoming monomer, except in the case of cyclic compounds such as vinylene carbonate and maleimide. With a cationic catalyst, however, styrene and vinyl ether derivatives carrying the β-methyl group produced a high polymer. These results suggest that the spatial position of the β-methyl group in the transition state of the propagation step in cationic polymerization is different from that in radical polymerization.¹

In cationic polymerization, the introduction of a β-methyl group has been found to reduce the reactivity of styrene derivatives¹,² but to increase the reactivity of vinyl ethers.³⁻⁵ For the reason of the opposing effects of the β-methyl group on the reactivity of styrene and vinyl ether derivatives, two possibilities should be considered; (1) the effect of β-methyl group on the electron distribution in monomer depends on the kind of monomer; (2) the conformation of transition state in the propagation reaction changes with the kind of monomer.

In this chapter, to elucidate the rate-determining step in the propagation reaction, the electron distribution of vinyl ether derivatives, unsaturated hydrocarbons and related carbocations was calculated by the extended Hückel method,⁶ because the
simple Hückel method leaves some ambiguities in the parametrization for alkyl groups and in the study on the reactivity of geometric isomers. The validity of the calculated value of the \(\pi \)-electron distribution has been confirmed by the chemical shifts in the \(^{13}\text{C} \) nmr spectrum of the \(\beta \)-carbon.\(^{7} \) By using the value of the electron distribution in a monomer, several reactivity indices were calculated by the same treatment as in the simple Hückel method. A possible reaction mechanism is proposed on the basis of comparisons of the reactivity indices with the experimental results.

Calculation of Electron Distribution

Method of Calculation

A molecular orbital is given as a linear combination of valence atomic orbitals on all atoms in a molecule.\(^{6} \) In this study, the following values were used for the Coulomb integrals; \(H_{i}(1s) \), -13.60 eV; \(C(2s) \), -21.43 eV; \(C(2p) \), -11.42 eV; \(O(2s) \), -35.30 eV; \(O(2p) \), -15.45 eV. The resonance integral \(H_{ij} \) was approximated by eq 1:

\[
H_{ij} = 0.5 K (H_{ii} + H_{jj}) S_{ij}
\]

(1)

with \(K = 1.75 \), where \(H_{ii} \) and \(H_{jj} \) are the Coulomb integrals, and \(S_{ij} \) is the overlap integral which was calculated by using Slater atomic orbitals.

The geometric structure of vinyl ether derivatives was described by the bond distance and the bond angle as follows: saturated C-H, 1.09 Å; unsaturated C-H, 1.08 Å, C-C, 1.54 Å;
C=C, 1.35 Å, saturated C-O, 1.427 Å; unsaturated C-O, 1.42 Å; the tetrahedral angle 109°28′ for a saturated carbon, the trigonal angle 120° for an unsaturated carbon; and 107° for ether oxygen \(\angle \text{COC} \). The bond distance and the bond angle used for unsaturated hydrocarbons were the same as those for vinyl ether derivatives except for unsaturated C-H; 1.07 Å, C=C, 1.34 Å; C-C in aromatics, 1.39 Å; and unsaturated C-C\(_6\)H\(_5\) (aromatics), 1.47 Å. For calculations on a carbocation, the bond distance between C\(^+\) and an adjacent carbon atom was assumed to be 1.54 Å; other values were the same as those for the corresponding monomer molecule. Although the calculation was based on approximate values of bond distance and bond angle, the relative electron distribution and the relative reactivity indices may deserve discussion.

The electron distribution in vinyl ethers and their derivatives was computed for the conformation in which a hydrogen atom of a methyl group eclipses the olefinic double bond as well as the unsaturated hydrocarbons. Problems arise with the conformation of the methyl vinyl ether. The presence of rotational isomers around the C-O bond was observed by the infrared spectrum of methyl vinyl ether. Owen, et al.,\(^9\) reported that methyl vinyl ether existed predominantly in the s-cis form (I) in gas phase, and the s-trans form (II) was stabilized in polar solvents at room temperature. Also, Mikawa, et al.,\(^10\) confirmed the existence of rotational isomers in cis-\(\beta\)-chlorovinyl methyl ether.

\[
\begin{align*}
\text{I} & \quad \text{II} \\
\end{align*}
\]
Although the s-cis form has been found to predominate in methyl vinyl ether, the s-cis form seems unstable because of steric interaction between an alkoxy group and a β-hydrogen, in particular, when an alkyl group becomes bulkier and branched. Therefore, to simplify the calculation, only the s-trans form was considered in this paper for all vinyl ether derivatives, including methyl vinyl ether.

For the computation of the electron distribution in unsaturated hydrocarbons, the conformation in which the hydrogen atom of a methyl group eclipses the olefinic double bond was assumed according to Hoffmann's result.

Results of calculations

Table I shows the atomic population \(M_x \) on the olefinic carbons and the ether oxygen. \(M_x \) is defined by eq 2 and corresponds to the total electron density,

\[
M_x = \sum_r^x N_r
\]

where \(N_r \) is the atomic orbital population given by eq 3, and \(C_{r}^{j} \) and \(C_{s}^{j} \) are the coefficients of the \(r \)-th and \(s \)-th atomic orbitals in the \(j \)-th molecular orbitals.

\[
N = 2 \sum_{j}^{\text{occ}} \sum_{r} \sum_{s} C_{r}^{j} C_{s}^{j} S_{rs}
\]

When \(M_x \) is larger than 1, 4, and 6 for hydrogen, carbon, and oxygen atoms, respectively, the atom is more electron-rich than the neutral atom.
Table I. Atomic population and atomic orbital population of vinyl ethers and β-substituted vinyl ethers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Atomic population</th>
<th>Atomic orbital population of π-orbital</th>
<th>Atomic orbital population of highest occupied level in π-orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_β</td>
<td>C_α</td>
<td>O</td>
</tr>
<tr>
<td>$\beta \alpha$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHOCH}_3$</td>
<td>4.3838</td>
<td>3.5410</td>
<td>6.9690</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>4.1546</td>
<td>3.6688</td>
<td>6.9718</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>4.1548</td>
<td>3.6674</td>
<td>6.9745</td>
</tr>
<tr>
<td>cis-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>4.1739</td>
<td>3.6672</td>
<td>6.9718</td>
</tr>
<tr>
<td>trans-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>4.1738</td>
<td>3.6657</td>
<td>6.9747</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{OCH}=\text{CHOCH}_3$</td>
<td>3.6683</td>
<td>3.6683</td>
<td>6.9721</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{OCH}=\text{CHOCH}_3$</td>
<td>3.6714</td>
<td>3.6714</td>
<td>6.9665</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHOCH}_2\text{H}_5$</td>
<td>4.3841</td>
<td>3.5394</td>
<td>6.9776</td>
</tr>
</tbody>
</table>
Table II. Atomic population and atomic orbital population of unsaturated hydrocarbons

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Atomic population</th>
<th>Atomic orbital population of π-orbital</th>
<th>Atomic orbital population of highest occupied level in π-orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_β</td>
<td>C_α</td>
<td>C_β</td>
</tr>
<tr>
<td>β CH$_2$=CHCH$_3$</td>
<td>4.3807</td>
<td>4.0210</td>
<td>1.1277</td>
</tr>
<tr>
<td>cis-CH$_3$CH=CHCH$_3$</td>
<td>4.1533</td>
<td>4.1533</td>
<td>1.0433</td>
</tr>
<tr>
<td>trans-CH$_3$CH=CHCH$_3$</td>
<td>4.1489</td>
<td>4.1489</td>
<td>1.0390</td>
</tr>
<tr>
<td>CH$_2$=C(CH$_3$)$_2$</td>
<td>4.4880</td>
<td>3.8263</td>
<td>1.2264</td>
</tr>
<tr>
<td>CH$_2$=CHC$_6$H$_5$</td>
<td>4.3255</td>
<td>4.0751</td>
<td>1.0545</td>
</tr>
<tr>
<td>trans-CH$_3$CH=CHC$_6$H$_5$</td>
<td>4.0804</td>
<td>4.1958</td>
<td>0.9509</td>
</tr>
</tbody>
</table>
For the styrene and propylene derivatives, M_x values on the olefinic carbons are shown in Table II. In the unsaturated hydrocarbons as well as the vinyl ether derivatives, M_x on the β-carbon decreased and M_x on the α-carbon increased with introducing an electron-donating group on the β-carbon.

It is very difficult to confirm the reliability of values shown in Tables I and II, because we have no direct method to measure the electron density. However, it is reported that the values of the atomic orbital population in the π-orbital are closely correlated with the chemical shift of the ^{13}C nmr spectrum of the olefinic β-carbon. Since the nmr spectrum undergoes an upfield shift with increasing π-electron density,11,12 the calculations for the vinyl ether derivatives prove to be reasonable for the prediction of the electron distribution. Also, in the aliphatic unsaturated hydrocarbons, a downfield shift of the ^{13}C nmr spectrum of the olefinic β-carbon and an upfield shift of the olefinic α-carbon resulted on introduction of an alkyl group on the olefinic β-carbon.13 This fact also supported the validity of the calculated electron distribution for propylene derivatives.

Reactivity Indices

By using the calculated value of the electron distribution, reactivity indices for an electrophilic reaction were calculated by a procedure similar to the simple Hückel method.

Electrostatic Method

The carbocation will attack the atom with the largest electron density in the cationic polymerization where the
electrophilic addition reaction to a monomer takes place. Therefore, the reactivity of monomer may be estimated from the values of the atomic population \((M_x) \) shown in Tables I and II. However, since the polymerization is caused by the interaction of an electrophilic reagent with the \(\pi \)-electron of a monomer, the monomer reactivity estimated from the atomic orbital population of the \(\pi \)-orbital should be more suitable for predicting the monomer reactivity than that from the atomic population.

Tables I and II also show the values of the atomic orbital population of the \(\pi \)-orbital. As shown in Tables I and II the values of the atomic orbital population show the same tendency as the values of the atomic population.

In general, the relative reactivities of unsaturated hydrocarbons in the cationic polymerization or oligomerization tend to decrease in the following order:1,2,14

\[
\begin{align*}
\text{CH}_2=\text{C}((\text{CH}_3)_2) & \gg \text{CH}_2=\text{CHCH}_3 > \text{cis-CH}_3\text{CH}=\text{CHCH}_3 > \text{trans-CH}_3\text{CH}=\text{CHCH}_3 \\
\text{CH}_2=\text{CHC}_6\text{H}_5 & \gg \text{CH}_3\text{CH}=\text{CHC}_6\text{H}_5
\end{align*}
\] (4)

Either the values of the atomic population or the values of atomic orbital population in \(\pi \)-orbital coincided with the order of the relative reactivities of monomers shown in (4) and (5). Although the values of the atomic population and the atomic orbital population on the \(\beta \)-carbon were in agreement with the order of reactivities of styrene and \(\beta \)-methylstyrene, the atomic population on the \(\alpha \)-carbon of \(\beta \)-methylstyrene was larger than that of the \(\beta \)-carbon as shown in Table II, which predicts the \(\alpha \)-carbon atom undergoes electrophilic attack. Experimentally, attack by
an electrophilic reagent on the β-carbon was observed. This discrepancy could be explained by the frontier electron density as described below.

On the other hand, in the vinyl ether derivatives, there was no correlation between the atomic population or the atomic orbital population and the relative reactivity of monomers.

Frontier Electron Method

The reactivity of an electrophilic reagent may be discussed more reasonably on the basis of the partial atomic orbital population of the highest occupied level in the molecular orbitals than on the basis of the atomic population or the atomic orbital population. As shown in the last column of Tables I and II, the value of the partial atomic orbital population in the highest occupied level is in agreement with the experimental results for the unsaturated hydrocarbons and shows that the carbocation will attack the β-carbon even in β-methylstyrene. Nevertheless, the relative reactivity of the vinyl ether derivatives is not satisfactorily explained by the value of the partial atomic orbital population of the highest occupied level.

Total Electron Energy

The total electron energy of a monomer or a carbocation is given by eq 6, where ξ_i is the energy of the i-th molecular orbital. Table III shows the total electron energy of monomers and their related carbocation

$$E = \sum_{i}^{\text{occ}} 2 \xi_i$$

(6)
Table III. Total electron energy

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Total electron energy, eV</th>
<th>Carbocation</th>
<th>$E_{C^+} - E_M$ a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_2=\text{CHOCH}_3$</td>
<td>-450.380</td>
<td>-559.106</td>
<td>-108.726</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>-554.734</td>
<td>-662.965</td>
<td>-108.231</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>-554.745</td>
<td>-662.965</td>
<td>-108.220</td>
</tr>
<tr>
<td>cis-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>-659.031</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>trans-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>-659.041</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{OCH}=\text{CHOCH}_3$</td>
<td>-689.726</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{OCH}=\text{CHOCH}_3$</td>
<td>-689.669</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHOC}_2\text{H}_2$</td>
<td>-554.926</td>
<td>-663.770</td>
<td>-108.845</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHCH}_3$</td>
<td>-315.362</td>
<td>-424.222</td>
<td>-108.860</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{CH}=\text{CHCH}_3$</td>
<td>-419.661</td>
<td>-528.244</td>
<td>-108.582</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{CH}=\text{CHCH}_3$</td>
<td>-419.805</td>
<td>-528.244</td>
<td>-108.439</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{C(\text{CH}_3)_2}$</td>
<td>-419.865</td>
<td>-528.979</td>
<td>-109.113</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHC}_6\text{H}_5$</td>
<td>-703.028</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{CH}=\text{CHC}_6\text{H}_5$</td>
<td>-807.479</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a) Total electron energy of CH_3 group; planar type -110.001 eV; tetrahedral type, -108.984 eV.
assuming a structure with a methyl group on the β-carbon for simplicity. For example, structure III was proposed for a carbocation produced from methyl trans-propenyl ether. As the carbocation (IV) formed from cis-isomer should be very unstable, the structure of the carbocation (III) was assumed also for the methyl cis-propenyl ether carbocation.

![III and IV structures](image)

The difference between the total electron energy of a carbocation and that of monomer \((E_C^+ - E_M)\) corresponds to the heat of a reaction, because the sum of \(E_M\) and the electron energy of the methyl carbocation corresponds to the total electron energy of the initial system, and \(E_C^+\) to that of the reaction product, respectively. If the same reaction mechanism applies to each monomer, the value of \((E_C^+ - E_M)\) may serve as an index of the activation energy. On introducing a methyl group onto the β-carbon of an olefinic double bond, the difference \(E_C^+ - E_M\) is reduced by 0.4 eV to 0.5 eV, as shown in the last column of Table III. The results of calculation were in agreement with the experimental results for unsaturated hydrocarbons but not for the vinyl ether derivatives.

Superdelocalizability

The stabilization energy due to the hyperconjugation of
Table IV. Superdelocalizability (S_r^E) and delocalization energy for complex formation (ΔE) of vinyl ethers and β-substituted vinyl ethers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>$S_r^E \times 10^2$, eV$^{-1}$</th>
<th>$E \times 10^2$, γ/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>3.2931 3.2575 6.5512</td>
<td>12.7360 7.2791 9.5797 16.4935</td>
</tr>
<tr>
<td>trans-$\text{CH}_3\text{CH}=\text{CHOCH}_3$</td>
<td>3.2934 3.2533 6.5801</td>
<td>12.7504 7.3139 9.5279 16.4655</td>
</tr>
<tr>
<td>cis-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>3.2953 3.2599 6.5588</td>
<td>12.8001 7.2911 9.5833 16.4869</td>
</tr>
<tr>
<td>trans-$\text{C}_2\text{H}_5\text{CH}=\text{CHOCH}_3$</td>
<td>3.2952 3.2545 6.5797</td>
<td>12.7411 7.1774 9.5298 16.4595</td>
</tr>
<tr>
<td>cis-$\text{CH}_3\text{OCH}=\text{CHOCH}_3$</td>
<td>3.2310 3.2310 6.5272</td>
<td>12.5289 9.4186 9.4186 14.2883</td>
</tr>
<tr>
<td>$\text{CH}_2=\text{CHOCH}_2\text{H}_5$</td>
<td>3.6106 2.6484 6.5122</td>
<td>12.2010 7.5711 9.2670 16.3681</td>
</tr>
</tbody>
</table>
Table V. Superdelocalizability \(S_r^E \) and delocalization energy for complex formation \(\Delta E \) of unsaturated hydrocarbons

<table>
<thead>
<tr>
<th>Monomer</th>
<th>(S_r^E \times 10^2), eV(^{-1})</th>
<th>(C_\beta)</th>
<th>(C_\alpha)</th>
<th>(\Delta E \times 10^2), (\gamma/eV)</th>
<th>(C_\beta \times C_\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_2=\text{CHCH}_3)</td>
<td>3.5913</td>
<td>2.6549</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-(\text{CH}_3\text{CH=CHCH}_3)</td>
<td>3.2806</td>
<td>3.2806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-(\text{CH}_3\text{CH=CHCH}_3)</td>
<td>3.2601</td>
<td>3.2601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_2=\text{C(CH}_3)_2)</td>
<td>4.0873</td>
<td>2.3964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CH}_2=\text{CHC}_6\text{H}_5)</td>
<td>3.3514</td>
<td>2.6986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-(\text{CH}_3\text{CH=CHC}_6\text{H}_5)</td>
<td>2.9633</td>
<td>3.2556</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\pi \)-electrons in the transition state is approximately proportional to the superdelocalizability. Here, the superdelocalizability for the electrophilic reaction in the extended Hückel method, \(S_{rE} \), is tentatively given in eq 7, where \(C_{rj} \) is the coefficient of the \(r \)-th \(\pi \)-atomic orbital in the \(j \)-th \(\pi \)-molecular orbital.

\[
S_{rE} = 2 \sum_{j}^{\text{occ}} (C_{rj})^2 / \xi_j
\]

(7)

The calculated values of \(S_{rE} \) are summarized in Tables IV and V for vinyl ether derivatives and unsaturated hydrocarbons, respectively. According to the definition of eq 7, the position with a large \(S_{rE} \) in a monomer is attacked by a carbocation, and a molecule consisting of atoms having a larger \(S_{rE} \) value is more reactive than one having atoms with a small \(S_{rE} \) value. As shown in Tables IV and V, \(S_{rE} \) can explain the reactivity of the unsaturated hydrocarbons, but not the vinyl ether derivatives. This situation has been met with other reactivity indices.

Stabilization Energy due to Delocalization

\(S_{rE} \) represents the delocalization energy acquired in the interaction of a carbocation with one atom in a monomer as shown in structure V. The alternatives, however, can be considered as a model for the interaction between a carbocation and a monomer, for example, the structure VI, in which carbocation forms a complex with two olefinic carbon atoms, or the structure VII, in which a carbocation interacts with the \(\beta \)-carbon and the ether oxygen.
The π-electronic stabilization energy (ΔE) accompanying the delocalization (a complex formation) from the occupied orbital of the r-th, s-th atoms and so onto the vacant orbital of the carbocation is approximately given by eq 8,18 where γ is the resonance integral between the electron acceptor and donor and is assumed for simplicity to be constant for any type of interactions. More exactly, the denominator of eq 8 may be written as the difference between the energy level of the occupied orbital of the monomer and that of the vacant orbital of the carbocation. ΔE values calculated with eq 8 are summarized in Tables IV and

$$\Delta E = \sum_{j}^{occ} \left[\frac{2(C_r^j + C_s^j + \cdots)^2}{\varepsilon_j} \right] \gamma$$

where the atoms indicated on the second top row are those assumed to have interaction with carbocation. ΔE values shown in the ($C_\alpha + C_\beta$) column do not explain the reactivity order of unsaturated hydrocarbons, whereas those in the ($C_\alpha + C_\beta + 0$) column describe well the reactivity of vinyl ether derivatives. The latter will be discussed in more detail in the next section.

Discussion

With the unsaturated hydrocarbons, a satisfactory parallel
was found between the relative reactivity in the cationic polymerization and the various reactivity indices on the \(\beta \)-carbon of a monomer. However, \(\Delta E(C_\alpha + C_\beta) \) did not explain the relative reactivity of monomers. These results suggest that the transition state for the rate-determining step in the propagation reaction is depicted by the structure V, in which the carbocation interacts with the \(\beta \)-carbon of the monomer, but not by the structure VI, in which carbocation forms a complex with the \(\alpha \)- and \(\beta \)-carbons.

On the other hand, in the vinyl ether derivative, the introduction of an electron-donating group on the \(\beta \)-carbon did not decrease the reactivity of vinyl ethers except for a monomer with a bulky \(\alpha \)- and/or \(\beta \)-substituent. Table VI shows the relative reactivity of vinyl ether derivatives obtained in the copolymerization catalyzed by BF\(_3\)OEt\(_2\) at low temperatures.\(^{19}\)

Considering the interaction of a carbocation only with the \(\beta \)-carbon in a monomer, the reactivity indices showed that the introduction of a \(\beta \)-substituent decreased the reactivity of the vinyl ether derivatives as well as of the unsaturated hydrocarbons. Therefore, the transition state in the propagation reaction of the vinyl ether derivatives could not be explained by the model V. Also, \(S^E_r \) values with respect to the \(\alpha \)-carbon or the ether oxygen did not explain the relative reactivity of the vinyl ether derivatives as shown in Table VI.

Therefore, we should discuss structures by which the carbocation interacts with two or three atoms in a monomer to explain the relative reactivity of the vinyl ether derivatives. For structure VI, in which the carbocation reacts with the \(\alpha \)- and \(\beta \)-carbons, \(\Delta E(C_\alpha + C_\beta) \) could not explain the increase of the reactivity on introducing the \(\beta \)-methoxyl group and the reactivity
Table VI. Comparison between relative reactivity and superdelocalizability \(S_r^E \) or delocalization energy for complex formation \(\Delta E \) of vinyl ether derivatives in cationic polymerization

<table>
<thead>
<tr>
<th>Experimental result (a)</th>
<th>Methyl and ethyl vinyl ether (MVE and EVE)</th>
<th>MVE, methyl propenyl ether (MPE) and 1,2-dimethoxyethylene (DME)</th>
<th>MVE and methyl butenyl ether (MBE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_r^E)</td>
<td>(C_\beta)</td>
<td>(C_\alpha)</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>(C_\beta + C_\alpha)</td>
<td>(C_\beta + O)</td>
<td>(C_\alpha + O)</td>
</tr>
</tbody>
</table>

MVE < EVE, trans-DME < MVE < trans-MPE < cis-MPE < cis-DME, trans-MBE < MVE < cis-MBE

a) Catalyst, \(BF_3OEt_2 \); polymerization temp, \(-78^\circ C\).17
difference between methyl and ethyl vinyl ethers. In structure VII proposed by Ledwith, et al., $\Delta E(C_\beta + O)$ does not increase on introduction of the β-methyl group. Moreover, as the sign of the coefficient of the highest occupied atomic orbital of olefinic carbons is different from that of ether oxygen, $\Delta E(C_\beta + O)$ is small and structure VII is not suitable as the model of the transition state. For the same reason, $\Delta E(C_\alpha + O)$ gave a small value. For this structure, the increase of the reactivity due to the introduction of a β-methoxyl group and the higher reactivity of ethyl vinyl ether compared to methyl vinyl ether could not be explained.

Structure VIII was proposed for the transition state to explain the relative reactivity of the vinyl ether derivatives.

\[
\begin{align*}
\text{VIII} & \quad \text{IX}
\end{align*}
\]

As cis-1,2-dimethoxyethylene has two ether oxygen atoms on the same side of the olefinic double bond, structure IX was assumed for the transition state. Further studies are necessary for a direct comparison of $\Delta E(C_\alpha + C_\beta + O)$ with $\Delta E(C_\alpha + C_\beta + 2O)$, because the resonance integral might not be the same in VIII and IX. However, it is very likely that IX has a larger delocalization energy than VIII.

The value of $\Delta E(C_\alpha + C_\beta + O)$ showed good agreement with the relative reactivity of the vinyl ether derivatives in the cationic copolymerization as shown in Table VI. The lower
reactivities of methyl trans-buteryl ether and trans-1,2-dimethoxyethylene compared to the calculated values may be due to the steric hindrance of the β-substituent. Therefore, VIII or IX is expected to represent the structure of the transition state in the propagation reaction in the cationic polymerization of the vinyl ether derivatives. This conclusion is also supported by the fact that steric hindrance of the β-substituent in the cationic polymerization of the vinyl ether derivatives is of minor importance.

Note

In this chapter, the transition state of propagation reaction in the cationic polymerization of a vinyl ether was discussed. The model proposed in this study was selected so as to concur with the experimental results regarding the relative reactivity of various vinyl ethers. Okuyama, et al.20 also deal with the same problem and they propose a model in which the chain end attacks both the α- and β-carbons of the olefinic bond simultaneously (Model VI in this study). The treatment in this chapter pursues faithfully the consistence with experimental results and Okuyama seems to attach importance to the concept of molecular orbital. Here, the author would like to lay stress specially on a point that the transition state in propagation reaction of a vinyl ether cannot be depicted as attack of the propagating end only on the β-carbon of double bond.

References

Introduction

Cationic polymerization of vinyl compounds belongs to the electrophilic addition reaction to carbon-carbon double bond like acid-catalyzed hydration and polar bromination of olefins. The nature of transition state of above-mentioned reactions is, however, very different to each other. This is manifested by studying the effects on these reactions, of substituent, catalyst, solvent, temperature, and so on. Vinyl ethers and styrene derivatives have been investigated in the field of cationic polymerization most frequently. So it will be of great interest to correlate the reactivity and the properties of vinyl ethers and styrene derivatives to have an insight into the nature of cationic polymerization. The properties of these compounds could be discussed in terms of nmr chemical shift, ionization potential, absorption in uv and visible regions, and basicity, which may have bearing on the reactivity in cationic polymerization.

In this chapter, the measurement of 13C nmr spectra and the calculation of the electron density of the extended Hückel method are carried out for vinyl ethers, styrenes, and their α- and β-methyl substituted derivatives. From these results, the factors to determine the reactivity in cationic polymerization are discussed and a model for the transition state of cationic
polymerization is proposed.

Experimental

Materials

Ring-substituted phenyl vinyl ethers were prepared from ethylene dibromide and pertinent phenols by McElvain's method. Benzyl vinyl ether was synthesized by vinyl trans-etherification between isobutyl vinyl ether and benzyl alcohol. The synthetic methods of p-methoxystyrene, cis-β-methylstyrene, cis-anethole, ethyl isopropenyl ether, benzyl propenyl ether and phenyl propenyl ether are the same as in the previous chapters. As to ethyl vinyl ether, styrene, trans-β-methylstyrene and trans-anethole, commercial products were used after purification.

Measurement of ^{13}C Nmr Spectra

^{13}C nmr spectrum was taken at 15.09 MHz on a JNM-C-60HL spectrometer. The spectra were obtained at ambient temperature (23°C) using the neat liquids in an 8 mm diameter sample tube with a single scan by the ^{13}C-{1H} noise decoupling method. Line positions were referenced against external benzene (65.0 ppm from carbon disulfide). Shifts are estimated to be accurate to within 0.2 ppm.

Calculation of Electron Densities

Electron density distribution of vinyl ethers and styrene derivatives was calculated using the extended Hückel methods. The following values were used for the Coulomb integrals:

$H(1s)$-13.6, $C(2s)$-21.43, $C(2p)$-11.42, $N(2s)$-27.5, $N(2p)$-14.49,
Table I. 13C nmr chemical shift of α- and β-carbons in methyl-substituted vinyl ethers and styrenes

<table>
<thead>
<tr>
<th></th>
<th>Unsubstituted</th>
<th>cis-β-Methyl</th>
<th>trans-β-Methyl</th>
<th>α-Methyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_β</td>
<td>C_α</td>
<td>C_β</td>
<td>C_α</td>
</tr>
<tr>
<td>Ethyl vinyl ether</td>
<td>107.6</td>
<td>41.6</td>
<td>79.0</td>
<td>47.7</td>
</tr>
<tr>
<td>Benzyl vinyl ether</td>
<td>105.5</td>
<td>41.8</td>
<td>91.5</td>
<td>47.7</td>
</tr>
<tr>
<td>Phenyl vinyl ether</td>
<td>97.8</td>
<td>45.3</td>
<td>86.5</td>
<td>52.5</td>
</tr>
<tr>
<td>Styrene</td>
<td>80.5</td>
<td>57.0</td>
<td>65.2</td>
<td>63.1</td>
</tr>
<tr>
<td>p-Methoxystyrene</td>
<td>82.3</td>
<td>57.2</td>
<td>68.6</td>
<td>63.5</td>
</tr>
</tbody>
</table>
Table II. AOP of π-orbital in α- and β-carbons in methyl-substituted vinyl ethers and styrenes

<table>
<thead>
<tr>
<th></th>
<th>Unsubstituted</th>
<th>cis-(\beta)-Methyl</th>
<th>trans-(\beta)-Methyl</th>
<th>(\alpha)-Methyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_β</td>
<td>C_α</td>
<td>C_β</td>
<td>C_α</td>
</tr>
<tr>
<td>Ethyl vinyl ether</td>
<td>1.1402</td>
<td>0.9159</td>
<td>1.0446</td>
<td>1.0436</td>
</tr>
<tr>
<td>Styrene</td>
<td>1.0545</td>
<td>0.9598</td>
<td>0.9556</td>
<td>1.0843</td>
</tr>
</tbody>
</table>
Results and Discussion

Effect of \(\alpha \)- and \(\beta \)-Methyl Substitution in Vinyl Ethers and Styrenes

Several equations have been proposed to correlate \(^{13}\text{C} \) nmr chemical shift with electron density and bond order. From these equations it is generally accepted that the chemical shift is dependent mainly on the \(\pi \)-electron density and the increase in \(\pi \)-electron density brings about an upfield shift. Therefore, the shift is useful as a measure of electron density. \(^{13}\text{C} \) nmr shifts of \(\alpha \)- and \(\beta \)-carbons (\(\delta_{\alpha} \) and \(\delta_{\beta} \)) in vinyl ethers, styrenes and their methyl-substituted derivatives are shown in Table I. The values for ethyl vinyl ether, styrene and \(\beta \)-methoxystyrene are reported in other references; re-determined values are shown in Table I. \(\beta \)-Methyl substitution induces a downfield shift of \(\delta_{\beta} \) and an upfield shift of \(\delta_{\alpha} \). Contrary to this, \(\alpha \)-methyl substitution causes an upfield shift of \(\delta_{\beta} \) and a downfield shift of \(\delta_{\alpha} \). These results indicate that methyl substitution on a vinyl carbon leads to a decrease in the electron density of the substituted carbon and an increase in that of the other vinyl carbon. The magnitude of the change in chemical shift by methyl substitution is smaller in styrenes than that in vinyl ethers. A larger conjugation in styrenes may be responsible for this difference.

Calculations were made on the atomic orbital population (AOP) of \(\pi \)-orbital in \(\alpha \)- and \(\beta \)-carbons of ethyl vinyl ether,
Table III. Reactivity of β-methyl-substituted vinyl ether and styrenes in cationic polymerization

<table>
<thead>
<tr>
<th>Monomer 1</th>
<th>Monomer 2</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, °C</th>
<th>r_1</th>
<th>r_2</th>
<th>$1/r_1$</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl vinyl ether</td>
<td>Ethyl cis-propenyl ether</td>
<td>BF$_3$OEt$_2$</td>
<td>toluene</td>
<td>-78</td>
<td>0.35±0.1</td>
<td>4.0±0.5</td>
<td>2.86</td>
<td>10</td>
</tr>
<tr>
<td>Ethyl vinyl ether</td>
<td>Ethyl trans-propenyl ether</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.94±0.1</td>
<td>0.94±0.1</td>
<td>1.06</td>
<td>"</td>
</tr>
<tr>
<td>Benzyl vinyl ether</td>
<td>Benzyl cis-propenyl ether</td>
<td>"</td>
<td>CH$_2$Cl$_2$</td>
<td>"</td>
<td>0.41±0.04</td>
<td>1.70±0.08</td>
<td>2.44</td>
<td>11</td>
</tr>
<tr>
<td>Benzyl vinyl ether</td>
<td>Benzyl trans-propenyl ether</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0.74±0.07</td>
<td>0.85±0.09</td>
<td>1.35</td>
<td>"</td>
</tr>
<tr>
<td>t-Butyl vinyl ether</td>
<td>t-Butyl cis-propenyl ether</td>
<td>"</td>
<td>toluene</td>
<td>"</td>
<td>2.2±0.4</td>
<td>0.28±0.08</td>
<td>0.46</td>
<td>12</td>
</tr>
<tr>
<td>Phenyl vinyl ether</td>
<td>Phenyl cis-propenyl ether</td>
<td>"</td>
<td>0</td>
<td>"</td>
<td>1.51±0.20</td>
<td>0.14±0.07</td>
<td>0.66</td>
<td>13</td>
</tr>
<tr>
<td>cis-β-Methylstyrene</td>
<td>cis-β-Methylstyrene SnCl$_4$·TCA (CH$_2$Cl)$_2$</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1.95±0.1</td>
<td>0.03±0.05</td>
<td>0.51</td>
<td>14</td>
</tr>
<tr>
<td>"</td>
<td>trans-β-Methylstyrene</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1.4±0.15</td>
<td>0.2±0.1</td>
<td>0.71</td>
<td>"</td>
</tr>
<tr>
<td>p-Methoxystyrene</td>
<td>cis-Anethole</td>
<td>"</td>
<td>toluene</td>
<td>-78</td>
<td>3.60±0.23</td>
<td>0.00±0.02</td>
<td>0.28</td>
<td>6</td>
</tr>
<tr>
<td>"</td>
<td>trans-Anethole</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1.71±0.09</td>
<td>0.01±0.02</td>
<td>0.58</td>
<td>"</td>
</tr>
</tbody>
</table>
Table IV. Reactivity of α-methyl-substituted vinyl ether and styrene in cationic polymerization

<table>
<thead>
<tr>
<th>Monomer 1</th>
<th>Monomer 2</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp, °C</th>
<th>r₁</th>
<th>r₂</th>
<th>1/r₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl vinyl ether</td>
<td>Ethyl isopropenyl ether</td>
<td>BF₃OEt₂</td>
<td>CH₂Cl₂</td>
<td>-78</td>
<td>0.13±0.04</td>
<td>29.3±3.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Styrene</td>
<td>α-Methylstyrene</td>
<td>SnCl₄·TCA</td>
<td>"</td>
<td></td>
<td>0.25±0.08</td>
<td>20.6±3.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>
styrene and their methyl-substituted derivatives. The results
are shown in Table II (a part of them has already been calculated
in a previous chapter). When β-hydrogen is substituted for methyl
group, the AOP of α-carbon increases and that of β-carbon decreases,
and vice versa for α-methyl substitution. The results of calcula-
tion are consistent with the electron density from ^{13}C nmr.

In Table III are summarized the monomer reactivity ratio in
cationic copolymerization of vinyl ethers and styrenes (M_1) with
the corresponding β-methyl-substituted ones (M_2). The reciprocal
of r_1 means the relative reactivity of M_2 to M_1 for a propagating
end consisting of M_1 unit. The values of $1/r_1$ in ethyl and
benzyl cis-propenyl ethers are obviously larger than unity. On
the other hand, the β-methyl introduction to tert-butyl and phenyl
vinyl ethers, styrene and p-methoxystyrene decreases the reac-
tivity. In general, the β-methyl derivative of a bulky vinyl
monomer has $1/r_1$ less than unity. Obviously β-methyl substi-
tution gives rise to some steric hindrance, but still it leads to
a slight increase in reactivity of less bulky vinyl compounds
electronically.

In Table IV are represented the monomer reactivity ratios
in the copolymerizations of ethyl vinyl ether and styrene (M_1)
with their α-methyl-substituted derivatives (M_2). $1/r_1$ of
ethyl vinyl ether is about 8, and that of styrene is about 4.
As is clear from Tables III and IV, α-methyl substitution
increases the reactivity more effectively than β-methyl substi-
tution.

Structure and Reactivity of Vinyl Ethers and Ring-substituted
Styrenes

^{13}C nmr chemical shifts of α- and β-carbons in alkyl vinyl
Table V. Reactivity in cationic polymerization and some properties of alkyl vinyl ethers

<table>
<thead>
<tr>
<th>Alkyl</th>
<th>Relative polymerizability</th>
<th>13C nmr</th>
<th>AOP of π-orbital</th>
<th>IP</th>
<th>α-Alkoxyethyl cation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\delta_{C{\beta}}$</td>
<td>$\delta_{C{\alpha}}$</td>
<td>C_{β}</td>
<td>C_{α}</td>
</tr>
<tr>
<td>$(CH_3)_3C$</td>
<td>12.5</td>
<td>102.5</td>
<td>47.0</td>
<td>1.1556</td>
<td>0.9064</td>
</tr>
<tr>
<td>$(CH_3)_2CH$</td>
<td>5.4</td>
<td>105.6</td>
<td>42.8</td>
<td>1.1461</td>
<td>0.9160</td>
</tr>
<tr>
<td>CH$_3$CH$_2$</td>
<td>1.0</td>
<td>107.6</td>
<td>41.6</td>
<td>1.1402</td>
<td>0.9159</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>0.46</td>
<td>108.3</td>
<td>40.7</td>
<td>1.1400</td>
<td>0.9161</td>
</tr>
<tr>
<td>ClCH$_2$CH$_2$</td>
<td>0.44</td>
<td>105.6</td>
<td>42.0</td>
<td>1.1403</td>
<td>0.9159</td>
</tr>
</tbody>
</table>
ethers are shown in Table V. Hatada, et al., have also reported a similar result. The β-carbons in alkyl vinyl ethers resonate at much higher field than the carbons in ethylene (δ_C = 69.5), and the signal shifted to higher field according to the alkyl group in the order, (CH₃)₃C > (CH₃)₂CH > ClCH₂CH₂ > CH₃CH₂ > CH₃.

AOP of π-orbital in alkyl vinyl ethers are calculated assuming s-trans conformation. The order of AOP in α- and β-carbons proved to be opposite to that expected from ¹³C nmr. This may be due to the influence of excitation energy of the compounds on the chemical shift or the wrong assumption of a single conformer (s-trans form) in the calculation. In consequence, the effect of the alkyl group on the electron density in alkyl vinyl ethers is not firmly established. Apart from this ambiguity, the difference of electron density between α- and β-carbons is very large in alkyl vinyl ethers.

The stability of the carbocation formed by olefin protonation is definitely one of the important factors controlling olefin reactivity. The following values have been calculated as the measures of the stability of carbocation: ionization potential (IP), AOP of π-orbital in a carbocation, and the difference in total electron energies (TEE) of a monomer and the carbocation derived from it. Carbocations were depicted as protonated form of each monomer. In Table V are cited the experimental values of IP of vinyl ethers reported by Ledwith, et al.¹⁸ Both experimental and calculated IP values indicate that tert-butyl vinyl ether is protonated most easily. No rule was derived from AOP of α-carbon. TEE of carbocation is more negative than that of the original monomer. The difference between them is the greatest in tert-butyl vinyl ether, which means that the rela-
tive stability of carbocation against the starting olefin is
the largest in tert-butyl vinyl ether.

The relative reactivity of alkyl vinyl ethers \((1/r_1; M_1:\text{ethyl vinyl ether})\) in cationic polymerization is shown in Table V.\(^{16}\) A similar sequence is obtained by Yuki, et al.\(^{19}\) Taking ethyl vinyl ether as standard, the relative reactivity of tert-butyl vinyl ether is 12.5 and the greatest, and that of 2-chloroethyl vinyl ether is 0.44. Apparently, the more electron-donating the alkyl group, the greater the reactivity.

The relative reactivity in cationic polymerization,\(^{20}\) \(^{13}\text{C}\) nmr chemical shift, AOP of \(\pi\)-orbital of ring-substituted phenyl vinyl ethers are shown in Table VI. In phenyl vinyl ethers, the greater the relative reactivity of a monomer, the greater the \(\delta_{c\beta}\). The \(\delta_{c\beta}\)'s are small as compared with those of alkyl vinyl ethers. AOP of \(\pi\)-orbital is almost unaffected by ring substitution. Also, IP and TEE were little affected by the nature of ring substituent.

The computation of AOP of para-substituted styrenes were carried out, the data being shown in Table VII. The relative reactivity demonstrates a very large influence of substituent; for example, p-dimethylaminostyrene is 170 times \(\approx\) reactive as styrene. The larger the \(\delta_{c\beta}\), the more reactive the monomer. The AOP of \(\beta\)-carbon becomes greater when a substituent becomes more electron-donating. In this case, changes in \(\delta_{c\beta}\) and \(\delta_{c\alpha}\) accord with those in AOP of \(C_{\beta}\) and \(C_{\alpha}\), respectively. IP and the values for carbocation indicate that a stable carbocation is produced from the monomer with an electron-donating substituent. The calculated values of p-chlorostyrene is peculiar, probably due to the inadequate parameters. When styrenes are compared
Table VI. Reactivity in cationic polymerization and some properties of para-substituted phenyl vinyl ethers

<table>
<thead>
<tr>
<th>Substituent</th>
<th>Relative polymerizability20</th>
<th>13C nmr</th>
<th>AOP of π-orbital</th>
<th>IP</th>
<th>α-Phenoxyethyl cation</th>
<th>Δ(TEE) from monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\delta_{C\beta}$</td>
<td>$\delta_{C\alpha}$</td>
<td>C_{β}</td>
<td>C_{α}</td>
<td>cald$^{a)}$</td>
</tr>
<tr>
<td>CH$_3$O</td>
<td>2.38</td>
<td>99.5</td>
<td>44.0</td>
<td>1.1284</td>
<td>0.9231</td>
<td>12.9334</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>1.82</td>
<td>98.8</td>
<td>44.8</td>
<td>1.1284</td>
<td>0.9231</td>
<td>12.9354</td>
</tr>
<tr>
<td>H</td>
<td>1.00</td>
<td>97.8</td>
<td>45.3</td>
<td>1.1281</td>
<td>0.9231</td>
<td>12.9678</td>
</tr>
<tr>
<td>Cl</td>
<td>0.278</td>
<td>96.9</td>
<td>45.4</td>
<td>1.1285</td>
<td>0.9231</td>
<td>12.9281</td>
</tr>
</tbody>
</table>

a) The values of π-orbital in vinyl group.
Table VII. Reactivity in cationic polymerization and some properties of para-substituted styrenes

<table>
<thead>
<tr>
<th>Substituent</th>
<th>Relative polymerizability21</th>
<th>13C nmr22</th>
<th>AOP of π-orbital</th>
<th>IP</th>
<th>Styryl cation Δ(TEE) from monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH$_3$)$_2$N</td>
<td>171</td>
<td>85.3</td>
<td>56.4</td>
<td>1.0792</td>
<td>0.9576</td>
</tr>
<tr>
<td>CH$_2$O</td>
<td>19.8</td>
<td>82.3</td>
<td>57.2</td>
<td>1.0742</td>
<td>0.9578</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>1.81</td>
<td>79.7</td>
<td>56.2</td>
<td>1.0710</td>
<td>0.9582</td>
</tr>
<tr>
<td>H</td>
<td>1.00</td>
<td>80.5</td>
<td>57.0</td>
<td>1.0545</td>
<td>0.9598</td>
</tr>
<tr>
<td>Cl</td>
<td>0.401</td>
<td>78.7</td>
<td>59.1</td>
<td>1.0747</td>
<td>0.9579</td>
</tr>
</tbody>
</table>

$^{a)}$ The value for p-aminostyrene.
with phenyl vinyl ethers, one will notice that the substituent effect on the relative reactivity is much greater with the former, but that on chemical shift is about the same. According to Olah, et al., the chemical shift of α-carbon in styryl cations depends on the substituent much more strongly than that of β-carbon in styrenes does.

Some Considerations on Reaction Mechanism of Vinyl Ethers and Styrenes

The nucleophilicity is an important factor to determine the reactivity of a monomer in cationic polymerization. It could be inferred from the electron density of the β-carbon. δs and AOP of β-carbon in vinyl ethers are much greater than those in styrenes (e.g., ethyl vinyl ether, δs 107.6, AOP 1.1402; styrene, δs 80.5, AOP 1.0545). This leads to the high reactivity of vinyl ethers in electrophilic reactions. On the other hand, the observed value of IP of styrenes is smaller than that of vinyl ethers, but AOP of α-carbon of styryl cations is larger than expected. This means that phenyl group stabilizes a carbocation as effectively as alkoxyl group. This explains why styrenes have a considerable reactivity in cationic polymerization.

Propagation reaction could be divided into two stages:

\[\text{Propagation reaction could be divided into two stages:} \]

\[\text{At the former stage, a monomer and a propagating end produce a π-complex. This stage is controlled by the nucleophilicity of} \]

-158-
a monomer and may be correlated with the basicity and solvating power of a monomer. The latter stage is governed by the stability of an ion formed. The stability will be assessed by IP of a monomer, the difference in TEE's of a monomer and the carbocation and so forth. When the first step is rate-determining, α- and β-methyl substitutions will influence the reactivity equally. If the latter step is rate-determining, α-methyl group will play a greater role than β-methyl group, since a β-substituent hardly contributes to the stabilization of an ion. In fact, β-methyl substituent increases the reactivity, but α-methyl substituent increases the reactivity more strongly. So, both stages should be taken into account. From these considerations, a following model is proposed for the transition state of cationic polymerization:

\[
\begin{array}{c}
A^- \\
\sim C^+ \quad \sim C \quad X \\
Y
\end{array}
\]

A similar model is proposed for the polar bromine addition to styrenes.26 Vinyl ethers are more basic and have a stronger solvating power than styrenes. Therefore, the former will form the π-complex more easily. As the dissociation of a propagating ion pair is needed at the first step, the reactivity of styrenes relative to vinyl ethers will increase under the conditions in which a counterion dissociates easily. This influence has been supported by the studies described in the previous chapter.27
References

15. Chapter 5 in this thesis.

PART IV

SALT EFFECT ON POLYMERIZATION RATE AND ON MOLECULAR WEIGHT DISTRIBUTION OF THE POLYMER
Chapter 10

Salt Effect in the Polymerization by Various Catalysts

Introduction

It is well known that neutral salts can affect the rates of ionic reactions in solution. The results have been interpreted principally on the basis of the change in ionic strength and the mass-law effect. Ingold and his collaborators have carried out an extensive investigation of the effect of salts on substitution reactions, especially on solvolysis. Winstein, et al., found both normal and special salt effects in solvolysis on the basis of their detailed experimental results. On the other hand, there have been few papers on the salt effect in electrophilic addition to unsaturated compounds, which is intimately related to cationic polymerization. Recently, several studies have been reported on the salt effect in electrophilic addition. For example, in a series of studies on the halogenation of olefins, it was found that a neutral salt acted not only as an electrolyte but also as a nucleophile.

In view of the nature of ionic polymerizations, salt effects are to be anticipated. In practice, it has been confirmed that a common ion depresses the dissociation of an ion pair and decreases the rate of propagation in anionic polymerization. In cationic polymerization there have been two papers on salt effects, in which it was concluded that the added salt depresses the dissociation of an ion pair similar to that in
anionic polymerization, since the common salt lowers both the reaction rate and the molecular weight of the polymer formed.

However, the function of an added salt as a nucleophile has not been considered in cationic polymerization, although it has been observed in electrophilic addition reactions. Therefore, in order to elucidate the functions of added salts in cationic polymerization, the following effects were examined: (1) the influence of tetra-n-butylammonium salts on the cationic polymerization of styrene catalyzed by acetyl perchlorate and metal halides, and (2) the effect of tetra-n-butylammonium perchlorate on the composition of a copolymer obtained by cationic copolymerization of 2-chloroethyl vinyl ether (CEVE) with α-methylstyrene (αMS). The results were mainly interpreted in terms of counterion exchange and a terminating function of the added tetra-n-butyl ammonium salts.

Experimental

Materials

Three salts, tetra-n-butylammonium perchlorate (n-Bu$_4$NCIO$_4$), tetra-n-butylammonium fluoroborate (n-Bu$_4$NBF$_4$) and tetra-n-butylammonium iodide (n-Bu$_4$NI) were synthesized by a procedure (eq 1) similar to Fujinaga’s method:

\[
\text{HCIO}_4 \rightarrow \text{n-Bu}_4\text{NCIO}_4 \\
\text{n-Bu}_3\text{N} + \text{n-BuI} \rightarrow \text{n-Bu}_4\text{NI} \\
\text{HBF}_4 \rightarrow \text{n-Bu}_4\text{NBF}_4
\]

Table I shows the composition and melting point of the salts
<table>
<thead>
<tr>
<th></th>
<th>Composition found (calcd)</th>
<th>Mp, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H, % C, % Cl or I, % O, %</td>
<td>Obssd</td>
</tr>
<tr>
<td>n-Bu4NCIO4</td>
<td>10.58 (10.62) 56.28 (56.25) 10.48 (10.38) 18.55 (18.74)</td>
<td>217 213</td>
</tr>
<tr>
<td>n-Bu4NBF4</td>
<td>11.33 (11.03) 58.18 (58.42) — —</td>
<td>163 161.8</td>
</tr>
<tr>
<td>n-Bu4NI</td>
<td>9.84 (9.83) 51.87 (52.07) 34.63 (34.39) —</td>
<td>147 148</td>
</tr>
</tbody>
</table>
obtained. As seen from Table I, the purity of the salts was more than 99.8%.

The synthesis and purification of catalysts and monomers were performed by the same methods described in previous chapters.12,13

Procedures

Polymerization was carried out in a flask fitted with a double cap and under a nitrogen atmosphere. Salt solutions were added to the monomer solutions through the double cap by a syringe, and polymerization was then initiated by addition of the catalyst solution.

Rates of polymerization were determined by measuring concentrations of unreacted monomer by gas chromatography. A first-order plot of monomer consumption was linear in all cases. Polymer was precipitated in a large quantity of methanol, washed, filtered, and dried. In the case of polymers which are soluble in methanol, the polymers were purified by freeze-drying after the evaporation of volatile materials.

Copolymer compositions were determined by measuring the residual monomer concentrations by gas chromatography.

Limiting viscosity numbers [η] were determined in benzene solution at 30°C.

Results and Discussion

Effect of Tetra-n-butylammonium Salts on the Cationic Polymerization of Styrene

Styrene was polymerized at 0°C by various catalysts with or without the tetra-n-butylammonium salt. In all cases a constant
initial concentration of styrene (1.00 mol/1) was used. In the procedure described above, the reaction system contained a small amount of water (ca. 1 mmol/1). No polymerization occurred in the presence of the tetra-n-butylammonium salt without the addition of an acidic catalyst.

Effect of n-Bu₄NC10₄ on the Cationic Polymerization of Styrene with Various Catalysts

To clarify the effect of a neutral salt on the rate of cationic polymerization of styrene, styrene was polymerized in methylene chloride solution with various concentrations of added salt. n-Bu₄NC10₄ was used as the salt, and acetyl perchlorate (AcC10₄), SnC1₄, SnC1₄·TCA (TCA: trichloroacetic acid; 1:1 mole ratio) and boron trifluoride diethyl etherate (BF₃OEt₂) as catalysts. AcC10₄ was the only catalyst having the same anion as the added salt.

As Figure 1 shows, the rates of polymerization at low concentration of n-Bu₄NC10₄ increased to a maximum value in polymerization catalyzed by metal halides. At higher concentrations of n-Bu₄NC10₄, the rates of polymerization decreased. On the other hand, when AcC10₄ was used as catalyst, a small amount of n-Bu₄NC10₄ caused a rapid reduction in rate and then the rate decreased gradually with increasing the concentration of the salt. The behavior of AcC10₄-n-Bu₄NC10₄ system is very similar to that of the HC10₄-n-Bu₄NC10₄ system, as reported by Pepper.

Figure 2 shows the limiting viscosity numbers [η] of the resultant polymers. [η] was decreased significantly by the addition of small amounts of salt and gradually decreased further with increasing of the concentration of the salt, approaching a constant value irrespective of the catalyst used.
Figure 1. Effect of n-Bu$_4$NCIO$_4$ on the rate of polymerization initiated by various catalysts in methylene chloride at 0°C and [M]$_0$=1.00 mole/l. a(o), [AcClO$_4$]$_0$ 0.50 mmol/l, R$_0$=1.57%/min; b(a), [SnCl$_4$]$_0$ 5.0 mmol/l, R$_0$=0.95%/min; c(•), [SnCl$_4$·TCA]$_0$ 1.0 mmol/l, R =4.61%/min; d(△), [BF$_3$OEt$_2$]$_0$ 5.0 mmol/l, R =0.35 %/min.

Figure 2. Effect of n-Bu$_4$NCIO$_4$ on the limiting viscosity numbers of the polymer obtained by various catalysts (Polymerization conditions are the same as in Figure 1). a(o), AcClO$_4$; b(•), SnCl$_4$, c(△), BF$_3$OEt$_2$.

-170-
Effect of n-Bu₄NCIO₄ on the Cationic Polymerization of Styrene in Various Solvents

The acceleration effect of n-Bu₄NCIO₄ on the polymerization of styrene initiated by SnCl₄ is shown in Figure 3. A small amount of n-Bu₄NCIO₄ increased the rate of polymerization irrespective of the nature of the solvent, and further addition of the salt decreased the rate. A discussion of the relationship between the nature of the solvent and variation in rate is difficult since the amount of water, as cocatalyst, was not controlled.

On the other hand, the effect of n-Bu₄NCIO₄ on the polymerization of styrene initiated by AcClO₄ could be compared in

Figure 3. Effect of n-Bu₄NCIO₄ on the rate of polymerization catalyzed by SnCl₄ in various solvents at 0°C and [M]₀ = 1.00 mol/l. a(●), nitrobenzene, [Cl]₀ 5.0 mmol/l, R₀ = 9.52%/min; b(○), CH₂Cl₂, [Cl]₀ 5.0 mmol/l, R₀ = 0.95%/min; c(●), CH₂Cl₂/benzene (3/1 vol ratio), [Cl]₀ 10.0 mmol/l, R₀ = 0.14%/min.
Figure 4. Effect of n-Bu$_4$NCIO$_4$ on the rate of polymerization catalyzed by AcClO$_4$ in various solvents at 0°C and [M]$_0$ = 1.00 mol/l. a(●), nitrobenzene, [C]$_0$ 0.37 mmol/l, R$_0$ = 9.58%/min; b(○), CH$_2$Cl$_2$, [C]$_0$ 0.50 mmol/l, R$_0$ = 1.57%/min; c(●), CH$_2$Cl$_2$/benzene (3/1 vol ratio), [C]$_0$ 1.48 mmol/l, R$_0$ = 2.22%/min; d(△), CH$_2$Cl$_2$/benzene (1/3 vol ratio), [C]$_0$ 1.48 mmol/l, R$_0$ = 0.23%/min.

Various solvents. As shown in Figure 4, the depression of the rate of polymerization due to the addition of the salt decreased with decreasing polarity of the solvent, except for the remarkable decrease of the rate by an addition of a small amount of the salt in methylene chloride.

[η] of the polymer decreased to a constant value in each solvent as shown in Figure 5, and [η] of polymer produced in a polar solvent was higher than that produced in a nonpolar solvent.
Figure 5. Effect of n-Bu$_4$NC10$_4$ on the limiting viscosity numbers of the polymer obtained by AcC10$_4$ (Polymerization conditions are the same as in Figure 4). a(o), nitrobenzene; b(o), CH$_2$Cl$_2$; c(o), CH$_2$Cl$_2$/benzene (3/1 vol ratio).

Figure 6. Effect of various tetra-n-butylammonium salts on the rate of polymerization catalyzed by AcClO$_4$ in methylene chloride at 0°C, [M]$_0$= 1.00 mol/l and [C]$_0$= 0.50 mmol/l. a(o), n-Bu$_4$NC10$_4$, R$_0$= 1.57%/min; b(o), n-Bu$_4$NBF$_4$, R$_0$= 1.99%/min; c(o), n-Bu$_4$NI, R$_0$= 1.69%/min.
Effect of varying the negative ion of the salt

The influence of negative ions was examined by using tetra-n-butylammonium salts having various negative ions. Styrene was polymerized by AcClO₄ or SnCl₄ in methylene chloride in the presence of n-Bu₄NCIO₄, n-Bu₄NBF₄, or n-Bu₄NI. n-Bu₄NBF₄ and n-Bu₄NI strikingly decreased the rate of polymerization catalyzed by AcClO₄ and by SnCl₄ (Figures 6 and 7.). n-Bu₄NI retarded polymerization more strongly than n-Bu₄NBF₄ did.

The presence of n-Bu₄NBF₄ or n-Bu₄NI decreased the rate of polymerization also in a mixture of methylene chloride and benzene, and the retarding effect of the salt was smaller in a nonpolar solvent than in a polar solvent.

Figure 7. Effect of various tetra-n-butylammonium salts on the rate of polymerization catalyzed by SnCl₄ in methylene chloride at 0°C, [M]₀ = 1.00 mol/l and [C]₀ = 5.0 mmol/l. a(o), n-Bu₄NCIO₄, R₀ = 0.95%/min; b(●), n-Bu₄NBF₄, R₀ = 0.99%/min; c(●), n-Bu₄NI, R₀ = 0.90%/min.
Discussion

It is well known that a compound forming a proton or carboxycation acts as a cocatalyst in the polymerization of styrene catalyzed by a metal halide. However, the accelerating effect by neutral salt, such as n-Bu$_4$NCIO$_4$, has not been observed in the cationic polymerization of styrene.

The neutral salt effect on the rates of ionic reactions in solution is mainly a result of the change in ionic strength and mass-law effect, as described in the introduction. Furthermore, it has often been observed that neutral salts add directly to olefins in an electrophilic addition reaction.$^{3-5}$ Therefore, three possible effects of the salt on the polymerization of styrene were considered:

(i) Change in ionic strength. The termination reaction is a reaction between ionic species, while initiation and propagation are ion-dipolar molecule reactions. Therefore, if the change in ionic strength influences the reaction rate, the overall rate should increase with increasing ionic strength, accordingly by addition of salt. However, in the system with AcClO$_4$ as catalyst, n-Bu$_4$NCIO$_4$ did not increase the rate of polymerization and the effect of the salt depended on the nature of catalysts employed. Therefore, the change in rate due to change in ionic strength may be neglected in comparison with that of some other salt effect. This agreed with the conclusion of George, et al.14

(ii) Change in dissociation by a common ion. It was observed by Pepper that n-Bu$_4$NCIO$_4$ decreased not only the rate of polymerization but also the molecular weight of the polymer in the polymerization of styrene with perchloric acid.8,9 From this it was suggested that the addition of n-Bu$_4$NCIO$_4$ prevented the
dissociation of the propagating ion and consequently the propagation through free ions. In the present work the addition of n-Bu₄NC10₄ to a polymerization system catalyzed by AcClO₄ also decreased the rate of polymerization and the molecular weight of a resultant polymer. This result also seems to be interpretable by the explanation proposed by Pepper.

However, addition of the salt in concentrations of more than a half-mole of a catalyst lowered the rate of polymerization irrespective of the nature of a catalyst. Therefore, the decrease in a rate of polymerization due to the addition of n-Bu₄NC10₄ must be explained by a termination or transfer reaction of a propagating chain by n-Bu₄NC10₄, the mechanism of which is not clear yet.

(iii) Exchange of a counterion at the growing chain end with the salt. n-Bu₄NC10₄ having no common ion increased the rate of polymerization catalyzed by SnCl₄, SnCl₄·TCA or BF₃ OEt₂. It was observed that the cationic polymerization of styrene was accelerated by tetracyanoethylene from which a proton or carbocation was not produced. This was explained by the stabilization of a counterion in a growing chain end due to complexing with tetracyanoethylene, a strong electrophile. However, such electrophilic behavior is improbable about n-Bu₄NC10₄.

In electrophilic addition to olefins, an anion produced from a neutral salt adds to an olefin. In the same way, it is easily anticipated that the anion of a salt interacts with a propagating carbocation in cationic polymerization. In the latter case, as the anion may be more stable than that in the addition reaction to an olefin, the anion will not add to the propagating carbocation, but rather will form an ion pair; in consequence, the polymerization proceeds with an exchanged counterion (eq 3).
Here, if the rate of a growing carbocation having ClO_4^- as counterion is greater than that having B^- as the counterion, the addition of $\text{n-Bu}_4\text{NCI}_4$ will increase the rate of polymerization. The polymerization with SnCl_4, $\text{SnCl}_4\cdot\text{TCA}$ or BF_3OEt_2 in the presence of a small amount of $\text{n-Bu}_4\text{NCI}_4$ can be explained by this mechanism.

On the other hand, the presence of $\text{n-Bu}_4\text{NBF}_4$ or $\text{n-Bu}_4\text{NI}$ decreased the rate of polymerization. This may be due to the slow polymerization with BF_4^- or I^- as a counterion.

The occurrence of counterion exchange was also supported on the basis of the molecular weights of the polymers. The molecular weights of the polymers approached a constant value in the presence of large concentrations of $\text{n-Bu}_4\text{NCI}_4$, irrespective of the catalyst. This is attributed to the fact that the counterion in a growing chain end is completely exchanged by ClO_4^- in the presence of a large amount of $\text{n-Bu}_4\text{NCI}_4$.

It has been reported that in the living anionic polymerization of styrene an added salt and a propagating chain end interacted metathetically and the counterion was exchanged, that is, the exchange of a counterion occurred when NaBPh_4 was added to living polystyrene having K^+ counterion, as KBPh_4 was less soluble than NaBPh_4.

The author believe that the present work provided the first example of an exchange reaction of counterion in cationic polymerization.
Effect of n-Bu$_4$NC1O$_4$ on the Cationic Copolymerization of CEVE with αMS

To confirm the occurrence of counterion exchange in cationic polymerization, the effect of an addition of the salt on the monomer reactivity ratios in copolymerization was examined. Copolymerization of CEVE with αMS produced copolymers the composition of which is very sensitive to the catalyst employed, i.e., to the nature of the counterion.12,13 It is expected, therefore, that the copolymer composition will be changed by the addition of the salt, if the counterion is changed by the addition of a salt.

Effect of n-Bu$_4$NC1O$_4$ on Copolymer Composition

The compositions of copolymers of CEVE with αMS obtained with SnCl$_4$ and AcClO$_4$ as catalysts were very different, as Figure 8 shows. When three times as much n-Bu$_4$NC1O$_4$ was added to a polymerizing system catalyzed by SnCl$_4$ ([n-Bu$_4$NC1O$_4$] = 3[SnCl$_4$]), the copolymer composition curve became identical with that obtained with AcClO$_4$ catalyst as shown in Figure 8. On the other hand, no change in copolymer composition was observed when trichloroacetic acid was added to the same system.

The same effect of n-Bu$_4$NC1O$_4$ on copolymer composition was also found in polymerizations in a mixed solvent of methylene chloride and toluene. As Figure 9 shows, the addition of one and half times as much n-Bu$_4$NC1O$_4$ as SnCl$_4$ changed the copolymer composition obtained by SnCl$_4$ catalyst to that obtained with AcClO$_4$.

On the other hand, in the copolymerization catalyzed by AcClO$_4$, addition of ten times as much n-Bu$_4$ClO$_4$ as catalyst...
Figure 8. Salt effect on copolymer compositions in the copolymerization of CEVE with aMS in methylene chloride at -78°C and [M]₀ = 0.50 mol/1. a(●), [SnCl₄]₀ 3.0 mmol/1; b(○), [AcClO₄]₀ 0.22 mmol/1; c(▲), [SnCl₄]₀ 1.0 mmol/1, [n-Bu₄NC1O₄] 3.0 mmol/1.

Figure 9. Salt effect on copolymer compositions in the copolymerization of CEVE with aMS in methylene chloride/toluene solution (1/3 vol ratio) at -78°C and [M]₀ = 0.50 mol/1. a(●), [SnCl₄] 5.0 mmol/1; b(○), [AcClO₄] 0.37 mmol/1; c(▲), [SnCl₄] 2.0 mmol/1, [n-Bu₄NC1O₄] 3.0 mmol/1.
Figure 10. Salt effect on copolymer compositions in the copolymerization of CEVE with αMS in methylene chloride at -78°C and [M]₀ = 0.50 mol/l. a(o), [AcClO₄] 0.22 mmol/l; b(●), [AcClO₄] 0.22 mmol/l, [n-Bu₄NC10₄] 3.0 mmol/l.

Discussion

The presence of large concentration of common ion does not affect the copolymer composition as shown in Figure 10. Meanwhile, the coincidence of the composition curves b and c in Figure 8 establishes that the counterions are identical, that is, ClO₄⁻ in both systems. The amount of n-Bu₄ClO₄ added to the copolymerization system appears to be sufficient to cause complete exchange of counterion, since the molecular weight of a polymer obtained under these conditions was almost identical with that obtained by AcClO₄ (Figure 2).

At the present time, it is not clear whether a counterion is exchanged during the propagation step or before propagation.
directly by the reaction of catalyst and the salt. However, it is concluded that the exchange of a counterion takes place in the polymerization of styrene and in the copolymerization of CEVE with αMS.

References

1. L.C. Bateman, E.D. Hughes, and C.K. Ingold, J. Chem. Soc., 960 (1940), and the subsequent papers.

Chapter 11

Salt Effect in the Polymerization by Iodine

Introduction

There have recently been several attempts to elucidate the mechanism of ionic polymerization by changing a counterion itself or the state of a counterion during polymerization. These are classified into two types of investigation. In one of them the additives which can solvate a counterion are employed. In this connection, there are papers by Panayatov and his colleagues in the field of cationic polymerization, and by Szwarc and Tomoi in anionic polymerization. The other investigation involves studies on the influence of added salts in the field of kinetics in cationic polymerization. Schulz reports on the common-salt effect and Hsieh on the uncommon-salt effect in anionic polymerization.

In the investigation of the previous chapter, it was found that added salts affect both polymerization rate and molecular weight of the polymer in the cationic polymerization of styrene. The phenomena were attributed to the exchange of a counterion and the chain-transfer reaction.

In this chapter the salt effect is studied in the cationic polymerization of a vinyl ether and a styrene derivative using iodine as a catalyst. There are two reasons why iodine is used as a catalyst: (a) the possibility that an added salt may work as a cocatalyst is avoided, for iodine does not need a cocatalyst, and (b) as iodine is a relatively weak catalyst, an increase
in the polymerization rate by adding a certain salt would be expected.

Experimental

Materials

The synthesis and purification of the salts used, i.e., tetra-n-butylammonium perchlorate (n-Bu₄NC1O₄), tetra-n-butylammonium fluoroborate (n-Bu₄NBF₄), and tetra-n-butylammonium iodide (n-Bu₄NI) are described elsewhere. 2-Chloroethyl vinyl ether (CEVE), p-methoxystyrene (pMOS) and the solvents, methylene chloride, benzene, and nitrobenzene were purified in the usual manner. Iodine (E. Merck, resublimed reagent) was used without further purification.

Procedures

Details of the procedures are similar to those described previously. Polymerization was carried out at 0°C using iodine with 1.0 mmol/l concentration mainly in methylene dichloride. Acetyl perchlorate (AcClO₄) and acetyl fluoroborate (AcBF₄) were applied as catalysts for comparison with iodine. The polymerization rate was determined by measuring the monomer consumption by gas chromatography. The poly(2-chloroethyl vinyl ether) (poly(CEVE)) obtained was precipitated in a large amount of methanol–water mixture (vol ratio, 3:1). Poly(p-methoxystyrene) (poly(pMOS)) was precipitated in methanol. Viscosity number, \(\eta_{sp}/c \), of the polymers was measured in benzene at 30°C.
Results

The Effect of the Salts on Polymerization Rate

Iodine is a comparatively weak catalyst for cationic polymerization, with which CEVE and pMOS polymerize at 0°C at a slow rate as shown in Figure 1. No induction period is observed in the polymerizations. The polymerization rate was calculated at 40-50% conversion assuming monomer concentration to have a first-order effect; the polymerization rate of CEVE was 0.17

Figure 1. Time–conversion curves in the polymerization of CEVE and pMOS catalyzed by iodine in methylene chloride at 0°C: [M]₀, 0.50 mol/l; [C]₀, 1.0 mmol/l; a(o), CEVE; b(△), pMOS.
%/min and that of pMOS 1.4%/min.

In the presence of 10 mmol/l of n-Bu₄NClO₄, n-Bu₄NBF₄ or n-Bu₄NI instead of iodine in the polymerization system, neither monomer was consumed after 10 hr. This confirms that the salts are not capable of initiating polymerization.

It was concluded in the previous chapter⁹ that the presence of a salt gives rise to the exchange of a counterion. Then, polymerization may proceed taking ClO₄⁻ and BF₄⁻ as a counterion when n-Bu₄NClO₄ and n-Bu₄NBF₄ are added, respectively. Therefore, the polymerization rate was investigated applying AcClO₄ and AcBF₄ as catalysts in advance. These will produce the same counterions as the anions of the salts. AcClO₄ polymerized both monomers instantaneously after a short induction period at a concentration as low as 0.010 mmol/l (see Figure 2). When 0.10

Figure 2. Time—conversion curves in the polymerization of CEVE and pMOS catalyzed by AcClO₄ and AcBF₄ in methylene chloride at 0°C: [M]₀, 0.50 mol/l; (a) CEVE; (b) pMOS; ⋄, ▲, [AcClO₄]₀, 0.010 mmol/l; ○, △, [AcBF₄]₀, 0.10 mmol/l.
mmol/1 AcBF₄ was used, polymerization proceeded at a rate of 14%/min for CEVE and 250%/min for pMOS. Accordingly, the order of catalytic activity lies as follows: AcClO₄ >> AcBF₄ >> I₂.

The effect of n-Bu₄NC10₄ on the polymerization rate of the iodine system is shown in Figure 3. The presence of n-Bu₄NC10₄ leads to a remarkable increase in the reaction rate; the ratio of the rates Rₚ/Rₚ₀ when 10.0 mmol/1 of n-Bu₄NC10₄ is present and absent, is about 600 for CEVE and about 120 for pMOS. The acceleration is observed also in the presence of n-Bu₄NBF₄, but the extent is small compared with the acceleration by n-Bu₄NC10₄ (see Figure 4). The acceleration ratio, Rₚ/Rₚ₀, when 10 mmol/1

![Graph](image_url)

Figure 3. The effect of n-Bu₄NC10₄ on the polymerization rate of CEVE and pMOS catalyzed by iodine in methylene chloride at 0°C; [M]₀ 0.50 mol/1; a(●) CEVE, Rₚ₀ 0.17%/min; b(△) pMOS, Rₚ₀ 1.4%/min.
Figure 4. The effect of n-Bu₄NBF₄ on the polymerization rate of CEVE and pMOS catalyzed by iodine in methylene chloride at 0°C: [M]₀, 0.50 mol/1; [C]₀, 1.0 mmol/1; a(o), CEVE; b(△), pMOS.

of n-Bu₄NBF₄ is present and absent is about 23 for CEVE and about 6.3 for pMOS. Inversely, n-Bu₄NI exhibits a conspicuous inhibition effect. Figure 5 shows that the polymerization of either monomer is almost completely inhibited with only 1.0 mmol/1 of the salt.

The effect of n-Bu₄NCIO₄ was examined in the polymerization of CEVE in nitrobenzene and a mixture of benzene and methylene chloride (vol ratio, 3.0:1.0) as solvents. The result is shown in Figure 6. Polymerization rate depends very little on the concentration of n-Bu₄NCIO₄ in nitrobenzene. In the case of a mixture of benzene and methylene chloride the dependence is rather greater than in methylene chloride. In the former solvent, \(R_p/R_{p,0} \) at \([n-Bu₄NCIO₄] = 10 \text{ mmol/l}\) is about 1.2, and in the
Figure 5. The effect of n-Bu₄NI on the polymerization rate of CEVE and pMOS catalyzed by iodine in methylene chloride at 0°C: [M]₀, 0.50 mol/1; [C]₀, 1.0 mmol/1; a(o), CEVE; b(Δ), pMOS.

Figure 6. The effect of n-Bu₄NCIO₄ on the polymerization rate of CEVE catalyzed by iodine at 0°C: [M]₀, 0.50 mol/1; [C]₀, 1.0 mmol/1; a(o), benzene-methylene chloride (vol ratio 3:1), Rₚ₀=4.9x10⁻³ %/min; b(e), nitrobenzene Rₚ₀= 12%/min.
latter about 3×10^4. These values are in a sharp contrast.

The Effect of the Salts on the Molecular Weight of the Polymers

90% by weight of the poly(CEVE) obtained is insoluble in a mixture of methanol and water (vol ratio, 3:1), and the viscosity number of the insoluble fraction was measured (see Table I). The viscosity of poly(CEVE) obtained with the three catalysts is in the sequence $I_2 < AcClO_4 < AcBF_4$. As seen from Figure 7,

![Figure 7](image_url)

Figure 7. The effect of the salts on the molecular weight of poly(CEVE) obtained in methylene chloride at $0^\circ C$: $[M]_0$, 0.50 mol/l; and $[C]_0$, 1.0 mmol/l (measurement of $\eta_s p/c$: temp, $30^\circ C$ benzene, 1.00 g/dl); a(○), no salt; b(△), $n-$Bu$_4$NC10$_4$; c(●), $n-$Bu$_4$NBF$_4$.

when $n-$Bu$_4$NC10$_4$ is present in the system with the iodine
catalyst, the viscosity number is about 0.13 and constant, independent of the salt concentration. Meanwhile, with increasing addition of n-Bu₄NBF₄, the viscosity number increased gradually and reached about 0.19. The sequence of viscosity increase, that is, no added salt < n-Bu₄NClO₄ < n-Bu₄NBF₄ corresponds well with the sequence, I₂ < AcClO₄ < AcBF₄.

The poly(pMOS) obtained is precipitated quantitatively in methanol. The dependence of the viscosity on the kind of catalyst is the same as that of poly(CEVE) (see Table I). The effect of the salts is shown in Figure 8. The addition of

\[
\begin{align*}
\text{Figure 8. The effect of the salts of the molecular weight of poly(pMOS) obtained in methylene chloride at } & 0°C: \ [M]₀, 0.50 \text{ mol/l; } [C]₀, 1.0 \text{ mmol/l (measurement of } \eta_{sp/c}: \text{ temp, } 30°C; \text{ benzene, } 2.00 \text{ g/dl); } \\
a(o), \text{ no salt; } b(\Delta), \text{ n-Bu₄NClO₄; } c(\bullet), \text{ n-Bu₄NBF₄.}
\end{align*}
\]

n-Bu₄NClO₄ to the iodine-catalyzed system gives rise to an in-
Table I. Viscosity numbers of resultant polymers in methylene chloride at 0°C: $[M]_0$, 0.50 mol/l

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Catalyst</th>
<th>Conversion, %</th>
<th>η_{sp}/c, a)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I$_2$</td>
<td></td>
<td>25.5</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Poly(CEVE)</td>
<td>AcClO$_4$</td>
<td>100</td>
<td>0.189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AcBF$_4$</td>
<td>44.1</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.3</td>
<td>0.237</td>
<td></td>
</tr>
<tr>
<td>I$_2$</td>
<td></td>
<td>18.3</td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td>Poly(pMOS)</td>
<td>AcClO$_4$</td>
<td>100</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AcBF$_4$</td>
<td>39.3</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.4</td>
<td>4.71</td>
<td></td>
</tr>
</tbody>
</table>

a) Measurement conditions: benzene, 30°C; concn of poly(CEVE), 1.00 g/dl; concn of poly(pMOS), 2.00 g/dl.

crease in the viscosity number (from 0.20 to 0.29) regardless of the amount of salt. In the case of n-Bu$_4$NBF$_4$, however, the viscosity numbers did not increase significantly, and when an excessive amount of n-Bu$_4$NBF$_4$ was present the viscosity number decreased. This could be explained by the action of the salt as a chain-transfer agent, as is also seen in the previous chapter. \(^9\)
Discussion

The above-mentioned results are summarized in Table II. These results have made clear that salts such as n-Bu$_4$NCIO$_4$, n-Bu$_4$NBF$_4$, and n-Bu$_4$NI greatly influence not only the reaction rate but also the molecular weight of the polymers obtained in the cationic polymerization catalyzed by iodine.

Among the three catalysts, AcClO$_4$, AcBF$_4$, and iodine, the order of the polymerization rate of CEVE and pMOS is AcClO$_4$>>AcBF$_4$>>I$_2$ and that of molecular weight AcBF$_4$>AcClO$_4$>I$_2$. The presence and absence of the salts, n-Bu$_4$NCIO$_4$ and n-Bu$_4$NBF$_4$, produces the same sequences for both polymerization rate and

<table>
<thead>
<tr>
<th></th>
<th>n-Bu$_4$NCIO$_4$</th>
<th>n-Bu$_4$NBF$_4$</th>
<th>n-Bu$_4$NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_p</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>CEVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>↓</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>R_p</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>pMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>↓</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Catalyst, I$_2$; solvent, CH$_2$Cl$_2$.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
molecular weight with few exceptions. This is a strong indication that a counterion other than that formed from catalyst is present during polymerization. It can be said that iodine has proved to be a good catalyst to test the exchange of a counterion since the acceleration is clearly observed when a salt having a stable anion is used.

A trace of n-Bu₄NI retarded significantly the iodine-catalyzed polymerization, which might mean that the counterion is a polyiodide ion, Iₙ⁻ and not monoiodide ion, I⁻. Monoiodide ion will be too unstable to serve as a counterion in cationic polymerization in the usual solvents.

The acceleration effect in polymerization rate of pMOS is greater than that of CEVE. This means that the polymerization rate of pMOS is more sensitive to the kind of counterion involved. The fact that the acceleration effect is greater in a less polar solvent means that a counterion exists nearer to the propagating end and polymerization rate depends more on the kind of counterion in a less polar solvent. Especially in nitrobenzene, a counterion seems to exist at so distant a position as to hardly affect the polymerization rate, owing to the solvation power as well as ionization power of the solvent. This reasoning is supported by the fact that the copolymer composition in the cationic copolymerization of CEVE and styrene derivatives¹³ is influenced very much by the kind of catalyst in toluene or methylene chloride but little in nitrobenzene.

In this study, it has been made clear that the kind of catalyst brings about a great change not only in the polymerization rate but also in the molecular weight of polymer and that the added salts behave in a very similar manner. From these results, it is concluded that a counterion other than
that formed from the catalyst used also exists when a salt is added. Hence, the propagating species in the presence of a salt can be illustrated as in Scheme I.

\[
\begin{align*}
\text{Cat.} & \rightarrow C^+A^- & N^+B^- (\text{Salt}) & \rightarrow C^+_B^- \\
\downarrow & \downarrow & \downarrow & \downarrow \\
P^+A^- & \leftrightarrow N^+_B^- & \leftrightarrow P^+_B^- \\
\downarrow & \downarrow & \downarrow & \\
P^+ & \uparrow & P^+_B & \\
\end{align*}
\]

Scheme I

If a counterion does not exchange during propagation at all, a mixture of polymers with different structures and properties will be produced owing to the presence of two kinds of separate counterions. This problem will be discussed in the next chapter.

References

Introduction

The presence of a counterion is one of the characteristics in cationic polymerization, and that is not the case for radical polymerization. The counterion often has great influence on the propagation reaction in cationic polymerization. This is confirmed by the large effect of catalyst on the rate constant ratios involving propagation rate constant k_p, such as monomer transfer constant ratio, and on the steric structure of a polymer produced.

Though the influence of a counterion reveals itself in many respect in cationic polymerization, there have been few unequivocal knowledges about the state of a propagating end. This presents a contrast to anionic polymerization, in which the existence of various ionic species is confirmed and their propagation rate constants are measured for each ionic species. This kind of study has contributed to the elucidation of the nature of a propagating end in anionic polymerization.

When a monomer is polymerized in the presence of two kind of catalysts, it would be probable that two kinds of counterions exist at the same time. The same thing is expected with a combination of a catalyst and a neutral salt, since a salt and an acid can easily exchange their ions each other in solution. In the presence of two kinds of counterions, the following propagating species may exist according to the dissociation equilibrium of a propagating carbocation and a counterion:
If the exchange of a counterion (the reactions in the longitudinal direction in eq 1 and 2) is slow enough compared with propagation reaction, then two kinds of active species propagate independently, and in consequence a mixture of polymers having different structures or properties will be produced. On the other hand, either in the case that the exchange of a counterion is rapid enough, or in the case that the propagating end is a free ion and unaffected by a counterion, a polymer with a single and homogeneous structure or property will be obtained.

It is reported that the interchange of ion pairs is very rapid.1 In fact, there have been no reports in cationic polymerization which indicate that the propagating chains with a different counterion grow independently in a homogeneous solution. Therefore, it seems very interesting to obtain a knowledge about the interchange rate of ion pairs in a polymerization system.

As is well known, copolymerization is a polymerization in which two kinds of monomers react with the propagating ends consisting of one kind of counterion, and it produces a variety of copolymers or a mixture of homopolymers. The concept is extended to "two-counterion polymerization". That is, two-counterion polymerization is defined as a polymerization in which a single kind of monomer reacts with two kinds of propagating ends composed of the same carbocation but of two different counterions. It would be of great interest if a mixture of polymers different in a structure is produced in two-counterion polymerization.
Pepper and Reilly2 reported that the polystyrene formed by perchloric acid as catalyst has a large value of M_w/M_n such as 12. The mode of molecular weight distribution of this polystyrene might be of great interest. For, there has been no instance that such a large value of M_w/M_n was obtained by a homogeneous catalyst. It may be probable that more than one kind of propagating ends coexist at the same time in this system and they produce independently two kinds of polymers possessing different molecular weights.

In this study, making use of molecular weight distribution (MWD) as an observable polymer property, the possibility is investigated that propagation reaction proceeds independently through two kinds of active species in the cationic polymerization of styrene. The molecular weight of a polymer formed, which is determined principally by the ratio of propagation rate to monomer transfer rate, will serve as a good measure of the state of a propagating end. Further, to investigate the possibility that two kinds of active species are formed from a single catalyst, MWD of polystyrene produced by acetyl perchlorate (AcClO$_4$) will be discussed. For, AcClO$_4$ is anticipated to behave as catalyst similarly to perchloric acid.

Experimental

The syntheses and purifications of monomer, catalysts, salts and solvents were described in the previous chapters.3-5 Polymerization procedure is the same as described in the previous chapter.5 In all cases, polymerization was performed with the initial monomer concentration of 1.00 mol/l and at 0\textdegree C.
MWD was measured by gel permeation chromatography. The chromatograms were obtained with a Shimadzu Model GPC-1A chromatograph fitted with five columns of crosslinked polystyrene gel having pore sizes of \(10^1\), \(10^2\), \(10^3\), \(10^4\) and \(10^5\) Å. Samples were submitted for analysis as 0.15% solution in tetrahydrofuran.

Results and Discussion

MWD of Polystyrenes Produced in Cationic Polymerization

At first, two typical examples of MWD of polystyrene obtained in cationic polymerization are shown in Figure 1. The polymerization catalysts of Figures 1-a and 1-b are boron trifluoride diethyl etherate \((\text{BF}_3\text{OEt}_2)\) and \(\text{AcClO}_4\), respectively. The former is a metal halide and the latter does not comprise a metal. In the case of \(\text{AcClO}_4\), excess of \(\text{n-But}_4\text{NClO}_4\) was added due to the reason which will be mentioned in the last section. In both cases the solvent is methylene chloride. The molecular weights of the polymer are very different each other, but both distribution curves are represented by a unimodal exponential distribution function. In the latter curve \(M_w/M_n\) is 1.9, which means that the curve is approximated to most probable distribution function. A similar distribution has been observed when stannic chloride (equimolar trichloroacetic acid as a cocatalyst) \((\text{SnCl}_4\cdot\text{TCA})\) was employed as catalyst. In these systems, it is considered that there is only one propagating active species.

Two-counterion Polymerization in Methylene Chloride

MWD of the polymer obtained in methylene chloride by stannic chloride \((\text{SnCl}_4)\) (a trace of water in the system may work as
Figure 1. MWD of polystyrene catalyzed by BF$_3$OEt$_2$ or AcClO$_4$ in methylene chloride. a, [BF$_3$OEt$_2$]$_0$ 5.0 mmol/l; b, [AcClO$_4$]$_0$ 0.37 mmol/l, [Salt] 1.0 mmol/l.

cocatalyst) has a single peak with a gentle slope on the low molecular weight side (Figure 2, curve a). When a trace of n-Bu$_4$NC10$_4$ is allowed to exist in the polymerization system, MWD becomes very broad, and is conjectured to be composed of two peaks (Figure 2, curves b-d). In the presence of still more amount of n-Bu$_4$NC10$_4$, MWD reduces to a single peak in a different molecular weight region from that without the salt (Figure 2, curve e). This MWD coincides well with that of the polystyrene formed by a combination of AcClO$_4$ and n-Bu$_4$NC10$_4$.

The low molecular weight peak in curves b-d seems to be concerned with perchlorate ion. Meanwhile, the high molecular
Figure 2. MWD of polystyrene obtained by SnCl$_4$ in the presence of n-Bu$_4$NC10$_4$ in methylene chloride. [C]$_0$ 5.0 mmol/l; [Salt], mmol/l: a 0.0, b 0.25, c 0.50, d 1.0, e 5.0.

weight peak does not coincide with curve a, the MWD of a polymer produced by SnCl$_4$. This might be explained as follows: coexistence of SnCl$_4$ and perchlorate ion will lead to the formation of a complex which is capable to behave as a counterion. If a propagating species comprising the complex-type counterion is enough reactive compared with that of the counterion formed from SnCl$_4$ and water, a peak corresponding to curve a will vanish. In fact, the addition of a small amount of n-Bu$_4$NC10$_4$ to the SnCl$_4$ catalyst system brings about a large acceleration of the reaction rate, as was described previously.5

In order to ascertain the above-mentioned inference, the polymerization by a catalyst mixture of SnCl$_4$ and AcClO$_4$ was carried out. The polymerization rate at [SnCl$_4$] = 10 mmol/l is about the same as that at [AcClO$_4$] = 0.50 mmol/l. When a mixture
of SnCl₄ (5.0 mmol/l) and AcClO₄ (0.25 mmol/l) is made use of, the polymerization proceeds about 50 times as quickly as those by each single catalyst. And the MWD of the formed polystyrene are very broad, the peaks of which are situated in an intermediate position between the peaks for each single catalyst (Figure 3, curves b-d). The position of these peaks is about the same as those of polymers obtained by SnCl₄ and n-Bu₄NCIO₄ (Figure 2, curves b-d). This confirms the formation of a reactive propagating end from SnCl₄ and perchlorate. The wide distribution of curves b-d in Figure 3 may be caused by the presence of three different active species, i.e., a complex-type counterion formed from AcClO₄ and SnCl₄ and two kinds of counterions from AcClO₄.

Figure 3. MWD of polystyrene obtained by a mixture of SnCl₄ and AcClO₄ in methylene chloride. [SnCl₄], mmol/l: a 10.0, b 7.5, c 5.0, d 2.5, e 0.0; [AcClO₄], mmol/l: a 0.0, b 0.12, c 0.25, d 0.37, e 0.50.
Next, polymers obtained by BF$_3$OEt$_2$ in the presence of n-Bu$_4$NC10$_4$ were examined. Both MWD with n-Bu$_4$NC10$_4$ equivalent to the catalyst and without n-Bu$_4$NC10$_4$ show unimodal shapes though their average molecular weights are very different (Figure 4, curves a and c). In the presence of n-Bu$_4$NC10$_4$ 1/10 equivalent to the catalyst, the polymer has a broad distribution, probably consisting of two peaks. One of those is thought to fit to curve c and the other to an imaginary peak at a middle position between curves a and c.

Figure 4. MWD of polystyrene obtained by BF$_3$OEt$_2$ in the presence of n-Bu$_4$NC10$_4$ in methylene chloride. [C]$_0$ 5.0 mmol/l; [Salt], mmol/l: a 0.0, b 0.50, c 5.0.

From these results, it is concluded that two active species whose counterions are MX$_n$-ClO$_4^-$ and ClO$_4^-$, propagate separately when an adequate amount of n-Bu$_4$NC10$_4$ or AcClO$_4$ is used together.
Two-counterion Polymerizations in Nitrobenzene and in a Mixture of Methylene Chloride and Benzene

A phenomenon was found, as described in the above section, that two propagating species yield a polymer of different molecular weights separately. It was investigated whether this holds also in nitrobenzene as a solvent, since it has a greater polarity. In Figure 5 are shown MWD of polystyrene obtained by SnCl$_4$ in the coexistence of n-Bu$_4$NC1$_4$. In this case, despite the change in the quantity of n-Bu$_4$NC1$_4$, the broadness of MWD hardly varies. Merely average molecular weight decreases with the increase in the concentration of n-Bu$_4$NC1$_4$. The possibility that two peaks are overlapping is denied clearly.

![Figure 5. MWD of polystyrene obtained by SnCl$_4$ in the presence of n-Bu$_4$NC1$_4$ in nitrobenzene. [Cl]$_0$ 5.0 mmol/l; [Salt], mmol/l: a 0.0, b 0.25, c 0.50, d 5.0.](image)
In the polymerization catalyzed by SnCl$_4$ in nitrobenzene, the addition of n-Bu$_4$NC10$_4$ leads to the change in average molecular weight of the polymer, and furthermore the presence of n-Bu$_4$NC10$_4$ more than the amount of catalyst results into an identical MWD with that yielded by AcClO$_4$. This indicates that a counterion has bearing on propagation reaction also in nitrobenzene. It can, however, be said that the influence of counterion is rather small, as the molecular weight does not change so largely with the addition of the salt as in methylene chloride. Moreover, the broadness of MWD is fixed and unrelated to the quantity of the salt. Hence, it is concluded that a counterion is connected relatively loosely and exchanges rapidly enough during propagation reaction in nitrobenzene as a solvent.

Benzene could be applied as a nonpolar solvent. However, most of the polymer formed in benzene in the presence of n-Bu$_4$NC10$_4$ is methanol-soluble oligomer. Therefore, a mixture of methylene chloride and benzene (3:1 vol ratio) was used as a nonpolar solvent. The dependence of MWD on the concentration of n-Bu$_4$NC10$_4$ is shown in Figure 6. Without the salt, MWD is bimodal, which suggests that an aggregate ion exists as one of counterions. When the added salt is equivalent to the amount of the catalyst, MWD (curve d) coincides with that obtained by AcClO$_4$ as catalyst. If n-Bu$_4$NC10$_4$ 1/10 as much as the catalyst is present, the reaction is accelerated and MWD (curve c) shows a single peak. This indicates that a complex formed by SnCl$_4$ and perchlorate ion is a principal counterion in the system.

Some Considerations on Two-counterion Polymerization

The results in this study are summarized as follows: 1) in the cationic polymerization of styrene, two active species pro-
Figure 6. MWD of polystyrene obtained by SnCl$_4$ in the presence of n-Bu$_4$NClO$_4$ in a mixture of methylene chloride and benzene (3:1 vol ratio). [C] 5.0 mmol/l; [Salt], mmol/l: a 0.0, b 0.25, c 0.50, d 5.0.

Propagate separately in methylene chloride, but only one species, apparently, exists in nitrobenzene owing to rapid exchange of counterion, 2) metal halides such as SnCl$_4$ and BF$_3$OEt$_2$ form with perchlorate ion a complex which works as a counterion. It would be of great importance that knowledges were obtained as the tightness of the bond between a carbocation and counterion in this way.

In this experiment, the formation of a complex impedes more or less the anticipated two-counterion polymerization. If two kinds of Lewis acids and a cocatalyst are utilized, it will be probable that two counterions are produced independently from each Lewis acid through the interaction with a cocatalyst, and so two-counterion polymerization will be achieved successfully. Unless a cocatalyst is made use of, the two catalysts might interact and be followed by the complexity of the system,
as reported by Marek and Chmelir.6 The two kinds of catalysts should be selected so as to produce polymers very different in a molecular property such as molecular weight, steric structure and geometric structure.

MWD of Polystyrene Obtained by AcClO\textsubscript{4}

As seen from Figure 7, the molecular weight distributions of polystyrene obtained by AcClO\textsubscript{4} consisted of two distinct peaks. The proportion of the lower molecular weight fraction increases as conversion increases. Therefore, such molecular weight distributions are not due to the formation of a branched polymer.

![Graph showing molecular weight distributions](image)

Figure 7. Gel permeation chromatograms of polystyrene formed by AcClO\textsubscript{4} (Marks correspond to those of Table I).

When 0.050 mmol/l \textit{n}-Bu\textsubscript{4}NCIO\textsubscript{4} was added to the polymeriza-
tion system, the proportion of the higher molecular weight fraction was considerably reduced (Figure 8, curve d). Relative magnitudes of both peaks vary but their position and shape do not change. Addition of 0.10 mmol/l of the salt reduced the higher molecular weight fraction still further and the peak vanished entirely when 1.0 mmol/l salt was added (Figure 8, curves e and f).

Figure 8. Gel permeation chromatograms of polystyrene formed by AcClO$_4$ in the presence of n-Bu$_4$NC1O$_4$ (Marks correspond to those of Table I).
The values of number-average molecular weight \((M_n) \), weight-
average molecular weight \((M_w) \), and the ratio \((M_w/M_n) \) are
calculated from Figures 7 and 8, and these values are summarized
in Table I. \(M_w/M_n \) is below 2.0 for systems consisting of one
peak, while the value is above 3.0 for the systems having a two-
peak distribution. On the other hand, Pepper and Reilly\(^2\) per-
formed the cationic polymerization of styrene at \(-30^\circ\text{C}\) using
perchloric acid which involves the same anion as \(\text{AcCl}_4 \). \(M_n \) and
\(M_w \) of the polystyrene obtained were measured by cryoscopy and
light scattering, respectively. The ratio \(M_w/M_n \) was about 12,
which is much larger than that of our samples.

The addition of \(\text{n-Bu}_4\text{NCI}_4 \) does not affect the position
and shape of either peak in the \(\text{AcCl}_4 \) system. It only brings
about a change in relative magnitudes of both peaks. Consequently,
it is possible to separate the peaks using the single peak of
the polymer prepared at high salt concentration. \(M_n, M_w, \) and
\(M_w/M_n \) of the separated peaks were calculated. In addition the
number fractions of molecules of the lower and higher molecular
weight parts were obtained. As shown in Table II, the values
of \(M_n \) and \(M_w \) are almost constant, independent of conversion and
the amount of salt added, for both higher and lower molecular
weight fractions. The molecular weights of the two fractions
are very different, which leads one to consider the presence
of two propagating species. In the absence of the salt, the
number fraction of lower molecular weight part is ca. 0.9, and
predominant.

It is not clear yet from the above-mentioned results why
\(\text{AcCl}_4 \), peculiarly, gives the polystyrene with bimodal molecular
weight distribution. It could not be, however, denied that two
kinds of propagating species (counterions) coexist in the poly-
Table I. Average molecular weights, M_n and M_w, and the ratio M_w/M_n of the polystyrenes obtained by AcClO_4 (Polymerization conditions: $[\text{M}]_0$, 1.0 mol/1; $[\text{C}]_0$, 0.37 mmol/1; solvent, CH_2Cl_2; 0°C)

<table>
<thead>
<tr>
<th>[n-Bu$_4$NClO$_4$], mmol/1</th>
<th>Time, min</th>
<th>Conv, %</th>
<th>M_n</th>
<th>M_w</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>—</td>
<td>30</td>
<td>37.0</td>
<td>3780</td>
<td>13600</td>
</tr>
<tr>
<td>b</td>
<td>—</td>
<td>50</td>
<td>50.7</td>
<td>3060</td>
<td>11200</td>
</tr>
<tr>
<td>c</td>
<td>—</td>
<td>81</td>
<td>71.4</td>
<td>3250</td>
<td>10800</td>
</tr>
<tr>
<td>d</td>
<td>0.05</td>
<td>45</td>
<td>39.1</td>
<td>2490</td>
<td>6190</td>
</tr>
<tr>
<td>e</td>
<td>0.10</td>
<td>45</td>
<td>41.0</td>
<td>2280</td>
<td>4920</td>
</tr>
<tr>
<td>f</td>
<td>1.0</td>
<td>60</td>
<td>41.9</td>
<td>2070</td>
<td>3090</td>
</tr>
</tbody>
</table>
Table II. M_n, M_w, and M_w/M_n of the separated fractions of the polystyrenes

<table>
<thead>
<tr>
<th></th>
<th>Lower molecular weight peak</th>
<th></th>
<th>Higher molecular weight peak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_n</td>
<td>M_w</td>
<td>M_w/M_n</td>
<td>Number fraction</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Marks correspond to those of Table I.
merization and each type of chain propagates independently until propagation is interrupted. We might consider as the pairs of counterions, simple ion and aggregate ion, anhydrous ion and hydrated ion, and so on. This interesting problem remains unsolved, future investigation being desired.

References

SUMMARY

The studies collected in this thesis are concerned with cationic polymerization of vinyl ethers and styrene derivatives. Propagation reaction of the polymerization has been investigated on the basis of structure and reactivity of monomers and propagating species. The experimental results shown in Parts I-IV will be summarized below.

PART I Cationic Copolymerization of 2-Chloroethyl Vinyl Ether with Styrene Derivatives

Chapter 1 Characteristics in the Copolymerization of a Vinyl Ether with Styrene Derivatives

The possibility of copolymer formation and the effect of polymerization conditions on monomer reactivity ratios (MRR) were investigated for cationic copolymerizations of a vinyl ether with styrene derivatives. 2-Chloroethyl vinyl ether (CEVE) was used as the vinyl ether, and p-methoxystyrene (pMOS), p-methylstyrene (pMS) and α-methylstyrene (αMS) as the styrene derivatives. Copolymerization was carried out in toluene or methylene chloride, being catalyzed by boron trifluoride diethyl etherate (BF₃OEt₂) or stannic chloride with equimolar trichloroacetic acid (SnCl₄·TCA) at -78°C. The copolymer composition was determined from each monomer consumption through gas chromatography. The copolymer formation was confirmed by fractionation and nmr spectrum of the product. In CEVE-αMS system, the relative reactivity of each monomer was independent of the kind of the propagating chain ends (r₁ x r₂ = 1). In
contrast, composition curves showed an S-shape in CEVE-pMOS and CEVE-pMS system \((r_1 \times r_2 > 1)\). It was found that polymerization conditions significantly affect MRR; the CEVE content in the copolymer was greater by BF\textsubscript{3}OEt\textsubscript{2} than by SnCl\textsubscript{4}·TCA.

Chapter 2 Temperature Dependence of Monomer Reactivity Ratios

Temperature dependence of monomer reactivity ratios, \(r_1\) and \(r_2\), and their product \(r_1 \times r_2\) were studied in the cationic copolymerization of CEVE \((M_1)\) with styrene derivatives \((M_2)\) (pMOS, pMS and aMS). Methylene chloride, toluene and benzene were used as solvent, and SnCl\textsubscript{4}·TCA and BF\textsubscript{3}OEt\textsubscript{2} were used as catalyst. \(r_1\) increased and \(r_2\) decreased with increasing polymerization temperature in the copolymerizations except that of CEVE with pMOS. On the other hand, \(r_1\) and \(r_2\) hardly depended on polymerization temperature in the mutual copolymerization between vinyl ethers or styrene derivatives. On the basis of these results, the difference in the transition state of the propagation reaction of vinyl ethers and styrene derivatives was discussed.

Chapter 3 Effects of Solvent and Catalyst on Relative Reactivity

The change in relative reactivity in the cationic copolymerization of CEVE with styrene derivatives (pMOS, pMS and aMS) was investigated with various catalysts and solvents. The styrene content in the copolymers increased when a polar solvent and/or a strong catalyst were used. The change of relative reactivity in the copolymerization of CEVE with the styrene derivatives was much greater than that in the mutual copolymerization between
the homologues of vinyl ethers or styrene derivatives. When nitroethane was used as a solvent, not only the polarity but also the nucleophilicity influenced the copolymer composition. The results were discussed by two energies, E'' and E_{rs}, which are measures of complex formation between monomer and carbocation, and stabilization energy in the transition state, respectively.

PART II Substituent Effect in Cationic Polymerization of Vinyl Ethers and Styrenes

Chapter 4 Effect of S-Substituents on Reactivity

In order to know the effect of S-methyl substitution, cationic copolymerizations of isobutyl vinyl ether (IBVE) with isobutyl propenyl ether (IBPE) and of pMOS with anethole were performed. The changes in relative reactivity with two different solvents, catalysts, or temperatures were examined. The order of reactivity was generally as follows: cis-IBPE > IBVE > trans-IBPE, and pMOS > trans-anethole > cis-anethole. In a more polar solvent, by a stronger catalyst and/or at a higher temperature, the reactivities of both of the three monomers became close to each other. The results were interpreted in terms of "reduction of selectivity" and "localization of charge".

Chapter 5 Effect of α-Substituents on Reactivity

To gain a knowledge of the cationic polymerizability of α,α-disubstituted ethylenes, homopolymerization of α-substituted vinyl ether and styrene, and also copolymerization with the corresponding α-unsubstituted monomers were carried out.
Methyl, ethyl, ethoxy and phenyl groups were introduced as α-substituent. Ethyl α-methylvinyl ether and α-methylstyrene produced homopolymers but ethyl α-ethylvinyl ether, α-ethylstyrene, α-ethoxystyrene did not. In the copolymerization, all of these α,α-disubstituted monomers were found to have greater reactivities for unsubstituted propagating end than the corresponding unsubstituted monomers do. It was concluded that α,α-disubstituted ethylene suffers steric hindrance in cationic polymerization more than the corresponding α,β-disubstituted one does, contrary to radical polymerization. The change in reactivity of vinyl compounds with α-methyl substitution in electrophilic reactions was discussed.

Chapter 6 Reactivity of 2-Alkoxybutadienes

Molecular structure, molecular properties and cationic polymerizability of 2-alkoxybutadienes, which are α-vinyl-substituted vinyl ethers, were investigated. Methoxy-, ethoxy-, isopropoxy-, tert-butoxy- and 2-chloroethoxybutadienes were synthesized. Uv, ir and nmr spectra of the 2-alkoxybutadienes except 2-(tert-butoxy)butadiene showed that the diene and the alkoxy group are coplanar. It was, however, suggested that 2-(tert-butoxy)butadiene cannot take a planar conformation owing to steric hindrance. Cationic homopolymerization of 2-ethoxybutadiene resulted principally into the formation of a methanol-soluble oligomer. The relative reactivities of the 2-alkoxybutadienes against the ethyl vinyl ether propagating end were determined by the copolymerization with ethyl vinyl ether, and the following order was obtained: isopropoxy > ethoxy > 2-chloroethoxy > methoxy > t-butoxybutadiene.
Chapter 7 Comparison of Polar Bromination with Cationic Polymerization

The relative reactivity of various alkyl vinyl ethers and styrenes in polar bromination reaction was studied to compare with their relative reactivity in cationic polymerization. α-Methyl-substituted vinyl ether and styrene were 3-12 times as reactive as unsubstituted compounds. On the other hand, some β-methyl-substituted derivatives were more reactive and others are less reactive than unsubstituted ones. Though the bromine concentration at reaction was considerably low (≈10^{-3} - 10^{-2} mol/l), the change in reactivity with introduction of a substituent was not so large as to suggest that the intermediate species is a carbocation whose charge is localized on α-carbon. The substituent effect of the bromination reaction was very similar to cationic polymerization among many electrophilic addition reactions.

PART III Structure and Reactivity of Monomers in Cationic Polymerization

Chapter 8 Theoretical Consideration on the Reactivity of Vinyl Ethers and β-Substituted Vinyl Ethers

To elucidate the propagation mechanism in the cationic polymerization of vinyl ethers and β-substituted vinyl ethers, the electron distribution in these monomers was computed by the extended Hückel method. Propylene and styrene derivatives were also studied for comparison with the vinyl ether derivatives. Attempts were made to explain the experimental results by
various calculated reactivity indices. With the unsaturated hydrocarbons, the reactivity indices on the β-carbon parallel with the relative reactivity in the cationic polymerization or oligomerization. This agreement suggests that the transition state for the rate-determining step of the propagation reaction is represented by a model in which the carbocation interacts mainly with the β-carbon of a monomer. On the other hand, the effect of β-alkyl or alkoxy groups on the reactivity of vinyl ethers could not be explained by the model in which the carbocation interacts with an olefinic carbon or an ether oxygen, or with the two atoms. A model was proposed on the basis of the electronic stabilization energy due to the delocalization from the occupied orbital of a monomer to the vacant orbital of a carbocation. The model can explain reasonably the relative reactivity of vinyl ethers and β-substituted vinyl ethers observed in the cationic copolymerization catalyzed by BF_3OEt_2.

Chapter 9 Molecular Properties and Reactivity of Vinyl Ethers and Styrene Derivatives

The measurement of 13C nmr spectrum and the calculation of electron density of vinyl ethers and styrene derivatives(141,688),(898,960) have been carried out so as to study the relationships between molecular properties of monomer and reactivity in cationic polymerization. Methyl substitution on vinyl β-carbon induced an upfield shift in 13C nmr spectrum and an increase in electron density of α-carbon, and vice versa for β-carbon. α-Methyl substitution functioned just in the opposite way. Chemical shifts of α- and β-carbons in alkyl vinyl ethers could not be
simply correlated with their electron densities. The reac-
tivities of para-substituted styrenes were explained con-
sistently by each of electron density, chemical shift and
ionization potential. Propagation reaction was divided into
two stages, π-complex formation and bond formation, and it was
concluded that both stages are concerned with propagation.
The transition state of propagation reaction is inferred to be
an unsymmetrical α,β-type complex.

PART IV Salt Effect on Polymerization rate and on Molecular
Weight Distribution of the Polymer

Chapter 10 Salt Effect in the Polymerization by Various
Catalysts

The effects of salts were examined in cationic polymerization
of vinyl compounds. Cationic polymerization of styrene
was carried out at 0°C, with acetyl perchlorate, stannic
chloride, SnCl₄·TCA and BF₃OEt₂ as catalyst. Tetra-n-butyl-
ammonium perchlorate (n-Bu₄NClO₄), fluoroborate (n-Bu₄NBF₄) and
iodide (n-Bu₄NI) were used as salt. The presence of small
amount of the salts changed both the polymerization rate and
the molecular weight of polymer appreciably. The consideration
of various effects led to the conclusion that the results are
explicable principally on the basis of counterion exchange.
To confirm this, the copolymerization of CEVE with αMS was
investigated at -78°C. When the perchlorate salt was added,
the copolymer composition curve catalyzed by stannic chloride
shifted and coincided with that catalyzed by acetyl perchlorate.
This result supports the concept of counterion exchange.
Chapter 11 Salt Effect in the Polymerization by Iodine

The cationic polymerization of CEVE and pMOS was studied in the presence of tetra-n-butylammonium salts such as n-Bu4NC104, n-Bu4NBF4, and n-Bu4NI. The polymerization was carried out using iodine as catalyst at 0°C in methylene chloride, benzene-methylene chloride mixture, and nitrobenzene. The presence of n-Bu4NC104 or n-Bu4NBF4 brought about an acceleration in reaction rate and an increase in the molecular weight of the polymer. As a notable example, the polymerization rate in the presence of n-Bu4NC104 was 3x10^4 times faster than in the absence of the salt. The results of the experiment were explained by the presence of more than one counterion in the polymerization systems.

Chapter 12 Molecular Weight Distribution of Polystyrene Formed in Two-counterion Systems

To know the tightness of the bond between a propagating carbocation and counterion, polymerization of styrene was carried out in the presence of two kinds of catalysts or under the coexistence of a catalyst and a salt. The molecular weight distribution of the polystyrene was examined by gel permeation chromatography. It was found that molecular weight distribution of the polystyrene obtained in some solvents consisted of two peaks. Furthermore, acetyl perchlorate was proved to give, for itself, a polystyrene with bimodal molecular weight distribution. On the basis of these results, it was concluded that the bond of a carbocation and counterion is so tight under some conditions that exchange of counterion may not occur during propagation.
LIST OF PUBLICATIONS

Chapter 1 Polymer J., 1, 19 (1970).
Chapter 2 Polymer J., 2, 29 (1971).
Chapter 6 To be published.
Chapter 11 Polymer J., 3, 724 (1972).

Other publications not transcribed to the present thesis:

Cationic Copolymerization of 3,3-Bis(chloromethyl)oxetane with Vinyl Compounds

A Simple Index of Copolymerizability

ACKNOWLEDGEMENTS

The present thesis is a collection of the author's studies which were carried out in Department of Polymer Chemistry, Faculty of Engineering, Kyoto University during the years 1966 to 1972.

The author would like to express his deepest gratitude to Professor Seizo Okamura and Professor Toshinobu Higashimura for their continuous guidance and encouragement throughout the work.

Grateful acknowledgement is made to Dr. Yukio Imanishi for his intimate guidance and stimulating discussions, and also to Professor Teijiro Yonezawa and Dr. Isao Morishima for their enlightening guidance as to molecular orbital calculation and nmr spectroscopy.

The author is indebted also to Messrs. Kazumitsu Kawamura and Yoshiro Miki for their active collaboration in experiments.

Finally the author gratefully acknowledges the hearty encouragement given by his mother Chikako Masuda during the course of studies.

February, 1973

Toshio Masuda