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Chapter I. Intrcduction

when & particle travels through matter it successively chang®
the direction of motion colliding with medium atonms, This phe-
nomenon is called multinle scatterins, which is dominsted in the
case of charged particle of lMeV energy region by Coulomb field
produced by the projectile and medium nucleus together with screcn-—
ing electrons, Therefore, much knowledge about screened Coulomt
field is obtained from multiple scattering of charged particles,

High-energy end small-angle multiple scattering on moderately
thin foil is especially simple from both theoretical and experi-
mental points of view. For example, major difficulties in the
theoretical treatment are reduced by the use of small-angle approx=-
imation. Since the yield of the scattered particles is dominant
in the forward direction, experiment on small-angle multiple
scattering has much advantage, In this case, outgoing particles
make a Gaussian-like angular distribution whose center is the
initial beam direction.
Observation of multiple scattering began when Hutherfordl)
investigated this phenomenon in the first decade of this century,
though there was no concept of "nucleus'",. In & few years after

)

the discovery of nucleus by Hutherford,2 some experiments on
multiple scattering were carried out (e.g. by Mayer3) by means of
alpha-particles from polonium).

Bohr4) suggested an intimate relationship between stopping
phenomena and multiple scattering. A more detailed theory of

multiple scattering was first given by williamss'sj*

by fitting
together a Gaussian curve for the central part of the angular

distribution and a single scattering tail, His theory was greatly



7,8)

improved by Goudsmit and Saunderson, Moliéreg’lo) and Snyder

11) The last three theories were closely related to

and Scott.
one another, and the relation was discussed in some detail by
Lewislz) and Bethe.l3) Among them, Moliére’s theory is most
useful because of its analytic and simple feature, but it is not
applicable in the region of small mean number of scatterings
(plural scattering). Therefore, Keil et al.l4) developed the
theory for this region.

Nigam, Sundaresan and Wu (NSW)L?) obtained their multiple
scattering theory using Born approximation to the second order
and it has been developed and numerically calculated by Marion
and Zimmerman.l6)

Recently Meyerl7) has derived a new angular distribution func-
tion adopting a classical single-scattering theory proposed by
Lindhard, Nielsen and Scharff (LNS).lS)

Many experiments on multiple scattering of electrons or posi-
trons have been done (e.g. refs,19-21) for the adequacy of above
theories to be examined, while those of protons or heavier ions
are not so many.

One of the merits of lolieére's theory, as compared with NSW’s
theory, is that it is applicable to the cases of fairly large a
values, where a is the Born parameter defined in the next chapter.

22) 16

The applicability has been demonstrated by Simon using 0 and

A0y ions of 10 MeV/amu in energy and by Lassen and Ohrt23) with

high energy (5 lMeV/amu) alpha particles. On the other hand,
Bernhard et a1.24) and Andersen and Bwttiger25) have experimented
on low energy heavy ions and found their results consistent with
Meyer's theory, The observations on intermediate energy particles
26) 27—29) and

have been reported by Bichsel, Bednyakov et al.



author’s group.30’3l)

We have carried out the experiments on multiple scattering of
eV protons and nitrogen ions upon aluminium, copper, silver and
gold foils.30’3l) One of the main ogjects of the present paper
is to discuss the applicability of the theories by comparing them
with our data, Especially, Moliére’s original theory is recon-
sidered by taking the advanced Thomas-Fermi radius into account.

We have also simulated several multiple scattering processes

32)

using Monte-Carlo method. The procedure and the results are
2lso described in the present report.

Since the theories of multiple scattering have some complicated
notations and expressions, they are outlined briefly in Chapter II.

The present experimental method and the results are described in

Chapter III,. The procedure of simulation and the results are

dealt with in Chapter IV, 1In Chapter V, this report is summarized

and problems left are pointed out.

* Though the perers of (illiams arpeared earlier than the paner

oi Lohr, tha theory was —ilained luter thon tiie L eatment of Bob



Chapter II. Theories

§2-1. Introduction

Nilliamss’6) first dealt with multiple-scattering theory in
some detail. A little later, the theory was greatly improved by
Goudsmit and Saunderson,T’a) who exploited the addition theorem
for epherical harmonics and evaluated the sum over the orders of
scattering for arbitrarily large angles using Legendre polynomial
expansions. However, their theory has difficulties that related
observations are only possible in track-visualization devices and
that the presence of boundaries is not considered,

Snyder and Scottll) derived their distribution function solving
numerically the Boltzmann transport equation. This is, however,

10) summation method, and the

equivalent to Wentzeld3)-Molidre
latter is simpler, lMoliére’s theory is most useful in the above
theories when a target of foil is assumed, but it is not applicable
to the case of small mean number of scatterings as discussed in
a later section, Keil et al.l4) modified the theory in this
region,

Nigam et al, (Nsw)15) developed the theory using Born approxi-
mation to the second order. The theory is, however, not appli-
cable to our cases, as described in the next chapter,

Meyer,l7)

adopting the single scattering formula developed by
Lindhard et al, (LNS),lS) derived a new formula for maltiple-
scattering angular distribution. It has been found consistent
with the experiments on low energy heavy ions.24’25)

In this chapter, the theories of Molidre and Keil et al., are

described in some detail, and the theories of NS# and Meyer briefly,

Further details of the theories up to 1963 are given in a review



article by Scott.34) Some explanations about notations of angles
and‘distribution functions and about small angle approximation
would be necessary here.

The spatial angle 6, the projected angles ¢x and Qy and the
azimuth B are defined as shown in Fig.2-1. We deal with both the
spatial-angle distribution function, F(6,8,t), and the projected-
angle function, f(%,t). These are based on the single scattering
function, W(e,t), where t is the foil thickness measured along the
initial direction and @ is the angle of the track when projected
on a given plane containing the original direction (e.g. @x in
Fig.2-1),

The small angle approximetion means
(a) replacing sin® by © and cos® by 1,

(b) replacing the relations for the projected angle593=9§ and ¢y’

tan Qﬁx= tan® cosp

tan Qﬁy:tane sinp , (2-1-1)
by
@= @ =6cosp
Q%:Bsinﬁ . (2-1-2)

and
(¢) replacing the upper limit n for © and the limits +n for @ by
the values oo and +o00, respectively.

This last substitution involves the assumption that all the func-
tions of 6 and @, over which integrals are taken, fall off suffi-
ciently rapidly for large arguments,

We hereafter treat only the cases of amorphous foils and no
polarization, and so the dependence of F and f on B may be neglected..
The functions F and f are normalized, with the use of above approx-

imations and assumptions, according to



2n[ F(e,t)ede=1 , (2~1~3)
o}
fmf(¢,t)d¢=l : (2-1-4)
o]

If @ is chosen for @, the relation between F and f becomes

f(szs,t)=2KF[(¢2+ ;zsy?)l/2 ,t] 5%, . (2-1-5)

For the probability of one scattering occurring in dt at t

through an angle between X and X+dX, we use the notation ZrXdX

X . (s,t)dt. this quantity is related to & differential cross
section 2ro(X,t)XdX by
a(X,t)dt=N(t)o(X,t)dt , (2-1-6)

where N(t) represents the number of independent scattering atoms
per unit volume of foil in the neighbourhood of *t, SJince there
is no theory including energy loss process and since we use
homogenious foils hereafter, the dependence of W, o and N on t can
be neglected,

Since "wentzel’s summation method"BB) is used 1in all the theo-
ries discussed in the following sections, its final formulae would
be necessary to be precented. For the spatial-angle distribution

we introduce a Hankel transform of order zero multiplied by 2n :
. oo
F(E.t)=?nf J,(Ee)F(e,t)ede . (2-1-7)
0
On the other hand, the zbsolute value of Fourier transform,

£ ,t)= IWCOSCEQ)f(Q’,t)dG’ ' (2-1-8)

0
is used for the projected angle distribution.  Finally, by means

of the summation method, F(& ,t) becomes

FE,t)=exn { Q(E,1) - (1)} (2-1-9)



@R(E,t)=2nt IMJO( E XWX )Xdn (2-1-10)
G
Q, (£)=Q (0, t)=2nt jw W(X)xax . (2-1-11)
0

The expression for f(g,t) is obtained similarly, and the result
is guite the same,

The scattering of a fast charged particle by an atom is dominated
by a nmodified form of Rutherford law. The law yields, for the
scattering of a non-relativistic particle of charge ze by a nucleus

of charge Ze into the angular range X to X+dX, the cross section

2 2

o5 (X)2nsinXaX= (z2e’/E) — 2nsinkdx , {2-1-12)
[2sin(x/2)]

where E is the kinetic energy of the particle. When only small

angles are involved, we have for the single-scattering probability
WR(X) (the variable t is omitted here from the reason stated
before),
e (0)=Nog (X )=aNa?/ (5 4) (2-1-13)
where the so-called Born parameter, «, is defined by
a=zZe2/(hv) ; (2-1-14)

k and v being the wave number and the velocity of scattered
particle, respectively.

Since the screening effect of atomic electrons on nuclear
Coulomb field is neglected in (2-1-13), it should be modified.
Usually this correction factor (screening factor) is written by

q(Xx), and (2-1-13) is modified as

W(X}=[4Na2/(kgx4)]-q(x) 3 (2-1-15)

The screening factor goes to zero as X — 0 (small angles of



scattering occur classically for passage of the scattering parti-
cle far from the nucleus where the screening is most effective)

and goes to 1 for large angles (where the screening effect is

negligible),

§2-2, Theory of Moliere

Moiiéreg) proposed an interaction votential of

.
Sorj= 228 1o, 10exp(- £:07 .0, 55exu(- _Légﬁ_)+o,35exp(— OQBT )}
&y TR TF

(2-2-1)
by fitting carefully to the Thomas-Fermi function, where Baqp is
the Thomas-Fermi radius. The radius was given 1n his original

paper by

_ -1/3
a,5=0.8853a 2 g (2-2-2)

where a, is the first Bohr radius of hydrogen atom, thr4}
suggested another type of the radius taking account of both pro-
Jectile and the target atom, and it was corrected by multiplying

a constant factor by LNS. )  The radius is

aTF=O.885330(z2/3+22/3)“1/2 , (2-2-3)

which is more appropriate than (2-2-2) for the cases of our
experiment, as discussed in the next chapter.

Moliére derived a differential single-scattering cross section
using (2-2-1) and applying the first Born approximation and WKB-
type approximation. Finally he derived a simple functional form
for q(Xx);

2
a()=xY/ (% 5, (2~2-4)%

where X, is the so-called "Moliére’s screening angle" given by



5 1/2
Xa=xc(l.13+3.?6a ) (2-2-5)

with XO defined by

K= (kap) ™t . (2-2-6)

If the combination of (2-1-15) and (2-2-4) is substituted into

(2-1-9)~(2-1-11) and careful approximations are used, we have

QE, t)- Q (%)= % xcg £%1n ( — (2-2-7)

where e and lny are the base of natural logarithums and Euler’s

constant, respectively. The characteristic (or critical) angle,
xc, is obtained from
1/2
XC=(ne43222NtE—2) ; (2-2-8)

which has & meaning that the probability of getting one scattering
in length t of angle Xc or greater is just unity.

Since f(E,t) of (2-1-9) has been obtained already, the multiple
scattering distribution is derived from its inverse Hankel or

Fourier transform (cf. (2-1-7) and (2-1-8)). Moliérelo)

expanded
the integrand in the inverse transform carefully, and obtained
the distribution functions. Here, he introduced the reduced

angular variables J and ¢ given by
9=0/(x B?) , (2-2-9)
¢ = (x 8Y2) , (2-2-10)
together with the normalized "reduced" distribution functions

2nP_ 4 (9, t)9a9=2xF (0, t)edo (2-2-11)

freq(Prt)aP=F(P,t)dd . (2-2-12)
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Then we have for the spatial distribution
i 2 2 2
1 T VR, . - N
F]:'ec't(a’t)=-ZT"‘L'EL'F Eﬁ—lnd + 3l 25 117 )7+
2
xeXp(—é%JJo(ﬁq)qdq

i} 2y, 1 2y, _1 92y, ..
= E[Do(l,l,—ﬁ >+ § Dy(2,1,-9%)+ poe D,y(3,1,-9%)+ ] )

(2=2-13)

and for the projected distribution, we have

o |7 2. 2% 1, 7%, n® 2
fred(?,t)': x o[l+ ﬁlnz—-+ :—2'(—4—8—]_11 A )T+ e

2
xexp(—%}cos(‘f*{)d??
1 2 1 1 2
= %[DO( %r 5 = )+ B Dl( %‘1 51 -47)

+——l-—2-D
2B

o

o0 % %, —9% )4 ...} . (2-2-14)

Here, Di’s are Dalitz functions as tabulated by Scott,34) and B

is & parameter used for the expansion of Moliére given by the

transcendental equation
B=1nB+1n( @ e/v°) . (2-2-15)
The gquantity Qo is defined by
2 2 :
Qo-xc /xa , (2-2-16)
which is called the "effective" mean number of scatterings in the
* %
foil.
It should be noted that Qo is proportional to foil thickness
2
and is a very slowly varying function of energy. If a >»1,13

/3.76 holds, the term 1,13 in (2-2-5) can be neglected and X, is



11

nearly proportional to E-l. On the other hand, XC is clearly

1

proportional to E ~ (ef, (2-2-8)).  Then, Q% is almost independ-

. * %%
ent of E when o is large enough.

* Though the formula is somewhat different from the one which was
explicitly used by Moliére in the derivation of multiple scattering
distribution, Scott34) verified that the use of (2-2-4) leads to
the same result (of (2-2-7)) as Moliére’s.

*% The notation C?O is not equal to C?O(t) in (2-1-11) and
Moliére called this ratio (?b, but Scott34) used G?O Foxr it.

¥%x he values of a in our experiment range from 1.71 to 215

(cf. Tables I and II).

§2-3, Theory of Keil-Zeitler-Zinn

Moliére’s theory described in the preceding section is very
ingenious and supported by many experimental results, However,
since it uses the expansion of the integrand of (2-2-13) and
(2-2-14) in powers of 1/B, it is not applicable to the cases of
small B, i.e. of small Q . Keil et 21.14) nave made an alter-—
nate and numerical calculation for 0.2 gczjczm (plural scattering),
which is introduced in this section.*

oince the parameter B i1s not used in this theory, & new angular

variable SK other than (2-2-9) should be used, which is given by
3K=9/Xa ; (2-3-1)
Using this new variable, we obtain, instead of (2-2-13), only for

integral values of (?Ozm,

F(9y,m)= J; F(y)"s,(Oy)vay , (2-3-2)
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where we use the argument m in place of t in (2-2-13). The

transform F(y) for m=l is given by

F(y)=exp[yKl(y)-l] ’ {2-3-3)

where Kl is the modified Bessel function of the second kind,
The device used by Keil et al,, who followed Leisengang’s treat-
ment35) but used a computer, is to approximate F(y) to within

0.002 for all y by the formula

= -C Yy —CLYy
F(y)=e L(l+bje " 4bye ) (2-3~4)
with the coefficients
b= -0.388388 c,= 5.000 . (2-3-5)

The m’th power of (2-3-4) is then written out:

- Lo m fm m-K fr-k
F(y}nze " Z ( )blkexp(—kcly) Z ( )bznexp(_nCQY) ? (2"3_6)
k=o\k n=o0\ n

and use is made of Bessel function integral

= (0% 9, 2)™3/2 95 0
]rEXp(~qy)J0(8Ky)ydy= ! qAPaP: o 8]

° §(9 ) (o= 0) . (2-3-7)

Then we have

& m=k fm\/m-k -3/2
F(m.3K3=e = 2 2: ( )( )blkbgn(clk+02n)[(c1k+02n)2+ 3K2 ’ :

(2-3-8)
The term k=n=0 gives the contribution of the unscattered
particles exﬁ(—m)ﬁ(ﬂK), which we call "no scattering" term here-
after. Keil et al. made machine computations of the non-singular

part of the distribution G(SK,m), given by
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G(9psm)=F(9p,m) - e 8(I,) . (2-3~8)

The greatest error, of the order of 4%, occurs for m=20 and
ﬂK;O, which is due to the error remaining in the approximation
(2-3-4). Exact numerical calculation for 3K=D shows that for
m=20 the computations using (2-3-4) are high by 3.2%, whereas the
Molidre expansion gives results that are 4.3% too low,. Since
the errors in Moliére’s method decrease as S?o increases, and
those of Keil et 2l, increase, we see that §{fm:20 is a good
division point between the two methods.

The omission of the no scattering term in Keil et al.’s theory

is significant and it will be discussed in the following chapters.

¥ Since there appears no case of CQOQZBin the present report,

the case is eliminated here,

§2-4. Theory of Nigam-Sundaresan-Wu
NSW? s theorle) is scarcely used in the present paper, but it
is described here very briefly.

36) which uses the

NSW carefully examined the Dalitz formula
Born approximation to the second order, and got an expression for

a(X) valid for all X,
Q(X)=X4(X2+Xu2)—2 [l—ﬁ2(1+an)sinz(X/2)+2aXu(xu2+x2}/(4xu2+x2)
+ %aﬁ2(xu2+4sin2(x/2)ﬂ cosec(x/2)tan-l(sin(X/2)/Xp) ;
(2-4-1)"
where B=v/c, ¢ being the velocity of light, and Xp is given by

><v‘=u>(0 . (2-4-2)

Here NSW used the adjustable factor p=1,12 and 1.8, Then the
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theory gives a formula for Xa’

1/2
;2 2 —l—
Xa=Xu{l+4aXu[(l—ﬁ )11*1)(}l +0.2310+1,4488 ]} , (2-4-3)

instead of (2-2-5) of Moliere, Using (2-4-3), they derived their

distribution functions in a way similar to Moliére’s, Some cor-
rections for loliére’s theory were made also. The results are
so complicated that they are not written here. Further details

have been described by Scott.34)

One of the major differences between the theories of Moliere
and NS# exists in the magnitude of Xa' It is found easily, if
(2-4-3) is compared with (2-2-5), that Xa of ISW is nearly equal
to that of Moliére when « is very small, However, for large u
value, NSW’s Xa is much smaller than Moliere’s, and finally the
angular distribution of NS# becomes much broader than that of
ifoliere, This is an important point as discussed in the next

chapter.

* Small angle approximation is severely examined in their theory.

§2-5. Theory of Meyer
Though Moliére’s theory is applicable even to the cases of

fairly large a, there is a limitation of
X L1, (2-5-1)

as Scott34) has predicted. Meyerl7) established a theory appli-
cable to the cases of large a values, using LNS’s classical
single~-scattering theory.lg)

Single-scattering cross section is, in general, & function of

scattering angle X and reduced energy
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e=aTF/b 4 (2-5-2)
where

b—2zZeg(m +m, )/ (m,m v2) (2-5-3)

a 12 12
is the distance of closest approach in a classical sense written
in the center of mass system, where my and m, are the masses of
projectile and target atom, respectively. INS showed that this

dependence of the cross section on two variables can be reduced

in rather good approximation to a dependence on only one guantity
n= esin(x/2) . (2-5-4)

They obtained the differential scattering cross section in the

form of

8g dEla ) (2-5-5)

=na é
dan Bl 72

The function f(:?) was numerically calculated according to the
Thomas-Fermi model and given graphically and by a table. For

large values of 7 this function approaches the function
£.(n)=(29)7t, (2-5-6)

which corresponds to the Rutherford cross section (cf. the descrip
tion following (2-1-15)). Moliére’s cross section in this form

is represented by
2
£ )= 03/ {23 76/160 1)), (2-5-7)

where-it is assumed that a2§>l.l3/3.76 and the term 1.13 in
(2-2-5) is neglected, The above three functions are shown in
Fig.2-2.

The strong decrease of the scattering cross section of Moliere
with decreasing angle results in a finite value of total scatter-—

ing cross section. Consequently the number of collisions,
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encountered by a particle in Moliére's theory, is much smaller
than the number of atomic layers penetrated. The differential
cross section (2-5-5) calculated from classical mechanics, however,
results in a diverging total cross section which has to be cut off
on physical grounds.

Meyer assumed that each scattering center is effective within
a8 spherical volum= of radius F which is equal to half the dis-

tance of immediately neighbouring atoms of amorphous foilj;
=1 . *
r =N /3,5 (2-5-8)

The restriction to this volume results in a minimum scattering

angle 70 for single scattering, which is determined by

€

d o ,

d% dg =nr = . (2-5-9)
Mo

Then we have for the average number of collisions, m, suffered

by & particle penetrating & layer of thickness t,
2
m=nr Nt , (2-5-10)

assuming that the classical impact parameters are uniformly
distributed over the cross section nroz. The value of m is much
greater than that of GE of Moliére,

Using (2-5-5) and (2-1-9), we have for the spatial angle distri-

bution of multiple scattering in laboratory system

2 2
2 m,+m _ a _
P(F,0)= 5 1m22) fl(ﬁ,t)———?-g—fz(ﬂ,r) ,
0
(2-5-11)
where
fl(gfﬂ‘): jo exp[-zﬁ(z)]JO(gz)zdz (2_5_12)

and
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£,(9,7)= % L exp[-T A(2)] 7 (9 2)4°(2)zdz , (2-5-13)

~

both of which have been tabulated by Meyer. Here ¥ is Meyer’s

reduced angular variable given by

5— e § I!11+I]]2
- - m2 y (2_5”‘1‘)
and T is the reiduced thickness cefined by
T =ntqn Nt (2-5-15)
S TF v 3 Fy 2

which is numerically very close to Ca)of Moliére and the relation
T =3.76 Q /4 (2-5-16)

holds when a23>l.l3/3.76. The function A(z) in (2-5-12) and

(2-5-13) is obtained from

A(z)= i};%l[l—Jo(Z)r)]dq. (2=5-17)
()

The distribution (2-5-=11) is nearly equal to (2-2-13) of
Moliére for large T (.220) and becomes broader than the distri-

bution of Keil et @l, as T decredases,

* Rigorously, rO:n_]'N-l/3 should be used &s in ref.24, but the
second term in the brackets of (2-5-11) is so small that the use

of (2-5-8) causes little error.
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Chapter III. Experiments

§3-1. Arrangement and Measuring System

The schematic view of the present experimental arrangement
and the block diagram of measuring system are shown in Figs.3-1
and 3-2, respectively.

Protons or nitrogen ions extracted from a PIG type lon source
were accelerated by a2 4MV Van de Graaff accelerator of Kyoto
University which had been constructed in 1969, The ion beam
was deflected and energy-analysed by a 90O magnet and introduced
into a collimation system. The ion energy can be determined
within an accuracy of about 5keV by an NVR measurement of the
analyser magnetic field.

The collimation system was arranged to measure correctly the
spatial-angle distribution. Three longitudinal slits having
movable knife edges and with the length of étmm were used. Two
of them (S-1 and 5-3) were placed vertically, while one (5-2)
horizontally, each distance being S00mm, Thus a well collimated
lon beam spot of about 0.3mm x0.3mm in size was obtained, which
was clearly seen on a fluorescent screen placed behind.

Moreover, we could control the counting rate of the detector 53D,
prior to the experiment, by changing the slit widths a little.*

Just behind the slit 5-3, a foil exchanger was placed, on which
scattering foils were set, Techniques of foil preparation and
of thickness measurement are described in the next section.

To move the particle detector SSD (D) exactly on the line
passing the beam axis, two small concave cuts were made at the
end of the detector holder, If the straight beam travels through

the cuts, the detector slit of about O.2mmP would be correctly
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moved on the line,

The window slit of 2mm®@ was made in front of the monitor SSD
(k), which was fixed at a position where the counting rate was
adequate (usually 300~500 counts/sec). Thus for the scattered
ions, the ratio, D/M, of the count of detector (D) to that of
monitor (M) as a function of the detector position (i.e. of the
angle of the scattered particles) leads to the spatial angle
distrivution. The counting errors were less than 2x.

The straisht beam wag examired by removing the scattering foil
and using the detector SSD also. It was always 0.2~0.3mm in
size** and no appreciable scatterings caused by slit edges were
found. During the experiment, ernergy spectrum of the beam after
the fcil was freguently checked and measured by nesns of the multi-
channel pulse-height analyser, Moreover, the counting rates of
D and M were always checked ty the use of @« two-nen recorder
connected with the rete meters. '

The fecil exchanger and detector- and monitor-USD were arranged
in & scettering chamber, the veacuum ir which wis meintained at
btetter than,q.x10_6 mmHg The chamber wag arrunged so that we
could measure correctly the angular distribution up to about .15

radians,

* The size of the struight beam spot during the exveriment on
rultiple scattering ie expected to be smaller than O.3mm x 0, 3mm,
tecause we usually reduced the width of slits, efter seeing the
spot, to get an appropriate counting rate.

*% The accuracy of the measurement of straight beam width wes
not good, because the window before the detector SSD was as large

as 0.2mm@ , &s described ahove,
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§3-2, TFoils

Preparation of foil and measurement of its thickness are very
important to the experiment on multiple scattering. The present
method and technique are described in this section, A number of

methods have been reviewed in refs.37 and 38.

(i) Preparation of thin and self-supporting foils

The foils were produced by means ol vacuum evaporation. The
arrangement is schematically shown in Fig,3-3.

Grains or wires of metallic material of high purity were heated
on a tungsten boat. Ne determined the distance between the glass
slide to be deposited and the source to be 307mm in order to have
good uniformity of film, The slide was 20mm X 50mm in size, which
had been cleaned carefully by the use of cleanser, water, distilled
water and ethyl alcohol, This cleaning procedure is necessary to
obtain good quality of foil, In the course of evaporation, the
thickness of the deposited film was always monitored by means of
gquartz crystal method. The foil thickness measurement is de-
scribed in the next subsection,

csmall amount of potassium chloride (kKCl) was deposited on the
slide before the deposition of desired source material so that
the removal of foil from the glass might be easy. The vacuum in
the evaporation chamber was maintained at better than 1.5 >'<lO_5
mmHg even in the course of evaporation.

After the vacuum evaporation, the glass coated by KCl and
source material was immersed in distilled water diagonally,.

First, KCl melts, and then the foil floats on the water surface,
Since this method takes advantage of the surface tension of water

to pull the film awey from the glass, sufficient time must be
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allowed to permit these forces to act efifectively. Before this
procedure, the film should be cut by knife into pieces of desired
area, The pieces.are seperated from one another on the water
surface, In the case of very thin foil, the surface tension of
water is sometimes too strong for the film to be unbroken. In
such a case, 3 small amount of ethyl alcohol should be added in
the water,

Each piece of foil was removed from the water by picking it
up with aluminium or copper frame having a hole of about 6mm@ ,
Care should be taken to remove sharp edges on the frame which may

cut the film as it stretches somewhat upcn drying.

(ii) Measurement of foil thickness

Accurate measurement of foil thickness is very important for
multiple scattering experiment as we have seen in Chap,.II.

Foil thickness was monitored and measured by means of guartz
crystal method in the course of evaporation, However, this
method has a disadvantage that the monitoring is done for the
deposited film on the quartz surface. lloreover, the crystal is
covered with conductive layer prior to the evaporation, and this
may influence the accuracy of measurement,. Therefore we calibrate
the quartz oscillator by means of muliiple-beam interferometer
(MBI).

The results obtained from above two methods are compared in
Fig.3-4, from which we find that values from quartz crystal method
are proportional to those from LEI. In the quartz crystal method,
the increase in frequency during the deposition, Af (kHz), is
proportional to the foil thickness pt (ug.cm_z). Referring to

the specification of our equipment, the relation
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pt= 20ec4f (3-2-1)
exists for all materials, where c is a constant, We can conclude
from Fig.3-4 that different source elements have'slightly different
values of ¢ for the same thickness in pg-cm“E, The value for
each element is represented in the figure,

On the other hand, we tried to calibrate the thickness by weigh-
ing method also, but the accurate measurement of the weight and
area of very light foil was so difficult that we could not do.

The gross uniformity of foil was also examined carefully by MBI

method and was found satisfactory.

(iii) Energy loss

Before multiple-scattering experiment, energy loss of protons
or nitrogen ions in the foil was measured for the purpose of con-
firming the foil thickness and determining the average energy in
the foil, Here, the average beam energy, E, in laboratory system
is simply given by

B=(E;+Bp)/2 , (3-2-2)

where Ei and Ef are the initial energy and the energy after pass-
ing through the foil, respectively. The resultant values of
stopping power are shown in Fig.3-5 (for protons) and Fig,3-6
(for nitrogen ions) together with other authors’ curves.

Northecliffe and Schilling39) have tabulated the electronic stopp-
ing power for representative ions in different material media.
The tables are based on an investigation of the systematic relation-
ships between many observed data, guided by simple theoretical ex-
pectation and extrapolated into regions where no measurements have
been made, Unfortunately they did not tabulate the values of cop-

per medium either for protons or for nitrogen ions. Therefore
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we referred to a report of Allison and Warshawdo) for protons,
For nitrogen ions on copper, we got the curve by means of inter-
polation of the table of Northcliffe and Schilling.

In the figures, it seems that our data for aluminium, silver
and gold are in good accordance with the curves from the reports
of other authors in spite of some scattering caused by experimen-
tal errors.* However, the experimental values of stopping power
of copper (for both protons and nitrogen ions) deviate a little
from those of other authors. One may think that this is because
the calibration factor ¢ (=1.32) of (3-2-1) for copper is extraor-
dinarily small compared with the average value (1.37), but the
factor from our measurement seems to be adequate if we judge from
multiple-scattering data discussed in later sections, Foreover,
even if we use the average value of c¢, still the values of the
stopping power of copper are larger than those from other authors.

Then we use c=1.32 for copper hereafter.

¥ Experimental values of stopping power are not so accurate, since

the energy loss in the foil is fairly small in the present cases.

§3-3. Angular Distributions

Multiple-scattering spatial-angle distributions of protons
(04 ~1.5MeV) and nitrogen ions (l.3~ 4.5NeV) on aluminium, copper,
silver and gold foils have been measured. The data for protons
and nitrogen ions are listed in Tables I and II, respectively.
The values of a, X and CQO in the tables are calculated according
to lMoliére’s method with (2-2-3). The average energy is obtained
from (3-2-2). The foil thickness pt is written in pg-cm_z units,

The values of F(0), 61/2 and F(291/2)/F(0) experimentally obtained
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are also tabulated, where 91/2 means the HWHM of distribution.
The typical angular distributions of multiple scattering are
shown in Figs.3-7~3-9 together with theoretical curves. Here,
they are normalized according to (2-1-3).
Figure 3-7 shows the result of 1l.45MeV protons on &n aluminiuvm
foil of 562pg-cm“2 thick, From thie figure, we find that the
anzular distriku.ion according to Moliére’s theory with the use

of of (2-2-3) agrees fairly well with the experimental result,

&oF
On the other hand, both the distributions according to ESiW’s theory
(with p=1.12 and p=1.8) are much broader than the observed distri-
bution.

As described in 82-4, NSw’s X, 18 numerically close to Moliére’s
when a &1 (cf, (2-4-3) and (2-2-5)). However, NSwW’s X, Pecomes
much smaller than Moliére’s Xa &s a lncreases, and consequently
the difference between the distributions according to the two
theories becomes large as a 1ncreases, Though the o value of
ion-atom conbination of Fic,3-7 is the smellest in our exneriment
(ef. Tables I and II), still the difference is fairly large,

A few parameters of lolidre and of RS54 in thieg cese are tabu-
lated and compared in Table III. N5w’s Q% and B are larger
than those of liocliére because of smaller Xu value, @and conseguently
kow’s distribution becomes broader than Molidre’s.

From what described so far, we deduce that the angular distri-
bution of KuW will become much broader than that of Moliére in
the case of larger a. In fact, it is clearly seen in Fig.3-8
and Table IV. Figure 3-8 shows the angular distribution of 4,18
eV nitrogen ions scattered from an aluminium foil of ll&pg-cm_z,
In this case, the distribution according to NS#’s theory is

extremely broader than the one according to holiére'’s theory ang
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the latter theory is preferable, We conclude, as Simonzz) has
already predicted, that the theory of NSW cannot be applied to
the case of large a value,

The vealue of Qg in the case of Fig.3-8 is 21.1 which is close
to the boundary Va%ue ( Q0=2O) between the regions of applicability
for the theories of Noliére and Keil et al. Then the two theories
are compared in this figure, and the description following (2-3-9)
is confirmed here,

Figure 3-9(A) shows the angular distribution of 1.,39NeV nitro-
gen ions scattered from éluminium foil of 90.9pg.cm—2. Here,

Keil et al.’s theory is applied* (with Lagrange interpolation**
about QO) because of small Qo (=16.2), and the difference bet-
ween the distribution functions, as obtained using (2-2-2) and
(2-2-3), is shown, The Thomas-Fermi radius according to (2-2-3)
seems preferable. In our experiment, the difference between
(2-2-2) and (2-2-3) is greatest in the case of nitrogen ions on
aluminium because of the largest value of z/Z. Our data prefer
(2=2-3) to (2-2-2) in almost all the cases, though the difference
between them is swaller for the other ion-atom combinations,

The angular distribution of l.32MeV nitrogen ions scattered
from silver foil of 113pg.em_2 thick is shown in Fig.3-9(B).

Here, the curves according to Keil et al.’s theory and Meyer’s

are compared, Keil et al.’s calculation neglects the "no scatter-
ing" term described in §2-3, whereas the experimental distribution
for 905,5 should include an appreciable number of events classi-
fied to no scattering. Therefore, Keil et al.’s theory has

little meaning in this case of QO=2.78. On the other hand,
Meyer’s theory does not include the concept of no scattering as

seen from (2-5-10), and one may think that the theory of Meyer is
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applicable to the case of (2 £5. However, seeing Fig.3-9(B),
we find that the curve according to Meyer’s theory is too broad.
The angular distributions according to Meyer’s theory are in
good agreement with our observations when G%Avl5 (though the
figures are not shown in this report), but broader than the experi-
mental results in the region of (305;10. At least in the present
energy region, lMeyer’s prediction shows a deviation, which would
.be ascribed to the inadequate concept of classical orbit.
¥eil et al.’s distribution in Pig.3-9(B) seems to be a little
narrower than our experimental result, Inclusion of "no scatter-
ing" term into their formula would lead to still a narrower distri-
bution even if the angular spread of initial beam is taken into
account. This problem will be again discussed in the next sec-
tion.
In conclusion, the theory of lMoliére-Keil et al, explains the
present exmerimental results more satisfactorily thar the theories

of N5w and Meyer over the wide ranges of a @nd C?o.

* Rigorously, Keil et al,'’s distribution should be noted as G(9)
(cf. (2-3-9)), but the notation F(8) is used hereafter for con-
venience,

** Keil et al.’s table is given for integral values of Q% only,

as described in §2-3,

83-4. Comparison with Theories

In this section, we compare the exvmerimental results with the
theories of MNoliére and Keil et al. only, because the inadequeacy
of the theories of MSW and Meyer has been found in the preceding

section.



27

Since it is very laborious to compare the considerable amount
of data in Tables I and Il directly with theories as in the
preceding section, we take the typical values of F(O0), 91/2 and
F(281/2)/F(O). For the theoretical wvalue of 61/2, there is an

approximate formulg4l:34)

2 N
81/2 B= -0,146+1.799 log Gg . (3-4-1)

However, the errors in this approximation increase as ﬁ?o (i.e. B)
decreases. Then, the theoretical value of 31/2 was calculated
directly for each case by means of Lagrange interpolation method,

Though the ratios of above three values (F(0), 61/2 and
F(291/2)/F(O)) experimentally obtained to those from theories
have been arawn as functions of projectile energy for the purpose
of examiring energy dependence, no relationship was found. There- -
fore the figures are not shown in the present reporst. On the
other hand, we can see some dependence of &bove three values on
the mean number of scatterings in the foil ((30).

The relative value F(2el/2)/F(O) is a function of B (i.e. of
E?D) oniy, but F(0O) anad 91/2 are functions of B and X (i.e. func-
tions of foil thickness, beam energy, z, 2, etc.); F(0) and 91/2
cannot be expressed as functions of C}o only. Then, we take
the values of XaQF(O) and 81/2/Xa instead of F(0) and 91/2.

Substitution of (2-2-9) and (2-2-11) into (2-2-13) yields

F(O,t)= —2 D, 01,100 & 808,000 S Dl lslls ~ond
an B 2B
(3-4~2])
where the terms in the brackets are functions of B only, If we

combine (3-4-2) with (2-2-16), we know that XQQF(O) is a function

of C?O (i.e. of B) only. Since the relative shape of the distri-
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bution is determined by the terms in the brackets of (2-2-13)

(functions of B and ¥), we have a relation

91/2=X0. function of B (i.e. of (?O) (3-4-3)

remembering (2-2-9). Accordingly 81/2/Xa is universally expressed
as & function of Q?O.

Thus, we have found that XQZF(O), el/g/xa and F(291/2)/F(O)
are expressed by (?O only in Moliére’s theory. The same conclu-
sion can be drawn in the theory of Keil et al.,, if we examine
(2=3-8) and (2-3-1).

fxperimental values of X _°#(0), 61 /p/X, 80d F(20, /,)/F(0)
against QL are plotted 1in Figs,3-10~3-12, where theoretical
curves are drawn also.

Typical errors are shown by bars. They are due to (a) errors
in the measurement of foil thickness, energy and scattering
angles, (b) counting statistics (< 20), (¢) errors in the proce-
dure of normalization, (d) errors in reading 91/2 and F(Eel/z),
and so on. Errors due to (a) influence all the values of F(0),
91/2 and F(Eel/g)/F(O). Errors due to (b) are very small, since
we accumulated sufficient count during the experiment. Errors
due to (c) are serious for F(0Q). Values of 91/2 and F(291/2)/F(0)
are greatly affected by errors due to (d).

It should be noted that "no scattering" term is not included
in Keil et al.’s theory, as described in §2-3. Therefore, Keil
et al.’s curves in Figs,3-10~3-12 for very small C?O are drawn
only for reference.

Though the fresent experiment has been done using two kinds of
projectiles of different energies and foils of four elements, the
observed data in Figs,3-10 and 3-11 are closely distributed along

the theoretical curves., This means that the theories treat



29

multiple scattering fairly reasonably even in the region of large
o value and that the expression of (2-2-5) is appropriate enough.
However, if we examine Fig.3-11 carefully, we find a little devia-
tion of exverimental points of 91/2 from Keil et al,’s prediction
where QOSEO and slight deviation from Moliére’s curve where Qo
is large. It seems that Moliére’s theory is more appropriate
than Kell et al.’s theory where 5 QQOS 20, but the former theory
is mathematically invalid in this region as predicted in §2-3;
this becomes clear if we see Fig.3-12.

Though the experimental points of F(261/2)/F(0) in Fig.3-12
are considerably scattered probably because of reading errors,
the data evidently prefer Keil et al.’s theory for C?O less than
203 Gz=20 is the boundary value between the regions of applicahil-
ity for the two theories as pointed out in §2-3,

The observed points in Fig.3-12 are, in general, & little lower
than the curve from Keil et al.’s theory where C?05=2O and slightly
higher than that from Moliére’s theory where C?OZ:QO. This tend-
ency is considered to be an expanded one of Figlj—ll, which is
explained by the use of Fig.Z2-2,

Moliére'’s single-scattering cross section in Fig.2-2 seems to
be underestimated than the real one in the region of very small
angle, 1.e. an appropriate cut-off is made, Here, a little
overestimation is seen for intermediate scattering angle. The
cut—=off becomes significant in the case of small C?O —— the width
61/2 of the distribution is underestimated, and the curve of
F(281/2)/F(0) becomes higher than the observed noints. In the
region of large (20, this effect becomes very small comvnared with
the total multiple scattering deflection.

Moliére’s theory has mathematical velidity for large §?0, where



30

a considerable number of medium- to large-angle scatterings are
included. Since & small overestimation of the scattering cross
section is effective in the regiop of large Q%, the width is
estimated to be broader and the cﬁrve of F(Eel/z)/F(O) becomes &
little lower than the experimental points.

Experimental values of F(O), 61/2 and F(281/2)/F(O) are in
fairly good agreement with Keil et 2l.’s theory even in the region
of g%ﬁQB. However, this agreement is unexpected if we remember
that no scattering term is neglected in their theory. The nresent
author cennot explain this fact. Though the theoretical distri-
bution will tecome & little broader because o1 the angular spread
of initial beam and this effect is relatively large for very snall
QDO, it is not sufficient yet.

In order to compare the experimental results more clewrly with
theories, the ratios of experimental ?(0), 81/2 and F(zel/g)/F(O)
to theoretical values are plotted against G% in Figs.3-13~ 3-15.
Here, the values according to Moliére’s theory are used for C?O
>20 and those according to Keil et al, are used for ang 20,

In Fig.3-13, the points of F(0) are closely distributed around
unity for all QO. The points of 8, ,, in Fig.3-14 are & little
higher than unity where 5?05.20. The difference becomes lerger
as QL decreases (though this tendency was obscure in Fig.3-10),
and this is consistent with the explanation given before in this
section.

In Fig.3-15, we see the same tendency as in Fig,3-12 in spite
of fairly large dispersion, It should be noted that both the
theories of Moli8re and Keil et zl. are not so accurate in large

angle region because of the errors in small angle approximation,
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§3-5. Corrections for apg

Meyer and Kryge142) have proposed to determine the screening
radius Bnp from the results of multiple scattering experiment,
and they have given formulae for the calculation of the radius
from the values of F(0) and 91/2 using Meyer’s theory. Generally,

18)  ppe Thomas-Fermi

anp should be a function of z, Z and even E.
radius of (2-2-2) or (2-2-3) is a very rough estimation, since

the individual properties of the electronic shells are not account-
ed for.

Following their method, we tried to find the value of the radius
appropriate to each experiment, which we call a, hereafter,
However, since the present experimental results are in better
agreement with the theories of Moliére and Keil et al. than with
the theory of lMeyer, as described in §3-3, we calculated the values
using the former two theories, We also chose the values of F(0)

and € Since there is no convenient method to calculate the

1/2"
appropriate values of the screening radius from experimental F(0)
and 91/2 especially in the region of small QPO, we calculated

them using interpolation method. An example of the computational
programs (to obtain a,’s from experimental values of F(0O) and 61/2
according to Keil et al.’s theory) is shown in Appendix I,

The resultant values of ac/aTF against Qg, where agn is accord-
ing to (2-2-3), are plotted in Figs.3-16 and 3-17. In the figures,
the curves show the boundary values between the regions of
applicability for the theories of Moliére and Keil et al, If an
(?O‘value is calculated using a value of a, above the line, CPO
becomes larger than 20, and this means that the a, is in the region

of Moliére’s theory. Conversely, if the point of a, is below

the boundary curve, the a, value is considered to be subjected to
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Keil et al,’s theory.

The value of a, according to Keil et al.’s theory is larger
than that according to Moliére’s:theory, ag far as F(0) and 91/2
are concerned. Then there is a case in which the &, value from
Moliére’s theory is smaller than the boundary value and that from
Keil et al,’s theory is larger than the boundary value, In such
e case, we take the a, value which yields the §?O value nearer to

20-

ot
™
£_I

From these two figures, we find that the theory of Keil e

h

becomes invalid with the decrease in C?O. The tendencies o

ac/aTF from experimental F(0) and © are similar to each other,

1/2
and this is naturzal. This again confirms the explanation given
in the preceding section.

However, the present author considers that the screening radius
should not be a function of foil thickness (i.e. of QO), and the
dependence of a, on Q% meens that the method in this section is
not correct physically. If the value of the screening redius
increases, X becomes smaller (cf. (2-2-5) and (2-2-6)) and q(x)
of (2-2-4) (i.e. single-scattering cross section) becomes larger
on the whole though the relative increase is smaller in large
angle region in comparison with that in small angle region. AB
we have seen in this chapter, the cross secticn should be larger
in the small angle region and should be & little smaller in the
intermediately large angle region than that derived by WMoliére.

It is not the absolute value of the cross section but the shape
of it (ecf. Fig.2-2) that should be corrected.

The dependence of ac/aTF on ions and foil elements cannot he

seen from these figures.

We tried to calculate a,'s from the values of F(291/2)/F(0)
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too, but they are not shown in this report since the results are
scattered greatly and the theoretical approximation is not good

in the large angle region,

§3-6, Discussion

In this cheapter, multiple~scattering angular distributions
experimentally obfained have heen compared with theories. Our
data show fairly good agreement with Molidre-Keil et &l.’s theory
if the Thomas-fermi radius according to (2-2-3) is used, while
the theories of Meyer and NSW differ rather largely from our
results,

The use of (2-2-3) instead of (2-2-2) may be regarded as &
kind of mixture of the theories of Moliére and leyer. Eednyakov
et 31-29) have pointed out that the absence of a dependence on
the charge of the projectile in (2-2-2) iz & defect of Molidre’s
theory. Therefore they have used for calculation the effective
charge, z_re, of the particle from their own charge exchange
experiment instead of z, and we have also tried to use the similar
method.BO) However, this method seems to be not so meaningful
physically.

The theories of Moliére and Keil et al. deviate & little from
our experimental results, This seems to be attributable to the
underestimation (in small angle region) and the overestimation
(in intermediately large angle region) of sgingle-scattering cross
section,

Bichsel’s experimental results of protons of 0.6'~4.7M9V26)
agree fairly well with Moliére’s theory. In his experiment,

C?O’s are large. However, his results for B £1.5 WMeV give a

little narrower distriktutions than theoretical onesg, and this
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tendency is consistent with that of our results.

Bednyakov et a1.27’28) have reported their experimental results
of multiple scattering of low energy protons (40~ 200keV). The
angular distributions are a little narrower in the cases of carbons
and slightly narrower in the cases of heavier substances than those
from Moliére’s theory with anp of (2-2=2). They explained that
the discrepancy in the carbon case is a consequance of applying the
Thomas-Fermi model in the theory, and they employed the Hartree-
Fock model for proton-carbon potential. However, if Qg of
(2=2-3) is used instead of (2-2-2), Moliére’s distributions fairly
approach their results, and this method seems preferable, when
%z of the foil is large, Molieére'’s theory with (2-2-2) seems to
explain their experimental results rather well, but this may be
because the difference between (2-2-2) and (2-2-3) becomes smaller
as Z increases,

Rigorously, simple estimation (3-2-2) of mean energy will alweys
give an energy value which is higher than the true mean energy
calculated by averaging all the transmitted particles. Therefore,

Hégberg and Norden43)

carefully examined the relation between
energy loss and scattering distributions for low energy heavy ions,
using Neyer’s method. However, since the energy region in our
experiment is rather high, no correction for the mean energy seems
to be necessary even when energy loss in the foil is relatively
large. The dependence of scattering distribution on energy is
rather small for high energy particles, as Bernhard et a1.24) have
already prediqted.

Kerr et al.,44) in their paper of experiment on multiple

scattering of fission fragments, adjusted C?Q from the contribu-

tion of no scattering, but the method does not seem to be adeguate



35

because the estimation of the contribution of no scattering term
from experimental result is very difficult and adjustment of Q
only is physically unreasonable, Reasonable estimation of screen-

ing effect should be considered, as described before,
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Chapter IV. Simulations

§4-1. Introduction

In the preceding chapter, experimental results of multiple
scattering have been treated,. Qur results have supported WMoliére-
Keil et al.’s theory, yet some deviations have been found in the
case of C?Dﬁélo. Therefore, it becomes necessary to know whether
the disagreement is attributable to the imperfect expression of
single-scattering cross section or it is because of inadequate
precedure of approximation in the plural scattering theory.

The rigorous analytical calculation of angular distribution is
laborious, and it is much complicated to calculate the projected-
angle distribution for small Q%. The calculation including
energy loss and effect of slit geometry is also difficult. On
the other hand, the simulation using lonte Carlo method solves
these problems easily, because the procedure needs only one infor-
mation about differential cross section of single scattering of
a projectile by a target atom. Therefore we have carried out
the simulation, and some results are discussed in this chapter.

The Monte Carlo method has been widely applied to simulations
on various phenomena, For example, penetration of neutrons or
gamma rays through matters has been extensively treated by the
method and applied to neutron physics, radiation shielding etc.45)
Moreover, we see many reports applying this method to the passage
46)

of electrons, and for heavy charged particles there is a famous

exanple of Robinson and Oen47) who treated the case of single
crystal target —— channeling,
Recently Ishitani et a1.48"50) have made simulations on low

energy light ions incident upon thick medium and calculated the
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range, back scattering coefficients and others using Lindhard et

51,18)

al.’s classical theory. Their works are very valuatle,

but their aims and energy region are different from those of the

present study.

§4-2, Method of Simulation
(i) Differential cross section of single scattering

Ve start from single scattering of a projectile by & target
9)

atom. Moliére’s theory is used a&s a bhasis, The combination

of (2-1-15) and (2-2-4) yields a single-scattering cross section

4a2

. - onsinXdX . (4-2-1)"
k“(4sin (x/2)+xa

o(X)2nsinXdx=

2)2

Since multiple scattering is a result of successive single
collisions, we can simulate the path of a particle until it goes
out of a given foil —— & history is known, From such histories,
an angular distribution due to multiple scattering is obtained,
0f course the simulation needs long time for computation when the

number of collisions is large,

(ii) Random numbers
A set of uniform random numbers {ri} (0 ériél) has heen
generated by means of a subroutine called KUNIRN in the Data

Processing Center of Kyoto University. The subroutine uses a

235)’

mixed congruential method (mod the constants of which are

chosen so that the random numbers pass a set of statistical tests.52

Random nunbers {yi] with a probability function f(y) are derived

from {ri) by the following inverse transformation method:52)
Y.
[ T of(y)dy= £y - (4-2-2)
- 00
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(iii) Mean free path
By means of the differential cross section of (4-2-1), the

total cross section, Ot is given by

" 16na2
0 kX “(4+%X )
o a
and the mean free path, A, is obtained from

n= (Noy) 7t (4-2-4)

suppose that a particle starting from x=0 and travelling along
the path length x is scattered for the first time at a point in
the interval of x ~x+dx. Since the probability, P(x)dx, is given
by
P(x)dx= exp(-x/A)dx/N (4-2-5)

we obtain the distance Xi from ri as

X5= —)\ln(l-ri) . (4-2-6)

using (4-2-2).

(iv) Angle of single scattering
The polar deflection angle, Gi, caused by a scattering is

derived from (4-2-1)~ (4-2-3) as

0.
1 i :
7;;-j0 o(X)2nsinXdx= r. , (4-2-7)

which leads to

©.= cos

2. %
I
(1- e ) (4-2-8)

Since the scattering is cylindrically symmetric (i.e. amorphous

foil and no polarization are assumed), we simply get the azimuthal
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deflection angle, ¢i' from
Bi= 2nr; . (4-2-9)

The angle ei is of course given in center of mass system, and
it should be converted into laboratory system, Hereafter we treat
in laboratory system. Uniform random numbers, ri’s, of (4-2-6),
(4-2-8) and (4-2-9) should be chosen independently.

(v) Summing-up of scattering angles

Suppose that a particle travelling in a direction (Bi, qu) is
scattered in & new direction ( 9i+l’ ®i+l)’ the deflection angles
of the scattering being ( €:.79» P5,1) &s given in (iv).  Here,
@i and @i indicate polar and azimuthal angles of the direction
of the particle (after the i-th collision) with respect to the

initial direction, as shown in Fig.4-1. The relations combining

above angles are given by

cos ®i+1= cos @icosei+1-51n @iSInei+lcos ¢i+1

(4-2-10)

and
sin @i+lsin( q)i+l— q)i):sinei+lsin ®i+l ; (4=-2-11)
by means of the law of spherical trigonometry. For the incident

particle (i=0) which has not experienced scattering, we put

@Oz ®O=o , (4-2-12)
i.,e, incident particle enters the foil perpendicularly,. Thus,
with the aid of (4-2-10) and (4-2-11), we know the new direction

(0. .., . ) successively after each collision (i=0, 1, 2, «-+).
i+l i+l o

(iv) Energy loss

Wwe treat a case in which energy loss process of projectiles



40

in the foil is taken into account, where the energy of the incident
beam is assumed to be monochromatic,

Since there is no appropriate formula of energy loss in the
present energy region, the semi-empirical table of Northcliffe and
Schilling39} is used. As described in §3-2, the values in the
table agree fairly well with our experimental values. In their
table, the stopping power, -d&/dx, is given for discrete values of
energy, and we assume that the stopping power is a linear function
of energy E over each small energy interval, By solving the
linear differential equatioﬁ about E(x), the reasonable energy is
given to the projectile as it proceeds in the foil. The lower
limit of energy is necessary to be set in the calculation, which
we choose as 0,0125MeV/amu, However, the probability that the
projectile energy becomes lower than the limit is extremely small

(~d;x10_4), because the foil used is thin enough.

(v) Detection of scattered particles

The particle after passing through the foil enters a detector
placed behind, The detector can record the spatial-angle,
projected-angle, energy, number of scatterings in the foil, ete,
of the particle, which are obtained very easily by the present
simulation method,

The schematic arrangement for the measurement of spatial-angle
distribution is shown in PFig.4-2. Though the plane A is drawn
in the figure, actwally in the simulation only the histogram of
6 is obtained, and the plane A should be the surface of = sphere
whose center is the beam spot on the foil. The counting statis-
tics in the small angle part is not good, since we have graduated

the spatial angle uniformly as seen in Fig.4-2 and the solid angle
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in this region is very small, This problem will be discussed

in §4-7. Iateral deflection is very small, and is neglected.
FPractically, we obtain the projected-angle distribution using

2 longitudinal slit of long but finite length, while the theory

treats the case of infinite slit to which the incident keam enters

uniformly. Accordingly, for a finite slit we have an angular

distribution between spatial- and projected-angle ones; the

combination is difficult to be treated analytically the elit
geometry should be carefully considered.

The present simulation methoé solves the problem of finite slit
easily. The schematic arrangement for measuring the distribution
is shown in Fig.4-3. The longitudinal initial beam of length d
enters the foil perpendicularly and is scattered, The angular
distribution 1s experimentally measured along the line L.

However, it is equivalent to the distribution of initially pin-
hole beam aiming at the point 0 scattered cnly into the plane T
whose width is d. In the simulation we took the latter case,
The projected-angle aistribution is the special case of d — o0
It should be noted that the line L in Fig.4-3 should be actually
a circle whose center is the center of the beam spot, 0, on the
foil and accordingly the plane T should be a cylinder,

An example of the programs of simulation (including energy loss

process and three geometries of slit) is shown in Appendix IT,

* Small-angle approximation is not necessary in the present

method,

§4-3. Iarge Q?O without =snergy Loss

To certify the adequacy of the present method, we first make
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the simulation on two cases in either of which the mean number

of scatterings, Qo’ is large enough and the energy loss process
is neglected, since such cases have been just treated analytically
by Moliére, In this and the next sections we use Bop from
(2-2-2), and in §4-5 and §4-6 we use apy from (2-2-3).

Figures 4-4 and 4-6 show the angular distributions of 0,407MeV
protons on 869ug-cm_2 copper foil and of 1l.45MeV protons on the
same foil, respectively. The spatial-angle distributions and
the nrojected-angle ones are shown in (A) and (B), respectively,
together with theoretical curves from Moliére’s theory. As
described in the preceding section, statistical errors of F(8)
in the small angle region is rather large. Moreover, errors in
Fig.4-6 are larger than those in Fig.4-4 because of smaller number
of histories.

The histograms of the number of scatterings, W(n)’s, for the
above two cases are shown in Figs.4-5 and 4-7. The solid curve
in each figure is the Poisson distribution,

o0

W(n)= exn(- Q). Q “/nl ( & Wn)=1) , (4-3-1)

n=o

where the mean number of n is equal to C?o of Molieére. As

described in §2-2, C?O is a very slowly varying function of energy

E, and (2 of Fig.4-7 does not differ largely from that of Fig.4-5.
Figures 4-~4~4-7 show that simulated results are in good agree-

ment with Moliére’s theory.

84-4. Very small C?O without Energy Loss
In the region of Q%:QEO, Moliére’s treatment becomes inappro-
priate and approximation by Keil et al. must be applied, as

discussed in Chapter II, However, Keil et al, have not presented
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the formula for projected-angle distribution, and moreover the
contribution of "no scattering" term is omitted in their theory.
In contrast to the theoretical difficulties, the present simula-
tion method easily gives information concerning both the projected-
angle distribution and no scattering.
The results for the case of 2,21lieV nitrogen ions upon 331pg.cm_2
old foil, where (2 =4.03, are shown in Figs.4-8(4), 4-8(B) and
4=9: the spatial- and projected-angle distributions and histogram
of n, respectively. Theoretical curves of F(€) and w(n) are
drawn also, but there is no theory to calculate f( @) in this case.
e find from Fig.4-9 that about 1.84 of all the projectiles
experience no scattering. A contribution of no scattering is
seen at@®=0 of f(P) in Fig.4-8(B). However, the &bsolute value
of f(0) has little meaning because it depends on the width of the
graduated angle. It should be noted that the events of no scat-
tering are experimentally unrealistic and the real contribution
of them would be distributed around 0=0 (or @=0).
If the no scattering component is neglected, the simulated F(8)
ig 1n good agreement with that from Keil et al,’s theory. This
indicates that Keil et @&l.’s procedure of summing up the single-

scattering events i1s adequate enough.

§4-5. ©Small Q% Including Bnergy Loss Process

Ve have a2lso calculated on the case of Qg=9.85, taking the
energy loss process of the projectile into account. The theory
of Moliére cannot be applied to this case, but the contribution
of no scattering is negligibly small.

The initial beam is assumed to be monochromatic in energy, as

described in 84-2 and straggling in the energy loss process is
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neglected. The results for nitrogen ions of initially 4.52HeV
upon silver foil of 4Olug-cm_2 are presented: the angular distri-
butions in Fig.4-10 and the histogram of number of scatterings

in Fig.4-11. Since these are based upon a large number of his-
tories, statistical errors are small, In Fig.4-10(A), the curve
according to Keil et al.’s theory is drawn for the mean energy,
E:(E1+Ef)/2 (ef. (3-2-2)). Though the energy loss in the foil
is large, a good accordance with the theoretical curve is seen in
this case, loliére’s projected-angle distribution is drawn in
Fig.4-10(B) for the sake of comparison. Some deviation from the
simulated result is seen because of small QDO. The histogram of
number of scatterings in Fig.4-11 shows a good accordance with
Poisson distribution.

Figure 4-12 shows the energy spectrum of outgoing particles.
Though the peak energy is nearly equal to the observed value of
Ef, the shape is unrealistically sharp. This is becauce we have
neglected the energy spread of initial beam, the energy straggling
in the foil, the energy resolution of the particle detector, the
nonuniformity of foil thickness and others. If we introduce
these effects and use more accurate approximation for =dE/dx than
the coarse one described in the preceding section, the energy

spectrum experimentally obtained will be reproduced.

§4-6. Effect of Geometry of S1it

So far, only the cases of pin-hole slit and longitudinal slit
of infinite length have been treated. The result for the case
of longitudinal slit of finite length is described in this section.
The method of this simulation has been described in §4-2(v).

The case of d=5mm and D=482mm is taken here.
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The resultant angular distribution, Fe(e), is shown in Fig.4-13.
The ion-foil combination is exactly the same as that in Fig.4-10.
Since d<€D, the distribution is nearly equal to that of initially
pin-hole beam (i.e. spatial-angle distribution F(€)), but the
possibility of simglation on different slit geometries is under-

stood from this simulation.

§4-7. Discussion

We have simulated some multiple scattering processes using the
single-scattering cross section proposed by NMolieére, The adequacy
of our method has been certified in several cases — of a few
values of GB, with and without energy loss, and with three geome-
tries of slit. The results show good agreement with the known
theories. This means that the simulation using Monte Carlo method
is useful even when the analytical expression of summing up the
single-scattering events is not known. The small deviations of
theoretical predictions from the experimental results found for
small values of Q%, which have been discussed in Chapter III, are
confirmed to be attributable to the underestimation of Moliére’s
single-scatiering cross section for small scattering angles.

The statistical errors of F(6) near 6=0 in all the cases pre-
sented in this chapter are rather large because of small angular
intervals of graduation. However, if we sacrifice the angular
resolution to some extent, the errors will be reduced.

The present simwlation method can bhe applied to many cases.

For example, the angular distribution around 6=0 will give an
important information to the measurement of impact parameter
dependence of inner shall ionization. The simulation on the

motion of impurity particles in single crystal will be possible,
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because the position of the particle can be predicted easily.

The simulations in this chapter have been made by means of direct
method., This is also applicable to simulations on scattering
due to other types of potentials, if the related differential
cross sections are appropriately given.

Lindhard et al.(LNS)lS) have derived a formula of cross section
of atom-atom col: sion using classical model, and MeyerlT) has
obtained & new spatial-angle distribution function of multiple
scattering. Jdowever, the number of collisions is extremely large
because he has counted the collisions of even very small angular
deflections (cf. §2-5). In this case, the cut-off angle becomes
significant if we insist on using the direct method, as Ishitani
et 31.50) have predicted, and the methods developed by Berger46)

and other authors would be appropriate,.
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Chapter V. Conclusional Remarks

Multiple scattering of MeV protons and nitrogen ions on alumi-
nium, copper, silver and gold foils has been studied experimen-
tally and by simulation using Monte Carlo method.

The experimental data agree fairly well with theories of Noliére
and Keil et al. with the use of Thomas-Fermi radius which tekes
account of both prajectile and target atom. The slight devia-
tions found when the mean number of scatterings is small, i.,e. for
QO;52O, are attributed to an underestimation of Molidre’s single-
scattering cross section in the small angle region, This conclu-
sion has been confirmed by the simulations. The theory of NSW
shows & large discrepancy from the observations and that of Meyer
gives a little deviation for QO_<_,10.

The projected-angle distributions for small Q%}amd angular
distributions including energy loss and considering effect of
longitudinal slit of finite length etc., &ll of which camnot be
given from the known theories, have been obtained by the simula-—
tion method,

Moliére’s single-scattering theory can be used safely when the
phenomenon contains many scattering events, The substantial
difference between protons and nitrogen ions has not been found.
Moreover, the deviations of theoretical prediction from our experi-
mental results have been found to be almost independent of projec-
tile energy over the present energy range.

In the ;ower energy region (i.e. very large a region), Meyer’s

theory is reported to be appropriatg.24125)

However, there is
an exception of Andersen et 31.53) Their experimental 81/2’5

in the cases of heavy ions on gold foils are much smaller than
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Meyer’s prediction, T’s in their experiment being very small
(T L 2.5 ) This tendency (ignoring the absolute value) is con-
sistent with our result in Chapter III. It will be interesting
to study further about this energy region, though there are diffi-
cult problems of thin foil preparation and of relatively large
energy loss as HOgberg and Norden43) have predicted. The exami-
natic» of the bouw.: iry energy between the regions of applicability
for the theories of Molidre-Keil et al. and Meyer will be more
interesting.

The actual path length of each projectile in foil is a little
longer than the foil thickness because of multiple scattering,
and this influences the energy loss in the medium. Yang54)
examined this effect for the case of electrons using the rough
Gaussian approximation for multiple scattering. For heavy ions,
Tschaldr and BichselBS) reported an extensive study about this
effect using the theory of NSW-Marion, but only for the special
arrangements of energy measurement,. The general research about
this effect by the use of Moliére-Keil et 2l1.,’s theory will become
important when the accuracy of energy measurement is improved.

Deflames et al.56’57) have shown that the effect of binding of
lattice atoms on multiple scattering in the foil of single crystal
is important even at large particle energies because the potential
is long range, Then they calculated this effect using the rough
Gaussian approximation for multiple scattering. More detailed

studies using Moliére’s theory and experiment on this phenomenon

will be of great interest.

This report is a product of the study by "multiple scattering

group" in the Department of Nuclear Enginerring of Kyoto
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Appendix I,

An example of the computer programs to obtain a,’s from experi-

mental values of F(0) and 91/2 are presented here. The a,’s are

given according to the theory of Keil et al, The values of G( 3),

which have been obtained prior to this calculation are given as

DATA, The interp.iation operation by means of Lagrange's method

is done 1n the SUBROUTINE YILAG.

L

The similar program is used to

.. a. 's acc.1ding to the theory of Molieére.
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260
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wHEITE (62970 A _ - L
FORMAT(1H +10HA THEORY =Di7.1u)
MR]TE(61259)OMtGA

FORMAT (1h +10HOMEGA =p17.10)

WLAD(ﬁQlRG)FDh!TEHFE
FORMAT(2015,8)
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DO bh 1=3.+25
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CONT [ Hl

=20

v bl GT 21 y=¢l
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S0 68 J=141D
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Wb ()= JU)
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WRITE(6+256)ACLRACL
FORMATCLHO s 1UHA CULFC0I=0)T.1004H
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FORMAT(IH +10RUMEGA COW=117,10)
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LO To J=1,410
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Appendix II.

An example of the computer programs of simulation on multiple
scattering by means of Monte Carlo method is presented here.
This program includes energy loss process and three geometries of
slit, Uniform random numbers are given by means of SUBROUTINE

KUNIRN of the Data Processing Center of Kyoteo University.



100
101
1c2
103

40

104

106

41

42

99

105

43

44

200
1
2
3
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DIMENSION NT(50) +NP(50) «+NPE(50) sNY(50) +NS(202) +CTP(50) +CY (50) +CYP(
150)sYPWC50) +TR(50) «PN(50) +YPC50) sFT(50) «PENC50) «NiNC202)

DIMENSION YPN(50)9ACT(50)
DIMENSION W ENG(30)

DIMENSION ELC30)sDEDXGC(30) +DEDX(30)+A(30)+BAC30)sCA(30)
INFAR(500) +CCH(500)
2 WPARX (100) +CCHX(100)

CALCULATION COF CONSTANTS
READCS5+«100)E L, L1 WAFZF yROWTHICK
FOrMAT(F12.0/72F12.0/2F12.0/F12.04E15.7)
READ(541012D15,DSL

FORMAT(2F12.0)

READ(54102) A4

L oRMATC(EL15, 582
READ(54+103) (ELCI) yDEDXGCI) 4 151418)
FORMAT (2F10.0)

DO 40 1=1,18
DEDXC12=1+0E3%ROW*DEDXGC])

CONTINUE

READ (2+104) CHANL s CHANU » CHANW
FORMAT(3F12.0)

READ(54106)RXL +RXU4RXW
FORMAT(3E15.8)

DU 41 J=1,417
ACII=(DEDX(J*1)"DEDX(U))/Z(FLCJ+1)=EL (D))
BACJI=DEDX(J)/ACJ)

CACI) =BALJI=EL (J)

QLENG () =ALOG(CEL (J+1)+CA(U)) /BACU)I)I/ACY)
CUNTINUE

NCH=CCHANU=CHANL ) /CHANW+1

DO 42 [=19NCH

NPARCI)=0
CCHCI)=CHANL+CHANW*FLOATC(1=1)

CONT INUE

NCHX= (RXU=RXL) /RXw+1

DU 99 [=1sNCHX

NPARX (1)=0
CCHXCI)=RXL+RXW*FLOAT(I=1)

CONTINUE

READ(54105)EQ]

FORMAT(F12.0)

DO 43 1=1,17

IFCEQI*LE*ELCI*1))G0 TO 44

CONTINUE

GO TO 45

NRI=1I

@NO=6+02486E23

HBAR=1,05443F-27

ECa%.B0286¢=10

PAI=341415927

WRITE (64200)E1+A1+ZTvAF +ZF +ROW, TH] CK
FORMAT (1H1915HA TABLE OF DATA/1H »10HEINC

=F15.8v5H MEV/1H 1

OHATNC =F15.8/1H +10HzINC =F15+8/1H *10HAFQIL =F15+8/1H

V10HZFOIL =F15,8/1H +10HDEN®ITY =F15.848H

KNESS=E15.8+8H G*CM=2///)

G*CM=3/1H ,10HTH]C
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WRITE(64214)EQI

214 FORMAT (1HO+10HEOI =yF15,8,54 MEV/)

G=AF/ (A] +AF)
VP2=3.20412E-6%ONQ /AL
V=SQRT(EI#VP2)
EICM=E1*G
AICM=AI %G
ALPHAP=Z [ *#/F*EC**2 /HBAR
ALP2=ALPHAp**)
ALPHA=ALPHAPZV
Al2=A]%#%2
AF2=AF %%
AIAF=Al®%AF%2.0
@K=V/HBAR*AI/@NO
8KCMP AICM/HBAR/@NO
kP2=UxcMPxx2
AKCM=QKCMP*V
CHIOP=CBRT(128+:0/9:0/pAT** o) *guRT (CBRT(ZI**2) +CBRT(ZF**2))*9+1083E
l-286HBAR**Z*EC*i2
CHIVP2=CH]Op**,
CHI10=CHIOp /@K
CHIOCM=CHI OP/9kCM
CHIC=2.O%EC**2%7 | %7F fHBAR/QK/V¥SQRT (PAI*@NO*TH [ CK/AF)
CHICCM:CHIC*EKIQKCM
CHIA=CHIO#SOKRT (1,1343,76%ALPHA%#2)
CHIACM=CH]OCM*SQRT(1+13+3. TORALPHA®*2)
CMEGA= (CHIC/CHIA) *%2

caLcYiaTion OF B VaLYe
C=0.1544=AL0OG(OMEGA)
B=1 ©153+2+583*%AL 0610 (OMEGA)
10 eRR=p=aL0G(B) +C
IF(ABS(ERR) *LT:1+:0E=5)G0 To 11
B=B*(1.0=EKR/(B=1:0))
Go To 10
11 SIGMAP=16+0%pA|
SIGMA=S I GMAP*ALPHA®*2 /QK**2 /CHIA**2 /(4. 04CHIA**2)
QLMDAP=AF /@NO/RoW
QLMDA [ =@LMUAP /S IGMA
WRITE(6*201)VIEICMYAICMYALPHAYQK * GKCM*CHICYCH]OCMYCHICY*CHICCMICHIA
14CHIACM+OMEGA «B + S 1 GMA ULMDAT
2V1 FORMAT(1HO+10Ry =E15+848H CM*®5=1/1H +10HEICM =E15.8¢5H
1 MEV/1H +10HAICM =E15+8/1H Y10HALPHA =£15+8/1H v10HK
2 =fl5,8+6H CM-1/1H ,10HKCM =Ef15,846H C€M=17/1H +10HCHIO
3=£15.848H RADIAN/1H +10HCHI10CM =£15.848H RADIAN/1H v10HCHIC
4 =aFE15.8%8H RADIAN/L1H *10HCHICCM  =E15+8'8H RADIAN/1H v10HCHIA
5 =E15.848H RADIAN/LIH J10HCHIACM =F15.8+8K RADIAN/1H +10HOME
6GA =E15.8/1H +10HB =2E1548/1H s10HS1GMA =£15-.-8+611 CM+
72/1H +10H_AMBDA =E15+8v4H CM///)
THICK=THICK /ROW
WRITE(6+212) THICK
212 FORMAT(1H +10HTHICKNESS=%E15:8v4H CM)
k=13978104282
CALL KUNIRNCRsIRsK)
sL=DsL/2-0

DO 26 J=1450



30
31
26

12

13

CTP(J)=FLOAT (J=1) %AW
CTU=CTP(J)+AW/2.:0
[FCJ EQ@+1)GO To 39
cTL=CTP(J)=-AW/2.0
GO TO 31

CTL=0tO
ACT(J)=2.0%PAl % (COSCCTL)=COS(CTU))
CUNTINUE

DO 12 I=1,202
NScl)=0

CONTINUE

NgS=0

DU_13 121450
nesp)=n

NP (1) =0

NPE (1)=0

CONTINUE

NLE=0

NUE=0

NLZX=0

NUZX=0

K0=0

V2=gQ]%VP2
ALFHAZ=ALPZ/VE
QKCM2=nKP2*V2

60

CHIA2=CHIOP2/QKCM2% (1+13+3, T6*ALPHA2)
QLMDA | =QLMDAP/SIGMAP/ALPHA2*QKCM2*CHIA2* (4. 0+CHIA2)
RRI=ALOGCCEQOT+CA(NRIII/BACNRIII/ZACNRI)
PATHS OF 100 PARTICLES

pu 14 [=1,10000

EV=g0]

NHQNRI

RL=THICK

RK=RR

O MDA=YL MDA

THETA=OUO

PHI=0+0

Z“OQO

Coe=1+0

ZXBO.O

A PATH OF ONE PARTICLE

DO 15 K=1+1000

CALL KUNIRNCRYIR)

21==8_ MpA#aLYG (1. 0=-R)

IX=ZX+Z1

I1=2+71*C0qQ

IFCZ.LE.0.0)G0 To 32

IFCZ+GE+THICK)GO TO 471

1J=1

GY TO 53

[J=2

Z21=RL/CO®

22=RRaz1

IF(22+GE+0.0)G0 TO 46

IFCNRWLE.1)GO TO 44



48

46

16

19
20

21

EO=EL (NR)

NRENR=1

21==72

RR=QLENG (NR)

GO TO 58

KO=KQO+1

GU TO 14
EO=(EO+CA(NR))*EXP(—A(NR)*Zl)-CA(NR)
IF¢lJ.FR.2)60 TO 16

RR=22

RL=THICK™Z

V2=goxVP2

ALPHAZ=ALPZ/V2

QKCM2=GKP2%*V?2
CHIA2=CHI0P2/0kcM2%(1.13+3,T6%ALPHA2)
QLMDA=GLMDAP/S [ GMAP /ALPHA2*QKCM2*CHIA2% (4+0+CHIA2)
CALL KUNIRNCRYIR)
V=1,0=2.0%F%CHIA2/(4.0%(1,0-R)+CHIA2)
CO=CAI+AF*C0O) /SGRT (A12+A]AF*CO+AF2)
ATETA=ARCOS(CD)

CALL KUNIRNCR,IR)

APHI=2. O*PAI*R

IF CAPHL - GT:PAT)APH]=ApH] =2+ O0*pA]
c0@=COS (THETA) %CC=SINCTHETA)Y *SINCATETA) *COS CAPHI)
THETA=ARCQS (COQ)

IF(THETA+Eg+-0.0)Go TO 17

S =SINCATETA) *SINCAPHI) /SINCTHETA)
IF(ABS(SI)+GE+1+9) GO TO 50
PHI=PHI+*ARSIN(SI)

GO To 18

PHI=PHI+SIGN(PAl/2.0451)

GO TO 18

PH[=OoO
IF(PHI+GT+pPAT)PHI=pPHI=2.0%pA]
1F(¢H1-LT-PAl*c'l-0))PHI-PHI+2-D*PA|
CONTINUE

GO TO 14

DETECTION OF A PARTICLE
IF(K*GT*201)G0 TO 19

NSCK)=NSCK) +1

Go To 20

NS(€202)=Ns(202)+1
[FC(THETA:GT+1+57)G0 TO 14
JT=1FIXCTHETAZAW+1.5)

TASTANCTHETA) *SINCPHI)

TA=ABS(TA)

RPHI=ATAN(TA)

JP=IFIXC(RPHI/AW+1:5)
X=DIS*TAN(THETA) *COS(PHI1)

X=ABS (X)

IF(JT+EQ+1)GO TO 21

IF(JT+GT+50)G0 TO 22
NT(JT)=NT(JT)+1

GO TO 22

NTCJT)=NT(JT)+2

61



22

23
56
51

52
55

54

98

97
95

96

32
14

62

1F(JP.e@.1)60 TO 23

NP CJP) =NP (JP) +1
1F(XLE+SLONPE(UP)=NPEC(UP) +1
GO TO 56

NP (JP)=NP (JP) +2
IFCXsLE«SLINPE(UP)=aNPECUP)+2

JCH=TF 1 X C (EQO=C:AANL) /CHANW+1.:2)
IFC7H=0)51951: 07

NLE=NLE+1

GU TO 14

[F (JCH=NCi{=1"54454,55
NUE=NUF +1

- J 14

NPAR CJCH) =NPAR (UCH) +1

JCHX=IF IXC(ZX=RXL) /RXW+1.5)
IFCJCHXx=0)98+951+97
NLZX=NLZX+1

GO TO 14

IF (JCHX=NCHX=1)964964+95
NUZX=NUZX+1

GO TO 14

NP ARX (UCHX) =NPARX (JcHX) +1
GO To 14

NBSTNBS+1

COUNTINUE

HISTOGRAMS AND DISTRIBUTION FUNCTIONS
WRITE(6°260)K0O

260 FQRMAT (1HOs4HKO =42X+15)

250

251

28

202

NTSUM=0

NPSUM=0

NPESUM=0

DU 27 J=2450

NTSUM=NTSUM+NT (J)

NPSUM=NPSUM*+NP (J)

NPESUM=NPESUM+NPE ¢ J)

CONT INUE

WRITE(6+250)NTSUMsNPSUMWNPESUM

FORMAT (1HO s THNTSUM =411042x+THNPSUM =411042X+8HNPESUM =4110)
TSUM=FLOAT(NTSUM) +FLOAT(NT (1)) /2,0
PSUM=(FLOAT CNPSUM) +FLOAT (NP (1)) /2. 0) %AW

PESUM= (FLOAT(NPESUM)+FLOAT(NPE(1))/2+0) %AW

WRITE(6+251) TSUMyPSUM 4PESUM

FORMAT (1HO s 6HTSUM =1%E15+8%2X%6HPSUM =%E158%2X" THPESUM ="E15%8)
DO 28 J=1,50

TRCJ)=FLOATC(NT (J) ) /TSUM/Aw

FTCJ)=FLOATANT(J)) /TSUM/ACTCJ)

IFCIEV LYFT e =FT (U /2.0

PNCJ)=FLOAT (NP (J) ) /PSUM

PENfJ)uFLOAT(NPE(J))!PESUM

CONTINVE

PRINTING OF THE RESULTS

WRITE(64+202) i

FORMAT (1H1 45X+ SHTHETA 48X  THNCTETA) 47X 4 9HFRC(THETAY s 8 X 6HF (THETA) y8x
Ly6HNCPH1) v 5X s THNE CPHI) v 8X 4 6HF CPHI? v 11X THFE (PHI? /1H 16X 3HPHI/ /)



203

29
20¢
207
208
209
213
210
215
216
2171

21y

219

63

WRITEC69203) CCTPCI) oNTUIDWTRCID «FTCI) oNPCI) sNPECTI) sPNCID WPENCID o ]

1=1+50)

FORMATC(IH YE15¢892X9v11042X 0 EL15.8¢2X9E15:842X411042x011042X1E154812

1XsE15.8)

DU 29 1=2,202
NNCD) =171

CONT INUE
WRITE(P+200)NS (1)

FURMAT(1H1*31HNUMBER OF NO SCATT- PARTICLES =1+18//)
WRITE(6420T7)

FORMATC(IH +1X45(6HSCATT . +3X+6HNUMBER s 3X) /)
leTE(h*EOu)(NN([J'NS(I)'I=2'201)

FORMAT (1H +(5¢I8,110)))

WRITE(6+209)Ns(202)

FORMAT (1HO+26HNUMBER OF OVER 200 SCATT =v112//)
WRITE(6+213)NBS

FORMAT (1HO+ 23HNUMBER OF BACK SCATTER=s112//)
WRITE(6°210) IR

FORMAT (1HD+20HLAST RANDOM NUMBER =.112)
WRITE(6+215)

FORMAT CLH1 +5XY6HENEPGY *IX s 4HNCEY/ /)
WRITE(&121b)(CCH(l)*NPAR(l)aISI'NCH)

FORMAT (1H +F15.842x+110)

WRITE(h'217)KO'NLh‘NUE

FO MAT(1H0~10H5TOPPED =4110/1H +10HLOWER Eo+ =4110/1H +10HUPPER g,
1 =+110/7/)

WRITE(6*218) CCCHX CI) *NPARX (1) *I=1*NCHX)
FORMAT(1H 4F15,842X,110)

WRITE(o*219INLZXINUZX

F?RMAT(lHD‘lTHLORwER THAN RXL s'llollH *1THHIGHER THAN RXU ‘110/)
END
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Table I, Multiple scattering data for protons.
F(26
fort (va) (ug{:m'“) : (10'§g-ad.) i Fl0) (10‘2%2:5.) (F(gf)
0.479 192 2,97 0.210 46.6 | 319 2,42 0.104
0.491 156 2.93| 0.209 37.7 | 461 2,02 0.102
v, 491 156 2.93| 0.205 37.7 | 473 1:95 0.108
0.97% 375 2,08 0.105 87.9 669 1.71 0.0900
- e IS 375 2,08 0.105 87.9 | 671 1.69 0.0894
1.02 270 2.04 0.101 63.1 988 l.42 0.0859
L445% 562 1,71 0.0718 |128 820 1.54 0.0884
1.45 562 1.71| 0.0718 |[128 709 1458 0.100
0.410 869 T kD 0,682 5T:5 2Tl 8.33 0.116
0.462 579 6.74| 0,606 38.3 54.0] 5.95 0.0969
0.471 424 6.68 0.595 28.1 79.5 4.74 0.116
Cu | 0.854 869 4.96| 0.329 57.2 | 108 4.08 0.109
0.944 &69 4,72 0.298 57.1 113 4.00 0.110
1.44 869 3.82| 0.196 56T 280 2.46 0,112
1.44 869 3.82 0.196 567 287 c.42 DL ET
0.440 820 11,2 1.19 23.9 28,6/ 8.04 0,112
0.448 736 [1l1.1 117 21.5 29.0f T.82 0.11%
0.489 316 | 10.6 1.07 921, * 3.97 0.116
Ag | 0.871 820 7.96| 0.604 23.8 | 103 4,10 0.112
0.996 823 T.44| 0,528 23.9 | 119 3.78 0.117
1.46 820 6.15 0.361 23.8 275 2.54 0.109
1,52 736 5,03} 'G.347 21.3 | 308 2,36 0.113

(to be continued)



(continued)

foit (M:V) (pgf:mi) * (lﬁﬁgad.) 82 ohe (ldiiés.).gé%%%é
0.473 606 18,3 2.19 7.00 5548 9«30 0.147
0501 236 17.6 2+ 07 | # 2.67 0,177
0.966 2069 12,7 1.07 23.9 30.6 7.64 Q. L1

- 0.991 606 12.5 1,05 6.99| 206 2+T0 0.141
1.45 1105 |10.4 0»T15 12,7 | 130 3.80 0.0970
150 2069 102 0.695 2348 70.2 5%03 0.103

E is the average energy in the laboratory system,

The values of * were not measured,

described in the text.

Other notations are



(ii1)

Table II. Multiple scattering data for nitrogen ions.
Foil| B P | @ S Q, |®o) | S1/2 F(261/,)
(MeV) | (ng.cm ") (10°rad.) (10°rad.)| F(0)
1,33 67.1 | 46.5| 0.619 12.0 265 2.49 0.120
1.36 33,1 | 46.1| 0.607 5.90 | 796 1.25 0.182
1.39 90.9 | 45.5| 0.591 16.2 175 2.96 0.126
Al
, 2, 29 90.9 | 36.0| 0.371 16,2 421 2,07 0.111
>, 27 89.7 | 35.6| 0.362 16.0 538 1.79 0.112
4.18| 118 26.2| 0.197 21.1 | 1200 1.94 0.0983
1.28| 116 106 1.70 6.15 73.7 4.60 0.130
1.60| 424 94.5| 1.37 22.5 17.8] 9.44 *
Cu | 2.29| 116 79.1| 0.956 6.15 | 219 2,70 0.129
4,40 290 57.1 0.498 15.4 * 2.78 *
4.50| 142 56.4| 0,487 7.55 * 1.16 %
1.32| 113 169 3.03 2.78 | 110 3.44 0.165
A 1.83 316 143 2.18 7.76 31.2] 6,94 0s137
g
2,37 33 126 1.69 2.78 275 2.14 0.159
4.47| 283 91.7| 0,896 6.95 % 2.43 0.181
Au | 4.37| 606 156 LT 6.16 * 4,26 0.190
4.59 330 152 1.69 3.36 A 2+35 0.259
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Table III. Parameters of Noliere and NSW for 1.45 NMeV protons
on Al of 562 pg.cm ° thick.
NSW
Moliére

p=1l,12 u=1.80

” 1.71 1.71 1.71
X, (rad.) 2,06 x 1074 2.06 x 1074 2.06 x 1074
x, (rad.) * 2.31 x 1074 3,72 x 1074
X, (rad.) 7.18 x 1074 2,30 x 1074 3,68 x 1074
X, (red.) 8.12 x 1072 8.12 x 10~4 8,12 = 1079
2. 1.28 x 10° 1.23 x 103 4.77 x 10°

B 6.58 9.19 8.17

% The parameter Xu

does not appear in the theory of Moliére,
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Table IV. Parameters of Moliere and NSW. for 4.18 MeV nitrogen

ions on Al of 118 p.g.c:m_2 thick.

‘ NSW
Moliere
p=1.12 p=1,80

o 26,2 26, 2 26,2
X, (rad.) 3.87 x 1072 3.87 x 1072 3.87 x 1077
+ (7ad.) % 4.33 x 107 6.96 x 1072
X, (rad.) 1.97 x 1073 4.23 x 107 6.72 x 1072
X, (rad.) 9.03 x 107> 9.03 x 1073 9.03 x 1073
[} 2.11 x 107 4.35 x 10% 1.69 x 104
B 4.37 13.1 12,1

* The parameter xu does not appear in the theory of NMoliére.
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Figure Captions

Fig.2-1. TIllustration of spatial angle 6 and projected angles

¢x and Qy.

Fig.2-2. Scattering cross sections represented by f(v?) against
n. Three cross sections given by Rutherford, Moliére and

LNS are shown.
Fig.3-1. Schematic view of experimental arrangement.
Fig.3-2., Block diagram of measuring system.

FPig,3-3. Schematic view of vacuum evaporation system.
S: source material, B: tungsten boat, G: glass slide,

v: head of foil thickness monitor, C: shutter, J: bell jar,

Figl3-4. Poil thicknesses from MBI method vs., those from guartz
crystal method, in A units. The calibration factor for each

element is shown in the table,

FPig.3-5. Stopping power for protons. Curves from other authors
are also drawn. Solid curves are from the table of ref.39

and the dashed curve is from that of ref.40,

Fig,3-6. Stopping power for nitrogen ions. Curves from other
authors are also drawn, S0lid curves are from the table of
ref.39 and the dashed curve is obtained from the interpolation

of the same table,



(ii)

Fig.3-7. Multiple scattering distribution of 1.45MeV protons
scattered from an aluminium foil of 562pg.cm_2. Curves calcu-
lated according to Moligre’s theory using B F of (2-2-3) and
according to NSW's theory using p=1.12 and 1.80 are also drawn

for comparison.

Fig,3i-5., MNultiple scattering distribution of 4.18MeV nitrogen
- . -2
ions scattered from an zluminium foil of 118pg.cm ~, Curves

erlculated according to Moliére’s theory using Bop of (2-2-3)
and according to NSW’s theory using p=1.12 and 1.80 are #lso
drawn for comparison, The curve according to Keil et al,’s

theory is also drawn for reference.

Fig.3-9. Multiple scattering distributions of (&) 1.39MeV nitrogen
ions scattered from an aluminium foil of 90.9ug.cm_2, and of
(B) 1.32MeV nitrogen iong scattered from a silver foil of 113
ug-cm—g. fheoretical curves are drawn also,. In (A), Keil
et al.,’s distribution functions, as obtained from (2-2-2) (noted
as eq.(2)) and (2-2-3) (noted as ec.(3)), are compared, In
(B), the treatments according to Keil et al, with the use of

(2-2-3) and according to Meyer are compared.
: 2 ;
Fig.3-10. Xa F(0) as a function of C?o. The same marks for ion-
atom combinations are used in Figs,3-11~3-17. Typical experi-
mental errors are shown by bars,

Fig.3-11. 91/2/Xa as a function of C?o.

Fig.3-12, F(291/2)/F(O) as a function of 530. Note the suppressed
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origin of the ordinate,

Fig.3-13. Ratio of experimental F(0) to the theoretical value

against S?O.

Fig.3-14. HRatio of experimental 81/2 to the theoretical wvalue

against Q?O.

Fig.3-15. Ratio of experimental F(Eel/g)/F(O) to the theoretical
value against QO.

Fig.3-16. Ratio ac/aTF from experimental F(0) against G%.
Fig.3-17. Ratio ac/aTF from experimental 91/2 against ﬁ%.
Fig,4-1., Simplified model of ion trajectories in the simulation.,

Fig.4-2. Schematic arrangement for the measurement of spatial-
angle distribution. Actually in the simulation, the plane A

is a sphere whose center is the beam spot on the foil.

Fig.4-3,. Schematic arrangement for the measurement of projected-
angle distribution; the case of longitudinal slit of length d.
Actually in the simulation, the line L is & circle whose center

is the center of the beam spot, 0, on the foil,.

Fig.4-4. Simulated multiple-scattering angular distributions of
0.407MeV protons upon copper foil of 869pg-cm_2, based on 40500

histories: the spatial-angle distribution in (A) and the
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projected-angle one in (B). The curves are calculated accord-

ing to Moliére’s theory, Typical statistical errors are ghown

Ly bars.

Fig,4-5, Histogram of the number of scatterings for multinle
scetiering of Fig.4-4.

e

Fig.4~6, Gtinulated multinle-scattering angular distritutions of

-

By
o

1l.45keV nrotens upon copper foil of 869pg.cm_£, besed on 1500

histories: the spatiazl-angle distribution in (A) and projected-

angle one in (B).

Fig.4~7. Histogram of the number of scatterinesz for multinle

scattering of Fig,4-6,

f1g.4~&, DBinuluted nultivle-scattering angular distritutions of
2.21leV nitrogen ions upon gold foil of 33lug.cm‘2, based on
20000 histories, The svatial- and projected-angle distribu-
tions are shown in (&) and (B), respectively, The curve in

(4) is draewn zccording to Keil et al.’s theory.

Fig,4-3. Histogram of the rumber of scatterings Tor nultinle

scattering of Fig.4-8,

Fig.4-10. Simmluted nultiple-scattering angulsr distributions ¢
nitrogen ions upon silver foil of 4Olpg.cm—9, hesed on TOHICO
hisgtories. Here, energy loss process is token into account.
Initial beam-energy is 4.52NeV,

The spatial-angle distribution is shown in (A4) where the
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curve is drawn according to Keil et al.’s theory, The pro-
jected-angle distribution is shown in (B). The curve accord-
ing to Moliére’s treatment is presented for the sake of com-
parison; here a small deviation is seen because 5904.20.

Both the theoretical curves are drawn for the average energy

in the foil (3.92MeV).

Fig,4-11, Histogram of the number of scatterings for multiple

scattering of Fig.4-10. Statistical errors are very small,

Fig.4-12. Calculated energy spectrum of outgoing nitrogen ions
of Fig.4-10, based on 640000 histories. The incident beam is

assumed to be monochromatic.

Fig.4-13, Multiple-scattering angular distribution, Fe(e), of
initially longitudinal beam of 5mm length, Qther initial
conditions are the same as those in Fig,4-10,. This result is
based on 700000 histories, but actually only 11871 particles

enter the plane P of Fig.4-3.
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