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                     Chapter I. Introduction 

 alien a particle travels through matter it successively chin,$;' 

the direction of motion colliding with medium atoms. This phe-

nomenon is called multi 91e scatterin, which is dominated in thc; 

case of charged particle of MeV energy region by Coulomb field 

produced by the projectile and medium nucleus together with scren-

ing electrons. Therefore, much knowledge about screened Coulomt 

field is obtained from multiple scattering of charged particles. 

   High-energy and small-angle multiple scattering on moderately 

thin foil is especially simple from both theoretical and experi-

mental points of view. For example, major difficulties in the 

theoretical treatment are reduced by the use of small-angle approx-

imation. Since the yield of the scattered particles is dominant 

in the forward direction, experiment on small-angle multiple 

scattering has much advantage. In this case, outgoing particles 

make a Gaussian-like angular distribution whose center is the 

initial beam direction. 

   Observation of multiple scattering began when Rutherford') 

investigated this phenomenon in the first decade of this century, 

though there was no concept of "nucleus". In a few years after 

the discovery of nucleus by Rutherford,2) some experiments on 

multiple scattering were carried out (e.g. by Mayer by means of 

alpha-particles from polonium). 

Bohr4) suggested an intimate relationship between stopping 

phenomena and multiple scattering. A more detailed theory of 

multiple scattering was first given by d Jilliams56 by fitting 

together a Gaussian curve for the central part of the angular 

distribution and a single scattering tail. His theory was greatly
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improved by Goudsmit and  Saunderson,7,8) Moliere9'10) and Snyder 

and Scott.11) The last three theories were closely related to 

one another, and the relation was discussed in some detail by 

Lewis12) and Bethe.13) Among them, Moliere's theory is most 

useful because of its analytic and simple feature, but it is not 

applicable in the region of small mean number of scatterings 

(plural scattering). Therefore, Keil et a1.14) developed the 

theory for this region. 

   Nigam, Sundaresan and Wu (NSW)15) obtained their multiple 

scattering theory using Born approximation to the second order 

and it has been developed and numerically calculated. by Marion 

and Zimmerman.16) 

   Recently Meyer17) has derived a new angular distribution func-

tion adopting a classical single-scattering theory proposed by 

Lindhard, Nielsen and Scharff (LNS).18) 

   Many experiments on multiple scattering of electrons or posi-

trons have been done (e.g. refs.19-21) for the adequacy of above 

theories to be examined, while those of protons or heavier ions 

are not so many. 

   One of the merits of Moliere's theory, as compared with NSW's 

theory, is that it is applicable to the cases of fairly large a 

values, where a is the Born parameter defined in the next chapter. 

The applicability has been demonstrated by Simon22) using 160 and 

40Ar ions of 10 MeV/amu in energy and by Lassen and Ohrt?3) with 

high energy (5 MeV/amu) alpha particles. On the other hand, 

Bernhard et al.24) and Andersen and Bottiger25) have experimented 

on low energy heavy ions and found their results consistent with 

Meyer's theory. The observations on intermediate energy particles 

have been reported by Bichsel,26) Bednyakov et al.27-29,) and
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author's  group.30'31) 

   We have carried out the experiments on multiple scattering of 

MeV protons and nitrogen ions upon aluminium, copper, silver and 

gold foils.30'31) One of the main ogjects of the present paper 

is to discuss the applicability of the theories by comparing them 

with our data. Especially, Moliere's original theory is recon-

sidered by taking the advanced Thomas-Fermi radius into account. 

   We have also simulated several multiple scattering processes 

using Monte-Carlo method.32) The procedure and the results are 

also described in the present report. 

   Since the theories of multiple scattering have some complicated 

notations and expressions, they are outlined briefly in Chapter II. 

The present experimental method and the results are described in 

Chapter III. The procedure of simulation and the results are 

dealt with in Chapter IV. In Chapter V, this report is summarized 

and problems left are pointed out.

   Though the pa.ers of rilliams argeared earlier than the parer 

of i,ohr, the the,:r,} was , tained 1<;. ter t'.._.1 t!_e eatm_erLL 3f Bo<.
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                      Chapter II. Theories 

 §2-1. Introduction 

    Williams5'6)first dealt with multiple-scattering theory in 

 some detail. A little later, the theory was greatly improved by 

Goudsmit and  Saunderson,7,8) who exploited the addition theorem 

 for spherical harmonics and evaluated the sum over the orders of 

 scattering for arbitrarily large angles using Legendre polynomial 

 expansions. However, their theory has difficulties that related 

 observations are only possible in track-visualization devices and 

that the presence of boundaries is not considered. 

   Snyder and Scott11) derived their distribution function solving 

numerically the Boltzmann transport equation. This is, however , 

equivalent to Nentze133)-Moliere10) summation method , and the 

latter is simpler. Moliere's theory is most useful in the above 

theories when a target of foil is assumed , but it is not applicable 

to the case of small mean number of scatterings as discussed in 

a later section. Keil et al.14) modified the theory in this 

region. 

   Nigam et al. (NS1W)15) developed the theory using Born approxi -

mation to the second order. The theory is
, however, not appli-

cable to our cases, as described in the next chapter
. 

   Meyer,17) adopting the single scattering formula developed by 

Lindhard et al. (LNS),18) derived a new formula for multiple -

scattering angular distribution . It has been found consistent 

with the experiments on low energy heavy ions .24,25) 

   In this chapter, the theories of Moliere and Keil et al . are 

described in some detail , and the theories of ESN and Meyer briefly. 

Further details of the theories up to 1963 are given in a review
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article by  Scott.34) Some explanations about notations of angles 

and distribution functions and about small angle approximation 

would be necessary here. 

   The spatial angle 0, the projected angles Ox and Oy and the 

azimuth 3 are defined as shown in Fig.2-1. We deal with both the 

spatial-angle distribution function, F(O,R,t), and the projected-

angle function, f(0,t). These are based on the single scattering 

function, N(e,t), where t is the foil thickness measured along the 

initial direction and 0 is the angle of the track when projected 

on a given plane containing the original direction (e.g. Ox in 

Fig.2-1). 

   The small angle approximation means 

(a) replacing sine by 0 and cos0 by 1, 

(b) replacing the relations for the projected angles 93=0 and y, 

                 tan 0x tane cosp 

           tan 0 tans sin ,(2-1-1) 

   by 

0=o=°°p 

0y esin(3 ,(2-1-2) 

and 

(c) replacing the upper limit it for 0 and the limits +it for 0 by 

    the values oo and +oo, respectively. 

This last substitution involves the assumption that all the func-

tions of 0 and 0, over which integrals are taken, fall off suffi-

ciently rapidly for large arguments. 

We hereafter treat only the cases of amorphous foils and no 

polarization, and so the dependence of F and f on (3 may be neglected..., 

The functions F and f are normalized, with the use of above approx-

imations and assumptions, according to
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                                      0o 

 2n F(e,t)0de=1 ,(2-1-3) 

                            0 

                                        0o 

f(Qi,t)dO =1 .(2-1-4) 

                             0 

 If 0x is chosen for 0, the relation between F and f becomes 

                                   00          f(0,t)=2_°F1( 02+ 0y1                        2)12
,t dOy(2-1-5) 

    For the probability of one scattering occurring in at at t 

through an an gle between X and X+dX, we use the notation 2nXdX 

X,,(,t)dt. This quantity is related to a differentia/ cross 

 section 2n6(X,t)XdX by 

tv(X,t)dt=N(t)a(X,t)dt ,(2-1-6) 

 where N(t) represents the number of independent scattering atoms 

 per unit volume of foil in the neighbourhood of t. Since there 

 is no theory including energy loss process and since we use 

homogenious foils hereafter, the dependence of 4, o and N on t can 

 be neglected. 

    Since "Nentzel's summation method"33) is used in all the theo-

ries discussed in the following sections , its final formulae would 

be necessary to be presented. For the spatial-angle distribution 

we introduce a Hankel transform of order zero multiplied by 2n 

                                             00 

7(4,t)=2nJ o(0)F(e,t)ede .(2-1-7) 

                                0 On the other hand., the absolute value of Fourier transform
, 

    _o0 

            T( ,t)=cos(~)f(0,t)d9s ,(2-1-8) 

                              0 is used for the projected angle distribution. Finally, by means 

of the summation method, 11(4,t) becomes , 

Ti( kit)=exp {Q( ,t) - Q0(t)J ,(2-1-9)....
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        jr 

 m 

               C?( ,t)=2mt Jo( kX)W(X)XdX ,(2-1-10) 

0 

                                                            00                Qo(t)=Q(0,t)=2mt f W(X)XdX . (2-1-11) 
                                             0 The expression for f(4,t) is obtained similarly, and the result 

is quite the same. 

   The scattering of a fast charged particle by an atom is dominated 

by a modified form of Rutherford law. The law yields, for the 

scattering of a non-relativistic particle of charge ze by a nucleus 

of charge Ze into the angular range X to X+dX, the cross section 

          aR(X )2n,sinXdX=(zZe2/E)2 42nsinXdX ,(2-1-12) 
                     [2sin(X/2_)] 

where E is the kinetic energy of the particle. Nhen only small 

angles are involved, we have for the single-scattering probability 

WR(X) (the variable t is omitted here from the reason stated 

before), 

NR(X)=NaR(X)=4Na2/(k2X4),(2-1-13) 

where the so-called Born parameter, a, is defined by 

a=zZe2/(iiv) ,(2-1-14) 

k and v being the wave number and the velocity of scattered 

particle, respectively. 

   Since the screening effect of atomic electrons on nuclear 

Coulomb field is neglected in (2-1-13), it should be modified. 

Usually this correction factor (screening factor) is written by 

q(X), and (2-1-13) is modified as 

4(X)=C4Na2/(k2X4)]'q(X) .(2-1-15) 
   The screening factor goes to zero as X -a 0 (small angles of
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scattering occur classically for passage of the scattering parti-

cle far from the nucleus where the screening is most effective) 

and goes to 1 for large angles (where the screening effect is 

negligible). 

 §2-2. Theory of Moliere 

Molie`re9) proposed an interaction potential of 

   zZe26.Or1.2r0.3r    ~r)=rCO.lOexp(-a)+0.55exl)(-a)+0.35eXp('-a 
     TFTFTF 

                                                            (2-2-1) 

by fitting carefully to the Thomas-Fermi function, where aTF is 

the Thomas-Fermi radius. The radius was given in his original 

paper by 

aTF=0.8853a oZ-1/3(2-2-2) 

where a o is the first Bohr radius of hydrogen atom. Bohr4) 
suggested another type of the radius taking account of both pro-

jectile and the target atom, and it was corrected by multiplying 

a constant factor by LNS.18) The radius is 

aTF=0.8853a
o(z2/3+Z2/3)-1/2 ,(2-2-3) 

which is more appropriate than (2-2-2) for the cases of our 

experiment, as discussed in the next chapter . 

Moliere derived a differential single-scattering cross section 

using (2-2-1) and applying the first Born approximation and NKB- 

type approximation. Finally he derived a , simple functional form 

for q(X); 

                               2 

             q(X)=X4/(X2+Xa2),(2-2-4)* 

where Xais the so-called "Moliere's screening angle" given by

)1
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                             1/2 
             Xa=Xo(1.13+3.76a2)(2-2-5) 

with  Xo defined by 

          Xo=(kaTF)-1 •(2-2-6) 

   If the combination of (2-1-15) and (2-2-4) is substituted into 

(2-1-9)--(2-1-11) and careful approximations are used, we have 

                                  y2X2 f2        Q( ,t)- Qom=4Xc22ln( 4e),(2-2-7) 

where e and lny are the base of natural logarithums and Euler's 

constant, respectively. The characteristic (or critical) angle, 

Xc, is obtained from 

                X(ne4z2Z2NtE-2)1/2    ~ ,                                                           (2-2-8) 

which has a meaning that the probability of getting one scattering 

in length t of angle Xc or greater is just unity. 

   Since F(t,t) of (2-1-9) has been obtained already, the multiple 

scattering distribution is derived from its inverse Hankel or 

Fourier transform (cf. (2-1-7) and (2-1-8)). Molie`re10) expanded 

the integrand in the inverse transform carefully, and obtained 

the distribution functions. Here, he introduced the reduced 

angular variables 0 and cp given by 

9 =e/(XcBl/2) ,(2-2-9) 

f =93/(XcBh/2) ,(2-2-10) 

together with the normalized "reduced" distribution functions 

27Fred(0't)Od19=2nF(e,t)ede ,(2-2-11) 

fred(cp't)dcp=f(0,t)d0 .(2-2-12)
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Then we have for the spatial distribution 

F(~~t)=21 J[i+7B -1n---42+2(4B1n42  )2+... 
redn4 

                                       2 
                            x exp (- f)J0( ~1 )/d'? 

=T{D0(1,l,_2)~BD1(2,1,-192)+2B2D2(3,1,42)+ ... 
                                                        (2-2-13) 

and for the projected distribution, we have 

        r2222fred(i't)=n [1+ frmn~2(4BIn 4----- )                                                                                                                       ... 

                                      2 

                              xexp(-4 )cos(41'/ )d/ 

= n o(2'2'-~p2)+1 D1(2,2, -„p2) 

                         +2B2D2(2,2, -~p2)+....(2-2-14) 
Here, Di's are Dalitz functions as tabulated by Scotty34) and B 

is a parameter used for the expansion of Moliere given by the 

transcendental equation 

B=1nB+ln( Q0e/y2) .(2-2-15) 

The quantity go is defined by 

          0
o=Xc2/Xa2(2-2-16) 

which is called the "effective" mean number of scatterings in the 
      ** 

foil. 

   It should be noted that ]C0 is proportional to foil thickness 
and is a very slowly varying function of energy. If a2 1.13 

/3.76 holds, the term 1.13 in (2-2-5) can be neglected and Xa is
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nearly proportional to  E-1. On the other hand, Xc is clearly 

proportional to E-1 (cf. (2-2-8)). Then, Q0 is almost independ-
                                          *** 

ent of E when a is large enough.

 * Though the formula is somewhat different from the one which was 

explicitly used by Moliere in the derivation of multiple scattering 

distribution, Scott34) verified that the use of (2-2-4) leads to 

the same result (of (2-2-7)) as Moliere's. 

 ** The notation Q
o is not equal to Q0(t) in (2-1-11) and 

Moliere called this ratio Q b' but Scott34) used forr it. 

*** The values of a in our experiment range from 1 .71 to 215 

(cf. Tables I and II).

 §2-3. Theory of Keil-Zeitler-Zinn 

   Moliere's theory described in the preceding section is very 

ingenious and supported by many experimental results. However, 

since it uses the expansion of the integrand of (2-2-13) and 

(2-2-14) in powers of 1/B, it is not applicable to the cases of 

small B, i.e. of small Qo. Keil et al.14) have made an alter-
nate and numerical calculation for 0.2 S Qo<20 (plural scattering), 
which is introduced in this section. 

   Since the parameter B is not used in this theory, a new angular 

variable 0K other than (2-2-9) should be used, which is given by 

        h=B/Xa(2-3-1) 

Using this new variable, we obtain, instead of (2-2-13), only for 

integral values of Q1
0=m, 

                                            oo
_ F(19K,m)=JF(y)mJo(0Ky)ydy(2-3-2) 

                                  0
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where we use the argument m in place of t in (2-2-13). The 

transform  1(y) for m=1 is given by 

1(Y)=exp[YK1(Y)-1] ,(2-3-3) 
where K1is the modified Bessel function of the second kind. 

   The device used by Keil et al., who followed Leisengang's treat- 

ment35) but used a computer, is to approximate F(y) to within 

0.002 for all y by the formula 

                         -c
2y-cy                F(y)=e -1 .(l+b1e1.+b2e2)(2-3-4) 

with the coefficients 

        b1=2.10667c1= 0.935 

        b2= -0.388388c2= 5.000 .(2-3-5) 

   The rn'th power of (2-3-4) is then written out: 

  n-mm mkm-km-k  F(Y)=eblexp(-kc 1Y)2:b2nexp(-nc2Y),(2-3-6)     k=okn=o n 

and use is made of Bessel function integral

         00 

      ex:p(-gy)J
o(0KY)Ydy 

       0 Then we have 

           m m-km 
F(m,K)=e-m 

k=o n=o k 

   The term k=n=0 gives 

particles exp(-m)6(0K), 

after. Keil et al . mad 

part of the distribution

q(ci-+ 0K`) (q> 0) 

6(19 K)(q= 0) . (2-3-7) 

m-k
n-3/2 

   )b1kb2(c1k+c2n)(c1k+c2n)2+~K2 

  n 

                                  (2-3-8) 

he contribution of the unscattered 

hich we call. "no scattering" term here-

  machine computations of the non-singular 

G (aK, m) , given by

     m-k m-k 

c1Y) E 
    n=o n 

function  integ 

or(ci2+~K2)-3/2



                                                    13 

 G  (,9K,  m)=F  (0K,  m  ) - e-m S(19K) •(2-3-9) 

   The greatest error, of the order of 4%, occurs for m=20 and 

0K-0which is due to the error remaining in the approximation 

(2-3-4). Exact numerical. calculation forTK=Oshows that for 

m=20 the computations using (2-3-4) are high by 3.2%, whereas the 

Moliere expansion gives results that are 4.3% too low. Since 

the errors in Moliere's method decrease as Qo increases, and 

those of Keil et al. increase, we see that Qo=m=20 is a good 

division point between the two methods. 

   The omission of the no scattering term in Keil et al.'s theory 

is significant and it will be discussed in the following chapters.

 * Since there appears no case of Q
(3,s 2 in the present report, 

the case is eliminated here.

  2-4. Theory of Nigam-Sundaresan-Wu 

   NSW's theory~5) is scarcely used in the present paper, but it 

is described here very briefly. 

   NSW carefully examined the Dalitz formula36) which uses the 

Born approximation to the second order, and got an expression for 

q(X) valid for all X, 

q(X)=X4(X2+x2)-2 I4X2+X2) 

      +12(X2+4sin2(X/2)) cosec(X/2)tan1(sin(X/2)/X) , 

(2-4-1)* 

where p=v/c, c being the velocity of light, and Xu is given by 

          xup,xo.(2-4-2) 

Here NSW used the adjustable factor p=1.12 and 1.8. Then the
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theory gives a formula for Xa, 

                                     1/2  Xa  X  1+4aX[(1-1i2)1nX +0.2310+1.448R2]} , (2-4-3) 
instead of (2-2-5) of Moliere. Using (2-4-3), they derived their 

distribution functions in a way similar to Moliere's. Some cor-

rections for Moliere's theory were made also. The results are 

so complicated that they are not written here. Further details 

have been described by Scott.34) 

One of the major differences between the theories of Moliere 

and NSA/ exists in the magnitude of X
a. It is found easily, if 

(2-4-3) is compared with (2-2-5), that Xa of i'S'u' is nearly equal 

to that of Moliere when a is very small. However, for large cx 

value, NSS's X
a is much smaller than Moliere's, and finally the 

angular distribution of NS+V becomes much broader than that of 

Moliere. This is an important point as discussed in the next 

chapter.

* Small angle approximation is severely examined in their theory.

§2-5. Theory of Meyer 

   Though Moliere's theory is applicable even to the cases of 

fairly large a, there is a limitation of 

aX o« ,(2-5-1) 

&s Scott34) has predicted. Meyer17) established a theory appli-

cable to the cases of large a values , using LNS's classical 

single-scattering theory.18) 

   Single-scattering cross section is, in general, a function of 

scattering angle X and reduced energy
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 E  =aTF/b ,(2-5-2) 

where 

             b=2zZe2(m1+m2)/(m1m2v2)(2-5-3) 

is the distance of closest approach in a classical sense written 

in the center of mass system, where ml and m2 are the masses of 

projectile and target atom, respectively. LNS showed that this 

dependence of the cross section on two variables can be reduced 

in rather good approximation to a dependence on only one quantity 

= E sin(X/2) .(2-5-4) 

They obtained the differential scattering cross section in the 

form of 

dQ2  f()                                                            (2 -5-5)                                                       d
7"12 72 

The function f(7) was numerically calculated according to the 

Thomas-Fermi model and given graphically and by a table. For 

large values of v7, this function approaches the function 

fR ( )_ ( 2 7)-1 ,(2-5-6) 

which corresponds to the Rutherford cross section (cf. the descrip 

tion following (2-1-15)). Moliere's cross section in this form 

is represented by 

fm(?O.  93/{2(3.76/16+r(2)}2 (2-5-7) 

where-it is assumed that a2>1.13/3.76 and the term 1.13 in 

(2-2-5) is neglected. The above three functions are shown in 

Fig.2-2. 

   The strong decrease of the scattering cross section of Moliere 

with decreasing angle results in a finite value of total scatter-

ing cross section. Consequently the number of collisions,
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encountered by a particle in  Moliere's theory, is much smaller 

than the number of atomic layers penetrated. The differential 

cross section (2-5-5) calculated from classical.-mechanics, however, 

results in a diverging total cross section which has to be cut off 

on physical grounds. 

   Meyer assumed that each scattering center is effective within 

a spherical volume of radius ro which is equal to half the dis-

tance of immediately neighbouring atoms of amorphous foil; 

           ro=N-13/2 .(2-5-8)* 

The restriction to this volume results in a minimum scattering 

angle go for single scattering, which is determined by 

                    f 

           dbdrj =nr
o2• (2-5-9) 

                    d 

                 70~ 

Then we have for the average number of collisions, m, suffered 

by a particle penetrating a layer of thickness t, 

m=nro2Nt ,(2-5-10) 

assuming that the classical impact parameters are uniformly 

distributed over the cross section nr
o2. The value of m is much 

greater than that of 5;)o of Moliere. 

   Using (2-5-5) and (2-1-9), we have for the spatial angle distri-

bution of multiple scattering in laboratory system 

22 

       F( ,Z)=8
n(mlm2 )f1(f,2)—aTF2---------f2(~,T)      m2

r                                                       0 

                                                           (2-5-11) 

where 
                                           00 

           f1(6,t)=exp[—c4(z)1 do(~z)zd.z(2-5-12) 
                            0 and
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         =2                f°exP[_r(z)JJo(z)2(z)zdz , (2-5-13) 
                         0 both of which have been tabulated by Meyer. Here  5. is Meyer's 

reduced angular variable given by 

                  E ml+m2 ~= 8. 2 • m
2 , (2-5-16) 

and r is the reduced thickness defined by 

           T =TLaTF2Nt ,(2-5-M) 

which is numerically very close to Q0 of Moliere and the relation 

t =3.76 Q0/4(2-5-16) 

holds when a2>>1.13/3.76. The function Q(z) in (2-5-12) and. 

(2-5-13) is obtained from 

d(z)= f2)C1-J0(z )]dr?.(2-5-17) 

   The distribution (2-5-11) is nearly equal to (2-2-13) of 

Moliere for large t (>20) and becomes broader than the distri-

bution of Keil et al. as t decreases.

 * Rigorously , ro=n-1N-1/3 should be used as in ref.24, but the 

second term in the brackets of (2-5-11) is so small that the use 

of (2-5-8) causes little error.
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                      Chapter III. Experiments 

 §3-1. Arrangement and Measuring System 

    The schematic view of the present_ experimental arrangement 

and the block diagram of measuring system are shown in Figs.3-1 

and 3-2, respectively. 

   Protons or nitrogen ions extracted from a PIG type ion source 

were accelerated by a 4MV Van de Graaff accelerator of Kyoto 

University which had been constructed in 1969. The ion beam 

was deflected and energy-analysed by a 900 magnet and introduced 

into a collimation system. The ion energy can be determined 

within an accuracy of about 5keV by an NYR measurement of the 

analyser magnetic field. 

    The collimation system was arranged to measure correctly the 

spatial-angle distribution. Three longitudinal slits having 

movable knife edges and with the length of 6mm were used. Two 

of them (S-1 and S-3) were placed vertically, while one (S-2) 

horizontally, each distance being 900mm. Thus a well collimated 

ion beam spot of about 0.3mm x 0.3mm in size was obtained , which 

was clearly seen on a fluorescent screen placed behind . 

Moreover, we could control the counting rate of the detector SSD, 

prior to the experiment, by changing the slit widths a little.* 

   Just behind the slit S-3, a foil exchanger was placed , on which 

scattering foils were set. Techniques of foil preparation and 

of thickness measurement are described in the next section . 

   To move the particle detector SSD (D) exactly on the line 

passing the beam axis, two small concave cuts were made at the 

end of the detector holder . If the straight beam travels through 

the cuts, the detector slit of about 0.2mm0 would be correctly
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moved on the line. 

   The  window-slit of 2mm0 was made in front of the monitor SSD 

(i), which was fixed at a position where the counting rate was 

adequate (usually 300--500 counts/sec). Thus for the scattered 

ions, the ratio, D/M, of the count of detector (D) to that of 

monitor (Ni) as a function of the detector position. (i.e. of the 

angle of the scattered particles) leads to the spatial angle 

distribution. The counting errors were less than 270. 

   The straight beam was examined by removing the scattering foil 

and using the detector SSD also.It was always 0.2^-0.3mrn in 

     ** 

size and no appreciable scatterings caused by slit edges were 

found. During the experiment, energy spectrum of the beam after 

the foil was frequently checked and measured by means of the multi-

channel pulse-height analyser. Moreover, the counting rates of 

1) and M were always checked by the use of a two-nen recorder 

connected with the rate meters. 

   The foil exchanger and detector- and monitor-SD were arranged 

in a scattering chamber, the vacuum in which was maintained at 

better than 4 x10-6 mmHg. The chamber was arranged so that we 

could measure correctly the angular distribution. up to about 0.1; 

radians.

 * The size of the 'straight beam spot during the experiment on 

multiple scattering is expected to be smaller than 0.3mm x 0. 3mm, 

because we usually reduced the width of slits, after seeing the 

spot, to get an appropriate counting rate. 

 ** The accuracy of the measurement of straight beam width was 

not good, because the window before the detector SSD was as large 

as 0.2mm0 , as described above.
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 3-2. Foils 

   Preparation of foil and measurement of its thickness are very 

important to the experiment on multiple scattering. The present 

method and technique are described in this section. A number of 

methods have been reviewed in refs.37 and 38. 

(i) Preparation of thin and self-supporting foils 

   The foils were produced by means of vacuum evaporation. The 

arrangement is schematically shown in Fig.3-3. 

   Grains or wires of metallic material of high purity were heated 

on a tungsten boat. We determined the distance between the glass 

slide to be deposited and the source to be 307mm in order to have 

good uniformity of film. The slide was 20mm x50mm in size, which 

had been cleaned carefully by the use of cleanser, water, distilled 

water and ethyl alcohol. This cleaning procedure is necessary to 

obtain good quality of foil. In the course of evaporation, the 

thickness of the deposited film was always monitored by means of 

quartz crystal method. The foil thickness measurement is de-

scribed in the next subsection. 

   Small amount of potassium chloride (KCl) was deposited on the 

slide before the deposition of desired source material so that 

the removal of foil from the glass might be easy . The vacuum in 

the evaporation chamber was maintained at better than 1 .5)(10-5 

mmHg even in the course of evaporation . 

   After the vacuum evaporation , the glass coated by KC1 and 

source material was immersed in distilled water diagonally . 

First, KCl melts, and then the foil floats on the water surface . 

Since this method takes advantage of the surface tension of water 

to pull the film away from the glass, sufficient time must be
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allowed to permit these forces to act effectively. Before this 

procedure, the film should be cut by knife into pieces of desired 

area. The pieces are seperated from one another on the water 

surface. In the case of very thin , foil, the surface tension of 

water is sometimes too strong for the film to be unbroken. In 

such a case, a small amount of ethyl alcohol should be added in 

the water. 

   Each piece of foil was removed from the water by picking it 

up with aluminium or copper frame having a hole of about 6mm96 . 

Care should be taken to remove sharp edges on the frame which may 

cut the film as it stretches somewhat upon drying. 

(ii) Measurement of foil thickness 

   Accurate measurement of foil thickness is very important for 

multiple scattering experiment as we have seen in Chap.II. 

   Foil thickness was monitored and measured by means of quartz 

crystal method in the course of evaporation. However, this 

method has a disadvantage that the monitoring is done for the 

deposited film on the quartz surface. Moreover, the crystal is 

covered with conductive layer prior to the evaporation, and this 

may influence the accuracy of measurement. Therefore we calibrate 

the quartz oscillator by means of multiple—beam interferometer 

(MBI). 

   The results obtained from above two methods are compared in 

Fig.3-4, from which we find that values from quartz crystal method 

are proportional to those from FBI. In the quartz crystal method, 

the increase in frequency during the deposition, d f (kHz), is 

proportional to the foil thickness pt (}Lg•cm-2). Referring to 

the specification of our equipment, the relation
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           pt=  20•c•df(3-2-1) 

exists for all materials, where c is a constant. We can conclude 

from Fig.3-4 that different source elements have slightly different 

values of c for the same thickness in ilg•cm-2. The value for 

each element is represented in the figure. 

   On the other hand, we tried to calibrate the thickness by weigh-

ing method also, but the accurate measurement of the weight and 

area of very light foil was so difficult that we could not do. 

The gross uniformity of foil was also examined carefully by LBI 

method and was found satisfactory. 

(iii) Energy loss 

    Before multiple-scattering experiment, energy loss of protons 

or nitrogen ions in the foil was measured for the purpose of con-

firming the foil thickness and determining the average energy in 

the foil. Here, the average beam energy, E, in laboratory system 

is simply given by 

          E_ (Ei+Ef)/2(3-2-2) 

where Ei and Ef are the initial energy and the energy after pass-

ing through the foil, respectively. The resultant values of 

stopping power are shown in Fig.3-5 (for protons) and Fig.3-6 

(for nitrogen ions) together with other authors' curves. 

   Northcliffe and Schilling39) have tabulated the electronic stopp-

ing power for representative ions in different material media . 

The tables are based on an investigation of the systematic relation-

ships between many observed data, guided by simple theoretical ex-

pectation and extrapolated into regions where no measurements have 

been made. Unfortunately they did not tabulate the values of cop-

per medium either for protons or for nitrogen ions. Therefore
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we referred to a report of Allison and  Warshaw40) for protons. 

For nitrogen ions on copper, we got the curve by means of inter-

polation of the table of Northcliffe and Schilling. 

   In the figures, it seems that our data for aluminium, silver 

and gold are in good accordance with the curves from the reports 

of other authors in spite of some scattering caused by experimen-

tal errors. However, the experimental values of stopping power 

of copper (for both protons and nitrogen ions) deviate a little 

from those of other authors. One may think that this is because 

the calibration factor c (=1.32) of (3-2-1) for copper is extraor-

dinarily small compared with the average value (1.37), but the 

factor from our measurement seems to be adequate if we judge from 

multiple-scattering data discussed in later sections. Loreover, 

even if we use the average value of c, still the values of the 

stopping power of copper are larger than those from other authors. 

Then we use c=1.32 for copper hereafter.

 * Experimental values of stopping power are not so 

the energy loss in the foil is fairly small in the

 accurate, since 

present cases.

§3-3. Angular Distributions 

Multiple-scattering spatial-angle distributions of protons 

(0.4--1.5MeV) and nitrogen ions (1.3-,-4.5MeV) on aluminium, copper, 

silver and gold foils have been measured. The data for protons 

and nitrogen ions are listed in Tables I and II, respectively. 

The values ,of a, Xa and Qo in the tables are calculated according 

to JIoliere's method with (2-2-3). The average energy is obtained 

from (3-2-2). The foil thickness pt is written in m•cm 2 units. 

The values of F(0), 01/2 and F(201/2)/F(0) experimentally obtained
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 are also tabulated, where  612 means the HvVHM of distribution. 

    The typical angular distributions of multiple scattering are 

 shown in Figs.3-7-^-3-9 together with theoretical curves. Here, 

 they are normalized according to (2-1-3). 

    Figure 3-7 shows the result of 1.45MeV protons on an aluminium 

 foil of 56211g-cm-2 thick. From this figure, we find that the 

 angular distribuion according to Moliere's theory with the use 

 of aTF of (2-2-3) agrees fairly well with the experimental result. 

 On the other hand, both the distributions according to iS;v's theory 

 (with 11=1.12 and }i=1.8) are much broader than the observed distri-

 bution. 

ks described in §2-4, NSud's X
a is numerically close to Moliere's 

when.a < 1 (cf. (2-4-3) and (2-2-5)). However, NSW's X
a becomes 

 much smaller than Moliere's X
a as a increases, and consequently 

 the difference between the distributions according to the two 

 theories becomes large as a increases . Though the a value of 

 ion-atom combination of Fig.3-7 is the smallest in our experiment 

 (cf. Tables I and II), still the difference is fairly large. 

    A few parameters of Moliere and of TiS;v in this case are tabu -

 lated and compared in Table III . NSW's Q
o and B are larger 

 than those of Moliere because of smaller X
a value, and consequently 

T\!S',v's distribution becomes broader than Moliere's . 

    From what described so far , we deduce that the angular distri-

 bution of NS'd will become much broader than that of Moliere in 

 the case of larger a. In fact , it is clearly seen in Fig.3-8 

and Table IV. Figure 3-8 shows the angular distribution of 4
.18 

Ii eV nitrogen ions scattered from an aluminium foil of 11311g,. cm-2 . 

In this case, the distribution according to NSd's theory is 

extremely broader than the one according to hioliere's theory and
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the latter theory is preferable.  We conclude, as Simon22) has 

already predicted, that the theory of NSW cannot be applied to 

the case of large a value. 

   The value of Q
o in the case of Fig.3-8 is 21.1 which is close 

to the boundary value (Q
0=20) between the regions of applicability 

for the theories of Moliere and Keil et al. Then the two theories 

are compared in this figure, and the description following (2-3-9) 

is confirmed here. 

   Figure 3-9(A) shows the angular distribution of 1.39MeV nitro-

gen ions scattered from aluminium foil of 90.911g•cm-2. Here, 

Keil et al.'s theory is applied(with Lagrange interpolation** 

about (";) because of small Q (=16.2), and the difference bet-

ween the distribution functions, as obtained using (2-2-2) and 

(2-2-3), is shown. The Thomas-Fermi radius according to (2-2-3) 

seems preferable. In our experiment, the difference between 

(2-2-2) and (2-2-3) is greatest in the case of nitrogen ions on 

aluminium because of the largest value of z/Z. Our data prefer 

(2-2-3) to (2-2-2) in almost all the cases, though the difference 

between them is smaller for the other ion.-atom combinations. 

   The angular distribution of 1.32MeV nitrogen ions scattered 

from silver foil of 113}Lg.cm-2 thick is shown in Fig.3-9(B). 

Here, the curves according to Keil et al.'s theory and Meyer's 

are compared. Keil et al.'s calculation neglects the "no scatter-

ing" term described in §2-3, whereas the experimental distribution 

for Q
0~ 5 should include an appreciable number of events classi-

fied to no scattering. Therefore, Keil et al.'s theory has 

little meaning in this case of Q0=2.78. On the other hand, 

Meyer's theory does not include the concept of no scattering as 

seen from (2-5-10), and one may think that the theory of Meyer is
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applicable to the case of  Q0�5. However, seeing Fig.3-9(B), 

we find that the curve according to Meyer's theory is too broad. 

    The angular distributions according to Meyer's theory are in 

good agreement with our observations. when Q0-..15 (though the 

figures are not shown in this report), but broader than the experi-

mental results in the region of Q0410. At least in the present 

 energy region, Meyer's prediction shows a deviation, which would 

be ascribed to the inadequate concept of classical orbit. 

   Keil et al.'s distribution in Fig.3-9(B) seems to be a little 

narrower than our experimental result. Inclusion of no scatter-

ing" term into their formula would lead to still a narrower distri-

bution even if the angular spread of initial beam is taken into 

account. This problem will be again discussed in the next sec-

 tion. 

    In conclusion, the theory of Noliere-Keil et al. explains the 

present experimental results more satisfactorily than the theories 

of NS v and Meyer over the wide ranges of a and Q
0.

 * Rigorously
, 

(cf. (2-3-9)), 

venience. 

 ** Keil et al . 

as described in

Keil et al.'s distribution should be noted as G(e) 

but the notation F(6) is used hereafter for con-

's table is given for integral value s of Q0 only, 
§2-3. 

§3-4. Comparison with Theories 

   In this section, we compare the experimental results with the 

theories of Moliere and Keil et al . only, because the inadequacy 

of the theories of NSW and Meyer has been found in the preceding 

section.
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   Since it is very laborious to compare the considerable amount 

of data in Tables I and II directly with theories as in the 

preceding section, we take the typical values of F(0),  01/2 and 

F(281/2)/F(0). For the theoretical value of 01/2, there is an 

approximate formula41,34) 

1,1/22B. -0.146+1.799 log a . (3-4-1) 

However, the errors in this approximation increase as Q0 (i.e. B) 

decreases. Then, the theoretical value of 1/2 was calculated 

directly for each case by means of Lagrange interpolation method. 

   Though. the ratios of above three values (F(0), 01/2 and 

F(201/2)/F(0)) experimentally obtained to those from theories 

have been arawn as functions of projectile energy for the purpose 

of examining energy dependence, no relationship was found. There- - 

fore the figures are not shown in. the present report. On the 

other hand, we can see some dependence of above three values on 

the mean number of scatterings in the foil (Q o). 
   The relative value F(201/2)/F(0) is a function of B (i.e. of 

~o) only, but F(0) and 01/2 are functions of B and Xc (i.e. func-

tions of foil thickness, beam energy, z, Z, etc.); F(0) and O1/2 

cannot be expressed as functions of Q0 only. Then, we take 
the values of Xa2F(0) and 01/2/Xainstead of F(0) and 01/2. 

   Substitution of (2-2-9) and (2-2-11) into (2-2-13) yields 

F(O,t)= -----------12 DO(1,1,0)+BD1(2,1,O)+12 D2(3,1,0)+ ... , 
  nXcB2B 

                                                          (3-4-2) 

where the terms in the brackets are functions of B only. If we 

combine (3-4-2) with (2-2-16), we know that X
a2F(0) is a function 

of Q o (i.e. of B) only. Since the relative shape of the distri-
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bution is determined by the terms in the brackets of (2-2-13) 

 (functions of B  and  0), we have a relation 

91/2=Xc. function of B (i.e. of Q0) (3-4-3) 

remembering (2-2-9). Accordingly 91/2/X a is universally expressed 
 as a function of. 

                         0 

   Thus, we have found that Xa2F(0), 91/2/Xa and F(201/2)/F(0) 
 are expressed by Q0 only in TvIoliere's theory. The same conclu-

 sion can be drawn in the theory of Keil et al., if we examine 

 (2-3-8) and (2-3-1). 

   Experimental values of Xa2F(0), 91/2/Xa and F(201/2)/F(0) 
against Co are plotted in Figs.3-10 —3-12, where theoretical 

 curves are drawn also. 

    Typical errors are shown by bars. They are due to (a) errors 

 in the measurement of foil thickness , energy and scattering 

angles, (b) counting statistics (< 2;o) , (c) errors in the proce-

dure of normalization, (d) errors in reading 9
1/2 and F(201/2)' 

and so on. Errors due to (a) influence all the values of F(0) , 
91/2and F(291/2)/F(0). Errors due to (b) are very small , since 
we accumulated sufficient count during the experiment . .Errors 

due to (c) are serious for F(0) . Values of 91/2and F(201/2)/F(0) 

are greatly affected by errors due to (d) . 

   It should be noted that "no scattering" term is not included 

in Keil et al.'s theory , as described in t2-3. Therefore, Keil 

et al.'s curves in Figs.3-10 .3-12 for very small ?
o are drawn 

only for reference. 

   Though the present experiment has been done using two kinds of 

projectiles of different energies and foils of four elements , the 

observed data in Figs .3-10 and 3-11 are closely distributed along 

the theoretical . curves. This means that the theories treat
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multiple scattering fairly reasonably even in the region of large 

a value and that the expression of (2-2-5) is appropriate enough. 

However, if we examine  Fig.3-ll carefully, we find a little devia-

tion of experimental points of 01/2 from Keil et al.'s prediction 

where Q020 and slight deviation from Moliere's curve where go 

is large. It seems that Moliere's theory is more appropriate 

than Keil et al.'s theory where 5 < g0�.20, but the former theory 

is mathematically invalid in this region as predicted in §2-3; 

this becomes clear if we see Fig.3-12. 

   Though the experimental points of F(201/2)/F(0) in Fig.3-l2 

are considerably scattered probably because of reading errors, 

the data evidently prefer Keil et al.'s theory for Q0 less than 

20; Qo=20 is the boundary value between the regions of applicabil-

ity for the two theories as pointed out in §2-3. 

   The observed points in Fig.3-l2 are, in general, a little lower 

than the curve from Keil et al.'s theory where R04.20 and slightly 

higher than that from Moliere's theory where Q o> 20. This tend-
ency is considered to be an expanded one of Fig.3-ll, which is 

explained by the use of Fig.2-2. 

Moliere's single-scattering cross section in Fig.2=2 seems to 

be underestimated than the real one in the region of very small 

angle, i.e. an appropriate cut-off is made. Here, a little 

overestimation is seen for intermediate scattering angle. The 

cut-off becomes significant in the case of small Qo the width 
01/2 of the distribution is underestimated, and the curve of 

F(201/2)/F(0) becomes higher than the observed points. In the 

region of large Qo, this effect becomes very small compared with 

the total multiple scattering deflection. 

Moliere's theory has mathematical validity for large Qo, where
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a considerable number of medium- to large-angle scatterings are 

included. Since a small overestimation of the scattering cross 

section is effective in the region of large  C, the width is 

estimated to be broader and the curve of F(201/2)/F(0) becomes a 

little lower than the experimental points. 

   Experimental values of F(0), 01/2 and F(201/2)/F(0) are in 

fairly good agreement with Keil et al.'s theory even in the region 

of Qo<5. However, this agreement is unexpected if we remember. 
that no scattering term is neglected in their theory. The present 

author cannot explain this fact. Though the theoretical distri-

bution will become a little broader because of the angular spread 

of initial beam and this effect is relatively large for very small 

C?o, it is not sufficient yet. 

   In order to compare the experimental results more clearly with 

theories, the ratios of experimental F(0), 01/2 and F(20
1/2)/F(0) 

to theoretical values are plotted against C?
() Figs.3-13^-3-15. 

Here, the values according to Moliere's theory are used for 
0 

 >20 and those according to Keil et al. are used for 20. 

                                                    = 

   In Fig.3-13, the points of F(0) are closely distributed around 

unity for all NC
O. The points of 61/2in Fig.3-14 are a little 

higher than unity where g
o< 20. The difference becomes larger 

as Co decreases (though this tendency was obscure in Fig.3-l0), 
and this is consistent with the explanation given befo re in this 

section. 

   In Fig.3-15, we see the same tendency as in Fig .3-12 in spite 
of fairly large dispersion . It should be noted that both the 

theories of Moliere and Keil et al . are not so accurate in large 

angle region because of the errors in small angle approximation .
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 §3-5. Corrections for aTF 

   Meyer and Krygel42) have proposed to determine the screening 

radius aTF from the results of multiple scattering experiment, 

and they have given formulae for the calculation of the radius 

from the values Of F(0) and 01/2using Meyer's theory. Generally, 

aTF should be a function of z, Z and even H.18) The Thomas-Fermi 

radius of (2-2-2) or (2-2-3) is a very rough estimation, since 

the individual properties of the electronic shells are not account-

ed for. 

   Following their method, we tried to find the value of the radius 

appropriate to each experiment, which we call a c hereafter. 
However, since the present experimental results are in better 

agreement with the theories of Moliere and Keil et al. than with 

the theory of Meyer, as described in §3-3, we calculated the values 

using the former two theories. We also chose the values of F(0) 

and 61/2. Since there is no convenient method to calculate the 

appropriate values of the screening radius from experimental F(0) 

and 61/2especially in the region of smallC�0, we calculated 

them using interpolation method. An example of the computational 

programs (to obtain as from experimental values of F(0) and 01/2 

according to Keil et al.'s theory) is shown in Appendix I. 

   The resultant values of ac/aTF against CO' where aTF is accord-

ing to (2-2-3), are plotted in Figs.3-16 and 3-17. In the figures, 

the curves show the boundary values between the regions of 

applicability for the theories of Moliere and Keil et al. If an 

o"value is calculated using a value of ac above the line, Qo 
becomes larger than 20, and this means that the ac is in the region 

of Moliere's theory. Conversely, if the point of ac is below 

the boundary curve, the ac value is considered to be subjected to
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Keil et al.'s theory. 

   The value of  ac according to Keil et al.'s theory is larger 

than that according to Moliere's theory, as far as F(0) and 01/2 

are concerned. Then there is a case in which the ac value from 

Moliere's theory is smaller than the boundary value and that from 

Keil et al.'s theory is larger than the boundary value. In such 

a case, we take the a
c value which yields the Ce?o value nearer to 

20. 

   From these two figures, we find that the theory of Keil et al. 

becomes invalid with the decrease in Q. The tendencies of 

a c/a,rF from experimental F(0) and 01/2 are similar to each other, 
and this is natural. This again confirms the explanation given 

in the preceding section. 

   However, the present author considers that the screening radius 

should not be a function of foil thickness (i.e. of Q
O), and the 

dependence of a c on Qo means that the method in this section is 
not correct physically. If the value of the screening radius 

increases, X
a becomes smaller (cf. (2-2-5) and (2-2-6)) and q(X) 

of (2-2-4) (i.e. single-scattering cross section) becomes larger 

on the whole though the relative increase is smaller in'large 

angle region in comparison with that in small angle region . As 

we have seen in this chapter , the cross section should be larger 

in the small angle region and should be a little smaller in the 

intermediately large angle region than that derived by Moliere . 

It is not the absolute value of the cross section but the shape 

of it (cf. Fig.2-2) that should be corrected . 

   The dependence of a
c/aTF on ions and foil elements cannot be 

seen from 'these figures . 

de tried to calculate a
c's from the values of F(201/2)/F(0)
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too, but they are not shown in this report since the results are 

scattered greatly and the theoretical approximation is not good 

in the large angle region. 

 §3-6. Discussion 

   In this chapter, multiple-scattering angular distributions 

experimentally obtained have been compared with theories. Our 

data show fairly good agreement with Moliere-Keil et al.'s theory 

if the Thomas-Fermi radius according to (2-2-3) is used, while 

the theories of Meyer and NSW differ rather largely from our 

results. 

   The use of (2-2-3) instead of (2-2-2) may be regarded as a 

kind of mixture of the theories of Moliere and Meyer. Bednyakov 

et al.29) have pointed out that the absence of a dependence on 

the charge of the projectile in (2-2-2) is a defect of Moliere's 

theory. Therefore they have used for calculation the effective 

charge, zeff, of the particle from their own charge exchange 

experiment instead of z, and we have also tried to use the similar 

method.30) However, this method seems to be not so meaningful 

physically. 

   The theories of Moliere and Keil et al. deviate a little from 

our experimental results. This seems to be attributable to the 

underestimation (in small angle region) and the overestimation 

(in intermediately large angle region) of single-scattering cross 

section. 

   Bichsel's experimental results of protons of 0.6 4.7MeV26) 

agree fairly well with Moliere's theory. In his experiment, 

Qo's are large. However, his results for E <1.5 MeV give a 

little narrower distributions than theoretical ones, and this
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tendency is consistent with that of our results. 

   Bednyakov et  a1.27,28) have reported their experimental results 

of multiple scattering of low energy protons (40^-200keV). The 

angular distributions are a little narrower in the cases of carbons 

and slightly narrower in the cases of heavier substances than those 

from Moliere's theory with aTF of (2-2-2). They explained that 

the discrepancy in the carbon case is a consequance of applying the 

Thomas-Fermi model in the theory, and they employed the Hartree-

Fock model for proton-carbon potential. However, if a.,Fof 

(2-2-3) is used instead of (2-2-2), Moliere's distributions fairly 

approach their results, and this method seems preferable. When 

Z of the foil is large, Moliere's theory with (2-2-2) seems to 

explain their experimental results rather well, but this may be 

because the difference between (2-2-2) and (2-2-3) becomes smaller 

as Z increases. 

   Rigorously, simple estimation (3-2-2) of mean energy will always 

give an energy value which is higher than the true mean energy 

calculated by averaging all the transmitted particles. Therefore, 

Hogberg and Norden43) carefully examined the relation between 

energy loss and scattering distributions for low energy heavy ions , 

using Meyer's method. However, since the energy region in our 

experiment is rather high, no correction for the mean energy seems 

to be necessary even when energy loss in the foil is relatively 

large. The dependence of scattering distribution on energy is 

rather small for high energy particles , as Bernhard et al.24) have 

already predicted. 

   Kerr et a1.,44) in their paper of experiment on multiple 

scattering of fission fragments , adjusted Q0 from the contribu-

tion of no scattering, but the method does not seem to be adequate
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because the estimation of the contribution of 

from experimental result is very difficult and 

only is physically unreasonable. Reasonable 

ing effect should be considered, as described

no scattering 
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                    Chapter IV. Simulations 

 §  4-1. Introduction 

   In the preceding chapter, experimental results of multiple 

scattering have been treated. Our results have supported Moliere-

Keil et al.'s theory, yet some deviations have been found in the 

case of Qo< 10. Therefore, it becomes necessary to know whether 

the disagreement is attributable to the imperfect expression of 

single-scattering cross section or it is because of inadequate 

precedure of approximation in the plural scattering theory. 

   The rigorous analytical calculation of angular distribution is 

laborious, and it is much complicated to calculate the projected-

angle distribution for small Qo. The calculation including 

energy loss and effect of slit geometry is also difficult. On 

the other hand, the simulation using Monte Carlo method solves 

these problems easily, because the procedure needs only one infor-

mation about differential cross section of single scattering of 

a projectile by a target atom. Therefore we have carried out 

the simulation, and some results are discussed in this chapter. 

   The Monte Carlo method has been widely applied to simulations 

on various phenomena. For example, penetration of neutrons or 

gamma rays through matters has been extensively treated by the 

method and applied to neutron physics , radiation shielding etc.45) 

Moreover, we see many reports applying this method to the passage 

of electrons46) and for heavy charged particles there is a famous 

example of Robinson and Oen47) who treated the case of single 

crystal target channeling. 

   Recently Ishitani et a1.48-50) have made simulations on low 

energy light ions incident upon thick medium and calculated the
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range, back scattering coefficients and others using Lindhard et 

al.'s classical  theory.51,18) Their works are very valuable, 

but their aims and energy region are different from those of the 

present study. 

g4-2. Method of Simulation 

(i) Differential cross section of single scattering 

   Ne start from single scattering of a projectile by a target 

atom. Moliere's theory9) is used as a basis. The combination 

of (2-1-15) and (2-2-4) yields a single-scattering cross section 

2 

     6(X)2nsinXdX=224a222nsinXdX .(4-2-1)* 
                  k(4sin(X/2)+X a) 

   Since multiple scattering is a result of successive single 

collisions, we can simulate the path of a particle until it goes 

out of a given foil a history is known. From such histories, 

an angular distribution due to multiple scattering is obtained. 

Of course the simulation needs long time for computation when the 

number of collisions is large. 

(ii) Random numbers 

  A set of uniform random numbers lri} (0 Sri1) has been 

generated by means of a subroutine called KUNIRN in the Data 

Processing Center of Kyoto University. The subroutine uses a 

mixed congruential method (mod 235), the constants of which are 

chosen so that the random numbers pass a set of statistical tests.52 

  Random numbers tyil with a probability function f(y) are derived 
from 

fr.\by the following inverse transformation method:52) 

yl 
f(y)dy= ri .(4-2-2)
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(iii) Mean free path 

   By means of the differential cross section of (4-2-1), the 

total cross section,  at, is given by 

        a-na(X)2nsinXdX=16na2(4-2-3)       t
ok2Xa2(4+Xa2) 

and the mean free path, T, is obtained from 

_ (Nat)-1 

•                                                              

(4-2-4) 

suppose that a particle starting from x=0 and travelling along 

the path length x is scattered for the first time at a point in 

the interval of x-x+dx. Since the probability, P(x)dx, is given 

by 

              P(x)dx= exp(-x/ X )dx/ T, ,(4-2-5) 

we obtain the distancexifrom ri as 

xi= - T ln(1-ri),(4-2-6) 

using (4-2-2). 

(iv) Angle of single scattering 

   The polar deflection angle, 0i, caused by a scattering is 

derived from (4-2-1)--(4-2-3) as 

1 ei 

aa (X) 2nsinXdX=ri,(4-2-7) 
t o 

which leads to 

                                 2r. X2 
©i= cos-1(1 -----------------2) •(4-2-8)                            4

+X-4ri 

   Since the scattering is cylindrically symmetric (i.e. amorphous 

foil and no polarization are assumed), we simply get the azimuthal
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deflection angle,  oi, from 

          QS2nri.(4-2-9) 

   The angle ei is of course given in center of mass system, and 

it should be converted into laboratory system. Hereafter we treat 

in laboratory system. Uniform random numbers, ri's, of (4-2-6), 

(4-2-8) and (4-2-9) should be chosen independently. 

(v) Summing-up of scattering angles 

   Suppose that a particle travelling in a direction (®i, i) is 

scattered in a new direction (®),the deflection angles 
                                 i+l,i+l 

of the scattering being ( e i+l,0i4.1) as given in (iv). Here, 
®i and 1). indicate polar and azimuthal angles of the direction 

of the particle (after the i-th collision) with respect to the 

initial direction, as shown in Fig.4-l. The relations combining 

above angles are given by 

cos 6)i+1- cos 6icosei+1-sin eisinei+lcos 0i+l 

                                                          (4-2-10) 

and 

            sin ®i+lsin((11i+1qi)=sinei+lsin 0i+l(4-2-11) 

by means of the law of spherical trigonometry. For the incident 

particle (i=0) which has not experienced scattering, we put 

0o= ~o=o ,(4-2-12) 

i.e. incident particle enters the foil perpendicularly. Thus, 

with the aid of (4-2-10) and (4-2-11), we know the new direction 

( ®i+1' i+1) successively after each collision (1=0, 1, 2, •••). 

(iv) Energy loss 

44e treat a case in which energy loss process of projectiles
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in the foil is taken into account, where the energy of the incident 

beam is assumed to be monochromatic. 

   Since there is no appropriate formula of energy loss in the 

present energy region, the semi-empirical table of Northcliffe and 

 Schilling39) is used. As described in §3-2, the values in the 

table agree fairly well with our experimental values. In their 

table, the stopping power, -dE/dx, is given for discrete values of 

energy, and we assume that the stopping power is a linear function 

of energy E over each small energy interval. By solving the 

linear differential equation about E(x), the reasonable energy is 

given to the projectile as it proceeds in the foil. The lower 

limit of energy is necessary to be set in the calculation, which 

we choose as 0.0125MeV/amu. However, the probability that the 

projectile energy becomes lower than the limit is extremely small 

(-1 X10-4), because the foil used is thin enough. 

(v) .Detection of scattered particles 

   The particle after passing through the foil enters a detector 

placed behind. The detector can record the spatial-angle, 

projected-angle, energy, number of scatterings in the foil, etc. 

of the particle, which are obtained very easily by the present 

simulation method. 

   The schematic arrangement for the measurement of spatial-angle 

distribution is shown in Fig.4-2 . Though the plane A is drawn 

in the figure, actually in the simulation only the histogram of 

e is obtained, , and the plane A should be the surface of a sphere 

whose center is the beam spot on the foil . The counting statis-

tics in the small angle part is not good , since we have graduated 

the spatial angle uniformly as seen in Fig.4-2 and the solid angle
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in this region is very small. This problem will be discussed 

in  S4-7. Lateral deflection is very small, and is neglected. 

   Practically, we obtain the projected-angle distribution using 

a longitudinal slit of long but finite length, while the theory 

treats the case of infinite slit to which the incident beam enters 

uniformly. Accordingly, for a finite slit we have an angular 

distribution between spatial- and projected-angle ones; the 

combination is difficult to be treated analytically the slit 

geometry should be carefully considered. 

   The present simulation method solves the problem of finite slit 

easily. The schematic arrangement for measuring the distribution 

is shown in Fig.4-3. The longitudinal initial beam of length d 

enters the foil perpendicularly and is scattered. The angular 

distribution is experimentally measured along the line L. 

However, it is equivalent to the distribution of initially pin-

hole beam aiming at the point 0 scattered only into the plane P 

whose width is d. In the simulation we took the latter case. 

The projected-angle distribution is the special case of d -0oo . 

It should be noted that the line L in Fig.4-3 should be actually 

a circle whose center is the center of the beam spot, 0, on the 

foil and accordingly the plane P should be a cylinder. 

   An example of the programs of simulation (including energy loss 

process and three geometries of slit) is shown in Appendix II.

 * Small-angle approximation is not necessary in the present 

method.

4-3. Large Q0 without Energy Loss 

  To certify the adequacy of the present method, we first make
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the simulation on two cases in either of which the mean number 

of scatterings,  Q, is large enough and the energy loss process 

is neglected, since such cases have been just treated analytically 

by Moliere. In this and the next sections we use aTF from 

(2-2-2), and in §4-5 and §4-6 we use aTF from (2-2-3). 

   Figures 4-4 and 4-6 show the angular distributions of 0.407MeV 

protons on 869m.cm-2 copper foil and of 1.45MeV protons on the 

same foil, respectively. The spatial-angle distributions and 

the projected-angle ones are shown in (A) and (B), respectively, 

together with theoretical curves from Moliere's theory. As 

described in the preceding section, statistical errors of F(0) 

in the small angle region is rather large. Moreover,errors in 

Fig.4-6 are larger than those in Fig.4-4 because of smaller number 

of histories. 

   The histograms of the number of scatterings, VV(n)'s, for the 

above two cases are shown in Figs.4-5 and 4-7. The solid curve 

in each figure is the Poisson distribution, 

                                                                            00 

           W(n)= exp(- Qo).C?on/nl (oW(n)=1) , (4-3-1) 

where the mean number of n is equal to Q
0 of Moliere. As 

described in §2-2, Q
o is a very slowly varying function of energy 

E, and g o of Fig.4-7 does not differ largely from that of Fig.4-5. 
   Figures 4-4-,.4-7 show that simulated results are in good agree -

ment with Moliere's theory. 

§4-4. Very small Q0 without Energy Loss 
   In the region of Q

0 <20, Moliere's treatment becomes inappro-
priate and approximation by Keil et al. must be applied, as 

discussed in Chapter II . However, Keil et al. have not presented
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the formula for projected-angle distribution, and moreover the 

contribution of "no scattering" term is omitted in their theory. 

In contrast to the theoretical difficulties, the present simula-

tion method easily gives information concerning both the projected-

angle  distribution  and no scattering. 

The results for the case of 2.21MeV nitrogen ions upon 33111g.cm-2 

gold foil, where Q0=4.03, are shown in Figs.4-8(A), 4-8(B) and 

4-9: the spatial- and projected-angle distributions and histogram 

of n, respectively. Theoretical curves of F(e) and w(n) are 

drawn also, but there is no theory to calculate f(0) in this case. 

y Je find from Fig.4-9 that about 1.87, of all the projectiles 

experience no scattering. A contribution of no scattering is 

seen at O =0 of f.(0) in Fig.4-8(B). However, the absolute value 

of f(0) has little meaning because it depends on the width of the 

graduated angle. It should be noted that the events of no scat-

tering are experimentally unrealistic and the real contribution 

of then would be distributed around 0=0 (or O=0). 

   If the no scattering component is neglected, the simulated F(0) 

is in good agreement with that from Keil et al.'s theory. This 

indicates that Keil et al.'s procedure of summing up the single-

scattering events is adequate enough. 

§4-5. Small CO Including Energy Loss Process 
We have also calculated on the case of Q

0=9.85, taking the 

energy loss process of the projectile into account. The theory 

of Moliere ,cannot be applied to this case, but the contribution 

of no scattering is negligibly small. 

   The initial beam is assumed to be monochromatic in energy, as 

described in §4-2 and straggling in the energy loss process is
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neglected. The results for nitrogen ions of initially 4.52MeV 

upon silver foil of  401Lg•cm  2 are presented: the angular distri-

butions in Fig.4-10 and the histogram of number of scatterings 

in Fig.4-11. Since these are based upon a large number of his-

tories, statistical errors are small. In Fig.4-10(A), the curve 

according to Keil et al.'s theory is drawn for the mean energy, 

E=(Elf)/2 (cf. (3-2-2)). Though the energy loss in the foil 

is large, a good accordance with the theoretical curve is seen in 

this case. Moliere's projected-angle distribution is drawn in 

Fig.4-10(B) for the sake of comparison. Some deviation from the 

simulated result is seen because of small Q
0. The histogram of 

number of scatterings in Fig.4-11 shows a good accordance with 

Poisson distribution. 

   Figure 4-12 shows the energy spectrum of outgoing particles. 

Though the peak energy is nearly equal to the observed value of 

Ef, the shape is unrealistically sharp. This is because we have 

neglected the energy spread of initial beam , the energy straggling 

in the foil, the energy resolution of the particle detector , the 

nonuniformity of foil thickness and others . If we introduce 

these effects and use more accurate approximation for -dE/dx than 

the coarse one described in the preceding section , the energy 

spectrum experimentally obtained will be reproduced . 

§4-6. Effect of Geometry of Slit 

   So far, only the cases of pin-hole slit and longitudinal slit 

of infinite length have been treated . The result for the case 

of longitudinal slit of finite length is described in this section . 

The method of this simulation has been described in §4-2(v) . 

The case of d=5mm and D-482mm is taken here.
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   The resultant angular distribution,  Fe(e), is shown in Fig.4-13. 

The ion-foil combination is exactly the same as that in Fig.4-l0. 

Since d4 D, the distribution is nearly equal to that of initially 

pin-hole beam (i.e. spatial-angle distribution F(0)), but the 

possibility of simulation on different slit geometries is under-

stood from this simulation. 

§ 4-7. Discussion 

   We have simulated some multiple scattering processes using the 

single-scattering cross section proposed by Moliere. The adequacy 

of our method has been certified in several cases of a few 

values of S2
o, with and without energy loss, and with three geome-

tries of slit. The results show good agreement with the known 

theories. This means that the simulation using Monte Carlo method 

is useful even when the analytical expression of summing up the 

single-scattering events is not known. The small deviations of 

theoretical predictions from the experimental results found for 

small values of Sao, which have been discussed in Chapter III, are 

confirmed to be attributable to the underestimation of Moliere's 

single-scattering cross section for small scattering angles. 

   The statistical errors of F(0) near 0=0 in all the cases pre-

sented in this chapter are rather large because of small angular 

intervals of graduation. However, if we sacrifice the angular 

resolution to some extent, the errors will be reduced. 

   The present simulation method can be applied to many cases. 

For example, the angular distribution around 0=0 will give an 

important information to the measurement of impact parameter 

dependence of inner shall ionization. The simulation on the 

motion of impurity particles in single crystal will be possible,
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because the position of the particle can be predicted easily. 

The simulations in this chapter have been made by means of direct 

method. This is also applicable to simulations on scattering 

due to other types of potentials, if the related differential 

cross sections are appropriately given. 

   Lindhard et  al.(LNS)l8) have derived a formula of cross section 

of atom-atom coil lion using classical model, and Meyer17) has 

obtained a new spatial-angle distribution function of multiple 

scattering. However, the number of collisions is extremely large 

because he has counted the collisions of even very small angular 

deflections (cf. §2-5). In this case, the cut-off angle becomes 

significant if we insist on using the direct method, as Ishitani 

et a1.50) have predicted, and the methods developed by Berger46) 

and other authors would be appropriate.
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                   Chapter V. Conclusional Remarks 

   Multiple scattering of MeV protons and nitrogen ions on alumi-

nium, copper, silver and gold foils has been studied experimen-

tally and by simulation using Monte Carlo  method. 

   The experimental data agree fairly well with theories of Moliere 

and Keil et al. with the use of Thomas-Fermi radius which takes 

account of both projectile and target atom. The slight devia-

tions found when the mean number of scatterings is small, i.e. for 

Q0420, are attributed to an underestimation of Moliere's single-

scattering cross section in the small angle region. This conclu-

sion has been confirmed by the simulations. The theory of NSW 

shows a large discrepancy from the observations and that of Meyer 

gives a little deviation for go < 10. 

   The projected-angle distributions for small go and angular 

distributions including energy loss and considering effect of 

longitudinal slit of finite length etc., all of which cannot be 

given from the known theories, have been obtained by the simula-

tion method. 

   Moliere's single-scattering theory can be used safely when the 

phenomenon contains many scattering events. The substantial 

difference between protons and nitrogen ions has not been found. 

Moreover, the deviations of theoretical prediction from our experi-

mental results have been found to be almost independent of projec-

tile energy over the present energy range. 

   In the lower energy region (i.e. very large a region), Meyer's 

theory is reported to be appropriate.24'25) However, there is 

an exception of Andersen et a1.53) Their experimental 01/2's 

in the cases of heavy ions on gold foils are much smaller than
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Meyer's prediction,  T's in their experiment being very small 

(1:5; 2.5). This tendency (ignoring the absolute value) is con-

sistent with our result in Chapter III. It will be interesting 

to study further about this energy region, though there are diffi-

cult problems of thin foil preparation and of relatively large 

energy loss as Hogberg and Norden43) have predicted. The exami-

nation of the bOUL_,+.ry energy between the regions of applicability 

for the theories of Moliere-Keil et al. and Meyer will be more 

interesting. 

   The actual path length of each projectile in foil is a little 

longer than the foil thickness because of multiple scattering, 

and this influences the energy loss in the medium. Yang54) 

examined this effect for the case of electrons using the rough 

Gaussian approximation for multiple scattering. For heavy ions, 

Tschalar and Bichsel reported an extensive study about this 

effect using the theory of NSW-Marion, but only for the special 

arrangements of energy measurement. The general research about 

this effect by the use of Moliere-Keil et al.'s theory will become 

important when the accuracy of energy measurement is improved. 

De,Names et al.56'57) have shown that the effect of binding of 

lattice atoms on multiple scattering in the foil of single crystal 

is important even at large particle energies because the potential 

is long range. Then they calculated this effect using the rough 

Gaussian approximation for multiple scattering. More detailed 

studies using Moliere's theory and experiment on this phenomenon 

will be of great interest. 

   This report is a product of the study by "multiple scattering 

group" in the Department of Nuclear Enginerring of Kyoto
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Dr. S. Nakamoto
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                     Appendix I. 

   An example of the computer programs to obtain  a
c's from experi— 

mental values of F(0) and 012are presented here. The ac's are 

given according to the theory of Keil et al. The values of G( ), 

which have been obtained prior to this calculation are given as 

DATA. The interp"iation operation by means of Lagrange's method 

is done in the SUBROUTINE YLAG. The similar program is used to 

^,.~ ac's acc Ji°ding to the theory of Moliere.
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 DOUBLE P:iECISION AllAF.ALPHA.A.CHIO,CHIC,CHIAIEC,EI.HEAR,OMEGA.ZI, 
1PAI.(00.6A.WLMDA,ROW,SIGA,THICK.THIKL.V,LF.PAC 
      DOUBLE PRECISION RTET(70)1(3(3(j.7C.') 

DOUBLE- PRECISION FOE.TE4E-
      DOUBLE PRECISION AA(30),PGIO'AIGHF.FG(3('),RTET1(30),RTETHF,RAC1. 

1FINT(30),FGIE,F,HTE,WMM(30)10mC1.FINT1(30),OMC2tACMIAC.2.ACM.RAC2, 
?,ACM,F6II(30) 

(‘ANO=6.u24623 
H6AR=1.05443D-27 
EC=4,602E6D-10 
PAI=3.14159265i5979323mr)0 
ritAD(5,18C)(RTC(J).J=1,51) 
Ef,„mAT(417,10) 
=o-_.A1)( 5 1 '1-o) ( I IJ=.1.•')1) 1=1 4%5) 

  179 FoPmA1(i4U17.1C) 
       CO601=1.45 
00“1)=DbLE(FLOAT(I)) 
FUI(I)=(.1(I.1)*AM(I) 
GHt'.4,6(I.1)/2.0UU 
CA: 61 J=1^51 
IF(C4F.C1.G(I.J))00 TO t.);" 

t,1 CC,NTINOL 
ti DO K=3.1(- 

KJ=J+5-K 
FG(K)=6(10,J) 
PTLTI(K)r,PTETCKJ> 

e5 CCNI1NUt 
       CALL YUG(.RTE1HF.M,GHF.F6,HTETI) 
F1T(1)=PTETHF/DST(oiM(Ii)- 

€ CONTINUE 
C mOLIERE.S CPNSTANTS 

DO 42 Klk-.1.7 
READ(54 .10C)EI.ZI.AIIZFIAFIliOW,1HICK 

100 FLmmAT(U15.E,/2015,8/2D15./D15.8/015.S) 
wKITF((.200)E1,AI,ZI,AF.2f.ROA.ITH1CK 
  200 FORt-!ATC,H1.15HA TABLE OF DATA/1H .10HEINC =015.S.5H EV/1H ,1 

10HAP,C =D15,iqlH =D15,611r, ;10HAFOIL =D15.b/1H 
2 ,10H2,FGIL =D15.8/1H .1OHDENSITY =D15.8,8H G*CM-3/1H 110HTHIC 
3KNESS=D15. • (,*CM2///) 

V=DSRT(1.20412D-6*NN0*EI/AIi 
ALPHA=4T*Z.F*EC**2/HBAR/V 
m(=V/HbAkc.AInNO 
A=0.9f652439rOik5.291720-9/rSORT(ZI**(2.0D013.0L0)+Z.F**(2.000/3.000) 
     1> 
CHI0=1.0I)0/NK/A 
CHIC=2,0f:0*FC**2:q.I*Z.F/HAC/V*DSCORT(PAINQ*IHICK/AF) 
k1,C=1.13D0+3.76D*ALPHA**? 
ChIA=CHI'0*US&H1(PAC) 
t2mEGA=CCHIC/(HIA)**2 
   11 SIUMA=16.000*PAI*ALPHA**2/uK/NK/(HIA/CHIA/(4.000+CHIA**2) 
,,i_MDA=AF/ONO/Mi)4i/bIGMA 
THIKL=1H;CK/ik3r4 
       ?,iRITE(6,2?>THIKL 

21i FOPMAT(1H .10HTHICKNESS=017.10)
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 29  j

259

120

b6

4U 

41

255

25u

256

260

64

~: 9

70

257

261

,,RITE (6,299)A 
FURMAT(1H ,10HA THEORY =D17,1u) 
vR1TE(6,259)0MEGA 
FURMAT(1H 110HOMEGA =D17.10) 
RiAC(5±120)F0E,TFHFE= 
FORM4T(201.5.8) 
FGIE:',0l:00*PAI*FOE*CHIC**?_ _ 
F I NTE=1 EHFE/CHIC' 
_'(F0E•Ew.0.— .)(,0 TO 40 
Li() b6 1=3,25 
TF(FGIL. '3T.FG1(I))GO TO t~] 
C.ONT1NL 
f=25 

    e (~T11) 1^G1 
I!-l1.( .))1=9 
)U 6$ J=1,13 
JJ=I+5-J 
„MM(J)=(JJ) 
FGI I (J)=F ,I (JJ) 
CCNT 1 NUF 
CALL YLAG(UMCl,M,FGIE,F6jI,04MM) 
I F (OMC1 . 6T' . 0 . UuO GU TO 41 
QMC1=0. (j u 
AC:1=DSRT (~)r. C1#r,?C) (CHIC; qK 
n\C1=AC1/H 
AKITE(6,255) 
FORMAT(1H00,42HKEIL ET AL,3 A 
,,k1TE(6,250)FCE,TEHFE 
FOrtMAT(1HG,12 iF (0) EXPT=ii17.10/lr+ 
wRITE(6,256)AC1,RAC1 
FORMAT(JH0,1UHA CU.F(0)=1)1.7.10,4r1 
w/RITE(6,260)OMC1 
FORMA-T(1H ,10HUMEGA CO.=r17,1U) 
IF (FINTE.GT.1.5D0)GO TO 71 
UU 64 I=3,25 
IF(FINTE.LT.FINT(I))G0 To b9 
CUNTINUE 
I=25 
IF(I.GT,21)1=21 
IF(1.LT.9)1=9 
00 70 J=1,10 
JJ= I -o+J 
. MM(J)=WM(JJ) 
FINTI(J)=F1NT(JJ) 
CONT I NW-. 
CALL YLAC:(OMC2,M,FIN1E,FINTI.04MM) 
IF(0MC2.LT.0.000)oMC2=0.0GU
AC2=C:SAPT(OMC2#PAC)/CHIC/(('K_ 
ACM=(AC1+AC2)/2.000 
RAC2=AC2/A 
RACM=ACM/A 
WRITE(6,257)AC2,RAC2 _ 
FORMAT (1!H(. ,1uHA CO. 
WRITE(6,261)CiC2 
FORMA1 (1H ,1UHuMEGA CO.="17

CORRaCTLE,

.1v,4H

.10)

FRCM F(0),THETAHF)

.10HTETHF.E. =D17.10/)

CM/1H ,i0HAC/A F(0)=017.10)

CM/1H ,IOHAC/A TEHF=017.10)



 3*

25d

71 
999 

42

i,RITE(6,258)ACMIACm 
FORmAT(1H11CHA CO,mEAN=D17.1LJ,4H 

GO To 42 
wR1TE(6,999) 
FORmAT(1h0122HTETHF wA MOLIERL DA 

CONTINuE 
STOP 
END

CH/1H .10HA(IA

YO)

MEAN=D17.
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10)



 SUBROUTINE: YLAG(PIN,V,X,F) 
L)OUhLE PRECISION P.V4X(N),F(N),A,B*C 
A=1,000 
C=0,000 
00 3000 I=14N 
iFkV.NE,X(I)) GO TO 1000

1,M0

2000

300

P=F(I) 
ETURN 

t..,*(v-X(1)) 
K=1,000 

DO 2000 J=1,N 
'=H*(x(I)-x(J)) 

CONTINUE 

CONTINUE 
P=A*C 

f,E1URN 
E741:)
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Appendix II.

   An example of the computer programs of simulation on multiple 

scattering by means of Monte Carlo method is presented here. 

This program includes energy loss process and three geometries of 

slit. Uniform random numbers are given by means of SUBROUTINE 

KUNIRN of the Data Processing Center of Kyoto University.
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 C

    DIMENSION  NT(50),NP(50),NPE(50)+NY(50),NS(202),CTP(50)+CY(50),CYP( 
150),YPw(50)+TR(50)4PN(50),YP(50)+FT(50),PEN(50),NN(202) 
   DIMENSION YPN(5O)+ACT(5O) 

   DIMENSION OLENG(30) 
    DIMENSION EL(30),DEDXG(30),DEUx(30),A(30)+3A(30),CA(30), 

1NPAR(500)+CCH(500) 
2,NPARX(100),CCHX(100) 
    CALCULATION CF CONSTANTS 

READ(5+100)EIv' ,LI,AF+ZF,ROW,THICK 
100 FORMAT(F12.0/21-12.0/2F12.0/F12.0,E15.7) 

READ(5e101)DIS,DSL 
101 FORMAT(2F12,0) 

READ(5,102)Ae:' 
102 .ditMAT(E15.8) 

READ(5,103)(EL(I),DEDXG(I)s1=1,18) 
103 FURMAT(2F10.0) 

DU 40 I=1,18 
DEDX(I)=1'0E3*ROW*DEDXG(I) 
 40 CONTINUE 
READ(54104)CHANL+CHANU+CHANW 

104 FURMAT(3F12.0) 
READ(5,106)RXL,RXU,RXW 

106 FORMATC3E15.8) 
DU 41 J.=1,17 

A(J)= W EDX(J+1)—DEDX(J))/(FL(J+1)—EL(J)) 
    BA(J)=DEDX(J)/A(J) 

CA(J)=BA(J)—EL(J) 
GLENG(J)=ALOE((EL(J+1)+CA(J))/BA(J))/A(J) 
 41 CONTINUE 
NCH=CCHANU•CHANL)/CHANW+1 
    DO 42 1=1•NCH 

    NPAR(I)=0 
CCH(I)=CHANL+CHANW*FLOAT(I-1) 
 42 CONTINUE 
NCHX=(RXU-0(L)/RXW+1 

DU 99 I=1+NCHX 
NPARX(I)=0 
CCHX(I)=RXL+RXW*FLOAT(I-1) 
 99 CONTINUE 

RtAD(5,105)EOI 
105 FORMAT(F12.0) 

DU 43 I=1,17 
IF(E0I'LE'EL(I+1))G0 TO 44 

 43 CONTINUE 

   GO TO 45 
 44 NRI=I 

0N0=6.02486E23 
HEAR=1.05443E-27 
EC=4.80286E-10 
PAI=3.1415927 
WRITE(6,200)EI,AI,ZI,AF,ZFIROW+THICK 

200 FORMAT(1H1+15HA TABLE OF DATA/1H 41OHEINC =F15.8+5H MEV/1H +1   10HAI
NC =F15.8/1H 410HZINC =F15'8/1H +lOHAFOIL =F15.8/1H 

  2 ,10HZFOIL =F15.8/1H ,10HDENSITY =F15 .8+8H G*CM-3/1H ,10HTHIC 3
KNESS=E15.8+8H G*CM-2///)
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C

214
WRITE(6,214)E0I 

FORMAT(1H0,10HE0I 
G=AF/(A1+AF) 
VP2=3.20412E-6*00/A1 

V=SQRT(EI*VP2) 
EICM=EI*G 
AICM=AI*G

=,F15.8,5H MEV/)

ALPHAP=ZI*LF*EC**2/HBAR 
ALP2=ALPHAP**2 
ALPHA=ALPHAP/V 
AI2=A1**2 
 AF2=AF**2 
AIAF=AI*AF*2.0 
QK=V/HRAR*AI/QN0 
QKCMP=ALCM/HBAR/QNO wKP2=0KCMP**2 

QKCM=(VKCMP*V 
CHIOP=CBRT(128.0/9.O/PAI**2)*SOT(CBRT(ZI**2)+CBRT(ZF**2))*9.1O83E 

1-28[HBAR**2*EC**2 
CHIC0P2=CHIOP**2 
OHIO=CH1OP/QK 
CHIOCM=CHIOP/QKCM
CHIC=2.0*EC**2*ZI*ZF/HBAR/QK/V*SQRT(PAI*ONO*THICK/AF) 
  CHICCM=CHIC*OK/QKCM 

   CHIA=CHIO*SQT(1.13+3.76*ALPHA**2) 
CHIACM=CHIOCM*SQRT(1.13+3.76*ALPHA**2) 

OMEGA=(CHIC/CHIA)**2 
  CALCULATION OF B VALUE 
C=0.1544-ALOG(OMEGA) 
B=1•15.3+2.583*ALOG1O(OMEGA) 

10 ERR=B-ALOG(B)+C 

IF(ABS(ERR)0LT-1.0E-5)GO TO 11 
B=B*(1.0-ERR/(13-1.0)) 

  GO TO 10 
11 SIGMAP=16.0*PAI 

SIGMA=SIGMAP*ALPHA**2/WK**2/CHIA**2/(4.0+CHIA**2) 
QLMDAP=AF/WNO/ROW 
QLMDAI=QLMUAP/SIGMA

201

212

WRITE(6•201)V'EICM'AICM'ALPHA'QK'(1(CM'CHIOICHIOCM,CHIC+CHICCM'CHIA

6GA =E15•8/1H ,1OHB =E15.8/1H 

72/1H 41OHLAMBDA =E15.8'4H CM///) 
THICK=THICK/ROW 

WRITE(6+212)THICK 
 FORMAT(1H +10HTHICKNESS=+E15.8+4H CM) 

K=13978104282 
CALL KUNIRN(R,IR,K) 

SL=DSL/2.0 
DO 26 J=1,50

1,CHIACM,OMEGA,B,SIGMA,WLMDAI 

FORMAT(1HO,1OHV =E15.8•8H CM*S-1/1H •lOHEICM 
1 MEV/1H ,1OHAICM =E15.8/1H +10HALPHA =E 
2 =E15.8,6H CM-1/1H 110HKCM =E15.8,6H CM 
3=E15.848H RADIAN/1H ,lOHCHIOCM =E15.8,8H RA 
4 =E15.8•8H RADIAN/1H 'lOHCHICCM =E15.818H 
5 =E15.8,8H RADIAN/1H ,1OHCHIACM =E15.8,8H

=E15.8,5H

'lOHK 

1OHCHIO 
+lOHCHIC 

RADIAN/1H +lOHCHIA 
RADIAN/1H 110HOME

,1OHSIGMA =E15.8,611 CM+



 C

 C

 CTP(J)=FLOAT(J-1)*AW 

  CTU=CTP(J)+AW/2.0 
IF(J•E0'1)GO TO 30 
CTL=CTP(J)-AW/2.0 
  GO TO 31 

30 CTL=0.0 
31 ACT(J)=2.0*PAI*(CGS(CTL)-COS(CTU)) 
26 CONTINUE 

   DO 12 I=1,202 
NS(I)=0 

12 CONTINUE 
NBS=O 

Du 13 1=1,50 
`I)=0 

NP(1)=0 
NPE(I)=0 

13 CONTINUE 
NLE=O 

NUE=O 

NLZX=O N
UZX=0 

K0=0 
V2=E0I*VP2 

ALIFHA2=ALP2/V2 
0KCM2=61KP2*V2 
CHIA2=CHIOP2/0KCM2*(1.13+3.76*ALPHA2) 
OLMDAI=QLMUAP/SIGMAP/ALPHA2*QKCM2*CHIA2*(4.0+CHIA2) 
RRI=ALOG((EOI+CA(NRI))/BA(NRI))/A(NRI) 
   PATHS of 100 PARTICLES 

DO 14 1=1,10000 
E0=E0I 
NH=NR1 

RL=THICK 
RH=RRI 
QLMDA=NLMDAI 

THETA=0.0 
pH1=0.0 
Z=0.0 

CoQ=1.0 
ZX=0.O 
  A PATH OF ONE PARTICLE 

   DO 15 K=1'1000 

   CALL KUNIRN(R'IR) 
Z1=-0LMDA*ALOG(1.0-R) 
ZX=ZX+Z1 
Z=Z+Z1*C0Q 
IF(Z.LE.0.0)G0 TO 32 
IF(Z•GE•THICK)GO To 47 

   IJ=1 
GO TO 58 

47 IJ=2 

Z1=RL/C0Q 
58 Z2=RR-L1 

IF(Z2•,E•0.0)G0 TO 46 

   IF(NR.LE.1)GO TO 48
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 C

 E0=EL(NR) 
NR=NR-1 
Z1=—Z2 
RR=QLENG(NI) 
  GO TO 58 

46 KO=K0+1 

  GO TO 14 
46 E0=(E0+CA(NR))*EXP(—A(NR)*Z1)—CA(NR) 

IF(IJ.F0.2)GO TO 16 

RR=Z2 

RL=THICK—Z 
V2=EO*VP2 

ALPHA2=ALP2/V2 
OKCM2=oKP2*V2 
CHIA2=CHIOP2/OKCM2*(1.13+3.76*ALPHA2) 
GLMDA=c4LMDAP/SIGMAP/ALPHA2*QKCM2*CHIA2*(4.O+CHIA2) 
  CALL KLINIRN(R' IR) 

C0=1.0-2.0*R*CHIA2/(4.0*(1.0—R)+CHIA2) 
CO=(AI+AF*CO)/SQRT(AI2+AIAF*C0+AF2) 
ATETA=ARCOS(CO) 

  CALLKOONIRN(R, IR) 
APHI=2.O*PAI*R 

IF(APHI•GT• pAI)APHI=APHI-2 .0*PAI 
CO(0=COS(THETA)*CC—SIN(THETA)*SIN(ATFTA)*COS(APHI) 
THETA=ARCOS(COC) 
IF(THETA•Ew. O.0)GO TO 17 
SI=SIN(ATETA)*SIN(APHI)/SIN(THETA) 

IF(ABS(SI)•GE.1.0) GO TO 50 
pHI=PHI+ARSIN(SI) 
  GO TO 18 

50 pHI=PHI+SIGN(PAI/2.0+SI) 
  GO TO 18 

17 PHI=0.0 

18 IF(PHI•GT•PAI)PHI=PHI-2.0*PAI 

IF(pHI•L.T•PAI*(-1.0))pHI=PHI+2.0*PAI 
15 CONTINUE 

  GO TO 14 

  DETECTION OF A PARTICLE 
16 IF(K•GT•201)GO TO 19 

NS(K)=NS(K)+1 

  GO TO 20 
19 N5(202)=NS(202)+1 

20 IF(THETA•GT•1•57)GO TO 14 

JT=IFIX(THETA/AW+1.5) 
TAMTAN(THETA)*SIN(PHI) 

TA=ABS(TA) 
RPHI=ATAN(TA) 
JP=IFIx(RPHI/Aw+1.5) 

x=DIS*TAN(THETA)*COS(PHI) 
X=ABS (X) 

IF(JT•EQ•1)GO TO 21 
IF(JT•GT•5O)GO TO 22 
NTCJT)=NTCJT)+1 
  GO TO 22 

21 NTCJT)=NT(JT)+2

61



62

22  IF(JP.E  .1)G0 TO 23 
IF(JP.GT.50)G0 TO 56 
NP(JP)=NP(JP)+1 
IF(X.LF.SL)NPE(JP)=NPE(JP)+1 
GU TO 56 

23 NPCJP)=NP(JP)+2 
IF(X.LE.SL)NPE(2)=NPE(JP)+2 

56 JCH=IF IX((EO-CANL)/CHANW+1.5) 
IF(.''7H-0)51'51= 

51 NLE=NLE+1 
GU TO 14 

52 I F (JCH-NCH-1. 54, 54, 55 
55 NUE=NUF+1 

.0 14 
54 NPARCJCH)=NPAR(JCH)+1 

JCHX=IFIX((ZX-RXL)/RXW+1.5) 
IF(JCHX-0)98i98'97 

98 NLZX=NLZX+1 
GU TO 14 

97 IF(JCHX-NCHX-1)96,96,95 
 95 NUZX=NUZX+1 
   GO TO 14 

96 NPARX(JCHX)=NPARX(JCHX)+1 
   GO TO 14 

 32 NBS=NBS+1 
14 CONTINUE 

   HISTOGRAMS AND DISTRIBUTION FUNCTIONS 
WRITE(6'260)KO 

260 FORMAT(1H0'4HK0 ='2X'I5) 
NTSUM=0 
NPSUM=0 
NPESUM=0 
DO 27 J=2,50 
NTSUM=NTSUM+NT(J) 
NPSUM=NPSUM*NP(J) 
NPESUM=NPESUM+NPE(J) 

27 CONTINUE 
WRITE(6,250)NTSUM,NPSUM,NPFSUM 

250 FORMAT(1H0,7HNTSUM =,110,2X,7HNPSUM =,I10,2X,8HNPESUM =,110) 
TSUM=FLOAT(NTSUM)+FLOAT(NT(1))/2.0 
PSUM=(FLOAT(NPSUM)+FLOAT(NP(1))/2.0)*AW 
PESUM=(FLOAT(NPESUM)+FLOAT(NPE(1))/2.0)*AW 
wRITE(6,251)TSUM,PSUM,PESUM 

251 FORMAT(1H0'6HTSUM ='E15.8'2X'6HPSUM =4E15•8'2X17HPESUM ='E15'8) 
   DO 28 J=1,50 

TR(J)=FLOAT(NT(J))/TSUM/Aw 
FT(J)=FLOAT(NT(J))/TSUM/ACT(J) 
IF(J.Ew.1)FT(J)=FT(J)/2.0 
PN(J)=FLOAT(NP(J))/PSUM 
PEN(J)=FLOAT(NPE(J))/PESUM 

28 CONTINUE 
   PRINTING OF THE RESULTS 
WRITE(61202) 

202 FORMAT(1H1,5X,5HTHETA,8X,7HN(TETA),7)(,9HFR(THETA),8X,8HF(THETA),8X 
1,6HN(PHI),5X,7HNE(PHI),8X,6HF(PHI),11X,7HFE(PHI)/1H ,6X,3HPHI//)
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 WRITE(6,203)(CTP(I),NT(I),TR(I),FT(I),NP(I),NPE(I),PN(I),PEN(I)'I 
1=1,50) 

203 FORMAT(1H 'E15•8'2X'110'2X•E15.8'2X'E15.8'2X'110'2X'110'2X'E15.8'2 
  1X,E15.8) 

DU 29 I=2,202 
NN(I)=I"1 

29 CONTINUE 
WRITE(61206)NS(1) 

206 FURMAT(1H1.31HNUMBER OF NO SCATT. PARTICLES ='I8//) 
WRITE(6,207) 

207 FORMAT(1H ,1X,5(6HSCATT.,3X,6HNUMBER,3X)/) 

WRITE(64208)(NN(I)'NS(I)'I=2'201) 
208 FORMAT(1H ,(5(18,110))) 

WRITE(t)'209)NS(202) 
2U9 FURMAT(1H0i26HNUMBER OF OVER 200 SCATT ='112//) 

WRITE(6,213)NBS 
213 FURMAT(1HO'23HNUMbER OF BACK SCATTER='112//) 

WRITE(6'210)IR 
210 FORMAT(1H0,2OHLAST RANDOM NUMBER =,112) 

WRITE(6'215) 
215 FORMAT(1H1'5)'6HENEPGY'9X'4HN(E)//) 

WRITE(6,21b)(CCH(I),NPAR(I)'I=1,NCH) 

216 FORMAT(1H 'F15.8.2)0I10) 

  WRITE(6•217)KOSNLE'NUERUPPR 
217 FO MA (1H0,10HOED,I10/1H ,10HLUWEE.,110/1H $10HUPPERE. 

  1 =4110//) 

WRITE(6•218)(CCHX(1)'NPARX(I)'I=1'NCHX) 
218 FORMAT(1H ,F15.8,2X,I10) 

WRITE(6'219)NLZX'NUZX 
219 FQRMAT(1H0'17HLORWER THAN RXL ='I10/1H '17HHIGHER THAN RXU =`110/) 

45 SDP 

   END
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(i)

Table I.  Multiple scattering data for protons.

 E  pt X F(0) 81/2 F(29112)
Foil

(MeV) (ig• cm 2)
a a

(102rad.)
c2o

(10`rad.) F(0)

0.479 192 2.97 0.210 46.6 319 2.42 0.104

0.491 156 2.93 0.205 37.7 461 2.02 0.102

1•491 156 2.93 0.205 37.7 473 1.95 0.108

0.975 375 2.08 0.105 87.9 669 1.71 0.0900

Al

975 375 2.08 0.105 87.9 671 1.69 0.0894

1.02 270 2.04 0.101 63.1 988 1.42 0.0859

1.45 562 1.71 0.0718 128 820 1.54 0.0884

1.45 562 1.71 0.0718 128 709 1.58 0.100

0.410 869 7.15 0.682 57.5 27.1 8.33 0.116

0.462 579 6.74 0.606 38.3 54.0 5.95 0.0969

0.471 424 6.68 0.595 28.1 79.5 4.74 0.116

Cu 0.854 869 4.96 0.329 57.2 108 4.08 0.109

0.944 869 4.72 0.298 57.1 113 4.00 0.110

1.44 869 3.82 0.196 56.7 280 2.46 0.112

1.44 869 3.82 0.196 56.7 287 2.42 0.117

0.440 820 11.2 1.19 23.9 28.6 8.04 0.112

0.448 736 11.1 1.17 21.5 29.0 7.82 0.115

0.489 316 10.6 1.07 9.21 3.97 0.116

Ag 0.871 820 7.96 0.604 23.8 103 4.10 0.112

0.996 823 7.44 0.528 23.9 119 3.78 0.117

1.46 820 6.15 0.361 23.8 275 2.54 0.109

1.52 736 6.03 0.347 21.3 308 2.36 0.113

(to be continued)



(ii)

(continued)

Foil
 E pt a

X
a S2o F(0)  e

,:1/2
F (2044)

(MeV) (lig. cm-2)
2

(16rad.) (10rad.) F(0)

0.473 606 18.1 2.19 7.00 55.8 5.30 0.147

0.501 236 17.6 2.07 2.72 2.67 0.177

0.966 2069 12.7 1.07 23.9 30.6 7.64 0.111
Au

0.991 606 12.5 1.05 6.99 206 2.70 0.141

1.45 1102 10.4 0.715 12.7 130 3.80 0.0970

1.50 2069 10.2 0.695 23.8 70.2 5.03 0.103

E is the average energy 

The values of * were not 

described in the text.

in the laboratory 

measured. Other

system. 

 notations are



(iii)

Table II. Multiple scattering data for nitrogen ions.

Foil
 E pt a

 xn F(0) 1/2 F(2e112)

(MeV) (lig.cm2) (l02rad.)
520

(10`rad.) F(0)

1.33 67.1 46.5 0.619 12.0 265 2.49 0.120

1.36 33.1 46.1 0.607 5.90 796 1.25 0.182

1.39 90.9 45.5 0.591 16.2 175 2.96 0.126

Al

2.22 90.9 36.0 0.371 16.2 421 2.07 0.111

2.27 89.7 35.6 0.362 16.0 538 1.79 0.112

4.18 118 26.2 0.197 21.1 1200 1.24 0.0983

1.28 116 106 1.70 6.15 73.7 4.60 0.130

1.60 424 94.5 1.37 22.5 17.8 9.44 *

Cu 2.29 116 79.1 0.956 6.15 219 2.70 0.129

4.40 290 57.1 0.498 15.4 2.78 *

4.50 142 56.4 0.487 7.55 * 1.16 *

1.32 113 169 3.03 2.78 110 3.44 0.165

1.83 316 143 2.18 7.76 31.2 6.94 0.137
Ag

2.37 113 126 1.69 2.78 275 2.14 0.159

4.47 283 91.7 0.896 6.95 * 2.43 0.181

2.29 220 215 3.38 2.24 95.2 3.70 0.167

Au 4.37 606 156 1.77 6.16 * 4.26 0.190

4.59 330 152 1.69 3.36 2.35 0.259



Table  III 

on Al

Parameters of Moliere and NSW for 1.45 

of 562  11g.cm-2 thick.

MeV protons

iv)

 NSW

Moliere

U,=1.12 }4=1.80

a 1.71 1.71 1.71

X0 (rad.) 2.06 x 10-4 2.06 x 10-4 2.06 x 10-4

X(rad.) 2.31 x 10-4 3.72 x 10-4

X (rad. ) 7.18 x 10-4 2.30 x 10-4 3.68 x 10-4
a

Xc (rad.) 8.12 x 10-3 8.12 x 10-4 8.12 x 10-4

,Lo 1.28 x 102 1.23 x 103 4.77 x 102

B 6.58 9.19 8.17

* The parameter  Xu does not appear in the theory of Mioliere.



(v)

Table  IV. 

ions

Parameters of Moliere and NSW; for 

on Al of 118 1.g.cm 2 thick.

4.18 MeV nitrogen

 Moliere
NSW

}i=1.12
1µ=1 .80

a

X0 (rad.)

„ (rad.)

Xa (rad.)

X0 (rad.)

so

26. 2

3.87 x 10-5

1.97 x 10-3

9.03 x 10-3

2.11 x 101

4.37

26.2

3.87 x 10-5

4.33 x 10-5

4.23 x 10-5

9.03 x 10-3

4.35 x 104

13.1

26.2

3.87 x 10`5

6.96 x 10-5

6.72 x 105

9.03x10-3

1.69x104

12.1

* The parameter  X does not appear in the theory of Mioliere.
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                    Figure Captions 

 Fig.2-1. Illustration of spatial angle e and projected angles 

x and Qly. 

Fig. 2-2. Scattering cross sections represented by f( ) against 

17. Three cross sections given by Rutherford, Moliere and 

   LNS are shown. 

Fig.3-1. Schematic view of experimental arrangement. 

Fig.3-2. Block diagram of measuring system. 

Fig.3-3. Schematic view of vacuum evaporation system. 

S: source material, B: tungsten boat, G: glass slide, 

   Q: head of foil thickness monitor, C: shutter, J: bell jar. 

Fig.3-4. Foil thicknesses from MBI method vs. those from quartz 

   crystal method, in x units. The calibration factor for each 

   element is shown in the table. 

Fig.3-5. Stopping power for protons. Curves from other authors 

   are also drawn. Solid curves are from the table of ref.39 

   and the dashed curve is from that of ref.40. 

Fig.3-6. Stopping power for nitrogen ions. Curves from other 

   authors are also drawn. Solid curves are from the table of 

   ref.39 and the dashed curve is obtained from the interpolation 

   of the same table.



                                               (ii) 

Fig.3-7. Multiple scattering distribution of 1.45MeV protons 

    scattered from an  aluminium foil of 56211g.cm-2. Curves calcu-

    lated according to Moliere's theory using aTF of (2-2-3) and 

    according to NSd's theory using }i=1_.12 and 1.80 are also drawn 

    for comparison. 

Fig.3-. Multiple scattering distribution of 4.18M0V nitrogen 

    ions scattered from an aluminium foil of 11811g.cm2. Curves 

c,alculated according to Moliere' s theory using aTF of (2-2-3) 

    and according to NSN's theory using 1i=1.12 and 1.80 are -;lso 

    drawn for comparison. The curve according to Keil et al.'s 

    theory is also drawn for reference. 

Fig.3-9. Multiple scattering distributions of (A) 1.39MeV nitrogen 

    ions scattered from an aluminium foil of 90.911g.cm-2, and of 

    (B) 1.32MeV nitrogen ions scattered from a silver foil of 113 

µg•cm-2. Theoretical curves are drawn also. In (A), Keil 

   et al.'s distribution functions, as obtained from (2-2-2) (noted 

   as eq.(2)) and (2-2-3) (noted as ea.(3)) , are compared. In 

   (B), the treatments according to Keil et al. with the use of 

    (2-2-3) and according to Meyer are compared. 

Fig.3-10. Xa2F(0) as a function of Q0. The same marks for ion- 
   atom combinations are used in Figs .3-11 ^-3-17. Typical experi-

   mental errors are shown by bars. 

Fig.3-11. e1/2/X
a as a function of. 

Fig.3-12. F(201/2)/F(0) as a function of g
o. Note the suppressed



                                               (iii) 

   origin of the ordinate. 

 Fig.3-l3. Ratio of experimental F(0) to the theoretical value 

   against Qo. 

Fig.3-14. Ratio of experimental 61/2 to the theoretical value 

   against go. 

Fig.3-15. Ratio of experimental F(261/2)/F(0) to the theoretical 

   value against C. 

Fig.3-16. Ratio a c/aTF from experimental F(0) against Qo. 

Fig.3-l7. Ratio ac/aTF from experimental 01/2 against Q0. 

Fig.4-l. Simplified model of ion trajectories in the simulation. 

Fig.4-2. Schematic arrangement for the measurement of spatial-

   angle distribution. Actually in the simulation, the plane A 

   is a sphere whose center is the beam spot on the foil. 

Fig.4-3. Schematic arrangement for the measurement of projected-

   angle distribution; the case of longitudinal slit of length d. 

   Actually in the simulation, the line L is a circle whose center 

   is the center of the beam spot, 0, on the foil. 

Fig.4-4. Simulated multiple-scattering angular distributions of 

   0.407MeV protons upon copper foil of 869ug.cm-2, based on 40500 

   histories: the spatial-angle distribution in (A) and the



                                                  (iv) 

    projected-angle one in (B). The curves are calculated  accord-

    ing to Moliere's theory. Typical statistical error•s are shown 

    by bars. 

Fig.4-5. Histogram of the number of scatterings for multiple 

    scattering of Fig.4-4. 

Fig.4-6. Limulated multiple-scattering angular distributions of 

1. 451'veV protons upon copper foil of 8691.g. cm-2, based on 1500'i 

   histories: the spatial-angle distribution in (A) and projected-

   angle one in (B). 

Fig.4-7. Histogram of the number of scatterings for multiple 

   scattering of Fi 4-6. 

Fig.4-8 . Simulated multiple-scattering angular distributions of 

2. 211 eV nitrogen ions upon gold foil of 3311g. cm-2 , based on 

   20000 histories. The spatial- and projected-angle distribu-

   tions are shown in (A) and (B), respectively . The curve in 

   (A) is drawn according to Keil et al.'s theo .cy. 

Fig.4-y. Histogram of the number of scatterings for multtnle 

   scattering of Fig.4-8. 

Fig.4-10. Simulated multiple-scattering, angular distributions o' 

  nitrogen ions upon silver foil of 40111g .cm 2, based on 700000 

   histories. Here, energy loss process is taken into account . 

   Initial beam-energy is 4 .52N!eV. 

      The spatial-angle distribution . is shown in (A) where the



                                              (v) 

   curve is drawn according to Keil et al.'s theory. The  pro-

   jected-angle distribution is shown in (B). The curve accord-

  ing to Moliere's treatment is presented for the sake of com-

   parison; here a small deviation is seen because Q0<20. 

   Both the theoretical curves are drawn for the average energy 

  in the foil (3.92MeV). 

Fig.4-11. Histogram of the number of scatterings for multiple 

   scattering of Fig.4-10. Statistical errors are very small. 

Fig.4-12. Calculated energy spectrum of outgoing nitrogen ions 

   of Fig.4-10, based on 640000 histories. The incident beam is 

   assumed to be monochromatic. 

Fig.4-13. Multiple-scattering angular distribution, Fe(e), of 

   initially longitudinal beam of 5mm length. Other initial 

   conditions are the same as those in Fig.4-10. This result is 

   based on 700000 histories, but actually only 11871 particles 

   enter the plane P of Fig.4-3.
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