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      Electron correlation effects in atoms and molecules 

 have received particular attentions by theoretical 

 chemists and physicists. Many methods for taking account 

 of the effects have been proposed, which are described in 

 the introduction of the present doctral dissertation. 

 Among them, the multiconf.iguration self-consistent-field 

 (MCSCF) method is used for the present investigations. 

 The MCSCF method is described in Chapter II of this disser-

 tation. 

      The studies presented in this dissertation are summaries 

 of the author's works carried out from the spring of 1970 to 

 1975 at the Department of Hydrocarbon Chemistry of the Faculty 

 of Engineering of Kyoto University. Chapter III had been 

 published in Chemical Physics Letters 19, 268 (1973). 

 Chapter IV is in press in Physical Review A. Chapters V 

 and VI are to be submitted in the nearest future. Chapters 

VII and VIII had been published in Bulletin of the Chemical 

 Society of Japan; 44, 2587 (1971) and 45, 1574 (1972), 

 respectively. 
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                          CHAPTER I 

                        INTRODUCTION 

     The stationary state of atoms and molecules are de-

scribed in quantum mechanics by Schrodinger equation, 

HAY = ET ,(1) 

where H is a certain Hamiltonian of a given system and E is 

one of its eigenvalues corresponding to one of its eigen-

states, T. For atoms and molecules, Eq.(1) is generally 

a many-electron problem except for hydrogen-like atoms. 

It is clearly impossible to solve exactly the many-electron 

problem as it is so in classical mechanics. 

Hartreel proposed an "independent-particle model" which 

yields an approximate solution of the above problem. 

An N-electron problem, Eq.(1), can be reduced to N-coupled 

one-electron problems to be solved iteratively by his tech-

nique. After this, Fock2 improved this technique so that 

the above approximate solution is forced to satisfy Pauli 

principle completely- The improved technique is well known 

as Hartree-Fock method. The Hartree-Fock solution predicts 

over 99% of the total electronic energies of first-row atoms 

However, it fails to describe many other properties of atoms 

and molecules; e.g., it does not predict even binding for 

F2 molecule3 and the non-zero value of the experimental spin 

density at the nucleus of an atom among B-F," and so on. 

Then we have to ask for a more accurate solution than the 

Hartree-Fock's. That is, the electron correlation effects 

must be taken into account. 

     Many techniques have been proposed for the purpose.
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   They may be classified into three categories; (a) perturbation 

   method, (b) variation method, and (c) others. Works in 

   category (a) are well reviewed up to 1963 by Hirschfelder, 

   Byers-Brown, and Epstein.5 Exchange perturbation methods 

   for describing interatomic interactions at small separations 

   are developed and reviewed by Chipman, Bowman, and 

   Hirschfelder.6 For those at large separations, Dalgarno 

   and Davison have already .given a sufficient review article. 

   Recently, the many-body perturbation theory (MBPT) is devel-

   oped by Brueckner8r9 and Goldstone.10 This is the second-

   'quantized form of the ordinary Rayleigh-Schrodinger pertur-

   bation theory except for the normalization condition. 

   Kelly first applied it to an atomic system with excellent 

successes.11 Das and his co-workers,12-16 Kelly,'7 Hata," 

   and others calculated atomic hyperfine structures very ac-

   curately by the MBPT. Furthermore, very accurate calcula-

   tions of the MBPT have been carried out (i) for the correla-

   tion energies of atoms11,19-22 and molecules H2023 and HF,24 

   (ii) for the hyperfine pressure shift of He atom in helium,25 

   (iii) for the van der Waals interaction between atoms,26 

   (iv) for the hyperfine structure of diatomic molecules,27'28 

   and so on. Thus the MBPT is very powerful for dealing with 

   atoms and small molecules. 

        In category (b), two standard methods were introduced 

   first by Hylleraas in a series of papers on helium-like sys-

   tems.29 32 They are (i) the Hylleraas method,3°-33 in which 

   the interelectronic coordinatesridare explicitly included 

in the terms of a wave function, and (ii) the cofiguration-

   interaction (CI) method,29,33 in which a wave function is
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expanded by means of antisymmetrized products of spin orb-

itals.3"'35 The both methods yield variational solutions 

which converge to the exact solution of a given system with 

any desired degree of accuracy if a sufficient number of 

terms are included.35 The Hylleraas method is applied to 

hydrogen molecule by James and Coolidge,36 to H4 system by 

Conroy and Ma11i,37 and to the atomic systems; (i) He by 

Pekeris and his co-workers,,38'39 and by Kinoshita,40 (ii) Li 

by Larsson and his co-workers,41'42 and by Sims and Hagstrom,"3 

(iii) Be by Sims and Hagstrom44 and by Perkins," and so on. 

There are no calculations, to the author's knowledge, for 

dealing with any systems which consist of more than four 

electrons by the use of the Hylleraas method. 

     The CI method are very popular so that it is applied to 

a great number of systems in order to describe the many prop-

erties of them. It has been reviewed by Lowdin46 and by 

Nesbet.47 Very accurate calculations of the method have 

been carried out for atoms; (i) Be," C," and Ne50 by Bunge 

and his co-workers, and (ii) B to Ne by Sasaki and Yoshimine.51 

In the CI method, the spin orbitals mentioned above are usually 

not optimized, perhaps, for the sake of labor. Recently, 

McWeeny52 derived the Euler equations which determine the 

spin orbitals as variational parameters. The special and 

powerful (as is shown later in this dissertation) version 

of the CI method with the optimized orbitals is generally 

called multiconfiguration self-consistent-field (MC-SCF) 

method53 or multiconfiguration Hartree-Fock (MC-HF) method.54 

The former name is used throughout this dissertation.
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The MC-SCF method will be described in detail in the next 

chapter (Chapter II). 

     The Valence-Bond (VB) method developed by Heitler and 

London55 and Sugiura" is also in the category (b). Goddard 

and his co-workers57 suggested that their G1 wave function 

is the VB type. Clearly, their G1 function is a special one 

of the MC-SCF wave functions with non-orthogonal orbitals. 

Then it seems that the VB method and the usual molecular-

orbital method which has been developed by Hund58 and 

Mulliken5' are united into the MC-SCF method in harmony. 

The spin-optimized self-consistent-field (SO-SCF) technique 

proposed by Kaldor and Harris,60 Lunel1,61 Ladner and 

Goddard,62 and Hameed et al.63 is also in the framework of 

the MC-SCF method. 

     Many techniques are in the category (c). Several are 

mentioned here. Some methods called pair-correlation ap-

proximations have received an appreciable attention. They 

are (i) the "many-electron theory" (MET) by Sinanoglu,64'65 

(ii) the "atomic Bethe-Goldstone" formulation by Nesbet,66 

(iii) the "coupled electron pair approximation with pair 

natural orbitals" (CEPA-PNO) technique by Mayer67 and Ahlrichs, 

Kutzelnigg, and their co-workers,68 (iv) the symmetry-adapted 

work by Platas and Schaefer," in which the basic reference 

state is the so-called first-order wave function70 rather 

than the Hartree-Fock configuration, and many other works. 

The first idea of these techniques may be due to Rodberg,71 

Nesbet,.72 and Sinanoglu.73 The essential hypothesis of the 

pair-correlation techniques is that, for closed shell systems,
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the total correlation energy Ec is given as a sum of independ-

ently computed pair-correlation energies 

     Ec= E e (i,j) .(2) 
i,j 

Sinanoglu6" discussed why Eq.(2) should be approximately 

correct. Schaefer"' claimed the question of this additivity 

in his book, since several calculations have shown that the 

pair-correlation approximations usually over-estimate the 

correlation energy. The main reason for this is the neglect 

of the pair-pair interactions which can be automatically in-

cluded in the CI or the MC-SCF calculations.51 This may 

cause an improved technique (which is named "pair-natural 

orbitals CI" (PNO-CI) method)68'75 into the framework of the 

CI method. For closed shell systems, this is very similar 

to the MC-SCF method which takes account of pair-excitations 

and of double-pair excitations (4 electron excitations). 

     Amongst the whole methods, the MC-SCF technique seems 

to be most powerful for many purposes. In the present dis-

sertation, we will show, in the applications to several sys-

tems, how the MC-SCF method is powerful and how physical 

pictures can be extracted from MC-SCF wave functions. 

The Fermi-contact hyperfine structure of the atoms Li and 

N is studied in Chapter III (for and and 2P states of lithium) 

and in Chapter IV (for 4S state of nitrogen). An excellent 

agreement with experiment is obtained for the both atoms. 

A core radial-polarization mechanism which causes the spin 

density at the nucleus of an atom is proposed through the
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studies in the both chapters. This is a new picture for 

core-polarization phenomena of atoms. 

     The dissociation energies of polyatomic molecules (CH4, 

NH3, and H2O) are computed with sufficient accuracy in 

Chapter V. This study indicates that we have now a powerful 

tool to describe the dissociation process of polyatomic mol-

ecules with a sufficient accuracy for chemists. 

     In Chapter VI, floating functions76 are used with rea-

sonable success in the MC-SCF framework for dealing with the 

intra-bond pair-correlation of lone-pairs of electrons in 

the molecules NH3 and H2O. 

     The chemical shifts of ESCA (electron spectroscopy for 

chemical analysis)77 are investigated semi-empirically in 

Chapters VII and VIII. A theoretical formula is given in 

Chapter VII for the relationship between the chemical shifts 

and molecular charge distributions which has been pointed 

out empirically. In Chapter VIII, this formula is applied 

to large molecules with reasonable success. 

     Finally, general conclusions of these studies are given 

at the end of this dissertation.
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                        CHAPTER II 

 •ON MC-SCF METHOD 

     In this chapter, we discuss on the MC-SCF method in 

detail. For a given system of atoms and molecules, the 

electronic Hamiltonian H is usually given in atomic units by 

Z1 
       H= -(1/2)EV? - EE.  + E E , (1) 

                i 1 iN rIN i>j rij 

where ZN is the charge of N-th nucleus. Let us consider to 

apply the variation principle to the system described by the 

Hamiltonian. The trial variational function 'Y can be assumed 

to be given by a sum of certain configurations "K'' i.e., 

'Y= E 
KaK ,(2) 

where aK are the configuration mixing coefficients to be 

determined variationally- The (DK are constructed by an 

antisymmetrized product of the component orbitals 4)1_ 

generally by a linear combination' of the products for the 

symmetry considerations). A infinite sum of a complete set 

of 0K gives, of course, exactly an eigenstate of the above 

Hamiltonian. It is impossible,. however, to take the infinite 

sum. Then the variation principle gives us the best aK and 

the best orbitals 4)i for any finite sum, via the following 

Euler equations: 

     E aK[HKL-6KLE]=0,(3) 

      Fijcj=k~k6ki,(4)
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where HKLare the matrix ele ents of the Hamiltonian, 

      HKL= f~K* HL dt ,(5) 

theSKLare the usual Cronecker's delta, E and eki are the 

Lagrangean unkown multipliers, andFibare the Fock-like 

operators derived from the variation of the matrix elements 

HKL with respect to orbitals. Equation (3) is well known 

as the secular equation Wand the unknown multiplier E is 

clearly an upper bound of an exact energy eigenvalue of the 

above Hamiltonian. We may call Eq.(4) as the MC-SCF equation. 

Clearly, the MC-SCF equation converges to the ordinary 

Hartree-Fock equation at the limit of the single sum (the 

single configuration limit) in Eq.(2). Thus, the Fock-like 

operator Fib converges to the ordinary Fock operator in this 

case. It is thought in this sence that the MC-SCF method 

is the most natural extension of the Hartree-Fock method to 

that in multiconfigurations. Then the other name, multi-

configuration Hartree-Fock (MC-HF) method,1 is also quitely 

adequate. In the conventional SCF-CI method, the trial wave 

function is considered to be the same form as Eq.(2) and 

the Hartree-Fock equation which is the single configuration 

limit of the MC-SCF equation is solved. Thus the orbitals 

in the SCF-CI method minimize the Hartree-Fock energy rather 

than the upper bound E. (Of course, the MC-SCF orbitals 

minimize the upper bound.) 

     Next, we discuss the development and the present state 

of the MC-SCF method below. The first idea of the method 

may be due to Frenkel in second-quantized formalism.2
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The first calculations were carried out by Hartree, Hartree, 

and Swirles on 0 atom and its ions.3 The MC-SCF equation 

was,first derived by McWeeny in his density matrix formalism.4 

It is not so easy to ask for the density matrices. Then, 

several workers after McWeeny asked for the MC-SCF equation 

within limited choices of configurations. They are (i) the 

so-called "Complete multiconfiguration (CMC)-SCF" formalism 

by Veillard and Clementi, (ii) an atomic MC-SCF formulation 

by Hinze and Roothaan,6 (iii) the "Optimized Valence Config-

uration (OVC)" technique by Das and Wah1,7 and so on. 

Of course, works without no limitation of configurations 

were, most recently, carried out by (i) Bagus, Bessis, and 

Moser8 for carbon atom, (ii) Sibincic' for boron atom, (iii) 

Ishida and Nakatsuji10 for lithium atom, (iv) Bagus and 

Bauchell for atoms, B, C, 0, and F, (v) Wagner, Das, and 

Wah112for ArH system, (vi) Das13 for CN radical molecule, 

(vii) Das, Janis, and Wahl1' for diatomic systems CN and 

A10, and (viii) Ishida15 for nitrogen atom. The applications 

of the above OVC technique have been reviewed up to 1969 in 

the review article by Wahl and Das.16 

     There is a numerical dificulty in solving the MC-SCF 

equation, Eq.(4), by the usual SCF procedure. Then tech-

niques for solving Eq.(4) have been studied during the last 

decade by (i) Hinze and Roothaan6 and Huzinaga17 (a multi-

dimensional Newton-Raphson procedure), (ii) Chang and Grein,18 

Golebiewski and Nowak-Broclawik,l' Mukherjee,20 and Hinze21 

(a two-by-two rotation method), (iii) Das and Wah1,7'22 

and Wood and Veillard23 (a modified single-vector diagonal-
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ization technique), (iv) Hinze21 (a Gauss-Seidel 

and (v) Levy24 (a stepest decent method). Among 

modified single-vector diagonalization technique 

and Veillard23 seems to be most promising as long 

author studied (though the Levy's stepest decent 

not tried).

procedure) , 

them, the 

by Wood 

 as the 

method was
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 8

        MC SCF WAVEFUNCTIONS FOR THE 

FERMI-CONTACT HYPERFINE STRUCTURE OF LITHIUM ATOM

  MC SCF wavefunctions which describe accurately the Fermi-contact hyperfine structure of the lithium atom in 

lowest P and S doublet states are obtained. The physical picture of the Fermi-contact hyperfine structure of the 

states is discussed on the basis of the wavefunctions.

  In the multi-configuration (MC) SCF method, the 
wavefunction of a system

`1'=EaK`)K (1)

is optimized with respect to both the configurational 
coefficients aK and the component orbitals in the 
configurations (DK. Consequently, this method im-

proves the "slow convergence" of the conventional 
CI method so that one may achieve a good approxima-
tion for a state even with a few configurations [1] . 
In the present communication, we investigate the Li 
atom by the MC SCF method in order to search for a 

physical mechanism which contributes mainly to the 
spin density at the nucleus (hereafter referred to as 

[sZS ]) on the basis of the physical significance of the 
configurations. 

  In order to study the nature of the hyperfine struc-
ture of atoms, the simplest problem to treat may be 
the P doublet state of the Li atom. We discuss this 
state firstly and the S doublet state of the Li atom 
subsequently. The following three configurations are 
considered in the present calculations for the P 
doublet state: 

4)1 = I lsls2p+1 , 4)2 = 12s2s2p+I , 

and 

4)3 = 6-tax [212s1s2p+I — 12sis2p+1 — 12s1s2p+1] ,

268

where 4)1 is the Hartree—Fock configuration which 

gives the reference state for taking into account elec-
tron correlation effects. 4'2 is the P doublet configura-
tion arising from two-electron excitation from the is 
to the 2s orbital, and 4)3 is the singly excited con-
figuration (this could contribute to [sZS] as a spin-

polarization mechanism [2] ). 
  In table 1, we summarize the results obtained from 

these two- and three-configuration MC SCF calcula-
tions. The nature of [sZS ] is clarified by considering 
the meaning of these configurations within the 
MC SCF framework. Let u+ and u_ be the orbitals 
defined by the linear transformation of the MC SCF 
orbitals, is and 2s; 

( 

 u+ 

  )=( cosB sing)~isucos9 —sing2s(2) 
where 0 < 101 4 42. Then, an MC SCF wavefunction 
'Y[2C] consisting of the two configurations 4)1 and 
4)2 is transformed to 

41[2C] = al 4)t + a2 4,2 = (N/2)1 u+u _2p+(aj3-0a)a1, 
                       (3) 

where al =N cos20, a2 = —N sin20 and N is the nor-
malization constant. Eq. (3) means that configuration 
4)2 causes the radial splitting of the Is orbital in 4)1 
and that the split orbitals u+ and u_ are occupied by 
an electron of a and/or (3 spin with the same probabi-
lity of 0.5. In terms of u+ and u_, the configuration
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                              Table 1 

The calculated spin density and energy of the P doublet state of the Li atom by the MC SCF method

Configuration (s,8] (au) Energy (au) Virial theorem Ref.

2conf. ((Di and .21,2) 

2 conf. (431 and 433) 

3 conf. (ct, 412 and 4)3) 

nearly full CI within S 

experimental

0 
-0 .01402 
-0.01693

-0.01693 t 0.00020

-7.380082 
-7 .365088 
-7 .380087 
-7.379062 

-7.41013

2.000174 

2.000033 
2.000173

a) 
b) 
a) 

[71 
[8]

a) This work; the basis set used in the present calculations is the same as that in ref. [6] . 
b) This work; the basis set is the same as in ref. [9] .

                              Table 2 

The calculated spin density and energy of the S doublet state of the Li atom by the MC SCF method

Configuration [sz61 (au) Energy (au) Virial theorem Ref.

3 conf. 

5 conf. 

7 conf. 

nearly full CI within S 

experimental

0.2139 

0.2265 

0.2265

0.2313

-7.4465527 

-7 .4475648 
-7 .4475654 
-7 .44754 
-7 .47805

1.999988 

1.999990 

1.999990

a) 
a) 
a) 
[71 
[51

a) This work; the basis set used in the present calculations is the same as that in ref. [6].

4)3 can be rewritten as 

4)3 =N'Iu+u _2p+(2aa(3-a(3a-(3aa)I ,(4) 

where N' is the normalization constant. Then, the 
MC SCF wavefunction consisting of three configura-
tions, 4)1, 412 and 4)3 can be expressed as 

[3C] = a1 4)1 + a2 4.2 + a3 C133 

= I u
+u_2p+[(Ncl/2)0(3-Qa)a(5) 

+N'c2(2ac4 -4(3a-flea)] I , 

where al =Nc1 cos26, a2 = -Nc1 sin20 and a3 = c2. 
As seen in the last term of eq. (5), there arises some 

probability that each of the split orbitals is occupied 
by an a-spin electron. That is, the additional con-
figuration 4)3 causes a slight imbalance in the occu-

pational probabilities of a and Q electrons in the split 
Is orbitals_by the effect of the unpaired electron in 
the 2p+ orbital. Since table 1 indicates that ‘If [3C] is 
superior in energy to the nearly full CI within S, the 
S-character* of the exact wavefunction of the state

* By the "S-character" , we denote a nodeless character at an 
 origin (nucleus).

may be sufficiently reproduced by 4/[3C]. As only 
an S-character could contribute to the [sz S ] , IP [3C] 
should give a good [sZ S ] . Indeed, the very good 
value of -0.01693 which just agrees with the experi-
mental value of -0.01693 ± 0.00020 can be obtained 
by 4J [3C] . On the other hand, as the calculated [0] ] 
is -0.01402 for al 4'1 + a3433, the proper description 
of a radial correlation should be a prerequisite for a 
good [s B]t. 

  Next, we discuss the ground state of the Li atom 
(S doublet). The following seven configurations are 
considered in the present calculations for the state; 

(131 = I1sls2s1 , '2 = 13s3s2s1

(1)3 = 6-u2 [213s1s2s 1 - I3s1s2s1 - 13s 1s2s1] ,

4)4=Ilsls3s1, 45=I1s3s3s1,

(D6 = Ils2s2s17= I3s2s2s1 . 

The results are summarized in table 2. First, we take 
up the first three configurations on the simple analogy

t This agrees with the conclusion in ref. [3].
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of the previous discussion of the P doublet state. 
However, this wavefunction gives a poor [0] as 
table 2 shows. This is obvious since this wavefunction 
does not take the radial correlation sufficiently into 
account (compare the energies of this wavefunction 
and of the nearly full CI within S) and is insufficient 
for a 2s-orbital correction. To remedy these defects, 
we substitute the 2s orbital by the sum

3 

J=1
(6)

with certain coefficients/ so that we have two con-
figurations, 414 and 435, in addition to the original 
three ones. The configuration 434 corrects the 2s or-
bital in 431 as follows: 

al it 1 + a4 (D4 = I 1 s l s2s'I ,(7) 

where the corrected orbital is

I2s1) = I2s)ai + I30a4 .(8) 

The configuration 435 can be interpreted as the inter-
shell correlation between is (K shell) and 2s (L shell) 
electrons. Since the unpaired electron is in an s-shell, 
it seems that the contribution from 4)4 and '5 
becomes important (spin-delocalization contribution 

[2] ). Indeed, table 2 shows that the wavefunction of 
the five configurations gives the good [sZS] value of 
0.2265 (only 2% error) and that its energy may ap-

proach the S-limit. For the first-row atoms, B to F, in 
which unpaired electrons are all in 2p orbitals, con-
tributions similar to those of F4 and 4,5 may be 
ignored just as in the case of the P doublet state of 
the Li atom. We further investigate two other con-
figurations, 4.6 and 437. Table 2 indicates that these 
two additional configurations play no important role 
for the [s2 6] . This suggests that one can disregard 
the internal correlation of 436 and the semi-internal

one of 4)7 in comparison with the important semi-
internal correlation included in 433. 

  In both doublet states of P and S of the Li atom, 
the [sZS] can be described excellently by the MC SCF 
method. Therefore, it appears that a physical me-
chanism for providing contributions mainly to the 

[sZS] is obtained as follows: 
  (i) each doubly-occupied s-orbital is split radially 

by the pair correlation of each electron pair; 

  (ii) the occupational probability of an a electron 
in each split orbital is different, to a certain extent, 
from that of f:3 due to the unpaired electron (or general-
ly unpaired electrons). 

  If the unpaired electron is in an s-shell (e.g., the 

ground state of alkali atoms), the orbital correction 
contribution, like 4,4, and the intershell correlation 
contribution, like 415, should be taken into account. 

  Computational details and a comparison with 
other work (Lunell [4] , Ladner and Goddard [5] , 
Kaldor and Harris [6] , and others) will be published 
in the near future.
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Core radial-polarization and the contact hyperfine 

     structure of "S state of nitrogen

     The contact hfs constant for the "S state of nitrogen 

atom is computed variationally by a multiconfiguration 

self-consistent-field method. Present calculations take 

account of radial-correlation contributions to the spin 

density, but no account of any significant part of angular 

correlations. It is found that the calculated value of 

0.0977 for the spin density is in excellent agreement with 

experimental value of 0.0972. A mechanism named core 

radial-polarization for providing contributions mainly to 

the spin density at the nucleus is proposed. It is noted 

that the mechanism provides a main contribution for the "S 

state of nitrogen as well as for the 2P state of lithium. 

It is also claimed that the proper description of radial 

correlations should be a prerequisite for a good spin density.
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I. Introduction 

     Most physical properties of atoms and molecules can 

be calculated by Hartree-Fock (HF) method in satisfactory 

agreement with experiments. Therefore, the HF theory can 

be considered to give a conceptual basis of the electronic 

structures of atoms and molecules. However, it gives only 

a poor description for the Fermi-contact interaction in the 

magnetic hyperfine structures of open-shell atoms and mole-

cules, though it gives a sufficient description for the other 

magnetic hyperfine interactions. The Fermi-contact inter-

action is proportional to the spin density at•the nucleus 

(hereafter written as [sz6]) ; 

[sz6]= <LSJMIE2sz6 (ri)/(4lrri2) ILSJM>,. (J=M=L+S) . (1) 

Atomic units are used throughout this paper. 

     Two main approaches to improve the value of [sz6] 

beyond the HF method have received appreciable attention. 

First, there are schemes based on perturbation' theory. 

The Feynman diagrams provide conceptual pictures on the 

nature of electron correlation effects in these schemes. 

These methods have been applied to atomic systems by Kelly/1'2 

Das and co-workers,3 8 Nesbet,'r10 Hata,11 and others. 

They obtained spin densities in very good agreement with 

experiments. 

     The second is variational approaches. Many types of 

trial functions have been tested. 12 2° They may be well 

reviewed up to 1968 in the article of Schaefer, Klemm, and 

Harris." Larsson achieved very acculate calculations for 

lithium, using the Hylleraas-type trial functions.17
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     Schaefer, Klemm, and Harris20 obtained rather good values 

    of spin densities for the atoms B to F with their "polar-

     ization wave functions." They used a trial wave function 

     in the form of superposition of configurations. However, 

     the component orbitals were not optimized. Freed21 has 

discussed a relation of this type of wave function to that 

    of the many-body perturbation theory. 

          Generally speaking,;a certain physical significance 

    can be extracted from a trial wave function chosen in the 

    variation method. In a previous paper,22 we adopted 

     a trial variational function in the form of the superposition 

    of configurations and obtained a mechanism for providing 

    contributions mainly to the spin density. We call this 

     mechanism as core radial-polarization through the present 

    paper. The mechanism canbe briefly shown by the use of a 

    model in the case of the P doublet state of lithium. 

         Figure I shows the model in which the configuration A 

    and B are mixing with each other and the weight of A is 

    different from that of B, leading to the spin density at the 

    nucleus of lithium. Note that the radial-polarization of 

     the core is-orbital is mainly caused by the pair-correlation 

    of the 1s electron pair. (The exchange interaction by the odd 

     2p electro.may merely bring about the difference of weights 

    between A and B.), We will show that the mechanism (in the 

                                                                                                    • 

    case of one core orbital) can be extended to the case of two 

    core orbitals in the later part of the present paper.



                                                        • 
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II. Computational method 

     The variational method used here is well known as a 

multiconfiguration self-consistent-field (MCSCF) method or 

as a multiconfiguration Hartree-Fock (MC-HF) method.23 It 

can be briefly skeched as follows: the wave function of a 

Russell-Saunders term is given in the form of the superpo-

sition of configurations. The component orbitals of the 

configurations are optimized, making the total electronic 

energy of this state stationary. (Of course, the coeffi-

cients of the configurations are also optimized simulta-

neously.) 

     The orbitals can be expanded by means of a certain 

basis set. The s-cusp basis set of Goddard13 is used in 

the present calculations. It is expected that the basis set 

is sufficiently flexible for the present purpose so that the 

orbital exponents of the set are not reoptimized. The opti- • 

mization of orbitals leads to a coupled set of equations 

(which may be called MCSCF equations). In order to solve it, 

we adopt the two-by-two rotation method by Hinze.24 The 

Hartree-Fock orbitals and its virtual orbitals are used as 

the initial orbitals.
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  III. Choice of Configurations 

       A guiding principle for the choice of the configurations 

  has been obtained from our previous calculations for the 2P 

  state of lithium.22 That is, a core radial-polarization is 

  well described with the configurations which arise from the 

  single- and pair-excitation from the core s-orbital to the 

  outer s-orbital. 

       For the nitrogen atom, however, there are two s-orbitals 

  in the core. According to the above principle, we must first 

  take into account the following four types of excitations; 

               (i) ls2÷s12 ,. 

               (ii) ls-~s1 , 

                (iii) 2s2+sII2 ' 

               (iv) 2s4sII • 

  We imagine in our mind that the orbitals, si and sII, can be 

  represented adequately by a linear combination of the MCSCF 

  orbitals, 3s and 4s. The orbitals, sI and sII, are not 

  necessarily mutually orthogonal. 

       Then, we have•the following ten configurations to be 

  added to the Hartree-Fock configuration (denoted as 00); 

01 : 1s2-13s2 , 

02 : ls2÷4s2 , 

•̀ 03 : 1s2-}3s,4s[ (3s4s) 1S] , 

Os : 2s2.+4s2 , 

06 : 2s2-1'3s,4s[.(3s4s) 15] 

07 : ls-3s [ (ls3s) 3S] 

08 : ls4-4s[ (ls4s) 35] ,.

. I
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                 0s : 2s4-3s[ (2s3s) 3S] I. 

01 0 : 2s-"4s [ (2s4s) 3S] , 

where 01 to 06 take account of radial pair-correlations and 

    no account of any coupling between core and 2p electrons: 

    While c7 to 010 take those couplings into account. The con-

    figurations which arise from the excitations, ls--3s[(ls3s)1S] 

    etc., are further considered, but those types of single 

    excitations have no important effects, as is shown in the 

    succeeding section. 

         The whole eleven configurations lead to a picture that 

    the radial-polarizations of is and 2s orbitals occurr 

    independently, because no coupling between is and 2s is 

    considered explicitly. 

         Further, we consider the couplings by the following 

    three types of excitations; 

(v) is,2s-si2 [ (ls2s) 1S] , 

                 (vi) ls,2s+s1I2 [ (ls2s) 1S] , 

                 (vii) ls,2s÷s1,sII[ (is2s) 1S(s1sII) 1S] and 

[ (is2s) 3S (sIsII) 3S] 1S. 

                                                               • ,From the three excitations, we have the following four 

    configurations to be added to the above 11 configurations; 

O11 : ls,2s-*3s,4s[ (is2s) 1S (3s4s) 1S] , 

                                                        0.12 : ls, 2s+3s,4s [ (1s2s) 3S (3s4s) 35] 1S , 

013 : ls,2s-3s2 [ (ls2s) 1S] , 

$14 : ls,2s-4s2 [ (1s2s) 15] . 

         The whole 15 configurations may take into account a 

    significant part of radial correlations. (This is true for 

    nitrogen, as is shown in Table I.)

•
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    Tie 15-term wave function has an orbital ambiguity 

which has been generally discussed by Gilbert.25 In order 

to resolve the ambiguity, we take out the two configurations 

of 013 and 014. This procedure will be discussed in the 

Appendix. Finally, a 13-term wave function is obtained.

• e

I .
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     IV. Results and Discussion 

          Table I shows the calculated results from several MCSCF 

wave functions for the "S state of nitrogen. In the table, 

     the 13-term wave function is the one which is obtained in 

     the preceeding section. The 9-term function contains the all 

     of the doubly excited configurations selected in the 13-term 

     function. This function takes account of a significant part 

     of radial pair-correlations and no account of any coupling 

     between core and 2p electrons. The 11-term function lacks 

     the two configurations of (Du and 012 in comparison with 

     the 13-term function. (This means the absence of any coupling 

     between cores, is and 2s.) The 17-term function has, in 

     addition, the following four configurations not included in 

• the 13-term function;- 

015: ls+3s [ (ls3s) 1S] , 

0/6: ls+4s [ (ls4s) 1S] 

017:  2s-}3s [ (2s3s) 1S] , 

018: 2s-4s [ (2s4s) 1S] . 

     However, the four have no important contributions to the spin 

density and to the total electronic energy, as is shown in 

  Table I.• 

          The calculated value of 0.0977 for the spin density by 

     the 13-term function is in excellent agreement with exper-

     imental value of ,0.0972,.•as Table I shows. Since the con- 

     figurations considered are chosen in the manner described 

     in the preceeding section, it seems that a physical mechanism 

     which contributes mainly to the spin density at the nucleus 

     is obtained as follows:
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     (1) Each core s-orbital is radially polarized mainly by the 

     pair-correlation of the electron-pair which occupies this 

s-orbital. This electron-pair, then, occupies the two 

     polarized orbitals in the manner as is shown schematically 

     in Fig. I as the configurations A and B. 

     (2) Then, the interactions from the 2p electrons (it may be 

     mainly the "exchange interaction.") cause the difference of 

     the weights between the two configurations A and B of Fig. I 

    in each pair of the polarized orbitals individually. 

     (3) The polarized-orbital pairs interact finally with each 

     other, varing themselves. 

          The evidence of the mechanism is discussed further below-

     The MCSCF orbitals of the 13-term function are very similar 

     to those of 9-term function except for their unimportant tails, 

     as Table II shows. This means that the MCSCF orbitals of 

     the 13-term function are mainly determined by the effects of 

     radial pair-correlations which have been taken into account 

     in the 9-term function. (This is one piece of evidence for 

     part (1) of the above mechanism.) Although the core orbitals 

     of the 9-term function are radially polarized in the sense 

     described in the preceeding section, the 9-term function 

     causes no spin density at the nucleus. It is found that 

     no weight-difference occurs in the polarized orbitals, just 

     as in F[2C],studied in out previous paper for the 2P state 

     of lithium.22 The weight-difference is caused by the 

     singly-excited configurations of 07 to 010 which take the 

     couplings between core and 2p electrons into account in the 

     13-term function as well as in 'Y[3C] of our previous paper.22
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    The interactions between the polarized pairs must be taken 

     into account, because the 11-term function which lacks the 

     contributions gives 0.0634 for the spin density, in poor 

     agreement with experiment. 

          The 13-term wave function may reproduce the significant 

     part of the radial-correlation contributions to either the 

     spin density or the total electronic energy of the state, 

     because the energy of the.function reaches near the radial 

     limit calculated by Clementi, Kraemer, and Salez26 and 

     an excellent spin density is given from the wave function. 

     It is concluded that the proper description of radial corre-

     lations should be a prerequisite for a good spin density, 

     at least, for the "S state of nitrogen and for the 2P and 2S • 

     states of lithium. 

          Dutta, Matsubara, Pu, and Dass calculated the spin 

     density for the "S state of nitrogen by the many-body 

     perturbation method. Their value of 0.0974±0.0014 is also 

     in excellent agreement with experiment. Following Freed,21 

     we attempt to interprete the diagrams considered by them 

     with the "CI language .." Then, we find that the contributions 

     from the s-~d type of excitations must be very. small, since 

    the diagrams 7(h) to 7(k) of Ref. 5 include the s-d type 

contributions ,when the excited state k in the diagrams is 

     a d-wave, while. the contributions from the four diagrams are 

     individually small and totally very small. Thus, our results 

     are consistent with those by Dutta et al.s, since our wave 

     function takes no account of s+d type contributions.



 -30-

Acknowledgments 

     I gratefully ackowledge very helpful conversations and 

communications with Professor T. Yonezawa, Dr. H. Nakatsuji, 

and Dr. J. Hata. I also wish to thank Miss Y. Honjo for 

typing the manuscript. All computations were carried out 

with a PACOM 230-75 computer at the Data Processing Center 

of Kyoto University.

          •

        •



 -31-

Appendix 

. We will discuss in this Appendix an orbital ambiguity 

of'the MCSCF wave functions used in the present study and 

show how to resolve it. First, let us define the following 

transformation U on a set of MCSCF orbitals of is to 4s to 

the primed set of orbitals of ls' to 4s';

ls' = U is 

        2s' 2s 

        3s' 3s 

        4s' 4s 

where 

         U= cose sine 0 0 

-sine cose 0 0 

0 0 cosw sinw 

0 0 -sinw cosw 

Clearly, U is an orthogonal transformation 

e and w are entirely, arbitrary. 

function 'Y, which contains 19 

is invariant under JJ; i.e., 

     1818 
Y'= E aK . 0K.'.='Y= ' E aKOK 

       K=0 K=0 
where ' 

00' = T 00 

   

• 4
, 

01 '„ 
.                          

02 

                               • X18'018 

lao' a1' ... a18'l=Iao al ...
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(A2)
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c=cosh , s=sin8 , y=cosw, c=sinw, , t=V2cs, T=^2yc7 , .a2 =c2 -.s 2 , 

a2=y2-c2, and zero-elements are not listed in Eq.(A6). 

The transformation T is orthogonal so that T-1=Tt. 

Thus, the 19-term wave function tY has an orbital ambiguity. 

     Next, we will show how to resolve it. We may force 

the coefficients a13' and alt.' to be zero; i.e., 

0=a13'=t[Y2 (al-a4)+a2 (a2-as)+T (a3-a6) ]+a2 (al lT+al 3Y2+a14cf2] 

0=a141=t[y2(a2-a0+a2(a.L-a4)+T(a6-a3)]+a2[al3a2+a102-al1T] 

                                       (A7) 

This allows us to determine the arbitrary parameters 6 and w. 

After manipulating Eq.(A7), we have 

-~(al 3+a1 ) 
tan26= -----------------,(A8) 

al+a2-a4-a5 

)'L[a14 (al-a4)-a13 (a2-as)]
tan2w= 

     Equations 

     that the 

     entirely 

,by determining 

Exactly 

      15-term wave 

     function used in 

     used is also 

     procedure to the 

Another 

     is briefly 

     of 013 and 014 i

(al+a2-a4-as) all- (al 3+a14) (a3-a6) 

and (A9) can be always satisfied. This m 

orbital ambiguity except for orbital phases 

resolved, because we can always drop 013 and 01 

ining he arbitrary parameters by Egs.(A8 

tly the same discussion as this can be applied 

ave function of 0.0 to 014, leading to the 

used in the present study. The 9-term function 

lso en , from the_~application of the above 

 to the 11-term function of 00 to 06 and 011 to 

her possibility for resolving the orbital 

discussed below: We can drop 03 and 06 

d 014 in the 19-term function by determin___, __.

. (A9) 

ThisBans 

esis 

and4 

(A9). 

pliedto 

13-term 

nction 

ve 

Oilto014 

ambiguity 

instead 

inathe



arbitrary         parameters by the following equations; 

 V2[a3  (a4-a5)-a6  (a1-a2)1
(Al0) 

(al -a2+a4 -as) a1 1- (a1 3 -a14) (a3+a6 ) 

/(a3+a6 ) 
tan263= ----------------.(A11) 

al-a2+a4-a5. 

Although we adopt Egs.(A8) and (A9) rather than Egs.(A10) 

and (All) in the present study, there is no compelling reason 

for this selection. MCSCF orbitals 1s and 2s are similar to 

the Hartree-Fock orbitals is and 2s when this choice is made. 

(The reader may find in Table II the MCSCF orbitals chosen 

in this way.) -

         •

          •
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TABLE I. 

 obtained

Total 

from

 electronic energies and 

the MCSCF wave functions

spin densities 

in comparison

 for 

with

the 

the

45 state of N 

experimental

 atom 

value.

Wave function Energy(a.u.) Spin density (a.u. ) Reference

MCSCF 9-term 

       11-term 

      13-term 

       17-term 

Radial limit 

Experimental

-54 .417045 

   .420557 

   .421704 

.421704 

   .42225 

.5892

0.0 

 .0634 

.0977 

.0978 

 .0972

present 

present 

present 

present 

Ref. 26 

Ref. 5



TABLE II. Comparison 

 with those in 9-term 

 function are listed

-39-

 of s-orbitals 

 function. The 

under those of

in 13-term function 

 s-orbitals of 9-term 

13-term function.

Basis (exponent) ls-orbital 2s-orbital 3s-orbital 4s-orbital

is (7.02) 

3s(8.20) 

3s (5.49) 

3s(3.438) 

3s (2.054) 

3s (1.03) 

4s (1.13)

89945 

88079 

05525 

05410 

03768 

04147 

07264 

09588 

08210 

10819 

02025 

01849 

01183 

01065

.35515 

.39968 

.02159 

.02457 

.07361 

.07313 

.47267 

.46861 

.48845 

.49582 

.14415 

.10315 

.08735 

.06210

   .9984 

1.0365 

-2 .3714 

-2 .7120 

1.5179 

1.9621 

   .0453 

   .2342 

   .5614 

-.3181 

 -2.9787 

 -1.2488 

2.0947 

' .8982

 -.9513 

-.9529 

1.6612 

1.5570 

-1.1471 

-.9875 

1.4397 

1.5740 

-1.0224 

-1.6066 

 -.3715 

  .9120 

  .1737 

-_7144

r



CHAPTER V

THE

  AB INITIO POTENTIAL CURVES 

               OF 

BOND-DISSOCIATIONS OF XH
nMOLECULES: 

 CH4, NH3, AND H2O



 -40-

Ab initio potential curves of the bond dissociations of XH
m 

molecules: CH4, NH3, and H2O

      The lowest potential curve of the dissociation of an 

 X-H bond of an XHm molecule is calculated for CH4, NH3, and 

H2O by the use of multiconfiguration self-consistent-field 

 (MCSCF) method. The calculated well depth of the potential 

 curve obtained from the two configuration wave function 

 which is constructed with MCSCF localized orbitals is 0.1707 

 for CH4 (0.1656 for NH3 and 0.1589 for H2O), which is in 

 good agreement with the experimental value of 0.1619 (0.1610 

 for NH3 and 0.1879 for H2O), where all quantities are in 

 atomic units. This allows us to say that the potential curve 

 of the dissociation process of any local bond in a polyatomic 

 molecule can be described locally and quantitatively by the 

 use of the two configuration wave function constructed with 

 MCSCF localized orbitals. It is found that this wave function 

 gives very good asymtotic behavior at a dissociation limit.
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I. INTRODUCTION 

     Adiabatic potentials play important roles in describing 

the dynamics of chemical reactions or the scattering processes 

of atoms and molecules. Especially, for the dynamics of 

chemical reactions, an essential process is a dissociation 

and/or a formation of a certain chemical bond. Then it is 

in principal importance for theoretical chemists to describe 

properly the dissociation. process of any chemical bond. 

The usual Hartree-Fock method is improper for the description 

of the dissociation process, because of the instability 

solution in this method. 

      During the last decade, Wahl and Das and co-workers1-5 

calculated the potential curves of the bond-dissociation 

(or-the bond-formation) of diatomic molecules by the use of 

multiconfiguration self-consistent-field (MCSCF) method. 

They called the MCSCF method used for the special purpose 

as optimized valence configuration (OVC) method.1 It seems 

that the potential energy curves have been described properly 

in chemical accuracy through their pioneering works on H2,2 

Li2,3 F2,4 OH,5 and so on. Here organic chemists may have 

a question: Are the potential curves described properly 

in chemical accuracy even for organic molecules by the MCSCF 

method? This is the motive of the present study. Simple 

polyatomic molecules CH4, NH3, and H2O are chosen for the 

purpose, since these molecules have the chemical bond of C-H, 

N-H, and 0-H which are typical for organic molecules. 

     On the other hand, it is well known that the localized 

molecular orbitals (LMO's)6 correspond closely to the chemical
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concepts of inner-shell, chemical bonds, and lone-pairs of 

electrons. Though the LMO is in the framework of Hartree-

Fock method by its definition, it is convenient to use 

something like the LMO in the framwork of MCSCF method. 

This use was first suggested by Gilbert7'8 and Levy.9 

We will call hereafter this something as "MCSCF LMO", 

following Levy.9 The MCSCF LMO's are obtained through the 

MCSCF procedure started from LMO's as the initial orbitals. 

The MCSCF LMO's are often similar to the starting LMO's 

especially for inner-shell and bonding orbitals. Thus the 

MCSCF LMO's also correspond closely to the chemical concepts 

mentioned above. 

     In the present paper, we will calculate the potential 

-energy curves of CH4, NH3, and H2O by the MCSCF method with 

the use of the MCSCF LMO's.
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II. THEORETICAL TOOLS 

     In calculating potential energy curves, we will assume 

that the separation of electronic and nuclear motion is 

a good approximation (the Born-Oppenheimer approximation). 

The electronic Hamiltonian is given by 

     Z1ZZ 
   H= -E(Ti+E-----------a)+E E----------- +E Ea ^(1) 

i alri-R a,I i>jlri-rjI a>SIRa-Rai 

where Ti is the kinetic energy operator of the i-th electron, 

ri is the position vector of the i-th electron, and R
a is 

the position vector of the a-th nucleus (which is fixed while 

asking for the eigenstate of the Hamiltonian). The MCSCF 

method is well known in the literatures.1,10,11 Then it 

can be briefly sketched as follows: The wave function is 

expanded in terms of certain configurations, 

-T= K4)KaK o(2) 

where aK is the mixing coefficient of a configuration 4)K. 

The component orbitals (pi of the 4)K are expanded by means of 

basis functions X
p• 

   (Pi=.PXpcpi(3) 

The (pi are mutually orthogonal. The MCSCF procedure determines 

the mixing coefficients and the orbital expansion coefficients 

c
piby minimizing the variational upper bound of energy eigen- 

value corresponding to the wave function of Eq.(2). The 

variational process is based on the following iterative cycles. 

First initial cpiare supposed and the mixing coefficients
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are determined from the usual secular equations with the c
pi 

are fixed. Then, with the aK are fixed, a new set of c
pi 

is'determined (in the present study, by a two-by-two rotation 

technique of Hinze12 and by a single-vector diagonalization 

tecnique of Wood and Veillard13), With the new set of c
pi, 

new mixing coefficients are obtained and the entire process 

is repeated until convergence is achieved.



 -45-

III. COMPUTATIONAL DETAILS 

     Basis set used here consist of contracted GTO (CGTO: 

recommended by Dunning14) centered at the nucleus X and of 

the "STO-4G" functions15 (with the scaling factor of 1.2) 

centered at hydrogen nuclei. 

     Experimental equilibrium geometry is used in the present 

calculations for the ground state of an XH
m molecule; for 

CH4, tetrahedral valence angle and C-H=1.09A (where A=10-10 

m throughout this paper), H-N-H=106.6° and N-H=1.01A for NH3, 

and H-O-H=104.45° and O-H=0.96A for H2O. An X-H bond is 

lengthened in this calculations for the lowest potential 

curve of this local bond, leaving the other geometry is fixed 

except for CH4. For CH4, a planner geometry of the residual 

_CH3 is used when the length of a C-H bond is longer than 

3A. The length of a C-H bond of the CH3 is fixed at 1.09A. 

     The MCSCF LMO's are obtained through the MCSCF procedure 

started from the Hartree-Fock LMO's (we hereafter call the 

usual LMO's like this for distinguishing them from the MCSCF 

LMO's), as is mentioned in the introduction of this paper. 

However, at an intermediate to a large distance of an X-H 

bond, no Hartree-Fock LMO's can be obtained, because of 

instability solution in the Hartree-Fock method. Then, the 

MCSCF LMO's at these distances are obtained through the 

MCSCF procedure started from the MCSCF LMO's which have been 

obtained at a small distance. In the MCSCF procedure, the 

modified single-vector diagonalization technique by Wood 

and Veillard13 goes to a good convergence (when A=0.01 to 

0.5) at a large distance, while the two-by-two rotation
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method by Hinze12 

At small distace, 

gives more rapid 

technique. Thus

 goes into a vibrational divergence. 

 however, the two-by-two rotation method 

convergence than the Wood-Veillard's 

the both method are used in this study.
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  IV. CHOICE OF CONFIGURATIONS 

       In the description of the potential energy curves of 

  a bond-dissociation process of a polyatomic molecules, it 

  is convinient to recall the picture of localized orbitals, 

as is mentioned in the introduction of the present paper. 

  Thus, for an XHm molecule (where X=C, N, or 0), whole 
  orbitals considered consist of an inner-shell orbital which 

  is denoted as ls(X), bonding orbitals of the X-H bonds 

  denoted as a(X-Hi) (i=1,2,...,m), anti-bonding orbitals of 

  the X-H bonds denoted as a*(X-Hi) (i=1,2,...,m), non-bonding 

orbital or orbitals denoted as ni(X) (i=1,2,...,4-m), and 

  others denoted as vi(XHm) (i=1,2,.._). We will dissociate 

  an X-H bond of an XHm molecule into an XHm-1 radical molecule 

  and an H atom. This process will be well described by a 

  two-configuration wave function which consists of 

is (X) 2a (X-H1) 2... a (X-Hm) 2n1(X) 2... n4 -m (X) 2 

  (which is the usual Hartree-Fock configuration) and 

is (X) 2a (X-H1) 2... a* (X-Hm) 2n1(X) 2...n4 -m(X) 2 

  (which is a doubly-excited configuration arising from the 

  pair excitation from a(X-Hm) to a*(X-Hm); from a bonding to 

  its anti-bonding orbital excitation). Thus the two-config-

  uration wave function (denoted as 'P[2C1) can be expressed by 

`Y [2C]= a
ll (other part) a (X-Hm) a (X-Hm) 

+a2 I (other part) a* (X-Hm)6* (X-Hm). (4) 

  The 'Y[2C] can be analyzed below. Let us consider a Valence 

  Bond (VB) type wave function for a local bond of an X-H in 

  an XHm molecule. A linear combination of the atomic orbitals 

(LCAO) of an XHm_i molecule, say x(X), and an LCAO of an H
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atom, say X(H), construct a VB type wave function for the 

local bond; i.e., 

'Y [VB] = b
11 (other part) X (X) X (X) 1+ b21 (other part) X (H) X (H) 

+b31 (other part) [X (X) (H) -X (X) X (H) l l . (5) 

The first and second term of Eq.(5) correspond to the ionic 

structures of the local bond. The third term of Eq.(5) does

to the covalent bond structure of the local bond. 

is equivalent to Y' [2C] , provided 

a (X-Hm) = c1X (X) + c2X (H) 

a* (X-Hm) = c3X (X) + c4x(H) 

where 

b1= a1c12+ a2c32 , 

          b2= a1c22+ a2c42 , 

          b3= alc1c2+ a2c3c4 . 

SXH= fX(X)X(H)dT , 

          c12+ c22+ 2c1c2SXH= 1 , 

          c32+ c42+ 2c3c4SXH= 1 , 

cic3+ c2c4+ (c1c4+ c2c3)S 0 . 

The last three relations reflect the 

of the orbitals a(X-Hm).and a*(X-H
m) and the orthc 

condition between the two orbitals. Equations (6) 

can be almost always satisfied. Then 

a mixing state of the ionic and the covalent 

of the local bond. At infinite distance 

X-H, the last three relations can be reduced asymt 

to the following simple relations;

Then 'Y [VB]

normalization 

                                      and the orthogonality 

                                   Equations (6) and (7) 

describes 

nce of the local bond 

                                       reduced :otically

 (6) 

 (7) 

 (8) 

 (9) 

(10) 

(11) 

(12) 

(13) 

(14) 

conditions 

gonality 

bes well 

structures 

cal bond
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          c4= -c1, c3=  c2, and c12+ c22= 1 . (15) 

The above equlity between T[2C] and T[VB] implies the 

followings: When the local bond dissociates to an XHm-1 
radical and an H atom, at infinite distance, b3 must be 

close to 1//f and bl and b2 must be very small so that, 

from Eqs. (4) , (5) ; (6) , and (7) , the asymtotic relations 

are obtained 

a(X-H m)ti (1/I)X(X)+(1//)X(H) ,(16) 
a*(X-H m)`, (1//)X(X)-(1//)X(H) ,(17) 
Y' [VB1% (1/v) I (other part) [X (X) X (H) -X (X) X (H) 1 , (18) 

Y' (2C]ti (1/i) I (other part) a (X-Hm) 6 (X-Hm) I 
-(1/If-Mother  part) a* (X-H

m) 6* (X-Hm) I . (19) 

Thus it is considered that Y'[2C] should be one of the simplest 

tools for describing properly the dissociation process. 

(This is true for the molecules, CH4, NH3, and H2O, as is 

shown in a later part of the present paper.) The T[2C] is 

consistent with the "base wave function" of the OVC method 

described in Ref. 5. 

     In order to investigate the contributions from the 

other effects to the dissociation process, we further take 

account of the pair-to-pair excitations from a(X-Hi) (i=1,2, 

...,m) to a*(X-Hi) (i=1,2,...,m) other than from a(X-Hm) to 

a*(X-Hm). This represents a effect from the other bond to 

the dissociation process. The number of configurations 

obtained from this choice is 17 for CH4;10 for NH3;and 5 

for H2O. For discussing the effects of the lone pairs of 

electrons, we further take into account the pair-to-pair
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excitations from ni(X)(i=1,...,4-m)toa*(X-Hi)U=1,... ,m) 

and to vi(XHm) (i=1,...,4-m) and froma(X-Hi) (i=1,...,m) 

to'vi(XHm) (i=1,...,4-m) in addition to the above. The 

total number of configurations from this choice is 17 for 

all XHm molecules. This is a wave function in the framework 

of so-called "Complete Multiconfiguration SCF" method of 

Veillard and Clementi.11
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V. RESULTS AND DISCUSSION 

• Tables I to III show adiabatic potentials obtained from 

Hartree-Fock and several MCSCF wave functions for XHm mol-

ecules (where X=C, N, and 0) at several distances of an X-H 

bond. The distance is varied up to 8A. The usual SCF process 

of the Hartree-Fock method is not converged at a large 

distance. The preceeding section describes the real forms 

of all multiconfiguration,wave functions which appear in 

these tables. The well depth of the potential curve obtained 

from T[2C] can be estimated from the difference between 

energies obtained at experimental equilibrium geometry and 

at 8A distance of an X-H bond, because the potential energies 

in these tables show that the distance of 8A can be regarded 

as infinite. The estimated well depths are 0.1707, 0.1656, 

and o.1589 (in a.u.) for CH4, NH3, and H2O, in good agreement 

with the experimental values16 of 0.1619, 0.1610, and 0.1879, 

respectively. Thus we now have a simple and powerful tool, 

Y'[2C], for describing locally and quantitatively a dissoci-

ation potential curve of a chemical bond. The advantages 

of `Y [2C] are as follows: 

(1) The 'Y[2C] is a simplest wave function which causes no 

instability in the process of a dissociation. 

(2) By the virtue of MCSCF LMO's, the q'[2C] can be constructed 

locally for whole molecule. Then the description by 'Y[2C] 

can be applied to any polyatomic molecules. 

(3) The well depth obtained from 9'[2C] is sufficiently 

quantitative, at least, for CH4, NH3, and H2O. 

(4) An asymtotic behavior of T[2C] at infinite distance of



TABLE I  . Adiabatic 

functions

 potentials obtained from the Hartree-Fock and 

for CH4molecule. Energies are in atomic units

from several MCSCF wave

C-H  distance(in A) Hartree-Fock

Wave function 

1Y[2C]a 17-configurationb

    1 

    1 

    1 

    2 

    2 

    3 

    4 

    8 

Energy

09 

5 

7 

0 

4 

0 

0 

0 

differences

-40

-39 

not 

not 

not

.1744 

.1145 

.0721 

.0105 

.9389 

converged 

converged 

 converged

-40 .1902 

.1443 

.1116 

.0338 

.0243 

.0197 

.0195 

.1707

-40.2353 

   .1876 

   .1536 

   .1089 

   .0682 

.0515 

.0416 

   .0396 

   .1957

a S
ee Eq. (4) . b See section IV.  The difference between energies at 8A and at 1. 09A.



TABLE II. Adiabatic 

   functions

potentials obtained from the Hartree-Fock 

for NH3 molecule. Energies are in atomic

 and 

units

from several  MCSCF wave

N-H distance (in A) Hartree-Fock

Wave 

Y'[2C]

function 

a 10 -configurationb 17-configurationb

    1 

1 

    1 

    1 

    2 

    4 

    8 

Energy

01 

2 

5 

8 

0 

0 

0 

differences

-56

-55

not 

not

.1574 

.0693 

.9966 

.9530 

converged 

converged

-56 . 1758 

1631 

1107 

0623 

0404 

0102 

0102 

1656

-56 .2111 

.1977 

.1421 

.0940 

.0700 

.0267 

.0266 

.1845

-56 .2132 

.0717 

.0273 

.0274 

.1858

a See
Eq. (4) . b See section IV. c The difference between energies at 8A and at 1.O1A.
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an X-H bond is very good as is discussed in the preceeding 

section. Table IV shows this asymtotic behavior. The a2 

defined by Eq.(4) becomes asymtotically close to -1/ v, 

which is consistent with Eq.(19). 

     Next we discuss on the contributions to the dissociation 

process from the other effects below. The effects from the 

other excitations which are described in the preceeding 

section always deepen the, potential wells for all XHm mol-

ecules, as are shown in tables I to III. However, these 

extra extents are not more than 20%. These are consistent 

with OVC calculations by Stevens et al.5 for OH molecule. 

For H2O molecule, these effects improve the value of the 

well depth, as Table III shows. The effects of the lone 

_pairs of electrons may be small for NH3 molecule, but con-

siderable for H2O, because Table II shows that the difference 

between the contributions to the well depth from 17-config-

uration wave function and from 10-configuration one appears 

to be small and Table III shows that the difference between 

those from 17-configuration one and from 5-configuration 

one does to be considerable. 

     The geometry modifications of the residual XHm_l radical 

molecule are not considered in the present study except for 

CH4 (see section III). However, the contributions from the 

modifications are in the magnitude of 10-2 (a.u.) at most, 

because the calculations by Stevens et al.5 for OH, by Bender 

and Schaefer17 for NH2, and by Driessler et al.18 for CH3 

suggest. These are less than 10% of the well depth calculated. 

These contributions shallow the wells.



TABLE IV. Configuration mixing 

   several distances of

 coefficient a2 

an X-H bond of

 in 

an

 T(2C] defined 

XHm molecule,

 by Eq.(4) in 

where X=C, N,

the 

or 0

text at

C-H distancea a2 for CH4 N-H distancea a2 for NH3 0-H distancea a2 for H2O

1 

1 

1 

2 

3 

4 

8

09 

5 

7 

4 

0 

0 

0

-.097 

-.177 

- .229 

-.456 

-.602 

-.685 

-.707

1.01 

1.2 

1.5 

1.8 

2.0 

4.0 

8.0

-.102 

-.139 

-. 220• 

-.328 

-.409 

- .699 

-.707

0.96 

1.2 

1.4 

1.8 

2.0 

4.0 

8.0

- .111 

- .167 

- .227 

- .386 

- .465 

- .702 

- .707

a This is in A
(A=10-10m) .



     After all, in 

 a•local and proper 

of a chemical bond
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polyatomic molecules, it is concluded that 

description of the dissociation process 

is obtained by the virtue of MCSCF LMO's.
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Anon-bonding excited-orbital for describing the intra-pair 

correlation of lone-pairs of electrons in multiconfigration 

self-consistent-field method

     Floating functions are used in order to describe a non-

bonding excited-orbital corresponding to a non-bonding (lone-

pair) orbital within a multiconfiguration self-consistent-field 

(MC-SCF) framework with localized orbitals. Floating functions 

of an STO-3G type are used in the present calculations for the 

molecules NH3 and H2O as simple examples. Results indicate 

that a significant part of the pair-correlation of lone-pairs 

of electrons is taken into account by the excitation from a non-

bonding (lone-pair) orbital to the corresponding non-bonding 

excited-orbital.: It is concluded that the above non-bonding 

excited-orbital obtained with a floating function (or functions) 

is powerful in order to take account of the above correlation 

effects in the MC-SCF method.
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  I. Introduction 

       MC-SCF formalism has been applied to many atomic and 

  molecular sstems.1-15It is one of the most     ypowerful method 

 in order to take electron correlation into account for the 

 systems. So-called "Complete Multiconfiguration SCF" (CMC-SCF) 

 formalism13 seems to be most popular for dealing with the ground 

 state of a closed-sell molecule. 

      Recently, Levy pointed out that the use of "MC-SCF localized 

molecular orbitals" (MC-SCF LMO)16 is more efficient in the CMC-

 SCF method than that of symmetry-adapted orbitals for Formaldehyde, 

CH4, C2H6, and C2H4,14,15 An intra-bond pair-correlation of 

 a polyatomic molecule can be mainly represented by means of the 

 excitation from the bonding to the anti-bonding orbital. For 

 non-bonding orbitals, however, there are no such orbitals like 

 "anti-bonding" orbitals corresponding to bonding ones . Therefore 

 it is more advantageous to consider such orbitals for non-bonding 

 orbitals like "anti-bonding" cmes (this will be named "a non-

bonding excited-orbital" (NBEO) throughout the present paper) 

 in order to take accounts of the significant part of the intra-

 bond pair-correlation of lone-pairs of electrons. It seems_that 

 an NBEO is well described by means of an additional "floating 

 function" (or functions) centered at a proper position with 

 a proper exponent. This is the motivation of the present study. 

      A pioneering work of floating functions seems to be attri.- 

 buted to Gurnee and Magee in their Valence-Bond calculation of 

H2 molecule. Frost pointed out that the concept of floating 

 spherical orbitals containing pairs of electrons appears to be
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due to Kimball and his students.18 He tried to represent pairs 

of electrons by the use of floating spherical Gaussian orbit- 

   1819 als
.The present purpose to use floating functions is 

different from his; they are used for describing mainly an NBEO. 

     In the present paper, we calculate NH3 and H2O molecules 

as simple examples for the above purpose by the CMC-SCF method 

with localized orbitals.
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II. Details of calculations 

  • The CMC-SCF method is well known in the literature .13 

It is sketched as follows: The wave function of a given system 

can be expanded in terms of certain configurations; i.e., 

                = a
00~00+tuatu~tu'(1) 

where 4)00is a Hartree-Fock configuration, 4)t
u is a doubly-excited 

configuration from the orbital ckt(which is doubly occupied in 

(00) to(I)u(which is unoccupied in X00),and a00and at are 

certain expansion coefficients. The all component orbitals 

(e.g., (pt and 4)11) are optimized so that the total electronic 

energy of the system is stationary with respect to all orbitals. 

Euler equations for the variation with respect to orbitals are 

called "CMC-SCF equations."13 In order to solve them, we_adopt 

here a two-by-two rotation method by Hinze.20 

     Any orbital can be expanded by means of a certain basis-

set. So-called "minimal STO-3G" basis-sets with Slater-rule 

exponents are used in the present study for convenience sake. 

The Gaussian expansion coefficients and "a" of an STO-3G func-

tion used here are given by Stewart.21 The STO-3G functions of. 

is-type are also used as floatig spherical Gaussians to be added 

to the above basis-sets. For NH3 molecule, an STO-3G is-type 

function floated along a z-axis is used. Two of STO-3G is-type 

functions are used for H2O molecule. Their floated centers are 

indicated by parameters r and 0 which are seen in Fig. 1. 

Orbital exponents and floating centers of the above is-functions 

are roughly optimized for each molecule. The other exponents
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z

 x< .• 

FIG. 1. The coordinates 

functions in H2O molecule 

a solid circle and is on 

figure indicates the proj 

the x-z plane. The r ind 

nucleus (at origin) and t 

The 6 is the angle betwee 

the figure.

 T 

6

 e

nates of the centers of two floating 

lecule. Each center is indicated by 

is on the x-z plane. The H in the 

e projected posion of H nucleus to 

 r indicates a distance between 0 

 and the center of a floating function. 

between two centers as is shown in
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of the basis-set for each molecule are not optimized, because 

the present purpose is to investigate.' the additional effects of 

the floating functions. 

      The geometry used for NH3 is as follows: N-H=1.01A, a 

valence angle (H-N-H)=106.60°, the three-fold axis of the 

molecule is taken to be a z-axis, and an x-axis is on a vertical 

mirror in the molecule. For H2O, the followings are used: 

 (H-O-H)=104.45°, the two-fold axis of the molecule is taken to 

be a z-axis, and a y-axis is on the molecular plane.
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III. Results and discussion 

A. For NH3 molecule 

     Results for NH3 are given in Tables I to VI. The most 

remarkable points are as follows: 

(1) The CMC-SCF energy is varied very slowly in a range; 

z=1.0 to 1.3A (as is seen in Table I). The minimum-energy 

point where the floating function is put can be roughly 

estimated (from a parabolic approximation) to be at the distance 

of about 1.15A from N nucleus (at origin) along the z-axis. 

This distance is slightly longer than that of an N-H bond. 

The addition of the floating function lowers the CMC-SCF energy 

by about 0.035 hartree around the minimum point. 

(2) The orbital exponent 0.6 for the floating function is 

most favorable in the whole basis-set of an STO-3G type 

(Table II). This is just the half of the Slater-rule exponent 

1.2 for a hydrogen ls-basis. 

(3) The most contribution to the wave function is obtained from 

the excitation from the orbital a(NH) to the corresponding 

a*(NH). It is so independently whether the floating function 

is added or not (as is shown in Tables III and IV). The exci-

tation from the lone-pair orbital to the NBEO (non-bonding 

excited orbital) contributes significantly to the wave function, 

though the extent of this contribution is less than that of 

the contribution from the above a-a* excitation (Table IV). 

(4) The floating function contributes mainly to the NBEO as 

is expected (Table V). The forms of the lone-pair and the 

NBEO are indicated in Figs. 2 and 3, respectively.



TABLE  I. Variation with respect to the center of the floating function 

         with its exponent 0.6 for NH3 molecule.a

Basis set EHF (a.u.) b EMC(a.u.)c

Without floating function 

Added floating function at origin 

                           at z=1.01A 

                          at z=1.2625A 

                           at z=1.515A

-55 .444588 

   .461595 

   .477320 

.477949 

.474841

-55 .494363 

   .512168 

   .529003 

   .529230 

   .525516

a The three -fold axis of NH3 is taken to be z-axis and N nucleus is put 

 at origin. 

b The Hartr
ee-Fock energy obtained from the present basis-set. 

c The CMC-SCF energy with localized orbitals; the correlation energy of 

 inner is electrons is not taken into account.



 -67—

o o 0 

~I d1 Ui

H 

J

U1 
U1 

l0 N 
iA co 
l0 Ul

U1 
U1 

• 
N U1 U7 
IV IV IV 
-4 . l0 -I 
al N O 
H W rn 
UI o H

O 
K 

N• 
rr 
Iv 
H

(D aC 

PC) 

0 

(D 

rt 

•

xti]

C2 

N

(D 

b 
H 
Iv 

(D

H 

t3' 
H 
(D

H

1-3 

Gd 
t-+ 
to

H 
H

G r'v 

o K 
rt w 
N• Dl 
O rt O 

W 
0 

Q 0 
(D 

((DD rr1 
K ~' 
(D 
(L K 

(D 
Di CO 
rt ro 

(D 
N  
II  r11' 

• H fi 
IV 0 

•CD

hit 
O 
Fi

G,)

O 

(T 

Iv 
H

5 CD O 
ae 

H ro 
CD0 
A 
G (D 
H 
(D rfi 

0 
      I-h

z 
0 
rt 
Iv 
rt 
N. 
O 

Cr]

a 

m

rt 

ID

rn 
H 
0 
Iv 
rt 
N•



 CO

TABLE  ITT . Expansion coefficients a00 and atu in the CMC-SCF wave-function 

 for NH3 molecule when the floating function (centered at z=1.2625A 

 with r=0.6) is added to the minimal basis-set. The determinant 

btu corresponding to a given atu is obtained by exciting two 

 electrons of 000from the orbital~t to cpu.

(Pt

(I)
u

c* (NH1) a* (NH2) c* (NH3) NBEOa

c (NH1) 

a (NH2 ) 

a (NH3) 

lone-pair

- .0902 

      - .0067 

- .0067 

      - .0148 

a00= .9865

- .0067 

- .0902 

- .0067 

- .0148

- .0067 

-.0067 

-.0902 

-.0148

-.0021 

—.0021 

- .0021 

- .0392

a Th
e non-bonding excited-orbital, see text.



rn

TABLE IV. Expansion coefficients  a00 and a 

    for NH3 molecule when the minimum 

    are explained in Table. III.

toin the 

 basis-set

CMC-SCF wave-function 

 is used. Notations

(1)t

(P
u

a* (NH1) a* (NH2 ) a* (NH3)

a (NH1) 

a (NH2 ) 

a (NH3) 

lone-pair

      - .0927 

      -.0067 

      -.0067 

      -.0170 

a00= .9865

0067 

0927 

0067 

0170

-.0067 

-.0067 

- .0927 

-.0170



 N

TABLE V.  MC-SCF localized orbitals 

with =0.6) is added to the 

numbers are listed in first

of NH3 when the floating function (center 

minimal basis-set; orbital energies and 

 two lines.

 at z=1.2625A 

occupation

is (N) a(NH1) a (NH2) a (NH3) lone-pair a* (NH1) a* (NH2 ) c* (NH3) NBEOa

E 

occ. num. 

N is 

    2s 

2p
x_ 

2pY 

2p
z 

H1 is 

H2 is 

H3 is 

Floating

-15 .392 

  2.0 

   .99527 

.02716 

    .0 

    .0 

  - .00924 

  - .00725 

  - .00725 

  -.00725 

  -.00484

- .72852 

1.98356 

 .08019 

- .25099 

-.49 ,052 

 .0 

.32225 

- .52049 

 .08279 

 .08279 

.08043

1.

72852 

98356 

08019 

25099 

24526 

42480 

32225 

08279 

52049 

08279 

08043

- .72852 

1.98356 

- .08019 

 .25099 

- .24526 

-.42480 

- .32225 

- .08279 

- .08279 

.52049 

 .08043

- .60786 -.01441 

1.99560 .01688 

 .16640 .09520 

- .70929 -.70838 

.0 -.86012 

.0 .0 

-.61814 .35059 

 .03231 1.25513 

 .03231 .01017 

 .03231 .01017 

-.17513 -.10072

- .01441 

 .01688 

.09520 

- .70838 

 .43006 

-.74488 

.35059 

 .01017 

1.25513 

 .01017 

-.10072

1

.01441 -. 

.01688 . 

.09520 . 

.70838 -. 

.43006 . 

.74488 . 

.35059 -. 

.01017 -. 

.01017 -. 

.25513 -. 

.100721.

00264 

00310 

07205 

49957 

0 

0 

46853 

07241 

07241 

07241 

18211

a Th
e non-bonding excited-orbital, see text.
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The lone-pair orbital as an MC-SCF LMO is similar to that as 

an ordinary LMO (e.g., the Edmiston-Ruedenberg criteria22). 

It seems that the form of the NBEO is worthy of its name 

(Fig. 3) . 

(5) The orbital energy of the lone-pair orbital is lower than 

that of an N-H bond before the floating function is added 

(Tables V and VI). It may be ascribed to the incompleteness 

of the present basis-set. After the addition of the floating 

function, the situation is improved. It seems that the 

floating function contributes to the dissolution of the above 

incompleteness to a large extent. 

     By the above remarks, it is concluded that the addition 

of a floating function to a minimal basis-set is sufficiently 

powerful for the description of the pair-correlation of the 

lone-pair of electrons in NH3 molecule. The addition is 

straightforward to organic molecules which contain N atoms 

(amines,.imines, amides, imides, etc.).
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B. For H2O molecule 

, Tables VII to XIV show the results for H2O. The follow-

ings are the most significant points: 

Al) The CMC-SCF energy is varied very slowly around the minimum 

point (about r=0.72A and 0=205°) as is seen in Tables VII to 

IX. The minimum point is not the position of the "cloud" of ' 

the lone-pair orbital as the ordinary LMO (of the Edmiston-

Ruedenberg criteria22). The energy-lowering by the addition 

of the floating functions is about 0.116 hartree around the 

minimum point in the CMC-SCF method (Table X). 

(2) The favorable value of the orbital exponent for the floating 

functions is near 0.6 (Table X). This is the same condition 

as in NH3 molecule presented above. 

(3) A c-a* excitation_contributes most sognificantly to the 

wave function (Tables XI and XII). This situation is also 

the same as in NH3. The excitation from the lone-pair orbital 

of a 2p?r-type to the corresponding NBEO (non-bonding excited 

orbital) has a large contribution to the wave function, while 

that from the lone-pair orbital of a a-type to the correspond-

ing one plays no impotant role in the description of the wave 

function (Table XI). 

(4) The floating functions contribute mainly to both of the 

NBEO (as is expected) and to the lone-pair orbital of 2pnr-type 

(Table XIII). The forms of two orbitals of the lone-pair and 

two orbitals of NBEO are indicated in Figs. 4 to 7. It is 

surprising that the two orbitals of the lone-pair are very
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TABLE VII. Variation 

 (C=0.6 and

with 

r=0.

 respect to 

72A) a for H

 the centers 

20 molecule.

of floating functions

0 (deg.) a EHF (a.u. )b EMC(a . u .) b

104.45 

125 

145 

165 

180 

195 

205 

215 

235

-74 

-75

.955767 

.043747 

.049198 

.053455 

.055685 

,Q569_78 

,057281 

,057114 

.055300

-75 .083492 

   .090157 

   .095686 

   .101345 

.10.3879 

   .105442 

   .105899 

   .105857 

   .104177

a 

b

See 

See

             A 

Fig. 1 for 

footnote b

the 

and

parameters 

c in Table

r 

I.

and 6  The ip an or-bL;tal exponent.



TABLE VIII  . Variation with respect 

 W=0.6 and r=0.96A) for 

 in Table VII.

to 

H2

 the centers 

0 molecule.

of the floating 

 Notations are

 functions 

explained

0 (deg.) EHF (a .u.) EMC (a.u.)

N 

r

104.45 

125 

145 

165 

180 

195 

205

-75 . 041722 

047557 

051833 

054493 

055346 

055203 

054566

-75 .087382 

   .093517 

   .097926 

.102024 

   .103256 

   .103431 

   .102960



TABLE IX. Variation with respect 

 (C=0.6 and 8=205°) for H 

    in Table VII.

to 

20

the centers 

molecule.

of floating functions 

Notations are explained

r CA) EHE (a.u. ) EjcCa.u.

1 
co 
N 

1

0 

0 

0

48 

72 

96

-75 . 052369 

057281 

054566

-75.097336 

   .105899 

.102961



TABLE X. Variation with respect to 

   functions centered at  r=0. 

   The parameters r and 6 are

the orbital 

72A and 6=-,205 

 indicated by

exponents 

° f
or H2O 

Fig. 3.

of the floating 

molecule.

 Orbital exponent (a . u . ) E
HE

(a.u. ) EMC(a.u. )

rn 

N

0.0a 

0.4 

0.5 

0.6 

0.7 

0.8

-74 

-75

.946706 

.038980 

.051918 

.057281 

.055178 

.047002

-74 

-75

.990058 

.086442 

.100048 

.105899 

.104270 

.096559

a Without floating functions.



 co

TABLE

 (1)t

XI. Expansion coefficients a00 and at
u in the CMC-SCF wave-function 

    for H2O molecule when the floating functions (centered at r=0.72A 

    and 0=205° with =0.61 are added to the minimal basis-set. 

    Notations are explained in Table III.

(Pu

a* (OH1) a* (OH2) NBEO (6) a NBEO (2p'rr) a

lone-pair (o-type) 

    (OH 1) 

(OH2) 

lone-pair (2pTr-type)

             -.0137 

-.1017 

             -.0057 

             -.0118 

a00= .9866

-.0137 

-.0057 

-.1017 

-.0118

-.0076 

-.0039 

- .0039 

- .0132

-.0084 

- .0017 

- .0017 

- .0690

a The
non-bonding excited-orbital, see text.



TABLE XII  . Expansion coeffients a00and atu in 

 when the minimal basis-set is used.

the CMC-SCF 

 Notations

wave-function 

are explained

for  H2O 

in Table

molecule 

XI.

4t

(1)u
a* (OH1) .1:1* (OH2) .

co lone-pair 

lone-pair 

   (OH1) 

(OH2)

1 

2

a00= .9976

- .0177 

- .0177 

- .1078 

- .0060

- .0177 

- .0177 

-.0060 

-.1078



 N 

co

TABLE XIII . MC-SCF localized orbitals of H 

 and 6=205 with C=0.6) is added 

  oc-upation numbers are entered

20 

 to 

in

when 

 the 

first

the floating function (centered at 

minimal basis-set; orbital energies 

 two lines.

r=0. 

 and

72A

is (0) c (OH1) c (OH2 ) lone-pair 
  (1)

lone-pair 
  (2)

a* (OH
1) c*(OH2) NBEO(1)a NBEO (2) a

E 

occ. num. 

  0 is 

    2s 

2p
x 

2p
y 

2p
z 

H1 is 

 H2 is' 

Float. (1) 

Float. (2)

-20 . 

  2. 

  1. 

-•

38943 

0 

00187 

00465 

00001 

0 

01392 

00412 

00412 

00365 

00366

- .74034 -. 

1.97918 1. 

 .03146 . 

- .52635 -. 

 .00009 . 

 .45016 -. 

-.52163 -. 

- .55159 . 

 .05220 -. 

 .07597 . 

 .75870 .

74034 

97918 

03146 

052635 

00009 

45016 

52163 

52198 

55159 

07597 

75870

-1 .17183 

1.99899 

  .20855 

- .96902 

  .00029 

   .0 

.29359 

  .018716 

  .18716 

 -.02416 

-.02442

1.

46788 -. 

98956 . 

00009 . 

00035 -. 

79909 . 

0 

00002 -. 

00005 1. 

00005 . 

40078 -. 

40076 -.

01847 

02144 

08080 

54402 

00014 

68047 

52261 

24512 

03866 

13155 

13108

- .01847 -.00051

.02144 

 - .08080 

  .54402 

 -.00014 

  .68047 

  .52261 

 - .03866 

-1 .24512 

  .13155 

  .13108

 .00052 

-.06840 

 .62616 

-.00039 

 .0 

-.16108 

 .40600 

 .40600 

- .84840 

-.84978

-1 . 

 1.

00701 

00969 

00006 

00047 

87060 

0 

00009 

00002 

00002 

46986 

46915

a Th
e Hon-bonding excited-orbital, see text.



TABLE XIV.  MC-SCF 

energies

localized orbitals of H2 

 and occupation numbers

0 when the 

are entered

minimal basis-set is 

 in first two lines.

used; orbital

is (0) 6 (OH1) a (OH2) lone-pair 
  (1)

lone-pair 

  (2)

a* (OH1) a * (OH2 )

co

OCC. 

  0

H 

H

1 

2

num-. 

is 

2s 

2 p
x 

2p
Y 

2pz 

is 

is

-20 

 2 

 1

17550 

0 

00115 

00229 

00006 

0 

01299 

00678 

00678

-.64280 

1.97670 

 .01591 

.05527 

- .00001 

 .41791 

-.50946 

-.57124 

 .08820

- .64280 

1.97670 

 .01591 

.05527 

- .00001 

- .41791 

- .50946 

 .08820 

-.57124

-.76069 

1.99875 

 .15760 

-.72340 

- .68901 

 .0 

.19197 

 .00636 

 .00636

- .72514 

1.99874 

-.14992 

 .68773 

- .72475 

 .0 

- .18250 

-.00604 

-.00604

-.01926 

  .02456 

-.87799 

  .61020 

   .0 

 - .70074 

  .53267 

-1 .13651 

.04045

- .01926 

 .02456 

-.87799 

 .61020 

 .0 

 .70074 

 .53267 

 .40457 

_..13651
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similar to those symmetry-adapted. The forms of two NBEO's 

aresthought to be worthy of their name. 

(5) An equivalent-type pair of non-bonding orbitals is obtained 

from the minimal basis-set (Table XIV). These forms are 

indicated in Figs. 8 and 9. Either orbital energy of the 

pair is lower than that of the O-H bond. It may be due to 

the incompleteness of the present basis-set, since the condi-

tion is very turned out by the addition of the floating func-

tions (Tables XIII and XIV). 

     The above remarks lead to the same conclusion as in NH3; 

i.e., the addition of floating functions to a minimal basis-

set is sufficiently powerful for the description of the pair 

correlation of the lone-pair of a 2pir-type in H2O molecule. 

An apprication to a large polyatomic-molecules containing 

0 atom is straightforward.
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An MO Interpretation of the Chemical Shifts of Inner-shell Electrons

   A correlation formula between the chemical shifts of inner-s 

is derived by an MO scheme. with CNDO-type approximations. 

Reorganization energy terms are briefly discussed in the same

  The chemical shifts of inner-shell electrons have been 
studied in a wide variety of organic and inorganic 
compounds.1.2) One interesting feature of the problem 
is that the chemical shifts change linearly with the 
charges on the atoms considered. These charges have 
been estimated by several methods-i.e., methods with 
using the oxidation number and Pauling's electro-
negativity differences,1,3) an iterative extended Mickel 
method,4) CNDO method,5) and several types of non-
empirical calculations. s-11) 

  1) K. Siegbahn et al., ESCA atomic molecular and solid state 
structure studied by means of electron spectroscopy, Almqvist 
and Wiksills A. B., Stockholm (1967). 

 2) D. M. Hercules, Anal. Chem., 42, 20A (1970). 
  3) R. G. Albridge, U. Erickson, J. Hedman, C. Nardling, and 

K. Siebahn, Ark. Kemi, 28, 257 (1968). 
  4) M. Pelavin, D. Hendrickson, J. M. Hollander, and W. L. 

Jolly, J. Phys. Chem., 74, 1116 (1970). 
  5) J. M. Hollander, D. N. Hendrickson, and W. L. Jolly, 

J. Chem. Phys., 49, 3315 (1968). 
 6) R. Manne, ibid., 46, 4645 (1967).

hell electrons and molecular-charge distributions 

 Errors imposed in these schemes are discussed. 

level of approximations.

• In this report, an MO interpretation of the corre-

lation between the chemical shifts of the binding energies 
of inner-shell electrons in certain molecules and the ' 
atomic charges is given by introducing some approxi-
mations, and the limitations of these relations are 
briefly discussed.

                Theoretical 

 By Roothaan's SCF treatment for closed-shell 
systems, the orbital energy of ith MO, et, is given by: 

et = Ftt = E CrtCedFrt(1) 
                                  r,t 

 7) F. A. Gianturco, and C. A. Coulson, Mot. Phys., 14, 223 

(1968). 
 8) H. Basch, and L. C. Snyder, Chem. Phys. Lett., 3, 333 (1969). 

 9) M. E. Schwartz, C. A. Coulson, and S. D. Allen, J. Amer. 
Chem. Soc., 92, 447 (1970). 
10) M. E. Schwartz, Chem. Phys. Lett., 5, 50 (1970). 
11) C. A. Coulson, and F. A. Gianturco, Mot. Phys., 18, 607 

(1970).



588 

 Where  Cr° and Fr, are the rth AO coefficient of the 
th MO and the Fr; element of the Fock operator 
espectively. • 

 Suppose that the ith MO is mainly constructed by 
nner-shell AO's; the following derivation can then be 
:asily carried out with considerable accuracy, since the 
iagonal elements of the Fock operator for inner-shell 
AO's, F,,, is very large compared with that of the 
of diagonal ones Fr, :12,13) 

Et = C. = F,,, C,t = 1.0, (2) 

  Fld=1Zes\sE's)ZBl        (s-2d—rA+(—sArB 
     +EP„ {(ss/rt) —2(sr/st)} .(3) 

 In Eq. (3), the first term is the self-core integral, 
while the second is the nuclear attraction by the other 
nuclei and the third consists of electronic repulsions. 
Throughout this report, r, s, t, and u denote atomic 
orbitals; especially, s denotes the inner-shell AO in 
question belonging to the A atom. The i and j nota-
tions represent occupied MO's, and k and 1, vacant 
ones. The Pr, notation is the bond order between r 
and t AO's. 

 To connect the orbital energies with the atomic 
charges, we use the following approximation, using 
the same notations as in Refs. 14 and 17: 
(A), The self-core integral: 

   (s —2d — ZA e) = —I, — (N, —1) (ss/ss) 
a on Ar         —ENr{(ss/rr) —2(rs/rs)} (4) 

and the nuclear attraction: 

(s —----ZB sJ = —ZB(ss/nsBnsB) = —ZBYAB • (5)15) rB 

The above formulae have already been given in a pre-
vious paper.14) (B), The electronic repulsion integrals 
can be estimated by a CNDO-type approximation"): 

 Thus, Eq. (3) can be re-written as: 
F,, _ —I, -^- (Pee—ZA )YAA -}- E (PBB—ZB°) YAB , (6) 

A$B 

where the average Coulomb integrals are: 

Yee = (ss/n'erv'e), YAB = (ss/nsunse), (7) 
and where Z ° denotes the number of valence electrons 
on the A atom and nsA denotes valence s-type AO on 
the A atom. 

 When a Mulliken approximation with in Eq. (7) 
is used instead of the above CNDO-type one, and only 
the term of S(overlap) is considered, an expression 
similar to that in Eq. (6) is obtained, but in this case the 
Pea's in Eq. (6) become atomic populations. 

 12) e.g., W. E. Palke and W. N. Lipscomb, J. Amer. Chem. Soc., 
88, 2384 (1966). 
13) E. Clementi, Chem. Rev., 68, 341 (1968). 

 14) T. Yonezawa, H. Kato, and K. Yamaguchi, This Bulletin, 
40, 536 (1967). 

 15) While this work, was in progress, the same relation was 
pointed out in Ref. 16. 
16) See Ref. 22. 
17) J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Pips., 

43, S129 (1965).
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 From Eq. (6), the following simplified relation can 
be obtained by denoting (PAS Z °)=—QA (QA is the 
net charge of atom A) : 

       de, = e, -h h = —QAYAA — E (2.BYAB• (8) 18) B*A 

 That is, the shift of the inner-shell binding energy 
from the atomic ionization energy in certain valence 
state is correlated with the molecular-charge distribu-
tion. The shift of the de, for the A atom in different 
chemical environments, which are denoted as X and 
Y, is: 

Sde,(X, Y) = {QA(X) —QA(Y)}Yee 

In YInX 

         QB(Y) YAB (Y) +QB(X)YeB(X)•(9) 
B$A B 

Eq. (9) indicates that the chemical shifts depend not 
only on the atomic-charge differences of the A atom 
in different molecules, but also on the sum of the 
charges over the other parts of the molecules, since the 
YAB/YAA ratio is not negligibly small. For diatomic 
molecules of the first-row elements, AB and A2, Ode,- 

(AB, A2) =0.5, if QA (AB) _ —QB(AB) =1.0, YAA(AB) = 
1.0, and yAB(AB)=0.5 (in a.u.).20) The change in 
the inner-shell binding energy between the molecules 
is about 14 eV per unit charge. This is in agreement 
with the previous results.19) 

           Results and Discussion 

 Tables 1 and 2 summarize the values of some atomic 
integrals involving the 1Sa AO of formaldehyde (in 
a.u.). By means of these tables we can examine the 
approximations Eq. (5), and (B). Minimal Slater 
bases with Slater-rule exponents, except for that of 
1.2 for hydrogen, are used throughout the calculations 
in the present paper. The integrals are evaluated by 
means of the 4-term Gaussian expansion method.201 

 As shown in Table 1, the approximation introduced 

   TABLE 1. COMPARISON OF THE NUCLEAR ATTRACTION 
      INTEGRALS  (SA I (ZB/rB) I SA) WITH ZBYAB 

                FORMALDEHYDE (in a.u.)

SA B (SA I(ZB/rB)ISA) ZBYAB

1So 

1So 

1So 

'so

0 

H 

C 

H

2.6240 

0.4855 

1.7493 

0.2655

2.6160 

0.4727 

1.7089 

0.2654

 18) A similar equation, obtained by means of an electrostaic 

model, is given in Ref. 19; that is, Sde,(XY) =kQ,+ER ; { l y 
but here K, which corresponds yAA in Eq. (8), is taken to be an 
empirical parameter. The constant, t y, is determined by means 
of the reference compound. 

 19) U. Gelius, B. Roos, and K. Siegbahn, Chem. Phys. Lett., 
4, 471 (1970). 
20) As to the integral values, refer to those in Table 2 and also 

those in Ref. 12. 
20) H. Taketa, S. Huzinaga, and K. 0-ohata, J. Phys. Soe. 

Japan, 21, 2323 (1966); S. Huzinaga, Suppl. Progr. Theor. Phys., 
No. 40, 52 (1967). R. F. Stewart, J. Chem. Phys., 52, 431 (1970).
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TABLE 2. SOME ELECTRON REPULSION 
INCLUDING CARBON 18 ORBITALS 
FORMALDEHYDE (in a.u.)a)

INTEGRALS 

OF

Type Type

(1Sc1Sc/2Sc2Sc) 
(141Sc/2P:c2P:o) 
(1So1Sc/2So2So) 
(1Sc14/2P:o2P:o) 
(1SolSc/2P:o2Pso)

0.8073 

0.8072 

0.4360 

0.4132 

0.4817

(IS014/ISo1So) 
(1SolSc/2Pze2P,o) 
(1So1Sc/2So2P,o) 
(1 So l Sc/2So2Pao) 
(1Sc2Sc/2Sc2Sc)

0.4373 

—0.2452 

—0 .1190 
—0.2582 

 0.0812

  a) The z axis is taken to be paralled with the C-O bond. 

in Eq. (5) is good. Table 2 indicates that the "average 
Coulomb" approximation is excellent for one-center 
integrals and is only correct to within about a 10% 
error for two-center ones. The two-center Coulomb 
and hybrid integrels, (1sA1sA/2sB2pB) and (lsA1sA/ 
2sA2pB) types, however, are not negligible; therefore, 
the (B) approximation, i.e., the CNDO-type integal 
which neglects the above type of integrals, may be

TABLE 3. CALCULATED SHIFTS FOR CARBON 18 ELECTRONS

                                  2589 

bad in certain cases where the corresponding off-
diagonal elements of the bond-order matrix are not 
negligible. 
 The results calculated by means of Eq. (9) are col-

lected in Tables 3 and 4 for carbon is and nitrogen 
is electrons respectively; they are all shown in Figs. 1 
and 2 except for anions. Figures 1 and 2 indicate a 
rather satisfactory correlation between the observed 
chemical shifts and the values of 8de,. The solid 
lines in Figs. 1 and 2 are inclined about 45°; therefore, 
it seems that the chemical shifts can be evaluated semi-
quantitatively in terms of the Me, in neutral molecules, 
and that a relation between the molecular-charge 
distributions and the observed shifts may be in the form 
of (QAYAABEAQ.BYAB)• For the anious containing

Compounds Eobsd a) QAb)

C,H2 

C2H4 

C2H6 

CH2OH 

CO2 

HCO2H

291.2 

290.7 

290.6 

292.7 

297.64 

295.79

—0.064 

—0.33 

—0.006 

+0.129 

+0.536 

+0.381

—0 .90 

—0.41 

—0 .07 

 1.40 

 5.45 

 3.40

a) Observed binding energies (in eV), T. D. Yhomas, J. 
Chem. Phys., 52, 1373 (1970); D. W. Davis, J. M. 

   Hollander, and D. A. Shirley, and T. D. Thosmas, 
  ibid., 52, 3295 (1970). 

b) Calculated net charges on carbon atom by CNDO/2 
   method. 

c) Calculated by Eq. (9) with CNDO/2 net charges (in eV).

W 

rn 2 

W En 
Cc 
:o 

`w 
N 

d 0

295

TABLE 4. CALCULATED SHIFTS 

          ELECTRONS

FOR NITROGEN IS

290

  05 
 6AE (eV) 

Fig. I. The observed binding energies of carbon is electron 
 plotted against the Bas's.

Compounds Eob,da) Qb) ode c,e) 405

N2 
NH3 

(CONH2) 2 
(CH3)3NO 
C6H5N(pyridine) 
CeHSCN 
NaNO3d1 
NaNO2d) 
NaN3d) (middle N) 

     (terminal N) 
KCNd)

402.45 

398.1 

400.0 

402.2 

398.0 

398.4 

407.4 

404.1 

403.7 

399.3 

399.0

 0.0 

—0.234 

—0 .238 

+0.157 
—0 .142 
—0.165 

+0.636 

+0.083 

+0.447 
—0.723 

—0 .409

  0.0 
 —2 .96 

 —1.73 

  2.09 

—2.04 

 —2.99 
 —2.59 

—10.36 

 —6.58

—18 .04 

—18.00

(-5.92)

(-6.27)

(-13.0) 
(-16.3) 
(-19.3)

a), b) , c) They are the same as in Table 3. 
d) Calculated as anion. 
e) The values in parenthesis are evaluated by non-empirical 

   gross atomic charges in stead of CNDO/2 net charges 
   in Eq. (9). These gross charges have been given in 

   references; R. Bonaccorsi, C. Petorngolo, E. Scrocco, 
   and J. Tomasi, J. Chem. Phys., 48, 1497, 1500 (1968); 
   E. Clementi, ibid., 46, 4731 (1967); W. E. Palke and 

   N. N. Lipscomb, J. Amer. Chem. Soc., 88, 2384 (1966).

W 

rn a, 
aa,, 
Di 

Ti 

3 
`

, 

XI 

0

 0

 8/0

0
0

 —5 0 
SAES (eV ) 

Fig. 2. The observed binding energies of nitrogen Is elec-
 trons plotted against the dds,'s.
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nitrogen atoms, the above rather good correlation is 
not observed; that is in these charged species, the 
crystal  effects may be considerable.5) 

 It is noticed that the values of a, obtained by Rootha-
an's closed-shell treatment are generally larger than 
those of the binding energy observed at about 10-
20%, and open-shell SCF calculations give better 
results, as has been pointed out by several 
authors7-11,13,21,22). Further it has been suggested 
that the main effects of these discrepancies depend on 
the reorganization energy.19) 

 Now, let me examine the reorganization energy in 
the above approximation scheme. Suppose that MO's 
i and j are given by Roothaan's closed-shell treatment. 
Using these MO's, an open-shell wave function with an 
s hole (S,=1/2), is obtained approximately by a' CI 
scheme; 

occ. _ _veC __ 

    °     = I
l t)t,~ssii...j~E~1,kIkii...jJl

occ vao 

~.11x(1){Isii•••jk~-Isii•••jk~} 
!($e) k

occ VS_ 

      + E E 111(2){2lsii...jkl - Isii...jk~—~sii..'jl}. 
          !(4s) k 

(10) 23) 

 That is, o,° is an approximate open SCF func-
tion24) and As is the coefficient of a related configuration, 
x. By perturbation treatment, these are25); 

(ks/ss)        ~11a = E'>a/E!i = 0, Ark = • E
,k 

ltk(1) = V2 {(ik/ss)-(1/2)(is/ks)}  E
ik(1) 

   20(2) _-V3%2(is/sk) (11) E
tk(2) 

 Where Elk is the energy difference between the 
energy of the s-k excited configuration, as shown in 
Eq. (10), and the ground-state configuration, and so 

21) P. S. Bagus, Phys. Revs., A619, 139 (1965). 
22) M. E. Schwartz, Chem. Phys. Lett., 5, 50; 6, 631; 7, 78 (1970). 
23) The last configuration does not appear in the difference 

between the zero-th order configuration (the first term) and 
Roothaan's open SCF configuration. The contribution from this 
configuration is certainly very small as will be shown later in this 
report. 
24) C. C. J. Roothaan, Rev. Mod. Phys., 32, 179 (1960). 
25) For example, R. Zahradnik, and P. Carsky, J. Phy. Chem., 

74,1235 (1970).
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on. 
Then, the energy, E,° becomes; 

E,° = (E,,-e,) E(ks/ss)2+2{(ik/ss)-(1/2)(is/ks)}2 
             k E.k k,i4s Etk(1) 

      +k,~r{-VEtx(2)ks)}2+...(12) 
That is, the reorganization energy is E,°-(Eo e,), 
and the dominant contribution comes from the third 
term, since E„,--aek-e,(large), Etk(1). '1Et5 (valence 
shell i-'k singlet excitation energy for a closed-shell 
system, small), and (ik/ss) =CrtCrk(rr/ss) is large, and 

(is/ks) is small as is shown in Table 2. 
 The magnitude of the third term can be roughly 

estimated as; Elk (1) X0.5 a.u., (rr/ss) - l a.u., and 
e,~10 a.u.; hence, (the third term)/e, X10-1 26). 
This order is reasonable when it is compared with the 
previous results, 10-20%.10,13,19,27) 

 These results indicate that the third part is the most 
important in reorganizationenergy.Further, this 
third term can be approximated: 

      2{~,'CreCrk(rr/ss)}2,))o~a(
yes)°  

r----------------------------- 

 i k Etk(1)B ,~rr(2 -                                prr)2Esv 

Where EL, is the average excitation energy. 
 That is, the reorganization energy is not a linear 

function for the atomic charges. 
 As to the other corrections for inner electron binding 

energies, that is, the correlation correction,13,28) the 
relativistic correction29) and the crystal correction,3'30) 
it can be pointed out that these are negligible or are 

proportional to the charges. 
 As has been shown in the above discussion, the linear 

relation between the charges and the inner-shell 
binding energy is restricted within the imposed ap-

proximations; thus, in some cases, this linearities may 
depend on the cancellations of various effects. We 
hope this point will be reexamined in the future.

 The calculations have been carried out on the 
FACOM 230-60 Computer of Kyoto University. 

26) The estimated values of the third term in the level of ap-
proximations in the present report are, e.g., 22.7 eV for the N,, 
of pyridine. 
27) For valence-electron systems, the same order values are 

obtained. 
28) E. Clementi, J. Chem. Phys., 47, 4485 (1967). 
29) P. Palmiele, and C. Zauli, Theor. Chim. Ada, 7, 89 (1967). 

 30) C. S. Fadley, S. B. M. Hagstrom, M. P. Klein, and D. A. 
Shirley, J. Chem. Phys., 48, 3779 (1968).
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  An MO Interpretation of the 

r 

      of Inner-shell Electrons.
Chemical Shifts 

II. A Study of
of the Binding Energies 

Intramolecular Shifts

    The relationship between chemical shifts in the bind-
  ing energies of inner-shell electrons and molecular-

  charge distributions has been pointed out)) For 
  adenine and cytosine molecules, however, Barber and 

Clarke) concluded that a "simple relationship between 
`shifts' in binding energies and `charge distrib

utions' 
  can be misleading." In a previous paper,3) we have 

  derived the following correlation formula between the 
  chemical shifts and molecular-charge distributions 

  within a MO framework : 

                                      X S48/(X, Y) = [Q,A(X)-Q.A(IYAAin                      ')]1i (LB (X)YAe(X) 
3(4A) 

             -i J Q.B(Y)YAB(Y) 
B(+A) 

  where BAe,(X,Y) denotes the chemical shifts of an 
  inner-shell electron, s, on an atom, A, in a chemical 

  environment, X, from that in another environment, 
  Y. QA(X), QB(Y), and so on denote the net charges 

  on the A, B, etc. atoms in the X, Y, etc. environments 
  respectively. yAA denotes a one-center average Coulomb 

  interaction between inner and valence electrons on an 
  A atom. yAB (X) denotes a two-center average Coulomb 

  interaction between inner electrons on an A atom and 
  valence electrons on a B atom in an X environment. 

    For inter-molecular shifts of simple molecules, the 
  results by the above formula almost entirely accorded 

  with the experimentally obtained values. In the present 
  note, we will report an application of the above formula 

  to the intra-molecular shifts of adenine and cytosine 
  molecules. The results are shown in Table 1 for 

  carbon is and nitrogen ls. Figures 1 and 2 show the 

  plots of the observed binding energies against the 
  calculated Ae,4) values for carbon is and for nitrogen 

    1) E.g. K. Siegbahn et al., ESCA "Atomic Molecular and 
  Solid State Structure Studied by Means of Electron Spectroscopy," 

  Almquist and Wiksells, Uppsala, (1967); D. M. Hercules, Anal. 
  Chem., 42, 20A (1970). 

    2) M. Barber and D. T. Clark, Chem. Commun., 1970, 22. 
    3) H. Kato, K. A. Ishida, H. Nakatsuji, and T. Yonezawa, 

  This Bulletin, 44, 2587 (1971). 
   4) We calculated the de, with des(X)=QA(X)yAA+MQB(X)• 

114+4) 

yAS(X), using approximate net charges which has been obtained 
  by the CNDO/2 method.

TABLE 1. CALCULATED de, AND OBSERVED 

           BINDING ENERGIES

Molecule

        is Binding 

Atom Energy') de, (eV)        (±0 .3 eV)

    10 
  NH2 
  81 7 

IN  
 I'    ' >s 
aN N 

9 1° 
H

NH, 
41 

3 N'a 
 II

OY"N"I° 
II 
H

C-5 

C-2 

C-8 

C-4 

C-6 

N-1 

N-3 

N-7 

N-10 

N-9 

C-5 

C-6 

C-4 

C-2 

N-3 

N-7 

N-1

284.7 

285.7 

286.2 

286.6 

287.8 

398.6 

399.1 

399.5 

399.6 

400.9 

285.4 

286.5 

287.9 

289.4 

399.6 

400.5 

401.4

-0.44 

  1.63 

1.88 

 2.40 

 3.04 
-5.98 

-4.68 

-2.67 

-4.73 

 1.24 

-0 .28 

 3.29 

4.75 

 4.22 
-5 .87 
-1 .90 
-1 .33

a) M. Barber and D. T. Clark, Chem. Commun., 1970, 22, 24.

is respectively. The figures illustrate that the correla-
tions are fairly satisfactory. Especially, the correlation 
is quantitatively good for the carbon is of adenine in 
Fig. 1, in view of the fact that the solid line is drawn 
at 45 degree with respect to the horizontal axis. For 
the nitrogen ls, the correlations are rather good, but 
not quantitative, as shown in Fig. 2. In view of the 
non-empirical calculations done on limited bases by 
Mely and Pullman') and by Clementi,e) deviation of 
the observed binding energy from the calculated orbital 
energy can be not said to be constant (except for the 
carbon is of adenine). Therefore, the different slopes 
in Fig. 2 most probably arise from the fact that the 
above deviation is not constant. 

 5) B. Mely and A. Pullman, Theor. Chim. Ada, 13, 278 (1969). 
 6) E. Clementi, Int. J. Quant. Chem., IRs, 179 (1969).
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 Fig. 1. Observed binding energy vs. calculated des plots for 
   carbon Is in adenine and cytosine. 

 The above formula means that the chemical shifts 
of the binding energies should be correlated with charge 
distributions, though not with simple local charges. 
Therefore, the previously-refered to suggestion by Barber 
and Clark is not valid in the present case.

  402 
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6'b 
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b 
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 3~ 11y
}t{'~ 

 3

   7 

 0,

                  —5 

 deed. (eV) 

Fig. 2. Observed binding energy vs. 
 nitrogen 15 in adenine and cytosine.

0

calculated des plots for

 From the above brief discussions we conclude that 
our formula is useful for the assignment of intra-molec-
ular shifts so long as approximate net charges obtained 
by a semi-empirical method are used.
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CHAPTER IX

GENERAL CONCLUSION

     A reason why the electron correlation'effects must be 

taken into account has been described in chapter I of this 

doctral dissertation. Many techniques for taking account 

of these effects have been proposed, as described in chapter 

I. The MC-SCF method among them has been studied in this 

dissertation for showing how the method is powerful and how 

a new picture or model beyond the so-called independent-

particle-model (of the Hartree-Fock method) can-be extracted 

from the MC-SCF wave function. 

     Especially, through the studies in chapter III and IV, 

the calculated spin densities are in excellent agreement 

with experiment and a new picture for core-polarization 

phenomena in atoms has been obtained from an analysis of 

MC-SCF wave functions considered. This analysis will be 

a typical way for the extraction of a physical picture from 

MC-SCF wave functions. It is possible to apply the same 

method to molecules in future. 

     In chapter V, a proper description of the adiabatic 

potential of a bond-dissociation process has been obtained. 

The description is sufficiently quantitative in chemical 

accuracy and can apply to any large molecules. The model 

of the process obtained from a two-configuration wave 

function is consistent with chemical intuition. 

     It is shown in chapter VI that floating functions added
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to basis set are efficient in (non-empirical) MC-SCF calcu-

lations of molecules containing the lone-pairs of electrons. 

Works in chapters VII and VIII show how the molecular charge 

distributions are described well within a single-configu-

ration wave function in a moderate success. 

     From these studies presented in this dissertation, it 

is concluded that the MC-SCF method gives an excellent 

description in spite of few configurations and then gives 

a certain physical picture or model, as are expected ini-

tially-

     One the defects of the MC-SCF method is the diffi-

culty in the solving process of the MC-SCF equation (which 

is described in chapter II, in detail) when the number of 

configurations considered increases to infinite; i.e., the 

process is difficult to converge and time consuming' in this 

case. Then, in future, it is desired how to take the diffi-

culty off.
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