27	C_6H_6		10	ı.		 +	+	++	+	667	20.2
28	→(C ₂ F	E	30	Acetor		 +	+	++	+	860	19.3
29	$H_5)_2O$		60	ne	_	 +	+	++	+	663	15.0

- 1 Dried after treating with some solvents.
- 2 H: Hanging in ketene stream.
 - E: Immersing in ether.
- (3) Speed of ketene gas maintained at about 0.12 mole/10 min.
- (4) Washing out ketene polymers with solvents.
- (5) Sunlight in midsummer.
- (6) (-): colorless.
 - (+): faintly yellow.
 - (++): deep yellow.

13. Reaction of Ketene with Ethylacetoacetate

Toshizo Isoshima

(Nodzu Laboratory)

It is well known that ketene reacts with ethylacetoacetate giving O-acetyl derivative. But there is no information about the formation of C-acetyl derivative in this reaction. As shown in the following descriptions, it was now found that C-acetylation or O-acetylation can be effected according to the conditions, under which ketene and ethylacetoacetate react.

- (i) Without catalyst, ketene and ethylacetoacetate did not react near 0°C, but at about 50°C, gave C-acetyl derivative, CH_3 —C—CH— $COOC_2H_5$, and at about 80°C, in a good yield. O $COCH_3$ In this reaction, no O-acetyl derivative was produced.
- (ii) In the presence of conc. H_2SO_4 , no reaction occurred at 0°C between the reactants, but at 80—90°C, O-acetyl derivative, CH_3 —C=CH— $COOC_2H_5$, was solely obtained in a good yield. OOCCH₃
- (iii) The sodium salt of ethylacetoacetate suspended in ether reacted with ketene at 0°C, giving C-acetyl derivative solely as the product. The conditions and the results of these reactions mentioned above are summerized in the following Table.

Exp.	Ethyl-						Products						
zap.	acetoace-	acetoace- Catalyst Ketene Solven			React. Temp.	After-	Fractions (B.P.)				Yield	M.P.	,
No.	g.(mole)	g.(mole)	g.(mole)	сс	°C	treatment	90–100 g.	°/20mm n _D	100-110°/20mm g. n _D		%	of Cu-Salt	
1	65(0.5)	None	42(1.0)	None	2-4	None				-	_		
2	65(0.5)	"	42(1.0)	"	4549	"	7	1. 4475 ¹⁷	6(2)	1.468017	15	150—151	C-Acetyl derivative
3	65(0.5)	"	42(1.0)	"	8087	"	.9	1. 459014	23(2)	1.470814	37.5	150—151	"
4	65(0.5)	conc. H ₂ SO ₄ 1	42(1.0)	None	.0	Na ₂ CO ₃						^	_
5	65(0.5)	1	42(1.0)	11	75—80	"	9(1)	1. 437111.5	34(1')	1. 445411.5	50		O-Acetyl derivative
6	65(0.5)	1	42(1.0)	"	84—94	"	13	1. 435215.5	44.5	1. 443015.5	67(6)	·	<i>II</i>
7	65(0.5)+Na,1(0.04)		42(1.0)	Ether 100	0	20%H ₂ SO ₂	5.5	1. 4454 ¹⁴	15(3)	1. 461714	24	151—152	C-Acetyl derivative
8	65(0.5)+Na10.5 (0.45)		59(1.4)	300	0	II .	15	1. 452112	24(4)	1.466012	45.5	150—151	"
9	Pure Na-Salt 17(0.112)		29(0.7)	100	0	"	₁0.5		10.5%	1.466020	55	151—152	"

Deny acceptate 80 /20 mm.	p. of Cu-Salt) (192) (151) —
---------------------------	---------------------------------------

- (1) 95-105°/25 mm.
- (1') 105-117°/25 mm.
- (2) 100-108°/20 mm.
- (3) 100-106°/20 mm.
- (4) 100-104°/20 mm. (2) 100—103°/20 mm (6) 3.5g. of 100-119°/4mm.
- $(n_D^{15.5} 1.4510)$ was also obtained.