(C) Transjointing of (II) with urea

As the butoxy group of (II) was found to be very reactive we studied the transjointing of (II) with urea. The ether (II) (0.2 mole) was added to 0.1 mole of urea and warmed on a water bath for 20 mins. By vacuum distillation butyl alcohol was removed and NN'-bis-diethylaminomethyl urea $(C_2H_5)_2$ NCH₂ NHCONHCH₂N $(C_2H_5)_2$ remained as the residue. The yield of butly alcohol was about 90 % of calcd. value. Thus, it is evident that reaction proceeded as follows :

 $2(C_{2}H_{5})_{2} \text{ NCH}_{2}\text{OC}_{4}H_{9} + \underbrace{\begin{array}{c}H_{2}N\\H_{2}N\end{array}}_{H_{2}N}\text{CO} \longrightarrow \underbrace{\begin{array}{c}(C_{2}H_{5})_{2}\text{NCH}_{2}\text{NH}\\(C_{2}H_{5})_{2}\text{NCH}_{2}\text{NH}\end{array}}_{(C_{2}H_{5})_{2}\text{NCH}_{2}\text{NH}}\text{CO} + 2C_{4}H_{9}\text{OH}\cdots\cdots(g)$

12. Reaction of Ketene with Silk

Ryuzaburo Nodzu, Sango Kunichika and Toshizo Isoshima

(Nodzu Laboratory)

The refined silk turns gradually yellow or brown in color. The brownization is thought to be due to the presence of free amino group and especially the hydroxyl group of tyrosine in silk fibroin. A protection of these free groups by acetylation may prevent the brownization.

Some refined silk samples (yarn and cloth), therefore, were treated with gaseous ketene without any catalyst under the same conditions as free phenol and aniline were easily acetylated.

On exposure test to sunlight or ultra-violet rays, however, it was found that the ketene treatment did not improve the property of silk.

Some mechanical properties of silk seemed to be improved somewhat by an appropriate ketene-treatment. The experimental conditions and results are summerized in Tables 1. and 2.

Tab	le 1.	Action	of	ketene	on	phenol	and	aniline	in	ether	and	at	\mathbf{room}	temperature.
-----	-------	--------	----	--------	----	--------	-----	---------	----	-------	-----	----	-----------------	--------------

Substance	Ketene* (gas)	Product				
Phenol (47g)	21g	Phenylacetate 52g. (77%)				
Aniline (23g)	6.854g	Acetanilide 20.488g. (93%)				

* Ketene was estimated by the NaOH method.

	Pre	Medium(2)	Time of Re	Aft	Brownizing tests ⁽⁶⁾						Mechanical Tests			
xp. no.	-treatn			er-trea	with Sunlight ⁽⁵⁾ for hours						Brea Stre	Elon		
	ıenţ(ı		actio	tmen						.V. f	king ngth	gatio		
	Ŭ		й (п	t(4)					,	or he	(g.)	n (%		
			1in.)(3)		0	2.5	12	22	74	ours 10	/cm².)	Ŭ		
0							+	+	++	+	751	21.7		
1	Non	ដ	10 20	Non			+	+	++	+	"4 ⁷⁷			
3	œ		60	ø			+	+	++	+				
			10	Ac		_	+	+	++	÷				
5	Vone	Н	30	etor	土	±	+	+	++	+	731	20.0		
			60	le		-	+	+	++	+	924	15.0		
7 8	No	E	10 30	Eth	- +	 ++	+	+	++ ++					
9	ne		60	ler	+	+		+	, 1, 1 , 1	n ser dan. Tan	5.0 • • •			
10							+ .	+	·. + +	+	881	20.9		
11	Η³(10	Nor			+	+	++	+	924	22.7		
12 13	0	Н	30 60	le		 	+++	++	++.	++++	755 942	28.2 22.8		
14			10	А				 			742	20.9		
15	H.	н	30	icet			+	-+-	++	+	909	22.6		
16	0		60	one	+	+	+	+	++	+	765	17.0		
17	-0°H		10				+	+	· ++			*. *		
18	[C]	Е	30	Ethe	±	土	+	+			1. N. 1.	1. ¹ 47 - ⁶		
19	$H_5)_2$		60	Ĥ	+	+	+	+	++		i a			
	060											10.0		
20	%CF		<u> </u>			-	-}-	+	++	+	668	19.3		
21	1 ³ OI		10	Nor			+	• -+-	++	+	739	24.9		
22	⊥ ↓	Н	30	le		_	-+-	+-	++	+	943	22.6		
23	.00%		60				+	+	+ +	+	624	19.3		
24	CH30		10	Þ			+	+	++	+	759	19.7		
25	Ĥ→1	н	30	iceto.		_	+	+	++	+	809	20.0		
26	.00%		60	ne			+	+	++	+	581	19.3		

Table 2. Brownizing and mechanical tests of ketene treated silk.

e

27	C6H6		10		<u></u>	 +	+	++	+	667	20.2
28	→(C ₂ F	Е	30	Aceton		 +	4	++	+	860	19.3
29	¶₅)₂O		60	Ö	-	 +	+	++	÷	663	15.0

1 Dried after treating with some solvents.

2 H : Hanging in ketene stream.

E : Immersing in ether.

(3) Speed of ketene gas maintained at about 0.12 mole/10 min.

(4) Washing out ketene polymers with solvents.

(5) Sunlight in midsummer.

(6) (-) : colorless.

(+): faintly yellow.

(++): deep yellow.

13. Reaction of Ketene with Ethylacetoacetate

Toshizo Isoshima

(Nodzu Laboratory)

It is well known that ketene reacts with ethylacetoacetate giving O-acetyl derivative. But there is no information about the formation of C-acetyl derivative in this reaction. As shown in the following descriptions, it was now found that C-acetylation or O-acetylation can be effected according to the conditions, under which ketene and ethylacetoacetate react.

(i) Without catalyst, ketene and ethylacetoacetate did not react near 0°C, but at about 50°C, gave C-acetyl derivative, $CH_3-C-CH-COOC_2H_5$, and at about 80°C, in a good yield. O COCH₃ In this reaction, no O-acetyl derivative was produced.

(ii) In the presence of conc. H_2SO_4 , no reaction occurred at 0°C between the reactants, but at 80–90°C, O-acetyl derivative, $CH_3-C=CH-COOC_2H_5$, was solely obtained in a good yield.

(iii) The sodium salt of ethylacetoacetate suspended in ether reacted with ketene at 0°C, giving C-acetyl derivative solely as the product. The conditions and the results of these reactions mentioned above are summerized in the following Table.