NOTES

rivatives were produced.

(3) In the reactions with their sodium salts, O-acetyl derivatives were produced, containing a small amount of C-acetyl derivatives.

Some experimental results were cited in Tables 1 and 2.

Table 2. Some physical constants of O-acetyl derivatives obtained from phenol, resorcine, phloroglucine and dimedone.

O-acetyl derivative	Physical properties		
	m.p. (°C)	b.p. (°Ĉ)	$n_{ m D}^{20}$
OAc		111 (60 mm.)	1.5200
OAc		135-7 (7 mm.)	1.5328
OAc		130-1 (7 mm.)	1.5034
OAc	105-7		-
me H ₂ -OAc OH		128-132 (15 mm.)	1.4814

Reaction of Ketene with Ethyl Acetoacetate in the Presence of Pyridine

Toshizo ISOSHIMA* (Nodzu Laboratory) Received June 25, 1954

In the presence of a very small amount of pyridine, ketene was reacted with ethyl acetoacetate above -20° C, and a reaction product rich in O-acetyl- (II), poor in C-acetyl ethyl acetoacetate (I), was obtained.

*磺島敏三

NOTES

On the other hand, when an equimolar amount of pyridine was used above -40° C, O-acetyl derivative was a sole product, no C-acetyl derivative being formed.

A mechanism of the formation of C-acetyl derivative in the reaction¹⁾ of ketene with sodium salt of ethyl acetoacetate is probably as follows:

The formation of O-acetyl derivative in the presence of pyridine may occur through following mechanism.

The author anticipates the presences of H-bonding (III) or (IV) between ethyl acetoacetate and pyridine. The H-bonding (III), however, was denied by Le Fèvre²).

Though the presence of H-bonding (IV) has not yet been confirmed, it is quite probable, taking into account that the H-bonding in

and in

^{C1}→0→H…N→⁴⁾

was already proved, and pK_A values of *O*-chlorophnol ($pK_A = 10 - 11$) and ethyl acetoacetate ($pK_A = 10.7$)⁵) are almost equal.

REFERENCES

(1) T.Isoshima, This Bulletin, 31, 382 (1953).

NOTES

- (2) Le Fèvre, J. Chem. Soc., 1949, 2230.
- (3) W.Gordy, J.Chem. Phys., 7, 163 (1939); A.W.Davidson et al., J. Am. Chem. Soc., 69, 3045 (1947).
- (4) L.V.Lemmerman et al., *ibid.*, 68, 1361 (1946).
- (5) R.P.Bell, Trans. Faraday Soc., 39, 253 (1943).