Title

Author(s)

Isoshima, Toshizo

Citation

Issue Date

1954-07-31

URL

http://hdl.handle.net/2433/75447

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Studies on Acetylene and its Derivatives. (IX)
The Catalytic Conversion of Acetaldehyde to Acetone. (3). On Catalysts.1)

Toshizo ISOSHIMA*
(Noda Laboratory)

Received July 31, 1954

This paper presents the investigation of good catalysts in the synthesis of acetone from acetaldehyde and water in vapor phase.

A 30 % aqueous solution of acetaldehyde was dropped at 10 cc./hr. into a silica tube at 400° partially stuffed with a metallic oxide. The produced liquid, containing acetic acid, acetaldehyde and acetone, and the gases (CO₂, C₆H₆, O₂, CO, H₂, CH₄ and N₂) formed were analyzed. The conversion ratio of acetaldehyde and the yield of acetone were markedly high with ZnO, CdO, PbO or Fe₂O₃, followed by CaO, SnO₂, or MnO₂. With NiO, the conversion ratio was large, but the yield of acetone was nil. Al₂O₃ showed no effect. With CuO, SnO₂, V₂O₅, or MoO₃, the yield of acetic acid was high as compared with other oxides.

INTRODUCTION

It is well known that acetone is prepared by passing acetaldehyde and water in vapor phase over the catalyst of ZnO, Fe₂O₃, other metallic oxides, or mixtures of them.3)

2CH₃CHO + H₂O → CH₃COCH₃ + 2H₂ + CO₂ (I)

In this paper, the behaviors of acetaldehyde in gaseous reaction with water over various metallic oxides are presented.

EXPERIMENTAL

1. Apparatus. The apparatus is shown in Fig. 1.

2. Procedure. After the reaction chamber B (length 30 cm, diameter 1.5 cm) had been stuffed with a catalyst (30 cc.) and heated at 400°C for 30 minutes, all parts of the apparatus were connected. As soon as a 30% aqueous solution of acetaldehyde (25 cc.) began to be charged, water was dropped down from H, so that acetaldehyde and acetone, which could not be condensed in F and G, might be absorbed. The formed gas, led from K in the course of reaction, was analyzed. After all acetaldehyde had been charged, distilled water (10 cc.) was dropped down to expel the products.

* 磯島 敏三
Studies on Acetylene and its Derivatives. (IX)

in the reaction tube. The mixture of liquids in F, G and J was analyzed.

![Diagram]

Fig. 1. A : Dropping funnel for aqueous solution of acetaldehyde; B : Silica tube (diameter 1.5 cm); C : Catalyst bed (length 30 cm, volume 30 cc), D : Glass fiber; E : Electric furnace (length 30 cm); F : Flask (Cooling with ice and salt); G : Trap (cooling with ice and salt), H : Dropping funnel for water; I : Absorbing tower filled with glass pieces; J : Flask, K : Exit of the formed gas; L : Gas holder, T : Pyrometer

3. **Catalysts.** As catalysts, CuO, CaO, MgO, ZnO, CdO, Al₂O₃, TiO₂, SnO₂, PbO, V₂O₅, Cr₂O₃, MoO₃, MnO₂, MnO, Fe₂O₃, CoO, NiO were used. The methods of preparation of some catalysts were as follows:

- ZnO : Commercial ZnCO₃ was decomposed at 500°C for 5 hrs.
- CdO : Cd(OH)₂, obtained from aqueous solutions of Cd(NO₃)₂ and NaOH, was washed thoroughly with water, filtered, dried, and calcined at 500°C for 5 hrs.
- PbO : PbO was prepared from Pb(OH)₂ by the same method as in CdO and seems probably to contain Pb₃O₄ and PbO₂.
- Fe₂O₃ : Fe(OH)₃, precipitated from an aqueous solution of FeCl₃ and conc. NH₄ OH, was washed thoroughly with water, filtered, dried, and calcined at 600°C for 5 hrs.

4. **Reaction Conditions.** Catalyst, 30 cc.; Length of the catalyst bed, 30 cm; Reaction temperature, 400°C; Volume of the 30% aqueous solution of acetaldehyde, 25 cc.; Rate of dropping of the aqueous solution of acetaldehyde, 10 cc./hr.

5. **Analysis of reaction products**

(a) **Analysis of produced liquid.** The produced liquid was diluted to 500 cc. with water, and then acetic acid, acetaldehyde, and acetone were determined by the methods described in the first paper⁹ of this series. After a sample of 50 cc. was refluxed for 30 minutes to expel CO₂, acetic acid was determined and for the analysis of acetaldehyde and acetone, a sample of 5 cc. or 10 cc. was taken.

(169)
(b) Gas analysis. The gases (CO₂, C₃H₇₄, O₂, CO, H₂, CH₄, and N₂) formed were analyzed by Hempel’s and combustion method.

RESULTS

The experimental results are summarized in the table. The yield of acetic acid or acetone is the theoretical value based on consumed acetaldehyde. As the ratio of O₂ to N₂ was 1 : 4, it was considered that the source of these gases was the air, so they were excluded from the column of gas analysis.

Reaction between Acetaldehyde and Water Catalyzed in Vapor Phase by Various Metallic Oxides. (Catalyst 30cc.; Reaction Temperature 400°C; 30 % Aq. Solution of CH₃CHO 25 cc.; Rate of Dripping of Aq. Solution of CH₃CHO 10 cc./hr.)

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Catalyst</th>
<th>Aq. Soln. of CH₃CHO</th>
<th>Conv. Ratio of CH₃CHO (%)</th>
<th>Yield</th>
<th>Gas Analysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH₃CHO (g)</td>
<td>CH₃CHO (g)</td>
<td>CH₃CHO (g)</td>
<td>CH₃CHO (g)</td>
</tr>
<tr>
<td>1</td>
<td>None</td>
<td>7.616</td>
<td>0.065</td>
<td>14.5</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>CuO</td>
<td>6.695</td>
<td>0.076</td>
<td>43.8</td>
<td>38.1</td>
</tr>
<tr>
<td>3</td>
<td>CaO</td>
<td>7.618</td>
<td>0.112</td>
<td>54.9</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>MgO</td>
<td>7.900</td>
<td>0</td>
<td>42.3</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>ZnO</td>
<td>6.498</td>
<td>0.196</td>
<td>87.8</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>CdO</td>
<td>7.863</td>
<td>0.123</td>
<td>77.6</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Al₂O₃</td>
<td>8.023</td>
<td>0.092</td>
<td>16.5</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>TiO₂</td>
<td>7.820</td>
<td>0.045</td>
<td>30.2</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>SnO₂</td>
<td>7.115</td>
<td>0.102</td>
<td>56.0</td>
<td>13.4</td>
</tr>
<tr>
<td>10</td>
<td>PbO</td>
<td>7.688</td>
<td>0.063</td>
<td>87.3</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>V₂O₅</td>
<td>7.445</td>
<td>0</td>
<td>62.6</td>
<td>20.4</td>
</tr>
<tr>
<td>12</td>
<td>Cr₂O₃</td>
<td>7.478</td>
<td>0.048</td>
<td>40.0</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>MoO₃</td>
<td>7.370</td>
<td>0</td>
<td>35.5</td>
<td>65.9</td>
</tr>
<tr>
<td>14</td>
<td>MnO₂</td>
<td>8.065</td>
<td>0.105</td>
<td>77.3</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>MnO</td>
<td>6.973</td>
<td>0.114</td>
<td>43.4</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>Fe₂O₃</td>
<td>6.463</td>
<td>0.258</td>
<td>95.7</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>CoO</td>
<td>7.445</td>
<td>0.125</td>
<td>28.7</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>NiO</td>
<td>7.310</td>
<td>0.019</td>
<td>100.0</td>
<td>---</td>
</tr>
</tbody>
</table>

Then, actions of the catalysts are considered.

No catalyst: Conversion ratio was 14%, but no acetone was produced. As the formed gas was almost composed of CH₄ and CO, the decomposition of acetaldehyde seems to be the main reaction.

CuO: The yield of acetic acid was 38%. The ratio of H₂ to CO₂ was smaller than 2, and the black color of CuO turned red. This seems to show the reduction of the catalyst.

CaO: The yield of acetone was 29%. Acetic acid was not obtained and the formed gas was almost consisted of H₂. Since acetic acid and carbon dioxide were fixed on
Studies on Acetylene and its Derivatives. (IX)

catalyst as calcium acetate and calcium carbonate respectively, those results seem
to be probable.

ZnO: The conversion ratio was 87% and the yield of acetone was 74%. The ratio of H₂ to CO₂ was about 2. So the normal reaction of formula (I) occurred mainly and no side reaction.

CdO: The conversion ratio was 77% and the yield of acetone was 69%. It seems due to the reduction of the catalyst that the ratio of H₂ to CO₂ was smaller than 2. The brown color of CdO turned yellow.

Al₂O₃: The catalytic action was not found, as in the case of no catalyst.

PbO: The conversion ratio and the yield were 87% and 71% respectively. It seems due to the reduction of the catalyst that the ratio of H₂ to CO₂ was smaller than 2. The orange color of the catalyst turned yellow.

V₂O₅: The yield of acetic acid was 20%. The yellowish-brown color of the catalyst turned black.

MoO₃: The yield of acetic acid was the maximum of 66%.

Fe₂O₃: The conversion ratio was 95% and the yield of acetone was the maximum of 80%. The ratio of H₂ to CO₂ was about 2.

NiO: The conversion ratio was 100%, but the yield of acetone was nil and the yield of acetic acid was very low. The quantity of formed gas was very large, and acetaldehyde seems to be decomposed mostly to gaseous substances. The black color of the catalyst turned light green, so the catalyst seems to be reduced.

SUMMARY

Passing a 30% aqueous solution of acetaldehyde in vapor phase over the various metallic oxides at 400°C, the following results were obtained:

1. The conversion ratio of acetaldehyde and the yield of acetone were markedly high with ZnO, PbO or Fe₂O₃, followed by CaO, SnO₂ or MnO₂;
2. with NiO, the conversion ratio was high but the yield of acetone was nil.
3. Al₂O₃ showed no effect;
4. with CuO, SnO₂, V₂O₅ or MoO₃, the yield or acetic acid was high as compared with other oxides.

Acknowledgment. The author thanks Prof. R. Nodzu and Prof. S. Kunichika for their continuous interest and encouragement.

REFERENCES

(1) This investigation was done at Nodzu Laboratory in 1946 and was read before the meeting of the Union of Engineering Societies in Kansai (October 10, 1952); Parts 1 and 2 (T. Isoshima, J. Chem. Soc. Japan (Ind. Chem. Section) 57, 743, 745 (1954)).
(2) I. G., B. P. 313, 897 (1928).
(3) K. Roka, B. P. 302, 759 (1929).
(4) S. Berkman, J. C. Morrel, G. Egloff, “Catalysis, inorganic and organic,” Reinhold
Toshizo ISOSHIMA

(5) Part 1: 'Quantitative analysis of the mixture of acetic aid, acetaldehyde, and acetone'