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    The elasticities of the reversible gels of various high polymeric substances at ordinary 

 concentrations and room temperatures are concluded to be essentially rubber-like on the 
basis of experiments about (1) the dependence of the gel-elasticity coefficient on tem-

 perature, (2) the dependence of the second order transition point of the gel on the con-
 centration, (3) the dependence of the gel-elasticity coefficient on the concentration  and 

 (4) the detection of Gough-Joule effect of the gel. 
    The dependence of the gel-elasticity on the concentration and the molecular weight 

of high polymer is discussed theoretically from the viewpoint of rubber-like elasticity of 
 the gel. 

INTRODUCTION 

   The term gel has been very loosely used by many authors, but here a gel is 

defined as a colloidal disperse system with the properties of a solid, while a sol is 

the same system with the properties of a liquid. The rigidity, namely gel-elastic-

ity is one of the most remarkable properties which distinguish gels from sols. 

Some gels are liquefied to sols on heating but again they can be solidified on cool-

ing. Such are called reversible gels. Many natural high polymeric substances 

such as agar, gelatin and starch form reversible gels. For many years, colloid 

chemists have tm-ned their attention to the gel-elasticity and several works were 

conducted from the viewpoint of colloid chemistry."2-'3)-" 

   Recently J. D. Ferrya ) for gelatin and T. Nakagawa') for agar measured the 

gel-elasticities with a great accuracy and obtained some valuable information 
about their properties. Nakagawa deviced a sensitive method to measure the gel-

elasticity and verified the existence of very slight but distinct rigidity in even an 

extremely dilute aqueous solution of agar which has been usually considered to be 

a sol. 

   Up to the present, many investigators, with a few exceptions5', considered 

that the gel-elasticities were energetic like crystal lattice or 'a rigid frame-

work .9) 10) 11) 12) Indeed, the elasticities of some kinds of gels may be energetic, but 

it can not be concluded that it is true for all kinds of gels. It is desirable to study 
as many kinds of gels as possible. 

  * T~pik 
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    The present author studied the gel-elasticity in various ways and with large 

variety of gels, especially of natural high polymeric substances and their deriva-

tives. After those investigations, he has come to a conclusion that the elasticities 

of these reversible gels of high polymer are essentially rubber-like at ordinary con-

centration and room temperature. 

    In this comprehensive report, it will be discussed why the author came to the 

above conclusion. The elasticities were measured by Schwedoff-Hatschek-Poole's 

concentric cylinder method?)") for dilute gels and by Ewing's bending methoe) t" 

for concentrated gels. 

I. THE TEMPERATURE DEPENDENCE OF THE GEL-ELASTICITY 

    As has been well known, there are two types of elasticity. One is the energy 

elasticity whose typical example is crystals. The other is the entropy elasticity, 

and the elastic rubber is its typical example. It has been derived thermodynami-

callysu3) that the elasticity is energy type or entropy one according as it decreases 

or increases with temperature. 

    Under some experimental conditions, the temperature dependencies of the elas-

ticities of the hydrogels of agar and gelatin were observed as shown in Figs. 1 

and 2. They decrease with increasing temperature in the same manner as already 

reported by previous investigators.45)su2)'4) Therefore, these elasticities have been 

concluded to be energetic as mentioned above. 
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              coefficient of agar-H20 gel. 

    The present author studied the temperature dependencies of many other re-

versible gels over wider range of the temperature and it was found that the elas-
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ticities of these gels decrease with  temperature abruptly at high and low tempera-

ture regions, but at room temperature region, they increase in many cases. There-

fore, the temperature dependency of the elasitcity of reversible gel may be express-

ed typically by such a form as is shwon in Fig. 3, which is the case of 16 96 

polyvinyl alcohol (P = 1680) in 85 % glycerol3G". In this typical case, the elasticity 
decreases steeply at high and low temperature regions, the former being the melting 

point 7', and the latter the second order transition point T2 of the gel which will 
be discussed in details later. Between these two temperatures, Ti and T2, the gel-

elasticity increases slowly with temperature. 
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 Temperature dependence of elasticity coefficientcoefficient of 20 % PVA-a 0.75 
        of 7. 0 % gelatin-glycerol gel.congo red gel. 

  This typical form can also be seen in the gels of 7.0 90 gelatin in 85 %; gly-
cerol37 (Fig. 4) and 20 % polyvinyl alcohol4" in water containing 0.75 % Congo 

red (Fig. 5). 

   The steep change of elasticity at lower temperature Tr in the typical curve 
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does not appear in some gels. They are the  gels of 4.5, 8.2 and 13.5 ,9(%, polyvinyl 
alcohol (73. = 1500)17) in water. containing 1.5 % Congo red (Fig . 6), and 3.8 and 
4.6 % amylopectin47) in water (Fig. 7). In these gels, however , the elasticities 
also increase with increasing temperature at room temperature region. 
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  coefficient of PVA-a 0.5 % congo red-H70 gel, coefficient of amylopectin-HO gel. 

    Therefore, it is reasonable to consider that the elasticities of these gels are 

rubber-like at these temperature regions. In other cases, these two temperatures, 

Ti and 7'2 in the typical curve of Fig. 3 approach each other and consequently 

 the intermediate region, where the elasticity increases with temperature, becomes 

narrower and finally seems to disappear. This is the case for 1.06 % orange 

pectin ge138) in saturated sucrose solution at pH 3 (Fig. 8). 
    The elasticity coefficient of the orange pectin gel always decreases with tem-

perature in the whole range. In detail, however, it decreases steeply at high and 
low temperature regions, while it decreases more slowly or is almost constant at 

 room temperature, and even in this case the two temperatures, T, and 7'2, can be 

discriminated. We can find no essential difference between the gels in the typical 

form and this orange pectin gel, and so it may be reasonable to assume that the 

 orange pectin gel is essentially rubber-like at room temperatm-e and the elasticities 

 of the hydrogels of agar and gelatin may also be rubber-like for the same reason. 

    These situations may be elucidated by the network mechanism of gel as stated 

 by Ferry for gelatin gelo. Here, the structure of gel is considered to have a 

 network as shown schematically in Fig. 9. This network has a certain number of 

 cross-linkages formed by van der Waals forces between macromolecules, The 
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 Fig. 8. Temperature dependence of elasticityFig. 9. Network structure of gel. 
  coefficint of LOG % pectin-H2O gel. 

elasticity of the gel is attributed to the thermal motion of the segments of these 

flexible macromolecules. So far as the rubber-like elasticity is concerned, the elas-

ticity coefficient should be proportional to the absolute temperature and the num-

ber of the cross-linkages27'. In the vulcanized rubber, the number of cross-linkages 

does not change with temperature because the linkages are "sulfur-bridge", a 

chemical binding, and so the elasticity increases over a wide range of temperature. 

In the reversible gel, however, the number of cross-linkages decreases with temper-

ature by thermal dissociation, because the linkages are secondary bindings due to 

van der Waals forces'9'. Therefore, the elasticity of a reversible gel may apparent-

ly decrease with temperature when the decrease in cross-linkages overcomes the 

increase in rubber-like elasticity which should be proportional to the absolute 

temperature. Even in this case, the mechanism of the elasticity should be essen-

tially the same as that of the elastic rubbers and differs from the case of the crystal. 

   The steep decrease of elasticity coefficient at lower temperature 7'2 in Fig. 3 

does not appear in the case of the hydrogels of agar, gelatin, polyvinyl alcohol and 

amylopectin as shown in Figs. I, 2, 6 and 7. These facts may be understood by 

the following consideration. In such dilute hydrogels, the solvent, namely water, 

freezes at about 0° C and the gel-elasticity cannot be measured at lower temperature 

range where the steep decrease is expected to appear. On the contrary, in the 

gel of polyvinyl alcohol in glycerol, the solvent is supercooled far below its freez-
ing point and the elasticity can be measured over a wider range of low tempera-

ture. 

   Most of the previous investigators studied only the hydrogel of agar or gelatin 
at a narrow temperature range and that is the reason why they did not find the 

positive temperature coefficient and the second order transition point of the gel-
elaticity which prove the rubber-like elasticity of the gel. The significance of 
the second order transition of the gel will be discussed in detail in the next sec-
tion. 
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            2. THE SECOND ORDER TRANSITION OF THE GEL 

   As is well known,=5'30' the elasticity coefficient of high polymeric substance 

without solvent is about 1010-40L1 dynes/cm2 at ordinary temperature and its 

nature is energetic, but it decreases steeply to the value of about 107-10s dynes/ 

cm2 at a certain temperature, the so-called second order transition point, and above 

this temperature the elasticity has been considered to be rubber-like. At the second 

order transition point, there occur some characteristic changes in the other pro-

perties such as heat capacity, volume expansion coefficient and dielectric constant. 
   The nature of the second order transition of high polymers has been interpret-

ed from various points of viewl0'1i', and it is generally accepted that this transi-

tion is closely associated with the free rotation of segments in the macromolecule. 

   Above the second order transition point, the thermal energy of the segment 

motion overcomes the potential barrier and the internal rotation is set free. This 

internal free rotation makes the macromolecule flexible and the elasticity of high 

polymeric substance becomes rubber-like. 
   It may be reasonable to consider the inter- or intramolecular force affects the 

second order transition as well as the melting points, so that the second order 

transition point of a substance should be closely related to its melting point. 

   R. G. Beaman,1" E. Jenckel'" and N. Hirai3" have pointed out independently 

that the ratio of the second order transition point to the melting point on the 

absolute scale is 0.6.0.7 for many ma terials as shown in Table 1. 

      Table 1. Relationship between second order transition point T: and melting 
                          point T: of various materials. 

      MaterialT; (°K) T2 (°K) T2/T1 

 Polyethylene3882050.53 
 Rubber2892010.68 
 Nylon—500320—0.64 
 Polystyrene—500355—0.71 
  Polyvinyliden chloride4582560.56 

  Ethyl cellulose4333160.73 
  Cellulose acetate5763370.59 

  Polyvinyl chloride—500348"-0.70 
Polyvinyl alcohol—570353' 0! 62 

  Polycapramide4583360.73 
  n-Propyl alcohol146930.64 

 Glycerol2911850.64 
 Phosphorus3171950.62 
  Sodium thiosulfate3212300 .72 

  Boron trioxide7245030.70' 

   In such gels as are shown in Figs. 3, 4, 5, 8 and 10, the elasticity coefficients 
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   decrease steeply at two certain narrow temperature ranges in the same manner as 

   in the  pure high polymeric substance, and this lower temperature region corres-

   ponds to the second order transition point of the gel as has been assumed in the 

   previous section. 
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                          constant of 69% gelatin-H20 gel. 

      This assumption can be confirmed by many other experimental facts. The 

   temperature dependency of the volume expansion coefficient of 78 ,o gelatin 

hxdrogel41 is shown in Fig. 11. A steep increase in the expansion coefficient 

   appears at 40° C. Similar results have been obtained by R. E. Neiman2O) for the 

   expansion coefficients of 10 ti 35 % gelatin gels. He has interpreted this anomaly 
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as a phase transition, but it should be attributed to the second order transition 

not only by its definition but by the fact that it agrees with the temperature 

where the abrupt fall in the elasticity coefficient of this gel can be  observed as 

shown in Fig. 10.* 
   The temperture dependencies of the dielectric constant of 70% gelatin hydro-

ge14~' at various frequencies are shown in Fig. 12, where a discontinuous increase 
can be seen at about 25-30°C in each curve. In Fig. 13, these temperatures where 

the elasticity coefficients, the volume expansion coefficients and the dielectric con-

stants show abrupt changes, are plotted against the concentrations of gelatin gels. 

These points fall on almost the same curve, that is the second order transition of 

the gel. '2' 
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                Fig. 13. Dependence of the second order transition 
                     point T2 of gelatin-H20 gel upon concentration. 

                             dielectric constant 
                        0, elasticity coefficient 

0, volume expansion coefficient 

   The second order transition point of gelatin gel falls with water content and 
reaches the room temperature at about 50% water content as shown in Fig. 13. 
The elasticity of an ordinary hydrogel of gelatin at the concentration less than 
50,ao must be rubber-like at room temperature, because the elasticity is energetic 
below the second order transition point and rubber-like above this point as 
mentioned above. 

   These situations can be explained by the analogy of the second order transi-
tion of high polymer.21' In a dilute gel, the solvent molecules separate the mole-
cules or the segments of the high polymer from each other, and the attractive 
forces between them are weakened. This effect permits the free rotation of seg-
ment at lower temperature and finally the elasticity becomes rubberlike at room 
temperature. 

    A sharp peak which appears at about 80°C in Fig. 11. may be attributed to the 
    melting point of this gel, because the steep decrease at higher temperature in Fig. 

    10. is found at about 80°C. 
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  3. THE  DEPENDENCE  OF THE GEL-ELASTICITY UPON THE CONCENTRATION 

    It has been frequently reported by many workers2? 5' 22' 23' that the elasticity Co- 
efficient of gelatin hydrogel is approximately proportional to the square of the 
concentration. In this study, the elasticity coefficients were measured on many 

 kinds of gels and over wider concentration ranges and it was found that the 

 elasticity coefficient of the gel at room temperature is roughly proportional to the 
 square of concentrationa at higher range than a certain concentration'', Co, of the 
 gel, while to the 4 th power of concentration lower than Co. In many cases, these 

 exponents have to be taken as less by about 0.346) than 2 and 4, respectively. 
    Therefore, the dependence of the elasticity coefficient E upon the concentration 

 C of the gel can be represented by the following relations,31>.'3 

       log E=a+(3 log C, 13 where C>CO3(1) 

         log E=r+8 log C, 6=3.7-4, where C<Co.(2) 

    We call the relation of equation  (1) the square law of concentration. The 
 values of a, (3, r, 8 and Co of various gels are shown13' in Table 2. In this Table, 

C, is the minimum concentration of gelation where the gel becomes sufficiently 

         Table 2. Summary of data obtained from gel-elasticity measurements. 

NoHgh PolymericMx10-'Solventay SCo Co CaRef Substance(%) (%) (%)  

 1 Agar1.0 Water8.8 1.8 13.1 3.7, 0.85 0.2 25. 31 
 2 Agar1.0 65% Sucrose-Water 8.1 1.7 10.9 3.75 5.0 0.8 - 39 
 3 Gelatin6.0 Water7.2 1.9 9.8 3.9 7.0 1.3 50. 2,5,31 

 4 Gelatin6.0 85% Glycerol-Water7.0 1.8 9.9 3.75 3.0 1.6 - 37 
 5 Gelatin6.0 55% Sucrose-Water 7.4 1.8 10.3 3.7 2.9 1.3 - 39 

 6 Orange pectin6.062% Sucrpo~si3ater7 61.7 11.2 3.7, 1.6 0.5 - 38 
 7 Glucomannan 23.3 Water6.9 1.7 9.5 3.9 8. 2.5 40 45 
8 C.M.C.Na3.6 Water7.2 1.8 9.4 4.0 10. 2. 40 45 

 9 Amylopectin 30. Water5.9 1.8 8.2 4.0 7. 4.6 55 45 

 10 NitroceIlulose 15.8 Nitroglycerin7.3 2.2 10.8 3.95 1.3 - - 25 

 11 Nitrocellulose 15.8 Nitroglycol7.2 2.2 10.6 3.95 1.9 - - 25 

 12 Polyvinyl chloride 6.6 Dioctyl phthalate 7.7 1.5 8.9 3.5 25.0 2.0 50 26 

 13 Polyvinyl alcohol 8.4 85% Glycerol-Water - - 9.65 3.70 4. 2. - 35 

14 rr7.4//6.6 1.7 9.73 3.75 // rr - a 

15//6.9rr6.7 1.7 9. 6, 3.75 rr rr -// 

16 rr5,8rr6.9 1.7 9.25 3.65 rr rr - v 

17 a4.6a- - 9.14 3.65 o// - rr 
18 rr2.6//- 8.59 3.77  10. 4. , -// 

 19 rr6.6 Congo red-Water 7.3 1.5 10.0 3.5 8.4. 47 

  Mean--7.2., 1.80 - 3.7g-

  Swollen RubberBenzene7.6 1.8- - 40 
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rigid to resist pouring. In many cases,  Ca was found to be nearly equal to the 
concentration where the gel-elasticity coefficient becomes about 103 dynes/cmz and 
to be less than a half or one third of Co. The column headed It in Table 2 con-
tains the average molecular weights of the polymers detei mined by viscosity or 
osmotic pressure measurements. 

   The dependences of elasticity coeffcients of gelatin and agar hydrogels upon 
their concentration are shown"' in 'Fig. 14 and 15, respectively. At extremely 
high concentration region, called xerogel, where the gel contains only less than 
10-20 of water, the elasticity deviates from the square law and increases steeply 
as much as some thousands of times. The concentration CH, where the elasticity 
begins to deviate from the square law, is shown in Table 2 for various hydrogels. 
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   Recently the similar results have been obtained by T. Sakurai and Y . Sato3}' 
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for nitrocellulose in nitroglycerin and nitroglycol, and  1\. T. Walter," for VYNW 
(vinyl chloride 96.4 %-vinyl acetate 3.6 % copolymer) in dioctyl phthalate (Fig. 16). 

   In these cases, the reai values of elasticity coefficients, ER, at 100% gel are 
about 1011 dynes/cm2, while the values of elasticity coefficients, Es, extrapolated 
to 100% gel with regard to the square law curve, are 4x10',  2 x 107 and 5x 107 
dynes/cm2 for agar, gelatin and VYNW, respectively. 

   This elasticity coefficient, E3, is the value for an imaginary gel, assumed to 
be brought to the state containing no solvent without changing the nature of the 
elasticity which obeys the square law of concentration. In other words, if all of 
the solvent could be removed from the gel without changing the nature of its 
elasticity, the elasticity coefficient of such gel should become Es. 

   It is evident from equation (1) that the value of Es should be equal to 106' 
dynes/cm2, a being shown in Table 2 for various gels. These values of Es are 
10G-10s dynes/cm2 as can be seen in Table 2, and they agree nearly with the elasti-
city coefficient of elastic rubber which is well known to be of the order of 107 
dynes/cm2. The elasticity of vulcanized rubber swollen in benzene was measured 
at various degrees of swelling.101 The dependence of the elasticity coefficient of 
this gel upon its concentration is shown in Fig. 17. As shown in Fig. 17, the 
square law of concentration is valid up to 100% and this corresponds to the fact 
that the elasticity of rubber itself is rubber-like in the state containing no solvent. 
The values of a and 43 of this rubber-gel are 7.6 and 1.8, respectively, while the 
mean values of a and R of many gels are 7.2 and 1.8 as shown in Table 2. These 
facts confirm that the gel-elasticity is rubber-like at the concentration range where 
the square law holds. 

   On the other hand, the real elasticity coefficient of xerogel is about 101: dynes/ 
crn2 and the energy elasticity coefficient of high polymeric substance has been 
calculated2G1 theoretically to be about 101=_1012 dynes/cm2. Moreover, the steep 
decrease in the elasticity coefficient with the decrease in the concentration can be 
seen at about 50 % of gelatin gel in Fig. 15, and this agrees with the concentra-
tion where the second order transition point of this gel falls to room temperature 
as shown in Fig. 13. These facts confirm that the elasticity of the xerogel at 
room temperature is energetic. 

                4. GOUGH-JOULE EFFECT OF THE GEL 

   In the rubber-like elasticity, work done by the elongation changes into heat 
which raises the temperature of the system. Actually, when a specimen of elastic 
rubber is elongated or contracted adiabatically, its heating or cooling can be detect-
ed with our lips. This phenomenon, called Gough-Joule (1857) effect, is also ex-

pected to be seen in the gel of high polymer, if its elasticity is rubber-like, but it 
has not been confirmed by any investigators up to the present. 
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  The maximum elongation ratio is several hundred per cent for elastic rubber, 

but it was small for most gels which have been studied previously .  Therefore, 
most of the gels could not be elongated enough to show the temperature change 

without breaking. This ratio, however, amounts to more than 100 % in the com-

paratively concentrated hydrogel of gelatin or polyvinyl alcohol containing a small 
amount of Congo red. 

   It was attempted's) to detect the temperature changes for these gels, by using 

a circuit with a thermister whose sensibility is more than about 10-3°C. The 

results obtained for the hydrogels of 20 and 30 % gelatin* and 35 and 50 ,96/ poly-
vinyl alcohol containing 0.5 % Congo red483 are shown in Figs. 18 and 19 where 
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the elongation ratio a is plotted as abscissa against the temperature change as 

ordinate. 

                       Table. 3. Gough-Joule Effect of the Gel. 

 GelConc. (%) E (dynes/cm-) aT1 E/4T; x 10-7 

Gelatin-Hp208. x105 0.020 4.0 
  rr362. x105 0.073 2.7 
  rr454. x105 0.0805.0 

  PVA-0.5 % Congo red-H20 29 2.0X 105 0. 0085 2.4 
               33 3.2x105 0.0281.2 

                  48 1.1 x 105 0.075 : 1.5 

J = 4.2 x 107 '+ 

/IT, in Table 3 corresponds to the temperature change when a = 1. It can be 

   * N. Hirai, unpublished. 
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easily derived* from the law of energy conservation that the absolute  value  of 

EMT, should be approximately equal to J (Joule constant, 4.2 x 107 ergs/cal) and 

opposite in sign at elongation and contraction for the rubber-like elasticity. In 

Figs. 18 and 19, only their absolute values are plotted. As shown in Table 3, the 

values of EMT, agree with the expectation in the order of magnitude. These 

data are not accurate enough to be discussed in details, but it can be concluded 

qualitatively that the elasticities of these gels are rubber-like. 

   5. THEORETICAL CONSIDERATION OF THE DEPENDENCE OF THE GEL-

       ELASTICITY ON CONCENTRATION AND MOLECULAR WEIGHT 

   In the previous sections, it has been concluded in various ways that the gel-

elasticity is rubber-like at room temperature and ordinary concentration. On this 

basis, a qualitative discussion will be attempted below. 

Now, it is generally accepted that gel is constructed by cross-linking between high 

polymeric molecules, that is a network structure. Since the cross-linkages prohibit 

the macro-Brov.rnian movement but permit the micro-Brownian movement or the 

the thermal motion of the segments of macromolecule, the number of cross-linkages 

in unit volume must affect fundamentally the gel-elasticity. 

   If ,-71 is the number of such effective cross-linkages in unit volume, then accord-

ing to the kinetic theory of rubber-like elasticity, the elasticity coefficient E can 

be expressed by the relation,27) 

E = 3 Ti kT,(3) 

where k is Boltzmann's constant and T is the absolute temperature. When the 

volume fraction of the polymer in the gel is v2 and the polymer can be considered 

to be expanded to v,-.1 folds of its original volume, each macromolecule should be 

stretctched by a factor of v2-i/3 for 3 directions and so the elasticity coefficient in-

creases by the same factor. Thus, we get for the elasticity coefficient of the gel, 

       E = 3 kTv2-113.(4) 

   As it is difficult to calculate the strict value of i an approximate estimation 

was attempted here. It is assumed that macromolecules in the gel can form a 

cross-linkage of the secondary binding only at some particular points, a sort of 

functional groups, in the molecules. 

   Let q be the number of functional groups in a macromolecule and p the degree 

of polymerisation when the macromolecule is considered to be a chain of monomers 

   * Let be me work done by the elongation of a gel with unit volume and unit cross 
     section, and c its specific heat which is about 0.5-1.0 in these gels. In rubber-

    like elasticity, , this work should change entirely into heat and then, 

               W =--2— Ea= =-- ejziT , E/ 41'1=261"—j. 

                             ( 33 )



                               Nishio 

which are the same in shape and volume as the solvent  molecules. Then a para-

meter n is defined as follows, 

n = P/q.(5) 

   Since the value of n will increase in a good solvent or at high temperature 

but decrease in a poor solvent or at low temperature, it may be a sort of para-

meter representing the affinity of polymer to solvent. 

   If the molecular volume and density of the solvent are Vo and do, the mole-

cular weight and density of the polymer are M and d, and the number of mole-

cules of solvent and polymer in unit volume of the gel are n, and n2 respectively, 

then we have 

    M = pv,d,(6) 

andVo(n1+Pn2)=N4,(7) 

where NA is Avogadro's number. A cross-linkage can be formed when another 

functional group comes in one of Z sites, Z being the co-ordination number of a 

functional group. Then, the probability of a functional group to form the cross-

linkage is given by 

(ii)f.0=Zqn2/(22+pn,„)=Zviln.(8) 

   Since the average number (;),,,z of cross-linkages in a macromolecule is q folds 

of we obtain 

(;).0z =ZPv2/n2-(9) 

   As shown in equation (9), the number of cross-linkages contained in a mole-

cule decreases with concentration and in a dilute gel some molecules may have 

none or only one cross-linkage. These molecules do not contribute to the elasticity of 

the gel, since their macro-Brownian movements cannot be prohibited. It can be 

assumed that the macromolecules have to contain more than r cross-linkages in 

order to contribute to the gel-elasticity, and the number of molecules with more 

than r+1 cross-linkages is neglected in a sufficiently dilute gel. 

   Then the total number of cross-linkages contained in the molecules with more 

than r cross-linkages, can be calculated approximately as follows, 

n —1n rCr(Zv.,/ny             22 

NAZrpr-iv2,1-72(r_1), 712r Vo. 

Thus, we get the general formula for E from equation (4), 

E3RTZrpr-'v2r-I-2/3/2(r ! 7[2r Vo.(10) 

   What value should be taken for r in equation (10). It has been known that, 

in the case of polymerisation condensation of polyester25)2", a small amount of 
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trifunctional monomers such as glycerol is required to form a three dimensional 

network structure in the presence of large amount of bifunctional monomers such 

as ethylene glycol, and the number of cross-linkages of this network structure 

should be nearly equal to the amount of the trifunctional monomers. The situa-
tion may be analogous in the case of the gel formation. If it is granted that only 
the cross-linkages contained in the molecules with more than three crosslink-
ages contribute to the gel-elasticity, r in equation (10) should take the value 3. 

   Accordingly, we have 
         E 3RTZ3 p2 v2>>/747o Vo.(11) 

   Thus, the elasticity coefficient is expected to be proportional to the 3.67 th 
power or approximately the 4 th power of the concentration. As shown above, 
experimental results agree quite well with this expectation in the case of dilute 
gels. 
   When the concentration of the gel increases above a certain value CO, all of 
the molecules may have a sufficient number of cross-linkages to prohibit the macro-
Brownian movement and then all cross-linkages formed in the gel contribute effec-
tively to the gel-elasticity. In this case, r = 1 in equation (10), and so we have 

E 3RTZv'/3/2712Vo.(12) 
   Therefore, the elasticity coefficient of the gel at high concentration above CO, 

is expected to be proportional to the 1.67 th power or about the square of the 
concentration and this is, in fact, the case as mentioned in § 3. 
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                        Fig. 20. 3a — y = 22.0 — 2 log .M 

  Comparing equations (1), (2), (11) and (12), we obtain the following relations, 
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                     a = log (3 RTZ/2 n2 Vo (d/d0)513),(13) 

       and7. = log (3 RTZ3 p2/4 'n6 V. (d/d0)'Its).(14) 

          Equations (13) and (14) give the physical meanings of a and r which have 
        been obtained experimentally in § 3 for various gels. Combining equations (6), 

        (13) and (14), we get the relation between the gel-elasticity and the molecular 
        weight of the high polymer as follows 

3a-r=A-2 log M, 

       where A = 2 log (31/-2 RT(dd„2)113) 22.0.(15) 

           This relation does not hold strictly for various gels listed in Table 2, but it 

        agrees with observations in its general tendency and order of magnitude as shown 

        in Fig. 20. 
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