NOTE

Geometrical Isomers of Chrysanthemum
Dicarboxylic Acid*

YUZO INOUYE, YASUHIKO TAKESHITA and MINORU OHNO**
(Takei Laboratory)

Received March 18, 1955

In the previous paper the authors have tried the synthesis of chrysanthemum dicarboxylic acid, the acidic component of pyrethrin II and cinerin II, by our routes, i.e. addition of ethyl diazoacetate to ethyl αβ-dimethyl-β-hydroxy-Δγ-hexenoate (route A), or to ethyl αβ-dimethylsorbate (route B), and by route A we have obtained a dicarboxylic acid C10H16O4 (mp. 180°, after recrystallisation mp. 185-6°, p-phenylphenacyl ester mp. 151°). At first we regarded this as a racemic isomer of synthetic chrysanthemum dicarboxylic acids, but the IR spectrum showed the absence of the typical absorption for cyclopropane. This acid absorbed 1.95 mol. hydrogen on catalytic hydrogenation, giving C10H16O4 (mp. 94-5°, p-phenylphenacyl ester mp. 106-7°) and UV absorption (λmax 274 μm, ε 29700) showed that this acid contained the system —C=C—C=C—COOH. Among ozonisation products, acetone was isolated as 2,4-dinitrophenylhydrazone. Thus, this acid is considered to be αβ-dimethyl-γ-carboxymethylsorbic acid. This was obtained also by route B.

In route B, αβ-dimethylsorbic acid C10H12O2 (λmax 273 μm, ε 22300, p-phenylphenacyl ester mp. 103°) was obtained by dehydration of the corresponding β-hydroxycarboxylic acid with phosphorus pentoxide in benzene, followed by hydrolysis. This acid absorbed 1.97 mol. hydrogen on catalytic hydrogenation, giving αβ-dimethylcaproic acid (bp. 116° at 13 mm., amide mp. 103°, p-phenylphenacyl ester mp. 66°), and stereochemical consideration suggests the trans configuration of this acid in spite of the lack of experimental evidences. Two kinds of dicarboxylic acid C10H16O4, mps. 207-8° and 208-9°, were isolated from the adduct, resulting from addition of ethyl diazoacetate to ethyl αβ-dimethylsorbate. The former 208° acid gave dl-trans caronic acid (mp. 212°) and pyruvic acid (as 2,4-dinitrophenylhydrazone mp. 218°) on ozonisation and the comparison with authentic specimens showed no depression of mps. UV absorption (λmax 237 μm, ε 15400) was identical with that of natural chrysanthemum dicarboxylic acid (λmax 238 μm, ε 15300) and IR spectrum in Nujol.

* When these experiments were in progress and nearing completion we learnt by Dr. S.H. Harper’s communication, that he also had synthesised these geometrical isomers of chrysanthemum dicarboxylic acids by the same routes.

** 井上 章三, 竹下 康彦, 大野 健.
mull (Fig. 1) was closely identical with that of natural acid and thus, this is the racemic form of the natural chrysanthemum dicarboxylic acid.

![Fig 1.](image)

The latter 208-9° acid showed a depression of mp. when mixed with the former 208° acid and gave *dl-cis* caronic acid (mp. 173-4°) as well as pyruvic acid on ozonisation. IR spectrum of this acid in Nujol mull (Fig. 2) was very similar to those of 208° acid and of natural acid, but UV absorption (λ_{max} 242 mμ, ϵ 15700) was not identical. This 209° acid is the *cis*-isomer (with reference to the cyclopropane) of the former 208° acid. Mps. were uncorrected. Further studies are now in progress and will be described in details elsewhere.

REFERENCES