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     Line structures termed "corrugations" and "striations" by Chalmers et al. were 

 studied microscopically with single crystals of tin (purity of 99.87 percent) grown from 

 the melt, in which the [110] directions were parallel to the direction of the temperature 

 gradient. 

    The same line structure as the corrugation was observed on the side surface of speci-

 mens, and the so-called cell structure was also observed on both the top free surface and 

 the transversal surface etched. However, it is noticeable that the line structure observed 

 on the (110) plane of specimens was irregular despite its regularity on the (001) plane, 

 and further that a tortoise-shell pattern was observed on the (110) plane, probably owing 

 to the low purity of specimens. It was also found that the striation boundaries always 

 coincided with the corrugation boundaries on the (001) plane in single crystals. 

                         I. INTRODUCTION 

   It has been well known that the substructures called "line structures" appear 

in single crystals of metals. In 1934, Buerger" observed a substructure with a 

difference of crystallographic orientation of about one degree in zinc single crystals 

grown from the melt and called it "lineage structure". Hence, studies on the 

line structures were carried out with various metals** by many investigators3' 

and it was assumed by most of the investigators that the generation of line 

structures, was attributable to the segregation of a slight quantity of im-

purities. However, Pond et al.2' alone thought that the line structure would be 

observed even in perfectly pure metals. Recently, a systematic study in tin was 

carried out by Chalmers et al.31 and each ridge of the corrugated structure observ-

ed on the top free surface of the specimen was called "corrugations" whose genera-

tion was attributable to the segregation of a slight quantity of impurities. The 

corrugation structure corresponds to the side surface of the bundle of columnar 

cells. As to the case where impurities were perfectly soluble in base metal, they3' 

explained that the generation of the corrugation structure was attributable to the 

segregation and the diffusion of impurities in the liquid phase immediately before 

the beginning of freezing. 

* r% 1 r, /JO VA 6'I,137f' 
** This structure has been observed in tin, lead, zinc, aluminium, nickel, silver, copper, 

     indium, bismuth and antimony. 
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   Besides the corrugation structure mentioned above, Chalmers et al. reported 

another line structure termed "striation"4" ; e.g. as for tin, this structure reveals 

itself when etched in the mixed solution of ferric chloride and hydrochloric acid. 

They have explained anyhow that the generation of the striation structure would 

be attributed to a special arrangement of edge dislocations originating in the vacan-

cy disk. It seems that some of the investigators mentioned above have observed 

the corrugation structure and other investigators the striation structure as the line 

structure. The relation between the corrugation and striation structures has not 

yet been completely clarified. 
   The authors have already reported that the line structure (corrugation) is 

observed in tin single crystals grown from the melt by the Bridgman method and 

that the crystallographic orientation and the spacing of corrugations greatly depend 

on the lowering speed and the purity of specimens.5' In order to perform more 

detailed studies, a microscopic observation was carried out, in this investigation, 

with the specimens whose [110] directions were parallel to the direction of crystal 

growth (direction of specimen axis). A relation between the corrugation and 

striation structures was also examined. 

II. EXPERIMENTAL PROCEDURES 

   The purity of tin was 99.87 percent. The slender tip of glass tube (inner dia-

meter of 5 mm) was pushed into the crucible holding the molten tin and the molten 

tin was frozen after being sucked into the glass mould. After a part of the poly-

crystal tin was replaced with a seed of tin single crystal crystallographically analys-

ed at a part of the slender tip, the glass mould was sealed at this end. The an-
other end of the glass mould was also sealed in vacuum of 10-2 mm Hg in order to 

prevent the oxidation of specimens in the course of growing and to facilitate an 
observation on the unetched free surface of specimens. An elliptic glass tube shown 

in Fig. 1 was used for the investigation of the relation between the corrugation 
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          Fig. 1. Glass tube mould of special design for investigation of 

                        the striation. 

and striation structures i. e., the specimen was grown from a seed which was set 

so that the direction of specimen axis was parallel to the [110] direction and the 

shorter diameter of the elliptic glass tube was normal to the (001) plane.* The 

glass mould holding polycrystal tin was lowered at a constant speed after being 
hung on a fine molybdenium wire in the nichrom electric furnace held at the tem- 

   * The striation structure is easily revealed on the (001) plane. 
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perature which was about 70°C higher than the melting point of tin. In this case, 
the temperature gradient at 232°C was 13°C/cm. As for the observation in etched 

state, glass moulds were immersed into hydrofluoric acid for taking out tin  crys-

tals, as in the previous investigation')*. In unetched state, however, specimens 

were taken out by breaking glass moulds carefully. 

   The following methods were adopted for the observation of specimens. 

   A. Observations, of Corrugation Structures 

   1. Observation in unetched state. 

   An observation in unetched free state was carried out at the upper part of rod 

crystals where a space was always formed between the inner wall of glass mould 

and the specimen. 

   2. Observation in the state etched in 50 percent nitric acid. 

   The corrugation structure was examined by etching in 50 percent nitric acid, 

because the structure was difficult to observe in unetch free state at the part where 

a space was not formed between the inner wall of glass mould and the specimen. 

   B. Simulaneous Observation of Corrugation and Striation Structures 

   1. Surface observation. 

   The corrugation and striation structures were revealed by etching in nitric 

acid and in the mixed solution of ferric chloride and hydrochloric acid** after 

polishing electrolytically at the room temperature (about 15°C) under the conditions 
that the composition of the electrolyte was perchloric acid of 50 cc and glacial 

acetic acid of 80 cc and that the cathode was a cylindrical lead tube. 

   2. X-ray analysis. 

   Differences of crystallographic orientation in the corrugation structure and the 

striation structure, were X-ray analysed by using the pin hole of a thermometer 

graduated at 0.1°C for slit. A part of the specimen was polished electrolytically 
again, in which both structures were revealed by the method mentioned in B-1, 

and this part was used for the incident position of X-rays. The part not polished 

electrolytically was used for determining the incident position. The distance be-

tween the specimen and the plate was 50 mm. 

                     III. EXPERIMENTAL RESULTS 

   A. Results of Observations Concerning the Corrugation Structure 

   1. Result of observation in unetched state. 

   The corrugation boundaries parallel to the specimen axis were observed on the 

  * In this study, the range of lowering speed was from 0.7mm/min to 35mm/min. 
 ** This mixed solution was used by Chalmers et al. for revealing the striation structure 

     in tin, and its composition was 10 percent ferric chloride, 10 percent hydrochloric 
      acid and 80 percent water. 
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side surface of specimens (Figs. 2, 3). The higher the lowering speed, the narrow-

er became the spacing of corrugations and this tendency is qualitatively similar 
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Fig. 2. Microstructure of side free surface, Fig. 3. Microstructure of side free surface, 

      (001). Lowering speed, 0.7mm/min.(001). Lowering speed, 6.2mmjmin. 

to the result of Chalmers et al. However, the spacings of corrugations became 

wider than in the case of Chalmers et al., owing to the lower purity of specimens 

used by the authors. The mean values of the spacings of corrugations measured 

on the (001) plane are given in Fig. 4. 
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           Fig. 4. Corrugation spacings observed on (001) and (110) planes vs. 
                   lowering speed. 

   The so-called cell structure corresponding to the top of the bundle of columnar 

cells was observed on the top free surface of specimens, but the shape of each 

cell was irregular and most of the cells were transversely long. It is noticeable 

that a tortoise-shell pattern made of the groups of several irregular cells was ob-

served and each group was surrounded by the deep groove. This abnormal cell 

structure has not yet been reported. The higher the lowering speed, the smaller 

became the size of each tortoise-shell as in the small cells (Figs. 5, 6). It was 
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Fig. 5. Microstructure of top free surface, Fig. 6. Microstructure of top free surface, 

(110). Lowering speed, 0.7mm/min.(110). Lowering speed, 4.5 mm/min. 

found from the X-ray analysis that the longitudinal direction of the tortoise-shell 

pattern was parallel to the [001] direction and the transversely long direction of 

each small cell was parallel to the [110] direction. 

   The corrugations observed on the side surface of the [001] direction were pa-

rallel to each other and relatively regular (Figs. 2, 3), while those on the side surface 

of the [110] direction were tolerably parallel but irregular and the spacings of cor-

rugations were narrower than those in the [001] direction. The above-mentioned 

tendency was observed in all the lowering speeds adopted in this study (Fig. 4). 

   2. Result of observation in the state etched with nitric acid. 

   The same corrugation structure as in 1 was clearly observed on the whole 

side surface of specimens. In addition, the relation between the spacing of corruga-

tion and the lowering speed and further the relation of regularity between the 

[001] and [110] directions on the side surface of specimens were quite similar to 

the result in 1 (Fig. 7 shows the irregularity of the corrugation structure on the 
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Fig. 7. Microstructure of side free surface, Fig. 8. Microstructure of the side surface 

(110). Lowering speed, 6.2mm/min. etched in nitric acid. 

(181)



             Hideo TAKAKI, Masashige KOYAMA and Hidekiyo FUJIHIRA 

(110) plane). In a higher speed than 11  mm/min, the dendrite structure which was 

not observed in unetched state, was revealed by etching in nitric acid (Fig. 8). It 

was observed that the primary skeleton of dendrite crystals developed from the 

centre of the corrugation (the arrows c in Fig. 8 show the end points of the co-

rrugation boundaries and also the arrow d shows the starting point of the primary 

skeleton of the dendrite crystal). The corrugations near each side of the primary 

skeleton were gradually suppressed by the side arms of the primary skeleton and 

these side arms developed widely in the obliquely upper direction. As the lowering 

speed increased, the number of dendrite crystals increased but the width became 

rather wider. The stray crystals developed from a higher lowering speed than 24 

mm/min. The same cell structure as in 1 was observed on the transversal plane 

by etching in nitric acid after cutting the specimen and etching away the strained 

region, but the tortoise-shell pattern was more obviously revealed than the small 

cells. The corrugation structure on the side surface was scarcely observed by etch-

ing in the solution used for revealing the striation structure by Chalmers et al., 

while on the transversal plane the tortois-shell pattern was observed though indis-

tinctly but the striation boundaries were not. 

   B. Results of Simultaneous Observations of Corrugation and Striation 

Structures 

   1. Result of surface observation. 

   Examples of the macrostructure on the (001) plane of the specimens grown 

from the melt at the lowering speed of 1 mm/min, are given in Figs. 9a, 9b*, and 
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   Fig. 9. Macrostructures of the corrugation and striation structu:•es revealed by etching 
          in nitric acid and mixed solution. 

   * The [110] direction of the specimen shown in Fig . 9b slightly inclines to the right to 
      the specimen axis. 
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also the microstructures of Fig. 9a are given i
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                        Fig. 10. Microstructures of Fig. 9a. 

and s show the corrugation boundary and the striation boundary respectively. The 

striation was from one to several times as wide as the corrugation, and the stria-

tion boundaries always coincided with the corrugation boundaries within the region 

observed in this study.** The width of the striation varied with the place, but 

there the striation boundary always curved along the branching points of corruga-

tions (see the arrow shown in Fig. l0a), while complex boundaries were also seen 

as in Fig. 10b. The striation boundaries on the transversal plane were not observed 

even by polishing and etching electrolytically. This result implies that on the 

(110) plane the slight difference of the crystallographic orientation can not be 

revealed by etching. 

   2. Result of X-ray analysis. 

   Several X-ray back reflection photographs were taken at the striation and its 

both sides in the specimen in Fig. 9a, and the results on the corrugation and the 

striation boundaries are given in Fig. 11 and Fig. 12 respectively. The size of X- 

x2 
       Fig. 11. X-ray back reflection pattern from the corrugation boundary. 

   * Each photograph shows the different portions in Fig . 9a. 
  ** Hulmeo has recently reported the same result on the transversal plane of zinc single 

     crystals by the X-ray microscopy method as in this study. 
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       Fig. 12. X-ray back reflection pattern from the striation boundary. 

ray beam on the surface of the specimen was about 0.4 mm c, and as the widths 

of the striation and the corrugations of the specimen in Fig. 9a were 0.8 mm and 

from 0.25 mm to 0.27 mm respectively, it is assumed that X-rays always fell on 

the corrugation boundary in each photograph. The same photograph as in Fig. 

12 was obtained from each boundary of the striation in Fig. 9a, while the same 

ones as in Fig. 11 were obtained from the left side, the centre and the right side 

of the striation in Fig. 9a respectively. The orientation difference in Fig. 11 was 

within half degree and that in Fig. 12 also about two degrees, and both sides of 

each boundary of the striation were related by the rotation around the [100] direc-

tion and the direction of the rotation was inverse but the orientation difference 

was equal on each boundary. 

                         IV. DISCUSSION 

   The generation mechanism of the corrugation structure (columnar cells) has 

been explained as follows ; The parts which later become the centres of columnar 

cells, may freeze at a higher temperature than the outer rounds which afterward 

become the boundaries, owing to the lowering of freezing point attributable to the 

segregation of impurities. Accordingly, impurities segregated to the liquid side 

may be diffused towards the outer rounds. The outer rounds having a higher con-

centration of impurities will freeze later than the centres, producing the columnar 

cells containing many impurities in boundaries. It is assumed that each cell centre 

is projecting into the liquid side at the actual interface between the liquid and solid 

phases in the course of freezing. 
   Further, the formation mechanism of the slender cell structure and the tortoise-

shell pattern on the top free surface and the transversal surface of specimens will 

be considered. It should be explained in the light of the anisotropy in crystals 

that the transversely long direction of slender small cells is parallel to the [110] 

direction and the longitudinal direction of the tortoise-shell pattern is parallel to 

the [001] direction. Now, as the mechanism of crystal growth, it will be supposed 

that the low index plane (110) is the actual plane of growth. Therefore, the nor-

mal growth of the (110) plane may take place as one atomic layer after another 
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stacks on this plane. In this case, for forming one atomic layer on the plane it is 

necessary to consider the advancing rate of one atmic step from a growing nucle-

us on the plane. It will be also supposed in this study that the advancing rate in 

the  [110] direction is higher than that in the [001] . Impurities segregated from 

the tip on the interface may be inferred to be uniformly diffused around it. Accord-

ingly, the solid part nearest to the tip centre may unifomly freeze slightly after 

the freezing of top centre, but the acutual shape of the island of one atomic layer 

may become slender in the [110] direction if the advancing rate in the [001] direc-

tion is very slow. If so, a new tip may develop at the supercooled region generat-

ed in the liquid side in the [001] direction, and the assembly of slender cells may 

be formed. Since impurities diffused in the [110] direction may be widely diffused 

around the [110] direction, each step of slender cells arranged each other in the 

[001] direction may stop to advance in the [110] direction at some places. There-

fore, the advancing heads of slender cells in the [110] direction may be put in 

order and the tortoise-shell pattern may form. On the other hand, in high purity 

specimens, the regular hexagon cell structure is observed as there is probably no 

differece in the advancing rate between the [110] and [001) directions. In conclu-

sion, it may be supposed that the advancing rate of step in the [001] direction is 

strongly lowered by impurities. 

   From the experimental result that the striation boundaries always coincide with 

the corrugation boundaries, it is assumed that each structure mentioned above has 

its characteristic columnar cells respectively (in this case, one columnar cell of 

striation is made of several columnar cells of corrugations). So, it is an interest-

ing problem whether both structures were simultaneously formed in freezing or the 

striation structure was formed after the formation of the corrugation structure. 

Chalmers et al. and Hulme have proposed the latter consideration : as the tem-

perature is lowered from the melting point, the vacancies, lacking other suitable 

sites to eliminate themselves, will form into aggregates. In this case, the most 

stable form for such an aggregate is in the shape of a flat disk on a special 

crystal plane. Tendency of vacant lattice sites into flat disks would continue so 

that, as the temperature decreases, the disks would grow in size. When a critical 

size is reached, collapse of the lattice across the disks occurs, producing a general 

ring dislocation (i.e. pair of edge dislocations). At the relatively high temperatures 

directly behind the interface where these dislocation pairs are formed, the disloca-

tions would be fairly mobile and would have a tendency to form into transition 

surfaces consisting of arrays of dislocations of one signs. In this case, these disloca 

tions would be easily caught at the corrugation boundaries containing many impuri-

ties." 

   However, it seems to be unfavourable to the consideration of Chalmers et al. 

that firstly one striation containes several columnar cells of corrugations and sec-

                            ( 185 )



 Hideo TAKAKI, Masashige KOYAMA and Hidekiyo FUJIHIRA 

ondly a few striations are observed only in one portion of the surface of the 

specimens studied by the authors. 

   The incubation period in the generation of striation reported by Chalmers et al. 

was not observed in the experimental result of the authors. However, from the 

fact that the striation structure is narrower at the beginning of its generation as 

in the result of Chalmers et al.. it may also be assumed that the gradual increase 

of a corrugation having a great orientation difference generated occasionally (two 

degrees) results in making up a bundle of several corrugations. Further detailed 

examinations must be carried out with respect to the problem consisting of a pure 

rotation of striations around a common axis. 

   An X-ray examination is now being performed concerning the striation bound-

aries on the transversal plane (110) not revealed by etching. 

   The anthors gratefully acknowledge that the expense of this investigation was 

chiefly defrayed by the Scientific Research Expenditure of the Ministry of Education. 
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