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     In relation to the quantum-mechanical eigenvalue problem in terms of a complete set of 

 the Casimir operators the unitary representation of the Schrodinger group of the positive 
 energy states of the hydrogen like atom will be given as an example of the continuous 

 energy spectrum. 

       INFINITESIMAL OPERATORS OF THE SCHRODINGER GROUP 

   All of the integral operators commutative with non-relativistic Hamiltonian H= 

p2/2m—Ze=/r2 of the hydrogen like atom are, as is well-known, the Lenz-Pauli vector 
integral 

              A=----1~ (MXp—pXM)— r(1.1) 

with usual notations and /9= Ze2m,  in addition to the orbital angular momentum operator 

M=rxp, whose components are Mx=Mµv (A, u, and v take respectively the whole 

values of 1, 2, and 3), where it is shown readily that the commutation relation bet-

ween these six operators are given by 

[AA, Aµ] = 2M2,002H 

[MTµ, A,]= (3µvA), — cS~vA(1.2) 

[Mxµ, Mµv] = — 

Now take the following infinitesimal operators : 

F~µ= it lf~'lA. 

                                                       (1.3) F
4X = — FF4 = — i ii—' (i//3po )A,~ 

as the generators of the Schrodinger group for the positive energy (continuous) states 

of the unbound electron, where po=i/2mH', H' being the eigenvalue of the Hamil-

tonian, then these operators satisfy the same commutation relations as satisfied by 

the infinitesimal operators of the four-dimensional Lorentz group," viz, it is found 

that the Schrodinger group of the present case is isomorphic with the Lorentz group . 
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   Thereupon for convenience we substitute (1.3) for 

FF.= _ t-1MKv 

                                                     (1.4)                                  — i AA/BPo, 

then it follows the commutation relations : 

[FA, Fµ] = i 

CFA, PA] = —I FF(1.5) 

[F, Fw] = 

while the remaining relations are all commutative. Hence it is our 'problem to find 

out the representation by the bases (1.4) of ° the Lie ring. It is shown that there 

must exist a set of two Casimir operators, since the present ring is the semi-simple 

one with the rank two.2' In fact we have 

G1 = 4,~(Fx2 — Fx2) 
                                                       (1.6) 

G2 = FAFA. 

A and it can be given that only G1 has the following functional relation with the Hamil-
tonian : 

Z2e4m 1(1 .7)                          G1 =8/12H-I4 

while it can be derived from the metric fundamental tensor of the above ring that 
every eigenvalue of G2 gives the value of zero. Therefore only representation con-
nected with the eigenvalue of G1 comes into our problem. 

          CONSTRUCTION OF THE REPRESENTATION MATRICES 

   The indefinite property of the present Casimir operator different from the case of 
the real rotation group brings about the result that the unitary representation with 
infinite degree of the Lorentz group37 can be characterized by continuously variable 

parameters, while the well-known spinor representation is out of the question, because 
it is not unitary. And it should be noted that F's have continuous eigenvalues by the 
following consideration. 

   Now let us take 

F+=F1+iF2, Ft=F1+iF,(2.1) 

then the commutation relations of 

CF+, F3] = F+, CF+, P3] _ — F+ (2.2) 
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can be found, and the representation diagonalizing F3 is given by 

(n" — n')(n' ~F+I n") _ (n' F+I n" ), 
                                                     (2.3) 

(n" n')( n'aF+I n") = —(n'F+I n"). 

From both relations of (2.3) it follows 

(n"—n')2=-1.(2.4) 

This result means imaginary eigenvalues, but if n takes continuous values, such unrea-
sonable result does not appear. Then the upper relation of (2.3) should be rewrit-
ten as follows : 

•(C (nz 1 F1 n"1) z) n"dn"' (n"' — n") 

n'8(n'_n'")dn'"(n"11F+In")=(n7+Jn"). (2.5) 

The similar relation comes into existence also for the lower relation of (2.3). 
   In order to find the explicit unitary representation we begin with the construction 

of the representation of the sub-ring including the elements of Fk's only, and let us 

put 

F+=F1+iF2, F =F1—iF,(2.6) 

then the matrix elements of the irreducible representations are given by 

(l,m 1F+1 l',m') = ,/(1-{-m) (1—m+1) 8U' 8m,mz1+1 

(1,m1F-1l',m') = i/(l—m)(1+m+1) 8zz'8111,112,1-1 (2.7) 

(l,m IF301',m') = m Out 8.1, 

where the full representation space is nothing but the Hilbert space, then the above 
matrix elements should be reformed for the basic vectors Vg,z,m, (1 = 0, 1, 2 ... for 
every eigenvalue g of G1), provided that we select the basic vectors in accordance with 
(2.7) to give the direct-sum space of the irreducible representations of the sub-ring 
with regard to F : 

(g,1 ,m m') = 1/(l+m)(1—m+1)6g„'8zz18m,,m1+1 

(g,1 ,m IF-1 g',l',m') = 1/(l—m)(1+m-1) 8g gl 6111 6.,m1-1 (2.8) 

(g,1 ,m IF3 g',l',m') = m Ogg' 8a' Omni. 

   In the similar way the matrix elements of 

F+= +iF., F- =F-iF(2.9) 

is given by 
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 (g,l,rn  (F+j  g',l',m') = {—aa/(1+m)(l—rn+1) 81,z' +1 

   +bzl/(l+m)1—m+1)8zz'+a*z+11/(1—n2I 1)Cl—m+2)8z,z'-i}og'8n,ml+i 

(g,1,mF ,1' ,m') = {azi/(1—m)(1--m-1)81,1'-1 
                                                    (2.10) 

+bzt/(1+m)(l —m+1) 8zz' — a*z+0/(l+m+1)(l+r+2) 8z>a'+1} 8gg'8,n,m'_i 

(g,1 ,m g',1',rn') = {az/(1+m)(l—m)8z,z'+i 

+1)1•m8zz'+a*1+33/(l-+-m+1)(l—m+1)81,z'-1}8 ,'8mn', 

where a*z is the complex conjugate of az, while bz is real. These coefficients can be 
determined by the use of the following commutation relation: 

CF', F ] _ —2 F3.(2.11) 

From the above relations (2.10) and (2.11) 

(l-1) azbz-i = (1+1) azbz 

(1-1) a*zbz_ = (1+1) a*zbz(2.12) 

                   (21+3) a*z+zaz+z. — (21-1) a*zaz — bz` =1 

can be derived, and further from (2.8), (2.10), and (1.6) we find 

bz = g'/ l(l+l ) 
                                                    (2.13) 

(l+1)(21+3)a*z+iaz+i. +l(21-1)a*zaz — l(l+1)(1—b12) = 4g, 

where g' is the eigenvalue of the Casimir operator G2, but our problem is restricted 
by g' =0, then it follows 

bz = 0.(2.14) 

Consequently the coefficient az can be determined from 

(21+3) a*z+zaz+i - (21-1) a*zaz = 1 
                                                    (2.15) 

(l+1)(21+3) a*z+zaz+i + 1(21-1) a*zaz — 1(1+1) = 4g, 
or 

                *l(l+2)+4g                       a z+zaz+1. _ (21+1)(21+3) 

                                                    (2.16) 
                     a*zaz =(l-1)(1+1)+4g (21-1)(21+1) • 

However, these two formula are quite equivalent, and then a*z =— az can be readily 

obtained: 
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ai — i /(l-1)(l+1)-Z'e1m/2fW'+1 (21-1)(21+1) 
                                                    (2.17) 

               a-i,1(1-1)(1+1)+Z_e4m/21i2Ht+1 
(21-1)(21+1) 

Thus the unitary representation in question could be settled completely. 
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