ABSTRACTS

The Dimorphism and the Crystal Habits of Copper-Oxinate Precipitates

Eiji Sulto and Eiichi SEKIDO

(Suito Laboratory)

Proc. Japan Acad., 33, 196 (1957)

8-Hydrooxyquinoline has been used in the quantitative analysis of copper. Copper-oxinate precipitates as greenish yellow needle form (α -form) at the outset and then change into a green plate form (β -form). The relation between this dimorphism and the condition of the precipitation are shown briafly in Table 1 from the results of many electron micrographs.

Table 1. Relation between the dimorphism and the condition of the	precipitation.
---	----------------

at the outset	after standing
needle plate (tetra.)	plat (tetra.) no change
needle and late (hex. rhom.)	slight change to plate (hex. rhom.)
	needle plate (tetra.) needle and late (hex. rhom.) needle and late (hex. rhom.)

From analytical results, both α - and β -form copper-oxinate precipitates had the same composition, Cu(C₉H₆ON)₂·2H₂O.

X-ray diffraction patterns of precipitates were recorded on a diffractometer, using Ni filter copper radiation ($\lambda = 1.54$ Å). It was recognized that the crystal structure differed from each other. Interplanar spacings of β -form copper-oxinate 2 hydrate had good accordance with the values calculated from the lattice constant which Kruch and Dwiggins reported. The precipitates of β -form copper-oxinate 2 hydrate are hexagonal, rhombohedral or tetragonal form, and the hexagonal form has constant plane angles at 116° and 128°. It is suggested that the flat habit surface of hexagonal plate is (100).

The X-ray pattern of α -form copper-oxinate 2 hydrate is different from that of β -form and the number of diffraction peaks is smaller than that of β -form. This fact suggests that the crystal system of unstable α -form copper-oxinate 2 hydrate belongs to the higher symmetric system such as orthorhombic, tetragonal, etc. Now, copper-phthalocyanine precipitate has also dimorphism. The space group of stable β -form copper phthalocyanine is P_{21/ α} as in β -form copper-oxinate 2 hydrate. It has been assumed that the α -form copper-phthalocyanine belongs to tetragonal system, by powder X-ray diffraction by Robinson et al. by electron

ABSTRACTS

microdiffraction by Suito and Uyeda. The interplanar spacings of α -form copperoxinate 2 hydrate calculated form X-ray diffraction patterns accord with the Hull and Daveys diagram for tetragonal system at the position of about 1.6 for c/a value. The interplaner spacings calculated, by assuming the cell constants as a=b=6.57Å, c=15.56Å and $\alpha=\beta=6=90^{\circ}$, agreed with the above experimental results with accuracy of 1%.

It is concluded that α -form copper-oxinate 2 hydrate, which precipitates from the solution, transforms into stable β -form, in the same way as in the case of copper-phthalocyanine.

On the Leaching of Domestic Chromite Ore in Sulfuric Acid

Kiyokado Nishihara, Mitsuo Kurachi and Noboru Hirota

(Sawamura Laboratory)

Transaction of the Mining and Metallurgical Alumni Association (Suiyo-Kwaishi),

13, 265 (1957)

To obtain a pure chromic sulfate electrolyte for the production of metallic chromium, the leaching conditions of a domestic ore (48.7% Cr₂O₃ and 12.6% FeO) in sulfuric acid containing small amount of (NH₄)₂Cr₂O₇ were studied.

Sample : The chromite ore from Numaoshi in Hokkaido was crushed by a Engelbach crusher, and sieved by a stuandare Tyler sieve.

Operation : Crushed ore was digested in 300-ml. porcelain beaker under atmospheric presssure, or in a 2-1 lean-lined autoclave under high pressure. A mixed solution of sulfuric acid and $(NH_4)_2Cr_2O_7$ was used as leaching solution. After leaching the liquor was filtered. The amounts of Fe and Cr in the filtrate and precipitate were analysed.

Items of experiments :

Leaching conditions	Under atomosheric press.	U	Under high press		
Size of ore (mesh)	-200	200			
Conc. of H_2SO_4 (%)	70~80	60	40	20	
Leaching temp. (°c)	150~170	150	170	190	
Pressure (kg/cm ²)	manager and a second	3	7	11	
Leaching time (hr)	>2		>4		
Weight ratio of H_2SO_4 to ore	6.6		3		
Weight ratio(NH ₄) ₂ Cr ₂ O ₇	0.15~0.20	0.15~0.20			
Extraction of Cr(%)	90	90			

Table 1. Optimum leaching conditions of Numaushi chromite.