ABSTRACTS

Studies on the Antimetabolites of Amino Acids. (VIII)

Formation of Arginosuccinic Acid and Canavanosuccinic Acid in Microorganisms

Tomoji Suzuki, Saburo Mupaoka and Teruo Makino
(Suzuki Laboratory)
Journal of the Pharmaceutical Society of Japan (Yakugaku Zasshi), 77, 282 (1957)

Acetone-dried cells of Escherichia coli and Lactobacillus arabinosus were prepared and the formation of arginosuccinic acid (ASA) and canavanosuccinic acid (CSA) from arginine or canavanine and fumarate was followed by paper electrophoresis and paper chromatography. ASA was found to be formed by the parent strain of E. coli but it was not detected with its arginine-requiring mutant (cannot be compensated with ornithine or citrulline). Even with the parent strain, its culture in a medium containing arginine causes disappearance of arginosuccinase activity and ASA formation does not take place. The formation of CSA was identical with the case of ASA. With Lact. arabinosus ASA was formed from citrulline and aspartic acid, as well as from arginine and fumarate. CSA itself inhibits proliferation of Lact. arabinosus and this inhibition is easily recovered with arginine. Considerations were made on the action mechanism of canavanine from these experimental results.

Studies on the Antimetabolites of Amino Acids. (IX)

Biological Activity of Aspartic Acid Mono- and Dihydrazide

Tomoji Suzuki and Fumihiko Tanaka
(Suzuki Laboratory)
Journal of the Pharmaceutical Society of Japan (Yakugaku Zasshi), 77, 1218 (1957)

Aspartic acid mono- and dihydrazides, and 3-hydroxyaspartic acid were synthesized and their action in inhibiting the growth of Leuconostoc mesenteroides P-60 and Escherichia coli No. 1 was examined. In the presence of aspartic acid, growth of Leuc. mesenteroides was completely inhibited by 100 γ/cc. of monohydrazide, 500 γ/cc. of 3-hydroxyaspartic acid, and 2000 γ/cc. of dihydrazide. So far as Leuc. mesenteroides is concerned, therefore, the growth-inhibitory action of monohydrazide is stronger than that of dihydrazide. On the contrary, the growth of E. coli No. 1, which requires no aspartic acid for growth, was more strongly inhibited by the dihydrazide, the effective concentration for 50% inhibition being 55 γ/cc. of the monohydrazide and 33 γ/cc. of