<table>
<thead>
<tr>
<th>Title</th>
<th>Studies on the Coefficient of Kinetic Friction of Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsuji, Waichiro; Imai, Masazo</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1958), 36(4): 106-107</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1958-07-31</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/75652</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ABSTRACTS

Based on the observed facts described below a rate expression was derived which could well explain the influence of experimental variables.

1. Besides the main reaction (1), the dehydration of CH$_3$OH•BF$_3$, producing dimethyl ether and water, occurs, i.e.

$$\text{CH}_3\text{OH}\cdot\text{BF}_3 \rightleftharpoons \text{CH}_2\text{OCH}_3\cdot\text{BF}_3 + \frac{1}{2}\text{H}_2\text{O}\cdot\text{BF}_3$$

Since this equilibrium is quickly attainable, CH$_3$OH•BF$_3$ is reproduced by the reverse shift according as the consumption of CH$_3$OH•BF$_3$ proceeds by the reaction with CO, which then reacts successively with CO to produce CH$_3$COOH•BF$_3$.

Thus the addition of H$_2$O•BF$_3$ to the reactant leads to the increase of initial rate of CH$_3$COOH•BF$_3$ production (based on charged CH$_3$OH•BF$_3$). For example, 1.5 : 1 mole ratio mixture of H$_2$O•BF$_3$ and CH$_3$OH•BF$_3$ gives 90 mole % yield of CH$_3$COOH•BF$_3$ in 1½ hours under 1100 atm. of CO at 200°C, while 1 : 1 mole ratio mixture of H$_2$O•BF$_3$ and CH$_3$OH•BF$_3$ takes nearly 5½ hrs. to reach 90 mole % yield under the same condition.

2. When 1.5 : 1 mole ratio mixture of H$_2$O•BF$_3$ and CH$_3$OH•BF$_3$ is used as the starting material under about 1000 atm. of CO, the optimum reaction temperature lies at 200°C.

If the reaction temperature is raised to about 210°C, quick occurrence of the side reaction to produce a tarry matter reduces the final yield of CH$_3$COOH•BF$_3$.

3. The result of the experiment on the effect of pressure at 200°C, when 1.5 mole ratio mixture of H$_2$O•BF$_3$ and CH$_3$OH•BF$_3$ is used, shows that the yield of CH$_3$COOH•BF$_3$ is 93 mole % in 2 hrs. in the base of 1100 atm. of CO, and 86 mole % in 7 hrs. in the case of 455 atm.

4. Reaction rate can be expressed by the next formula (3) very well:

$$\frac{dy}{dt} = k \cdot x \cdot f_{CO}$$

(3)

where, $\text{x} = \text{existing CH}_3\text{OH}\cdot\text{BF}_3 ($mole$)/\text{charged CH}_3\text{OH}\cdot\text{BF}_3 ($mole$)$, under equilibrium with ether and water, $y = \text{produced CH}_3\text{COOH}\cdot\text{BF}_3 ($mole$)/\text{charged CH}_3\text{OH}\cdot\text{BF}_3 ($mole$)$, $f_{CO} = \text{fugacity of CO}$, $k = \text{rate constant}$.

k's are calculated to be $1.7 \times 10^{-5} \text{ atm.}^{-1} \text{ min.}^{-1}$ at 200°C, $0.89 \times 10^{-5} \text{ atm.}^{-1} \text{ min.}^{-1}$ at 180°C, $0.33 \times 10^{-5} \text{ atm.}^{-1} \text{ min.}^{-1}$ at 160°C, and the activation energy is obtained to be 15 Kcal/mole.

Studies on the Coefficient of Kinetic Friction of Fiber

Waichiro Tsuji and Masazo Imai
(Tsuji Laboratory)

Report of the Japan Institute for Research on Chemical Fibers, Kyoto Univ.
(Kasen Koenshu) 14, 53 (1957)

The apparatus to estimate the coefficient of static and kinetic friction of fibers based upon the Röder's method [H.L. Röder, J. Text. Inst., 44, T 247 (1953)] was constructed. With this apparatus coefficients of static and kinetic
friiction of viscose and vinylon fibers treated with surfactants of various types. Minimum values of the coefficient of friction were observed at the velocity of about 1 m/min. with fibers treated with anionic and cationic type surfactants as well as nonionic type. This discrepancy to the result reported, by Röder was discussed.

The convenient apparatus to estimate the coefficient of static and kinetic friction of yarn was constructed using the loading pendulum of K.S. Senimeter (a single fiber tensile tester). Results obtained with this apparatus were compared with results obtained with Röder type apparatus or the loading weight method and some differences were observed.

Studies on the Second-Order Transition Temperature of Polyvinyl Alcohol. (I)

Influence of Water on the Second-Order Transition Temperature of Polyvinyl Alcohol

Yasuo Sone and Ichiro Sakurada
(Sakurada Laboratory)

Chemistry of High Polymers (Kobunshi Kagaku), 14, 574 (1957)

The relation between the second-order transition temperature T_g and the water content of polyvinyl alcohol was discussed. The water content of samples of polyvinyl alcohol filament were 0, 1.8, 2.4, 8.6, 14.0, 25.0, 35.9, 48.5, 61.6% respectively. The T_g of completely dried sample was 73°C, but the temperature fell gradually with increasing water content of samples. Another transition temperature T_g' were observed by the samples whose water content were greater than 8.6 %.

Studies on the Second-Order Transition Temperature of Polyvinyl Alcohol. (II)

Influence of Rate of Heating and Degrees of Polymerization on the Second-Order Transition Temperature of Polyvinyl Alcohol

Yasuo Sone and Ichiro Sakurada
(Sakurada Laboratory)

Chemistry of High Polymers (Kobunshi Kagaku), 14, 577 (1957)

At first the influence of the rate of heating on the second-order transition temperature of polyvinyl alcohol (PVA) was studied. The samples used in this series were air dried PVA filament and completely dried PVA film. In no case the influence of the rate of heating were observed. In the second series of this