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    The present paper concerns with the material and heat transfers taking into full 
 account of the closed circulation of the convection current existing between the hot spot' 
 and the furnace wall, especially the thin layer of the stream line along the side wall 
 demarcated by the common center of the circulations which the authors call as 5-layer. 

 We have evaluated the velocity components both inhorizontal and vertical directions as 
 well as temperature at any point in the tank. 

    The results of numerical calculation have been discussed from the viewpoint of the 
 effect of the various factors namely, X, the distance between the hot spot and the wall, 

 Z, the depth of the tank, K,,,, the overall heat transfer coefficient of the wall, Q, the 
 pull rate of glass, and etc. 

    Some important conclusions are digested as follows : 
     Influence of X, Z, Kw. A maximum appears in the curve representing the change of 

h,,,, the amount of heat discharge from the side wall, with increasing X, consequently 
 there are minimums in the curve of t,m-t,,, the difference between the furnace temperature 
 and the grand average temperature of s-layer, and in that of the flow velocity. By the 

 reduction of Z the flow velocity would not change in direct proportion to Z3 as often 
 expected, but amount to no more than a little decrease. The influence of K,,, would also 

 give rise to a small change of the flow velocity. 
    Influence of pull rate Q. As a large amount of additional heat should be supplied in 

 order to bring the batch to molten glass, (t,n-tw) and flow velocity increases with increas-
 ing Q in the compartment between the hot spot and the dog-house. 

    Generally it could be pointed out that the influences of any change given to the tank 
 are not so large as one would expect at first, and this may be in debt to the correlation 

 of many factors which are inseparably connected each other having often antagonistic 
 trends, and acting together to reduce a disturbance. 

                         INTRODUCTION 

   In continuous glass manufacturing processes batch is gradually melted in a 

tank furnace, whose function is to serve as a reaction chamber for the chemi-
cal reaction among the batch components, and also to serve as a container of 
molten glass giving sufficient time for refining and conditioning. Especially in 
the melting chamber all complicated chemical and physical processes occur 
simultaneously and successively in a space having no partition wall. On the 
other hand it may be regarded as a system of heat transfer-mechanism in 
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which the top level of molten glass serves as the heat receiving surface, while 

the side and bottom walls act as heat discharging surfaces. Between these 

surfaces heat is carried across partly by conduction and radiation, and partly 

by the circulation of hot molten glass. Both factors determine the temperature 

and thus the density distribution, which in turn determine the velocity of the 

convection current. 
   It may, therefore, be easily understood that all phenomena occuring in a 

tank furnace are connected inseparably so that a disturbance given to one 

would necessarily introduce the change on others. 
   The purpose of the present investigation is to get a clear picture of the 

functions of the complicated phenomena occurring in this unaccessible space 

being kept at high temperature and operating under the balance of the 

processes which are interlocking each other and having often antagonistic 
trends. 
   Unfortunately there are but a few published data of the direct measure-

ments, for example the temperature distribution and flow velocity in actual 

tank furnace, which may be used for our purpose, so that the mathematical 

analysis of the material and heat transfer in a tank seems to be the only pos-

sible approach to the problem. For this purpose the results of the model 

experiments carried out by authors during these ten years have furnished 

such important material that even the approximate solution of problems would. 

never be successful without their help. 

   To avoid the tiresome reproduction of mathematical processes the authors 

confined themselves to present only the qualitative general argument paying 

our attention to the mile stones leading to the approximate numerical solutions. 

         I. GENERAL FLOW PATTERN OF CONVECTION CURRENT 

   The keys being the most important for tackling the problem are provided 

by the results of the model experiments. It would therefore be convenient to 

introduce at first something about the general picture of the flow pattern which 

the authors could unveil through the series of model experiments. 

(a) Convection current ; no pull. The simplest case of our arguments is 
that of the convection current in the fluid contained in a box. 

   Fig. 1 shows the typical flow patterns of the liquid in the melting chamber 

of the 1/50 scale model of a bridge wall tank when no pull is applied, in which 

a) reproduces the surface current, b) the flow in the vertical surface along 

the longitudinal center line, c) the rapid downward stream near the wall, and 

d) the pattern in a plane intermediate between the wall and the hot spot. 

   Fig. 1 a indicates clearly that the convection currents are spreading radially 

from the hot spot toward the walls. Fig. 1 b shows that the surface currents 

are the part of the circulation moving at first toward the walls, changing the 

direction to flow rapidly toward the bottom, and finally flowing backward toward 

the hot spot. In the last stage the moving liquid receives heat from above 
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a.  Surface  current 

r — c 

               b. Flow in the vertical plane along the longitudinal centerline. 

                              c. Downward stream near the wall. 

             d. Flow in a plane intermediate between the hot spot and the wall. 

       Fig. 1. Typical flow patterns of convection current in the melting chamber of a 
         1/50 scale model of tank. 

  becoming more and more lighter through the elevation of temperature, rising 

  gradually toward the surface until the liquid gushes out like a spring at the 
  center. 

     At a glance at the picture it will be noted that the flow pattern consists of 

  innumerable concentric closed curves whose common center is locating near 

  the walls. 

     Comparing Fig. lc and id it will be convinced that there exists a thin 

  layer along the walls in which the liquid flows very rapidly. This is an impor-

  tant potential source for the driving force of the convection current occurring 

  in the confined space, whereas in an infinitely extending fluid the driving force 
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is the difference of the pressure between any two points. 

   Finally it should be noted that in the layer near the walls as well as at 

the center of the hot spot the liquid flows vertically down and upward showing 

that the horizontal component of the velocity is negligible. It is therefore 

possible to separate the currents using the vertical line at the hot spot as the 
center of symmetry. 

   (b) Superposition of convection and pull current. Fig. 2 reproduces the 

pattern obtained in an model experiment using the same model as before, but 
operating it at the pull rate corresponding to 6 ft2/ton, day of the actual tank. 

It will be seen that the horizontal velocity is increasing by the pull, but no 

radical change of flow pattern occurs by this amount of pull. As already stated 

in the papers published  before112' the effect of pull may be superposed with 

that of the convection current. 

<-- direction of pull 

         Fig. 2. Typical flow pattern in the vertical plane along the longitudinal 
           centerline. The pull rate corresponds to 6 ft2/ton, day in the actual 

            tank. 

   As mentioned before the model experiments provide the three important 

keys which open the door leading to the approximate solution of the flow 

problems, namely : 
   (1) When there is no pull the convection currents may be separated into 

the series of closed circulations by the vertical center line of the hot spot so 
that it is sufficient only to consider one half of the tank. Furthermore, the 

flow may conveniently be treated as a simple two dimensional problem since 

the results may easily be extended to the actual three dimensional flow by 

multiplying appropriate factors. 

   (2) Fig. 1 shows that it is possible to set up two imaginary planes through 
the common center of the concentric circulations to divide the space into three 

                     b Rot spot                                                               ss  

o 
x „_X 

              Fig. 3. Schematical rapresentation of the convection current 
                between hot spot and wall. 
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as brawn schematically in Fig. 3. The thin layer between the vertical line of 

demarcation and the wall, which we are going to call as 8 -layer, is charac-

terized by the fact that the vertical velocity component is zero at both boundary 

surfaces of this layer. The horizontal line of demarcation simplifies profoundly 
the method of calculating the heat balance as shown later. 

   (3) The nature of the convection current may most easily be studied by 
concentrating at first our attention to the simple convection current without 

pull. The results obtained may be modified at the very end by adding the 
terms which represent the effect of pull. Unless it is stated otherwise we have 

limited our attention to the two dimensional flow existing in the vertical plane 

along the longitudinal centerline of a tank, and moreover in the space between 

the wall and the hot spot. 

               II. METHOD OF MATHEMATICAL ANALYSIS 

   (a) Analysis of flow. Convection current in a tank furnace has already 
been analysed by Peyches and others') who have started from the solution of 

the simplified Navier-Stokes's equation 

ap (x, z) _ aw~ (x, z)(1 ) 
ax 'u ax2 ' 

in which va (x, a) is the velocity,apax'z)the pressure gradient both in hori- 
zontal direction x, and it the viscosity coefficient being assumed as a constant. 

This equation states that the pressure gradient is the driving force which 

balances in a stationary state with the tangential stress due to viscosity. If the 

driving force in this equation may be regarded as originating from the differ-

ence of hydrostatic pressure in molten glass due to the temperature difference 

between two points along the same horizontal line the method of solving it 
becomes very simple. 

   This method, although simple, applies rigorously only to the liquid extending 
infinitely in both directions, which is not the case in actual tank. 

   For somewhat detailed treatment this is an oversimplification, because the 

effect of the rapid downward stream along the side wall should not be neglected, 

which however is not possible to be introduced into (1). Moreover, the flow in 

the enclosed circulation existing between the hot spot and the wall, whose 

shearing stress along the whole path of the flow should come into the question. 

As mentioned before the velocity component in the space between 8 -layer and 

hot spot is very small compared with that in the 8 -layer, so that the necessary 

additional terms for treating the problem as the flow in finite space are the 

vertical pressure gradient and the shearing stress in this layer. 

   The vertical velocity component may be formulated as 

              a8(x'z) =—p(x,z)g+~a"v,(x,z) (2) a
zax- 

stating that the hydrostatic pressure gradient p(x, z) g acts in opposite sence to 
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the shearing stress at any point (x, z), whose algebraical sum balances with the 

vertical pressure gradient. In the equation  vz (x, z) is the vertical velocity 

component of the flow, g the accelaration of gravity, and p(x, z) the density. 

   The density p (x, z) varies from point to point with the temperature of 

molten glass, and may be expressed as 

p (x, z) = Po 0--r{t(x, z)-10}J(3) 

where Po is the density at a certain reference temperature to, and r is the 

volume expansion coefficient. 

   For evaluating the vertical velocity component from the equation (2) and 

(3) we should have to introduce the equation of continuity, which correlates the 
vertical and horizontal velocities, 

avx (x, z) a14 x, z) = 0 ,4) 
axazC 

assuming the constant density throughout the field, this assumpition introduces 

no serious error. 

   On reference to the condition at both boundary surfaces of 8 -layer it is 

possible to formulate an equation, 

vw(x, z) = v,„ (z)bC83{x—(X-8)}—{x—(X-8)13), (5) 
which gives the velocity of downward stream in this layer and corresponds to 
vQ (x, z) in the equation (2). 

   In the equation 8 is the thickness of the 8 -layer, and X is the distance 
between the wall and hot spot. 

   Putting this into the second term of the right hand side of (2) the pressure 

p(x, z) in 8 -layer may be expressed in terms of the distance z from the bottom. 
In the hot spot the pressure may be approximated by the hydrostatic pressure, 
since the term in (2) representing the shearing stress is small. It is then 

possible to evaluate the pressure gradient appeared in (1). 
   Furthermore, if we concern ourselves only to the average velocity with 

respect to x = 0—>X, vx (z), we may proceed to formulate an ordinary differential 
equation of the second order 

Pd3dzz)X71'—pogr (ts (z)— t~a(z))±12v,8z)f p„,}dzJ (6) 
where is (z) and t,,, (z) are the average temperatures of the hot spot and 8 -layer 

in the plane at the height z, few the grand average of the viscosity in 8 -layer, 

and finally f is a contant defined byCy, (x, z)), _8                                            v
x(z) 
   The simplest form of the solution of (6) is obtained by putting the integrand 

as a constant, and the effect of pull may be introduced from the relation 

                       .00vx(z)dz=QZ, 
where Z is the depth of the tank, and Q the pull rate referred to an unit 

surface area of lateral cross section of the melting chamber, 
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   The final result is 

        yrz- 5Pn         ()br7(t0—t,)(15Zz2-8z3-6Z2z)_3(2.--Zz)(7) 

                  - 

             240f2X+9fu,, 

in which t0, t,,, are the grand average temperature of the hot spot and 6-layer. 
vr(z) thus obtained is the mean value with respect to x. The next step is 

to find out the velocity at any point (x, z). For this purpose we may use the 

results of the model experiments which suggest that vx (x, z) may be worked 

out by multiplying the first term of the right hand side of (7) with a second 

degree algebraical formula of x whose constants are to be determined from the 

results of the model experiments. 

   Thus the equation 

vx(x,z)=2(t,-t,0x15Zz2-8z3-6Z2z){Xxs 
_ 3x- 3Qz=                           2(X—rS)z)ZZ(2Zz) (8) 

was obtained in which 

                      10pagr V -— 
                      240pX+13.5p,,-' 

whose denominator consists of two terms, one containing X and refers to the 

shearing stress due to the horizontal velocity, while the second term represents 

the shearing stress due to the vertical velocity in the 8-layer. 

   The thickness o varies with the nature of refractory as well as of glass, 

and may be estimated from the experimental formula 

          _Z=n(Pr.Gr)-(9a) 
in which n is a constant and Pr and Gr are the Prandtl and Grashof numbers 

with regard to the grand average temperatures, and d t contained in Grashof 

number is 

dt=Ctn—t,ro) (Iwo                   1,)-dKa,(9b) 

 '~ x 
  ,x, 

ax Experiment b x x 
- Calculation 

• 

   xi 

x  'x 

 ~x 

0.4 0.2 0 0.2 0.11. 0.4 0.2 0 0 .2 0.11, 
cm/min.cm/min. 
     Fig. 4. Profiles of horizontal velocity components in the vertical plane along the 

      longitudinal centerline of a model. 
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in which tm is the grand average temperature,  two and t„ the average tempera-
tures of outer surface of wall and external air, d, the thickness and the 
coefficient of thermal conductivity of wall, and K„ the heat transfer coefficient 
between wall and external air. 

   In Fig. 4 are shown vx (x, z) calculated by (8), to compare with the results 
of model experiments. The figures show that the agreement is satisfactory 
although we have made many drastic approximations. 

   In above discussions we have assumed that all circulations pass through 8 
-layer, which however is not the case if heat passes from glass surface to super 

structure, as it is often observed between hot spot and bridge wall. F.W. Preston"' 
has already pointed out that in such a case the flow proceeds successively 
downward. As a result only a part of the flow would pass through 8• layer. 
This fact has the effect of reducing the velocity of flow, and consequently the 
vertical shearing stress in this layer. For present calculation this effect may be 

taken into account by assuming a thicker 8-layer. 
   The equation (8) gives straightforward the horizontal velocity component, 

from which the velocities v,,, (x, z) and vz (x, z) may be calculated using the 

equation of continuity. The results are 

v,,,(x,z)= 1.5V(ts—t,,,X5Zz3-2z4 3Z2z2)(82{x—(X-8)}—{x—(X—(3)}3), (10) 

for the flow in 8-layer, and 

vz(x, z)=-0.75V(ts—tm)(5Zz3-2z4-3Z-z2){ Xl — (Xx(5)Z(11) 
for the flow in the space extending from the imaginary boundary surface of the 

6-layer toward the hot spot. 

   We are thus able to calculate the flow velocity at any point in a tank 

furnace if we know the temperature difference is — However, this value can-

not be chosen arbitrarily but instead is and t,,, are fixed as the natural results of 

the heat balance established in stationary state. In fact heat and material trans-
fer can not be separated at our convenience. This is the reason that the authors 

were forced to study the heat transfer by convection current. 

   (b) Hect transfer by convection current. We are now going to discuss the 

problem of heat transfer in a tank furnace. For this purpose it will be convenient 
to list the terms which we have used in the last section, and those which we 

shall use in this section in a table form. Table 1 contains such terms. 

   In general point of view the principle is very simple, being the evaluation of 

heat balance which is already familiar to us. The process, however, becomes 

rather complicated as soon as we are forced to take account the heat carried by 

the molten mass of glass. 
   The two dimensional heat flow in stationary state is represented by 

            8t(x, z) fC~8t(xz)(ort(xz)+83t(,=                                      z)0 (12) 
      P~cvxCx, z)8x+P„tcvxzaz—hOx'az 

in which c is the specific heat, pm the average density of glass, k the radiation 
conductivity introduced by Kellett”. The equation states that the difference of the 
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Table 1. Symbols used for representing the velocities and temperatures. 

vr(x, z) : Horizontal velocity component as a function of x and z. 

U:r(z) =1 Ix—svx(x, z)dx 
X—a.o 

   (v_) D,JDvz(x, z)dxdz : Grand average value over a domain. 
v,(x, z) : Vertical velocity component as a function of x and z. 

(z))= --L_J JDv (x, z)dxdz 
v,,,(x, z) : Vertical velocity component in 6-layer as a function of x and z. 

v,, (z) = 1 JYv,v (x,z) dx ax-o 
1 Z •x u

w=-- _VwCX, z)dxdz x aZn 
t(x, z) Temperature as a function of x and z. 

   to : Reference temperature used for expressing the density of glass. 
   ts(z) : Temperature of glass at the hot spot. 

twCz)= 1 Jx t(x, z)dx 
a x-o 

          c 
is =----1is (z) dz 

t„,=11iZt(x, z)dxdz 

tW=---2Jtw(z)dz 
            0 

pp t,n(z)= Jo t(x, z)dx 
t„as, tnw : Mean value of the surface and the bottom temperature ty,LS=l„L(Z), t,n,,= 

twCo). 
t,os, twb : Mean value of the surface and the bottom temperature in a-layert,,,s-t,0(Z), 

     twL=tw(o)• 
to : Temperature of external air. 
two : Mean temperature of the outer surface of wall. 
zit : Temperature difference used in the Grashof number. 

  ( at `I 1at(x, z) dTdz    ax/„DJJDax 
    at 1adxdzt(x,~): Grand average value over a domain. 
    az/,nDJJD az 

heat quantities brought into, and taken out from a volume element by horizontal 

and vertical components of the flow balances with the amount of heat carried 

into and carried out from that element by radiation and conduction. 

   To begin with let us imagine a domain in the flow as shown in Fig. 5 in 

                z.m .2 I hza y     tC 
lK                  ax/m as~m.K 

hx fi"R)(VS) hz2 

z~z, t hzi 

     Fig. 5. An imaginary domain for the purpose of integrating the equation (12). 
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which the flow pattern is simple enough to calculate the mean values  (v,,,) and (v2). 

   Assuming these values as constant throughout the domain and integrating (12) 

between boundaries using the notations inscribed in the figure the equation 

       pacCvx)(z2 — z~Xx2—xl)(ax)~+'°(3cCv,)(xz — xiXzs— zi )\at)~n 
—{(hx,—hx,)+(hz2—hzi)}=0(13) 

is obtained, in which (ax)mand (at). are, respectively, the average values of 
the temperature gradient in horizontal and vertical directions and hxi, hz,, (i =1,2) 
are the heat quantities passing through the boundaries by radiation and conduc-
tion, and finally )3 is a correction factor using for compensating the errors intro-
duced from successive simplification. 

   In order to apply this relation to the whole space extending between the wall 

and the hot spot we make use of two imaginary surfaces of demarcation to sepa-

rate the tank into three compartments, namely A, B and S, as shown in Figs. 3 
and 6, which the flows are monotonous containing no flow in reverse direction. 

We may then work out the average values of (axt                                            ),(v.0, and etc. for each 
compartment. 

A 

B 

   Fig. 6. Boundaries being set up for applying the equation (13) to the compartment 
     between hot spot and wall. 

   However, all terms in these three compartments are inseparably correlated 

so that we should have to solve the three equations of heat balance simultaneously. 

   The first step for this purpose is to introduce the grand average temperature, 
t„z, which also might be presumed as the temperature to keep the molten glass 

in order to produce the glass of required quality under a certain pull rate. Tak-

ing into account the fact that the temperature gradient in horizontal direction is 

smaller than that in vertical direction we assume the linearly variation of the 
temperature from wall to hot spot. It is then possible to approximate the tem-

perature difference appearing in the velocity equation (7), and etc., the term (t,— 
tw) by 2(t,n— tw). 

   The second step is to represent (--)'s in the compartments A and B as 
   2e(tm-4.) 2(2—e)(t.—tw) 

XandXby introducing a constant, s, which is the ratio 
of the average value of the temperature difference in horizontal direction in 

the compartment A to (t„z— tn)• 

   The third step is to get the equations representing (.°t)'s. The results of oz ,n 
the model experiments and also those of the direct measurements in actual tanks 
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have revealed that t7n(z), the average velue of t( x, z) between x=0-->X, may be 
represented by 

                 1--htZK''+2—l6Kb(tm—         t7,~Cz)ta)fza          19ZKv+48k({16X(k                 +2)j Z 
           +{48Kb(tnn—ta)-10ZKr, 102+48kt7n-10ZX+19ZKr,tal, (14) 

in which ht is the heat supplied from the upper surface and Kb the overall heat 

transfer coefficient of the bottom. From the equation (14) it is possible to obtian 

the equations giving                       at's. 

   The fourth and the last step is the evaluation of h's which may be represent-

ed as 

h _zr`,.=x"h                        (((61               xt—Jskdzh1,6x/z'JA6zdx           z~xizx1za 

   For those values in 8-layer we have introduced Kw, the overall heat trans-

fer coefficient of the side wall. 

   Through the processes mentioned above the equation which gives the total 

heat balance of the whole space, is 

48k(tm— ta)-10Xht             ht—ZKZ~Ct,— ta) XKb{----19ZK,,+48k } = 0.(15) 
The equation states that the heat received from the top surface is equal to the 

sum of the heats discharged through the side and bottom walls. 

   We have two other equations being independent each other, namely, the 

equation of the heat balance in A section and that in 8-layer. 

   The former may be written as 

9K,,Zht+48k{ht+(t,n — to )Kh,X }       h
t 19ZK L+48h 

                       ht 'ZK,,                     (243+7.58)+2.72Kh,(t-—ta) pmc VZ5X. _h  13{19ZKv+48k}(t7n t,V) 
           +p7,6c 9 ttan[qa~—~r~ltn,—tsa)=0,(16) 

stating that the heat quantity supplied to the top surface is equal to the sum 

of the amounts, the heat passing through the boundary between A and B by 

radiation conductivity, the difference of heats carried into and out from this com-

partment by flow, and the heat carried out from this compartment to 8-layer by 
radiation conductivity. 

   Finally the heat balance in 8-layer is 

htZK,,                           /192+8 .34) +6.6Kb(t7n— ta) 
     ZKza(tw—ta)—p7,tZsfXh iCt7n—tw)                              19ZK L+48h 

             /~a                 +p7,z QZ(1 ey`t7n—t„„)2-2X(tnn-1,,,)=0,(17) 
which gives the balance between the heat quantities, namely, discharged through 

the wall, the difference of those carried into and out from this layer by flow, and 

the heat brought into this layer by radiation conductivity. 
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   There are five variables, i.e. t„L, t, , hs, X and e in above equations. They were 

solved by giving a set of appropriate values of t,„, and X. These two values, 

however, cannot be chosen arbitrarily, since we have divided the tank into two 

parts by the vertical centerline of the hot spot, and hence, we should have to 
repeat the same procedure for the other compartment. , From the sets of values 

having the same is and from the total length of the tank L we may evaluate the 

t„„ tn, and hs for both compartments. 

   (c) The effects of pull. So far we have discussed the effect of convection 
currents on the heat balance for the purpose of obtaining at first a clear cut 

picture of the problem, and we are now ready to discuss the effect of cold batch 
on the heat balance which is charged from dog house, melted to glass, elevated 

the temperature up to ts, the temperature of hot spot, just before the molten 

mass arrives at this point. 

   To speak the truth the current in the compartment between dog house and 

hot spot is very complicated owing to the local currents under the mass of cold 

batch, and of the cold front on the bottom, both being too complicated to be dealt 

with precisely. The authors, therefore, have confined their attention to the overall 

heat balance. 

   In order to introduce the effects of pull into (15)-(17), and to consider the 

heat balance in some detail the amount of heat H which is necessary to convert 

the batch to the molten mass of t„, is divided into two : one, (1— $ )H, the heat 

quantity supplied to the batch after once passing through the molten glass, 
namely, the amount which influences on the vertical temperature distribution in 

glass, and the other, $H, the heat quantity which is supplied directly or indirectly 
through the ways without exerting any influence on the temperature distribution, 

which was excluded in present discussion since this was the only way to reproduce 

the temperature distribution obtained by actual measurements. 

   Furthermore, the former was again divided into two, namely : one (1—$) 

(1— C )H which may be included separately in the individual compartment A and 
B, and the other, (1—$):H,  which mediates the heat balance among the three 

sections. 
   The value of the constants $, and C, may be guessed taking into account that 

the calculated flow velocity as well as the temperature distribution should be at 
least in the same order with the results of direct measurements. 

   Having adopted the devices described above it is possible to introduce the ef-

fects of pull by adding simply the corresponding terms to the left hand sides of 

(15)-(17), which are represented as El G, E16 and E17. 
 Thus we obtained
l               En— p,4CQZ(l,, —t,u)—{q+c(t„n—ta)}p,„,QZ(1—E)=0,(18) 

in which q is the sum of the heat of formation of 1 kg of glass and the heat 

required for heating up the evolved gases to glass temperature. This equation 

tells that the necessary additional amount of heat for operating the tank with the 

pull rate of Q is given by the sum of the heat for converting the batch to the 

glass of t,„ which is supplied after once passing through the molten glass, and 
the heat necessary for heating up the glass from t„, to ts. 
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   The equation (19) concerns with the heat balance in the compartment A, and 

is written as 

                     ht (3ZKL1                         Z--+16+(t„ztaX54ZKb+96k)
}.+q)- 

                                                        P,.QZ(1—$)(1—C)Xk                             E10—
/~2lc~38ZKb+96h 

  —PmCQZE(t.—t,0)=0 ,(19)         2 

where the sum of the second and third terms, being enclosed in the blacket C ], 

represents the heat quantity used for converting the batch to the glass of mean 

temperature of this compartment, and the fourth term the heat required to heat 
up the glass of this temperature to the temperature of the hot spot. 

   Finally the heat balance in 6-layer is given by 

E17—p,,QZC(1—$)(q+c(tm—ta)}=0,(20) 

in which the second term may be regarded as a correction factor which should 

be introduced to E17 in order to complete the heat balance in A, in 8-layer, and 

in the whole domain. 

   From hot spot to throat the temperature of glass decreases gradually from 

is to t,,,. Taking into account of this heat discharged from molten glass we get 

another three equations for the space extending from hot spot to bridge-wall. 

   Although we have made many bold assumptions and approximations we dare 

say that the above formulations including the temperatures at some important 

points and the flow velocities allow us to get some clear pictures of the correla-
tions between the flows of glass and of heat. 

   Solving (18)-(20) we get the values of t„t, X, t,,,, ht and e from which the 

mean velocity v.(z) may be worked out. 

   Once the average velocity was determined, it is not difficult to evaluate the 

velocities vr( x, z), v,( x, z) and va,( x, z) with the aid of the formulae which have 

been used for getting the average values. The temperature at any point may 

also be determined just in the same way. Hence we may conclude that the 

results of the above mathematical analyses open the door to the construction of 

the complete profile of the material and heat flow if we do not mind to take 

trouble of carrying out the complex and monotonous calculations. 

                     III. RESULTS OF ANALYSIS 

   Having illustrated the method of mathematical analysis we are coming to 

the stage to discuss the matter giving examples obtained by the numerical cal-

culations. The problem will be treated in following order : 

(a) Convection current without pull. 
    1) Material and heat transfer in half of the trank demarcated at the hot 

spot. 

    2) Combination of two parts to form complete patterns. 

(b ) Effect of charging batch and pulling molten glass. 
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                                                               Table 2. 
                Figures used for the calculation  K,,=9.25kcal/m2hr°C, K,,=3.10kcal/m2hr°C, k=61.2kcal/m.hr°C p,,,,,==.2.29 x103kg/m 

c=0.300kcal/kg°C t„=30.0°C Z=1.00m n=1.80 /3=3.00 

   XX=lmX=3mX=7mX=-3m 

   Other figures ___K,,,=3.31Ko=9.00Z-0.6m 
   usedkcal/m2hr°Ckcal/m2hr°C 

   t7/6,°C1900 1300 1400 1300 1400 1300 1400 1300 1400 1300 1900 1300a 

610, °C1545 1424 1473 1368 1956 1352 1455 1351 1555 1472 1445 13360 

17/0,°C1314 1220 1339 1244 1347 1251 1399 1253 1266 1222 1373 1271S 
tw,°C1348 1242 1364 1260 1359 1254 1380 1279 1353 1294 1359 1256CD 

   t,,,s,°C1322 1215 1376 1274 13761273 1366 1267 1307 1223 1337 1244 
w 

1,0r,,°C1319 1226 1324 1222 1320 1216 1352 1253 1285 1230 1338 1243 
v5. 

                  

.t   G„b-t,,,,°C52 58 36 4041 46 20 2147 56 41 44w 
                                                                                                     H 

          „i~   t-t,gl,,C 231 204 134 129 109 101 106 98 289 250 70 65~' 
x 

h1, 103kcal/hr,m 16.17 14.90 24.52 22.67 40.86 37.82 16.73 15.5 45.59 43.41 19.77 18.34ny 
a 

ht/X, 103kcal/hr.m2 16.17 14.90 8.18 7.56 5.84 5.41 5.58 5.17 15.19 14.46 6.59 6.12 
                                                                                                                                                                                    pi 

n 

Illy ,iO3kcal/hr.m 12.19 11.21 12.34 11.38 12.29 11.32 4.47 9.14 12.24 11.23 7.39 6.8`, 

11,,103kcal/hr.m 3.98 3.69 12.18 11.29 28.57 26.5 12.26 11.36 33.35 32.18 12.50 11.54 

hr,/X, 103kcal/hr.m2 3.98 3.69 9.06 3.76 3.08 3.79 4.09 3.79 11.12 10.73 4.17 3.85 

S, m0.10 0.12 0.10 0.13 0.10 0.12 0.12 0.14 0.10 0.12 0.09 0.11 

vr(Z).m/hr9.8 4.5 3.3 3.0 3.6 2.9 3.2 2.9 4.3 4.18 3.2 2.7 

h,0, 14: Heat discharged from the wall and the bottom respectively. h1/X, h,/X : Heat referred to unit surface area, input 
           from top surface and discharge from bottom. Heat quantities, ht, 11,,, and hr, are referred to a part having the width of lm.
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(a) Convection Current without Pull 
                1) Material and heat transfer in half of the tank demarcated at the hot 

           spot. In Table 2 are listed the figures obtained by changing X and other 
              constants. 

              (i) Influences of X on ht and temperature distribution. 
              As the heat supplied from the top surface is discharged from the side and 

           bottom walls, the increase of X will give rise to the decrease of the amount of 

            heat necessary for keeping the unit mass of glass at the same temperature, 
           since in our two direntional model the area of the wall remains constant while 

           that of the top surface increases in proportion to the increase of the bottom 
                area. 

              The heat input per unit area of the surface is represented by the product of 
           the vertical temperature gradient at the surface with the radiation conductivity, 

           and the increase of this value is reflected on the increase of the mean value of 
           the temperature gradient in this direction. The difference of the mean tempera-

            tures at the surface t,n8 and the bottom t decreases with increasing X, but 
            increases with the increasing overall heat transfer coefficients of refractories as 
           well as the decreasing radiation conductivity of glass. 

               The potential source of the deviation of t,,,(z), the average temperature refer-
           red to x direction between the hot spot and the wall, from a straight line is the heat 

            tranfer in horizontal direction, and the curve bends more and more with increas-
           ing heat discharge from the wall. Hence the surface temperature should not be 

           used simply as the criterion of the temperature of the points below the surface. 

              (ii) Temperature distribution and the flow velocity in 8-layer. 
              The difference between the temperatures at the top and bottom increases 

            with increasing amount of heat transferred by convection current. The tempera-
           ture gradient in 8-layer is determined partly by this amount, and partly by the 

           radiation conductivity of the glass. Thus, when the distance X or the overall 
           heat transfer coefficient of the refractory is small the part of heat transferred 

           by radiation conductivity will increase so that, in extreme case, the gradient at 
            the surface would become even negative. 

              The thickness of 8-layer is governed chiefly by the radiation conductivity of 

           glass as well as by Z and consequently the shearing stress in this layer varies 
            with these terms. 

              The flow velocity in this layer is very large compared with that in other 
            space, for example, when X= 3m and 1,,= 1400°C its mean value is 10m/hr which 
           is as large as the several times of the horizontal velocity component in other 
            space and is much larger than the mean vertical velocity at the hot spot, 0.5m/hr. 

               (iii) The term tm-1,,, and the velocity of convection current. 
               Influence of X. The term 1,n— tu, governs the driving force of convection 

           current which is determined by the balance between the heat discharged from the 
           wall and that carried by radiation and conduction. In Fig. 7 are shown the varia-

           tion of the horizontal velocity component of the surface current ve(Z), the heat 
            discharge from side wall h,,, and t,,— tw with increasing distance X, when tnn is 

           kept constant at 1400°C. 
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   The geometry of a tank furnace suggests that  hw would increase with in-

creasing X if the heat input from the top surface and heat discharge from the 

bottom, both referred to unit area, were remain constant, since h,,, is always 

equal to product of X and the difference of these two terms. This is indeed a 

factor which determines hw. 

   In actual case, however, the heat discharge from bottom mentioned above 

does not remain constant but instead changes with X. By the balance betweem 

the mutual influences of the heat transfer mechanisms the amount of heat dis-

charge from the bottom tends to increase with increasing X, which acts to 

reduce h,,. 

4.0t,„ 1400°C 
F 

(a) 

                                   ;~p                     1Y-`-r— 

4.5  

   S I(D) 

12.4X10' 

12.2010' 
a 

      1i  
2 34 5 6 7 

r (m) 
    Fig. 7 Variations of the horizontal velocity component of surface current vx(2), 

        temperature difference t,n—tu,, and heat discharged from the wall hu,, with 
        increasing X. Curves (a), (b), and (c) represent v(2), t,,—t,°, and hu, res-
        pectively. 

   Because of these two antagonistic factor which govern the change of h,00 with 

the variation of X a maximum appears in curve c, and in this case, at X=3. 

    As hw=ZK,,,(tl„—ta)=7_Kw(tm—ta)—`ZKw(tn—t,a), 
      and hence v,(Z) will decrease at first and then increase with further 

increase of X. 

   Influence of t,.. The figures in Table 2 suggest that (4,—t,0) decreases with 

increasing tm, which could be interpreted as the result of decreasing viscocity 

of glass. 

   Influence of Kw. In the last section it was pointed out that the grand aver-

age temperature in 8-layer, t,,,, determines the flow velocity in the space extend-

ing to the hot spot. If for instance, the heat transfer coefficient of the wall, K4, 

is reduced in order to make tw higher the d-layer becomes thicker, which tends 
to reduce the shearing stress. Consequently the flow velocity would not be re-

duced so much as expected from the reduction of (1,n,—t,). 

   Influence of Z. The reduction of the depth of the tank causes the increase 
of shearing stress in 8-layer as well as that of the other space, since this tends 

to decrease the thickness of 8-layer. This process, however, meets with the 
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changes which act in reverse direction, namely, the reduction of the path Z and 
increase of temperature difference  (t,„,—  t,u  ). Hence, in actual case the flow 

velocity would amount to no more than a little decrease. It is often understood 

that the flow velocity changes in direct proportion to Z3. This is ture for infini-

tely extending liquid, but ceases to hold for actual tank, for which the effects of 

the side wall can not be neglected. 

   The figures in the Table 2 indicate clearly that the changes brought about by 

any given disturbance are usually smaller than our first thought. This is the result 

of our arguments which are based on stationary states, in which a change given 
rise by a disturbance would soon be counterbalanced by another change so that 

the second, and the new stationary state does not differ seriously from the origi-

nal one. In fact a tank furnace may be regarded as an self controlling system. 
   2) Combination of two parts to form complete patterns. So far we have 

concerned only to the space between the wall and hot spot. Our discussion, 

however, would not be completed unless we take account of the correlation to 

the other side, since a change in one compartment should necessarily induce 

the disturbances in the other. Let us now discuss this problem. 

   Remembering that the mean temperatures, ts, at the hot spot in two com-

partments, one extending from the dog house to the hot spot, and the other from 
the hot spot to the bridge wall should be equal, and that the sum of X's is equal 

to the length of the furnace, L, it is possible to correlate the changes in both 

compartments. Fig. 8 shows the qualitative relation between the heat input 

referred to unit area ht/X and the temperature is of the hot spot in several 

combination of X and t„„. In the figure X's and t„a's are the lines of intersection 

of the plane is-ht/X with the curved surfaces which determine the condition of 

stationary state together with ts, ht/ X, and K,0. To every point on this plane 

there exsist the corresponding values of t„, and X given by the curves inter-

secting at this point. The position of the curves shifts to some degree with 

the change of I. The dotted curves in the figure represent the case when 

K,,,'>K,,, where the terms, X4, X3, etc , and t,, , t,,,,, represent the same constant 
values as those of solid lines, and they increase toward the direction of arrow 

(>), for instance X.,>X3 and t,,,>t,,,,,. As the scale of is and ht/X remains 
unchanged the dotted curve giving the same temperature t,, as before should 

be shifted upwards in conformity with the fact that the mean temperatures are 
lowered with increasing K,,, as long as the value ht/X be still kept constant. 

   To begin with let us imagine a case in which the mean temperatures in both 

sides of the hot spot are equal. Naturally, the distance between the walls will 

be halved by the hot spot having the distance X3, and the heat input a and the 
mean temperature t„, in both compartment are equal. If the heat input to one 

compartment is increased to b, the position of the hot spot will shift automatically 

from X3 to X2 nearer to the wall of the compartment as long as tmi is kept 

unchanged. This change also brings about the change of the heat input and the 

mean temperature in other compartment, which may be estimated as follows : 

   As t,,,, is kept constant t, varies along the curve t,„,,, which means that ts1 

is elevated to t,,4'. A line drawn parallel to abscissa cuts the curve X4 which is 
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fixed by  X4  =  L—  X5. This point determines the new heat input c<a to the second 

compartment as well as the average temperature t,,,,i', which is higher than t,,,,i. 

This is the result of the change of the heat balance due to the necessary increase 

of the heat input rate, ht/ X, in order to reduce the distance X and set up the 

new stationary state. 

x,> x, 
4^ XA X, 

x4 $4 x, X, X, , %` 

to'/4/./trni 

            It!/ :/ 

/ 

              4// 

o d a b 
                                   ht  

X o.<h 

    Fig. 8. Qualitative relation among the distance X, grand average temperature 
t,,, average temperature of the hot spot ts, and the heat input per unit area 

      of the top surface ht/X. Solid and dotted curves correspond to the compart-
      ments, in which the overall heat transfer coefficient is K,,,, and the larger one 

K,,', respectively. 2X3=X2+X4=X3 +X,'=total length of melting chamber L. 
X4>X4, 4,44 442, b>a, tsi'>ts2'. 

   It is interesting to know that the increase of heat input to one compartment 

brings out the elevation of the mean temperature of the other one to which the 
heat input rate is rather decreased. The reason of this apparently unreasonably 

trend may be illustrated as follows : 

   It may well be understood that a tank is divided into two parts by hot spot 

and the increase of the heat input rate to one compartment makes the hot spot 

to shift toward the wall to form new compartments, in which (4.— t.)'s could 

be in similar relation to curve (b) of Fig. 7 i.e., X's drop in both sides of a 

minimum point. In such a case it is possible that (tm—tin) in smaller compart-

ment is larger than that in larger one, which makes I,,,,,' higher than t„Li since 
tm=ts—(t,,,—tw), and is of both compartments should be the same. 

   Furthermore, if we increase the overall heat transfer coefficient of the wall 
from K. to K,,,' in one side of the hot spot the changes of its position and of 

the mean temperature of both compartments would occur. The relation between 
is and ht/X is shown by the solid and dotted curves, respectively, for the corn-
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partments having the walls of K,,, and K,,,'. If the heat input, a, is kept unchang-
ed as before in the compartment in which K,,, remains unchanged, the mean 

temperature in this part would be reduced to t,,,;' (symbol C)) and the hot spot 
would come nearer to the wall changing X from X3 to X3'. At the same time 

the corresponding values in other compartment having the wall of K,,,' referred 

to the dotted lines will be reduced, respectively, to d and t,,,2" (symbol o) which 

is lower than 1,,,;' increasing X from X3 to X4' and also is runs parallel with 

them. 

   3) Extending to three dimensional problems. Above calculations may be ex-
tended without difficulty to three dimensional problems. 

   The clue for this process is the fact that horizontal velocity is extending 

radially from the hot spot, and we may divide a tank into four sections introduc-

ing two imaginary vertical planes through the hot spot longitudinally and laterally. 

   The components in x, y, and z direction of the temperature and velocity in 

each compartment may be obtained if we remember the facts that t,,, is equal 

in each compartment, and the temperatures at the boundary surface of two 
compartment should be equal. 

   The results of the calculations indicated clearly that the change is generally 

smaller than the two dimensional case since the third, y-component shares the 

influence of the disturbance. 

        (b) Effect of Charging Batch and Pulling Molten Glass 

   We are now going to touch briefly upon the influence of pull. 
   Needless to say that a large amount of additional heat should be supplied in 

order to bring the batch to the molten glass of ts. Although we have excluded 

the part which does not concern in convection current the figures in Table 3 

show that the temperature difference becomes larger in the compartment between 

the dog house and the hot spot, while that in the compartment between the hot 

spot and the bridge wall becomes smaller. This means that a tank furnace may 

be divided into two, one the heat absorbing and the other the heat discharging 

sections. 

                                   Table 3. 
(1) Numerical values used. 

              X=3.00m, 1,,=1400°C, E=0.900, (=0.50, q=100 kcal/kg. 
                    80 x103 kg/6m.1m.24hr=555 kg/m2hr for Case A 

                PmQ_40 x 103 kg/6m .lm.24hr =278 kg/m-hr for Case B 
                 Other constants are same as those used in Table 2. 
                             (2) Results obtained. 

  In the tables the values for the compartments from dog house to hot spot and from hot 
   spot to bridge-wall are represented by the symbols D—S and S—B, respectively. 

tmp.°Ct,,, tmsI,n', t,ns-1,,b tnc—tw tras t,ob 

D— S1900 1555 1313 242 76 1323 1289 A 
B — S1400 1460 1355 105 22 1442 1332 

D— S1400 1510 1331 179 57 1353 1308 B 
S — B1400 1466 1351 115 25 1425 1331 
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       VelocityMean velocity of surface current 
 m/hr 

             ConvectionPullSum vr(Z) 

 AD- S6.8-0.46.4   S -B2.00.42.4 

D - S5.1-0.24.9 
 B S -B2.30.22.1 

Heat*Total heat Heat necessary 
103kcal/discharged to convert the 

   hr.mh,,, hb hb/X from the wall batch to the H(1-) 
                                       and the bottom. glass of 1400°C. 

h,, +hbH 

D - S 11.96 11.93 3.98 23.89284.1 28.41 
A S - B 12.46 12.32 4.11 24.78---

   D - S 12.15 12.38 4.03 24.53142.1 14.21 
 B 

S - B 12.45 12.56 4.10 25.01-- 

    Heat* Heat necessary Heat given out Total heat 
103kcal/ to rise the by pull current input from** 

   hr.m temperature of due to the the surface. h,,,--Fhb+H 
             pulled glass temperature lit 

t776-+ts.change t, -•t,,,. 

D-512.67-64.97320.66 A 
S - B-7.3417.44-

 D - S4.75-43.39171.38 B 
S - B-4.1720.84-

   * Heat quantities are referred to a part having the width of lm . 
  ** Heat lost from superstructure is excluded . 

   The melting of batch and a part of refining are considered to occur in the 

first section, while the conditioning and a part of refining are shared in the 

second one. 
   Unless a considerable amount of additional heat is supplied into the first 

section the hot spot would move toward the bridge wall in order to receive more 

heat from the increased surface area, this trend is not to be recommended, since 

the results of the model experiments have revealed that the flow will be strongly 

influenced by the change of pull as soon as the hot spot comes nearer to the 

bridge wall than 1/3 of the width of tank. It is therefore very important to 
keep the hot spot at a proper position. 

   For melting glass the space between the dog house and the hot spot may be 

regarded as the factor determining, so to speak, the melting area of the tank. 

   Before concluding the paragraph we are going to present some schematical 

drawing in Fig. 9, which would help to understand the effects of several factors 
concerning the heat and the material transfer in a tank furnace. 

   The drawings show how the terms indicated with arrows vary with the 

increase of the term inscribed in the center circle if the terms above each figure 
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    are kept constant. The terms which increase with the increase of the term in 
    the circle are shown in the upper half, while those which vary in reverse direc-

    tion are shown in the lower half of the figure. Furthermore, the inclination of 

    the arrows indicate qualitatively the degree of the change, so that a nearly vertical 

    arrow suggests that the change is the largest, while a horizontal arrow suggests 

    that practically no change occurs. For example, the drawing (a) shows that ht 

    and hb will increase with the increase of X, but h,0 will increase or decrease as 

    the case may be. 

Z. kr Kw, Kb. Q = const. 

(a) tm ^ const.(b) X ^'const. 

Iio/ hb ht\ ht 
     OSthwt.s-tmg 

         o-'3'-.hw hb"'\hbvx,vz 

       oo 
A Y3Xv~'x'3                   t=tw 

     mX°3'.'~vxS, 

              zih"kt ` X`-3                  tiY3t
ms-tmb v - X N. 

V rg / hr \tm-tw 

1I 

Kw, Kb, X, tm, Q ^ const. 

               (c) k ^ const.(d) Z ;conat. 

        \httm, tmb   a
b/tm/ 

                    u 

           cLia,v..tmsAmb 
   Ha di ant                --------absorP- - - - 

                    btivityhb.,.. 
   mhbthw     O

tm-tw\ / 
l vx.vz 

                                                    i 

Z, k, Kw, Kb, tm, X ̂  conet. 

                    (e) doghouse-spring(f) spring-bridge-wall 

mk1 

\ 

                                t otma'tbl 
F.1 vV 

      atmxrz )-+—hwh
b_-       ---- Q - . — - 4---

    mIm-' wvz.,z 

0%whbti-t5h. 
                     9u               A 

                     Fig. 9. Correlation among the several factors concerning 
                      the heat and the material transfer in a tank furnace. 
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                     LIST OF NOMENCLATURES 

c :  Specifiic heat of glass, kcal/kg. 

d : Thickness of the wall, m. 

E15, E10, E17 : Left hand side of the equations (15), (16) and (17). 

f : Constant in the equation (7). 
g : Acceleration of gravity, m/hr2. 
H : Heat necessary to convert the batch to the molten glass of tm, kcal/hr. 

hb : Heat discharged from the bottom of the tank, kcal/hr. 

h : The part of the heat loss from wall which was transferred by radiation, 

  kcal/hr 
ht : Total heat input from the surface of molten glass beetween the hot spot and 

   the wall, kcal/hr. 
•: Heat discharged from the wall, kcal/hr. 

hxl, hx2, h21, 12,2 : Heat transferred by radiation conductivity through the corre-

   sponding boundary surface of the domain shown in Fig. 4, kcal/hr. 
k : Radiation conductivity after Kellett, kcal/hr.m. °C. 

Ka : Heat transfer coefficient between the outer surface of wall and the external 

    air, kcal/hr.m2. °C. 

Kb, Kw, Kw' : Overall heat transfer coefficients of the bottom and the wall respec-

   tively, kcal/hr.m2. °C. 
L : Length of the melting chamber, m. 

n : Constant in the experimental formula (9). 

p(x,z): Pressure. 

q : The total sum of the heat of formation of glass and the heat necessary for 
  heating up the evolved gases, kcal/kg. 

Q : Pull rate referred to an unit cross sectional area of melting chamber, m3/m2.hr. 

t( x,z) : Temperature as a function of x and z, °C. 

to : Temperature of the external air, °C. 

tm : Grand average temperature of the glass between the hot spot and the wall, °C. 

t„L(z) : Average temperature referred to x direction between hot spot and wall, 

  which should be represented as a function of z, °C. 

t,nb, tms : Average temperature of bottom t„L(0) and surface t„z(Z), °C. 

is : Average temperature at the hot spot, °C. 

ts(z) : Temperature at the hot spot as a function of z, °C. 
t,u : Grand average temperature in 6-layer, °C. 

two : Average temperature of the outer surface of wall, °C. 
tw(z) : Average temperature as a function of z in 8-layer, °C. 
taw, tws : Average temperature of bottom 1,0(0) and surface tw(Z) in 8-layer, °C. 

to : Reference temperature for expressing the density of glass, °C. 
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 V  : Coefficient with respect to the velocity of convection current introduced in the 

   equation (8), 1/m2.hr. °C. 

v,,,(x, z) : Flow velocity in 8-layer as a function of x and z, m/hr. 

vw(z) : Average vertical flow velocity in 8-layer as a function of z, m/hr. 

v, : Grand average of flow velocity in 8-layer, m/hr. 

v2( x, z) : Horizontal component of flow velocity as a function of x and z, m/hr. 
vz(z) : Average of horizontal velocity componet referred to x direction as a func-

  tion of z, m/hr. 

Cvx), Cv,) : Grand average of horizontal and vertical velocity components in the 
  domain shown in Fig. 4 respectively, rn/hr. 

v,( x, z) : Vertical component of flow velocity as a function of x and z, m/hr. 

x : Horizontal coordinate, m. 

X: Distance between hot spot and wall, m. 

z : Vertical coordinate, m. 

Z: Depth of melting chamber, m. 

(3 : Constant as a correction factor for the simplifying procedure used in the 
  equation (13). 

r : Coefficient of volume expansion, 1/°C. 
8 : Thickness of 8-layer, m. 

E : Ratio of the average value of the temperature difference in horizontal direction 

  in the section A to (tm—lw). 

S, r : Constants used for proportioning the heat required for melting the batch to 
    the glass of tm °C. 

J.: Coefficient of thermal conductivity of the wall, kcal/hr.m. °C. 

p : Coefficient of viscosity of the glass at the grand average temperature t„z, 
   kg/m.hr. 

pu, : Coefficient of viscosity of the glass at the average temperature of 8-layer 
1w, kg/m.hr. 

n : Constant in the equation (6). 

p(x, z) : Density of glass as a function of x and z, kg/m3. 

pm: Density of glass at the grand average temperature, kg/ms. 

po : Density of glass at the reference temperature t, kg/m3. 
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