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    The theory of coagulation of hydrophobic sols has been extended to include the case of 
 collisions between particles consisting of more than two primary particles. It has been 

 found that under certain conditions the stability factor, defined by the ratio of the rates 
 of rapid and slow coagulations, could be related to the free energy of interaction between 

 particles by the same expression as proposed by Fuchs for the case of homogeneous co-
 agulation. By using this relation, a theory has been developed relating the stability factor 

 of a sol to the surface potential and the ionic strength of the medium. Combining this 
 theory with a proposed equation relating the Stern potential of the particles and the surface 

 active agent concentration, which has been obtained by using the Stern and the Debye-
 Hiickel theories, a final equation has been obtained relating the stability factor to the 

 surface active agent concentration. 

                      I. GENERAL INTRODUCTION 

   Many kinds of soap like materials have been found in natural products and 
used for a long time as surface active agents. For example, the detergent action 
of Sapindus is ascribed to the so called saponins contained in it, which have strong 
foaming properties, and the action of Algin as textile chemicals to the polyuronic 
acids (alginic acids) in it, the alkali salts of which behave like the usual soaps. In 
view of the fact that many surface active agents, including the soaps of fatty acids, 
are being manufactured from the natural sources as well as by organic syntheses 
and play a major part in many processes of great technical importance, e. g. in de-
tergency°, emulsification", the separation of minerals by froth flotation',", etc., the 
fundamental study of the physico-chemical properties of these substances is one of 
the most important problems for the practical application of surface active agents. 
Moreover, this kind of work is of immense biological importance as well, since it 
provides with much information about the surfaces or interfaces which exist, as the 
seats of biological reactions, around every kinds of cells in the plant or animal bod-
ies, around the nuclei, fibrils, etc., and on both sides of cell membranes. 

   Although a large amount of literature has been devoted to the description of 
experiments on the action of surface active agents ° ", fundamental treatments of 
the reactions occurring at the interface are rare. The present work was undertaken 
in order to study theoretically and experimentally the manner in which surface 
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active agents modify the electrical double layer of charged particles, and thus bring 

about conditions leading to coagulation, flotation, solubilisation, etc. In general, it 

is found that these agents decrease the charge of the sol particles at low concentra-

tions, leading to coagulation, and reverse it at higher concentrations, leading to stable 

sol ; an important factor is the adsorption of the surface active agent at the inter-
face. 

   It has been established by Hamaker" that the stability of hydrophobic sols is 

determined by the free energy of interaction between the particles ; this energy of 

interaction can be divided into two parts, i. e. the electrical repulsion and the van der 

Waals attraction. As the latter can be considered essentially constant for a given 

system, the major interest lies in the repulsive energy which is intimately connected 

with the double layer structure and therefore with sol stability. Although a quan-

titative theory has been given to describe the influence of the double layer thickness 

at constant surface potential on sol stability, a situation which occurs when indif-

ferent inorganic electrolytes are added to sols8'°', no quantitative theory has, so far, 

been derived to explain coagulation due to changes of potential caused by adsorption. 

In Part 1 a theoretical treatment of this problem is given, leading to a relationship 

between the stability factor of the sol and the concentration of added surface active 

agent. In Part 2 an experimental verification of the theory is described. 

   The surface chosen for the experimental studies was silver iodide, a well defined 

crystalline material, on which a number of fundamental double layer studies have 

been carried out°"°' ; this substance also possesses the advantage of forming stable 
sols. Moreover, the material behaves as a reversible electrode, and hence the surface 

potential of the particles has a thermodynamic significance. 
   Although the influence on stability of a number of large organic ions has been 

studied, most of this work has been purely qualitative, and unsystematic, in nature 

and does not allow any detailed interpretation to be made in terms of modern the-

ories of colloid stability. Recently, Rastogii1'`=' has performed a systematic study 

of the effect of cationic surface active agents on negatively charged silver iodide 

sols and obtained a series of results which support the basic idea of sensitised 

coagulation and the importance of adsorption in this process. 

   In the present work the stability and electrokinetic behaviour of positively charg-
ed silver iodide sols, at pAg 3, in the presence of anionic surface active agents, 

have been studied. Owing to the low concentration of surface active agents required 

to cause coagulation, the ionic strength in the cogulation range remains virtually 
constant, allowing this variable to be maintained constant in the theoretical treatment. 

Thus an analytical solution of the equations is possible and a simplification intro-

duced into the problem of verifying the theory experimentally. 

   In Part 1 an extended theory is also given which covers the general case of 

changing ionic strength and potential. A good example of this case is found in the 
coagulation of sols, protected by surface active ions, on addition of inorganic electro-

lytes ; the experimental details are given in Part 3. In this case the counter ions 

may decrease the surface potential by binding to the head groups, and at the same 

time with increasing concentration of inorganic electrolyte the ionic strength may 
increase sufficiently to cause a large decrease in the repulsive potential energy . 

(159)



                                      Akira WATANABE 

These effects may occur separately, or simultaneously, according to the nature of 
the added counter ion. 

   It is interesting to observe that many materials existing in biological systems, 

 e.  g. cell surfaces, contain carboxyl, phosphate or sulphate groupings13J. As it was 

found that the surface of silver iodide particles protected by surface active ions had 

essentially the properties of the head group, we were able to construct various 
surfaces, which, to some extent, formed interesting model surfaces of biological 

systems ; these allowed the specific effects of counter ions on model surfaces to be 

investigated at will. 

   An important theoretical aspect of this system is that such a protected surface 

can be considered as an extension of the concept of the ideal polarised electrodel<,15 

thus giving a basis for the study of the specific adsorbability of counter ions. This 

is discussed in detail in Part 4, together with the proposed model of the double layer 

structure in the presence of surface active agents. 

   The solubility of the salt consisting of the counter ion and the surface active 

ion should be a measure of the strength of the interaction between them. Solubility 

products were derived from measurements of the changes in turbidity which occur-
red in surface active agent solutions on the addition of various concentrations of 

inorganic cations (Part 5). This situation, which can lead to sol formation or pre-

cipitation, is complicated by the fact that in some regions nucleation, crystal growth 

and coagulation appear to occur simultaneously. However, an attempt has been 

made to identify these various processes and to analyse the kinetics of the overall 

reaction. 

   Some experiments have also been carried out on the formation of silver iodide 

sols in the presence of surface active anions. The crystal formation is modified by 

the fact that the adsorption of surface active agents occurs, leading in certain 

regions to neutralisation of the charge, and thus to coagulation. At higher concen-

trations of surface active agents, extensive adsorpsion occurs leading to reversal of 

charge and to stable sol formation. As in the above case, detailed analysis of the 

process is complicated by these factors. 

           II. THE THEORY OF STABILITY OF HYDROPHOBIC SOLS 
               IN THE PRESENCE OF SURFACE ACTIVE AGENTS 

   The stability of hydrophobic sols is mainly governed by the magnitude of the 

potential energy of interaction between the double layers of approaching particles. 
If there is no energy barrier, every collision between particles leads to adhesion 

(rapid coagulation), while, if there is an energy barrier, only a fraction of the col-
lisions are effective in causing adhesion (slow coagulation) 10'. 

   The first attempt to give a mathematical expression for the relationship between 

the stability and the potential energy was made by Fuchs'', and has been developed 

by Reerink and Overbeek°' to give a quantitative theory for the relation between 
the stability and ionic strength of a sol. 

   It has been found that the addition of various complex organic ions to a hydro-

phobic sol also causes coagulation'". This process is characterised by the fact that 
it occurs at very low concentrations, and at higher concentrations stabilisation is 
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observed. As this phenomenon has been found to be intimately related to the change 

in particle charge 1e' due to adsorption of these ions on the particle surface, it was 

essential to extend the theory to cover the case of changing surface potentials of 

particles. 

   1. General Treatment of the Stability Factor 

   ( i) The Relation between the Stability Factor and Free Energy of 
         Interaction 

   According to Smoluchowski16', coagulation is in principle a diffusion controlled 

process. If there is an interaction between sol particles, the process can be described 
by an extended partial differential equation of diffusion in which is included a term 

of the field of force"), viz. 

       a N/a t=div [g' grad N— (K/p') N](1) 

where N is the number of particles per cm3, D' and p' the relative diffusion and 

friction coefficients, respectively, and K the force vector acting between the parti-

cles. 

   Although equation (1) has not yet been solved completely'", the solution for the 

stationary state, derived by Fuchs"' and Debye2", is sufficiently useful to analyse 

the phenomena taking place. 

   As the left hand side of equation (1) is independent of time for this case, the 
term in the bracket on the right hand side must be a time independent vector, i. e. 

O' grad N— (K/ p') N=j(2) 

According to the divergence theorem of Gaul;, j must satisfy the following relation, 

JJ1divjdv= f[j,~dS=J(3) 
  vS 

where v is a volume surrounded by a closed surface S, J the total flux entering the 

volume through S, and ju the outward normal component of j. 

   As the interaction between particles is due to the electrical repulsion and the 

van der Waals attraction, see later, both acting along the line of the centres, we 
can put 

K=—gradV(4) 

where V is the potential energy of interaction between two approaching particles. 

Substituting equation (4) in equation (2) and using the Einstein formula"' for dif-
fusion coefficient, 

p'=3nva—kT/D'(5) 

we obtain 

j— exp (—V/kT) grad [Nexp (V/kT)] (6 ) 

   Here a is the particle radius, )7 the viscosity of the medium, k the Boltzmann 

constant and T the absolute temperature. 

   It is clear that the system has a spherical symmetry with reference to an arbi-
trarily chosen particle. Let us, therefore, take the origin of the coordinate, r, at 

the centre of this particle. By substituting equation (3), we obtain* 

J is the modulus of the vector J. 
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 J-471- r2 -D' exp (—V/kT) (d/dr) [Nexp (V/kT)] 
or 

         J (1/r2) exp (V/kT) =47r .g'(d/dr) [Nexp (V/kT)] 

In integrating the both sides of this equation, we can take the following boundary 

conditions : 
For r>2a, V(r)>—oo and for a r—>oo, V(r)--.0 and N>N0, 

where Nb is the number of particles per cm' in the bulk phase. Hence, we obtain10'22' 

         J (1/r2) exp (V/kT) dr= [47r D' Nexp(V/kT)Z=4or D' Nb 

   Up to the present the centre particle has been considered to be stationary. The 

Brownian motion of this particle can be taken into account by assuming the relative 

diffusion coefficient .D' as the sum of the ordinary diffusion coefficients of two 

particles, i. e. D'=2 0. By substituting this value, we obtain the following funda-
mental equation'7' : 

                        — 

       J=87r0).7\A(1/r2) exp (V/kT) dr(7 ) 
                                   2a 

   If V=0 for all r values, the particles undergo free diffusion (rapid coagulation) 

and the value of J under this condition, Jr, is given by 

    Jr == 8,.r ̀n RN?,(8 ) 

where R=2a is the distance of closest approach of the centres, see later. 

   According to Fick's law of diffusion applied to the surface of reaction, r= R, the 

change in the number of particles with time due to collision with the central particle 

is proportional to the flux, J, if other conditions are the same. Therefore, the ratio 

Jr/J gives the rate of rapid coagulation relative to slow coagulation, and is termed 
the stability factor, W. From equations (7) and (8), W is calculated as 

W=RT (1/r2) exp (V/kT) dr= 2exp [V(u)/kT] du/(u-7 2)2 (9 ) 
a where u-=Ho/a, H0 being the nearest distance between two particle surfaces. 

(ii) Rapid Coagulation 

   This problem is important in the sense that a complete solution of the diffusion 

equation can be obtained'"), which reads 

a N/a t = div (.a' grad N)(10) 

As D' can be assumed constant, this equation becomes 

aN/at= 172(10A) 

The initial and the boundary conditions are given by 

N (r, 0) =N0 for t=0 and r>0, 

N (r, t)= 0 for t>0 and r=2a 

  and N (r, t)— Nb for t>0 and r>co, 

where spherical symmetry is assumed. The solution of equation (10A) satisfying 

these conditions is29,25' 

(162)



 Physico-chemical Studies on Surface Active Agents. (I) 

N—Nb 41— (2a/r) erfc [(r-2a)/21/9J' t ]}(11) 

whereerfc (x) =1-- erf (x) = (2/1/k) exp (—z') dz. 

2 

   The flux at the reaction surface, r=2a, is easily calculated from equation (11), 
as 

jr-47r R ' Nb (1;-2a/1/n t) 
= 87r R p N5 (1+2a/1/2 r JI t).(12) 

It is clear that Jr approaches equation (8) in the case of the stationary state, i. e. 
t>>a2/7r D. 

   The rate of disappearance of particles in the stationary state is obtained by 
multiplying the flux by N5, as 

—dN/dt=8&rR .9 Nb2.(13) 

This means that rapid coagulation is essentially a bimolecular reaction with a reac-
tion rate constant ko, defined by 

ko=87r g R=8kT/377(13A) 

   (iii) Extension to the Case of Collisions between Higher Order Particles 

   Although Smoluchowski has extended his theory of rapid coagulation to include 
coagulations of different kinds of particles16', this does not cover the case of the 
slow coagulation. Hence, it is not clear whether we can use equation (9) for the 
stability factor of sols containing aggregates of more than two particles. It is the 

purpose of this section to clarify this problem deriving the formal extension of the 
theory. 

   Equation (1) can be extended to include the collision between i —and k — fold 

particles, as 

a Nk/a t =div [D'k grad N5— (K'k/p`k) Nk](14) 

where the centre particle is supposed to be i—fold, and 9I'k, p'k, Nk and K' are 
the formal extensions of .q', p', N and K. In exactly the same way, the flux J'k is 
obtained, as 

                          — 

         J'5=47rg'5 N"-I(1/r2) exp (V15/kT)dr,(15) 
Rik 

where RI' and V'k are the mutual radius of reaction and the potential energy of 
the two kinds of particles, respectively. 

   In the case of rapid coagulation (V'k=0), the flux J'"'r is given by 

J"k r=47r .D"k Rik Nk(16) 

   The increase in Nk with time is the algebraic sum of the increase by collisions 

between i —and j— fold particles, where i + j = k, and the decrease by collisions of 
k— fold particles with any other particles. The variation of N5 is, therefore, given 

by 
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 dNk/dt= (1/2)LN` J`J-NkLJki 
i+J=kJ=1 

(1/2) EN` NJ 47 g`J R`J I`J--NkE47 mkJ RkJ NJ IkJ (17) 
       -J=kJ=1 

where I`J=IJ`=1' Rif f (1/r°) exp (V`J/kT) dr. 

   Now let us assume, following Smoluchowski, that 

D`J R`J= (9)1+gJ) (a`+a-I) 
_ 9) a [(1/a`) + (1/aJ)] (a`;-a-1) =4 g a-2 R, (18) 

when a` and aJ are not widely different.",-',ze' Here a1 and aJ are radii of the i-
and j - fold particles, respectively, and R is the radius of reaction between two pri-

mary particles. Equation (17) therefore becomes on substitution for 0"R" 

dNk/dt=47 g R(EN` NJ I`J-2 N'ENJ I°iJ)(17A) 
1+J=kJ=1 

Hence, the rate of change in the total number of particles is obtained, as 

                                        00 00 

(d/dt)(EN1)=-47gRE EN' Ni(19) 
k=11=1 j=1 

In equation (18) an assumption has been made, i. e. a`=aJ. We are, therefore, justi-
fied in assuming, under the same condition, that 

/.0-P1=:1 (1/r2) exp (V/kT) dr-=1/W, 

a when substitution of this value in equation (19) gives 

(d/dt) ( ENk) = - (4,z9JR/W) (ENk ). 
k=1k=1 

This differential equation is easily solved under the initial condition, viz. 

~Nk -Nb for t =0, 
k=1 

the solution being 

     j1Nk==Nb/[1(t/Tt,)](20) 
              kL= 

where 

To-=W/(47 R Nb)(21) 

Here, To- has the dimension of time and can be called the extended time of coagu-

lation; this gives the time when the total number of particles is halved. 

   The stability factor, W, has the same form as equation (9), because 
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(d/dt) (EN")v=o 
W—'-----------------=R (1/r2) exp (V/kT) dr. (9A) 

(d/dt)(LN") ' 
k=1 

We can, therefore, conclude that the stability factor W in the form of equation (9) 

can be used also in the case of coagulation between higher order particles under 

the conditions given by equations (18). 

   In the case of particles of a high order, the summation in i and j in equation 

(9A) can be replaced by integration, and hence, by using the mean value theorem 
of integration, we obtain the more rigorous representation for W, viz. 

         W= N1 di•dj f IrJN1N-1di•dj-= 1/I:" 
1,j=1 l,J=1 

where l< E, 77 co. 

   Finally, the number of k -- fold particles at a time t is obtained from equations 

(17A) and (20)10', as 

    NkNo(t/Tcr)k 1(22)          [  

• 

                 1-r(t/T cr) ]k+ ~.. 

where k— 1  and k =1 are the power indices. 

   2. The Stability Factor as a Function of Electrical Iotential 

(i) The Total Potential Energy of Interaction, V(u) 
   To obtain the explicit formula for the stability factor, W, it is necessary to as-

sume a proper relation between the potential energy of interaction, V, and the 

distance between two approaching particles, r, or u. As this energy is the sum of 
the attractive, V,1(u), and the repulsive, VR(u), energies, we have 

V(u)=Va(u)-;-V,1(u).(23) 

   It is generally accepted that there exist attractive forces of the van der Waals 

type between colloid particles", although some authors have objections"". We shall 

assume, following Hamakera0', that the potential energy of attraction, V,1(u), between 

two equal spherical particles is expressed by the following equation : 

VA(u) --A/12u,(24) 

where A is the van der Waals constant. 

   The potential energy of repulsion, VR(u), has various forms according to the 
conditions. For the experimental conditions to be described in Part 2, the radius of 

the sol particles is 100 A and the double layer thickness 1/K —81.6 A, whence T— ea 
= 1.23. In such cases, VR(u) has a simple approximate expression", viz. 

     VR(u) =ua-2—exp(--Tu).(25) 
where E is the dielectric constant of the medium, and a part of the potential drop 

in the double layer which is most important from the view-point of stability. In 

the case of hydrophobic sols, such as silver iodide, this potential will almost certainly 

be the Stern potential, 1kh-, rather than the potential of the physical surface, ,,fro, 
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whereas in the case of emulsion particles it may well be the surface potential, */*oa"; 

for the sake of generality the potential 0 is not specified in detail in this section. 

   The more exact expression for VR(u) is obtained by multiplying the right hand 

side of equation (25) by a factor which is dependent on 7 and u87. As this factor 

is always smaller than unity, the neglection of this factor means a slight overesti-

mation of VR(u). However, since the factor is always close to unity for small 

values of 7, this will not be large enough for the discussions to fail, and hence we 

have preferred to use the simple equation (25) in order to make analytical treat-

ments of our problem possible. 

   The total potential energy of interaction, V(u), is now obtained by substituting 

equations (24) and (25) in equation (23), as 

V(u)=u+2------exp(-7u)-12 tic(26) 

   The theoretical curves of V/kT vs. u in Fig. 1 are obtained for particles of 

radius 100 A and T=1.23 for various values of i)r. It is noticed that all the curves 

have well defined maxima at u values in the region between 0.1 and 0.2. 

80 
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                             Fig. 1 Theoretical V/kT vs. u curves 

T 1.23, a = 10-'cm 

   (ii) Calculation of the Stability Factor 

   The stability factor, W, is obtained by substituting equation (26) into equation 

(9), viz. 

          W=2 p              exi8a °' • exp (—Tu)A ]  du   u+2 kT12 u k T (u--2)'-•(27) 

In Fig. 2 values of W obtained by graphical integration for a=100A and 7=1.23 

are plotted against 0. However, in order to extend the theoretical treatment of the 

problem further it is necessary to obtain an analytical expression of W. This can 
be done only approximately by using the device of Reerink and Overbeelc°' by writ-

ing equation (9) in a form : - 
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W2 Sex(V/hT) du(28) 
(24,n ;- 2) 2exp 

0 This implies that the value of u, um, giving the maximum V, V„t, does not alter 

widely for different values of 0]r, and that the value of V,n is a reasonable estimate 

of the stability, vide Fig. 1. Since dV/du=0 for u==um, the Taylor expansion of 

V(u) in the neighbourhood of V— V,n gives the following series : 

V= V,n+ V." (4u)2/2 =;-

Substitution of this formula in equation (28) with neglect of higher terms gives 

w_ 2 exp (V,n/kT) exp [V,n" (du) 2/2 hT] du                 (u .+2)2 

2 exp (V,n/kT)  ( 
exp [—p"2 (d u)2] d (4 u) (urn;-2)2 

n,n 

where p"=1/-V"/2 kT . Replacing the lower limit of integration by —cc does 
not introduce serious errors, so we may write 

W= [2177-r exp (V,n/kT)(29) 
or 

                           (167)
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In W=ln 2V7r ---1n p"-21n (um ,-2) +Vr/kT.(29A) 

   Now, since it is clear from Fig. 1 that um has normally a numerical value of 
the order of 0.1 to 0.2, the value of T u is an order of magnitude smaller than 1 
under the experimental condition to be given in Part 2, i. e. T =1.23. Hence, we can 
introduce the following approximation in equaton (26) : 

             exp (-Tu)=1-Tu, 

and obtain by differentiation an equation, viz. 

dV7a`02(1-7u)Ea0, A 
duu 2 (u-; 2)9 12 u9 

Since V=V,n and dV/du-0 for u=u,n, we obtain 

Urn+ 2 C' p2(30) 
Um 

where C9=128a (1+2T)/A(30A) 

and since um must always be positive, it depends on the sign of i/i which root of 
equation (30) is taken. Hence we obtain the following expressions for um : 

=2/(Cp--1) for Cp>1 

orum- --2/(C 1) for Cp<--1(31) 

where the positive root of equation (30A) is taken for the value of C. The condi-

tions of equations (31) are satisfied either by p>5 or by p<-5 mV, under the 
conditions of a=100A, T=1.23, 6=80 and A=10-" erg. 

   The value of V at the maximum, V,n, is given by 

         V„apZ(1---T um)A  u vn±2 12 um 

whence by substitution for u„,,we find 

     V24(\ 12 T_2 Cp+ 1)(32) 
The second derivative of V with respect to u is given by 

d-V A r C2pz_____  1  
du° 6 (u+2)9 u” 

and its value at the maximum is given by 

V,n"-_--A(Cp-1)4/48Cp for Cp>1 
or=+A(Cp+1)4/48Cp for Cp<--1(33) 

We have therefore 

        p>,(Cp-1)2/ Afor C1 4y6C0kTp' 

(Cp+1)2 J A 0r
46 C p k Tfor C<- 1(33A) 

   The expression of In W as a function of p is now obtained by substituting 
equations (31), (32) and (33A) in equation (29A), as 
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lnW=--ACZBy--2C0)^2ln C0+B for C0>1 24k1+2T 

      ( or—24k` \1.+ 2 T2C0)2In ( CB)+B for C0;-1, (34) 
where 

        B= (1/2) In (247T kT) -;- (A/24 kT) — (1/2) In A (35) 

andC=[12ea (1;-2 TVA] if'(36) 

   The two expressions of In W corresponding to the conditions C 0>1 and C p , 
—1 are symmetrical with respect to 0, and it is the absolute magnitude of 0 which 

is effective in coagulation processes ; this is already clear from the equation (27) 

where 0 comes in a quadratic form. At the same time it is important to point out 

here that the expression in equation (34) is valid only in the range of C 0 greater 

than 1 or smaller than 1, or 0>5 or 0 —5 mV, cf. the discussions in Part 3. We 

shall, therefore, restrict the following discussions only to the case of C 0 greater 

than 1. 

   The quantities which can affect W as a function of 0 are particle radius, ionic 

strength, dielectric constant of the medium, temperature and the value which is 

taken for the van der Waals constant. In Fig. 2 are given the curves of log W vs. 

0, calculated from equation (34) for a=100 A, for three values of A at T=1.23 and 

two values of A at T = 3.00. It can be seen that the curves are almost linear, and 

at the same time parallel to each others, for high values of 0. Comparing these 
curves with those obtained by graphical integration of equation (27), or with the 

curve calculated from the exact expression using the tabulated values for interaction 

at constant potential", it is concluded that, although equation (34) slightly overesti-

mates the stability factor, it reproduces accurately the shape of the log W vs. 0 

curve. 

   It can be seen from Fig. 2 that increasing the ionic strength appears to broaden 
the rapid coagulation range, i. e. coagulation commences at a higher value of 0 for 

the higher T, and at constant 0 and T the effect of increasing A is to decrease 

stability. The effect of increasing the particle radius is to increase stability at the 

same 0, and the particles of small radius is very unstable even at low T, and require 

very high values of 0 for stable sols to be formed, vide Verwey and Overbeeke'. 

It is also expected that decrease in dielectric constant will decrease stability by 
reducing the electrostatic repulsion, vide equation (27), however, situations will be 

complicated by the fact that effects other than potential may have to be considered 

in the case of non-aqueous dispersions"", say lyophobic character, etc. 

   3. The Stern Potential as a Function of Surface Active Agent Concentration 

(i) The Charge Distribution in the Double Layer 
   According to the basic principle of electrostatics, the potential distribution in 

space surrounding a closed surface is determined only by the surface charge (Gaul 
theorem). This means that the potential distribution in the diffuse double layer is 

defined only by the Stern potential, 0J, and is independent of the difference in charge 

distribution in layers closer to the surface than this plane, if other conditions, such 
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as the ionic strength, dielectric constant etc., are the same. We can conclude, there-
fore, that for sol particles like silver iodide the potential which is important from 

the point of view of stability is the Stern potential, Oa, rather than the surface po-

tential, 00, as far as we restrict our discussions to the cases where the mutual per-

turbation of the double layers of two approaching charged surfaces is negligible, 

vide Part 2. 

   The electrical double layer at the surface of a sol particle consists of the so 

called Stern plane, with potential OA* and charge density a- , and the Gouy diffuse 

double layer, with total charge of the solution column of unit cross section cc*. If 
the charge density of the particle surface is o-o, the electroneutrality of the system 

is expressed by the following equation : 

—0-0—.0-5* 0-G*(37)•  

where the quantities with asterisks refer to the original sol before addition of surface 

active agents. On addition of surface active agent molecules to the system, these 

molecules will be adsorbed in the Stern plane due to their high free energy of 

adsorption, thus altering the Stern potential to a value 03 and the charge distributions 

in the double layer to o-A and 0-G.It will be shown in Part 2 that (To is defined by 

the initial conditions of the sol, e. g. for a silver iodide sol by pAg, and does not 

change on adsorption of surface active ions, within the concentration range of major 
interest, whence 

—Gro=Cr 0-c(38) 

From equations (37) and (38) we obtain the increasein charge density in the Stern 

plane, d a-,s, due to adsorption, as 

d cro = a-o — cra* = 0-o* — Qa(39) 

On the other hand, this quantity is related to the number of surface active agent 
molecules adsorbed per cm', n, by an equation : 

d as = z n e(40) 

where z is the valency of the surface active ion, including the sign, and e the 

fundamental electronic charge. 

   Now from the Stern equation of adsorption, the following relation holds'" : 

1 (1/x) exp (4 G/kT)(41) 

where d G is the electrochemical free energy of adsorption, N, the number of sites 

available per cm' and x the mole fraction of the surface active agent. This equation 

is valid when the particle radius is large in relation to the size of the adsorbing 

molecule (approximation of plane surface) and there is no lateral interaction between 

the adsorbing molecules. Moreover, for high values of surface active agent concen-

trations second layer adsorption starts to take place and another term must be add-

ed to the right hand side of the equation, vide Part 2. It will be assumed in the 

following that a G will remain constant over the whole concentration range ; how-

ever, this is not valid in rigorous sense, because it can formally be expressed as the 

sum of the electrical and chemical terms, i. e. 
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.4 -6=z(42) 

where d G is the chemical free energy of adsorption. However, the above assumption 

would seem to be fulfilled by the adsorption of materials such as surface active 

agents where d G is high, provided that is not too high and hence d G>z e Oa. 

   Under the experimental conditions of major interest, the surface active agent 
concentration will be small (10-3 to 10-8 M) and that of other ions present will also 

be small, whence we can take 

x = c/55.6(43) 

where c is the concentration of the surface active ion in mole per litre. Combining 
equations (40), (41) and (43) we obtain an equation of the Langmuir type' 5' : 

d 0-a=z eN1k2c -(44) 1 k
2 

where k2- exp (- d G/kT) /55.6(45) 

   (ii) The Change in Stern Potential 
   For spherical particles at low values of the Stern potential, 06, the charge density 

of the diffuse double layer, co, is related to ¢a by 

o-o = - (6 a/4 71- a) (1-r T)(46) 

whence by using equation (39) we obtain 

                   6     va_._(O. 0,3*)(47) 4
7r a (1+T) 

where the ionic strength and particle radius are assumed to remain constant. From 

equations (44) and (47) we obtain 

Oa=Oa* ,-_k1h2c(48)                   1+ k2 c 

where 

    lz 1 4 r a z e N1(49) e (1+T) 

which gives the relation between 1a and c. It is clear from the definitions of k1, 

equation (49), and k2, equation (45), that the former quantity is proportional to Ni 

and z and the latter gives the measure of the electrochemical free energy of adsorp-

tion, d G. 

   The theoretical curves of 0-0 vs. c and Oa vs. log c in Fig. 3 and 4 are obtained 

by using equations (44) and (48). In order that they can be compared with exper-

imental conditions, we have put z= -1, 0,3*- 140 mV and N, =1.94 x 1018 cm-2, the 

value of 1.94 x 1018 being the average value for alkyl sulphates derived from the 

experiments described in Part 2. The latter curves are extremely interesting since 

they show that the zero point of Oa is shifted to lower concentrations of surface 

active agent with increasing k2, that all the curves are parallel to each others and 
that they have a point of inflexion at the same value of Oa. 

   The zero point of cpa, c=c°, is obtained from equation (48) as 

165* = - k1 k2 c°/ (1..;_ k2 c") 
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and hence 

        1 k hi Hi) 
                                             (50) 0o* 

This equation shows that c° is smaller for larger value of k2, i. e. for larger value 
of the electrochemical free energy of adsorption. 

   The slope of 04- vs. in c curve is obtained by differentiating equation (48), as 

        dki k2 c                                                (51) 
d in c (1 k2 

whence by combining equations (48) and (51) we obtain 

           dOP34') dinc(6cb°*)[1hi _(52) 
It is clear from this equation that the slope of the l' vs. in c curve is independent 

                           (172)
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of k3, and hence of the electrochemical free energy of adsorption, and its absolute 

value is larger for larger k1, i. e. for larger value of the number of sites available, 

N1. The slope at the zero point of 1a is given by 

         d0,7) _—0,7*~1;..~   11d In-.)(53)                       c~~~_o 

Equations (50) and (53) will be used in Part 2 for the evaluation of N1 and a G. 

   4. The Stability as a Function of Surface Active Agent Concentration 

(i) The Relation between In W and c. 

   The stability factor, W, can be expressed as a function of the surface active 

agent concentration, c, simply by substituting equation (48) in equation (34) with 

the assumption, viz. 

In WA C°/.-k1kz cA C (~U;i;Tk1 kz c 

                         1 

              24 kT (1-i-2 T)(1 kzc 12 kT ̂1+ k2 c 
                              (3/2) In _ _k k2 c 1(54) 1- hc/B (3/2) In C for C ¢„> 1, 

or the corresponding equation for C ,5<-1. For coagulation of positive sols, i. e. 

¢,7*>0, by the addition of anionic surface active agents, i. e. z<0 or k1<0, the con-
dition C p6>1 or C 03<-1 can be expressed in terms of the concentration, c, as 

1 C „* c< k
2[k1 C—(1—C¢ )] 

— (1,C 0,3*) 
or c> CH- (1+CO3*)](55) 

In the concentration range between these two limits, the analytical expression in 
equation (54) breaks down and rapid coagulation occurs, i. e. In W=0. However, 
within the limitations given by inequalities (55), it can be employed to compute 
the form of the log W vs. c, or the more usual log W vs. log c curves for various 
values of k2 ; these are given in Fig. 5 for k: values of 101, 104 and 103 using the 

6 

   ?I 
to 4- 

                                     • 

4 2-I /• 
/I 
/ 
/ I / 

/ 
0 l / l /  

—5—4 3—2 

                                        log C 

                         Fig. 5 Theoretical log W vs. log c curves 

r==1.23, a-=10-Gcm. 

--------- k_,^10,litre/Al -- — — — k2-1041itre/M -- • — • — kz=1031itre/M 

(173)



                                      Akira WATANABE 

same conditions as for the calculation of Fig. 4. It can be seen that the concen-
tration of surface active agent required to cause coagulation is determined by the 
values of k2,  k, and Oa*, but for the same sol with different surface active agents 
k2 plays the most important part. The slope of the log W vs. log c curve is nearly 
constant over most of the concentration range but, under the conditions used here, 

the slope of the descending portion is smaller than that of the ascending portion ; 
this is due to the fact that the point of inflexion on the Oo vs. log c curve occurs 
for a positive value of O;,. 

   (ii) The Initial Slope of the log W vs. log c Curve 

   In order to see whether useful information can be obtained from the linearity 
of the log W vs. log c curve, it is of interest to work out the theoretical initial 
slope of this curve. For this purpose, we shall define the following function : 

                 hk2c 
    5*(1—k2 c)(56) 

Up to the zero point of b3 this satisfies the condition 0<I E I<1, and on transposing 

equation (54) we obtain : 

        InW—Ak*2(1f)2ACOa*(1)              24hTC(1+2T)12 kT 
— (3/2) In (1 ) -- (3/2) In C Oa* +B. 

On expanding In (1 H-) and collecting terms, we obtain : 

       In W==Po+Pi E+ P2 E2-I-P3 E3+.........(57) 

where 

Po=                  AC'`_AC 0,7* B (3/2) 1n C i/i,-*             24 kT(1 -1-2T) 12 kT 

AC-clia*2AC Oa* 3 P
t-            12 kT (1+ 2 T) 12k 2. 

             AC0s*3 PZ= 24kT(1+2 7) 4 

P3 = —1/2, P4-- —3/8,.........(58) 

Hence, the slope of the log W vs. log c curve is given by 

dlogW dlnW dlnW d 
dlogc dlnc d dlnc 

_ (P1-H2P2"-f-33.........)k,kc 

P, k, k2 c 2 P2 k12 k22 c=(59) 
(1+ k2 c) 2 06* (0,34')2(1+ h2c)3 

It is clear from equations (57) and (58) that In W is uniquely determined by E. 
Since d log W/d log c is also a function of E only, it has a value which is indepen-
dent of k2 for the same value of E. Hence, in the case of different k2 values, the 
slope has the same value for a given log W, although the values of c corresponding 
to the same value of log W or d log W/d log c are dependent on k2 (parallel trans-
formation on log c axis). 

   For —140 mV, a= 100  A, T =-1.23 and A =10-' 2 erg, the values of P1 and P2 
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are 406.5 and 217.2 respectively, and therefore for most of the curve the cube and 

higher terms in equation (59) can be neglected except near the stability minimum. 

For the condition of k2=10' we find at concentrations of surface active agent of 

10 and 1.5 x 10-5 M gradients of 38.3 and 17.9, respectively. The comparison with 

the experimental slopes will be given in Part 2. 

               III. GENERALIZED THEORY OF COAGULATION 

   We have so far restricted our discussions to the case where the change in ionic 

strength was virtually negligible by the addition of coagulating agents. IIowever, 

in some cases such as counter ion bindings on protected sol surfaces (Part 3), de-

crease in surface potential takes place accompanying the increase in ionic strength. 

The theory of coagulation has, therefore, been extended to include the case of both 

0 and T changings. 

(i) Fundamental Equation 

   In the most general case coagulation occurs due to changes of surface potential 

and ionic strength. 

/Hence, the stability factor, W, is a function of 0 and T,i.e. W.f(Y,T). 

However, the variables 0 and T are not independent, since both are unique functions 

of the concentration of the coagulating agent, c, i. e. 

-=fi(c) and T—f2(c) . 

Therefore, there must be a functional relationship between 0 and T, i. e. 

0=g (T) 

If we take T as an independent variable, the slope of the In W vs. T curve is given 

by the following equation, 

         dlnW cSlnW1 ,dlnW\d¢  
d T(7T.,..,(a—). dT(60)                              )y; 

(ii) Calculation of (a In W/6 T),, and (a In W/a 0)T 

   It is more precise to calculate these terms using the complete equation for W, 
and hence by using equation (26) we obtain : 

3 W aE a°2 exp(--T u)  A d u  
5aT2 exp[-u+2 kT 12 u kT (u;-2)2I(61) 

0 

           _ - m u 02 • exp (-Tu)(6a51i= exp (—T u) 26             u+2hTexp(-u 2kT 

      A\-1 d u(62) 
12 u kT 1 (u+2)2 

In this manipulation interchange of integral and differential operators is permis-
sible provided that the limits of integration are constant and the integral in equation 

(61) converges ; this means that we must give the same restrictions on the use of 
equation (62) as on the use of equation (34) . Now, according to the mean value 
theorem of integration 
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 bb 

 f(x) g(x) d x=fOg(x) d x 

a where a<<b. Hence we obtain 

a W 6 a ton cp2 exp ( T u9n) 
a T _ uny+2kT 

or 

a In W E a un,, exp ( T un) (63) 
      aTunt+2kT 

Here, um is a certain value of u which can vary between zero and plus infinity. 
However, as the integrand of W has a sharp maximum, see previously, u. has the 
same significance as in equations (28) and (30). 

   In the same way we can calculate the equation for a W/a a : 

aW22&a~,exp(_Tu)(6a~2exp(—Tu) 
  =exp-       a~[u±2 kT \ u-I 2 kT 

0 

                 A 1 du 26a0 exp(—Tio)-            12 u kT )_ (u-2)2 um+2 kT 
or 

6 In W 2 6 a 6exp(-7u,,) 
a unt+2kT(64) 

   (iii) Calculation of d (I)/d T 

   The calculation of 0 for the case of asymmetric electrolytes is a difficult prob-

lem. However, for the moment we can use the following formula, i. e. 

T= (I. 103) 1/2(65) 

for a-100 A, where I is the ionic strength of the sol. This corresponds to the case 
of the first order Debye-Htickel approximation. The ionic strength is related to the 
molar concentration of the added coagulating agent, c, by the relation 

I= (1/2) [2 p • 10-3+ (n+ v+2 + n_ v_ 2) c] = (p -F- q 6.10-3(66) 

where q= (1/2) (n,_ v+2-I- n- v_2)•103(67) 

Here p•10-3 is the ionic strength of the original sol and n+, v,, n- and v_ are re-
spectively the numbers and valencies of cations and anions produced by complete 
dissociation of one molecule of the coagulating agent. Substitution of equation 

(66) into equation (65) gives, 

T= ^p+qc , c=(T2---p)/q(68) 

and d T/d c = q/2 T(68A) 

Now, the relation between 0 and c is given by equation (48), which can be rewrit-
ten by 

0 z k2(,'-p) 
        {q+k2(T2-p)} (1+T)(69) 

where 

B —4 7 a e/6. Hence, 
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d = —N1zk2[(T2 p){q r k2 (T2 p)}-2Tq(1--T)](70) 
dT(1+T)2{q-;-k2(T2--p)}2 

   (iv) Calculation of d In W/d T as a Function of T 

   Substituting equations (63), (64) and (70) into equation (60), we obtain 

d1nW Eaum02 exp(--Tu.n) 26aV, exp( Tum) 
d u,n-I-2 kT u-m+2 kT 

zNik2OUT' p){q+k2(T' p)}--2Tq(1--T)] (71) 
(1 T)2{q F k2(T2 p)}2 

Hence, by using equations (68) and (69) we obtain 

d In W E a exp(—Tu,,,) z k2(T2 p) -
             dT _ —kT(u.-1-2)H (1-IT) {qHk2(T2-p)} 

 0 

20 z Ni k2[(72 —p) {q-1 k (72 p)} —2 T  q (1+ T)] (72) 
(1+-7-) {q+k-(T2—p)}2 

   This is a general relation giving the slope of the In W vs. T curve. This equa-
tion applies in principle to the coagulation of a sol whether it is caused by surface 
active agent adsorption, counter ion binding or compression of the double layer. 
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