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    A hydrodynamic theory of dilute solution of ring polymers is developed using the fa-
 miliar pearl-necklace or bead-spring model.The effect of excluded volume is taken into 

 account. The expressions for intrinsic viscosity Di] and for sedimentation constant so of ring 
 polymer are derived for the whole range of the value of the hydrodynamic interaction 

 parameter h as well as of the excluded volume parameter z. The present theory is applied 
 to data of sedimentation constant of some deoxyribonucleic acid (DNA) molecules and it 

 is found that the conclusion of the existence of circular DNA, drawn from the sedimenta-
 tion data, is supported in the light of the present theory. 

                          1. INTRODUCTION 

   Dilute solution properties of linear flexible homopolymer have been studied 
extensibly in the past two decades and most of these properties are now be-
lieved to be well described in terms of the two quantities, i. e. the unperturbed 
dimension and the solvent-polymer interaction parameter". Essential features 
of the polymeric nature of the molecule are observed in the linear flexible 
homopolymer, but there are a number of polymers that can not be classified 
as linear, flexible and homogeneous. Typical examples of the heterogeneous 

polymers are those which are called by a familiar name, copolymer. In con-
trast to the flexible chain polymers, there exist semi-flexible or rigid polymer 
molecules, the examples of which are the partially or completely helical poly-
mers. Finally, modification of the linearity of polymer chain leads to the nonline-
ar polymer and, actually, branched and cyclic polymers belong to this category. 
of these polymers other than linear flexible homopolymers may be interesting 
All objects in the field of physico-chemical study of dilute polymer solutions. 
Therefore, it is a natural consequence to apply the method of investigation that 
have been successful in the study of linear flexible homopolymers to the more 
complicated polymeric systems. 

   In this report, we shall develop a hydrodynamic theory of flexible ring poly-
mers, which is the extention of the work for the linear polymers by Kirkwood"', 
Zimma' and others. From the fundamental aspect, the ring polymer affords us 
an idealized model of the polymer, since in this polymer, the effects of the 
chain ends, which are more or less accompanied with the linear polymers, are 
completely eliminated. Actually as discussed in the subsequent sections, all 
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segments that are composed of the cyclic polymer molecules should be regarded 

as equivalent. On the other hand, in the linear polymer, it may be evident 

that the segments near the chain ends behave in somewhat different manner 

from those lying in the middle part of the chain, and thus the contribution of 
the individual segment to the over-all solution properties does not occur with 

equaly weight. Similary, when the dynamic or hydrodynamic properties of 

single polymer chain is concerned, one should solve the equation of motion of 

polymer chain in the form of boundary value problem as was proposed by 
 Rouse^' and Zimm3', the boundary conditions being given at the chain ends. 

For the linear polymer, this problem can not be solved exactly under the con-

dition that both ends are free to move. It is expected that the cyclic nature of 
one dimensional chain molecule may facilitate the treatment of the boundary 

value problem and it will be found to be the case as discussed in the following 
sections. 

   Moreover, the study of the dilute solution properties of ring polymer seems 

to have more significance than the mere generalization of the current status of 

dilute polymer solution to the special case. Some time ago, the cyclic polymer 

which may be synthesized by combining both ends of a linear polymer was con-
sidered rather artificial existence and, indeed, only study hitherto made was 

that of Jacobson et al." who investigated the effect of the ring formation on the 

molecular weight distribution of the condensation polymers. In the course of 

the studies of biological polymers, however, some of the renatured DNA mole-

cules become considered to present in circular form6''8' and the evidence for 

the structure was demonstrated by the electronmicroscope techique". Alterna-

tive way of characterizing such a structure may be attained by the study of 
dilute solution properties. In this connection, it is desired to develop a theory 

of ring polymer solution and this is the principal aim of the present investiga-

tion. 

   In section II, we shall briefly discuss the statistical properties of ring mole-

cule, which are required for the calculation of intrinsic viscosity and friction 

constant of ring polymer. In section III, we try to extend the Zimm theory3' 
of dynamics of linear polymer solution to the ring polymer, where our main 

concern is to transform the coordinates of the beads to the normal coordinates 

and to solve the eigenvalue problem associated with the transformation. In 

section IV, based on the Kirkwood theory", we try to calculate the sedimentation 

constant or diffusion constant and finally in section V, comparison of the present 

theory with the experimental data will be made. 

             11. STATISTICAL PROPERTIES OF RING POLYMER 

   We adopt the usual pearl-necklace or beads-spring model, which consists of 
n identical beads joined successively with a bond or a spring of average length 

b, to form a ring. The beads are assumed to be numbered 1, 2 n and the 

bond vectors are written as r1, r2, • • • r,,, the vector ri being directed from the 

j-th to (j+ 1)-th bead. Of course, the choice of the origin of numbering is 
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possible in n ways, but this arbitrariness does not afftect our reasoning. 
   For the calculation of interinsic viscosity and friction constant, two average 

quantities, that is, mean-square radius of gyration <s2> and mean reciprocal 
distance between, say, i th and jth segments, <- j >, are required as shown 

in sections III and IV. Let us calculate <sfl> and <--1R—> with small excluded 
                                                          21 

volume effect at the outset, assuming the Gaussian distribution of the vector rj. 

It is also assumed that segment-segment interaction is short-ranged and pair-

wise additive"'"). 

   Let the vector from the molecular center of mass to the j th segment be 

denoted by sj, and the mean-square value of sj is calculated as 

si2p(sj I L = 0) e-13>5(RA>H)dsj 
<sjZ> _ --------------(1) (1) 

p(sjIL=0)e 1>k dsi 

Here p(sjIL=O) is the conditional probability distribution of the vector sj, the 

condition being nothing but the entire molecule forming a closed ring, i. e. 

L = E r1= O. (2) 
=1 

Under the assumption that the bond vector rj is distributed in the Gaussian 

manner, calculation can be performed in a usual way. Retaining only the 

first two terms of the power series of (9, we obtain 

n ; (i2~(l-k)2-(12 k=)+n(l-j)~s 
<3)2> = <S,2>o+nb2Z z z 

                            A_° {(n-l+h)(1-k)}512 

n lJJ1(7--1(l-k)--"-(l'-k2)                         2! 
JA-o k))-5'2 

                     (j-2(1-k)-2(l2-h')}_ 
      +~~].--------------------------------------- ,(3) 

1=jk=j{(n-1+h)(1-h)}c/2 

where <5)2>0 and z are written as 

                          <sj2>o=12 nb", 

                                r_3 z =._--V12                                       22rbs 

After performing the summation of the right hand side of Eq. (3), we arrive 

at the simpler formula 

                         1                 <sjs> =12nb-'+ 24 nb +......(4) 

It should be noted that not only the unperturbed quantity <sj2>o but also in the 

presence of the small excluded volume effect, the corresponding quantity <5)2>, 
are independent of the index j. In other words, expansion of the coil di-

mension due to the segment-segment repulsion occurs uniformly in the ring 
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molecule, while in the linear polymer the expansion is not uniform as was 

discussed by Kurata and  Yamakawa"  . 

   With use of the relation 

<S2> =  <sj2> 
nj=i 

the mean square radius of ring molecule is obtained as 

                 <s2> = 12nb2(1+2z+......).(5) 
In Eq. (5), first term,12nb2,was derived earlier by Zimm and Stockmayer12' 
and the coefficient of z, 2 , was recently calculated by Casassal3> using the 
alternative definition of <s2>, i. e. 

1 <S> = -2E <R/j2> 22J>i 

Mean-square radius of the linear polymer is now well known and it reads 

                 <s-> =bnb2(1-I134 z+......).(6) 
Comparing Eq. (6) with Eq. (5), the first term, the unperturbed dimension, of 

the linear chain is twice as large as that of the ring polymer, while the fact 

that the coefficient of z is larger in Eq. (5) than in Eq. (6) indicates that the 

ring molecule expands more than the linear polymer, at least near the 0 

temperature. 

   Calculation of <    > can be performed in the same way and omitting 
the details of calculations, the final results are : 

    1~16n3~2 z /Rij —R,,j>o gb'a_ 

  1  

     «<)a1/n(j—i)(l—k){2(j—k)—(j—i)—(1—k)}+n2(j—i)(1—k)—n2(j—k)2 

  X— 

    

—--------— 

    1  

    (l—h)(n 1+ k) {(1—k)(n—i+k)}3'21/(i i)(n—j+i) 
1 

(k,z) 1(n•j+)(1-h){(j—i) (d k)}11•(1-k)(n.—1+k) 
j<k< <j 

1  

{(i_k)(n-1+k)}3'21/(j-i)(n—j+i) 
1  +

1(j—i)(n—l+k){(l—h)—(j—i)}n•(1—h)(n—1+h) 

1 

{(1—k)(n—l+k)}"21/(j —i)(n—j+ ) 

+ n(j—i)(l—h){2(l—i)—(j—i)—(1—k)}+212(j-i)(7-k)-7,2(1—i)2 
     k<i<r<j 

  x (l—k)(n—1+k) {(1—k)(n-1+h)}311/(j—i)(22—jT-i)}+O(z2), (7) 
(159)
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where 

1 _6 f n 11                 Rai>oVirbz —it) ! • 
The sumE< R--> is obtained as follows. 

>ij 

         J>1>R.i;<_>0I1— i(2nln2+_2.—2)z+ 
—2^62----nsi2(1-0.630z+......).(8) 

For a linear chain, corresponding to Eq. (8), Stockmayer and Albrecht"' derived 
the relation 

                 E1— 46nai.-(1-0.609z+......). (9) >i R-„>3 rb': 
The distinction between Eqs. (8) and (9) will be discussed in section IV in 

relation to the friction constant. 

      III. THE BOUNDARY VALUE PROBLEM AND INTRINSIC VISCOSITY 
                         OF RING POLYMER 

   In this section, most of the principles involved are those proposed by Zimm3', 
so that the discussion of the formulation is here minimized. It seems instruc-

tive, however, to recall some fundamental assumptions included in the Zimm 

theory, before we proceed further. 
   Consider the spring-bead model immersed in a viscous liquid. Each bead 

resists to the flow of liquid with friction constant C, while it suffers elastic 

force from the nearest beads through the spring with force constant 3kT/b2. 

The hydrodynamic interactions between the beads are taken into account as-

suming the Oseen interaction formula which is written as 

vi' . 

Here v/ and vi are velocities of the liquid, in the presence and absence of the 

hydrodynamic interaction, respectively, at the position where the j-th bead is 

to be placed. F1 is the frictional force exerted on liquid by the i-th bead, 

and T 1 is the hydrodynamic interaction tensor between 1-th and j-th beads. 

After taking average over all possible configurations of the polymer chain, the 
hydrodynamic interaction tensor Tit may be simply put 

<TiL> =------6nvo<Rii----->'(10) 
where )Jo is the viscosity of solvent and the quantity < R1,› is already dis-
cussed in section II. With taking the effect of the Brownian motion of beads 
into account, the equations of motion of beads in three dimensional cartesian 
coordinates are written 

                1,=vi—kT grad,q—3kT( 
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              -CE<Tji>(kgrad~¢+b---(-l€1+21g-1t+i)](11) 
                     j$i 

where the vector Zj is the position vector of j-th bead in the cartesian coordi-
nates and the terms proportional to grad)0 arise from the additional force 

due to the Brownian motion of the beads. In Eq. (11) is the distribution 
function of the beads and should be determined to satisfy the equation of con-
tinuity. 
   The equation of continuity as well as the equation of motion (11) can be 
solved by replacing the coordinate to the normal one. After performing the 
transformation, there remains an eigenvalue equation to be solved, which is 
expressed in matrix notation as follows : 

II. A•a=2a.(12) 

IIere II and A are the n>< n matrix and the former has the elements 

H~s=1, H~t=CTj.i,(13) 

while the matrix A will be discussed later. Using the eigenvalue 2k associated 
with the eigenvector ak or eigenfunction ak, the intrinsic viscosity is given as 

        NAC_(14)                        L~~=6M
ovio                                           • nbsk1 

where Mo is the molecular weight of monomer and N,1 is the Avogadro number. 
Thus, our task is to solve the eigenvalue equation (12) for the ring polymer. 

Assuimng that<RI,-->/<Rlj>=j<R1>/E<o>0 , and substituting Eq. 
(8) into Eq. (10), we write the Oseen tensor in the form 

           111 1/7              <T
ji>= 1/670b~10Ij—~I(nIj—il)(1-0.6302) (15) 

The matrix A in Eq. (12) is explicitly written as 

         —2 —1 0...........................0 —1\ 
       —1 2 —1 0.....................0 

A= 0 —1 2 —1 0............... 0 .(16) 

—1 0...........................0—I 1 , 

First and last columns of matrix A are slightly differentfrom the correspond-
ing matrix given by Zimm for linear polymer. This difference comes from the 

fact that, in the linear chain, elastic force is exerted on the terminal bead 

by one nearest bead only. With the aid of Eqs. (13) and (16), the eigenvalue 

equation (12) is written by the components, 

—a -1+2aj—aj+ +C21.1<Tit>(—ai-1+2al—ae+i)=2aj (j=1, 2......n) (17) 
jti 

with the conditions 

ao=an, an+i=ai.(18) 

We assume that aj is represented by the continuous function 
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a =V22 a(s), (19) 

with s=2j-1, and that the summation in Eq. (17) is replaced by the integral. 

Both assumptions are reasonable when n is large. Then, Eq. (17) is reduced 
to the following integro-differential equation, 

                            "O a" (r)+ n (1-0.630z) jas1~„ds= -n-Aa(r). 
          1/Cbe1 (Is—r1(2— Is- rl)D4 

                                            (20) 

For the beads with index j =1 and n, Eq. (17) can not be converted in a 

straightforward way to the form of Eq. (20), because of the restriction (18) . 
With use of the relation (19), the conditions given by Eq. (18) are rewritten , 
for large n, in the following manner. 

ao-V2 a(-1)= an-~2  a(1) 
                           a,b+i=  2za(l+2z=-na(1)+ z a'(1)+......(21) 

          az=^2  a(-1+2)=V2{a(-1)+2na'(-1)+...... 
     yann 

Eq. (21) tells us that with the approximation of neglecting the quantity of the 

order n the conditions given by Eq. (18) are satisfied so far as the following 

relations hold 

                  a(1)=a(-1), a'(l)=a'(-1).(22) 

Under the condition (22), Eq. (17) is approximated by Eq. (20) for all j. In 

other words, Eq. (20) should be solved under the boundary condition (22). 

The corresponding boundary condition for the linear chain is 

a' (1) = a' (-1) =O.(23) 

It may be instructive to note that, as is known in classical mechanics, boundary 

conditions of one-dimensional vibrating string with free ends are given in the 

form of Eq. (23), while the Eq. (22) gives the so-called periodic boundary 

condition. 

   Now, we are in a position to solve the eigenvalue eqution (20) under the 

condition (22). To do this, we put 

a(r) =e'rz"T ; k= integer(24) 

and it is not a difficult task to find that the eigenfunction given by Eq. (24) 

satisfies not only the Eq. (22) but also the Eq. (20). Therefore, the eigenvalues 

are obtained as 

                  )k-412k~---1+2h'-l(25) 

h' _ —` 1/77 _- (1— 0.630z) - h (1-0.630z) (26) 
,/6r 3 b?2, 
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                   cos 7let(27)          CA;=C_k= 6 ^ _ 

   Using the eigenvalue given by the relations (25), (26) and (27), the expression 

   of intrinsic viscosity of ring polymer is written as 

   r2 
           C~J) =3114-020n(1 +1.57z) E4n2k2 1+2h(1 —  0.630z) (-1)'~Ck• (28) 

   It may be noticeable that Eq. (28) is rigorous for all values of the draining 

   parameter h. This is contrast to the case of linear polymer molecules, where 
   the exact equation for the intrinsic viscosity can be derived for the two ex-

   treme cases, i. e. free draining case (h=0) and non-draining case (h 00)16) 

   and for the intermediate values of h, only approximate treatments are proposed 

   by Hearst") and Tschoegll". 

      For the two limiting cases, h=0 and h=oo, Eq. (28) is reduced to the 

f orm 

                    _ N^~nb2                  Cr~)
6M6von12(1+1.57z) for h=0,(29) 

N,(nb2)sie1 +1.57z;]            (
~J4

7/3.M10.63z1 ( 1)kie2Ch,for h= ~.(30) 

   The constant Ck given by Eq. (26) is the Bessel function of 0-th order and asym-

   ptotically written as 

                        CA..—l21/hk•(31) 
   Assuming the approximate relation (31) and utilizing the formulaZ k-31 =2.6126), 

k=1 

   Eq. (30) becomes 

(nb:)312 1+1.57z(nb2)3/~            Cv) =1 .81X10r3M1 -0 .63z—1.81X10'~3M(1+2.20z). (32) 

   This formula should be compared with the intrinsic viscosity relation for linear 

   polymers with small exclued volume effect derived by Kurata and Yamakawal" 

                                   (nb2)3/ (v)=2.87x1023M(1+1.55z).(33) 

   From Eqs. (32) and (33), the same conculusion as to the mean-square radius, 

   as was discussed in section II, can be drawn ; that is, in the absence of volume 

   effect, intrinsic viscosity is larger in linear polymer than in ring polymer if 

   both possess the same molecular weight, while the initial increase in viscosity 

   with increasing volume effect is larger in ring polymer than in linear one. 
   Moreover, if the Fixman type equation of the excluded volume effect") is assmed 

   to be valid both for linear and ring polymers, Eqs. (32) and (33) are valid 

   even for large value of z. In the extremely good solvent (z = co) one obtains 
   the following ratio 

(yiJi ins 1.81 x 2.20 _ 0.895 l9):;n~r2.87 x 1.55(34) 
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which is fairly large compared with the same ratio at  z=------2.87= 0.631. 
   Therefore, the intrinsic viscosity of ring polymer is always smaller than 
that of linear polymer and the ratio (Yi)ring/COlinear attains a minimum value at 
the 0 temperature. 

            IV. SEDIMENTATION CONSTANT OF RING POLYMER 

   Based on the general theory of Kirkwood°', the translational friction cons-
tant of ring polymer is obtained with use of the Eq. (8), 

                 n+67rn2voL=n; +7rh(1— 0.630z) . (35) 

Corresponding formula for linear molecule was discussed by Stockmayer and 
Albrecht"' and according to these authors it reads 

                 -1 _8 
                     ny+-31c(1—0.609z).(36) 

Sedimentation constant so is readily obtained from Eqs. (35) and (36) through 
the Svedberg relation, and one obtains 

so =(N lvo)n+lrh(1— 0.6302)1(37) 
for ring molecules and 

               so = M(1 vn) j nY+83h(1 — 0.609z)}.(38) 
for linear polymer, respectively. 

For large value of h (non-drawing case) the ratio So ring/So linear leads to 

so ring = ir(1— 0.630z) 
So linear -8 — 0.609z)(39) 

and the ratio tends to                      37r= 1.18 as z--°0, while, if the 3rd power law of Fixman 

type is again assumed, the limiting ratio in the extremely good solvent becomes 

So ring  _ 37 1.827 y3=1.17. 
so linear 8 `, 1.890 

                           V. DISCUSSION 

   It is gratifying that for ring polymers, theoretical treatments of the excluded 

volume effect as well as the intrinsic viscosity are rather simplified than those 

for linear polymers. This is due to the equivalence of all individual beads of 

ring polymers or the periodic structure of the model. In other words, the 

difficulties encountered in the theoretical treatment of the same problems in the 

linear molecule seem to arise from the existence of chain ends. These situations 

are more serious in the study of the branched polymers owing to the presense 

of a large number of chain ends. Indeed, extension of the Zimm theory of in-

trinsic viscosity to branched polymers is formidably difficult, and it is possible 
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 only for the star-shaped branched polymer, the simplest types of  branchinga°'20. 
    Theoretical equations for intrinsic viscosity (Eq. (32)) and for sedimentation 
 constant (Eq. (38)) of ring polymer are rigorous at and near the 0 temperature 

 where the effect of volume exclusion vanishes, and the experiment shOuld be 

 performed under these conditions to test the validity of the present theory. In 
 other words, so far as the measurements are made at or near the U tem-

 perature, both equations may serve to know whether the dissolved molecules 
 are cyclic or not. In particular, if the experiment of viscosity or sedimentation 

 of ring polymer solution is made under E conditions and molecular weight of 
 ring polymer as well as the relations (72) vs. M or so vs. M of the corresponding 

 linear polymers are assumed to be available, the relations resulting from the 
combination of Eqs. (32) and (33) or of Eqs. (37) and (38) may be utilized as 

 a criterion of ring structure, without knowing the molecular weight dependence 
 of C72) or so of ring polymer, which has been a usual procedure for obtaining 

 the information of the conformation of linear polymer. The extension of similar 
 reasoning to the systems, where the good solvent or large value of z is con-

 cerned, is a tentative procedure, because no theoretical basis for the Fixman 
 type equation of excluded volume effect of the ring polymer is given at present. 

 Even if one assumes the Fixman equation for ring molecule, the ratio C) ring / 

CYIJ linear increases and so ring /so linear decreases with increasing z or solvent power 
 and the detection of the difference between C>2) ring and C72) linear or so ring and 

so linear may become difficult. Especially when one desires to characterize the 
 circular nature of some biological macromolecules by means of dilute solution 

 experiments, these circumstances look, at first sight, unfavorable to the applica-

 bility of the present theory, since, in these polymers, the systems usually in-
 volve good solvents or, at least, they are not in the U temperature. It should 

 be recalled, however, that the first proposal for the existence of helical circular 
 DNA was deduced on the basis of sedimentation experiment ; that is, there 

 found some components that sedimented faster than the linear double-stranded 
 helical DNA, and to this component, the cyclic structure was assumed'''). The 

 results of the present calculation are conveniently applied to this problem, since 
 the sedimentation constants of the component which is conjectured as cyclic 

 and that of linear DNA molecule, both of which possess the same molecular 
 weight, are available in the published data". Before proceeding to the detailed 

 analysis, it is simply assumed here that the contribution of the semi-flexible 
 nature of the helical DNA molecule to the sedimentation constant so =' cancel 

 in the ratio So ring/So linear. For the present purpose, we refer to the sedimenta-
 tion data of Fiers and Sinsheimer°' for the renatured DNA molecule of bacterio-

phage 0x 174, and of Weil and Vinograd for the DNA of polyoma virus. The 
 former authors reported that sedimentation pattern in alkaline medium exhibited 

 two peaks which also persisted in the sedimentation pattern obtained after 
 heating to 80°C in formaldehyde. Corresponding sedimentation constants to the 

 two peaks were 12.8S and 12.1S or 13.1S and 12.0S at pH =11, 11.5S and 10.7S 
 at pH— 12, and 13.8S and 12.3S for the heated sample, respectively (S denotes 

 the Svedberg unit, i. e. 10-1" sec.). The component with larger sedimentation 
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constants was proposed by those authors to have a cyclic structure, reinforced 

by the independent evidences, while the component that sedimented slowly was 
considered to be linear open chain. Since the two components have the same 

molecular weight, the ratio of the two sedimentation constants cited above can 

be directly compared with the theoretical ratio. The experimental values of 

the ratio fall in the range 1.06 to 1.12, while the theoretical values lie in the 

range 1.17 to 1.18 depending on the value of z, and the latter values are slightly 

larger than the observed values. On the other hand, similar data of Weil and 

Vinograd indicates that the observed ratio 20S/16S =1.25 is larger than the 

theoretical value. There is no systematic trend of the observed ratio that 
deviates from the theoretical prediction, however, and the observed values of 

the ratio so ring/So linear lie within about 10% of the theoretical value. Therefore, 

the proposal that the component with the larger so may be circular in form, 

seems to be supported semi-quantitatively by the present theory. 
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