The Chemistry on the Diterpenoids in 1964

Eiichi Fujita*
(Fujita Laboratory)

Received April 20, 1965

The isolation of the diterpenoids, the elucidation of their structures, and their syntheses in 1964 are summarized.

I. INTRODUCTION

A general review on the diterpenoids was published by Tsutsui et al. in 1959. In 1961, a review on the synthesis of diterpenoids was published by Rogers and Barltrop, and very recently, another one on the same article by Kitahara et al. There have been several older reviews on the diterpenoids by Simonsen and Barton, Barton, and de Mayo.

The chemistry of the diterpene alkaloids has been described in "The Alkaloids" edited by Manske and in the book of Boit, and other reviews by Marion, Pelletier and Pinder have also been published.

The author wishes to treat the works of the chemistry on the diterpenoids published in 1964 in outline.

The classification will consist of abietane, pimarane, labdane, phyllocladane, gibbane and their related skeletons, diterpene alkaloids, and the others.

II. ABIETANE AND ITS RELATED SKELETON

From Cistus labdaniferus, methyl dehydroabietate (1) was isolated. Linde isolated a new diterpene carboxylic acid as diacetate, the structure of which proved to be (2). The compound was correlated to picrosalvin and structure (3) previously proposed for the latter was revised to (4).

* 鬼田荣一
The Chemistry on the Diterpenoids in 1964

Wenkert, et al.15 proved the identity of carnosol, a bitter principle from Salvia carnosa, and picrosalvin from S. officinalis, S. triloba and Rosmarinus officinalis by the direct comparison, and proposed structure (5) for carnosol (picrosalvin), which was identical with that (4) of Linde.

Mangoni and Belardini16 isolated two crystalline compounds from Cupressus sempervirens oleoresin, and proposed structures (6) and (7) for compounds A and B, respectively.

\begin{center}
\begin{tabular}{ccc}

\textbf{(5)} & \textbf{(6)} & \textbf{(7)} \\
\end{tabular}
\end{center}

Meyer and Maheshwari17 succeeded in a total synthesis of podocarpic acid (8) by a new route. They synthesized d,l-compound of structure (9) as shown in Scheme 1. Inasmuch as racemic acid has been resolved18 and d-desoxypodocarpic acid has been converted to d-podocarpic acid (8)19, this work constitutes a total synthesis of podocarpic acid.

\begin{center}
\textbf{Scheme 1.}
\end{center}

Day19 reported the total syntheses of d-16-hydroxytotarol (10) and d-macrophylic acid (11), a bisditerpenoid. The synthesis of compound (10) was carried out by a route in which agathene dicarboxylic acid was correlated. The synthesis of (11) was achieved by hydrolysis of dimethyl ester obtained by oxidative coupling of compound (12) with alkaline ferricyanide. The route would be parallel to the biosynthetic pathway.

Totarol and sugiol (13) were isolated from a neutral fraction of the resin of Tetraclinis articulata.20
Burgstahler and Marx synthesized fichtelite from all-trans-tetrahydroabietic acid (15) which was prepared via several steps from compound (14). The latter is converted from abietic acid, neoabietic acid, or levopimaric acid. The synthesis of fichtelite established its stereochemistry as shown in (16), especially the stereochemistry of C-4 and C-13 being confirmed.

Burgstahler and Worden carried out the syntheses of abietic acid (18) and palustric acid (20) from dehydroabietic acid (17).

Abietic acid (18) was isolated from Agathis australis fossil resin.

Spencer et al. synthesized d,l-methyl dehydrodeisopropylabietate (22). As the starting material for the synthesis, a bicyclic Keto-acid (23) was used. Compound (23) proved to be different from the substance which was assigned to be (23) by Mathew and Dutta. The Indian workers reinvestigated and recognized that the compound assigned as (23) by themselves was actually A/B cis isomer (24), and they clarified palladium-charcoal induced isomerization in the course of the synthesis, in which compound (22) was previously converted from (24), showing several examples.

The treatment of methyl abietate (19) with mercuric acetate, followed by pyrolysis gave methyl Δ4-dehydro abietate (25). The oxidation reactions of (25) and Δ4-dehydroabietane (26), which was derived from (25), with several oxidizing agents, and several chemical reactions for the resulted oxidation products were investigated. In these reactions, some kinds of compounds oxygenated at C-6 or C-7 were gained.
Graham and McQuillin found that benzyloxymethylation of ketones of type (27) was highly stereospecific and gave \(\alpha \)-substituted derivative (28). They made use of this reaction to synthesize dehydrodeisopropylabietic acid (21) and a stereoisomer (29) of podocarpic acid methyl ether.

\[
\begin{align*}
(25) \quad & R=\text{CO}_2\text{Me} \\
(26) \quad & R=\text{Me}
\end{align*}
\]

Wenkert et al. especially investigated the stereochemistry in the syntheses of some resin acids; they resolved racemic deisopropyldehydroabietic acid (21) and racemic desoxypodocarpic acid (9). Consequently, the total syntheses of four kinds of the optical active resin acids were accomplished.

Tahara et al. reported that compounds (30) and (31) derived from abietic acid (18) were useful as potential intermediates for the syntheses of the natural diterpenoids, and these compounds established the relationship between abietic acid (18) and agathic acid (71).

\[
\begin{align*}
(30) \quad & \text{H} \quad \text{MeO}_2\text{C} \\
(31) \quad & \text{HO}_2\text{C} \\
(32) \quad & \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(33) \quad & \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(34) \quad & \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(35) \quad & \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(36) \quad & \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C}
\end{align*}
\]

Tahara and Hirano prepared compounds (33) and (34) from compound (32) which was derived from abietic acid, and oxidized them with lead tetraacetate and iodine under irradiation with ultraviolet rays to yield compounds (35) and (36) as shown in Scheme 2.

\[
\begin{align*}
(33) & \quad \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(35) & \quad \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(34) & \quad \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C} \\
(36) & \quad \text{MeO}_2\text{C} \quad \text{MeO}_2\text{C}
\end{align*}
\]

It was confirmed by n.m.r. data of many related compounds, particularly by the comparison of chemical shifts of their methyl protons at positions 4 and 10, that structures (35) and (36) were correct.

Tahara et al. also carried out a catalytic reduction of diosphenols (37) and (38) without sulfuric acid, in comparison with hydrogenolysis (Scheme 3) previously reported in the presence of catalytic amounts of sulfuric acid. The results were shown in Scheme 4.
Rogers et al.31 prepared compounds (39) from podocarpic acid (8) and passed oxygen through their ethereal solution for a few days, or irradiated their solution in carbontetrachloride with fluorescent lamp under passing oxygen to yield hydroperoxides of type (40).

Herz et al.32 carried out the reactions of levopimaric acid (41) or rosin with β-propiolactone and acrylic acid, and isolated the Diels–Alder adducts of type (42).

Zalkow and Brannon33 prepared fumaric acid-methyl abietate Diels–Alder adduct (43) by heating fumaric acid and methyl abietate (19) at 200° in a nitrogen atmosphere, oxidized its methyl ester with permanganate, and got an unsaturated γ-lactone (44), a dihydroxylactone (45) and a diol (46).

Dauben and Coates44 clarified that the irradiation of ultraviolet rays gave a tetracyclic compound (47). The same authors33 also tried the photochemical transformation on methyl ester of palustric acid (20), and recognized the formation of photoequilibrium between the starting material and structure (48), which was supported by n.m.r. spectra.
Cambie et al.36 studied ORD and CD spectra of several ketones conjugated with an aromatic ring. These compounds showed the Cotton effect curves with peaks near 350 m\textit{\textmu}m, and also weak maximum UV absorption in the isooctane solution at 320~350 m\textit{\textmu}m. Sugiol (13), 7-oxototarol (49: R\textsubscript{1}=R\textsubscript{2}=Me, R\textsubscript{3}=i-Pr., R\textsubscript{4}=OH, R\textsubscript{5}=H), 7-oxopodocarpic acid (49: R\textsubscript{1}=Me, R\textsubscript{2}=CO\textsubscript{2}H, R\textsubscript{3}=R\textsubscript{4}=H, R\textsubscript{5}=OH) and 7-oxodehydroabietic acid (49: R\textsubscript{1}=CO\textsubscript{2}H, R\textsubscript{2}=Me, R\textsubscript{3}=i-Pr., R\textsubscript{5}=R\textsubscript{5}=H) etc. were used as the objects of measurement.

Sjoeberg and Sjoeberg37 found that dehydroabietylamine is available for easy resolution of \textit{d,l-\gamma}-phenylpropylsuccinic acid and \textit{d,l-\alpha}-phenoxypropionic acid.

\textbf{III. PIMARANE AND ITS RELATED SKELETON}

Asselineau et al.38 investigated the hydrogenation under several conditions on pimaric acid (50) and its some derivatives, for instance, \textit{\Delta}8(14)-dihydropimaric acid and dihydropimarilyl alcohol which was produced by reduction of \textit{\Delta}8(14)-dihydropimarilyl alcohol with lithium aluminum hydride.

A diterpene hydrocarbon, rimuene, first isolated from the essential oil of \textit{Dacrydium cupressinum} has been the subject of a number of structural investigations.
Structure (51) postulated by Briggs et al. has been shown to be incorrect, as Ireland and Schiess synthesized sandaracopimaradiene (51) and found that this compound was not identical with rimuene. Recently, the reinvestigation of the structure of rimuene was carried out by a couple of groups, that is, Corbett et al. and Overton et al., and a completely same conclusion was introduced that the structure of rimuene should be represented by formula (52).

Ireland and Mander synthesized d,l-rimuene, and established the correctness of structure (52). The route of the synthesis will be summarized in Scheme 5.

Sandaracopimaric acid (53) and 12β-acetoxy derivative were isolated from the resin of Tetraclinis articulata. Sandaracopimaric acid was also isolated from Agathis australis fossil resin.

Nagahama reported a first isolation of sandaracopimarinol from the wood oil of Cryptomeria japonica. A diterpene hydrocarbon bearing a conjugated diene system was also isolated.

Enzell and Thomas investigated the constituents of kauri resin from Agathis australis in New Zealand and determined the chemical structures of araucarolone (54) (isopimar-7-ene-2,15-dione-3,16-diol), araucarone (55), araucarol (65) and araucarenolone (57).

The structure and stereochemistry (58) of rosololactone, a new metabolite of Trichothecium roseum, were determined by Scott et al., and established also by X-ray diffraction studies of dibromorosololactone.

Isorosenolic acid, a minor acidic constituent of the fermentation was also isolated and its structure and stereochemistry (59) were determined.

Yoshikoshi isolated a new diterpene, dolabradiene, and investigated its structure. Consequently, Kitahara and Yoshikoshi proposed formula (60) including its absolute configuration. Successively, Kitahara, Yoshikoshi et al. accomplished the total synthesis of the optical active dolabradiene and established its structure and stereochemistry (60). The summarized route of the synthesis will be shown in Scheme 6.

Connolly isolated erythroxydiol X, -Y, and -Z, as well as, triols, from petroleum ether extract of trunk wood of Erythroxylon monogynum, and proposed structures (62) and (63) for erythroxydiol X and -Y, respectively. Soman and Dev.
reported that the structure of devadarool from the same plant source was represented as (64). Connolly et al., however, proposed the above-mentioned structure (62) for erythroxydiol X, which proved to be identical with devadarool, and denied formula (64).

As a result of reinvestigation, Dev et al. recognized that formula (64) proposed by themselves was incorrect and should be revised to (62). They also presented the presumed structures of allodevadarool (65) and hydroxydevadarool (66).

The bitter principles of the seeds of Caesalpinia bonducella, α-, β-, and γ-caesalpin, were isolated. The structures of α-caesalpin (67), β-caesalpin (68) and the hydrolyzed γ-caesalpin (69) were reported.

IV. LABDANE AND ITS RELATED SKELETON

Communic acid (70) and levopimaric acid (41) were found in Agathis robusta oleoresin. The co-occurrence of these two acids is of biogenetic interest. The major constituent of Agathis microstachya oleoresin proved to be agathic acid (71).

Methyl sciadopate (72) was isolated by Sumimoto et al. from the heart wood of Sciadophyts verticillata, being correlated to agathic acid (71), and structure (72) was provided. It was also correlated to communic acid (70) and daniellic acid (73) by Miyasaka.
Eiichi Fujita

Labd-8(20)-ene-3β,15-diol (74), 3β-hydroxylabd-8(20)-en-15-oic acid (75) and the corresponding 15-aldehyde were isolated from petroleum ether extract of the bark of Araucaria imbricata and characterized.65

Dev et al.61 isolated the new diterpenoids from Hardwickia pinnata oleoresin. They were hardwickiic acid (76), kolavic acid (77), kolavenic acid (78) and kolavenol (79). The structures were postulated by chemical reactions mainly including dehydrogenation and hydrogenation, data of n.m.r. and biogenetic consideration.

Rowe and Scroggins62 isolated 13-epimanool (A8,20,4-labdadien-13α-ol) (80), hydroxy-epimanool (81), contortolal (82) and contortadiol (83).

In the study of n.m.r. spectra of agathadiol (84) and communol (85), spin-spin coupling through four single bonds between one proton of C-19 methylene and C-3α (axial) proton, and between another proton of C-19 methylene and C-18 methyl protons, was observed63.

Isolation of the methylated resin acids of Dodonaea lobulata by Jefferies et al.64 gave a crystalline hydroxy ester, which was shown to be antipode (86) of methyl labdanolate. They also got from Ricinocarpus muricatus some bicyclic diterpenes of the labdane group, which were diols (87) and (88), and methyl enantio-13-epi-labdane (89). Compound (87) was correlated to compound (89).

Gough65 isolated communic acid (70), torulosic acid (90), manool (91), torulosol (86), (87), (88) and (89).
The Chemistry on the Diterpenoids in 1964

(90) \(R=\text{CO}_2\text{H} \)
(91) \(R=\text{Me} \)
(92) \(R=\text{CH}_3\text{OH} \)
(93) \(R=\text{CH}_2\text{OAc} \)

(94) and (95) from Tetraclinis articulata (N. African Sandarac), and elliotinol (94) from Pinus elliotti.

Some diterpenoids were isolated from Larix sibirica resin. One of them was larixol (95).

Semi-industrial production of odorous oxides (96) and (97) from manool (91) was successful in the selective epoxidation followed by ozonolysis.

Mongoni et al. synthesized manoyl oxide (99) from 8\(\alpha\)-hydroxy-15,16-bisnorlabdan-13-one (98).

The stereochemistry of a major oxidation product of sclareol (100) was established in the correlation with manoyl oxide (99).

The isolation of marrubiin (101) from Marrubium vulgare and Leonotis leonurus was reported.

3-Tetrahydrofurylacetaldehyde (103), one of the degradation products which were obtained by ozonolysis of anhydrotetrahydromarrubiin (102), was synthesized and identified.

Colensan-1-one (105), an isomer of the naturally occurring norditerpene, colens-14-en-2-one, was synthesized by Grant and Hill from 2-oxo-manoyl oxide (104).

V. PHYLLOCLADANE AND ITS RELATED SKELETON

Previously, Masamune got a dienone (107) by the treatment of compound (106) with a base. He applied this reaction and synthesized \(d,I \)-compound of a tetracyclic intermediate (108). Successively, he got \((-\text{-})\)-isomer of compound (108) in good yield by degradation of natural veatchine (173), and from this material he synthesized an optical active compound (110). As this compound has been
already converted to (-)-kaurene (111), the synthesis corresponds to a total synthesis of (-)-kaurene. Moreover, it is the first example of the transformation of a diterpene alkaloid to a naturally occurring diterpene, and now the direct correlation between two groups of natural products is accomplished. The synthetic route will be shown in Scheme 7.

Jefferies et al. isolated three new diterpenes from Beyeria brevifolia, the structures of which were determined as (112), (113) and (114). The triol (114) was converted to 16α-dihydro-kaurene (16α-dihydrokaurene) (115) through a series of reactions. Four kauranoid diterpenes were isolated from ethereal extract of Ricinocarpus stylosus and characterized.

They were 16α-(-)-kauran-17,19-dioic acid (116), 19-hydroxy-16α-(-)-kauran-17-oic acid (117), (-)-kauran-16α-17,19-triol (118) and (-)-kaur-16-en-19-oic acid...
The Chemistry on the Diterpenoids in 1964

(112) R=H
(113) R=Ac

(114)
(115)

(116) R=COOH
(117) R=CH$_2$OH

(118)
(119)
(120)

(119). The n.m.r. correlation of these diterpenoids were discussed.

Jefferies et al.79 isolated a new diterpene diol and the above-mentioned 16α-(-)-kauran-3α,17,19-triol (114), correlated the former with the latter and proved the new compound to be (-)-kaur-16-ene-3α,19-diol (120).

Another work by Henrick and Jefferies80 was the isolation of a new diterpene carboxylic acid, 1α, 19-dihydroxy-16α-(-)-kauran-17-oic acid (121). It is interesting that this structure corresponds to a biosynthetic precursor of the grayanotoxin skeleton. The configuration of the grayanotoxin skeleton, for instance grayanotoxin-II (122), may be rationalized as arising by a Wagner-Meerwein rearrangement of a 1α-hydroxy-(-)-kaurane. The validity of such a process has been demonstrated recently in the triterpene series81.

(121)
(122)

(123)

Galt and Hanson82 converted 7-hydroxykaurenolide (123) to (-)-kaur-16-en-19-oic acid (119) by chromic acid oxidation, hydrogenolysis with calcium in liquid ammonia and Wolff-Kishner’s reduction.

Turbicoryn, a new glucoside was isolated from the seeds of \textit{Turbina corymbosa} and structure (124) of its aglucone “turbicorytin” was postulated by the Mexican school83.
Eiichi FUJITA

The constitution of kahweol, one of the constituents of the unsaponifiables of fats in Coffee beans, was represented as (125)\(^{84} \). Scott et al.\(^ {85} \) discussed the structure and stereochemistry of some polycyclic diterpenoids in view of biogenetic analysis.

Murray and McCrindle\(^ {86} \) isolated stachene (126), 19-hydroxystachene (127) and 17-hydroxystachene (128) from the wood of *Erythroxylon monogynum*, and identified them.

\[\text{(126)} \quad R=R' = \text{Me} \]
\[\text{(127)} \quad R=\text{Me}, R' = \text{CH}_2\text{OH} \]
\[\text{(128)} \quad R=\text{CH}_2\text{OH}, R' = \text{Me} \]

Kapadi and Dev\(^ {87} \) isolated six new diterpenoids from the wood of the same plant, and studied the structure of monogynol, a major component. Consequently, they postulated formula (129) to monogynol. They also proposed structure (130) for another component, hydroxymonogynol.

Hanson\(^ {88} \) carried out a partial synthesis of monogynol from isosteviol (131), the result of which showed that absolute configuration (129) suggested by Dev et al.\(^ {87} \) corresponds to enantiomer of natural monogynol, accordingly, monogynol should be represented by (132).

Successively, Kapadi and Dev\(^ {89} \) revised the absolute configuration of monogynol and hydroxymonogynol to formulas (132) and (133), respectively.

Kitahara and Yoshikoshi\(^ {90} \) established structure (134) of hibaene, a diterpene isolated from essential oil of the leaves of *Thujopsis dolabrata*

\[\text{(134)} \]
\[\text{(135)} \]
\[\text{(136)} \]

It was shown by gaschromatographic investigation that cupressene originally isolated from *Cupressus macrocarpa* was a mixture of isophyllocladene (135) (32\%), phyllocladene (136) (trace) and a major diterpene hydrocarbon (67\%). Although the latter could not be isolated in a completely pure state, it proved to be identical with hibaene (134) by several chemical evidences\(^ {91} \).

Wenkert et al.\(^ {92} \) carried out a partial synthesis of isohibaene (137) from isopimaric acid. A strong Jones oxidation of diol (138), an intermediate, gave compound
(139). The pyrolysis of the acetate of (139) introduced a double bond in D ring. Wolff-Kishner reduction of C-7 carbonyl group of the product yielded isohibaene (137).

They provided the discussions on the stereochemistry of stachenone and beyerol, the related diterpenic substances.

Kitahara and Yoshikoshi\(^9\) tried assignment of the methyl proton signals in the n.m.r. spectra of hibaene (134), dihydrohibaene, isophyllocladene (135) and phyllocladene (136).

Kapadi and Dev\(^9\) isolated d-hibaene, that is, stachene (126), its epoxide and a new diterpenoid from the wood of *Erythroxylon monogynum*.

VI. GIBBANE AND ITS RELATED SKELETON

In addition to gibberellins A\(_1\), A\(_3\), A\(_4\), and A\(_8\) which were previously isolated from *Phaseolus coccinens*, gibberellin A\(_3\) and five new gibberellin-like substances, “Phaseolus alpha, beta, gamma, and epsilon”, were found.\(^9\) “Phaseolus epsilon” proved to be a gibberellin bound to carbohydrates and ninhydrin-positive compounds.

Cross *et al.*\(^9\) began the work on biosynthesis of gibberellins. They prepared (-)-17-\(^14\)C-kaurene (140) and \(^14\)C-labelled gibberellin A\(_8\) and investigated their metabolism by cultures of *Gibberella fujikuroi*. Consequently, it was found that (-)-kaurene (111) was a precursor of gibberellic acid (141). (Scheme 8)

![Scheme 8.](image)

Tidd\(^9\) reported the dissociation constants of several gibberellins and their derivatives.

Jones *et al.*\(^9\) found a new substitution reaction in which the treatment of methyl gibberellate (142) or 2,7-di-O-acetyl derivative (143) with zinc and boiling acetic anhydride yielded methyl 7-acetoxy-2-acetyl-1-carboxy-4a-hydroxy-1-methyl-8-methylene-gib-3-ene-10-carboxylate 1-4a lactone (144). The reaction mechanism of this new reaction was discussed.

![Scheme 8.](image)

Sumiki *et al.*\(^9\) confirmed by synthesis that the structure of a ketone, C\(_{17}\)H\(_{26}\)O, which was afforded by pyrolysis of epigibberic acid (150) or by treatment of gibberone (145) with sulfuric acid, was 1,7-dimethyl-6-keto-gibba-A, 4b-tetraene (146).
Eiichi FUJITA

They99 determined structure (148) of diester obtained from 2(eq.)-hydroxy epimer (147) of gibberellin C methyl ester by methanolysis, and got (147) from (148) by relactonization. The isomerization of the hydroxyl group to axial gave gibberellin C methyl ester (149), which was converted to gibberellin C (150) by acid-saponification. The reduction of carbonyl groups through thio-ketal was investigated.

\[
\begin{align*}
(147) & \quad \quad \quad (148) & \quad (149) R=Me \quad (150) R=H \\
(147) & \quad \quad \quad (148) & \quad (149) R=Me \quad (150) R=H \\
(147) & \quad \quad \quad (148) & \quad (149) R=Me \quad (150) R=H
\end{align*}
\]

Huang-Minlon reduction of \(d,\ell\)-epigiberic acid (151) and desulfurization of natural methyl gibberate (152) thio-ketal were carried out. The stepwise desulfurization of \(d,\ell\)-methyl 6-oxo-dehydrogiberate (153) thio-ketal was investigated. Huang-Minlon reduction of methyl desoxo-6-oxo-gibberate (154) gave rise to epimerization at position C-10.100

\[
\begin{align*}
(152) & \quad (153) & \quad (154) & \quad (155) & \quad (156)
\end{align*}
\]

They101 synthesized 1,7-dimethylisogibba-A-triene (155) and 1,7-dimethyl-5-oxoisoggiba-A-triene (156), both of which had isogibbane skeleton.

\[
\begin{align*}
\text{VII. DITERPENE ALKALOIDS}
\end{align*}
\]

Pelletier102 described several unusual reactions of \textit{Aconitum} and \textit{Delphinium} alkaloids. These reactions are due to the polycyclic structure, particularly large number of bridged bonds. The reactions of imines and imminium salts of atisine and veatchine were discussed.
Dvornik and Edwards160 reported the structure and stereochemistry of atisine. They carried out a stereospecific hydration of exocyclic methylene group of atisine and degraded the product to a tetracyclic phenol. This enabled rigorous proof of the structure and relative and absolute stereochemistry (160) of atisine.

\[
\begin{align*}
\text{(160)} & \quad \text{(161)} & \quad \text{(162)} & \quad \text{(163)}
\end{align*}
\]

Brown161 prepared \(\delta\)-lactam (cis and trans) (162), and isocyanate (163) etc. by photolysis of cis- and trans-1, 1-dimethyldecalin-10-carbonyl azides in cyclohexane. The yield of trans \(\delta\)-lactam, however, was not good.

Zalkow and Girotra162 reported an approach to a synthesis of atisine (antipode) from podocarpic acid (8) which has already been synthesized by Wenkert and Tahara163. They attempted to get compound (164), but actually got (165), and this approach was not successful.

\[
\begin{align*}
\text{(164)} & \quad \text{(165)} & \quad \text{(166)} & \quad \text{(167)}
\end{align*}
\]

The same authors164 reached the synthesis of compound (167), which corresponded to the antipode of atisine's carbon skeleton, from compound (166) synthesized previously.

Ogiso and Iwai165 synthesized the racemate of compound (169), a degradation product of atisine and veatchine, from compound (168) synthesized previously by themselves.

\[
\begin{align*}
\text{(168)} & \quad \text{(169)} & \quad \text{(172)} & \quad \text{(173)}
\end{align*}
\]

Nagata et al.166 have already accomplished the first excellent total synthesis of \(d, l\)-atisine. Now, they167 synthesized \(d, l\)-dihydroveatchine (171) from compound (170), which they already synthesized, via a route shown in Scheme 9. Since the transformation of compound (171) to garryine (172) and also to veatchine (173) has already been accomplished, this means a completion of the total syntheses of \(d, l\)-garryine and \(d, l\)-veatchine.

On the other hand, Masamune168 accomplished a total synthesis of the optically active garryine (172). He got compound (175) from the above-mentioned \((-\)-16-keto-10-carboxy-17,20-bisnorkaurane (108) via a series of reactions shown in Scheme
10. As the alkylation of this compound (175) to dihydroveatchine (171) has already been reported, this means a total synthesis of natural garryine.

Subsequently, Masamune\textsuperscript{112) succeeded in the conversion of veatchine (173) to compound (176). The route will be shown in Scheme 11. Since product (176) has already been derived to atisine (160) by Pelletier et al., this work means an accomplishment of the transformation from veatchine (173) and garryine (172) to atisine (160).

Wiesner et al.\textsuperscript{113) synthesized racemic compound (174) from \textit{d,l}-amine (177), which they have already synthesized. This compound can be converted to garryine (172) and veatchine (173), as mentioned above. Accordingly, this means the third achievement of the total synthesis of garryine and veatchine. The synthesis will be summarized in Scheme 12.

Okamoto et al.\textsuperscript{114) investigated isohypognavine, an alkaloid in \textit{Aconitum majimai}}
The Chemistry on the Diterpenoids in 1964

Scheme 11.

Scheme 12.

and *A. japonicum*, and gave it structural formula (178) on the basis of various kinds of reactions.

The structure of heteratisine, an alkaloid of a modified lycoctonine-type skeleton, was investigated by Edwards and Ferrai and by Aneja and Pelletier. The same structure (179) was suggested by both of schools, provided that the configuration of the methoxyl group was not confirmed by Pelletier et al. The conclusion coincided with the result of X-ray analysis of heteratisine hydrobromide monohydrate.
Achmatowicz and Marion180 found two new lycoctonine type alkaloids, chasma-
conitine (180) and chasmanthinine (181), for which the structures shown were given.

Crabb and Cookson187 compared n.m.r. data of various methylenedioxy protons,
and found that the coupling constant of both protons showed 0~2 c.p.s. in five
membered ring, while it showed 6 c.p.s. in six membered ring. Since methylene
protons of methylenedioxy group in delphenine and its derivatives have low coupling
constant, a five membered methylenedioxy ring should be contained in these alkal-
oids. Accordingly, the structure of delphenine prefers (182) to (183) and also del-
tamine (eldelidine) should be represented as (184). Moreover, the similar protons
in isooxodelpheline have a larger coupling constant (4.3 c.p.s.), and therefore, the
alkaloid will contain a six membered methylenedioxy ring as shown in (185).

Khaimova \textit{et al.}189 isolated lappaconitine from \textit{Aconitum ranunclaulfolium},
degraded it in various ways and suggested its partial structure.

Wiesner \textit{et al.}121 investigated structure (186) of isoeldeline and its reactions.

Benn and May122 observed the incorporation of mevalonic acid-2-14C, acetate
1-14C and acetate-2-14C into brownine (187) and lycoctonine (188), and found
that their biosynthesis is similar with other terpenes.

Spencer \textit{et al.}123 studied the synthesis of resin acid intermediates; they got a
small yield of dienone by the condensation of 2,6-dimethyl-2-carbomethoxy-6-
formylcyclohexanone and acetone, and synthesized 8α,10β-dimethyl-8β-carbo-
methoxy-\textit{Δ}1\textsubscript{6}5,3\textsubscript{1}-hexahydronaphthalene-2 (189).

Bory and Fetizon124 found an empirical relationship between infrared spectra
and stereochemistry about di- and triterpene esters.

Brieskorn and Grossekettler125 isolated some diterpenoids together with triter-
penes, phytosterols and monoterpenes from pollen of \textit{Salvia officinalis}.

Smith \textit{et al.}126 studied the cyclization of farnesylacetone stereoisomers and
their monocyclic analogs.
Rowland et al.127 showed that macrocyclic diterpene hydroxyl ethers isolated from Tobacco and Cigarette smoke were two diastereoisomers of 12-isopropyl-1,5,9-trimethyl-5,8-oxido-3,9,13-cyclotetradecatrien-1-ol (190) and 12-isopropyl-1,5-dimethyl-9-methylene-5,8-oxido-3,13-cyclotetradecadien-1-ol (191).

Erdtman, Sumimoto et al.128 investigated the structure of verticillol which was isolated from the wood of \textit{Sciadopitys verticillata} and suggested formula (192). On the other hand, Ishikawa et al.129 preferred formula (193) to (192), but they also recognized the possibility of formulas (194) or (195) with less probability. It has not yet been clarified, which is correct.

Polonsky and Fourrey130 isolated four crystalline components from \textit{Ailanthus altissima} and suggested a hemiketal structure (196) of ailanthone, a major component, while Casinovi et al.131 isolated ailanthone as a principle bitter component of \textit{Ailanthus glandulosa} and proposed a keto alcohol structure (197). Another difference between both structures is the steric configuration of the hydroxyl group at C-12.

Since the structures of several bitter principles and their derivatives have been clarified, their biogenesis is being discussed. In the discussion of biogenesis of quassin (198), Thomas132 and Valenta et al.133 suggested dimerization scheme of C\textsubscript{15}-units, that is, a hypothesis of an oxidative coupling between the same two C\textsubscript{10} units separated by a dotted line in (198). Moreover, the latter authors pointed out that quassin may be produced from a diterpenoid pimarane skeleton (199) by a series of rearrangements by 1,2-shifts.

Recently, Bredenberg134 and Dryer135 suggested a third pathway in which the C\textsubscript{26} terpenoids may be precursors of the C\textsubscript{20} bitter principles.
Nakanishi et al.136 provided the evidence for the elucidation of full stereochemistry on grayanotoxin-I, -II, and -III, the toxic components of \textit{Leucothoe grayana}. They are shown as (200), (201 = 122), and (202), respectively.

\begin{align*}
(200) & \text{R}_1=\text{Me}, \text{R}_2=\text{OH}, \text{R}_3=\text{Ac} \\
(201) & \text{R}_1\text{R}_2=\text{CH}_3, \text{R}_3=\text{H} \\
(202) & \text{R}_1=\text{Me}, \text{R}_2=\text{OH}, \text{R}_3=\text{H} \\
(203) & \text{R}_1=\text{H}, \text{R}_2=\text{Me}, \text{R}_3=\text{Ac} \\
\end{align*}

A short review of their structures by Kakisawa137 is available.

Tallent138 investigated the products from the reaction of acetylanhydromedol (=grayanotoxin-I) and 10-desoxyacetylanhydromedol (203) with cupric sulfate in acetone.

The structure elucidation of enmein, a bitter principle of \textit{Isodon trichocarpus}, was accomplished by the co-operation of many Japanese schools, and the excellent results were published. The structure and stereochemistry of enmein were established as (204) on the basis of many kinds of chemical and physical evidences. At the same time, X-ray study140 of acetylbromoacetyldihydroenmein confirmed the structure. The biogenesis of enmein is very interesting in relation to metabolites of \textit{Gibberella fujikuroi}. Enmein may be considered as a diterpene of (-)-kaurene homolog, and it is the first example of naturally occurring diterpenes formed by the cleavage of carbon linkage in the B ring. A rough biogenesis will be shown in Scheme 12.

\begin{center}
\includegraphics[width=\textwidth]{scheme.png}
\end{center}

The plane structure of taxinine, a desdimethylamino derivative of taxine, an alkaloid in \textit{Taxus baccata}, was already determined as (205) in 1963. A part of the work which constituted an earlier study was published by Uyeo et al.141 Now, the name “Taxane” was suggested for seketon (206).142

Uyeo et al.143 determined structure (207) of anhydrotaxininol, which was gained by hydrolysis of taxinine. They also discussed the reaction mechanism. Taga got 1,2,3,8-tetramethyl anthracene (208)144 by selenium-dehydrogenation, the structure
of which was confirmed by synthesis.145

The biogenesis of taxinine (205) was discussed in relation with that of verticillol by Sumimoto \textit{et al.}145 and Ishikawa \textit{et al.}129 as shown in Scheme 13.

![Scheme 13](image)

\textit{trans} Geranyl geraniol

Scheme 13.

The stereochemistry of taxinine, taxinol and anhydrotaxininol was discussed in the 8th Symposium of Natural Organic Compounds in Japan.146

REFERENCES

Eiichi FUJITA

b) E. Wenkert and B. G. Jackson, ibid., 80, 217 (1958).

(22) T. A. Spencer, T. D. Weaver, M. A. Schwratz, W. J. Greco, Jr., and J. L. Smith, Chem. and Ind. (London), 1964, 577.

The Chemistry on the Diterpenoids in 1964

(72) W. Cocker and P. H. Boyle, *ibid.*, 1964, 4972.
SUPPLEMENT

IV. The isolation of abienol from Canada Balsam was reported. Communic acid, cupressic acid, and isocupressic acid were isolated from Cupressus sempervirens resin.

VII. Hypaconitine proved to be deoxymesaconitine and the absolute stereochemistry was shown to be same with aconitine.