Differential Cross Sections of (α, α) and（ α, α^{\prime} ）Scattering from $\mathbb{B}^{11}, \mathbb{C}^{12}, \mathbb{C}^{13}, \mathfrak{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and \mathbb{P}^{31}

Jun Kokame＊，Kiyoji Fukunaga＊，Hitoshi Nakamura＊＊ and Nobuyuki Inoue ${ }^{* * *}$

（Kimura Laboratory）
Received June 15， 1964

Abstract

Numerical differential cross sections of elastically and inelastically scattered alpha－ particles are presented．Target nuclei are $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31} ．The energy of the incident particles is about 28.5 Mev and the beam of alpha－particles was obtained from a 105 cm cyclotron of Kyoto University．

1．INTRODUCTION

Elastic and inelastic scattering of alpha－particles are useful reactions to investi－ gate the structure of nuclear levels and the mechanisms of the scattering． Recently，the（ α, α^{\prime} ）scattering was intensively investigated by many researchers for intermediate nuclei $(A \sim 50)$ in the vibrational region．According to the de－ velopment in methods of analysis using electronic computers operated by a code of DWBA or other theories ${ }^{(\sim 1)}$ ，the excited states of the nuclei and the mechanism of the scattering have been successfully analyzed in many cases．
As the（ α, α^{\prime} ）scattering excites the nucleus preferentially in a collective mode， this property seems to be useful to investigate collective levels in light nuclei， because recent theoretical analyses show a considerable success in understanding levels in light nuclei by collective models as well as in heavy nuclei．
We have been investigating the（ α, α^{\prime} ）scattering of light nuclei，and the numeri－ cal values of differential corss sections of some nuclei obtained up－to－date are presented here with a brief description and discussion on each result．

2．EXPERIMENTAL PROCEDURES

An alpha－particle beam accelerated up to 28.5 MeV by a 105 cm F ．F．cyclotron in our laboratory was brought to a 52 cm scattering chamber through a pair of quadrupole magnets．The energy spread of the beam is considered to be less than 150 keV ．

Scattered alpha－particles were detected with a solid state detector，RCA C－4－ 250－2．0．A charge sensitive low noise preamplifier for the detector was designed and made by ourselves．Usual electronics were used to analyze the energy spectrum of scattered alpha－particles．

[^0]$$
(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right) \text { Scttering from } \mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28} \text { and } \mathrm{P}^{31}
$$

The target nuclei in the present results are $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{15}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31}.

For boron, a target was made by sedimentation of 96.7% enriched B^{11} powder on a thin gold backing of which thickness is $0.2 \mathrm{mg} / \mathrm{cm}^{2}$. The thickness was estimated by weighing as $1.5 \mathrm{mg} / \mathrm{cm}^{2}$.

For carbon (C^{12}), a self-supporting carbon foil was made by a cracking method ${ }^{5)}$ from methane gas. The thickness of the foil was $0.50 \mathrm{mg} / \mathrm{cm}^{2}$. A Mylar film was also used.

The target of C^{13} was made by the cracking method using 56% enriched methane gas. The thickness was $0.38 \mathrm{mg} / \mathrm{cm}^{2}$.

Natural gas of oxygen and neon were used for O^{16} and Ne^{20} in a gas target chamber in which the pressure was about 30 cmHg .

For magnesium, a foil of which thickness was $1.00 \mathrm{mg} / \mathrm{cm}^{2}$ was made by evapolation in vacuum from metalic powder in natural abundance.

As a silicon target, unbacked silicon foil made by etching obtained from Toshiba Co. was used. This foil had relatively poor uniformity so that the absolute value of the measurement was calibrated by comparison with results obtained from SiO_{2}-foils of which thickness were 3.25 and $2.14 \mathrm{mg} / \mathrm{cm}^{2}$.

In last, a phosphorous target ($3.50 \mathrm{mg} / \mathrm{cm}^{2}$) was made by sedimentation of redphosphorous powder in alcohol on a thin gold foil.

3. RESULTS AND DISCUSSIONS

Numerical differential cross sections are shown in the following tables.
As the results and discussions had been reported elsewhere ${ }^{6 \sim 8)}$ in detail for each nucleus, here we discuss only on some interesting results.

3-1. Results on $\mathbf{B}^{11}, \mathrm{C}^{12}$ and C^{13}

The yield from the second level ($4.46 \mathrm{MeV}, 5 / 2^{-}$) and the fourth level (6.76 MeV , $7 / 2^{-}$) in B^{11} are relatively large compared with that of the first and the third level. Their shapes of the angular distribution are quite close to each other.

These aspects can be understood reasonably by the unified model ${ }^{17}$ of the B^{11} nucleus, in which model the second and the third state are belonging to a rotational band of the ground state $\mathrm{K}=3 / 2^{-}$. Thus the levels at 4.46 and 6.76 MeV seem to have collective nature and the relatively large yield.

As for the result for C^{12}, the scattering from the first excited state 2^{+}, is interesting in comparison with inelastic scatterings from B^{11}. The latter nucleus can be considered alternatively by a model of the excited core ${ }^{8,183}$. In this model the four low-lying levels of B^{12} could be considered to the multiplet split out from the first excited state of C^{12} (the core nucleus) coupled to a hole of which spin is $3 / 2$ in the lp-orbit in the core. The both scatterings from B^{12} and C^{12} would have some resemblances in the shape of the angular distrbutions and their magnitude of the elastic and inelastic scattering. However, the experimental results show poor correspondence by each other so that the excited core model would be an over simplified model for such a light nucleus as boron.

As for C^{13}, the second excited state at $3.68 \mathrm{MeV}\left(3 / 2^{-}\right)$seems to be the first excited state of the ground-state rotational band with $K=1 / 2^{-}$.

There is two positive parity states nearby the level, namely $3.09 \mathrm{MeV}\left(1 / 2^{+}\right)$ and $3.85 \mathrm{MeV}\left(5 / 2^{+}\right)$. These levels had been understood as single particle levels having one nucleon in 2 s-and Id-shell respectively, because a large reduced width in the stripping reaction $C^{12}(d, p) C^{13} 9 \sim 11$ had been obtained. In the latter reaction the yield leading the residual nucleus to the second level (3.68 MeV, negative parity) is small.

In (α, α^{\prime}) scattering, an enhanced excitation of collective levels can be expected. If the second state is actually collective, the yield from this level in the (α, α^{\prime}) scattering would be larger than that from other levels in contrast with the case of the stripping reaction. The result showed that the prediction is valid, and the second level of C^{13} seems to be a collective one belonging to the rotational band of the ground state.

3-2. Results on $\mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}$ and Si^{28}

These four nuclei, of which atomic numbers are 4 n ($\mathrm{n}=4,5,6$ and 7 , respectively), have low-lying levels of which the spin-parity is relatively well established ${ }^{12)}$. Among others, these nuclei have unnatural-parity states (e. g. $2^{-}, 3^{+}$etc.). The excitation of an unnatural parity state of even-even nuclei by alpha-particles is very interesting to investigate the scattering mechanisms and the structure of the level, because the level can not be excited by ordinary direct interactions in a single step transition.

The experimental results show some appreciable yield from these unnaturalparity levels (2^{-}at 8.88 MeV in O^{16} and at 4.97 MeV in $\mathrm{Ne}^{20}: 3^{+}$at 5.22 MeV in Mg^{24} and at 6.27 MeV in Si^{28}). The angular distributions show clear diffraction pattern. We are considering that the yields from these levels would be brought by a successive multiple excitations and/or an exchange process most probably (see detailed discussion in ref 6.).

For other levels of natural parity, the phase rule in Blair's inelastic diffraction scattering ${ }^{133}$ seems to be fairly well satisfied with some exception. In general, a clear out-of-phase relation in the angular distribution was observed between the scattering from ground state $\left(0^{+}\right)$and the lowest excited level of 2^{+}. Where the level has, or seems to have, odd spin-parity, the phase relation is in-phase.

The exception is 4^{+}level, at 10.34 MeV in O^{16}, at 4.25 MeV in Ne^{20} and at 6.00 MeV in Mg^{24}. They show some systematic deviations from the phase rule and resemble to each other in the shape of the angular distribution. These facts are considered to be showing some common nature in the structure of the 4^{+} levels in the light nuclei, but a clear explanation has not been made.

Some anomalously large yields were observed in Si^{28} (from a doublet at 6.88 MeV), contradicting current assignment of spin parities by the $\beta-\gamma$ spectroscopy. The doublet (6.88 MeV and $6.89-\mathrm{MeV}$) is considered to consist of two states of 4^{+}and $2^{-},{ }^{16)}$ respectively. As mentioned above, the yield from unnatural-parity states is relatively small. The large cross section of the (α, α^{\prime}) scattering from the doublet should be considered to be mainly brought from the level of which spin is 4^{+}. The yield from 4^{+}levels are relatively small in other cases in light unclei ${ }^{7}$. Moreover the out-of-phase relation of the yield from this level to that

$$
(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right) \text { Scattering from } \mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28} \text { and } \mathrm{P}^{31}
$$

of ground state seems to inhibit an even parity to this level. Considering from relatively large yield and the phase relation, one of the doublet seems to prefer an negative parity and an odd number of spin, e. g. collective octupole vibration $\left(3^{-}\right)$from the result of the $\left(\alpha, \alpha^{\prime}\right)$ scattering. However, the assignment of such a spin-parity has not been reported from experiments of $\beta-\gamma$ decays.

3-3. The Result on P^{31}

Experiments of the (α, α^{\prime}) scattering from odd-A nuclei in the mass region 20 to 30 are relatively little. The nucleus P^{35} was investigated in the (α, α^{\prime}) scattering for comparison with the (p, p^{\prime}) scattering. The latter scattering had been intensively examined by our group in the energy region of $6.5 \sim 14 \mathrm{MeV}^{14}{ }^{15}$.

The yields from the first excited level at 1.265 Mey ($3 / 2^{+}$) at angles of 32.5° to 45° were overlapped with that from carbon contaminations. The differential cross sections at these angles were obtained by a subtraction of contaminated peaks using the angular distribution of carbon measured separately at the same incident energy.

The integrated cross sections of α_{1}^{\prime} and $\alpha_{2}{ }^{\prime}$ from 20° to $102.5^{\circ} \mathrm{CM}$ are 2.6 mb and 2.4 mb respectively of which errors are $\pm 10 \%$. They have in-phase relation to each other and out-of-phase to the pattern of the elastic scattering.

The yield from the first and the second level in the (p, p^{\prime}) scattering resemble each other in the angular distribution as well as in the case of the (α, α^{\prime}) scattering. The integrated cross section of $p_{1}{ }^{\prime}$ and $p_{2}{ }^{\prime}$ are almost the same, but the former is slightly larger than the latter in the low energy regions and is smaller than the latter in higher regions.

ACKNOWLEDGEMENTS

The authors express sincere thanks to Professors K. Kimura and Y. Uemura for their encouragement throughout the course of this work. Thanks are also due to the members of this laboratory for their stimulating discussions on the results.

Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{gathered} \text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	$\begin{aligned} & \text { SPIN } \\ & \& \\ & \text { PARITY } \end{aligned}$
B^{11}	28.3	0	3/2-
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}}$ in $\mathrm{mb} / \mathrm{ster}$.		$\begin{aligned} & \text { Error* } \\ & \text { in } \mathrm{mb} / \mathrm{ster} \text {. } \end{aligned}$
20.4	137.1		1.1
23.8	19.9		0.4
27.1	69.1		0.4
30.5	99.9		0.4
33.8	95.4		0.4
37.2	85.4		0.4
40.5	27.1		0.2
43.8	12.5		0.1
47.0	6.13		0.10
50.3	7.50		0.10
53.5	8.82		0.10
56.7	8.37		0.11
59.9	5.92		0.08
63.0	3.46		0.07
66.2	1.66		0.04
69.2	1.57		0.05
72.3	2.86		0.05
75.3	5.48		0.05
78.3	6.97		0.09
81.3	6.61		0.11
84.2	5.74		0.10
87.1		. 25	0.09

$\begin{gathered} \text { TARGET } \\ \text { NUCLEUS } \end{gathered}$	$\begin{gathered} \text { INCIDENT } \\ \text { ENERGY } \\ (\mathrm{MeV}) \end{gathered}$	$\begin{aligned} & \text { Q-VALUE } \\ & \text { OF THE } \\ & \text { LEVEL } \\ & \text { (MeV) } \end{aligned}$	$\begin{aligned} & \text { SPIN } \\ & \& \\ & \text { PARITY } \end{aligned}$
B^{11}	28.3	-2.14	1/2-
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}}$$\text { in } \mathrm{mb} / \mathrm{ster} \text {. }$		$\begin{gathered} \text { Error } \\ \text { in } \mathrm{mb} / \mathrm{ster} . \end{gathered}$
20.7		0.93	0.16
24.1		0.792	0.079
27.5		0. 564	0.065
30.9		0. 582	0.067
34.3		0.596	0.060
37.7		0.801	0.054
41.1		0.751	0.049
44.4		0.670	0.032
47.7		0.535	0.034
51.0		0.425	0.037
54.3		0.551	0.030
57.5		0.510	0.029
60.7		0.381	0.024
63.9		0.191	0.022
67.1		0.126	0.015
70.2		0.207	0.027
73.3		0.335	0.021
76.4		0.514	0.029
79.4		0.597	0.034
82.4		0.425	0.044
88.2		0.522	0.048

*The statistical error.

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{aligned} & \text { Q-VALUE } \\ & \text { OF THE } \\ & \text { LEVEL } \\ & \text { (MeV) } \end{aligned}$	SPIN $\&$ PARITY
B^{11}	28.3	-4.46	5/2-
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$		$/ \mathrm{d} \Omega)_{\mathrm{cm}}$ b/ster.	Error in $\mathrm{mb} / \mathrm{ster}$.
21.1		0.4	0.3
24.6		8.89	0.13
28.1		6.81	0.12
31.5		4.34	0.10
35.0		3.37	0.09
38.4		3.28	0.09
41.8		3.18	0.08
45.2		3.55	0.07
48.6		3.22	0.08
52.0		2.69	0.07
55.3		1.93	0.06

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN $\stackrel{\&}{\text { PARI }}$
B^{11}	28.3	-5.03	(1/2,3/2)
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$		$\mathrm{d} \Omega)_{\mathrm{cm}}$ b/ster.	$\begin{gathered} \text { Error } \\ \text { in } \mathrm{mb} / \mathrm{ster} . \end{gathered}$
21.2		1.84	0.18
24.7		1.92	0.11
28.2		1.85	0.12
31.7		1.57	0.10
35.2		1.54	0.09
38.6		1.28	0.07
42.1		1.39	0.07
45.5		1.22	0.06
48.9		1.14	0.07
52.2		1.55	0.08
55.6		1.51	0.07

$(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right)$ Scattering from $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31}

$\begin{gathered} \text { TARGET } \\ \text { NUCLEUS } \end{gathered}$	INCIDENT ENERGY (MeV)	$\begin{gathered} \hline \text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	$\begin{aligned} & \text { SPIN } \\ & \& \\ & \text { PARITY } \end{aligned}$
B^{11}	28.3	$\begin{aligned} & -6.76 \\ & -6.81 \end{aligned}$	$\begin{gathered} 7 / 2- \\ (3 / 2+) \end{gathered}$
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega) \mathrm{cm}$ in $\mathrm{mb} /$ ster.		Error in $\mathrm{mb} /$ ster.
21.6	7.35		0.21
25.2	6.20		0.12
28.7	4.44		0.10
32.3	2.96		0.09
35.8	2.90		0.09
39.3	2.66		0.09
42.8	2.68		0.08
46.3	3.35		0.07
49.7	2.60		0.08
53.1	2.30		0.08
56.5	2.14		0.06

$\left.\begin{array}{ccc}\hline \begin{array}{c}\text { TARGET } \\ \text { NUCLEUS }\end{array} & \begin{array}{c}\text { INCIDENT } \\ \text { ENERGY } \\ (\mathrm{MeV})\end{array} & \begin{array}{c}\text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ (\mathrm{MeV})\end{array}\end{array} \begin{array}{c}\text { SPIN } \\ \text { PARITY }\end{array}\right]$

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN $\&$ PARITY
C^{12}	28.4	0	$0+$
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$		$\begin{aligned} & / \mathrm{d} \Omega)_{\mathrm{cm}} \\ & \mathrm{ib} / \mathrm{ster} . \end{aligned}$	$\begin{gathered} \text { Error } \\ \text { in } \mathrm{mb} / \mathrm{ster} \text {. } \end{gathered}$
20.0		-	-
23.3		-	--
26.5		189.4	0.96
29.8		274.8	1.2
33.1		230.8	1.1
36.3		167.5	0.8
39.5		93.0	0.5
42.8		45.8	0.4
46.0		33.1	0.3
49.2		38.3	0.3
52.4		40.0	0.5
55.5		34.0	0.3
58.6		25.9	0.2
61.7		15.8	0.08
64.8		7.91	0.06
67.8		2.86	0.05
70.8		0.461	0.018
73.8		0.740	0.026
76.8		2.69	0.051
79.7		4.99	0.067
82.6		5.66	0.05
85.4		5.32	0.08
88.2		3.64	0.07
91.0		1. 60	0.05
93.8		2.11	0.05
96.5		3.31	0.14
99.2		6.26	0.15

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN PARITY
C^{12}	28.4	-4.43	$2+$
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$	$\begin{aligned} & (\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}} \\ & \text { in } \mathrm{mb} / \mathrm{ster} . \end{aligned}$		$\begin{aligned} & \text { Error } \\ & \text { in } \mathrm{mb} / \mathrm{ster} \text {. } \end{aligned}$
20.6	24.8		0.6
24.0	- 30.1		0.6
27.4	$4 \quad 22.9$		0.4
30.7	718.3		0.4
34.1	14.4		0.4
37.4	416.5		0.3
40.8	- 21.4		0.4
44.1	- 27.9		0.4
47.4	31.2		0.4
50.7	32.9		0.4
53.9	- 27.8		0.4
57.1	122.0		0.3
60.3	318.6		0.3
63.5	-18.4		0.3
66.7	22.4		0.4
69.8	$8 \quad 24.8$		0.4
72.9	- 25.7		0.4
75.9	- 21.8		0.4
78.9	16.8		0.3
81.9	12.6		0.5
84.8	$8 \quad 10.5$		0.3
87.7	12.6		0.3
90.6	617.1		0.3
93.4	- 21.5		0.4
96.2	21.8		0.4
98.9	$\begin{aligned} & 19.7 \\ & 13.7 \end{aligned}$		0.4
101.6			0.2

Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

$(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right)$ Scattering from $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31}

[^1]Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

TARGET NUCLEUS	$\begin{gathered} \text { INCIDENT } \\ \text { ENERGY } \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \text { Q VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	SPIN \& PARITY
O^{16}	27.3	-10.34	$4+$
θ_{cm} in degrees		$\begin{aligned} & \mathrm{d} \Omega)_{\mathrm{em}} \\ & \mathrm{lb} / \mathrm{ster} . \end{aligned}$	Error in $\mathrm{mb} /$ ster.
20.1		0. 824	0.256
23.4		. 14	0.16
26.7		. 38	0.14
30.0		. 33	0.12
33.3		. 27	0.11
36.5		. 18	0.09
39.8		0. 903	0.085
43.0		0. 883	0.070
46.3		. 16	0.08
49.5		. 20	0.05
52.7		0.921	0.058
55.8		0. 678	0.048
58.9		0. 355	0.035
62.0		0.273	0.033
65.1		0. 202	0.033
68.2		0.234	0.057
71.2		0.397	0.059
$7 \overline{7.2}$		$\overline{77}$	0.71
80.1		1.97	0.12

TARGET IN NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{gathered} \text {-QVALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	$\begin{aligned} & \text { SPIN } \\ & \& \\ & \text { PARITY } \end{aligned}$
Ne^{20}	27.3	0	$0+$
$\begin{gathered} \theta_{\mathrm{cma}} \\ \text { in degrees } \end{gathered}$		$\begin{aligned} & / \mathrm{d} \Omega)_{\mathrm{em}} \\ & \mathrm{ib} / \mathrm{ster} . \quad \text { in } \end{aligned}$	Error in mb/ster.
14.5		547.1	2.6
18.0		209.0	1.0
21.0		10.4	0.8
23.9		75.3	0.9
26.9		142.1	0.8
29.9		55.0	0.3
32.8		6.51	0.11
35.7		5.94	0.10
38.7		23.7	0.2
41.6		33.7	0.3
44.5		23.0	0.2
47.4		10.3	0.1
50.3		2.26	0.05
53.1		0.877	0.032
56.0		2.78	0.05
58.8		4.27	0.07
61.6		4.02	0.06
64.4		2.51	0.05
67.2		1.19	0.04
70.0		0.573	0.022
72.2		0.847	0.032

$(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right)$ Scattering from $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31}

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{gathered} \text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	$\mathrm{SPIN}_{\&}$ PARITY
Ne^{20}	27.3	-4.25	$4+$
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in } \operatorname{degr} \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}}$ in $\mathrm{mb} /$ ster.		$\begin{aligned} & \text { Error } \\ & \mathrm{mb} / \text { ster. } \end{aligned}$

18.3	2.06	0.18
21.3	3.86	0.21
24.3	3.29	0.19
27.4	4.02	0.19
30.4	3.04	0.11
33.4	2.02	0.07
36.4	1.34	0.06
39.4	1.14	0.05
42.3	1.02	0.07
45.3	0.967	0.061
48.2	0.686	0.040
51.1	0.367	0.026
54.0	0.232	0.023
56.9	0.0934	0.0211
59.8	0.274	0.021
62.6	0.491	0.025
65.4	0.778	0.031
68.3	0.858	0.033
71.1	0.807	0.026
73.9	0.667	0.029

| TARGET |
| :---: | :---: | :---: | :---: |
| NUCLEUS | | INCIDENT |
| :---: |
| ENERGY |
| (MeV) | | Q-VALUE
 OF THE
 LEVEL
 (MeV) | SPIN
 | |
| :---: | :---: | :---: |
| Ne^{20} | 27.3 | -4.97 |

Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

$(\alpha, \alpha),\left(\alpha, \alpha^{\prime}\right)$ Scattering from $\mathrm{B}^{11}, \mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{O}^{16}, \mathrm{Ne}^{20}, \mathrm{Mg}^{24}, \mathrm{Si}^{28}$ and P^{31}

TARGET. NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{aligned} & \text { Q-VALUE } \\ & \text { OF THE } \\ & \text { LEVEL } \\ & \text { (MeV) } \end{aligned}$	SPIN $\stackrel{\&}{\text { PARITY }}$	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	$\begin{gathered} \text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	SPIN $\&$ PARITY
Mg^{24}	28.4	-6.00	$4+$	Mg^{24}	28.4	-6.44	$0+$
θ_{cm} in degrees	$(\mathrm{d} \sigma)$ $\text { in } \mathrm{m}$	$\mathrm{d} \Omega) \mathrm{em}$ b/ster.	Error in $\mathrm{mb} /$ ster.	$\theta \mathrm{cm}$ in degre		$\mathrm{d} \Omega$) cm b/ster.	Error in $\mathrm{mb} /$ ster.
23.8		. 55	0.08	23.8		. 67	0.07
26.7		. 17	0.09	26.8		. 31	0.06
29.7		. 19	0.06	29.7		. 48	0.06
32.6		. 73	0.07	32.7		. 74	0.07
35.5		. 04	0.05	35.6		. 05	0.05
38.4		. 09	0.04	38.5		. 776	0.035
41.3		. 25	0.06	41.4		. 395	0.054
44.2		-	-	44.3		-	-
47.1		. 810	0.047	47.2		- 531	- 010
49.8		. 628	0.030	50.1		. 531	0.019
52.8		. 484	0.019	52.9		-	. 010
55.7		. 295	0.016	55.8		. 295	0.019
58.5		. 179	0.012	58.6		0097	- 0120
61.3		. 223	0.014	61.4		. 0927	0.0122
64.1		. 324	0.014	64.2		. 0541	0.0100
66.8		. 434	0.016	67.0		. 0675	0.0115
69.6		. 605	0.013	69.7		. 144	0.009
72.3		. 648	0.017	72.5		. 176	0.013
75.0		. 483	0.017	75.2		. 141	0.012
77.7		. 372	0.011	77.9		. 110	
80.4		. 275	0.019	80.6		. 0616	0.0098
83.1		. 245	0.015	83.2		. 0330	0.0083
85.7		. 240	0.014	85.9		. 0255	0.0072
		Q-VALUE				Q-VALUE	
TARGET	INCIDENT	OF THE	$\mathrm{SPIN}_{\&}$	TARGET		OF THE	
NUCLEUS	$\begin{gathered} \text { ENERGY } \\ (\mathrm{MeV}) \end{gathered}$	LEVEL (MeV)	$\stackrel{\&}{\text { PARITY }}$	NUCLEUS	ENERGY (MeV)	LEVEL (MeV)	$\begin{aligned} & \& \\ & \text { PARITY } \end{aligned}$
Si^{28}		0	0	Si^{28}	28.3	-1.772	$2+$
Si		0		θ_{cm}		d 2 em	Error
θ_{cm}	$(\mathrm{d} \sigma)$	$\mathrm{d} \Omega)_{\mathrm{cm}}$	Error	in degre		/ster.	in mb/ster.
in degrees	s in m	$\mathrm{b} / \text { ster. }$	in mb/ster.	14.3		17.2	2.0
17.1		36.3	6.2	17.2		61.9 55	1.1
20.0		48.2	4.3	20.1 22.9		35.8 12.8	0.8
22.8		63.4	1.8	22. 8		12.8	0.15
25.7		96.0	1.0	25.8		12.8	0.15
28.5		09.2	0.5	$\frac{28.6}{31.5}$		12.3 20.3	0.4
31.3		19.8	0.2	34.3		16.9	0.2
34.1		21.1	0.2	37.1		9.10	0.20
36.9		56.6	0.4	39.9		4.25	0.10
39.7		63.5	0.4	41.3		3.21	0.09
42,5		35.0	0.3	42.7		4.07	0.09
45.2		11.8	0.2	45.5		6.33	0.12
48.0		1.46	0.04	48.3		7.57	0.10
50.8		5.91	0.09	51.0		5.94	0.08
53.6		11.7	0.1	53.8		3.26	0.07
56.3		12.9	0.1	56.5		2.17	0.05
			0.10	59.3		1.99	0.05
59.0		8.72	0.10	62.0		2.79	0.05
61.7		3.53 0.848	0.06 0.025	64.7		3.06	0.05
64.4		0.848 0.698	0.025 0.023	67.4		3.11	0.05
69.8		1.598 1.56	0.03	70.1		2.71	0.05
				72.7		2.10	0.04
72.4		2.28	0.04	75.4		1.05	0.03
75.1		2.11	0.04	78.0		0.740	0.024
77.7		1.30	0.03	80.6		0.736	0.024
80.3		0.686	0.023	83.2		1.23	0.03
82.9		0.461	0.017	85.8		1.69	0.03
				88.4		1. 73	0.04
				91.0		1.29	0.03
				93.5		0.719	0.024
				96.0		0.536	0.018
				98.5		0.885	0.025

Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

$\begin{gathered} \text { TARGET } \\ \text { II } \\ \text { NUCLEUS } \end{gathered}$	INCIDENT ENERGY (MeV)	$\begin{aligned} & \text { Q-VALUE } \\ & \text { OF THE } \\ & \text { LEVEL } \\ & \text { (MeV) } \end{aligned}$	SPIN $\stackrel{\&}{\text { PARITY }}$	$\begin{array}{cc} \text { TARGET } & \text { IN } \\ \text { NUCLEUS } \end{array}$	INCIDENT ENERGY (MeV)	$\begin{gathered} \text { Q-VALUE } \\ \text { OF THE } \\ \text { LEVEL } \\ \text { (MeV) } \end{gathered}$	SPIN $\&$ PARITY
P^{31}	28.3	-1.256	$3 / 2+$	P^{31}	28.3	-2.232	$5 / 2+$
$\begin{gathered} \theta_{\mathrm{cm}} \\ \text { in degrees } \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}}$ in $\mathrm{mb} / \mathrm{ster}$.		Error in mb/ster.	$\begin{gathered} \theta_{\text {cm }} \\ \text { in degrees } \end{gathered}$	$(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\mathrm{cm}}$ in $\mathrm{mb} /$ ster.		Error in $\mathrm{mb} / \mathrm{ster}$.
22.5		4.15	0.05	22.4		1.97	0.04
25.3		4.37	0.06	25.2		1.28	0.02
28.1		2.36	0.08	28.0		2.02	0.02
30.9		1.57	0.04	30.7		2.07	0.02
33.6		-. 835	0.04	33.5		1.31	0.02
36.4		0. 797	0.030	36.3		0.573	0.013
39.2		1.13	0.03	39.0		0.334	0.018
41.6		1.29	0.04	41.8		0.451	0.019
44.7		1.27	0.04	44.5		0.640	0.021
47.4		0. 426	0.008	47.3		0.429	0.008
50.1		0.272	0.009	50.0		0.314	0.021
52.9		0.115	0.006	52.7		0.114	0.010
55.6		0.159	0.007	55.4		0.125	0.007
58.3		0.187	0.006	58.1		0.288	0.015
61.0		0. 253	0.009	60.8		0.354	0.010
63.6		0.199	0.006	63.4		0.329	0.007
66.3		0.130	0.005	66.1		0.250	0.006
68.9		0.0630	0.0031	68.7		0.139	0.005
71.6		0.0438	0.0026	71.4		0.0895	0.0038
74.2		0.0619	0.0032	74.0		0.0741	0.0035
76.8		0.0790	0.0036	76.6		0.0839	0.0038
79.4		. 0.0638	0.0026	79.2		0.0909	0.0031
82.0		0.0456	0.0029	81.8		0.0938	0.0033
						- 07	- $\overline{0025}$
87.2		0.0260	0.0015	86.9		0. 0730	0.0025
-		-	-	-		-	-
92.2		0.0484	0.0021	92.0		0.0742	0.0026
97.3		0.0421	$0 . \overline{0020}$	97.0		$0 . \overline{0809}$	$0 . \overline{0027}$
-		-	-	-		-	-
102.2		0.0985	0.0030	102.0		0.1025	0.0031

Jun Kokame, Kiyoji Fukunaga, Hitoshi Nakamura and Nobuyuki Inoue

REFERENCES

(1) N. Austern, R. M. Drisko, E. Rose and G. R. Satchler, Phys. Rev. 128, 733 (1962).
(2) R. H. Bassel, G. R. Satchler, R. M. Drisko and E. Rost, Phys. Rev. 128, 2693 (1962).
(3) E. Rost, Phys. Rev. 128, 2708 (1962).
(4) B. Buck, Phys. Rev. 127, 940 (1962).
(5) H. Taketani, "Genshikaku Kenkyu"-circular in Japan- 8, 604 (1964).
(6) J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, Phys. Letters, 8, 342 (1964).
(7) J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, to be published in J. Phys. Soc. Japan, 20, No. 4 (1965).
(8) J. Kokame, I. Fukunaga and H. Nakamura. Phys. Letters. 14, 234(1965).
(9) J. N. McGruer, E. K. Warburton and R. S. Bender, Phys. Rev. 100, 235 (1956).
(10) S. Hinds and R. Middleton, Proc. Phys. Soc, (London) 74, 775 (1959).
(11) M. H. MacFarlane and J. B. French, Rev. Mod. Phys. 32, 567 (1960).
(12) T. Lauritzen and F. Ajzenberg-Selove, "Nuclear Data Sheet, Energy Levels of Light Nuclei", May 1962.
P. M. Endt and C. Van der Leun, Nuclear Physics, 34, 1 (1962),
(13) J. S. Blair, Phys. Rev. 115, 982 (1959).
(14) J. Kokame, J. Phys. Soc. Tapan, 16, 2101 (1961).
(15) J. Kokame, R. Ishiwari, K. Miyake, J. Muto, H. Itoh, T. Ohama, K. Ueda, S. Tahira and K. Baba, "Genshikaku Kenkyu"-circtar in Japan-, 7, 73, 340 (1963).
(16) Y. P. Antoutiev, D. A. E Darwish, O. E. Badawy, L. M. El-Nadi and P. V. Sorokin, Nuclear Physics, 56, 401 (1964).
(17) S. G. Nilsson, Danske Vid. Selsk. Fys. Mat. Medd. 29, No. 16 (1955).
(18) A. De-Shalit, Phys. Rev. 122, 1530 (1961).

[^0]: ＊小免 疸，福永清二
 ＊＊中 村 萿，Department of Physics，Faculty of Science，Kyoto University，Kyoto． ＊＊＊井上信幸，Present address：Institute of Plasma Physics，Nagoya University，Nagoya．

[^1]: * Contributions from the level are considered to be small.

