Differential Cross Sections of (α, α) and (α, α') Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

Jun Kokame*, Kiyoji Fukunaga*, Hitoshi Nakamura** and Nobuyuki Inoue***

(Kimura Laboratory)

Received June 15, 1964

Numerical differential cross sections of elastically and inelastically scattered alphaparticles are presented. Target nuclei are B^{11} , C^{12} , C^{13} , O^{16} , Ne^{20} , Mg^{24} , Si^{28} and P^{31} . The energy of the incident particles is about 28.5 Mev and the beam of alpha-particles was obtained from a 105 cm cyclotron of Kyoto University.

1. INTRODUCTION

Elastic and inelastic scattering of alpha-particles are useful reactions to investigate the structure of nuclear levels and the mechanisms of the scattering. Recently, the (α, α') scattering was intensively investigated by many researchers for intermediate nuclei $(A\sim50)$ in the vibrational region. According to the development in methods of analysis using electronic computers operated by a code of DWBA or other theories¹⁻⁴⁰, the excited states of the nuclei and the mechanism of the scattering have been successfully analyzed in many cases.

As the (α, α') scattering excites the nucleus preferentially in a collective mode, this property seems to be useful to investigate collective levels in light nuclei, because recent theoretical analyses show a considerable success in understanding levels in light nuclei by collective models as well as in heavy nuclei.

We have been investigating the (α, α') scattering of light nuclei, and the numerical values of differential corss sections of some nuclei obtained up-to-date are presented here with a brief description and discussion on each result.

2. EXPERIMENTAL PROCEDURES

An alpha-particle beam accelerated up to 28.5 MeV by a 105 cm F. F. cyclotron in our laboratory was brought to a 52 cm scattering chamber through a pair of quadrupole magnets. The energy spread of the beam is considered to be less than 150 keV.

Scattered alpha-particles were detected with a solid state detector, RCA C-4-250-2.0. A charge sensitive low noise preamplifier for the detector was designed and made by ourselves. Usual electronics were used to analyze the energy spectrum of scattered alpha-particles.

^{*} 小 亀 淳, 福永清二

^{**} 中村 矗, Department of Physics, Faculty of Science, Kyoto University, Kyoto.

^{***} 井上信幸, Present address: Institute of Plasma Physics, Nagoya University, Nagoya.

 $(\alpha, \alpha), (\alpha, \alpha')$ Scttering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

The target nuclei in the present results are B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹.

For boron, a target was made by sedimentation of 96.7% enriched B¹¹ powder on a thin gold backing of which thickness is 0.2 mg/cm^2 . The thickness was estimated by weighing as 1.5 mg/cm^2 .

For carbon (C^{12}), a self-supporting carbon foil was made by a cracking method⁵ from methane gas. The thickness of the foil was 0.50 mg/cm². A Mylar film was also used.

The target of C^{13} was made by the cracking method using 56% enriched methane gas. The thickness was 0.38 mg/cm².

Natural gas of oxygen and neon were used for O^{16} and Ne^{20} in a gas target chamber in which the pressure was about 30 cmHg.

For magnesium, a foil of which thickness was 1.00 mg/cm² was made by evapolation in vacuum from metalic powder in natural abundance.

As a silicon target, unbacked silicon foil made by etching obtained from Toshiba Co. was used. This foil had relatively poor uniformity so that the absolute value of the measurement was calibrated by comparison with results obtained from SiO_2 -foils of which thickness were 3.25 and 2.14 mg/cm².

In last, a phosphorous target (3.50 mg/cm^2) was made by sedimentation of redphosphorous powder in alcohol on a thin gold foil.

3. RESULTS AND DISCUSSIONS

Numerical differential cross sections are shown in the following tables.

As the results and discussions had been reported elsewhere⁶⁻⁸⁰ in detail for each nucleus, here we discuss only on some interesting results.

3-1. Results on B^{11} , C^{12} and C^{13}

The yield from the second level (4.46 MeV, $5/2^{-}$) and the fourth level (6.76 MeV, $7/2^{-}$) in B¹¹ are relatively large compared with that of the first and the third level. Their shapes of the angular distribution are quite close to each other.

These aspects can be understood reasonably by the unified model¹⁷ of the B¹¹ nucleus, in which model the second and the third state are belonging to a rotational band of the ground state $K=3/2^{-}$. Thus the levels at 4.46 and 6.76 MeV seem to have collective nature and the relatively large yield.

As for the result for C^{12} , the scattering from the first excited state 2⁺, is interesting in comparison with inelastic scatterings from B¹¹. The latter nucleus can be considered alternatively by a model of the excited core^{8,18)}. In this model the four low-lying levels of B¹¹ could be considered to the multiplet split out from the first excited state of C¹² (the core nucleus) coupled to a hole of which spin is 3/2 in the lp-orbit in the core. The both scatterings from B¹¹ and C¹² would have some resemblances in the shape of the angular distrbutions and their magnitude of the elastic and inelastic scattering. However, the experimental results show poor correspondence by each other so that the excited core model would be an over simplified model for such a light nucleus as boron.

As for C^{13} , the second excited state at 3.68 MeV (3/2⁻) seems to be the first excited state of the ground-state rotational band with $K=1/2^{-}$.

Jun KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

There is two positive parity states nearby the level, namely 3.09 MeV $(1/2^+)$ and 3.85 MeV $(5/2^+)$. These levels had been understood as single particle levels having one nucleon in 2s- and ld-shell respectively, because a large reduced width in the stripping reaction $C^{12}(d,p) C^{13-9-11}$ had been obtained. In the latter reaction the yield leading the residual nucleus to the second level (3.68 MeV, negative parity) is small.

In (α, α') scattering, an enhanced excitation of collective levels can be expected. If the second state is actually collective, the yield from this level in the (α, α') scattering would be larger than that from other levels in contrast with the case of the stripping reaction. The result showed that the prediction is valid, and the second level of C¹³ seems to be a collective one belonging to the rotational band of the ground state.

3-2. Results on O¹⁶, Ne²⁰, Mg²⁴ and Si²⁸

These four nuclei, of which atomic numbers are 4n (n=4,5,6 and 7, respectively), have low-lying levels of which the spin-parity is relatively well established¹²⁾. Among others, these nuclei have unnatural-parity states (e. g. 2⁻, 3⁺ etc.). The excitation of an unnatural-parity state of even-even nuclei by alpha-particles is very interesting to investigate the scattering mechanisms and the structure of the level, because the level can not be excited by ordinary direct interactions in a single step transition.

The experimental results show some appreciable yield from these unnaturalparity levels (2⁻ at 8.88 MeV in O¹⁶ and at 4.97 MeV in Ne²⁰: 3⁺ at 5.22 MeV in Mg²⁴ and at 6.27 MeV in Si²⁸). The angular distributions show clear diffraction pattern. We are considering that the yields from these levels would be brought by a successive multiple excitations and/or an exchange process most probably (see detailed discussion in ref 6.).

For other levels of natural parity, the phase rule in Blair's inelastic diffraction scattering¹³⁾ seems to be fairly well satisfied with some exception. In general, a clear out-of-phase relation in the angular distribution was observed between the scattering from ground state (0^+) and the lowest excited level of 2⁺. Where the level has, or seems to have, odd spin-parity, the phase relation is in-phase.

The exception is 4^+ level, at 10.34 MeV in O¹⁶, at 4.25 MeV in Ne²⁰ and at 6.00 MeV in Mg²⁴. They show some systematic deviations from the phase rule and resemble to each other in the shape of the angular distribution. These facts are considered to be showing some common nature in the structure of the 4^+ levels in the light nuclei, but a clear explanation has not been made.

Some anomalously large yields were observed in Si²⁸ (from a doublet at 6.88 MeV), contradicting current assignment of spin parities by the β - γ spectroscopy. The doublet (6.88 MeV and 6.89-MeV) is considered to consist of two states of 4⁺ and 2⁻,¹⁰ respectively. As mentioned above, the yield from unnatural-parity states is relatively small. The large cross section of the (α, α') scattering from the doublet should be considered to be mainly brought from the level of which spin is 4⁺. The yield from 4⁺ levels are relatively small in other cases in light uncleiⁿ. Moreover the out-of-phase relation of the yield from this level to that

 $(\alpha, \alpha), (\alpha, \alpha')$ Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

of ground state seems to inhibit an even parity to this level. Considering from relatively large yield and the phase relation, one of the doublet seems to prefer an negative parity and an odd number of spin, e. g. collective octupole vibration (3⁻) from the result of the (α, α') scattering. However, the assignment of such a spin-parity has not been reported from experiments of β - γ decays.

3-3. The Result on P^{31}

Experiments of the (α, α') scattering from odd-A nuclei in the mass region 20 to 30 are relatively little. The nucleus P^{31} was investigated in the (α, α') scattering for comparison with the (p, p') scattering. The latter scattering had been intensively examined by our group in the energy region of $6.5 \sim 14 \text{ MeV}^{14}$.

The yields from the first excited level at 1.265 Mey $(3/2^+)$ at angles of 32.5° to 45° were overlapped with that from carbon contaminations. The differential cross sections at these angles were obtained by a subtraction of contaminated peaks using the angular distribution of carbon measured separately at the same incident energy.

The integrated cross sections of $\alpha_{1'}$ and $\alpha_{2'}$ from 20° to 102.5° CM are 2.6 mb and 2.4 mb respectively of which errors are $\pm 10\%$. They have in-phase relation to each other and out-of-phase to the pattern of the elastic scattering.

The yield from the first and the second level in the (p, p') scattering resemble each other in the angular distribution as well as in the case of the (α, α') scattering. The integrated cross section of p_1' and p_2' are almost the same, but the former is slightly larger than the latter in the low energy regions and is smaller than the latter in higher regions.

ACKNOWLEDGEMENTS

The authors express sincere thanks to Professors K. Kimura and Y. Uemura for their encouragement throughout the course of this work. Thanks are also due to the members of this laboratory for their stimulating discussions on the results.

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARC NUCL		INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
B11	28.3	0	3/2 —	B^1	1	28.3	-2.14	1/2 -
$ heta_{ m cm}$ in degre		/dΩ) _{em} lb/ster.	Error* in mb/ster.	in	θ_{cm} legre		/dΩ) _{em} nb/ster.	Error in mb/ster.
20.4 23.8 27.1 30.5 33.8 37.2	69 99 95	7.1 0.9 0.1 0.9 5.4 5.4	$ \begin{array}{c} 1.1\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4 \end{array} $		20.7 24.1 27.5 30.9 34.3 37.7		0.93 0.792 0.564 0.582 0.596 0.801	$\begin{array}{c} 0.16 \\ 0.079 \\ 0.065 \\ 0.067 \\ 0.060 \\ 0.054 \end{array}$
40.5 43.8 47.0 50.3	27 12 6	2.1 2.5 3.13 7.50	0.2 0.1 0.10 0.10 0.10		$\begin{array}{c} 41.1 \\ 44.4 \\ 47.7 \\ 51.0 \end{array}$		0.751 0.670 0.535 0.425	$\begin{array}{c} 0.\ 049\\ 0.\ 032\\ 0.\ 034\\ 0.\ 037 \end{array}$
53.5 56.7 59.9 63.0 66.2	8 5 3	8.82 3.37 5.92 3.46 66	$\begin{array}{c} 0.10\\ 0.11\\ 0.08\\ 0.07\\ 0.04 \end{array}$		54.3 57.5 30.7 53.9 57.1		0.551 0.510 0.381 0.191 0.126	$\begin{array}{c} 0.\ 030 \\ 0.\ 029 \\ 0.\ 024 \\ 0.\ 022 \\ 0.\ 015 \end{array}$
69.2 72.3 75.3 78.3 81.3	2 5 6	. 57 2.86 5.48 5.97 5.61	$\begin{array}{c} 0.\ 05 \\ 0.\ 05 \\ 0.\ 06 \\ 0.\ 09 \\ 0.\ 11 \end{array}$		70.2 73.3 76.4 79.4 82.4		0.207 0.335 0.514 0.597 0.425	$\begin{array}{c} 0.\ 027 \\ 0.\ 021 \\ 0.\ 029 \\ 0.\ 034 \\ 0.\ 044 \end{array}$
$\begin{array}{c} 84.2\\ 87.1 \end{array}$		5.74 3.25	$0.10 \\ 0.09$		88.2		0.522	0.048

Jun KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

*The statistical error.

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARC NUCL		INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
B11	28.3	-4.46	5/2 —	B^1	1	28.3	-5.03	(1/2,3/2) -
$\theta_{ m cm}$ in degre		′dΩ) _{cm} b/ster.	Error in mb/ster.	in	$ heta_{ m cm}$ degre		ˈdΩ) _{cm} b/ster.	Error in mb/ster.
$21.1 \\ 24.6 \\ 28.1 \\ 31.5 \\ 35.0$		0.4 8.89 6.81 4.34 3.37	$\begin{array}{c} 0.3 \\ 0.13 \\ 0.12 \\ 0.10 \\ 0.09 \end{array}$		21.2 24.7 28.2 31.7 35.2		$\begin{array}{c} 1.84 \\ 1.92 \\ 1.85 \\ 1.57 \\ 1.54 \end{array}$	$\begin{array}{c} 0.18 \\ 0.11 \\ 0.12 \\ 0.10 \\ 0.09 \end{array}$
$38.4 \\ 41.8 \\ 45.2 \\ 48.6 \\ 52.0$		3.28 3.18 3.55 3.22 2.69	0.09 0.08 0.07 0.08 0.07		38.6 42.1 45.5 48.9 52.2		1.28 1.39 1.22 1.14 1.55	$\begin{array}{c} 0.\ 07\\ 0.\ 07\\ 0.\ 06\\ 0.\ 07\\ 0.\ 08 \end{array}$
55.3		1.93	0.06		55.6		1.51	0.07

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
B11	28.3	$-6.76 \\ -6.81$	7/2 - (3/2 +)
θ_{cm} in degre		dΩ) _{em} b/ster.	Error in mb/ster.
21.6 25.2 28.7 32.3 35.8	6 4 2	. 35 . 20 . 44 . 96 . 90	$\begin{array}{c} 0.21 \\ 0.12 \\ 0.10 \\ 0.09 \\ 0.09 \end{array}$
39.3 42.8 46.3 49.7 53.1	2 3 2	. 66 . 68 . 35 . 60 . 30	0.09 0.08 0.07 0.08 0.08
56.5	2	2.14	0.06

1.51.0	ă u i	t	f511	∴12	Ć13	ф1ê	⊅ †20	λ σ24	C:28	1	nat
$(\alpha, \alpha), (\alpha, \alpha')$	Scattering	from	вп,	C ¹² ,	U",	U ,	Ne ²⁰ ,	Mg",	5120	and	P**

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
B11	28.3	-7.30	(5/2 -)
$ heta_{ m cm}$ in degre		ˈdΩ) _{cm} b/ster.	Error in mb/ster.
21.725.328.932.536.0	1 1 1	.59 .98 .76 .20 .12	$\begin{array}{c} 0.19 \\ 0.11 \\ 0.10 \\ 0.08 \\ 0.08 \end{array}$
$\begin{array}{c} 39.5 \\ 43.1 \\ 46.5 \\ 50.0 \\ 53.5 \end{array}$	0 0 0	. 688 . 692 . 295 . 306 . 722	$\begin{array}{c} 0.\ 07\\ 0.\ 07\\ 0.\ 06\\ 0.\ 05\\ 0.\ 07 \end{array}$
56.9	С	. 347	0.06
		1	

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
C12	28.4	0	0 +	C12	28.4	-4.43	2 +
$\theta_{\rm em}$ in degree		′dΩ) _{cm} b/ster.	Error in mb/ster.	θ_{cm} in degree		/dΩ) _{cm} b/ster.	Error in mb/ster.
$\begin{array}{c} 20.\ 0\\ 23.\ 3\\ 26.\ 5\\ 29.\ 8\\ 33.\ 1\end{array}$		 189.4 274.8 230.8	0.96 1.2 1.1	20.6 24.0 27.4 30.7 34.1	3	24.8 0.1 22.9 8.3 4.4	$\begin{array}{c} 0.6 \\ 0.6 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$
36.3 39.5 42.8 46.0 49.2		167.5 93.0 45.8 33.1 38.3	$\begin{array}{c} 0.8 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.3 \end{array}$	$37.4 \\ 40.8 \\ 44.1 \\ 47.4 \\ 50.7$		6.5 1.4 7.9 1.2 2.9	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$
$52.4 \\ 55.5 \\ 58.6 \\ 61.7 \\ 64.8$		$\begin{array}{c} 40.0\\ 34.0\\ 25.9\\ 15.8\\ 7.91 \end{array}$	0.5 0.3 0.2 0.08 0.06	53.9 57.1 60.3 63.5 66.7		7.8 22.0 8.6 8.4 22.4	$\begin{array}{c} 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \end{array}$
67.8 70.8 73.8 76.8 79.7		$\begin{array}{c} 2.86 \\ 0.461 \\ 0.740 \\ 2.69 \\ 4.99 \end{array}$	$\begin{array}{c} 0.\ 05\\ 0.\ 018\\ 0.\ 026\\ 0.\ 051\\ 0.\ 067 \end{array}$	69.8 72.9 75.9 78.9 81.9	2 2 2 1	24.8 25.7 21.8 6.8 2.6	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.5 \end{array}$
82.6 85.4 88.2 91.0 93.8		$5.66 \\ 5.32 \\ 3.64 \\ 1.60 \\ 2.11$	0.05 0.08 0.07 0.05 0.05	84.8 87.7 90.6 93.4 96.2	1 1 2	0.5 2.6 7.1 1.5 1.8	$\begin{array}{c} 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \end{array}$
96.5 99.2		$3.31 \\ 6.26$	$0.14 \\ 0.15$	98.9 101.6		9.7 3.7	$\begin{array}{c} 0.4 \\ 0.2 \end{array}$

TARGET NUCLEUS	INCIDENI ENERGY (MeV)	O WALL	E SFIN L & L DADITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	O VALL	JE SPIN E &
C ¹³	28.4	0	1/2 —	C13	28.4	-3.09	
$\theta_{\rm cm}$ in degree		/dΩ) _{em} nb/ster.	Error in mb/ster.	$\theta_{\rm cm}$ in degr		/dΩ) _{em} nb/ster.	Error in mb/ster.
$\begin{array}{c} 19.(\\ 22.8\\ 26.\\ 29.\\ 32.9\\ 36.\\ 38.9\\ 42.\\ 45.\\ 45.\\ 57.\\ 60.\\ 63.\\ 66.\\ 69.\\ 72.\\ 75.\\ 78.\\ 81.\\ 84.\\ 86.\\ 89.\\ 92.\\ 95.\\ 97.\\ \end{array}$		$\begin{array}{c}$	$\begin{array}{c}\\\\ 1.2\\ 1.6\\ 1.4\\ 1.2\\ 0.8\\ 0.58\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.46\\ 0.36\\ 0.26\\ 0.19\\ 0.18\\ 0.22\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3$	19. 23. 26. 29. 33. 36. 39. 42. 46. 49. 52. 55. 58. 61. 64. 67. 70. 73. 76. 79. 82. 85. 88. 90. 93. 96. 99.	2581368013466778776532974	$\begin{array}{c} 2.08\\ 2.75\\ 2.76\\ 2.92\\ 1.38\\ 0.81\\ 0.45\\ 1.03\\ 1.32\\ 2.00\\ 1.58\\ 1.45\\ 0.90\\ 0.441\\ 1.58\\ 1.45\\ 0.90\\ 0.441\\ 1.01\\ 0.675\\ 1.58\\ 1.61\\ 1.41\\ 1.01\\ 0.500\\ 0.277\\ 0.161\\ 0.161\\ 0.205\\ 0.252\\ 0.275\\ 0.436\end{array}$	$\begin{array}{c} 0.31\\ 0.22\\ 0.19\\ 0.21\\ 0.16\\ 0.13\\ 0.13\\ 0.12\\ 0.13\\ 0.12\\ 0.13\\ 0.14\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.13\\ 0.12\\ 0.048\\ 0.14\\ 0.13\\ 0.13\\ 0.12\\ 0.048\\ 0.14\\ 0.13\\ 0.12\\ 0.099\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.052\\ 0.029\\ 0.059\\ 0.060\\ \end{array}$
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	LEVE (MeV	E SPIN L &) PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALU OF TH LEVEI (MeV	
C ¹³	28.4	-3.68 -3.85	5 5/2 +	C ¹³ 28.4		-6.87	,
$\theta_{\rm cm}$ in degree	ees in r	$d\Omega_{\rm cm}$ nb/ster.	Error in mb/ster.	$\theta_{\rm cm}$ in degr	ees in r	/dΩ) _{em} nb/ster.	Error in mb/ster.
$\begin{array}{c} 20.\\ 23.\\ 29.\\ 29.\\ 33.\\ 36.\\ 39.\\ 42.\\ 46.\\ 55.\\ 58.\\ 61.\\ 55.\\ 58.\\ 61.\\ 71.\\ 75.\\ 85.\\ 88.\\ 91.\\ 94.\\ 99.\\ \end{array}$	3 6 9 2 5 7 9 2 4 5 7 8 9 0 0 1 0 0 9 8 7 5 3 0 7	$\begin{array}{c} 23.3\\ 17.9\\ 12.6\\ 7.14\\ 5.37\\ 7.41\\ 9.28\\ 9.17\\ 8.33\\ 5.50\\ 4.05\\ 3.49\\ 3.79\\ 4.28\\ 4.05\\ 3.79\\ 4.28\\ 4.18\\ 4.23\\ 4.74\\ 5.52\\ 6.80\\ 7.38\\ 6.73\\ 4.97\\ 4.15\\ 3.77\\ 4.81\\ 6.91\\ 8.17\end{array}$	$\begin{array}{c} 0.6\\ 0.4\\ 0.3\\ 0.27\\ 0.26\\ 0.23\\ 0.27\\ 0.23\\ 0.27\\ 0.23\\ 0.20\\ 0.15\\ 0.14\\ 0.16\\ 0.16\\ 0.17\\ 0.18\\ 0.19\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.19\\ 0.16\\ 0.14\\ 0.14\\ 0.14\\ 0.17\\ 0.20\\ 0.20\\ 0.17\\ 0.17\\ 0.20\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.19\\ 0.20\\ 0.17\\ 0.18\\ 0.17\\ 0.18\\ 0.19\\ 0.20\\ 0.17\\ 0.18\\ 0.18\\ 0.$	$\begin{array}{c} 20.\\ 23.\\ 27.\\ 30.\\ 34.\\ 37.\\ 40.\\ 44.\\ 47.\\ 50.\\ 53.\\ 57.\\ 60.\\ 63.\\ 66.\\ 69.\\ 72.\\ 75.\\ 78.\\ 81.\\ 81.\\ 84.\\ 87.\\ 90.\\ 93.\\ 96.\\ 98.\\ 101.\\ \end{array}$	9370 47036 80245 67787 76420 7	3.17 4.35 2.87 2.19 1.00 0.99 1.07 0.99 1.07 0.99 1.04 0.71 1.01 0.92 0.83 1.15 1.32 1.15 0.93 0.86 0.92 0.91 0.97 1.01 0.580 0.647 0.647 0.427 0.555	$\begin{array}{c} 0.38\\ 0.33\\ 0.22\\ 0.18\\ 0.17\\ 0.13\\ 0.14\\ 0.12\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.12\\ 0.13\\ 0.13\\ 0.13\\ 0.12\\ 0.13\\ 0.13\\ 0.12\\ 0.13\\ 0.12\\ 0.13\\ 0.10\\ 0.11\\ 0.11\\ 0.11\\ 0.094\\ 0.093\\ 0.093\\ 0.093\\ 0.088\\ 0.083\\ \end{array}$

Jun KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

**************		.,u) boutte					n an
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
C ¹³	28.4	$-7.50 \\ -7.55 \\ -7.68$	3/2 +	O ¹⁶	27.3	0	0 +
$ heta_{ m cm}$ in degree	ees in n		Error n mb/ster.	$ heta_{ m cm}$ in degr	ees in m		Error n mb/ster.
$\begin{array}{c} 20. \\ 24. \\ 27. \\ 30. \\ 34. \\ 37. \\ 41. \\ 44. \\ 57. \\ 50. \\ 54. \\ 57. \\ 60. \\ 63. \\ 67. \\ 70. \\ 73. \\ 76. \\ 79. \\ 82. \\ 85. \\ 88. \\ 91. \\ 93. \\ 96. \\ 99. \\ 102. \\ \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 5 \\ 9 \\ 3 \\ 6 \\ 0 \\ 3 \\ 6 \\ 9 \\ 2 \\ 4 \\ 6 \\ 8 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 0 \\ 8 \\ 6 \\ 3 \\ \end{array} $	$\begin{array}{c} 8.0\\ 20.4\\ 27.7\\ 6.2\\ 11.5\\ 8.53\\ 6.89\\ 6.21\\ 5.24\\ 5.44\\ 4.79\\ 4.17\\ 3.95\\ 3.77\\ 4.94\\ 5.75\\ 7.02\\ 7.38\\ 6.35\\ 5.82\\ 4.46\\ 3.84\\ 4.07\\ 5.94\\ 7.13\\ 7.52 \end{array}$	0.6 0.5 0.3 0.4 0.3 0.24 0.23 0.20 0.19 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.17 0.18 0.19 0.21 0.21 0.21 0.21 0.19 0.21 0.21 0.21 0.21 0.22 0.21 0.18 0.22 0.21 0.18 0.22 0.21 0.18 0.22 0.21 0.19 0.22 0.21 0.18 0.22 0.21 0.18 0.22 0.21 0.18 0.22 0.21 0.19 0.17 0.18 0.22 0.21 0.19 0.22 0.21 0.19 0.17 0.18 0.22 0.21 0.19 0.17 0.18 0.22 0.21 0.19 0.17 0.18 0.22 0.21 0.18 0.19 0.17 0.18 0.22 0.21 0.18 0.19 0.17 0.18 0.19 0.17 0.18 0.19 0.17 0.18 0.19 0.17 0.18 0.19 0.17 0.18 0.19 0.17 0.18 0.18 0.20 0.23 0.23 0.18	18. 21. 24. 27. 31. 34. 37. 40. 43. 46. 49. 52. 55. 58. 61. 63. 66. 69. 72. 75. 78. 80. 83. 86. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	89911 99118 2222221 22221 1098753 196	$\begin{array}{c} 76.3\\ 51.9\\ 93.5\\ 7.3\\ 39.9\\ 37.6\\ 7.81\\ 4.87\\ 6.4\\ 25.3\\ 25.7\\ 15.1\\ 8.18\\ 2.34\\ 0.549\\ 1.49\\ 3.64\\ 4.18\\ 3.49\\ 1.89\\ 0.825\\ 1.06\\ 2.02\\ 3.79 \end{array}$	$\begin{array}{c} 1.2\\ 0.5\\ 0.6\\ 0.52\\ 0.4\\ 0.17\\ 0.11\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.1\\ 0.03\\ 0.06\\ 0.029\\ 0.07\\ 0.09\\ 0.11\\ 0.10\\ 0.07\\ 0.09\\ 0.11\\ 0.10\\ 0.07\\ 0.040\\ 0.05\\ 0.06\\ 0.09\\ \end{array}$
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	& PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	& PARITY
O ¹⁶	27.3	(-6.06 - 6.14		O ¹⁶	27.3	-6.92 (-7.12	2 + 1 -)
$\theta_{\rm cm}$ in degr	ees in n		Error n mb/ster.	$\theta_{\rm em}$ in degr	ees in m		Error n mb/ster.
$\begin{array}{c} 19.\\ 22.\\ 25.\\ 28.\\ 32.\\ 35.\\ 38.\\ 41.\\ 44.\\ 47.\\ 50.\\ 53.\\ 57.\\ 60.\\ 63.\\ 65.\\ 68.\\ 71.\\ 74.\\ 77.\\ 80.\\ 83.\\ 86.\\ \end{array}$		$\begin{array}{c} 3.5 \\ 4.2 \\ 3.6 \\ 0.0 \\ 4 \\ 7.91 \\ 4.04 \\ 1.92 \\ 2.92 \\ 3.89 \\ 4.37 \\ 3.69 \\ 3.56 \\ 3.14 \\ 3.37 \\ 3.17 \\ 3.27 \\ 3.41 \\ 1.88 \\ 1.82 \\ 1.87 \end{array}$	$\begin{array}{c} 0.4\\ 0.3\\ 0.2\\ 0.2\\ 0.17\\ 0.13\\ 0.09\\ 0.07\\ 0.08\\ 0.10\\ 0.09\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.10\\ 0.09\\ 0.11\\ 0.10\\ 0.08\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ \end{array}$	$ \begin{array}{c} 19.\\ 22.\\ 25.\\ 29.\\ 32.\\ 35.\\ 38.\\ 41.\\ 45.\\ 48.\\ 51.\\ 54.\\ 57.\\ 60.\\ 63.\\ 66.\\ 69.\\ 72.\\ 75.\\ 78.\\ 80.\\ 83.\\ 86.\\ \end{array} $	7913 57801 23334 33210 97	$\begin{array}{c} 2.5\\ 7.31\\ 4.89\\ 6.62\\ 6.70\\ 5.87\\ 3.88\\ 2.62\\ 2.16\\ 2.55\\ 2.97\\ 3.29\\ 2.95\\ 2.63\\ 2.34\\ 2.62\\ 2.79\\ 3.22\\ 2.82\\ 2.00\\ 1.56\end{array}$	0.4 0.23 0.16 0.16 0.16 0.15 0.10 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.08 0.10 0.09 0.08 0.10 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.07 0.06 0.09 0.09 0.08 0.07 0.06 0.09 0.08 0.07 0.06 0.09 0.08 0.07 0.06 0.09 0.08 0.07 0.06 0.09 0.08 0.07 0.06 0.09 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.08 0.07 0.06 0.08

 $(\alpha, \alpha), (\alpha, \alpha')$ Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

* Contributions from the level are considered to be small.

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	& PARITY
O ¹⁶	27.3	-8.88	2 -	O ¹⁶	27.3	-9.84 (-9.58)	2 + 1 -)
$\theta_{ m em}$ in degr		′dΩ) _{em} b/ster. iı	Error n mb/ster.	$ heta_{ m cm}$ in degr		$(d\Omega)_{\rm em}$	Error n mb/ster.
19. 23. 26. 29. 32.	$ \begin{array}{cccc} 1 & 4 \\ 3 & 3 \\ 6 & 2 \end{array} $. 68 . 65 . 21 2. 07 . 10	$\begin{array}{c} 0.37 \\ 0.21 \\ 0.14 \\ 0.12 \\ 0.10 \end{array}$	19. 23. 26. 29. 33.	2 1 5 1 8 1	2. 24 90 89 98 2. 47	$\begin{array}{c} 0.32 \\ 0.16 \\ 0.12 \\ 0.13 \\ 0.13 \end{array}$
36. 39. 42. 45. 48.	$\begin{array}{ccc} 2 & 0 \\ 4 & 0 \\ 6 & 0 \end{array}$. 283 . 338 . 536 . 875 . 04	0.065 0.060 0.046 0.055 0.06	36. 39. 42. 46. 49.	6 1 8 1 0 1	2.04 62 38 03 0.673	$\begin{array}{c} 0.11 \\ 0.09 \\ 0.07 \\ 0.07 \\ 0.064 \end{array}$
51. 55. 58. 61. 64.	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 2 & 0 \end{array}$. 849 . 526 . 281 . 243 . 210	0.050 0.038 0.031 0.027 0.018	52. 55. 58. 61. 64.	4 (6 (6 (), 594), 620), 811), 925), 780	$\begin{array}{c} 0.051 \\ 0.041 \\ 0.042 \\ 0.045 \\ 0.046 \end{array}$
67. 70. 73. 76. 79. 81.	3 0 3 1 2 0 1 0	. 651 . 795 . 04 . 895 . 692 . 333	0.057 0.055 0.07 0.060 0.054 0.039	67. 1 70. 1 76. 7 9. 1	8 () 7 ()), 599), 391), 210), 509	$\begin{array}{c} 0.\ 062 \\ 0.\ 053 \\ \\ 0.\ 054 \\ 0.\ 075 \end{array}$

Jun KOKAME.	Kiyoji Fukuna	GA. Hitoshi	ŇAKAMURA	and	Nobuvuki	INOUE
Jan ROminib,	injoji i onom	011, 111000111		ana	1100049 444	11000

	NCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	MUCIEUS	INCIDENT ENERGY (MeV)	-QVALUE OF THE LEVEL (MeV)	SPIN & PARITY
O ¹⁶	27.3	-10.34	4 +	Ne ²⁰	27.3	0	0 +
$ heta_{ m cm}$ in degree		ˈdΩ) _{cm} b/ster. iı	Error n mb/ster.	$\theta_{\rm cm}$ in degree		'dΩ) _{em} b/ster. in	Error n mb/ster.
20.1 23.4 26.7 30.0 33.3	1 1 1	. 824 . 14 . 38 . 33 . 27	$\begin{array}{c} 0.\ 256 \\ 0.\ 16 \\ 0.\ 14 \\ 0.\ 12 \\ 0.\ 11 \end{array}$	14.: 18.(21.(23.; 26.;) 2) 1 9 1	47.1 209.0 40.4 75.3 42.1	$2.6 \\ 1.0 \\ 0.8 \\ 0.9 \\ 0.8$
$\begin{array}{c} 36.5\\ 39.8\\ 43.0\\ 46.3\\ 49.5 \end{array}$	0 0 1	. 18 . 903 . 883 . 16 . 20	0.09 0.085 0.070 0.08 0.05	29.9 32.8 35.7 38.7 41.0	8 7 7	55.0 6.51 5.94 23.7 33.7	$\begin{array}{c} 0.3 \\ 0.11 \\ 0.10 \\ 0.2 \\ 0.3 \end{array}$
$52.7 \\ 55.8 \\ 58.9 \\ 62.0 \\ 65.1$	0 0 0	. 921 . 678 . 355 . 273 . 202	0.058 0.048 0.035 0.033 0.033	44.1 47.4 50.1 53.1 56.0	4 3 1	23.0 10.3 2.26 0.877 2.78	$\begin{array}{c} 0.2 \\ 0.1 \\ 0.05 \\ 0.032 \\ 0.05 \end{array}$
68.2 71.2 77.2 80.1	0 1	. 234 . 397 	0.057 0.059 0.11 0.12	58.1 61.0 64.4 67.2 70.0 72.2	5 4 2 0	$\begin{array}{c} 4.27\\ 4.02\\ 2.51\\ 1.19\\ 0.573\\ 0.847\end{array}$	$\begin{array}{c} 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.022\\ 0.032 \end{array}$

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
Ne ²⁰	27.3	-1.63	2 +	Ne^{20}	27.3	-4.25	4 +
θ_{cm} in degr		$(\mathrm{d}\Omega)_{\mathrm{cm}}$ b/ster. in	Error n mb/ster.	$ heta_{ m cm}$ in degr		/dΩ) _{cm} nb/ster. ir	Error mb/ster.
15. 18. 21. 24. 27.		$\begin{array}{c} 0.1 \\ 0.9 \\ 7.0 \\ 9.81 \\ 4.16 \end{array}$	$\begin{array}{c} 0.8 \\ 0.6 \\ 0.5 \\ 0.24 \\ 0.20 \end{array}$	18. 21. 24. 27. 30.	$ \begin{array}{cccc} 3 & & 3 \\ 3 & & 3 \\ 4 & & 4 \end{array} $	2.06 3.86 3.29 4.02 3.04	0.18 0.21 0.19 0.19 0.11
30. 33. 36. 38. 41.	$egin{array}{ccc} 0 & 1 \ 0 & 1 \ 9 & 1 \ 9 & 1 \end{array}$	2.0 9.5 7.8 0.2 4.06	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.11 \end{array}$	33. 36. 39. 42. 45.	4 1 4 3	2.02 1.34 1.14 1.02).967	0.07 0.06 0.05 0.07 0.061
44. 47. 50. 53. 56.	7 6 4	2.61 5.94 9.23 9.67 6.81	$\begin{array}{c} 0.09 \\ 0.10 \\ 0.10 \\ 0.11 \\ 0.08 \end{array}$	48. 51. 54. 56. 59.	$\begin{array}{cccc} 1 & 0 \\ 0 & 0 \\ 9 & 0 \end{array}$), 686), 367), 232), 0934), 274	0.040 0.026 0.023 0.0211 0.021
59. 62. 64. 67. 70.	0 8 6	3.14 1.19 0.915 1.72 2.39	$\begin{array}{c} 0.06 \\ 0.03 \\ 0.032 \\ 0.04 \\ 0.04 \end{array}$	62. 65. 68. 71. 73.	$\begin{array}{cccc} 4 & 0 \\ 3 & 0 \\ 1 & 0 \end{array}$), 491), 778), 858), 807), 667	0.025 0.031 0.033 0.026 0.029
73.	1	2.39	0.05				

 $(\alpha, \alpha), (\alpha, \alpha')$ Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

TARGET	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
Ne ²⁰	27.3	-4.97	2 -	Ne ²⁰	27.3	-5.63 (-5.80	3 - 1 -)
$ heta_{ m cm}$ in degr		ˈdΩ) _{em} b/ster. i	Error n mb/ster.	$\theta_{ m cm}$ in degr		$(d\Omega)_{cm}$	Error 1 mb/ster.
18. 21. 24. 27. 30.	$\begin{array}{ccc} 3 & 0 \\ 4 & 0 \\ 5 & 0 \end{array}$.54 .41 .21 .41 .53	$\begin{array}{c} 0.23 \\ 0.12 \\ 0.15 \\ 0.11 \\ 0.06 \end{array}$	18. 21. 24. 27. 30.	5 9 5 9 6 8	7,39),88),17 3,41 4,55	$\begin{array}{c} 0.37 \\ 0.28 \\ 0.26 \\ 0.24 \\ 0.13 \end{array}$
33. 36. 39. 42. 45.	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 87 . 75 . 46 . 15 . 10	$\begin{array}{c} 0.\ 06\\ 0.\ 05\\ 0.\ 04\\ 0.\ 05\\ 0.\ 04 \end{array}$	33. 36. 39. 42. 45.		2.14 1.41 1.81 2.48 2.44	0.09 0.07 0.07 0.10 0.09
48. 51. 54. 57. 60.	$\begin{array}{cccc} 3 & 0 \\ 2 & 0 \\ 1 & 0 \end{array}$. 077 . 18 . 20 . 26 . 20	$\begin{array}{c} 0.\ 024 \\ 0.\ 02 \\ 0.\ 02 \\ 0.\ 03 \\ 0.\ 02 \end{array}$	48. 51. 54. 57. 60.	$egin{array}{cccc} 5 & 1 \ 4 & 1 \ 3 & 1 \ \end{array}$. 72 . 34 . 47 . 72 2. 04	0.06 0.05 0.05 0.05 0.05 0.05
62. 65. 68. 71. 74.	7 0 5 0 3 0	. 18 . 26 . 28 . 31 . 33	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$	63. 65. 68. 71. 74.	9 1 7 1 5 0	. 91 . 74 . 03). 969). 888	$\begin{array}{c} 0.\ 05\\ 0.\ 05\\ 0.\ 04\\ 0.\ 032\\ 0.\ 040 \end{array}$

TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALU OF THE LEVEL (MeV)	SFIN P	TARGET NUCLEUS	INCIDEN' ENERGY (MeV)		
Mg^{24}	28.4	0	0 +	Mg ²⁴	28.4	-1.36	8 2 +
$\theta_{ m cm}$ in degree		/dΩ) _{em} lb/ster.	Error in mb/ster.	$ heta_{ m cm}$ in degr		τ/dΩ) _{cm} mb/ster.	Error in mb/ster.
23.3 26.1 29.0 31.9 34.8	L 1) 1)	$\begin{array}{c} 252.3\\ 93.2\\ 14.4\\ 18.9\\ 10.1 \end{array}$	$\begin{array}{c} 0.5 \\ 0.7 \\ 0.4 \\ 0.2 \\ 0.1 \end{array}$	23. 26. 29. 32. 34.	$3 \\ 2 \\ 1$	13.1 6.02 14.2 22.3 18.8	$\begin{array}{c} 0.2 \\ 0.16 \\ 0.2 \\ 0.2 \\ 0.1 \end{array}$
37.6 40.5 43.3 46.2 49.0	5 }	39.4 52.2 35.3 15.9 3.60	$\begin{array}{c} 0.2 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.04 \end{array}$	37. 40. 43. 46. 49.	7 5 3	$\begin{array}{c} 9.60\\ 3.35\\ 3.61\\ 6.70\\ 10.3 \end{array}$	$\begin{array}{c} 0.07 \\ 0.09 \\ 0.08 \\ 0.07 \\ 0.1 \end{array}$
51.8 54.6 57.3 60.1 62.9) }	3.54 8.70 10.8 8.24 3.98	$\begin{array}{c} 0.04 \\ 0.05 \\ 0.1 \\ 0.05 \\ 0.03 \end{array}$	52. 54. 57. 60. 63.	8 6 3	9.55 5.88 2.45 1.28 1.83	$\begin{array}{c} 0.06 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$
65.6 68.3 71.0 73.7 76.4	} ;	$\begin{array}{c} 1.12 \\ 0.636 \\ 1.56 \\ 2.35 \\ 2.20 \end{array}$	$\begin{array}{c} 0.02 \\ 0.010 \\ 0.02 \\ 0.03 \\ 0.02 \end{array}$	65. 68. 71. 73. 76.	6 0 5	2.55 2.83 2.31 1.22 0.556	$\begin{array}{c} 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.011 \end{array}$
79.1 81.6 84.3 86.9 89.5	; ;)	1.46 0.792 0.578 0.838 1.29	$\begin{array}{c} 0.03 \\ 0.019 \\ 0.016 \\ 0.013 \\ 0.02 \end{array}$	79. 81. 84. 87. 89.	9 6 2	$\begin{array}{c} 0.536 \\ 0.769 \\ 1.04 \\ 1.02 \\ 0.934 \end{array}$	$\begin{array}{c} 0.017\\ 0.019\\ 0.02\\ 0.01\\ 0.020\end{array}$
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALU OF THE LEVEL (MeV)	E SPIN & PARITY	TARGET NUCLEUS	INCIDEN ENERGY (MeV)		E SING & & PARITY
Mg^{24}	28.4	-4.12 -4.23	$\frac{4}{2} + \frac{+}{+}$	Mg^{24}	28.4	-5.22	3 +
$ heta_{ m cm}$ in degre		$(d\Omega)_{em}$ b/ster.	Error in mb/ster.	$ heta_{ m em}$ in degr		τ/dΩ) _{em} mb/ster.	Error in mb/ster.
23.6 26.5 29.4 32.4 35.3	5 4 4 4 1 5	. 43 . 36 . 51 . 00 . 01	$\begin{array}{c} 0.08 \\ 0.09 \\ 0.08 \\ 0.09 \\ 0.09 \\ 0.08 \end{array}$	23. 26. 29. 32. 35.	6 6 5	$\begin{array}{c} 1.33 \\ 1.20 \\ 0.949 \\ 0.466 \\ 0.370 \end{array}$	$\begin{array}{c} 0.04 \\ 0.04 \\ 0.033 \\ 0.018 \\ 0.035 \end{array}$
38.1 41.0 43.9 46.8 49.6) 2) 1 3 1	. 78 . 85 . 59 . 42 . 79	$\begin{array}{c} 0.06 \\ 0.07 \\ 0.04 \\ 0.04 \\ 0.04 \end{array}$	38. 41. 44. 47. 49.	2 1 0	$\begin{array}{c} 0.553 \\ 0.569 \\ 0.505 \\ 0.400 \\ 0.315 \end{array}$	$\begin{array}{c} 0.028 \\ 0.041 \\ 0.027 \\ 0.029 \\ 0.022 \end{array}$
52, 4 55, 3 58, 1 60, 9 63, 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.03 \\ 0.03 \\ 0.02 \\ 0.020 \\ 0.015 \end{array}$	52. 55. 58. 61. 63.	5 3 1	$\begin{array}{c} 0.\ 265 \\ 0.\ 293 \\ 0.\ 245 \\ 0.\ 198 \\ 0.\ 139 \end{array}$	$\begin{array}{c} 0.019 \\ 0.017 \\ 0.015 \\ 0.009 \\ 0.012 \end{array}$
66.3 69.1 71.8 74.6 77.2	. C 3 1 5 1	. 696 . 984 . 26 . 28 . 922	$\begin{array}{c} 0.017\\ 0.013\\ 0.017\\ 0.02\\ 0.015 \end{array}$	66. 69. 72. 74. 77.	4 1 8	$\begin{array}{c} 0.0677\\ 0.103\\ 0.169\\ 0.213\\ 0.164 \end{array}$	$\begin{array}{c} 0.0104\\ 0.007\\ 0.010\\ 0.012\\ 0.005 \end{array}$
79.9 82.6 85.2 87.8 90.4	$\begin{array}{cccc} 5 & C \\ 2 & 1 \\ 3 & 1 \end{array}$. 842 . 917 . 04 . 19 . 18	$\begin{array}{c} 0.023 \\ 0.022 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$	80. 82. 85. 88. 90.	8 5 1	$\begin{array}{c} 0.278 \\ 0.241 \\ 0.187 \\ 0.106 \\ 0.118 \end{array}$	$\begin{array}{c} 0.012 \\ 0.013 \\ 0.013 \\ 0.008 \\ 0.011 \end{array}$

Jun KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

*

						· · · · · · · · · · · · · · · · · · ·	
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARIT
Mg^{24}	28.4	-6.00	4 +	Mg ²⁴	28.4	-6.44	0 +
$\theta_{\rm cm}$ in degre		dΩ) _{em} b/ster.	Error in mb/ster.	$\theta_{ m cm}$ in degre		'dΩ) _{cm} b/ster.	Error in mb/ster.
23.8	23 11 11	. 55	0.08	23.8	2	2.67	0.07
26.7	2	. 17	0.09	26.8		. 31	$0.06 \\ 0.06$
29.7		.19	$0.06 \\ 0.07$	29.7 32.7	⊥ 1	. 48 . 74	0.08
32.6 35.5		. 73 . 04	0.05	35.6		.05	0.05
38.4		.09	0.04	38.5	0	. 776	0.035
41.3		. 25	0.06	41.4	0	. 395	0.054
44.2			0.017	$\begin{array}{c} 44.3\\ 47.2 \end{array}$		-	
$\begin{array}{c} 47.1\\ 49.8 \end{array}$	U	. 810 . 628	$0.047 \\ 0.030$	47.2 50.1	0	. 531	0.019
49.8 52.8		. 020 . 484	0.019	52.9	0		
52.8 55.7	0	. 295	0.015	55.8	0	. 295	0.019
58.5	ŏ	. 295 . 179	0.012	58.6	0		0.0100
61.3	0	. 223	$0.014 \\ 0.014$	$\begin{array}{c} 61.4\\ 64.2 \end{array}$). 0927). 0541	$0.0122 \\ 0.0100$
64.1		. 324				0.0675	0.0100
66.8 69.6		. 434 . 605	$0.016 \\ 0.013$	$67.0 \\ 69.7$		0.0075	0.009
72.3		. 648	0.017	72.5	0	. 176	0.013
75.0	0	. 483	0.017	75.2).141	$0.012 \\ 0.009$
77.7		. 372	0.011	77.9		0.110	0.009
$ 80.4 \\ 83.1 $. 275 . 245	$0.019 \\ 0.015$	80.6 83.2	0	0.0616 0.0330	0.0098
85.7	0	. 240	0.014	85.9		0.0255	0.0072
		O YZAT IJI				Q-VALUE	
TARGET	INCIDENT	Q-VALUE OF THE	SLIN	TARGET	INCIDENT ENERGY	OF THE	' SPIN &
NUCLEUS	ENERGY (MeV)	LEVEL	& PARITY	NUCLEUS	(MeV)	LEVEL	PARIT
	(mev)	(MeV)	T TTTCL T X			(MeV)	
		<u>(</u> /	· · · · · · · · · · · · · · · · · · ·	C;28	28.3	-1 772	2 +
Si ²⁸	28.3	0	0 +	$\frac{\mathrm{Si}^{28}}{\theta_{\mathrm{cm}}}$		-1.772 (d Ω) _{em}	2 + Error
$ heta_{ m cm}$	$(d\sigma/$	$0 d\Omega)_{\rm cm}$	Error	$\theta_{ m cm}$ in degre	ees in m	/dΩ) _{em} b/ster.	Error in mb/ster.
$ heta_{ m em}$ in degre	(dσ/ es in m	0 dΩ) _{cm} b/ster.	Error in mb/ster.	$\theta_{\rm cm}$ in degree 14.3	(dσ/ ees in m 1	′dΩ) _{em} b/ster. 17.2	Error in mb/ster. 2.0 1.1
θ _{em} in degre 17.1	(dσ/ es in m 9	0 dΩ) _{cm} b/ster. 36.3	Error in mb/ster.	$\begin{array}{c} \theta_{\rm cm}\\ {\rm in \ degre}\\ 14.3\\ 17.2\\ 20.1 \end{array}$	(dσ/ ees in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8	Error in mb/ster. 2.0 1.1 0.8
θ _{cm} in degre 17.1 20.0 22.8	(dσ/ es in m 9 4	0 dΩ) _{cm} b/ster.	Error in mb/ster. 6.2 4.3 1.8	$\theta_{\rm cm}$ in degree 14.3 17.2 20.1 22.9	(dσ/ ees in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8	Error in mb/ster. 2.0 1.1 0.8 0.3
$\theta_{\rm em}$ in degre 17.1 20.0 22.8 25.7	$\begin{array}{c} (d\sigma/\\ es in m\\ 9\\ 4\\ 4\\ 2\end{array}$	0 dΩ) _{cm} b/ster. 36.3 48.2 63.4 96.0	Error in mb/ster. 6.2 4.3 1.8 1.0	θcm in degre 14.3 17.2 20.1 22.9 25.8	(dσ/ ces in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86	Error in mb/ster. 2.0 1.1 0.8 0.3 0.15
θem in degre 17.1 20.0 22.8 25.7 28.5	(d σ / es in m 9 4 4 2 1	0 dΩ) _{cm} b/ster. 36.3 48.2 63.4 96.0 09.2	Error in mb/ster. 6.2 4.3 1.8 1.0 0.5	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \end{array}$	(dσ/ tes in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3	Error in mb/ster. 2.0 1.1 0.8 0.3 0.15 0.2 0.4
$\begin{array}{c} \theta_{\rm cm} \\ {\rm in} \ {\rm degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \end{array}$	$\begin{array}{c} (\mathrm{d}\sigma/\\ \mathrm{es} & \mathrm{in} \ \mathrm{m} \\ 9\\ 4\\ 4\\ 2\\ 1\end{array}$	0 dΩ)em b/ster. 36.3 48.2 63.4 96.0 09.2 19.8	Error in mb/ster. 6.2 4.3 1.8 1.0 0.5 0.2	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \end{array}$	(dσ/ tes in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9	Error in mb/ster. 2.0 1.1 0.8 0.3 0.15 0.2 0.4 0.2
$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \end{array}$	(dσ/ es in m 9 4 2 1	0 dΩ)cm b/ster. 36. 3 48. 2 63. 4 96. 0 09. 2 19. 8 21. 1	Error in mb/ster. 6.2 4.3 1.8 1.0 0.5 0.2 0.2	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \end{array}$	(dσ/ tes in m 1	(dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10	Error in mb/ster. 2.0 1.1 0.8 0.3 0.15 0.2 0.4 0.2 0.20
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \end{array}$	(d σ / es in m 9 4 4 2 1	0 dΩ)em b/ster. 36.3 48.2 63.4 96.0 09.2 19.8 21.1 56.6 63.5		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \end{array}$	(dσ/ tes in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9	Error in mb/ster. 2.0 1.1 0.8 0.3 0.15 0.2 0.4 0.2
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \end{array}$	(d σ / es in m 9 4 4 2 1	0 dΩ)em b/ster. 36.3 48.2 63.4 96.0 09.2 19.8 21.1 56.6		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \end{array}$	(dσ/ tes in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \end{array}$	(d σ / es in m 9 4 4 2 1	0 dΩ)em b/ster. 36.3 48.2 63.4 96.0 09.2 19.8 21.1 56.6 63.5 35.0 11.8		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \end{array}$	(dσ/ tes in m 1	(dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33	$\begin{array}{c} {\rm Error}\\ {\rm in\ mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.12 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in} \ {\rm degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \end{array}$	(d σ / es in m 9 4 4 2 1	0 dΩ)cm b/ster. 36.3 48.2 63.4 96.0 09.2 19.8 21.1 56.6 63.5 35.0 11.8 1.46		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \end{array}$	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \end{array}$	(dσ/ tes in m 1	'dΩ) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.12 \\ 0.10 \\ 0.08 \\ 0.07 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 45.2 \\ 48.0 \\ 50.8 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega) cm\\ b/ster.\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \end{array}$	(dσ/ tes in m 1	$d\Omega$) em b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.12 \\ 0.10 \\ 0.08 \\ 0.07 \\ 0.05 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.5 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.3 \\ 59.3 \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \end{array}$	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.12 \\ 0.10 \\ 0.08 \\ 0.07 \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \end{array}$	(dσ/ tes in m 1	$d\Omega$) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17 1.99 2.79 3.06	$\begin{array}{c} {\rm Error}\\ {\rm in\ mb/ster.}\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ \end{array}$
$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 55.8 \\ 55.6 \\ 3 \\ 59.0 \\ 61.7 \\ 64.4 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0 \\ d\Omega)_{\rm cm} \\ {\rm b/ster.} \\ 36.3 \\ 48.2 \\ 63.4 \\ 96.0 \\ 09.2 \\ 19.8 \\ 21.1 \\ 56.6 \\ 63.5 \\ 35.0 \\ 11.8 \\ 1.46 \\ 5.91 \\ 11.7 \\ 12.9 \\ 8.72 \\ 3.53 \\ 0.848 \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \end{array}$	(dσ/ tes in m 1	$d\Omega$) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17 1.99 2.79 3.06 3.11	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.12 \\ 0.10 \\ 0.08 \\ 0.07 \\ 0.05 \\ 0.$
$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \end{array}$	(dσ/ tes in m 1	$d\Omega$) em b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17 1.99 2.79 3.06 3.11 2.71	$\begin{array}{c} {\rm Error}\\ {\rm in}\ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.09\\ 0.05\\ 0.0$
$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega) cm\\ b/ster.\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ \end{array}$		$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.7 \\ 75.4 \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \\ 3.06 \\ 3.11 \\ 2.71 \\ 2.10 \\ 1.05 \end{array}$	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.04\\ 0.03\\ \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.7 \\ 75.4 \\ 78.0 \end{array}$	(dσ/ tes in m 1	$d\Omega$) _{em} b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17 1.99 2.79 3.06 3.11 2.71 2.10 1.05 0.740	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.04\\ 0.03\\ 0.024\\ \end{array}$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \\ 77.7 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ 1.30\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.03 \\ \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.7 \\ 75.4 \\ 78.0 \\ 80.6 \\ \end{array}$	(dσ/ tes in m 1	$d\Omega$) em b/ster. 17.2 61.9 35.8 12.8 5.86 12.3 20.3 16.9 9.10 4.25 3.21 4.07 6.33 7.57 5.94 3.26 2.17 1.99 2.79 3.06 3.11 2.71 2.10 1.05 0.736	$\begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ 2.0 \\ 1.1 \\ 0.8 \\ 0.3 \\ 0.15 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.20 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.12 \\ 0.10 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.005 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.024 \\ 0.024 \end{array}$
$\begin{array}{c c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \\ 77.7 \\ 80.3 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.7 \\ 75.4 \\ 78.0 \\ 80.2 \\ \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \\ 3.06 \\ 3.11 \\ 2.71 \\ 2.10 \\ 1.05 \\ 0.740 \\ 0.736 \\ 1.23 \\ 1.69 \end{array}$	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.00\\ 0.05\\ 0.04\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.024\\ 0.03\\ 0.03\\ 0.024\\ 0.03\\ 0.$
$\begin{array}{c} \theta_{\rm em} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \\ 77.7 \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ 1.30\\ 0.686\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.023 \\ \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.4 \\ 75.4 \\ 78.0 \\ 80.6 \\ 83.2 \\ 85.4 \\ 88.4 \\ \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \\ 3.06 \\ 3.11 \\ 2.71 \\ 2.10 \\ 1.05 \\ 0.740 \\ 0.736 \\ 1.23 \\ 1.69 \end{array}$	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.$
$\begin{array}{c c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \\ 77.7 \\ 80.3 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ 1.30\\ 0.686\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.023 \\ \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.7 \\ 75.4 \\ 78.0 \\ 80.6 \\ 83.2 \\ 85.8 \\ 88.4 \\ 91.0 \end{array}$	(dσ/ tes in m 1	$\begin{array}{l} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \\ 3.06 \\ 3.11 \\ 2.71 \\ 2.10 \\ 1.05 \\ 0.736 \\ 1.23 \\ 1.69 \\ 1.73 \\ 1.29 \end{array}$	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster}.\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.05\\ 0.$
$\begin{array}{c c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 17.1 \\ 20.0 \\ 22.8 \\ 25.7 \\ 28.5 \\ 31.3 \\ 34.1 \\ 36.9 \\ 39.7 \\ 42.5 \\ 45.2 \\ 48.0 \\ 50.8 \\ 53.6 \\ 56.3 \\ 59.0 \\ 61.7 \\ 64.4 \\ 67.1 \\ 69.8 \\ 72.4 \\ 75.1 \\ 77.7 \\ 80.3 \\ \end{array}$	(d σ / es in m 9 4 4 2 1	$\begin{array}{c} 0\\ d\Omega)_{\rm cm}\\ {\rm b/ster.}\\ 36.3\\ 48.2\\ 63.4\\ 96.0\\ 09.2\\ 19.8\\ 21.1\\ 56.6\\ 63.5\\ 35.0\\ 11.8\\ 1.46\\ 5.91\\ 11.7\\ 12.9\\ 8.72\\ 3.53\\ 0.848\\ 0.698\\ 1.56\\ 2.28\\ 2.11\\ 1.30\\ 0.686\\ \end{array}$	$ \begin{array}{c} \text{Error} \\ \text{in mb/ster.} \\ \hline 6.2 \\ 4.3 \\ 1.8 \\ 1.0 \\ 0.5 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.04 \\ 0.09 \\ 0.1 \\ 0.1 \\ 0.10 \\ 0.06 \\ 0.025 \\ 0.023 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.023 \\ \end{array} $	$\begin{array}{c} \theta_{\rm cm} \\ {\rm in \ degre} \\ 14.3 \\ 17.2 \\ 20.1 \\ 22.9 \\ 25.8 \\ 28.6 \\ 31.5 \\ 34.3 \\ 37.1 \\ 39.9 \\ 41.3 \\ 42.7 \\ 45.5 \\ 48.3 \\ 51.0 \\ 53.8 \\ 56.5 \\ 59.3 \\ 62.0 \\ 64.7 \\ 67.4 \\ 70.1 \\ 72.4 \\ 75.4 \\ 78.0 \\ 80.6 \\ 83.2 \\ 85.4 \\ 88.4 \\ \end{array}$	(dσ/ tes in m 1	$\begin{array}{c} \mathrm{d}\Omega\rangle_{\mathrm{em}} \\ \mathrm{b/ster.} \\ 17.2 \\ 61.9 \\ 35.8 \\ 12.8 \\ 5.86 \\ 12.3 \\ 20.3 \\ 16.9 \\ 9.10 \\ 4.25 \\ 3.21 \\ 4.07 \\ 6.33 \\ 7.57 \\ 5.94 \\ 3.26 \\ 2.17 \\ 1.99 \\ 2.79 \\ 3.06 \\ 3.11 \\ 2.71 \\ 2.10 \\ 1.05 \\ 0.740 \\ 0.736 \\ 1.23 \\ 1.69 \end{array}$	$\begin{array}{c} {\rm Error}\\ {\rm in} \ {\rm mb/ster.}\\ 2.0\\ 1.1\\ 0.8\\ 0.3\\ 0.15\\ 0.2\\ 0.4\\ 0.2\\ 0.20\\ 0.10\\ 0.09\\ 0.09\\ 0.12\\ 0.10\\ 0.09\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.05\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.$

 $(\alpha, \alpha), (\alpha, \alpha')$ Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

TADCET	INCIDENT	Q-VALUE	SPIN		INCIDENT	Q-VALUE	SPIN
TARGET NUCLEUS	ENERGY (MeV)	OF THE LEVEL (MeV)	& PARITY	TARGET NUCLEUS	ENERGY (MeV)	OF THE LEVEL (MeV)	& PARITY
Si ²⁸	28.3	$-3.61 \\ -4.97$	4 + 0 +	Si ²⁸	28.3	-6.27	3 +
$ heta_{ m cm}$ in degre		/dΩ) _{em} mb/ster.	Error in mb/ster.	$\theta_{ m cm}$ in degre		/dΩ) _{cm} mb/ster.	Error in mb/ster.
17.4 20.2 23.1 26.0		2.14	0.14	17.520.423.226.1	C), 527), 698), 909), 417	$\begin{array}{c} 0.432 \\ 0.691 \\ 0.382 \\ 0.213 \end{array}$
28.8		2.32	0.09	29.0	C	. 278	0.158
$\begin{array}{c} 31.7\\ 34.6\\ 37.4\\ 40.2\\ 43.0 \end{array}$		2.36 2.23 1.82 1.30 1.09	$\begin{array}{c} 0.\ 09\\ 0.\ 09\\ 0.\ 08\\ 0.\ 07\\ 0.\ 06 \end{array}$	$\begin{array}{c} 31.9\\ 34.7\\ 37.6\\ 40.4\\ 43.3\end{array}$	C C C C	9. 369 9. 301 9. 445 9. 466 9. 408	$\begin{array}{c} 0.248 \\ 0.160 \\ 0.193 \\ 0.149 \\ 0.230 \end{array}$
$\begin{array}{c} 45.8 \\ 48.6 \\ 51.4 \\ 54.2 \\ 56.9 \end{array}$		1.10 1.25 1.38 1.09 0.879	$\begin{array}{c} 0.\ 06\\ 0.\ 04\\ 0.\ 05\\ 0.\ 04\\ 0.\ 040 \end{array}$	$\begin{array}{c} 46.1 \\ 48.9 \\ 51.7 \\ 54.5 \\ 57.3 \end{array}$	() () ()), 248), 127), 114), 139), 202	$\begin{array}{c} 0.171 \\ 0.057 \\ 0.072 \\ 0.057 \\ 0.055 \end{array}$
59.762.465.267.970.6		0.891 0.985 1.15 1.17 0.990	0.038 0.034 0.03 0.03 0.03 0.030	$\begin{array}{c} 60.1 \\ 62.8 \\ 65.5 \\ 68.2 \\ 70.9 \end{array}$	Č C C), 164), 112), 0919), 0451), 0478	0.064 0.041 0.0404 0.0298 0.0292
73.2 75.9 78.5		$\begin{array}{c} 0.717 \\ 0.574 \\ 0.623 \end{array}$	$\begin{array}{c} 0.026 \\ 0.024 \\ 0.025 \end{array}$	73.6 76.3), 106), 157	0.042 0.042
$\begin{array}{c} 81.2\\ 83.8\end{array}$		$ \begin{array}{c} 0.841 \\ 1.02 \end{array} $	$\begin{array}{c} 0.030\\ 0.03 \end{array}$	TARGET	INCIDENT	Q-VALUE OF THE	SPIN
86.4 89.0		1.03 0.749	0.03 0.027	NUCLEUS	ENERGY (MeV)	LEVEL (MeV)	& PARITY
91.5		0.609	0.023	$\frac{P^{31}}{\theta_{cm}}$	28.3 (da	$\frac{0}{(d\Omega)_{cm}}$	1/2 + Error
	INCIDENT	Q-VALUE	SPIN	in degre 22.6	es in	mb/ster. 138.8	in mb/ster. 0.2
TARGET NUCLEUS	ENERGY (MeV)	OF THE LEVEL (MeV)	& PARITY	25.4 28.2	1	105.1 36.3	$\begin{array}{c} 0.2\\ 0.3 \end{array}$
Si ²⁸	28.3	-6.88 -6.89	2 - & 4 +	31.0 33.7	•	8.37 12.6	$ \begin{array}{c} 0.05 \\ 0.1 \end{array} $
$ heta_{ m cm}$ in degre	es in	$d\Omega_{\rm cm}$ mb/ster.	Error in mb/ster.	36.5 39.3 42.1	5	$19.5 \\ 17.7 \\ 8.96$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.05 \end{array}$
$17.5 \\ 20.4$		19.0 18.4	$0.8 \\ 0.7$	44.8		$2.60 \\ 0.913$	$0.03 \\ 0.012$
$23.2 \\ 26.1 \\ 0.$		15.8 11.5	$0.4 \\ 0.3 \\ 0.15$	50.3 53.0)	2.86 3.92	$0.03 \\ 0.03$
29.0 31.9 34.7		7.18 5.83	$0.15 \\ 0.15$	55.7 58.4		$3.68 \\ 1.29 \\ 0.257$	$0.04 \\ 0.02 \\ 0.000$
37.6		5.04 6.27	$0.14 \\ 0.15 \\ 0.15$	61.1 63.8	;	0.219	0.009 0.006
$\begin{array}{c} 40.4\\ 43.3 \end{array}$		6.28 5.19	$0.15 \\ 0.12$	66.5 69.1 71.8		$\begin{array}{c} 0.\ 607 \\ 0.\ 845 \\ 0.\ 670 \end{array}$	$0.010 \\ 0.011 \\ 0.010$
$\begin{array}{c} 46.1\\ 48.9 \end{array}$		3.33 1.89	$0.09 \\ 0.06$	74.4		0.366	$0.010 \\ 0.008 \\ 0.005$
$51.7 \\ 54.5 \\ 57.3$		$1.66 \\ 1.28 \\ 1.71$	$\begin{array}{c} 0.06 \\ 0.06 \\ 0.06 \end{array}$	77.0 79.6 82.2	5	$\begin{array}{c} 0.143 \\ 0.148 \\ 0.304 \end{array}$	$\begin{array}{c} 0.005 \\ 0.004 \\ 0.006 \end{array}$
$60.1 \\ 62.8 \\ $		$1.72 \\ 1.33 \\ 1.33 \\ 1.12 \\ $	$0.07 \\ 0.05$	87.4	- Į	$0.\overline{501}$	0.007
65.5 68.2		1.12 0.830	$0.04 \\ 0.040 \\ 0.040$	92.5	-	$0.\overline{351}$	0.006
70.9 73.6		0.969 1.12	$\begin{array}{c} 0.040 \\ 0.04 \end{array}$	97.5		0.211	0.004
76.3		1.47	0.05	102.5	5	0.117	0.003

Jun KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

			_			-		
TARGET NUCLEUS	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY	TARG NUCLI	E1	INCIDENT ENERGY (MeV)	Q-VALUE OF THE LEVEL (MeV)	SPIN & PARITY
\mathbf{P}^{31}	28.3	-1.256	3/2 +	P ³¹		28.3	-2.232	5/2 +
θ_{cm} in degre		/dΩ) _{cm} mb/ster.	Error in mb/ster.		9 _{em} legree	(dơ s in	-/dΩ) _{cm} mb/ster.	Error in mb/ster.
22.5 25.3 28.1 30.9 33.6	21	4. 15 4. 37 2. 36 1. 57). 835	$\begin{array}{c} 0.\ 05\\ 0.\ 06\\ 0.\ 08\\ 0.\ 04\\ 0.\ 04 \end{array}$		22.4 25.2 28.0 30.7 33.5		L.97 L.28 2.02 2.07 L.31	$\begin{array}{c} 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$
$36.4 \\ 39.2 \\ 41.6 \\ 44.7 \\ 47.4$	1 1 1), 797 1, 13 1, 29 1, 27), 426	$\begin{array}{c} 0.\ 030 \\ 0.\ 03 \\ 0.\ 04 \\ 0.\ 04 \\ 0.\ 008 \end{array}$		36.3 39.0 41.8 44.5 47.3	(), 573), 334), 451), 640), 429	$\begin{array}{c} 0.\ 013 \\ 0.\ 018 \\ 0.\ 019 \\ 0.\ 021 \\ 0.\ 008 \end{array}$
50.1 52.9 55.6 58.3 61.0	((). 272). 115). 159). 187). 253	0.009 0.006 0.007 0.006 0.009		50.0 52.7 55.4 58.1 60.8	((), 314), 114), 125), 288), 354	$\begin{array}{c} 0.\ 021 \\ 0.\ 010 \\ 0.\ 007 \\ 0.\ 015 \\ 0.\ 010 \end{array}$
$63.6 \\ 66.3 \\ 68.9 \\ 71.6 \\ 74.2$	(((), 199), 130), 0630), 0438), 0619	0.006 0.005 0.0031 0.0026 0.0032		$63.4 \\ 66.1 \\ 68.7 \\ 71.4 \\ 74.0$	((). 329). 250). 139). 0895). 0741	$\begin{array}{c} 0.\ 007\\ 0.\ 006\\ 0.\ 005\\ 0.\ 0038\\ 0.\ 0035 \end{array}$
76.8 79.4 82.0	(), 0790), 0638), 0456	$\begin{array}{c} 0.\ 0036 \\ 0.\ 0026 \\ 0.\ 0029 \end{array}$		$76.6 \\ 79.2 \\ 81.8$	(), 0839), 0909), 0938	$\begin{array}{c} 0.\ 0038 \\ 0.\ 0031 \\ 0.\ 0033 \end{array}$
87.2	(). 0260	0.0015		86.9	(). 0730	0.0025
92.2	(). 0484	0.0021		92.0	(). 0742	0.0026
97.3	(). 0421	0.0020		97.0	(0.0809	0.0027
102.2	(). 0985	0.0030	1	 102.0	(). 1025	0.0031

 $(\alpha, \alpha), (\alpha, \alpha')$ Scattering from B¹¹, C¹², C¹³, O¹⁶, Ne²⁰, Mg²⁴, Si²⁸ and P³¹

Jun¹KOKAME, Kiyoji FUKUNAGA, Hitoshi NAKAMURA and Nobuyuki INOUE

REFERENCES

- (1) N. Austern, R. M. Drisko, E. Rose and G. R. Satchler, Phys. Rev. 128, 733 (1962).
- (2) R. H. Bassel, G. R. Satchler, R. M. Drisko and E. Rost, Phys. Rev. 128, 2693 (1962).
- (3) E. Rost, Phys. Rev. 128, 2708 (1962).
- (4) B. Buck, Phys. Rev. 127, 940 (1962).
- (5) H. Taketani, "Genshikaku Kenkyu" -circular in Japan- 8, 604 (1964).
- (6) J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, Phys. Letters, 8, 342 (1964).
- (7) J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, to be published in J. Phys. Soc. Japan, 20, No.4 (1965).
- (8) J. Kokame, K. Fukunaga and H. Nakamura. Phys. Letters. 14, 234(1965).
- (9) J. N. McGruer, E. K. Warburton and R. S. Bender, Phys. Rev. 100, 235 (1956).
- (10) S. Hinds and R. Middleton, Proc. Phys. Soc, (London) 74, 775 (1959).
- (11) M. H. MacFarlane and J. B. French, Rev. Mod. Phys. 32, 567 (1960).
- (12) T. Lauritzen and F. Ajzenberg-Selove, "Nuclear Data Sheet, Energy Levels of Light Nuclei", May 1962.
 - P. M. Endt and C. Van der Leun, Nuclear Physics, 34, 1 (1962),
- (13) J. S. Blair, Phys. Rev. 115, 982 (1959).
- (14) J. Kokame, J. Phys. Soc. Japan, 16, 2101 (1961).
- (15) J. Kokame, R. Ishiwari, K. Miyake, J. Muto, H. Itoh, T. Ohama, K. Ueda, S. Tahira and K. Baba, "Genshikaku Kenkyu" -circ[ar in Japan-, 7, 73, 340 (1963).
- (16) Y. P. Antoutiev, D. A. E Darwish, O. E. Badawy, L. M. El-Nadi and P. V. Sorokin, Nuclear Physics, 56, 401 (1964).
- (17) S. G. Nilsson, Danske Vid. Selsk. Fys. Mat. Medd. 29, No. 16 (1955).
- (18) A. De-Shalit, Phys. Rev. 122, 1530 (1961).