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    The construction and characteristics of a large sensitive volume lithium-drifted silicon 
 detector are reported. Its spectroscopic response for gamma and beta rays, especially 

 photoelectric absorption peaks and Compton electron distributions are discussed comparing 
 with that of a NaI (TI) scintillator. In contrast with lithium-drifted germanium detectors, 
 silicon detectors have Iower counting efficiency, but have the merit of being able to be 

 stored at room temperature when it is not in use. Using these characteristics combined 
 with its excellent energy resolution and anti-coincidence counting method, there will be 

 new gamma ray spectroscopic applications in large sensitive volume silicon detectors in 
 despite of its low counting efficiency. 

                          I. INTRODUCTION 

   In the previous report", we described the possibility of the spectroscopic 

measurement of low energy gamma rays by the photoelectric absorption of small 

lithium-drifted silicon detectors (45mm2 in area and about 2mm in sensitive depth). 

   Here we report the response of a thick silicon detector for gamma rays and 

high energy electrons. It can be inferred from recent reports2' that lithium-drifted 

germanium detectors have good energy resolution and higher counting efficiency 
than silicon detectors, and wide applications for gamma-ray energy measurement 

are expected. They have as very high resolution of energy as silicon detectors 
compared with scintillation detectors such as NaI(T1). But, germanium detectors 

must be cooled under the dry ice temperature even when it is not in use and 

considered to be rather articles of consumption. 

                         II. CONSTRUCTION 

   To increase the counting efficiency, we tried to make detectors of much more 

sensitive volume than that reported previously. As floating-zoned silicon ingots 

usually available are a little over 20 mm in diameter, detector size was designed 

20mm in effective diameter, and about 5mm in sensitive layer thickness. 

   Two methods were used to estimate the depth of the intrinsic layer of the 

detector thus made. First, the distribution of resistivity was observed by the 

four points probe method" along the periphery side from the surface of p-side to 
that of n-side through which lithium is diffused. The resistivity profile is shown 
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in Fig. 1. Secondly, potential distribution was also measured similarly about the 

same detector with the reverse bias voltage applied (Fig. 2). By these two 

observations it is evident that the intrinsic depth and p-side dead layer thickness 
is bout 4.5 and  1mm, respectively, and the dead layer thickness of n-side surface 

is negligibly small. The error of measurements of the resistivity is very large 

in high resistivity silicon, and strictly speaking, the edge correction" must be 

carried out with the curve shown in Fig. 1, but there is almost no change in the 

data mentioned above. 

   On the technique of the detector preparation, there is no difference from 
that reported') in principle, but for a thick detector a very long drift time is 

needed, at least from 7 to 10 days and moreover "the clean up treatment"" must 

be carried out at the last stage of drift process. Without this treatment, the 

depletion layer thickness is very small compared with the usual simple drift 

theory and depends upon voltage applied. 
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   Fig. 1. Resistivityprofile in the lithium- Fig. 2. Potential distribution in the li-
    drifted silicon detector.thium-drifted silicon detector with the 

                                            backward bias voltage. 

                   III. DETECTION PERFORMANCE 

   Lithium-drifted silicon detectors with large sensitive volume had to be cooled 

to decrease the backward leakage current owing to the thermal generation. By 

cooling the detector from room to liquid nitrogen temperature the backward 

leakage current was easily lowered by two orders of magnitude, decreasing below 

10-$ amperes with the backward bias voltage of 100 volts. All measurements of 

gamma rays were carried out in the simple cryostat, shown in Fig. 3. The gamma-
ray sources used here are needed to be several times stronger in activity than 
that generally used with NaI (T1) scintillators. Gamma-ray sources of about 

several microcuries, varying with the gamma-ray energy of course, were used but 
severe caution was taken to avoid the pile-up effects of the signal. 

   In Figs. 4-9, gamma-ray spectra of various sources up to 1.33 MeV in energy 

are shown, measured by the large sensitive volume silicon detector described 

above with an aluminium foil or beryllium plate as an absorber of beta particles or 

internal conversion electrons when needed. The relation between the pulse height 

of photoelectric absorption peak and its energy is plotted in Fig. 10, showing 
a very good linearity in all range. The sensitive layer of this detector is suffi-
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    Fig. 3. A vacuum chamber to cool the detector mainly for the measurement of 
      gamma rays. D - detector, S.S - stainless steel, P.B - phospher bronze, M - myler 

      sheet (6p in thickness), L-Lucite plate. 

ciently thick for the photoelectrons and the window layer of n-side surface from 

which radiations are introduced is negligible for gamma rays. There is no win-

dow effect as that in measurements of alpha or beta particles. The relations 
shown in Fig. 10 can be used as a calibration standard of the actual energy 

liberated in the depletion layer of silicon detectors, regardless of kinds of incident 

ionizing particles. 

   As a comparison of Fig. 6, a gamma-ray spectrum from 125Sb was measured by 

a 3"75 X 3" NaI (T1) scintillator, as shown in Fig. 11. In these two spectra, distinct 

differences are observed in several points : (1) The single peak in Fig. 11 due to 

photoelectric absorption of 0.637 and 0.595 MeV gamma rays is perfectly resolved 
into two peaks in Fig. 6, (2) on the contrary the peak due to 0.430 and 0.463 MeV 
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      Fig. 8. Gamma-ray spectrum from "Mnobserved with a large sensitive 
        volume silicon detector at 77°K. 
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          Fig. 9. Gamma-ray spectrumfrom fi0Co observed with a large sensitive 

           volume silicon detector at 77°K. 
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          Fig. 10. Pulse-height responseof a large sensitive volume silicon de-
           tector to gamma rays at 77°K. 

 gamma rays is completely vanished in the latter under the Compton electrons of 
 the higher energy gamma rays and (3) the peak due to 0.175 MeV gamma rays 

 is only slightly recognizable. In Fig. 9, the peak of the lower energy gamma 

 rays from 60Co is barely recognizable at the Compton edge of 1.33 MeV gamma 

  rays. 
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   As shown in Figs. 4 and 7, the full width half maximum (FWHM) of photo-

electric absorption peak is about 7 KeV, giving the energy resolution of 1% for 

0.661 MeV gamma rays from  137Cs. The FWHM for the amplifier system" alone 

amounts to 6 KeV. 
   When Compton electrons are mostly rejected by the anti-coincidence counting 

method, all photopeaks will be catched with high resolution, impossible for the 

scintillator, and important applications will be expected. 
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         Fig. 11. Gamma-ray spectrum from 125Sb observed with a 3" x3" 
NaI (T1) scintillator. 
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        Fig. 12. Fermi plot of the beta-ray spectrum of 32P observed with a 
         large sensitive volume silicon detector at 77°K. 
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   In the previous report", we carried out "Fermi plot" and showed that there 
was more or less straight part on the high energy end of the plot in several 

beta-emitting nuclei. The maximum energy was decided from it except in the 
case of 32P. As for 32P, the maximum-energy electrons penetrate through the sen-

sitive layer and no straight part was seen in the high energy end of the • plot. In 

this work, we again practiced the Fermi plot with the thick detector enough for 

all beta particles of 32P (Fig. 12). But, also with this detector, we conlol scarcely 

recognize linear part on the high energy end. In this case, despite of its ample 

thickness, it seems necessary to correct the beta-ray spectrum for back-scatter-

ing electrons to find out the precise maximum energy from the Fermi plot. 

                         IV. DISCUSSION 

   IV.1. Peak-to-Total Ratio of the Gamma-Ray Spectrum 

   In the spectra shown above, it is readily noticed that the photoelectric absorp-
tion peak is very low compared with the spectrum of Compton electrons. Quan-

titative discussions are tried here about gamma-ray spectrum from 54Mn, which 

emits monochromatic gamma rays and have the well known decay scheme. In-

ternal bremsstrahlungs and X rays from the source are neglected and all scattered 

photons from the wall of the cryostat are not considered in this rough estima-
tion. The experimental peak-to-total ratio R of the spectrum shown in Fig. 8 was 

obtaimed by the extrapolation of the curve of the low energy part hidden under the 

noise as 

R=0.00098±0.00002 , 

which is only one five-hundredth of 0.47, the experimental peak-to-total ratio of 

the spectrum measured by a 31/0 x 3" NaI (TI) scintillator at the same distance 

from the gamma-ray source. The theoretical peak-to-total ratio R' for the 0.835 

MeV gamma rays from 54Mn incident upon our silicon detector, computed by the 
narrow beam approximation neglecting the secondary interactions using the table 

of gamma-ray absorption coefficients given by Storm et al5', is given by 

                              R' = 0.00087. 

Comparing these two data, about 11% of total counts in, the photopeak in Fig. 8 

results from the secondary interactions of Compton scattered photons. Because 

the theoretical value of photoelectric absorption coefficient is given only as one figure, 

these estimations are rather rough. Intrinsic efficiency given by the ratio of 

numbers of interacted photons to total photons incident upon the detector is 
about 7.1%. 

   IV.2. Energy Spectrum of Compton Electrons 

   The ordinate of the Fig. 8 is shown in linear scale in Fig. 14 by the dotted 
line, showing the characteristic spectrum of Compton electrons, which we will 
treat here theoretically. Using the signs in Fig. 13, 

cot = (1 +a)tan 2 •(1) 
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           the scattered photon, and the scattering electron which receives 
           kinetic energy. For the gamma rays from "Mn a=1.634. For 

©=90°, 99=20° 47' and T=0.317 MeV. 

   The collision cross section a per electron produced by unpolarized photons 
per unit energy interval of the recoiled electron is given by the relations' : 

da _  irro2  (v'  \2(  ye  + v —sin28\r (1+a)2—azcos2co  2(2) 
         dT ahvo \ vo If\V vo(1+a)2—a(2+a)cos2~pJ ' 

where ro = classical electron radius 2.818 X 10-13cm, 
a = hvo/moc2, 

mo=rest mass of electron. 

Using these relation for 1p=0°--90°, theoretical cross section for 0.835 MeV 

gamma rays is shown by the solid line in Fig. 14. In the same figure, the 
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      Fig. 14. Number-energy spectrum of Compton electrons produced by primary 

       photons of 0.835 MeV gamma rays from "Mn (solid line) and the gamma-
        ray spectrum measured by a large sensitive volume silicon detector (dotted 
       line) and a 3"0 X3" NaI (Ti) scintillation detector (broken line), respecti-

        vely. Some of the photons scattered successively twice in the sensitive 
        region of the silicon detector gives up the energy more than 0.639 MeV and 

        are associated with the hatched part. 
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    spectrum of gamma rays from 54Mn measured by a  3"q3 X 3" Nal (Ti) scintillator 
    is plotted by the broken line. The height of Compton edges of these curves are 

    normalized for comparison. As shown in this figure, the spectrum measured by 

    the silicon detector is much more similar especially near the Compton edge, to 

    that of the theoretical cross section, compared with that measured by the scin-
    tillator. This results from next three reasons : 

    (1) The energy resolution of the silicon detector is very high compared with that 
    of the scintillator. 

    (2) The dimension of sensitive region of the silicon detector is enough small 
    compared with the mean free path of the incident photon in silicon (61mm), or 

    strictly speaking, that of the scattered photon (34—,61mm). 

    (3) On the contrary, the dimension of the silicon detector is enough large com-

    pared with the maximum range of electrons scattered in silicon (0.9mm). 
       It is clear that the condition (1) and (3) are fulfiled with our detector. The 

    condition (2) requires that there is no secondary interaction of scattered photons 

    in the sensitive region. To survey the condition (2), we try some estimations. 

    The probability P that the scattered photon be underging the second interaction 

    in the sensitive region is estimated by the relation : 

P— 4
nJSZduw(1—e-z^x),(3) 

    where A=mean free path of primarily scattered photon, 
L=the path length through the sensitive region along an element of solid 

    angle do) from the position of primary interaction. 

       Because L is the largest when 0=90°, photons scattered at right angles to 

    the direction of incident flux give the most contribution in integration (3). Never-

    theless, P is not so much than 6%, and experimentarily, the hatched part in Fig. 

    8 or 13 is mainly due to a part of photons mentioned above, which interacted 

    successively twice in sensitive region and consequently liberated more energy in 

    all than 0.639 MeV (Compton edge of the 0.835 MeV gamma rays). 

       The conditions (1) and (2) mentioned above are not fulfiled in the spectrum 
    measured by the scintillator, and the curve shown by the broken line departs 

    considerably from that shown by solid line. The Compton edge measured by the 

    silicon detector is pointed sharply, and rather should be called "the Compton 

    peak". The backscattering peak at 0.196 MeV does not appear clearly in the 
    silicon detector. 

       There is considerable departure between dotted and solid line at the lower 

    energy side of the Compton spectrum. This comes partly from electrons runned 

    away out of sensitive region and partly from photons scattered twice in the 

    detector or from the wall of the cryostat. 

       IV.3. The Compton Edge 

       The energy of the Compton edge is given by the well known expression : 

                           E=                                                                        Iwo  
         1+1----.(4)                                     2

a 
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But it is not situated at the peak of the Compton spectrum as shown in Fig. 14 

but rather shifted a little higher energy side. With a silicon detector having 

smaller sensitive volume  (1cm2 in area and 1.43mm in height) Baily et al') repor-

ted that the energy given by the expression (4) just coincide with that at the 

half height of the peak in the Compton spectrum measured by the lithium-drifted 

silicon detector. For our silicon detector with decuple sensitive volume, it is 

verified that there exists the same relation even for the 1.33 MeV gamma rays 

from "Co as that mentioned above with the smaller silicon detector. This fact 

will also be used for gamma-ray spectroscopy. 
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