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     Infrared spectra of benzoic and deuterobenzoic acids were measured at low tempera-
 tures. The characteristic bands of the COOH group near 1700, 1300 and 950 cm.-1 were 

 observed as pairs. This appears to indicate that two kinds of configurations having dif-
 ferent energies and different spectra exist in the crystal. The energy difference was es-
 timated to be about 0.1 Kcal./mole from measurements of intensity ratios of pairs at 
 various temperatures. The nearly equal distances of the two C—O bonds in benzoic acid, 

 i.e. 1.29 and 1.24 A as determined by X-ray measurements, were interpreted as the average 
 for the mixture of the two configurations. 

                          INTRODUCTION 

   The crystal and molecular structures of benzoic acid were accurately determin-
ed by Sim, Robertson and Goodwin", who reported that the molecules form near-
ly planar, centrosymmetrical dimers, with hydrogen bonds (2.64A) between ad-

jacent carboxyl groups. They assigned the hydrogen atom of the carboxyl group 
to 02, as shown in Figure 1 (A), though the resolution of this hydrogen atom was 
not good enough to confirm the assignment. This lack of resolution may indeed 
be connected with the nearly equal distances of the two C-0 bonds, i.e. 1.29 and 
1.24 A, and indicate a ready transfer of hydrogen to the other oxygen across the 
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                 Fig. 1. Two kinds of configurations of benzoic acid. 
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hydrogen bond. 

   If the two configurations of dimers of benzoic acid of Figure 1 are isolated, 

they must have the same energy and spectrum. However, when the dimers are 

in the crystalline potential field of Ci symmetry, they may have slightly different 

energies and show different spectra. In order to investigate these matters, the in-

frared spectra of benzoic and deuterobenzoic acids were measured at low tem-

peratures. 

                         EXPERIMENTAL 

   The benzoic acid supplied by the Tokyo Kasei Co. was further purified by 

recrystalization. The deuterobenzoic acid, C6H5COOD, was prepared by the re-

crystalization from aceton-deuterium oxide solution. Well oriented crystal layers 

of these samples were obtained by cooling the melts between two optically flat 

plates of rock-salt. Infrared spectra were measured by the Perkin Elmer 521 
spectrometer, and the Koken DS-301 spectrometer equipped with two NaC1 prisms 

and an AgC1 polarizer. 

                    RESULTS AND DISCUSSION 

   The infrared spectra of benzoic and deuterobenzoic acids measured at low tem-

peratures are shown in Figures 2 and 3, respectively, and one of the polarized 
infrared spectra is shown in Figure 4. 

1. Frequencies characteristic of the COOH and COOD groups 

   There are two bands at 1706 and 1684 cm.-1 in the region of the stretching 

vibration of C=0 bonds of the dimeric units. The band at 1432 cm.-1 or 1421 

cm.-1 at room temperature is due to one of the coupled vibrations of C—O stretch-

ing and OH bending, the two bands at 1334 and 1298 cm.-1, or 1324 and 1288 cm.-1 

at room temperature, respectively, are in the region of another coupled vibration 

of C—O stretching and OH bending, and those at 959 and 948 cm.-1, which cor-

respond to the broad band at about 935 cm.-1 at room temperature are in the 
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                  Fig. 2. Infrared spectra of benzoic acid at —150°C. 
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                 Fig. 3. Infrared spectra of d-benzoic acid at —150°C.                                         
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             Fig. 4. Polarized infrared spectra of benzoic acid at —150°C. 
----- E vector parallel to b axis. 

...... E vector perpendicular to b axis. 

region of O—H out-of-plane bending vibration2'. These bands disappear on deute-

ration. The correspondence of the bands between the benzoic and deuterobenzoic 

acids is given in Table 1, together with assigments of them. 

2. Causes of the splitting 

   Polarized infrared spectra of Figure 4 measured at —150°C show that bands 
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                   Table 1. Characteristic Frequencies of Benzoic and Deuterobenzoic Acids. 
                                                   at  —150°C 

(RCOOH)2(RCOOD)z 

           Frequency Configurations and Frequency Configurations and 
cm.-1assignments**cm.-'assignments  

    1706 A1700 A 
       1684Bv C=01684Bv C=0 

                                                 1674 

        1432 v C-0 -I-40H1375*v C-0 
                                                   1350 

    1334 B1321* 
        1298 AOH+vC-01293* 

                                   1064 B 8 OD 
                                  1044 A 4 OD 

      959 B 6OH930* 
    948 A917* 

            707due to benzene ring730* 
                                                      718* 

                                                  725 A a' OH+benzene ring 
                                710 B a OH 

                                                  690 A o' OH+benzene ring 

      808v C—C783Av C—C 

             670 A —C~Oscisseringa654 A —C‹0scissering'1 
     554B/Ca>546B/C 

             543 AC\ 0scissering536 A —C \ 0 scissering5l 

               * Bands perhaps due to RCOOH•RCOOD dimers. 
               ** v=stretching ; S=inplane bending ; u=out-of-plane bending 

         at 1184 and 1174 cm.-1 have high dichroic ratios. This means that the orientation 
         of samples is good. Hence, the splitting of the bands of low dichroic ratios at 

          1706 and 1684 cm.-1 must not be due to the "factor group splitting", caused by 
         the interaction with neighbouring molecules of the crystal. A pair of bands at 
         1334 and 1298 cm.-1 as well as the doublet at 959 and 948 cm.-1 must not be due 

         to the "factor group splitting" either. Moreover, it is difficult to consider that 
          many pairs of the bands are caused by the "Fermi resonance". Another type of 

explanation') of the splitting of bands of the carboxylic group is the tunnelling 

         motion of hydrogen atoms in the O—H groups of the acid dimers from one equiva-

                     E 

                                            R(=Rc21-,=Rc2'ri) 
                                 Fig. 5. Asymmetric double minimum potencial. 
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lent position to another. Although such a phenomenon would give rise to the 

splitting of the Raman-active  vO—H energy levels into pairs', infrared-active bands 

of vC=O, vC-0+(5OH and oOH would be difficult to give rise to the splitting by 

tunnelling effect. 

   Consequently, we concider that the two configurations of Figure 1(A) and (B) 

with different energies and different spectra exist in the crystal. Figure 5 shows 
the potential energy curve of the dimer in the crystal. The two potential minima 

would be different from each other. The lower and higher potential minima cor-
respond to the configurations A and B of Figure 1, respectively. 

3. Energy difference 

   If the two configurations exist and the ratio of absorption coefficients of a pair 

is constant, the energy difference (4E0) between configurations A and B can be 

obtained by measuring intensity ratios of the pair at various temperatures from 
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      Fig. 6(a). C=0 bands at —160°C.Fig. 6(b). C=0 bands at —80°C. 
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               Fig. 7. Temperature dependences of band areas of pairs. 
—6-0— A pair at ca . 1300 em''. 
—O—Q— A pair at ca . 1700 cm-I. 
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the following equation : 

                      1n AA 1nKBeAs/R_LIE(1)                  A                                        K
A.                   ) RT' 

where A,, and An are the band areas for absorption assigned to the configurations 
A and B respectively, KA and KB the absorption coefficients of corresponding bands, 
and AS and dE the differences of entropy and enthalpy between the configurations 
A and B, respectively. Figure 6 shows the pair of bands due to C=0 stretching 
vibration at various temperatures. From the linearity of ln(A,,/An) against 1/T, 
shown in Figure 7, the energy difference is estimated to be about 0.1 Kcal./mole. 

4. Interpretation for nearly equal C—O distances 

   The C—O distances of gaseous dimers of formic and acetic acids have been 
determined by using the electron diffractionG). The longer and shorter values for 
these acids are 1.36 and 1.25A, and those for nicotinic acid are 1.18 and 1.34A, 
respectively. The differences of these distances are larger than those for the 
benzoic acid. The nearly equal C—O distances for the benzoic acid, i.e. 1.29 and 
1.24A, may be interpreted as averages for the mixture of the two configurations 
with a larger difference in C—O distances than that actually observed. 
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