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    Bulkiness of powder, an important characteristic in powder science, was studied to 
 determine the relationship between particle size and cohesiveness. In order to know what 

 determines the bulkiness of powder, a number of experiments were done. 
    The variation of the void volume of powder beds with particle size, and the change of 

 porosity by adding of fine particles to coarse one were measured. Results suggest that 
 the packing process of powders is determined in relation to particle gravity and cohesive 

 force at a contact point between particles. 
    The cohesive force at a contact point was also measured by shearing tests of powder 

 beds of various particle size. From the experimental results, it was oberved that the fine 

 particles form the scaffold structure in the aggregated state ; confirmed by a model experi-
 ment with foaming polystylene particles. 

                          I. INTRODUCTION 

   A powder is an assembly of fine particles of solid at the state in which the 

particles can be moved by a small force. Powder has two important faces ; 
(1) the characteristic of the particle itself which has been studied mainly from 
the view point of physical chemistry of solid or surface chemistry ; (2) an 
assembly of the particles which has been studied in the field of the chemical 
engineering process. Hitherto, these two standpoints have been independent 
having very little influence on each other. Under these state, however, the 

problem of particle size has been taken up as a common basic property. 
   In this paper, the problems of how the particle size affect the bulk density 

and the structure of the assembly of powder particles will be discussed. 

II. RELATIONSHIP BETWEEN BULKINESS AND PARTICLE SIZE 

   It is well known that the bulkiness of powder increases with decreasing 

particle size. Bulkiness is defined as the reciprocal of the apparent density. 
Roller' investigated the relation of bulkiness to particle size in four powders. 
In this case the pore volume was used instead of the bulkiness. The relationship 

between pore volume VE and particle size D was considered as consisting of two 

parts, one of which was expressed by the equation (1) for particle size D less 
than a critical diameter D, and in the other the bulkiness was constant for D 

greater than Dc. 

 *;~)IIIE>C.A'ci&c i : Laboratory of Crystal and Powder Chemistry, Institute for Chemi-
   cal Research, Kyoto University, Uji, Kyoto. 
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            VE=k1D1 )n............(1) 
   In the equation (1), k1 and n were constants defined by the characteristics 

of the particles and experimental methods, but those physical meanings were 
unknown. In order to confirm the equation (1), we have measured the pore 

volume of samples of zinc,  a-alumina, calcium carbonate and potassium nitrate. 

   The samples were sieved into a small flat container until the powder filled 

it. Bulkiness was determined by the measurement of the weight of the haphaz-
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              Fig. 1. Variation of pore volume VF for particle size D. 
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     Fig. 2. Relationship between n and reciprocal value of density of the materials. 
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ardly packed powder in the container. The relationship between  log  D and log 
VE is shown in Fig. 1, and is in agreement with the Roller's equation. The 

plotting of the value of n obtained from the slope of these lines against the 
reciprocal values of the density of the materials give a straight line through 

the origin as shown in Fig. 2. The value of n decreases as the density of the 

particle increases, coming to zero at infinite density. 
   For the very high density particles, it is expected that the bulkiness has a 

constant value not related to particle size. On the other hand, it becomes harder 

to pack the particles in proportion as the particle density decrease. From these 
experiments, it is concluded that, if the cohesion force at the contact point is 

smaller than gravity of a particle, the particles take up positions of minimum 

potential energy related to the packing formed at that stage, as shown in Fig. 
3 (a). Therefore, the bulkiness shows the constant value not related to particle 

size. However, when the particles whose weights are smaller than cohesion 
forces are deposited, they remain in that position assumed at the point of initial 

contact with the deposited particles and consequently form a bulky loose struc-

ture as shown in Fig. 3 (b) . 
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               Fig. 3. Schematic diagram of packing state for powder. 

   Accordingly, the value of D, means the particle size at which the gravity 

of a particle is equal to the cohesion force at the contact point, and n is the corn-

pactioness factor that relates to the properties of attractive force of interparticles 
and particle shape etc. 

   In this case, we have not considered in regard to the mechanism of cohe-

sion, but the following may be given as the cause of the attraction force the 

friction caused by surface roughness, surface tension of adsorbed water and 

electrostatic force etc. 

   Consequently, it is reasonable to consider that the simple packing phenomena 

are determined by the proportion between the gravity of a particle and cohesion 

force of inter particles. 
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     III. VARIATION IN POROSITY UPON ADDITION OF FINE POWDERS 

   The above experiments were done where the relatively monosized granular 

particles are allowed to fall on to a growing deposit. Normally, powders con-

sist of the particles of different sizes. There are some cases where the inter-

stices in a packing of large particles are occupied by small particles and then 

the voids  decrease. Packing models proposed by Hudson,2 Horsfield,3' Furnas4) 

are ordinary used for mixed powders of different sizes, and are not applicable 

to fine powders in which the attraction force of inter particles cannot be neglect-

ed. 

   The change of bulkiness based upon mixing of fine powders having different 

particle size, was measured by the same method previously mentioned.5) The 
samples used in this experiment were a-alumina and calcium carbonate which 

had been sized commercially by elutriation or air separation. Particle sizes of 

the samples are shown in Table 1. Particle size were determined by the air per-

meability method, and WA #800 was used as standard coarse powder. 

   The porosity increases rapidly by addition of fine powders as shown in Figs. 

4, 5, but remains constant within a certain range of further addition of fine pow-

ders. However, porosity increases again upon more addition of fine powders. 

                      Table 1. Particle Size of Sample Powders. 

         coarse powderfine powder 

   materials a-aluminaa-alumina calcium carbonate 
                                                                      talc 

   mark #800#3000 #4000 #6000 S 5 M 

 particle size 11.83.5 3.0 1.2 8.4 5.0 2.4 3.4 

  symbol —83 84 86 8CS 8C5 8CM 8T 
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           Fig. 4. Change of porosity produced by mixing of small particles. 
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           Fig. 5. Change of porosity produced by mixing of small particles. 

In Figs. 4 and 5, the change of the porosity with the weight ratio is shown, 

where WS is the weight of added powder, Wo is that of total powder mixed. 

   In Fig. 6, the number ratio is used instead of the weight ratio. In this case, 

the number ratio until which the porosities initially increased are 0.5^-1 inde-

pendently of the size of added particles, but the one from which the porosities 
increased again are greater as the particle size decreases. The relation between 

the number of small particles to a large one at these point, NB, and the particle 

diameter ratio DS/DL are shown in Fig. 7. 

   The mechanism of these phenomena is considered as follows ; assuming that 
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       Fig. 6. Change of porosity with number ratio of small and large particles. 
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            Fig. 7. Relationshipe between NR and particle size ratio, DS/DL. 

the cohesion force at a contact point of large particles is slightly smaller than 

the momentum of a particle and each particle cannot be supported at a contact 

point but can have two or more points, the particles will assume geometrically 
stable position producing a relatively dense packing as shown in Fig. 8 (a). 

Fine particles cohere to the surface of larger particles because the cohesion force 

of fine particles is relatively great. The large particles are supported with 

more contact points and make a bulky packing as shown in Fig. 8 (b). There 
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             Fig. 8. Schematic diagram of packing state for mixed powder. 
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are two effective contact points obtained by the cohesion of a small particle, so 

the number of small particles to large one are 0.5, being in agreement with the 
results in Fig. 6. Addition of more particles increases only the number of small 

particles ineffective to the contact between large particles. These small particles 
can not change the whole structure, and the porosity remains at almost con-

stant value since the weight of small particles is only 2-3 %. But after the 

surface of large particles is covered with cohesived small particles, the cohe-

sion between fine particles mainly influence the packing process and the porosity 
increase until the powder bed consists of small particles only. Accordingly, N7 

depends upon the number of small particles cohering to the ineffective surface 
of large particle and increases as the particle size decreases. 

   The relation between the increase ratios of porosities due to the addition 

of the small particles and their particle sizes is shown in Fig. 9. The difference 

between a-alumina and calcium carbonate is observed. The relation between 

the weight fraction of the small particles added and the increase ratio of 

porosity of powder bed in every mixed powder gives the straight line as shown 
in Fig. 10, and can be expressed in following equation 

W8 WS 
               f(s) x (Wo—W8)—a+13Wo............(2) 

where s is porosity and f(s) is the increase ratio of porosity, i.e. (s—so)so. 

   The physical meaning of the constants a and Q is not yet known, but they 
are considered to be useful as parameters standing for the coherency of powder. 
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           IV. MEASUREMENT OF THE INTERPARTICLE FORCE 

   The shearing  tester') was used for the powder beds in order to obtain the 
interparticle force. The relation between the weight added to the powder bed 

and the shearing stress is linear as shown in Fig. 11, allowing to apply Coulomb's 

equation (3) to them, . 

                                              SAMPLE White Alundum 6000 

( DP = 1 . 2 }L ) 
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                Fig. 11. Relationship between load and shearing stress. 

F=teW+C ............(3) 

where F is the shearing stress, W is the weight added to the powder bed, tt is 

the frictional coefficient and C is the cohesion force per unit area which can be 

obtained from the intersection on the longitudinal axis. In order to calculate 

the cohesion force per a contact point between two particles, C9, Rumpf's equa-
tion" was used as follows, 

C„ = C/KO 

KO = (1-0k/71.1)92k/9CD92............(4) 

where k is co-ordination number of a particle and a is the porosity in the powder 

bed. The co-ordination number is expected to vary with the packing state, but 

we reckoned that e•k=3.1 according to Rumpf's assumption. 
   The cohesion force obtained by the above method about various a-alumina 

powders is plotted to the particle size as shown in Fig. 12. The dotted line is 
the relationship obtained for the samples coated with fatty acid, but this treat-

ment is considered to have no effect upon the interparticle force. According to 

Rumpf, the cohesive force per a contact point of 10-5^-10-6 g would be classified to 

the range of van der Waals' force between two particles with the adsorbed 
layer, and it is considered to be appropriate for such inorganic powder as a-

alumina which is not hygroscopic and chemically stable. 
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          Fig. 12. Cohesion force per a contact point for various particle size. 

   The cohesive force between two sphere particles due to van der Waals' force 
had been expressed as follows by Hamarker, 

Cp =ADp/Ba2-3............(5) 

where A and B are the constants, and a is the distance between two particles. 

According to this equation, the cohesive force Cp has to be proportional to the 

particles size Dp. However, Fig. 12 shows that the cohesive force for the sample 

##6000 is nearly 1/100 of that for the sample ##800, while the particle size of the 
former is nearly 1/10 of that of the latter. It is considered that this unconsist-

ency is due to the fact that we had reckoned k=3.1 in equation (4). Because, 

this relationship had been found by Smith for the packing of lead shots where 

the void ratios were 0.259-0.447, and it would not be acceptable for the case of 
the fine particles like as the sample #6000 of which void ratios are very large. 

But the cohesive force Cp obtained for the sample ##800 is considered to be prop-

er, because the void ratio of this sample was 0.47 which was near the range 

used in Smith's experiment.81 So, the cohesive force of #6000 would have to be 

1/10 of that of ##800, i.e. 4 x 10'3 g, for the particle size is 1/10 of that of the 
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                      Fig. 13. Assembled structure of particles. 
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                Fig. 14. Plots of porosity against co-ordination number. 

latter. When the co-ordination number is conversely calculated with this value 

of C„ from the equation (4), it is obtained to be about 2.3. This indicates the 

state in which the particles are connected in a row and branched in several 

places as shown in Fig. 13.°1 
   The relation between the void ratio and the co-ordination number obtained 

by the above method is shown in Fig. 14 together with others, i.e. experimental 

results of Smith, Ridgway and Tarbuck,10' and theoretically calculated results of 
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Vold"' and Nakagaki and Sunada.12' 

   From these results, it is concluded that the relationship s • k —3.1 is proper 

in the case that the void ratio lower than about 0.5, but in higher range, the 
co-ordination number becomes less than the value obtained from that relation-

ship. At the same time, it was found that the particles formed the net struc-

tures (so-called the scaffold structures) in the packing states of high void ratio. 

V. A MODEL EXPERIMENT OF PACKING WITH FOAMY 
                     POLYSTYLENE PARTICLES 

   According to the observations of the stereophotographs, to some extent 

naturally deposited fine particles form a scaffold structure. In order to test this 

idea more experiments were done to determine that these structures appear 
when the interparticle force are greater than the weight of a particle. Large 

visible particles with a very small density are preferable. Commercial foamy 

polystylene particles which density was about 0.02 g/cm3 and diameter was 3-8 
mm were used. The cohesive force of these particles, however, is not so large 

as to keep a particle at a contact point against the weight of the particle. The 

apparatus which shown in Fig. 15 was used so as to increase the cohesive force 
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                      Fig. 15. Apparatus for model experiment. 

between polystylene particles. In Fig. 15, A is a desicater and B is a vessel 

which contained benzene. B was slightly heated to allow to saturate benzene 

vapor in A, and polystylene particles were fallen from the top of A. The particles 
surface had been slightly solubilyzed in benzene vapor during falling adhered 

to the packing at the touching points and forming a large void ratio. Fig. 16 (a) 

shows an example of this packing. The scaffold structure, as shown in Fig. 
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                  Fig. 16. Packing state of polystylene particles. 
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                     Fig. 17. Distribution of co-ordination number. 

13, is distinctly observed in this figure. Figure 16 (b) shows a packing which 

formed without to treatment. The co-ordination numbers of the particles in the 

scaffold structure were measured and the results are shown in Fig. 17. The 

distributions are nearly the same as two samples, one of them is the originals 

(marked with 0) and the other is the sample made by sieving of the originals 

(marked with •). These results agree with the dotted line which was obtained 

                           (423)
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from the theoretical calculation by Nakagaki and Sunada. The average co-

ordination number of the particles obtained from the distribution curve in Fig. 17 

is about 2.5 and the void ratio at the above state is 0.65,-0.70. 

   The cohesive force at a contact point between two particles in these loose 

packing was measured by the following two methods. One of them was the 
direct method; namely, a cluster consisting of several particles was hung to the 

hook of the balance and the terminal particle was pulled slowly down. Then 

the scale was read when that particle was separated from the cluster. The dis-

tribution of the cohesive force of about 300 particles obtained by this method is 

shown in Fig. 18. Average cohesive force of them is 58.5 mg. 

30 ------------------------------------------------------------------------ 

      20 — 
            0 

                                       58.5 mg 

% - 

10 

5% 

/ 

o 

1 1 1 I 1 I 1 i I Ili 1  
O20 406080 100120 140 160 

Cp ,mg 

                       Fig. 18. Distribution of cohesive force. 

   The shearing test was also used. In this experiment,the particles were 

packed in a cylinder of which diameter was 11 cm by the same method as 
shown in Fig. 15. The results are shown in Fig. 19 which includes the one of 

ordinary packing. Both of them satisfies the Coulomb's law. According to the 
equation (4), the cohesive forces per a contact point in the two packing states 

are estimated at 0.7 mg and 38 mg respectively. 

   As the particles not treated with benzene vapor cannot be supported by the 

cohesive force of 0.7 mg due to a weight was 2-20 mg, these particles are 

densely packed. The particles accumulated in benzene vapor are loosely packed 

due to their large cohesive force. This value of cohesive force obtained by the 
shearing test agreed considerablly with the result of the direct method. 

   Accordingly, it can be concluded that the value C in Coulomb's equation 

obtained on the adaptation to the shearing test is satisfactory as the cohesive 

force between particles. 
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    Fig. 19. Relationship between shearing stress and load in polystylene particle bed . 
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