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    Two different kinetic methods (exo-enzyme kinetic (I) and polarographic o-phenylene-
 diamine (II) methods) for the determination of number-average molecular weight (Mn) of 

 amylose have been developed. 
    I. A theory has been presented which describes the time course of exo-enzyme-catalyz-

 ed hydrolysis of linear high polymer substrates accompanied by a competitive inhibition by 

 products. The theory predicts that there is a linear relationship between t/p and p, where 
 p is the concentration of product at time t, and that the slope s of the plot of t/p versus 
 p is proportional to the Mn of the polymer substrate when a given amount of substrate is 

 taken. Based on the proportionality between s and Mn, a kinetic method was proposed to 
 determine Mn of linear polymer substrate by using an exo-enzyme hydrolyzing the polymer. 

    The theory was applied to the hydrolytic reactions of various fractions of amylose of 
 different degrees of polymerization catalyzed by crystalline exo-enzyme glucoamyla.se of 

Rhizopus delemar. A good agreement was obtained between the Mn values determined by 
 the present kinetic method and those determined by osmotic pressure and reducing end— 

 group measurements. 
    This method is especially useful for the determination of Mn of amylose having larger 

Mn values for which conventional methods would fail to give reliable data. 
    II. The time course of the polarographic limiting current development due to quinoxa-

 lines formed in the reaction of maltodextrin with o-phenylenediamine at pH 10 and at 100°C 
 was studied. The development of the limiting current was found to be of zero order in the 

 early reaction period and the current at the 20 min. reaction time was proportional to the 
 molar concentration of the terminal carbonyl group, i.e. to the reciprocal Mn of maltodex-

 trios. Taking maltodextrin (anhydroglucose units AGU=12.6±0.1) as standard, Mn's of 
 various fractions of amylose and maltodextrins were obtained. They are in good agreement 

 with those by other methods. This method is characteristic of the availability for a wide 
 range of Mn. 

                          INTRODUCTION 

   Determination of number-average molecular weight (1W)) of amylose and 
maltodextrin is usually made by the measurement of osmotic pressurei"z' or by 
end-group analysis (for example, reducing power measurement by Somogyi-
Nelson method).3`8 For all of these methods, the observable quantity, from 
which the Mn is determined, decreases with increasing molecular weight of the 
sample for a given amount of the sample taken. It is practically impossible or 

very difficult to obtain reliable data for amylose having molecular weights more 

* iJ41f -1--_--k13: Laboratory of Biophysical Chemistry, College of Agriculture, University of 
   Osaka Prefecture, Sakai, Osaka. 

(257)



                                     S.  ONO 

than ca. 500,000. For amylose of higher average molecular weight, therefore, a 

new method which is essentially different from the conventional ones may be 

needed. 
   Recently in our laboratory two different kinetic methods for this problem 

have been developed : The one is based on a kinetic analysis of the time course 

of consecutive liberation of glucose from the non-reducing end of amylose cata-

lyzed by exo-amylase. This will be termed exo-enzyme kinetic method.91 The 

other is also based on a kinetic follow of the time course of the polarographic 
reduction wave due to quinoxalines which are produced from the reaction of the 

reducing end of amylose and o-phenylenediamine. This will be termed polaro-

graphic o-phenylenediamine method.10' The enzyme kinetic method is especially 
useful for amyloses of higher molecular weight for which conventional methods 

would fail to give reliable data, while the polarographic method is characteris-

tic of the availability for a wide range of M.., by using only common reagents. 

   Of the kinetic approach of this kind, only one method utilizing the over-

oxidation by periodate has been known,11' but the method itself does not seem 

very reliable because of the difficulty of controlling the conditions. 

   In this paper principles of our two methods and their applications to amylose 

will be briefly reviewed. 

                    EXO-ENZYME KINETIC METHOD') 

   a) Principle 

   Consider an exo-enzyme-catalyzed hydrolysis of a linear high polymer con-

sisting of a number of monomer unit P, in which the exo-enzyme E attacks the 

substrate polymer at its particular end to produce the monomer product P. In 

general, the initial state of substrate is an ensemble of linear polymers of vari-
ous degree of polymerization (DP). Let S represent the substrate molecule 

having DP=i, and Sn be the substrate molecule having the highest DP, n, in the 

initial ensemble of substrate. Each step of degradation of a substrate molecule 

involves the Michaelis-Menten mechanism,12' and considering the occurrence of 
competitive inhibition by product P, the reaction scheme can be written as fol-

lows : 

k+1 k+2 
E+S. ----' ES„ --- E+S+P 

k-1 

k+1 k+2 
E+S1 ES1 ----> E+S+P 

k-1 

(I) 
k+1 k+2 

E+S2 ES2 -----> E+2P 
k_1 

k+r, 
E+P EP 

k_„ 
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where  ES (i=2^-n) is the intermediate enzyme-substrate complex formed be-

tween the enzyme and the substrate molecule Si, EP is the enzyme-product 

complex, the product being a competitive inhibitor, and k's are the rate constants 

specified in the scheme. For simplicity, the rate constants k+1, k-1 and k+2 are 

assumed to be independent of DP of the substrate molecule.* 

   The steady-state treatment leads to the (n-1) rate equations for Si (i=2 to 

n) and one for P as follows : 

dxi/dt—KV(xi+1—xi)/(1+K E xi+Kpp)(2) 
i=2 

and 

     n n 

dp/dt=KV(J xi+2x2)/(1 +K E xi+Kpp)(3) 
i=3i=2 

where xi and p are the molar concentrations of Si and P, respectively, and K, 

V and Kp are the reciprocal Michaelis constant, the maximal velocity and the 

reciprocal inhibitor constant, all expressed in molar concentration, respectively, 

which are given by 

K=k+1/(k-1+k+2) 

V = k+2e0(4) 
Kp = k+p/k_p 

where e0 is the enzyme concentration. 

   Except for the latest phase of reaction where an appreciable number of 

substrate molecule have been converted into product P and an appreciable amount 
                                                                                                                ~-1 of S2 is present, it is reasonable to approximate the sumLxiequal to the total 

i=2 

molar concentration of substrate present in the initial ensemble of substrate, X°, 
and to neglect 2x2 compared with X°. By using the approximation, Eq. (3) re-

duces to 

dp/dt=KVX°/(1+KX°+Kpp)(5) 

which will hold except for the latest phase of reaction. 

   Upon integration, Eq. (5) leads to 

KVX°t= (1 +KX°) p+ (K,/2) P2(6) 

   Dividing Eq. (7) by p, we have 

KVX° (t/p) _ (1 +KX°) + (Kp/2) p(7) 

Thus the plot of t/p against p will give a straight line with a slope s, which is 

given by 

s = Kp/2KVX °(8) 

* It was found in the glucoamylase-catalyzed hydrolysis of linear substrates,") that Michae-
  lis constant K. decreases and k+z increases with DP up to DP=ca. 15, but both of the 

  parameters are scarecely dependent on DP for substrates having DP higher than this 
   value. However, the assumption made here that the rate constants k+1, k_1 and k+2 are 
  independent of DP of substrate down to DP=2 does not affect the final results seriously, 

   since we are not interested in the latest phase of reaction where appreciable amounts of 
   smaller substrates will be present. 
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Let c be the substrate concentration expressed in gram per 100 ml. solution, Mn 
of the initial ensemble of the polymer substrate, is given by 

Mn =M~xv°/Exz° =10c/X°(9) 

where M1 and xz° are the molecular weight and the molar concentration of the 
substrate S, present in the initial ensemble of substrate. Insertion of Eq. (9) 

into Eq. (8) leads to 

s =K3Mn/20KVcCC M.(10) 

   Now it is seen that s is proportional to Mn of substrate when a given amount 

(weight) of substrate is taken. Therefore, it is possible to determine the M,, of 
a polymer substrate ensemble by measuring the slope s and comparing it with 
that obtained for a standard polymer substrate ensemble whose Mn is already 

known. 

   b) Results 

   Glucoamylase of Rh. delerar is one of typical exo-enzymes which catalyzes 
the complete hydrolysis of starch producing glucose from its non-reducing end.14"1") 

The product glucose has been known to be a competitive inhibitor of this 

enzyme.16,17) Moreover, the enzyme is so stable that no inactivation has so far 

been observed at all for the period of reaction. The time courses of hydrolytic 

reaction of several fractions of potato amylose (AF series) and those of partially 

degraded amylose (DF series) catalyzed by crystalline glucoamylase at 25°C and 

pH 4.5, were followed by the determination of glucose by the modification of 
Somogyi-Nelson's method.') 

   The linear relationship between t/p and p predicted by Eq. (7) was checked 
by plotting t/p versus p in Figs. 1 and 2. 
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                  Fig. 1. t/p versus p plots for AF series. 

                   0: AF I-1 Mv=1,650,000 
: AF I-2 M,=1,100,000 

® : AF II Mv=360,000 
                   The arrow shows the point of 70% hydrolysis. 
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                      Fig. 2. t/p versus p plots for DF series. 
0: DF 2 M8=33,000 
A : DF 3 Mn=20,000 
• : DF 5 Mn=13,000 

   The linearity oft/p versus p plot is seen to hold up to the extent of hy-
drolysis ca. 70%, above which the curve tends to deviate upwards, i.e., the rate 
becomes lower than that expected from Eq. (7). Except for this latest phase of 
reaction, however, good linearity between t/p and p has been proved to hold in 
accordance with the theory. It is necessary to see whether or not the slope of 
the linear part of the plot is proportional to Mn. Since no reliable value of M 
has been obtained for some fractions of AF series having llh higher than 500,000, 
the viscosity-average molecular weight M, will be used in place of M, to check 
the proportionality. It may be reasonable to assume that M is approximately 

proportional to Mn for these subfractions. Figure 3 shows the plot of the slope 
s obtained from the linear part of the plot in Fig. 1 against My for AF series. 
For DF series, the Mn determined by the end-group analysis was plotted against 
the slope s, as seen in Fig. 4. 

   Figures 3 and 4 show that there is good proportionality between the slope s 
and M2, and s and Mn, respectively. It is possible, therefore, to determine the 
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   Fig. 3. Relationship between the slope s Fig. 4. Relationship between the slope s 
     and the viscosity-average molecular and the number-average molecular 

    weight Mn for AF series (AF I-1, I-2, weight Mn determined by end-group 
I-3 and II).analysis for DF series (DF 2, 3 and 5). 
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 M. of an unknown amylose sample by comparing the slope s with that of a 
standard amylose sample whose M. is known. Two fractions AF I-1 and DF 2 

were chosen as the standard samples for the determination of Mn of various 

amylose fractions by the present kinetic method. Both the osmotic pressure 

measurement and the end-group analysis gave consistent values of Mn for each 

of these two standard samples. 

   The procedure for determining M. of an amylose sample by the present 

method is as follows : Under the same reaction conditions with respect to the 

substrate concentration c (gram of dried amylose per 100 ml.), the enzyme con-

centration, pH and temperature, the hydrolytic reaction of the sample and that 
of the standard sample catalyzed by glucoamylase are followed by a suitable 

method to obtain the product concentration p as a function of time t. From the 

plot of t/p versus p, the slope s is obtained for both samples (see Figs. 1 and 
2). The M, of the sample is determined from that of the standard sample, M.°, 

and the slope s of the sample according to the following equation 

M„=M,.°xs/s°(11) 

where s° is the slope obtained for the standard sample. The M.'s of various 

fractions of amylose determined in this way are listed in the fifth column of 

Table 1, together with the ratio of the slopes s/s° in the last column. The error 

involved in the determination of ML by this method is determined by the error 

in the evaluation of the slope s, which is usually 10%. Thus the final error in 

NI,,, may be 20% or less, so far as M,, is correct. For the purpose of comparison, 

the My and the M. determined by the osmotic pressure measurement and the 

end-group analysis are also included in Table 1. 

 Table 1. Viscosity- and Number-Average Molecular Weights of Various Amylose Fractions. 

M 
Fraction numbers/s° 

                           Osmotic pressure End-group Enzyme kinetic 

 AF I-11,650,0001,520,000 3.80 
 AF 1-21,100, 000920,000 2.29 
  AF I-3*460,000 400,000 420,000400,000 1.00* 
  AF II360,000 210,000 300,000270,000 0.68 
 AF III-1 540,000480,000 1.19 
  AF 1I1-2270,000220,000200,000 0.50 
  DF 2*'57,400 33,000 33,30033,000 1.00** 
 DF 333,30020,00019,000 0.58 
 DF 515,20013,40012,000 0.35 

    *, ** The fractions AF I-3 and DF 2 were used as standard samples of known Mn in 
 the determination of M,, by the present method for fractions AF and DE, respectively. 

   Table 1 shows good agreement between M,, determined by the present method 
and that determined by osmotic pressure and or end-group measurements, dem-

onstrating the utility of the present kinetic method. The M.'s of some frac-

tions (AF I-1 and 1-2) which had not been determined before the present method 
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became available, since osmotic pressure measurement and end-group analysis 

could not give any reliable data for them. It may be worthwhile to emphasize 

that in contrast to the conventional methods the present method is more ac-
curately applicable to the samples having higher molecular weights, since the 

slope s is larger and more sensitive to  Mn, for the samples with higher M as seen 

from Figs. 3 and 4. This is the greatest advantage of the present method over 

the conventional ones. Furthermore, the dependence of the slope s on Mz is 

larger for lower substrate concentration c, which means that we need only a 

small amount of sample for the determination. (In the present study, 10 to 25 

mg. of amylose was used per each run). The applicability and utility of the 

present method by the use of exo-enzyme kinetics has thus been demonstrated 
for the determination of Mn of amylose fractions by using glucoamylase exo-

enzyme for a wide range of A. 

           POLAROGRAPHIC o-PHENYLENEDIAMINE METHOD") 

   a) Principle 

   Reactions of o-phenylenediamine (OPD) with reducible sugars and even with 
amylose yielded various quinoxalines, which showed well-defined polarographic 

reduction waves at the same potential. For example, quinoxaline waves derived 
from glucose are shown in Fig. 5.18) The wave heights were proportional to the 

concentrations of glucose. Time courses of the formation of quinoxalines from 

the reaction of maltodextrins with OPD were then followed by measuring the 

total limiting current under definitively chosen conditions : the concentration of 

                           Nue 
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                    Fig. 5. Quinoxaline waves derived from glucose. 
               OPD 5 x 10-'M; Carbonate buffer pH 10 ; Heated at 100°C 

                for 1 hr. under N2. 
               Concn. of glucose : Curve (1) 5 x 10-4M, (2) 4 x 10-4M, (3) 

3 x 10-4M, (4) 2 x 10-4M, (5) 1 x 10`4M. 
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OPD 0.1M, sodium sulfite 0.3M in carbonate buffer pH 10.0 (0.2M) at 100°±0.1°C. 

Sodium sulfite was added so as to suppress unfavorable side reactions.10'20) The 
maltodextrins for which anhydroglucose unit (AGU) had been known by the end-

group determination, were tested, and the results are presented in Fig. 6. 
   As can be seen from the figure, the limiting current at given reaction time 

decreases with increasing AGU. The rate of the limiting current development 

seems to be almost of zero order for the initial reaction period, and to reach a 
saturated value after a sufficient reaction time, the value of the saturated limit-

ing current being dependent on AGU of the sample. 

                              VI°Conon . of reducing end (M)x105 2.5 V
1.50 1 2 3 4  

Sample 10 mg/100 ml. 
                              2.0 Reaction OPD 0.1 M IIINa2503 0.3 M 

Carbonate buffer pH 10 
H 1.5 •[ 1.0 Heated at 100°C 

. IIfor 20 min.  U~+ 

               NG           •0 .5                                                                           0 
a • 

/•a • 
 00 --------------------------------------------------- 0 

40 80 120 160 200 0 1 2 3 4 5 6. 7 8 
Reaction Time (min.) (1/AGU) x 102 

Fig. 6. Time course of the formation of quinoxa-Fig. 7. Relation between the 
       lines from various maltodextrins.limiting current and 
      AGUs are as listed in Table 2.molecular size of mal-

       Reaction : maltodextrin 10 mg/100 ml, OPDtodextrin. 
0.1M, Na2S03 0.3M, carbonate buffer pH 

       10 (0.2M), heated at 100°C±0.1°C. Limit-
        ing currents were measured at —1.0V (vs. 

        S.C.E.) at 25°C. 

   In the sense to compare this rate of the zero order reaction at the initial 

reaction time, for convenience sake, the limiting current of the quinoxaline wave 

at the first 20 min. of the reaction was taken. As shown in Fig. 7, one may see 

a linear relation between the limiting current and the molar concentration or 

the reciprocal value of AGU of the fractionated maltodextrin, if the same amount 

of each sample is treated under the present experimental conditions. This would 

   Table 2. Number-average Anhydroglucose Units of Fractionated Maltodextrins Used. 

     MaltodextrinsAGU 

I116.6±2.7 

II 71.5±0.8 

III50.5±0.7 

   IV38.4±0.5 

  V28.4±0.4 

VI*12.6±0.1 

             * A crystalline product prepared according to Hizukuri et al .2J 
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be more clearly demonstrated, if one may calculate the molar limiting current 

of each fractionated maltodextrin by dividing the observed limiting current by 

the molar concentration of the reducing end-group which can be obtained from 

the taken amount of sample and  AGU in Table 2. 

                                             I AGU = 116.6 
                          II = 71.5 I 

                                     III = 50.5 
                                 IV = 38.4 
                           V = 28.4 
                                    1.5 VI = 12.6 

                      ti 

                                                          1.0 

                                                     0.5 

Maltotetraose 

Maltose 0' 
                                0 40 80 120 160 

                                                   Reaction Time (min.) 
          Fig. 8. Time dependence of molar limiting currents-of maltodextrins. 

Reaction : the same as for Fig. 6. 

   In Fig. 8, the molar limiting current is plotted against the reaction time. 

The same treatment was also made for maltose and maltotetraose, and the re-

sults are presented together with those for maltodextrins, so as to facilitate the 

visualization of the nature of the reaction. The rate of the formation of quino-

xalines at the initial period of the reaction time may be regarded as identical 

for all the maltodextrins in the same molar concentrations, whereas it seems 

difficult for oligosaccharides such as maltose or maltotetraose to find any agree-

ment of the initial rate with those for maltodextrins even at a very early stage 

of the reaction. From the figure it may be said that, to apply the reaction to 

the determination of molecular size of maltodextrin or amylose, at least a stand-

ard specimen is necessary for which AGE has been carefully determined and 

moreover it should exceed at least 10. 

   The time required to reach the saturation value for the limiting current 

may depend on the AGU. The larger the AGU of maltodextrin, the longer the 

time for the completion of the reaction. 

   Fractionated amyloses were then examined in the same way as for the frac-

tionated maltodextrins. Examples of the time course of quinoxaline formation 

from amyloses with different molecular size are presented in Fig. 9. Though 

the time course of a straight line of zero order reaction would be expected for 

each fractionated amylose, an appreciable curvature of each curve is still ob-

served, while the limiting current at a very early stage is already enough large 

for measurement, indicating a high sensitivity for analytical purpose. Hence it 
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0.3 
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V•• 

                     •AF-1 
~ 0.1                                            •• 

00•40 00 120 160 
Reaction Time (min.) 

    Fig. 9. Time courses of formation of quinoxalines from amyloses with high AGU. 
           Molecular weights are given in Table 3. 

Reaction : amylose 100 mg/100 ml, other conditions are the same as for Fig. 6. 

is considered that the comparison of the limiting current at a relatively early 
reaction time may be recommended for the practical estimation of the molecular 
size, i.e. Mn. 

   For polarographic measurements, limiting currents at —1.0V (vs. S.C.E.) are 
recommended for both standard solution and the sample to be tested. Mn can 
be obtained as 

Mn=MM(st) xHS x ~(12) H
r Cs 

where H1 and H5 are the limiting current of the standard sample and that of the 
sample to be tested, respectively, and Cs and Cx are the concentrations (mg %) 
of the standard sample and that of the sample to be tested, respectively. MM(st) 
is the number-average molecular weight of standard sample. 

   b) Results 

   In Table 3, Ma,'s thus obtained with fractionated amyloses and maltodextrins 
are presented. The AGU of the standard maltodextrin used was 12.6.21) The 
limiting current was 1.42 pA, when the concentration was 10 mg %. 

   Comparing the present method with conventional ones, it may be at least 

emphasized that, though this polarographic OPD method needs a standard sam-

ple of fractionated maltodextrin (preferably of single species) for which M,l has 
been determined by other method (the AGU should be above 10), the estimation 
of AGU of unknown amyloses can be easily done for all practically possible 

     by using only one standard substance, while other conventional methods can 
cover only certain ranges of Mn and most of them still require the standard 
substance and further their procedures are often tedious and time-consuming. 

   For the other kinetic methods, the kinetic follow of the reactions requires 
more or less colorimetric procedures, while the present polarographic method 

( 266 )



        Kinetic Approaches for the Determination of Molecular Weight of Amylose 

demands no further addition of reagents into the reaction mixture and measure-

ments can be carried out directly only by transferring thereaction mixture into 

the polarographic cell and taking the polarograms in a classical way. 

   In addition, the problem of the standard substance may be discussed. For 

all the kinetic methods including the present method, some standard substance 

is absolutely important. Whelan recommended maltotetraose but the substance 

is not adequate for the present case as seen from Fig. 8. Maltodextrin  (AGU= 

12.6) used for the present investigation was substantiated as an excellent stand-

ard but the preparation of it may not be said very simple. 

   To solve this problem, the determination of the factor of the molar limiting 
current of maltodextrin at 20 min. reaction time versus the limiting current of 

glucose or maltose under fixed conditions may be worth to consider. The limit-
ing current of the quinoxalines from glucose or maltose after 60 min. reaction 

time has been known to be stable and reproducible as reported elsewhere. If the 

factor for the molar limiting current of maltodextrin at 20 min. reaction time 

versus the stable and reproducible limiting currents of glucose or maltose has 
once been obtained, the value might be used by other investigators with their 
own experiments on glucose or maltose, irrespectively of the characteristics of 

the capillary used in the present investigations. For such efforts, however, 

more careful and repeated experiments will be demanded. This will be, there-

 Table 3. Molecular Weights of Amyloses and Maltodextrins Determined by Polarographic 
          OPD Method and Those by Other Methods. 

     AmylosesPolaro. Somogyi-N. Enzyme Viscosity Osmotic 

     AF-11,500,0001,700,000 1,100,000 
     -2880 ,000760,000 750,000 

     -3770 ,000720,000 700,000 
     -4640 ,000(600,000)600,000* 

   -5350 ,000400,000 
   -6260 ,000220,000 

Maltodextrins 
I18,000 19,00023,000 
II11,000 12,000 
III8,800 8,200 

   IV5,600 6,200 
   V4,600 4,600 
    VI(2,041) 2,041** 

   * This fraction was used as standard for the enzyme kinetic method . 
  ** A crystalline product used as standard for all the polarographic measurements . 

fore, treated in our later publications. 

   The M,,, determination of amylopectine by the present polarographic method 

may then be possible under the assumption that every amylopectin molecule has 
no branch of a-1, 6 glucosidic linkage between the reducing end and the follow-

ing linear a-1, 4 glucosidic polymer, until the number of glucose unit correspond-
ing to this part surpasses at least 10. 

                            (267)
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   Using the same maltodextrin (AGU=12.6) as standard, Mn can be calculated 

from the limiting current at the 20 min. reaction time, for example, a prepara-

tion of amylopectin showed the limiting current of 0.044 pA, when the concen-
tration was 150 mg per 100 ml. The obtained Mn was 980,000. 

               CHARACTERISTICS OF THE TWO METHODS 

   As characteristics common for the both methods it may be emphasized that 
1) amounts of samples required are very small, and 2) procedures are rapid 

and simple, though at least a standard sample of known Mn must be available, 

(which is an inevitable condition for all the kinetic methods so far). 
   Some further characteristics for each method may be as follows : 

   Specific for the method I : 1) The method is especially useful for the higher 

molecular weight for which the conventional methods are difficult to give reliable 

data. 2) It is insensitive to impurities of lower molecular weights, which may 
cause large errors in the conventional methods. 3) The theoretical treatments 

may predict that by choosing an appropriate exo-enzyme, it may be applied 

generally to linear homo-polymers. 
   Specific for the method II: 1) The method is applicable for a wide range 

of Mn which no other methods could cover. 2) Such a special caution as the 

check of the enzyme activity made in the method I, is unnecessary. 3) It can 

also be applied to other carbohydrates having a reducible end (i.e. amylopectin, 

glycogen etc.). 
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