<table>
<thead>
<tr>
<th>Title</th>
<th>The Chemistry of Diterpenoids in 1967</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujita, Eiichi; Fujita, Tetsuro</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Institute for Chemical Research, Kyoto University (1970), 47(5): 522-551</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1970-02-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/76308</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
The Chemistry on Diterpenoids in 1967

Eiichi Fujita and Tetsuro Fujita*

Received July 30, 1969

I. INTRODUCTION

One of the authors (E.F.) has published the reviews of the chemistry on diterpenoids in 1964,1) 19652) and 1966.3) This review deals with an outline of the chemical works on diterpenoids in 1967.

The classification consists of podocarpane, labdane, clerodane, pimarane,

* Laboratory of Physiological Activity, Institute for Chemical Research, Kyoto University, Uji, Kyoto.
isopimarane, abietane, totarane, cassane, kaurane, gibberellane, atisane, aconane, beyerane, taxane, and the others, in accordance with a proposal for systematic nomenclature subscribed to by most workers in this area.4

\section*{II. Podocarpane Derivatives}

Chakravarty \textit{et al.}5 synthesized lactones 16 and 2 and four possible epimeric acids 3, 4,7 5 and 6.

\begin{center}
\begin{tabular}{cccc}
(1) & (2) & (3) & (4) \\
\end{tabular}
\end{center}

Wheeler \textit{et al.}8 studied conformations of some derivatives of podocarpic acid. They proposed using NMR data that the bromine in 7 is β and the ring B is distorted to a half-boat form, and suggested a mechanism of the formation of lactone 8 from 7 by heating with collidine. Just and Dahl9 obtained a stable O-methylpodocarponitrile oxide (9) by oxidation of podocarpinal syn-oxime with Pb(OAc)$_4$. Irradiation of the nitrile oxide gave 1010 that was identical with the irradiation product of the azide 11.

\begin{center}
\begin{tabular}{cccc}
(7) & (8) & (9) & (10) \\
\end{tabular}
\end{center}

Bennett and Cambie11 studied the oxidation of O-methylpodocarpic acid 12 with Pb(OAc)$_4$, and yielded alkenes 13, 14 and 15, and acetates 16 and 17. Oxidation of alkenes mixture with permanganate or Lemieux-Johnson’s reagent gave 18.

Burkinshaw and Davis12 studied the peracid oxidation of phenol 19 and its methyl ether 20 and reported the formation of p-benzoquinones, 4-hydroxycyclohexa-2,5-diones and acetates \textit{etc.} (21~26). Enzell13 studied mass spectra using deuterium labelling of podocarpa-8, 11, 13-triene.
III. LABDANE DERIVATIVES

From the resin of *Pinus sibirica*, agathadienediol was isolated by Russian workers.\(^{14}\)

Mangoni and Caputo\(^{15}\)* isolated manool (27), torulosal (28), isogatholal (29), agathadiol (39) and torulosol (31) from *Cupressus sempervirens* resin. Grant *et al.*\(^{16}\) isolated manool (27) and torulosol (31) from *Dacrydium bidwillii*.

Norin and Kimland\(^{16}\) isolated (−)-geranyllinalool (32), abienol (33), manoyl oxide (34) and 13-epimanoyloxide (35) from the oleoresin of *Picea abies*. Corbett and Smith\(^{10}\) isolated manoyl oxide (34) from the volatile oil of *Dacrydium colensoi*.

* See also section V.
Ekong and Okogun171 isolated four diterpenes from \textit{Oxystigma oxyphyllum} and gave them the structures 36--39.

Sandermann, Bruns \textit{et al.}181 also isolated eperuic acid (38) and another acid 37 from the heartwood of the same plant. The structure of peregrinol, a diterpene from \textit{Marrubium peregrinum}, was proposed as 40 by Russian workers.19,20

Two naturally occurring bromo-compounds, aplysin and aplysinol have been isolated from \textit{Aplysia kurodai}, and their structures have already been established.21 The third minor bromo-compound, aplysin-20 was isolated and the structure 41 was shown to be in agreement with X-ray analysis, and chemical and spectral evidence.22

Mills23 converted abienol (42) into trans-abienol (43) by mercuric acetate.

Carman and Dennis24 converted abienol (42) into cis-biformene (44) by dehydration with POCl\textsubscript{3} in pyridine at 0°C. They also carried out the similar dehydration with manool (27) and sclareol (45), and got cis- and trans-biformene (46) and sclarene (47). The acid-catalyzed dehydration was also tried on manool. The same authors25 made trichloro-derivatives from sclareol (45), manool (27) and manoyl oxides, 34 and 35, and studied their stereochemistry.

Shmidt \textit{et al.}26 reported that a diterpene diol previously isolated was 13-epitorulosol. Demole and Wuest27 synthesized a powerful amber-like odorous compound 48 from manool derivative. Popa and Titov28 investigated peracids oxidation of sclareol.

Overton and Renfrew29 reported the configuration at C-13 in labdanolic and eperuic acids to be R, but later they corrected it to S, which coincided with Henrick and Jefferies' assignment.
Carman suggested 13S configuration 49 for larixol against Norin et al. and Sandermann and Bruns. A major diterpenoid, psiadiol, was isolated from the leaves of *Psiadia altissima* and given the structure 50 by Canonica et al.

Pelletier et al. converted methyl levopimarate (51) into antipodal polyalthic acid (52a). *Anti*-daniellic acid (lambertianic acid) (52b) and its methyl ester were isolated from the oleoresin of *Pinus sibirica*.

Fetizon et al. studied the stereochemistry of marrubiin and presented a conclusion that marrubiin should be represented as 53 including absolute configuration. They modified the 8β stereochemistry of isoambreinolide into 8α as shown in 54. The same conclusion on marrubiin was presented by McCrindle et al. Mangoni and Adinolfi also presented a paper supporting the stereochemistry 54 for isoambreinolide. Wheeler et al. converted keto-lactone 55 into 56a and 56b, neither of which was not identical with the trimethyl keto-lactone analogue derived from marrubiin.

Solidagenone (57) isolated from roots of *Solidago canadensis* was related with marrubiin (53) by McCrindle et al. A neutral hydroxy ketone 58 was isolated and characterized.
IV. CLERODANE DERIVATIVES

The structure of plathyterpol, a liquid diterpene from the heartwood of *Plathymeria reticulata*, was proposed as 59 by King and Rodrigo. Jefferies and Payne reported the isolation and characterization of diterpenoids of the enantiolabane type from *Dodonaea attenuata*. The ether extract gave clerodane derivatives: acetoxy-hydroxy-acid 60 and lactone 61.

Pinkey and Simpson isolated a new neutral diterpene, olearin from *Olearia heterocarpa* and suggested structure 62 on the basis of chemical and spectroscopic evidence.

Cham et al. yielded a new furanoid norditerpene, crotonin (63) from the extract of the leaves and twigs of *Croton lucidus*.

Brieskorn and Pfeufer isolated three new diterpenoids from *Teucrium polium*. The major bitter principle was pikropolin, the structure of which was proposed as 64.

They also isolated other two related compounds (65 and 66) and some un-
E. FUJITA and T. FUJITA

identified compounds.

Nakanishi et al. proposed the chemical structure 67 for fibraurin and assigned the structure of 6-hydroxyfibraurin to a minor component. They were isolated from *Fibraurea chloroleuca*.

V. PIMARANE AND ISOPIMARANE DERIVATIVES

Corbett and Smith isolated a new diterpene alcohol from the volatile oil of *Dacrydium colensoi* and clarified its structure to be represented as 68 by its chemical conversion into the known noralcohol 69. They also isolated rimuene (70) and sandaracopimaradiene (71) besides some other diterpenoids.

Grant et al. isolated isopimara-7, 15-diene (72), isopimaradienal (73), isopimaradienol (74), isopimaric acid (75), and 18-nor-isopimaradiene-4α-ol (76) from *Dacrydium bidwillii*, besides some labdane derivatives.

McCrindle, Overton et al. published a full paper, the preliminary communications of which were reported already in 1964 and 1966; the structures for erythroxytriol P and erythroxytriol Q obtained from *Erythroxylon monogynum* were suggested on the basis of spectroscopic and chemical evidence as 77 and 78, respectively.

Shibata et al. isolated a new diterpene carboxylic acid, that is, ent-pimara-
Chemistry on Diterpinoids in 1967

8 (14), 15-dien-19-oic acid (79) from the roots of *Aralia cordata*. They also recognized the presence of *ent*-kaur-16-en-19-oic acid (80) or its antipode in the root of the same plant by VPC. Further VPC test with methylated products of the crude ethereal extracts showed the presence of 79 and 81 (or its antipode) in the same source.

ApSimon *et al.*, investigated the use of Lemieux-von Rudloff technique for oxidation of the vinyl groups in methyl pimarate (82) and methyl sandaracopimarate (84). An unexpected epoxy acid 83 was obtained from 82, whereas the expected acid 85 was yielded from 84.

![Chemical structures](image)

Bose *et al.*, studied the ORD curve and mass spectrum of the keto-ester 86 obtained from methyl dihydroisopimarate and clarified the keto group to be present at C-7. This was also confirmed by the mass spectrum of the deutrated ketoester. On the basis of these data it was concluded that the nuclear double bond is in the 7 (8) position in isopimaric acid (87).

![Chemical structures](image)

Kuthan *et al.*, investigated the partial dehydrogenation and reduction of sandaracopimaric acid (89) and pimaric acid (88).

Ireland and Mander *et al.* published a full paper of the total synthesis of (±)-
E. FUJITA and T. FUJITA

Chart 1

rimuene (70) and (±)-13-epi-rimuene (91). The routes are shown in Chart 1.

Tritium labelled alcohol 92, prepared from sclareol, was fed to Trichotecium roseum by Hanson and Achilladelis. Isolation of rosenonolactone (93) showed an incorporation of 0.13%. The labelled hydrocarbon 94, prepared from methyl pimarate was fed to T. roseum. However, no consistent incorporation was observed.

VI. ABIETANE* AND TOTARANE DERIVATIVES

* See also Sections VIII, refs. 90 and 85.
Chemistry on Diterpinoids in 1967

The structure 95 was assigned to sempervirol by Mangoni and Caputo.15,55 Totarol (96) and ferruginol (97) together with sempervirol were isolated from \textit{Cupressus sempervirens} resin.15

Racemic sempervirol (95) was total-synthesized by Mangoni and Caputo56
E. FUJITA and T. FUJITA

and identified as its acetate 98 as shown in Chart 2.

Another total synthesis of racemic sempervirol acetate (98) was reported by Ghatak and Chatterjee57. The route is shown in Chart 3.

The total synthesis of racemic methyl dehydroabietate (99) was carried out by Meyer and Sigel58 as shown in Chart 4.

Jensen and Johnson59 carried out a three step synthesis of fichtelite (101) from abietic acid (100). The tricarboxylic acid named \textit{meso-trans}-2-carboxy-methyl-1,3-dimethylcyclohexane-1,3-dicarboxylic acid (102), originally derived from abietic acid, was synthesized stereoselectively by Raphael \textit{et al.}60 12α-
Hydroxymethylabiet-7-en-18-oic acid (103) was prepared by hydrogenation of 12α-hydroxymethyl-abietic acid at low pressure, and its methyl ester was converted into methyl 12-acetoxymethyltabietate. Treatment of 103 and its acetate with conc. H₂SO₄ at cold condition was also investigated. The condensation of paraformaldehyde with abietic acid, 12α-hydroxymethyl-abietic acid and 12α-hydroxymethylabiet-7-en-18-oic acid (103) was studied by Black and Hedrick. Levopimic acid (104) was treated with HCl to give abietic acid, which constitutes a simple process for the preparation of the latter.

Methyl dehydroabietate and methyl 12-bromodehydroabietate were oxidized with KMnO₄ in the presence of MnSO₄ in pyridine at 85° to yield 7-oxo products. The alkaline hydrolysis of the materials and products was investigated. 4-Epidehydroabietic acid (105) was isolated from the oleoresin of *Callitris columellaris* by Carman and Deeth. Thermal decomposition of an adduct of maleic anhydride to levopimic acid was investigated, and succinic acid, its anhydride, and probably 106 were obtained. Some new derivatives of maleopimic acid (107), e.g. mono acid chloride, mono methyl ester, maleopimarimide (108), and its N-substituted derivatives, were prepared and characterized by Schuller and Lawrence.

The reaction of 12-hydroxyabietic acid with N-lithioethylenediamine gave dehydroabietic acid (99: R=H), while methyl 12-oxo-abelietate on the same reaction yielded methyl 12-hydroxydehydroabietate (109), a key intermediate for synthesis of 12-hydroxy-dehydroabietol (110), which is reported to have an oestrogenic activity.

Hudec and Kelly suggested structure 111 for the dioxide product resulting from heating of levopimic acid peroxide, against structure 112 proposed by Lawrence et al.

Dehydroabietonitrile (113) was treated with sodium in liquid ammonia to give a product 114, and the reaction mechanism was discussed by Arapakos.
Structure of callicarpone, a fish-killing component of *Callicarpa candicans*, was determined as 115. The configuration of the adduct of *p*-benzoquinone to levopimmaric acid was established as 116, whose various reduction products were characterized. Some hydrophenanthrene derivatives were synthesized for the pre-investigation of the synthesis of tanshinones.

VII. CASSANE DERIVATIVES

Daum *et al.* used methoxyhydrophenanthrone 117 as a key intermediate, and synthesized four possible ring-A-aromatic 7-methoxyoctahydrophenanthrols and perhydrophenanthrones 118 with cis-anti-trans, trans-anti-cis, and trans-anti-trans configuration. They synthesized racemic 17, 18, 19, 20-tetranorcassaine (120) via 119. Spencer *et al.* carried out the stereoselective total synthesis of racemic methyl vinhaticoate (121), and determined the stereochemistry of the secondary methyl group at C-14. Ferguson *et al.* isolated *s*-caesalpin from the seeds of *Caesalpinia bonducella* and assigned the structure to it and confirmed it by X-ray analysis. The structure and absolute configuration were determined as 122.

VIII. KAURANE AND BEYERANE DERIVATIVES

Phyllocladene (123) and isokaurene (124) were isolated from the volatile oil of *Dacrydium colensoi*. Conversion of hibaene (125) into kaurene (126), iso-
kaurene (124), and kaurane (127) was carried out by Kitahara and Yoshikoshi et al. The structure of abbeokutone, a diterpene from *Didymosalpinx abbeokutae*, was clarified as 128 by Taylor. Steviol (129) was converted into erythroxyol A (monogynol) (130) and the reverse conversion of 3-oxo-ent-hibaene (131) into an ent-kaurene derivative 132 was also presented by Hanson. The stereochemistry of some reactions at C-16 in ent-kaurene was clarified by the same author. The mechanism of garryfoline-cuauchichicine rearrangement was investigated using the epimeric ent-kauren-15-ols as models. The 15β-ol 133 was shown to rearrange rapidly in mineral acid at room temperature to 16R-ent-kauran-15-one (134) by a 15,16-hydride shift. The 15α-ol is stable under these conditions. Under the same conditions, ent-kaur-15-en-17-ol (135) gave the allylic isomer, ent-kaur-16-en-15α-ol (136), but under more forcing conditions it yielded 16S-ent-kauran-17-al (137).

Amide 139, obtained from 138, was treated with lead tetracetate and I₂ and photolyzed to give lactone ester 140.

The structure 141 of corymbosin, a glucoside from *Turbina corymbosa*, was proposed: corymbositin, the aglucone, was converted into alcohol 142, keto-
aldehyde 143, and keto-carboxylic acid 144.

Acyloin condensation with \(\gamma\)-lactone esters—that is, 145 and 146 which were derived from enmein (151)—was investigated by Fujita et al. The structure and stereochemistry of trichokaurin from *Isodon trichocarpus* were studied and formula 147 was first proposed by Fujita et al., but soon later, the stereochemistry of acetoxy-group at C-15 was revised to 148 by themselves. Trichokaurin (148) was chemically converted into the known keto-carboxylic acid 149 by Fujita et al. since the acid 149 had been converted into *ent*-kaurene, atisine, garryine, and veatchine, this transformation constituted the chemical conversion of trichokaurin into *ent*-kaurene and those diterpene alkaloids. Fujita et al. isolated a new diterpenoid, oridonin, from *Isodon* species and clarified the structure and absolute configuration as shown in formula 150.

Enmein (151) was converted into a hydrocarbon 152 a, which is enantiomer of the hydrocarbon 152 b derived from abietic acid (100). The latter 152 b was named abietane, and the former 152 a was named *enantio*-abietane by Fujita et al. A detailed full paper on the isolation of pure enmein and enmein 3-acetate from the leaves of *Isodon japonicus* was published. The component of the stems of *Isodon trichocarpus* was investigated, and the isolation of enmein and oridonin (150) was reported.

Kubota and Kubo elucidated the structure and absolute configuration of isodonal, a new bitter principle of *Isodon japonicus*, as shown in formula 153.
Seven species of reportedly poisonous Ericaceous plants were screened by thin-layer chromatography in order to detect the presence of the grayanotoxins. Grayanotoxin I was isolated and identified from one of the species. Five of the plants screened were found to contain grayanotoxin I, whereas grayanotoxins II and III were not detected. From the neutral fraction of the saponified leaf wax of Helichrysum dendrodeum (Australian Compositae), ent-16-kaurene-3β, 19-diol (154), ent-15-beyerene-3β, 19-diol (155), and ent-15-beyerene-17, 19-diol (156) were isolated. Among these substances, 155 is a new compound. In addition, ent-15-beyerene-3β, 17-diol (157) and ent-15-kaurene-17, 19-diol (158) were isolated and characterized.

6-Methoxy-1, 2, 3, 4-tetrahydronaphthalenone (159) was converted into 160. Similarly, 161, derived from 159, was converted into rac-3, 16-dioxo-20-norbeyer-5-ene (162).

An elegant total synthesis of rac-veatchine (163) and rac-garryine (164) had been accomplished by Nagata et al. Now, the full detailed paper was published.

Tahara et al. carried out the chemical conversion of abietic acid (100) into tricyclic 20-norditerpenes with aromatic ring C—e.g. 165, 166, 167 etc.—and a basic skeleton compound 168. Subsequently, they published the full paper of the chemical conversion of abietic acid (100) into 169, the short communication of which had been reported. Since compound 169 has been converted into garryine, veatchine and atisine, and abietic acid has been synthesized, this conversion constitutes a formal total synthesis of these diterpene alkaloids.
IX. GIBBERELLANE DERIVATIVES

Several reviews concerning or including gibberellins were published. High resolution mass spectra of 12 kinds of gibberellin homologue methyl esters were taken and analyzed. On the basis of spectroscopic and chemical properties, structure 170 was assigned to gibberellin A$_5$, a new metabolite of *Gibberella fujikuroi*, by Hanson. Two new compounds were isolated from culture filtrates of *Gibberella fujikuroi*, one of which was shown to have structure 171, whilst the other was provisionally assigned structure 172. Structures of new gibberellins in immature seeds of *Canavalia gladiata* were studied and assigned to *Canavalia* gibberellin-I (173) and C-g-II (174). Gibberellins in immature seeds of *Pharbitis nil* were investigated, and gibberellin A$_3$ and a new C-19 gibberellin (tentative name: *Pharbitis* gibberellin) (175) were found.

During the course of the chemical conversion from gibberellin A$_1$ methyl ester (176) to gibberellin A$_5$ (177), a mixture of monotosylate 178 and ditosylate 179 was boiled with collidine, and then hydrolyzed with methanolic sodium hydroxide solution. This procedure gave gibberellerin A$_5$ (177) (20%) accompanied by three by-products 180, 181, and 182 (isolated as methyl esters). Now, the solvolysis of
the tosylate 183, that is, gibberellin A₅ methyl ester toluene-₇-sulfonate, was studied by MacMillan and Pryce. The epimerisation of 3-axial to 3-equatorial hydroxy group in lactone type C-19 gibberellins was investigated by the same authors, who supported the mechanism by Cornforth shown in Chart 5.

They also isolated a new gibberellin from the seed of Phaseolus multiflorus and named gibberellin A₁₇. The structure 184 was assigned to this gibberellin. Gas-liquid chromatography of the methylated fraction of acids from immature seeds of Phaseolus multiflorus showed the presence of gibberellins A₁₇ (184) and A₅ (177), and the mass spectrometry recognized the presence of Bamboo gibberellin (185). The investigation of the green plant showed the presence of Bamboo gibberellin (185), Lupinus I (186), and A₁₇ (184). The 13-hydroxylation in the biogenesis was discussed in contrast to the fungal biogenesis. From immature fresh fruit of Phaseolus coccineus var. coccineus, Phaseolus s, a gibberellin glucoside, was isolated, and structure 187 was assigned to it. It was found that some 3-oxo-derivatives of gibberellins undergo readily the retro-Claisen cleavage of ring A. Thus, ketone 188 in alcoholic solution in the presence of
catalytic amounts of alkali opened ring A under mild conditions to give alkoxy lactone diester 189. Similarly, ketone 190 gave 191. The C-6 epimer of rac-desoxy-gibberic acid (193) was synthesized by the application of the Barbier-Wieland degradation of an ester 192. A racemic gibberellane derivative 195 was converted from 194 via several steps. rac-13-Deoxyepiallo-gibberic acid methyl ester norketone (196) was synthesized by the route shown in Chart 6. Since the indanone 197 was regarded as a key intermediate for the synthesis of the compound 198, the synthesis of 197 from m-methoxy-benzaldehyde and the alkylation of 197 were investigated.

Geranylgeraniol-2-14C was prepared by a modified Wittig reaction and converted to geranylgeranyl-2-14C pyrophosphate. An enzyme system from the endosperm of immature seeds of Echinocystis macrocarpa catalyzed the cyclization of geranylgeranyl pyrophosphate to ent-kaurene. The enzymic activity, which
was found in the 105,000 x g supernatant fraction, was named kaurene synthase. A possible mechanism for cyclization of geranylgeranyl pyrophosphate to ent-kaurene was discussed as shown in Chart 7.\textsuperscript{122) ent-Kauren-19-al (199) and ent-kauren-19-oic acid (200) were identified as products of mevalonate metabolism in an endosperm homogenate of *Echinocystis macrocarpa* (wild cucumber). These products were formed in addition to ent-kaurene and ent-kauren-19-ol (201), which were identified earlier. The evidence indicated that ent-kaurene is oxidized irreversibly to ent-kaurenol, ent-kaurenal, ent-kaurenoic acid, and a mixture of at least four other unidentified acids, in that sequence, in endosperm homogenates. \textsuperscript{123) C-ent-Kaurenal was incorporated into gibberellic acid in washed suspensions of *Fusarium moniliforme* cells. This finding, and similar results for kaurene, kaurenol, and kaurenoic acid reported earlier, indicated an intermediate role for all these substances in gibberellin biosynthesis. A hypothesis of gibberellin biosynthesis in *Echinocystis* endosperm which takes into account the results is shown in Chart 8.\textsuperscript{123)125}

\textbf{Chart 8}

\begin{align*}
\text{ATP, Mg}^{++} & \rightarrow \text{trans-geranylgeranyl pyrophosphate} \\
\text{4 Mevalonate} & \rightarrow \text{ent-Kaurene} \\
\text{soluble enzymes} & \rightarrow \text{ent-Kaurenol} \\
\text{Mg}^{++}, \text{soluble enzyme} & \rightarrow \text{ent-Kaurenal} \\
\text{NADPH, O}_{2}, \text{microsomes} & \rightarrow \text{ent-Kaurenoic acid} \\
\text{gibberellins} & \rightarrow \text{gibberellins}
\end{align*}

The stereochemistry of lithium-ammonia reduction of cyclic styrenoid systems containing a neighbouring carboxylic acid group was investigated. Compound 202 was converted into 203,\textsuperscript{124) whilst compound 204 was reduced to give 205 (53\%) and 206 (23\%).\textsuperscript{125)

\begin{align*}
(202) & \rightarrow (203) \\
(204) & \rightarrow (205, 206)
\end{align*}

\textbf{X. ATISANE DERIVATIVES}

Starting from podocarpic acid, dimethyl ester 207 was derived, which was
E. FUJITA and T. FUJITA

converted into lactam 209 via irradiation of 208 by Zalkow et al.126 The conversion of 209 into 210 which had been converted into atisine127 was given up because of the limited amount of 209.

![Chemical structures](image)

The detailed full paper about the elegant total synthesis of \(dl\)-atisine was published by Nagata et al.128

Skeletal rearrangements of 211 and 212 into 213 were observed by their treatment with PBr\textsubscript{3}.129 Epoxide 214 also showed the same type of rearrangement to 215. The transformation of phylocladene into an atisane-like system was investigated130; epoxide 216 was treated with BF\textsubscript{3}-etherate to give 217 in addition to ketone 218.

![Chemical structures](image)

\textbf{XI. ACONANE DERIVATIVES}

Seven alkaloids were isolated from the root of \textit{Aconitum septentrionale} and characterized. The main alkaloid was lappaconitine and the minor alkaloids
were new except deacetyllappaconitine. A study of Aconitum variegatum afforded talatisamine and cammaconine. The partial structure 219 was proposed for talatisamine. From the root of Delphinium denudatum, condelphine (220) and isotalatizidine (221) were isolated. The structure 222 of talatizidine, the C-1 epimer of isotalatizidine, was also clarified.

The structure 223 of jesaconitine was clarified. The structures 224 and 225 were assigned to anhydrodiacetyldelcosine and anhydrooxodelcosine. Glycine-2,14C and mevalonate-2,14C were incorporated into diterpenoid alkaloids in Delphinium ajacis.

XII. TAXANE DERIVATIVES

The structure elucidation of taxicin-II was described in detail by Lythgoe et al. The plane structure 226 was proposed. Subsequently, the full paper on the stereochemistry of taxicin-I and taxicin-II was published. 4,20-Dihydrotaxicin-I and dihydrotaxicin-II are represented as 227 and 228, respectively. O-p-phenylpropionyltaxicin-I on hydrogenation on Pd-C catalyst in ethyl acetate gave dihydro derivative 229, while the former on the same treatment in aqueous methanol gave a hydrogenolyzed product 230 accompanied by 229. From the leaves of Taxus cuspidata, four new diterpenoids, that is, Taxinin A (231), T-H (232), T-L (233), and T-K (234) were isolated and their structures were elucidated.
ed. The structure of T-K was established by discovery that irradiation of T-A in dioxan for 15 minutes with a 450 W high-pressure Hg-lamp produced T-K in more than 15% yield. Mechanistic considerations suggested that the 12-methyl has the β-configuration.

XIII. THE OTHERS

As one of the neutral components of frankincense (produced by *Boswellia carteri*), a new macrocyclic diterpene, incensole was isolated. The structure was shown to be 12-isopropyl-1, 5, 9-trimethyl-1, 12-oxido-5, 9-cyclotetradecadien-2-ol (235). Active investigations about the chemistry of phorbol, a novel diterpene from *Croton* oil (seed oil of *Croton tiglium*) were carried out by Hecker *et al.* Preliminary acetylation, dehydration and dehydrogenation experiments led to an assumption that phorbol has a hydroazulene skeleton. The reaction of the alcholic hydroxy groups in phorbol with diazomethane in the presence of aluminum isopropoxide was investigated to afford ethers. On the basis of the periodate- and lead tetraacetate-oxidations, the partial structure of phorbol was proposed. Phorbol diacetate was oxidized to give a diketone, phorbolone, whose circular dichroism was investigated. Eleven irritant and tumor promoting compounds have been isolated and purified from *Croton* oil. All eleven compounds isolated were diester of one and the same alcohol phorbol C_{25}H_{33}O_{6} (236), each diester containing one short chain and one long chain fatty acid.

Structure and stereochemistry of phorbol were elucidated as shown in 237. Hecker *et al.* proposed the name tiglian for saturated parent hydrocarbon with the same configuration at those asymmetric centers, and the x-ray analysis of 5-bromofuroate derivative of phorbol established the structure and relative configuration of phorbol, which clarified A/B trans juncture in 237. Subsequently,
however, the x-ray analysis150 of neophorbol-13, 20-diacetate-3-\textit{p}-bromobenzoate confirmed the absolute configuration of phorbol to be shown as 238.

Wiesner et al.151 revised their previously proposed structures152 239 and 240 for ryanodine and ryanodol to 241 and 242, respectively, on the basis of some chemical reaction.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{structures.png}
\caption{Structures of ryanodine and ryanodol.}
\end{figure}

Maleopimaric acid was converted into ketone 243, which was transformed into \textit{anti}-neoatisirene (244) and \textit{anti}-neoisoatisirene (245).153 Wenkert and Mylar154 derived 246 from manool, and treated it with lead tetraacetate and iodine. One of the products, 247, was treated with NaHCO$_3$ in DMSO to give a mixture of hemiacetals accompanied by other products. From the mixture of hemiacetals upon Jones oxidation there could be isolated an enone lactone 248, which may be a potential intermediate for syntheses of diterpenes of \textit{Sciadopitys verticillata} and diterpene alkaloids.

Three resin acid degradation products, 249, 250, and 251, were synthesized.155 A synthesis of geranylgeraniol-2-14C was reported.156 Whalley \textit{et al.} published a
series of reports on the chemical shift, in which long-range effects of methyl groups and the anisotropies of the C-C and C-H bond\cite{157}, the anisotropies of the carbon-carbon double bond,158 and the NMR spectra of some diterpenes159 were described. The chemical shifts for the C-17, C-19, and C-20 methyl groups in the resin acids and their hydrogenated derivatives were calculated and the methyl resonances assigned. Mass spectrometric studies of aromatic diterpenes were published.160 Klyne and Crabb161 described ORD and CD of aromatic diterpenes in their general survey. Gaschromatography and mass-spectrometry of the trimethylsilyl ether of vitamin A and some of its isomers were reported.162 As a model for synthesis of ring A of the diterpene acids, the cyclization of epoxyolefin 252 was tried to give an aldehyde 253.163 Geranylgeranyl acetate terminal epoxide (254) was cyclized by its treatment with stannic chloride in benzene to give 255–257 and acyclic terminal chlorohydrin.164 The new synthesis of a potential intermediate 258 which is useful for the synthesis of diterpene was carried out.165 From the essential oil of the leaves of \emph{Chamaecyparis taiwanensis}, a diterpene was isolated.166 So-called “dundathalic acid” from \emph{Agathis robusta} oleoresin was investigated and it was proved that this is a mixture of abietic acid, neoabietic acid, \emph{trans}-communie acid, and \emph{cis}-communie acid, with other unidentified acids.167 Saturated hydrochloride 260 was prepared from phytol (259) and HCl. Viresentol A, a metabolite of \emph{Oospora virescens}, was characterized and its functional groups were shown.168

Geranylgeranial was first isolated from the wood of \emph{Cedrela toona}.170 In the fruit of \emph{Pteroden pubescens}, all-\emph{trans}-(−)-14,15-epoxygeranylgeranial and geranylgeranial were recognized and isolated.171 A new C\textsubscript{20} \emph{α},\emph{β}-unsaturated aldehyde 261 was found from Tobacco.172 Nakanishi \textit{et al.} isolated and characterized various kinds of ginkgolides, the bitter principles of \emph{Ginkgo biloba},173 and proposed their partial structures.174 Subsequently, the structure 262 of ginkgolide A(GA) was proposed.175 The stereochemistry of ginkgolides was investigated and their absolute configuration was deduced from the positive Cotton effect in the RD curves of 7-oxo-ginkgolide C monomethyl ether and the F-nor ketone derived from monoacetyldianhydro-
ginkgolide C monomethyl ether. Thus, the full structures of four ginkgolides, A, B, C and M are summarized\(^\text{176}\) in 262 to 265, respectively. An independent X-ray study\(^\text{177}\) of mono-\(p\)-bromo-benzoate of ginkgolide A arrived at identical conclusions regarding the structure of GA. Some aspects of the NMR spectra of ginkgolides were described including the intramolecular nuclear Overhauser effect.\(^\text{178}\)

A detailed paper on ginkgolides A, B, and C by Okabe et al.\(^\text{179}\) was independently reported.

A review on the chemistry of \(\text{C}_{20}\) diterpene alkaloids was published by Pelletier.\(^\text{180}\)

REFERENCES

(4) J. W. Rowe, in preparation.
E. FUJITA and T. FUJITA

(34a) S. W. Pelletier, L. B. Hawley, Jr., and K. W. Gopinath, *Chem. Comm.*, 96 (1967).
Chemistry on Diterpinoids in 1967

(110) J. R. Hanson, Tetrahedron, 23, 733 (1967).
(111) J. C. Brown, B. E. Cross, and J. R. Hanson, Tetrahedron, 23, 4095 (1967).
(128) S. W. Pelletier and A. Ichihara, Chem. and Ind., 2149 (1967).
Chemistry on Diterpinoids in 1967

(147) E. Hecker, Naturwissenschaften, 54, 282 (1967).
(180) S. W. Pelletier, Quart. Revs., 21, 525 (1967).