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     First-order perturbation calculation was carried out concerning the mean-square radius of BAI3 
 triblock copolymers. General features of molecular dimensions of AB di- and BAB triblock copolymers 

 in various solvents were discussed in relation to their parent homopolymers. Expressions describing 
 the dimensions of A-subchain of each block copolymers were also given for the sake of their practical 

 application to the light-scattering studies. 

                           INTRODUCTION 

   The most characteristic feature of a block copolymer in solution results from in-
teractions (of long range nature) between chemically different sequences composing the 
block copolymer chain. The fact that two different homopolymers are rather incompatible 
even in good solvents') allows us to expect that such interactions will be of repulsive nature, 
and this will lead to an expansion of the chain. The interactions as a whole should depend 
not only on the composition but also on the chain architecture, i.e., the sequential ar-
rangement of monomers along the chain.2'3) It is the main purpose of this work to 
investigate the influences of the chain architecture upon the chain dimension for AB 
diblock and BAB triblock copolymers. 

   As to AB diblock copolymers, Froelich and Benoit4) have carried out first-order 

perturbation calculation of the mean-square radius <S2> and evaluated the coefficients 
C's of a following rigourous expression for the expansion factor a in the proximity of the 
O state: 

        a'2=<S2>/<S2>=1+CIZAA-FC2Lea C3LA-H...(1) 

where <S2>0 is the mean-square radius in the absence of excluded volume effects. In 
the equation Liu (K and L denote either A or B) is defined by 

ZKL=(3/2vrb2)3/2Nv2XaL(2) 

XKL= f [1—exp(—VKL(r')IkTArit-(3) 
where b2 is the mean-square length of the segments, IV the total number of the segments 

and VKL the average potential of interaction between the segments K and L placed r 

apart. Our concern in this study is to give the coefficients C's for BAB triblock copolymer 

and make a brief discussion on the chain dimensions of block coplymers in various types 

of solvents. 

* !Mpg , , i141;93: Laboratory of Polymer Characterization, Institute for Chemical Research, Kyoto 
   University, Uji, Kyoto-fn. 
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   Although light-scattering measurements give us the direct knowledge of  <S2> 
value for a homopolymer, they may fail to inform us of the true <S2> value for a block 
copolymer so far as the scattering power of each type of segments is different from one 
another.5) On the other hand, it is less difficult to find such solvents that make either of 
the constituents invisible. Through measurements carried out in such solvents in which 
the sequences of type B, for example, are invisible, we can determine the value of <S2>A, 
the dimension of A-subchain affected by B-subchain(s). This should be of much help 
to the investigation of structural features of block copolymers.6) Thus, for the sake of 
the practical application to the light-scattering study we will also give the expressions for 

<S2>A for the two types of block copolymers mentioned above. 

               II. CALCULATIONS OF MEAN-SQUARE RADII 

1. Basic Equations 

    Consider a linear chain, of any chain architecture, consisting of two types of segments 
A and B, each of which is governed by a Gaussian distribution. According to the per-
turbation theory generalized by Fixman,') the mean-square of the distance vector ri) 
between two segments serially numbered i and j can be written as 

<rii2) -=<rij2>o— XIctrii2[P(rii, Ok1)—P(r)P(Okr)itirti+-.•(4) 
h> 

Here the subscript 'o' has the usual significance. P(r15) is the probability density of 
the vector rt./ and P(rij, rki) is the bivariate probability density of the vectors rii and 
11-1, both calculated using random flight statistics (Oki means rki=0). The excluded 
volume parameter XKL defined by eq. (3) takes three values XAA, XBB and XAB, corres-

ponding to the types of the segment pairs k and /, namely, if both k and 1 are of type A, 
XK L XA A, and so forth. 

   Application of the Wang-Uhlenbeck-Fixman theorem') to the function P(rij, 
 leads eq. (4) to 

J2> =<1. ij2>o+ (3/277.62)3/2621-fki2(k-1)-5/2XK L +                                              (5) 
h>l 

Here it must be mentioned that we have assumed the mean-square length of all the seg-
ments to be equal to 62, for the sake of simplicity (this will be discussed later). By this 
assumption the quantity <7172>0 can be written simply as 

<rii2>o=(6) 

The factor fki denotes the number of the segments common to the two sequences, one 
flanked by the segments i and j on either side, and the other by the segments k and 1. 
The parameter XKL takes again three values, corresponding to the locations of the seg-
ments k and 1. 

   Summation of eq. (5) over all the segment pairs i and j involved in a specified 
sequence R which consists of a total of N5 segments generates the desired expression for 
R's mean-square radius <S2>5, in accordance with the general definition: 

(R) 
    <S2>R—(1/NR2) <r..2>(7) 
I> j 
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where the symbol (R) means both i and j belong to R. Obviously the overall dimension 
of the chain is given as 

\\o     <S2>=(l/N2) L.<r..2>(8) 
 i>j 

2. Mean-square Raius of BAB Triblock Copolymer 

    Consider a block copolymer chain with three subchains, one A-subchain consisting 
of Ni segments of type A, and two B-subchains which flank the A-subchain on its either 
side, consisting of N2 and N3 segments of type B, respectively (see the following scheme). 
Calculation of the mean-square radius of this model chain by the use of eqs. (5) and 

N,(B)NI (A)N,(B) 
I-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------III 
     0NzN,+N21^1,+N,+N3== N 

---------------P Serial Number 

(8) needs to distinguish twenty-four cases (without symmetrical ones) corresponding to 
the various locations of the four segments i, j, k and /. They are somewhat confusing 

and troublesome, but straightforward. 

   Dividing the resultant expression for <S2> by <S2>o derived by the use of eq. (6), 

we may calculate the coefficients C's in eq. (1) for BAB triblock copolymer as function 

of the segment compositions x1, x2 and x3 as follows. 

105C1=134x1712+392(x2+x3)x1512+840x2x3x1312(9a) 

105C2=134[1+x17/2+x27'2+x.37/2—(x1I
Ix2)7112]                 -f-392[(x2+x3)x15/2(x1Tx3)x25/2+(X1+x2)x3512—x2(x1±x3)512 

—x3(x1+x2)5121,+840x2x3x1512(9b) 

          105C3134[(xl+x2)7'2+ (x1+x3)7/2+x27/2 +x3712)] 
 -II                  392[x2(xi+x3)5/2+x3(x1-x2)5/2-2(x2+x3)x15/2_(x1+x3)x25/2 

— (x1 + x2)x3512] + 168Ox2x3x13/2(9c) 

with 

x,n=Nnl/N, (m=1, 2 and 3) andN=N1+^2+N3 

   We notice that the above equations for x3=0 reduce to those earlier given by 
Froelich and Benoit4) for AB diblock copolymer, which read 

105C1=134x17/2+392x2x1512(l0a) 

105C2=134x2712+392x1x25/2(l0b) 

105C3=134(1—x17/2—x27/2)-392x1x2(x1312 x2312)(lOc) 

with 

x1 +x2=1 

3. Mean-square Radii of A-subchains 

   To begin with, we introduce a new quantity (a)A2, which represents the ratio of the 
mean-square radius of A-subchain to that in the unperturbed state, 1. e., 

(a)2=<S2)n/<S2>n,o(11) 
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For the  salce of easy recognition, this factor should be written in the form, 

(a)n2=1+Cj*ZAA*+C2*ZBB*+C3*ZAB*-i ...(12) 

where LKL* (K and L=A or B) is defined by 

Z1L* =(3/27rb2)3/21V 1/2XKL=x11/2ZKL(13) 

with 1V1 still being the number of the segments involved in A-subchain and xi=N1/iV. 
   As eqs. (7) and (8) indicate, no new calculations other than those already carried 

out are necessary in order to find the coefficients C*'s for BAB triblock copolymer. All 
that must be done is to pick up the cases where both i and j belong to A-subchain, and 
sum them up. 

   Thus, for BAB triblock copolymer we have 

105 C1* =134(14a) 

105C2*=70[1+(1+Y1+y2)-"2—(1+y1)-1/2—(l+Y2)-1/2i (14b) 

105C3* =52+768(y17/2+y,7/2)+896(y15/2+y25/2) 
—96[(1+Y1)7/2+(1+y2)712] +448[yl(1 +y1)5/2+y2(1 +y2)5/2] 
—1120[y12(1 +y2)3/2 +Y22(1 +y2)3/2J 

+70[(1+yi)-1/2+(1+Y2)-1/2](14c) 

where 

Yi=x2/x1, and y2=x3/xl 

   Again, eq. (14) for x3=0, generates the corresponding expression for AB diblock 
copolymer, i. e., 

   105C1* =134(15a) 

105C2* =0(15b) 

         105C3* =26+768y712+896y512 —96(1+y)7/2+448y(1+y)5/2 
—1120y2(1+Y)3/2+70(1+y)-1/2(15c) 

where 

y =x2/x1 

                           III. DISCUSSION 

1. Overall Dimensions 

   First we examine the overall dimensions of AB di- and BAB triblock copolymers. 
For the sake of easy association with their parent homopolymers we rewrite eq. (1) in 
a following form: 

a2=1+ [CI  +(C3/2) ILA A+[C2+(C3/2)]ZBB+C34L(16)                                                   LA 

where 

Q ZA B=ZAB—(ZAA +LBB)(2=(31217b2)3/2N1/2Q XAB(17) 

LXAB=XAB—(XAA+XBB)/2 

The well-known relation for homopolymers with small excluded volume effects,7> 
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a2-=- 1 + (134/105)Z+ • • •(18) 

is now applied to ZAA andZ_i33 in eq. (16), and we have 

      az=F,aAZ+Fza~zrF34ZAU+...(19) 

where a1 (K=A or 13) denotes the expansion factor of the parent homopolymer con-

sisting of N segments of type K and the coefficients F's are related to C's as 

F,=(105/134) [C1+(C312)] 

F2=(105/134) [Cz+(C3/2)](20) 

I'3=C3 

Here we notice the obvious relation, 

Ft -{-Fz -=1(21) 

The quantitative usage of eq. (19) is, needless to say, limited to the cases where each of 
the parameter Z's is very small. 

    In order to get some quantitative information of the cases where Z's are large, we 
introduce the following two assumptions. One of them is that the expansion factor a 
be a function of a single variable <Z> which is written as 

<Z>=(105/134) (CI ZAA+CzZBB+C3ZAt3)(22) 

and the other is that any change in a be identified with a uniform change in the mean--
square length of every segment. These assumptions are as fully justified as in the case 
of homopolymers, if ZAA=Zss=ZA,t. Otherwise, the first assumption would not be 
the case, and its validity should be tested by higher order perturbation calculation. 

    Under the above assumptions we may follow, for example, Fixman's procedure,8) 
according to which the relation 

a3— I =(67/35)Z(23) 

was derived, and we have 

a3-1 =(67/35) <Z >(24) 

    Through the last five equations the expansion factor of block copolymer is, again, 
related to those of the parent homopolymers, each consisting of N segments. 

a3=Ftan3-1-F2a93 +(3/2)F34 ZA„(25) 

    On the other hand, if we assume an approximated relation9> between the hydrodynamic 
expansion factor a, and Z 

a93-1 —1.55 Z(26) 

for block copolymers, we have 

a9.3-1 =1.55<Z>(27) 

Combining eqs. (22), (26) and (27), we find the following convenient relation : 

['1]=Ft[-q]n+F2Ms+1.22NodZAB(Z8) 

where [il] and [rl]o are the intrinsic viscosities of block copolymer at the perturbed and un-

perturbed state, respectively, and [n]„ and [ills are those of the parent homopolymers, 
each consisting of N segments of type A and B, respectively. 

(11.1)
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   The numerical values of the coefficients  FI (=1—F2) and F3 are plotted against 

the segment composition of type A for AB diblock and symmetrical BAB triblock co-

polymers in Fig. 1. In this figure it is particularly noticed that both F5 and F3 values 
for a triblock chain are considerably larger than those for a diblock chain in the region 

where x1 <0.5. The quanlitative features of these values can be roughly summarized as 

Fi(Triblock) > x1 > Fi(Diblock) if x <0.5 

F1(Triblock)=F1(Diblock)>x1 if x1>0.5 

and 

 1.0--------------------------------------------- 

            (a) 

               sym.BAB  0.5/ 
  LA-AB 

         0 

            •( b) sym .BAB 

  OA-— 

              CY) 
    LL.AB 

0 ------------------------------------ 
    00.51.0 

xl 

Fig. 1. Plots of the coefficients, (a) F1 (=I-1'2) and (b) F3 against the 
               A-segment composition x1 for AB diblock and symmetrical BAB triblock 

             copolymers as indicated (for the detail, see eqs. (19), (25) and (28)). 
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F3(Triblock)>F3(Diblock) if x1 <0.5 
F3(Triblock) ̂ -F3(Diblock) if xi > 0.5 

   By applying these general features of the coefficients to the equations given in this 
section, the following qualitative pictures might be drawn in comparison of the molecular 
dimensions of the two types of block copolymers: (1) A triblock chain will be more ex-

panded if, XAA>XBB, and xi <0.5, (2) A diblock chain will be more expanded if, XAA 
<XBB, x1 <0.5, and 4 X =0, and (3) there will be no significant differences between their 
molecular dimensions if x1>0.5. Here it was assumed that 4X>_0. This quantity is 
expected to reflect the incompatibility of the parent homopolymers in a given solvent, 
and there are some evidences to suppose it generally to be non-negative, its magnitude 
depending strongly on the solvent nature.1"°) As is seen in Fig. lb., the differences 
between the contribution of 4X terms to the overall dimensions of the two types of block 
copolymers would be trivial when x1>0.5, while it would be considerably large when 
xi <0.5. 

2. Dimensions of A-subchains 

   As before, we first relate the expansion factor of A-subchain (a)A to aA* and aB*, which 
denote the expansion factors of homopolymers A and B, respectively, each consisting 
of Ni segments. For the cases where the effects of volume exclusion are small (or, each 
of Z*'s is small), eq. (12) can be written as 

(a)A =aA*2+G1(aA:s2-1)+G2(as*2-1)±(268/105)G14 ZAB* ~-...(29) 
where 

4ZAB*=ZAB*—(ZAA*+ZBB*)/2= (3/2 rb2)3/2N11/24XAB(30) 

and 

G1= (105/268) 6'3*(31) 

G2=(105/134) [C2*+(C3*/2)](31) 

   If we again accept the two assumtions similar to those given in the last section, we 
can show the following relation for the cases where Z*'s are large: 

(a)A3=aA*3+Gl(aA*3-1)+G2(aB*3-1)+(134/35)GLJZAB*(32) 

   The numerical values of G1 and G2 for AB diblock and symmetrical BAB triblock 
copolymers are illustrated in Fig. 2. In these figures it should be noticed that both GI 
and G2 have finite values at x1=0, this suggesting that (a)A value for an A-subchain 
flanked by extremely long B-subchain(s) will approach a finite value which is not so large. 

   All these results imply that if 4X is assumed to be non-negative, an A-subchain within 
a block copolymer chain would be, as a matter of course, more expanded than the cor-
responding homopolymer and such a deviation would be much larger in the case of tri-
block copolymers. For example, taking the cases where aA*3=aB*3=2, x1=0.5 and 
4ZAB*=0, the ratio (a)A3/aA*3 for BAB triblock copolymer can be estimated by eq. 
(32) to be 1.14, while that for AB diblock copolymer is found to be 1.07. 

    Discussions given so far about the dimensions of block copolymers in good solvents 
are based on the two assumptions described in Sec. III-1. As pointed out there, thee 
are as fully justified as in the case of homopolymers only when XAA=XBB=XAB. There-

                            ( 113 )
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0.2-------------------------------------------- 
                          (a) 

sym. A 

0.1® —° 

A 

• 

      ss 
  1.0 -------------------------------------------------------------1 

(b) 

ym.BAB A 
0 0.5 - — 

AB 

0     0 
0.5 1.0 
X1 
            Fig. 2. Plots of the coefficients, (a) G1 and (b) Gz against the A-segment 

                composition x1 for AB diblock and symmetrical BAB triblock 
                copolymers as indicated (for the detail, see eqs. (29) and (32)). 

fore, the quantitative usage of eqs. (24), (25), (27), (28) and (32) should be confined to 
the cases, in which these quantities do not differ much from one another, and therefore, 
the parameter dX is relatively small. Otherwise, the expansion factor a may not be 
expressed by a single parameter <Z> defined by eq. (22), and it would become very 
difficult to describe quantitatively the dimensions of block copolymers on the basis of any 
procedure established for homopolymers. Moreover, when dX becomes very large, 
two different subchains within a molecule might exhibit a so-called phenomenon of in-
trachain phase separation to occupy some distinctly different domains in space.11,12) 
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Obviously the above equations are not valid for a block copolymer molecule assuming 
such a conformation. 

   On the derivation of eq. (5), we have assumed the identical mean-square length 
for every segment.  However some correction is necessary to apply it to the general 
cases in which the mean-square lengths of each type of segment are not identical, i.e., 
bp2bs2. For such cases it might be reasonable to introduce a mean-square length of 
segment as defined, 

-forexample, by     b2=(bn2ILbB2)/9(33) 

Then, further assumption is made that the following relations hold: 

Nb2=(NA+NB)b2= VA' bA2+NB'bg2(34) 

and 

Nnb2=Nn'bn2, N13b2=NB'bB2(35) 

where NK and NK' (K = A or B) are the total number of identical segments and co-
monomers, respectively, both involved in K-subchain(s). By the above relations it is meant 
that the block copolymer chain is composed of N segments with identical mean-square 
length defined by eq. (33). It follows that the mole fraction of K-identical segments 
YK is correlated to the mole fraction of K-comonomers xK' by writing 

xK=Nhc/N=xK'bK2/(xn'bn2--xs'b52), (K =A or B)(36) 

The quantities bA2 and ba2 may be determined by investigating appropriately the parent 
homopolymers. Further it is noted that the newly introduced quantities xK are reasonably 
identified with those defined earlier, i.e., x,, x, and so on. 

   In connection to the above treatment, it is much more realistic to convert the mean— 
square radius <S2> defined by Eq. (8) as that around the geometrical center to that 
around the center of mass. This is, especially, necessary if one concerns the problem 
of intrinsic viscosity. Such a mean-square radius may be generally be described by 

<S2>=(1/M2) mimi<ri12>(37) 
i >1 

where ill is the molecular weight of block copolymer and m-i (=mA or m5) is the mass 
of the segment i. Eq. (37) can be rewritten as 

<S2>=2wn2<S2> +wB2<S2>e-FG PIAZP A<S2>A B(38) 

where aeix (K=A or B) is the weight fraction of K-segments, and <.S2>AB is obtainable 
from 

                 (A)(B) <S2>
ns=(7INnNs)(39) 

However, there will be no significant difference between the mean-square radii defined 
by eq. (8) and eq. (36), so far as mA and mB are not largely different from one another. 
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