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     Relations among the relative shrinkage, orientation distribution function and orientation factor 
 were investigated for fibrous polymers on the basis of the shrinkage theory proposed in previous paper. 
 It was shown that the orientation distribution function was written as an exponential function of A, and 

 the orientation factor f,, in amorphous regions was represented by a parabola curve with respect to 
G or (.S/d). 

INTRODUCTION 

   Thermal shrinkage of fibrous polymers along the fiber axis may be mainly caused 

by partial melting of crystalline regions, the decrease in the number of pseudo cross-

links in amorphous regions, the decrease in orientation of amorphous chains and re-

crystallization in amorphous regions. Above all, the thermal shrinkage by partial melt-

ing of crystalline regions and the decrease in the number of pseudo cross-links in amorphous 

regions have been already investigated theoretically in the previous papers.1-'3) These 
theoretical treatments of thermal shrinkage were discussed on the basis of Flory's inciting 

theory on polymer-diluent systems and on cross-linked polymer systems.4'5) 

Fischer6) has indicated that the dimensional stability of crystalline polymers was 
closely related to the mechanism of partial melting of crystalline regions. Conformational 

entropy of amorphous chains may substantially affect the dimensional stability of crys-
talline polymers. This conformational entropy of amorphous chains was discussed in 

detail by Zachmann.7'5) 

   In this paper, thermal shrinkage of fibrous polymers by partial melting will be dis-

cussed in terms of the orientation distribution function and the orientation factor in a-

morphous regions. 

THEORETICAL TREATMENT 

Relation between Relative Shrinkage and Orientation Distribution Function 
of Amorphous Chains 

    According to I+lory,4'9) the change in Gibbs free energy accompanying disappearance 

of crystalline regions in polymer in the absence of diluent, when the crystalline length 
is constant at a given temperature, is given by 
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          (fi«—T.s,t)—(h,—Tsx)—(2o-eg)=kT[(1[xa)—(1g)ln1)/x}](].) 

: heat of fusion per structural unit. 
    s ,, : entropy of fusion per structural unit. 

hx : heat of transition per structural unit due to pseudo cross-links in amorphous 
         regions. 

    sx : entropy of transition per structural unit due to pseudo cross-links in amorphous 
        regions. 

    oe : surface free energy per structural unit. 
: length of crystallite in number of units. 

    A : amorphous fraction. 
x : total number of structural units in a polymer molecule. 

    h : Boltzmann's constant. 

    T : absolute temperature. 

    Whereas, the relation between the amorphous fraction A and the relative shrinkage 
S is given by') 

A=.SLei(Lc —La)(2) 

where, Le and La are the lengths of sample in totally crystalline and totally amorphous 
states, respectively. Substituting eq. (2) in eq. (1), we obtain a relation between S 
and T 

       1 1 xLc 1 (x---F1     =~1T—h(L-=Ln(3)                                        \-_ 
                     c-a 

in which, 

       tiLc ~2ae              A
=h(I —La)                            {(lz,a—LSu)—(Itx—Tsx)— 

Further, the Gibbs free energy change dG [dG is equal to (liu—Tsec)—(/1x— TN- x)—(2ueg), 
the left hand term in eq. (1) ], is regarded to be approximately governed by the confor-
mational entropy of amorphous chains,6) and hence 

   dG=kT-1a"acar4      ~a„+ar dii() 
where, is the conformation factor, r the end-to-end distance in an amorphous chain, 
and n the number of segments per an amorphous chain. 

   Since the conformation factor 4, for Gaussian and Langevin chains is, respectively, 

given by 

f,=4 V(3(277—nb2)3/2exp(-3r2/2nzb2), Gaussian chain(5) 

Jjd V sin !r~ "ex r b Langevin chain(6) 

where, (3 = L*(r/ub), L ": Inverse Langevin function, B: normalization constant, d V: 
arbitrary volume, and b: length of a segment, the following equations are obtained for 
Gaussian and Langevin chains. 

G=kT(3/2n2b2) (r2—nb2-2rub cos y), Gaussian chain,(7) 

G=kT(-3/2n)ln(sir~h~\—flcos y), Langevin chain,(8) 
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If r is changed by partial melting of crystallites, then it may be assumed that the melting 
in the side face of crystallite does not occur and, thus, 2(1—A)g becomes constant. 
Therefore, the term 2(1—AN is disappeared by differentiation of AG by A, so that —2aeg 
in 4G is neglected, and hence 

Q G=(h0—Tsu) —(hz—Tsx) 

   The orientation distribution function F(y) in Langevin chain is represented by10) 

               fb F(y) 
47rhTsIr(6f1kT)exp {L*(r/nb)cos y}(9) 

where, f is the force, and y is the angle between the direction of a segment and the end-
to-end distance vector. From eq. (9), the following equation is obtained. 

           2nsin kg           —(3/'".)-I-ln~—~ - )—/3 cos y----(3/2ra)—ln(47r) (Y)(10) 
   With respect to Gaussian chain, the orientation distribution function F(y) is repre-
sented bv10> 

               3r           F(
y)-4,n-sin f2(3r/nb)exp(3r cos y/~ab)(11) 

Therefore, in this case, the following equation is obtained. 

(3/2n2b2) (r2—ab2-2rnb cos y)=-1n(4ir)—(3/2n)—ln F(y)(12) 

   Thus, for both Gaussian and Langevin chains, 4G is given as a function of F(y) by 
an identical equation as 

JG=k.T {-1n(47r)—(3/2n)-1n F(y)}(13) 

   Substituting eq. (13) in eq. (3), one obtains relation between the orientation distri-
bution function F(y) and the relative shrinkage S 

                                 h(Le—La) 1 1x—~f1   k {-1n(4—(14)               7r)—(3/2n)ln F(y)} —Ic5,—ln(.._) 
Further, A in eq. (3) is represented by 

         A={-1n(47r)—(3/2n)—ln Fa TL~                       (Y)}(15)                                     Z
c--La 

Therefore, the orientation distribution function F(y) is written as 

   F(Y)=Cexp{—A(Lc(16)                  La)~ 
a TL, 

with 

C=exp{— (2)r -}-ln 47r) 
Relation between the degree of polymerization x and the force f, in reversible process 
of thermal deformation, is represented by3> 

NA/f=xL,/kA(17) 

where N,, is the Avogadro number. Therefore, substituting eq. (17) in eq. (16), we 
obtain the orientation distribution function F(y) represented by 
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 .f  (Lc—La) NAd G            f'(Y)=Cexp{----TR—Cexp(—_Tye--(18) 
         In addition, as AG was expressed as a function of S by 

NAAG=ARS/xA,(19) 

     substitution of eq. (19) in eq. (18) leads to the following equation. 

       F(Y)=C exp{--7(S/A)}(20) 
F(y)=C ex{L 

     If the second term in the right hand of eq. (3) is neglected, then eq. (3) is written as 

S=17-4(22) 

     and hence one obtains the following equations by substituting eq. (22) in eq. (20) or 
     in eq. (21). 

      F(y)=C exp(-1/xA)(23) 

or 

F(Y)=Cexp/( fLcIRAA)(24) 

     Thus, F(y) was represented by exponential functions of A. 
        By combining eqs. (4) and (13), the orientation distribution function F(y) is ex-

     pressed as a function of (/ by 

In C—ln F(y)=81n(/,/ata(25) 

     Therefore, the relative shrinkage is finally represented by the following equation by com-
     bining eqs. (20), (21), and (25). 

S=(A/fLc) {TR(in C—ln F(y)I —(A/fLu)TR(alncf/an)(26) 

     Relation between Relative Shrinkage and Orientation Factor of Amorphous 
     Chains 

         The orientation factor fa of amorphous chains is generally represented by") 

                       3r nb      f
a=1—L~`(r/ztb)(2r) 

     and the average value, <cos2y>, of coszy is given as 

     <cos2y>=1*(/(28)                              /" 
                       L'(r/rzb) 

     Hence, fa is represented by 

     fa—3<cos2y>-1(29) 2 

         On the other hand, the length La of the sample in totally amorphous state is given by 

La=Lc(<cOS2 v>)1/2(30) 

     Thus, from eqs. (29) and (30), fa is alternatively given by 

                3 La 21                                                  (31)                 fa—...2.._Lc_.)—2 
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Moreover, from eqs. (2) and (3D,  fa is expressed as a function of S/zl by 

fa=1-3(S/A)-I-(3/2) (S/A)2(32) 

Combination of eqs. (19) and (31) gives a relation between fa and AG. 

fa —(3/2) (x/Ak)2(dG)2-3(x/Ah)AG+1(33) 

Thus, it was shown that fa is a quadratic function of S/A or of AG. 

Conformational Entropy and Entropy of Fusion 

   According to eq. (19), difference AS between the entropy of fusion and the entropy 
of transition in amorphous regions is represented by 

hu—h, Ah S                    —(s" —s2) _. / _ 
.xz1 T(34) 

Hence, substituting eq. (22) in eq. (34), one obtains 

  A.5—h,~—lak35   Tx1(') 

If I,=Ii.i then, 

A S= —k/xA(36) 

The entropy difference AS shown in eqs (34)-(36) should be equal to the conformational 
entropy of amorphous chains, hence, this quantity is indicated by the following equa-
tions for Gaussian and Langevin chains, by the use of eqs. (7) and (8). 

        dS=k{--273jz(r2—n62-2rnb cos y)}, (Gaussian chain)(37) 
S--Ir{ 2n.+111/air~ r.13) —13 cos y}, (Langevin chain) (38) 
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