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Relations among the relative shrinkage, orientation distribution function and orientation factor
were investigated for fibrous polymers on the basis of the shrinkage theory proposed in previous paper.
It was shown that the orientation distribution function was written as an exponential function of A, and
the orientation factor f, in amorphous regions was represented by a parabola curve with respect to

AG or (SIA).

INTRODUCTION

Thermal shrinkage of fibrous polymers along the fiber axis may be mainly caused
by partial melting of crystalline regions, the decrease in the number of pseudo cross-
links in amorphous regions, the decrease in orientation of amorphous chains and re-
crystallization in amorphous regions. Above all, the thermal shrinkage by partial melt-
ing of crystalline regions and the decrease in the number of pseudo cross-links in amorphous
regions have been already investigated theoretically in the previous papers.!™® These
theoretical treatments of thermal shrinkage were discussed on the basis of Flory’s melting
theory on polymer-diluent systems and on cross-linked polymer systems.®5)

Fischer® has indicated that the dimensional stability of crystalline polymers was
closely related to the mechanism of partial melting of crystalline regions. Conformational
entropy of amorphous chains may substantially affect the dimensional stability of crys-
talline polymers. This conformational entropy of amorphous chains was discussed in
detail by Zachmann.”$)

In this paper, thermal shrinkage of fibrous polymers by partial melting will be dis-
cussed in terms of the orientation distribution function and the orientation factor in a-
morphous regions.

THEORETICAL TREATMENT

Relation between Relative Shrinkage and Orientation Distribution Function
of Amorphous Chains

According to Flory,*? the change in Gibbs free energy accompanying disappearance
of crystalline regions in polymer in the absence of diluent, when the crystalline length
is constant at a given temperature, is given by

*  HdEST : Department of Textile and Polymer Technology, TFaculty of Engineering, Gunma
University, Kiryu.

Rz ¢ Department of Polymer Chemistry, Kyoto University, Kyoto.
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(ew—Z's0) — (g —T's2) — (20| D) =AZ[(Ld) — (1) In {(w— L+ 1)/} ] M

/ey » heat of fusion per structural unit.

sy @ entropy of fusion per structural unit.

/iy ¢ heat of transition per structural unit due to pseudo cross-links in amorphous
regions.

s @ entropy of transition per structural unit due to pseudo cross-links in amorphous
regions.

o, @ surface free energy per structural unit.

{ : length of crystallite in number of units.

A : amorphous fraction.

x ¢ total number of structural units in a polymer molecule.

% : Boltzmann’s constant.

7" . absolute temperature.

Whereas, the relation between the amorphous fraction A and the relative shrinkage
S is given by
A=SLeJ(Le—Lq) (&)
where, L, and Z, are the lengths of sample in totally crystalline and totally amorphous
states, respectively. Substituting eq. (2) in eq. (1), we obtain a relation between S
and 7

1 1 xL; 1 x—L41
ST T M= Ly 2”1“< =) ®)
in which,
20,

Further, the Gibbs free energy change 4G [4G is equal to (fy—Z'sy) — (g — T 'sy) —(204/0),
the left hand term in eq. (1) ], is regarded to be approximately governed by the confor-

mational entropy of amorphous chains,® and hence

_ i (b 3¢ dr
AG=~1 ® (787 or (L’?Z) @)

where, ¢ is the conformation factor, » the end-to-end distance in an amorphous chain,
and # the number of segments per an amorphous chain.
Since the conformation factor ¢ for Gaussian and Langevin chains is, respectively,

given by

b=AV (3[2mnd*3 2exp(—3r?21n4%), Gaussian chain (5)
bp=BAV <§ipﬁ—/%é>”exp(——,87/b), Langevin chain 6)

where, B = Z*(r/nb), L*: Inverse Langevin function, B: normalization constant, 4V
arbitrary volume, and 4: length of a segment, the following equations are obtained for
Gaussian and Langevin chains.

AG=kT (321267 (#*—nb*—2rnb cos v), Gaussian chain, )
AG—=A7T'(—3)2n)+ 1n(i‘%@) —Bcosy), Langevin chain, @®)
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If 7 is changed by partial melting of crystallites, then it may be assumed that the melting
in the side face of crystallite does not occur and, thus, 2(1—A)/{ becomes constant.
Therefore, the term 2(1—M)/{ is disappeared by differentiation of 4G by A, so that —206/L
in 4G is neglected, and hence

AG:(/Z“'—TS“)_(/](U‘—TS;U)
The orientation distribution function /#(y) in Langevin chain is represented by'®

a S s
= Gop 7 sinhar 7y P W lnb)eos v} ©)
where, fis the force, and vy is the angle between the direction of a segment and the end-
to-end distance vector. From eq. (9), the following equation is obtained.

sin 48

—@/25)+1n( o ) —B cos y=—(3/2) — In(dm) —1n 7(y) a0

With respect to Gaussian chain, the orientation distribution function #(y) is repre-
sented by'®

37
darnb sin /i

Fy)= ) exp(3s cos y/nb) (11)

Therefore, in this case, the following equation is obtained.
(3/2#20%) (#*—nd*—2rnd cos y)==—In{dm) —(3/27) —1n F(y) (12)
Thus, for both Gaussian and Langevin chains, 4G is given as a function of #(y) by
an identical equation as
AG=kT {—In(da)—(3/2n)—1n F(y)} 13)

Substituting eq. (13) in eq. (3), one obtains relation between the orientation distri-
bution function #(y) and the relative shrinkage .S

7 {—In(dm)—(3/27)—1n F(y)) = é(Li}f” é‘»—%ln (’Q_EH) (14)
Further, 4 in eq. (3) is represented by

A= (—In(m)—@[2)—In FG) 55 (1)

Therefore, the orientation distribution function #(y) is written as

A(Lo—Lq »
e (16)

with
C::exp{ - (~§2-~—}— In 4«77)}

Relation between the degree of polymerization x and the force f, in reversible process
of thermal deformation, is represented by

N f=xLofhd a7

where N, is the Avogadro number. Therefore, substituting eq. (17) in eq. (16), we
obtain the orientation distribution function 7(y) represented by
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- . S Le—La) N.dG
In addition, as 4G was expressed as a function of .S by
N dG=ARS[xA, 19)
substitution of eq. (19) in eq. (18) leads to the following equation.

A

Pl)=C exp{——?g(S/)\)} @0)
L

) =C exp{— 7% (51) e

If the second term in the right hand of eq. (3) is neglected, then eq. (3) is written as
S==T4 (22)

and hence one obtains the following equations by substituting eq. (22) in eq. (20) or
in eq. (21).

F(yy=C exp(—1/aN) @3)
or
Flyy=C exp|(—fLo RAN) @4

Thus, #(y) was represented by exponential functions of A.
By combining eqs. ) and (13), the orientation distribution function #(y) is ex-
pressed as a function of ¢ by

In C—1n 7(y)=0lnd[on @25)

Therefore, the relative shrinkage is finally represented by the following equation by com-
bining egs. (20), (21), and (25).

S=Q[fLY{TR(An C—1n F(y)} =W/ L) TR(@Ind[dn) (26)
Relation between Relative Shrinkage and Orientation Factor of Amorphous
Chains
The orientation factor f, of amorphous chains is generally represented by'd

37[nb

Sa=1— TErind) @m0
and the a{reragc value, <cos?yy, of cos?y is given as
27[nb
{cos?yp =1 T4 (rInd) (28)
Hence, fq is represented by
3cos?yy—1
JRS e 29)
On the other hand, the length 7, of the sample in totally amorphous state is given by
Lo=L{{cos?y))1"? (30)
Thus, from eqs. (29) and (30), /, is alternatively given by
3 (La 2 1 :
Je a="y ]‘c> —5 @
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Moreover, from egs. (2) and (31), fo is expressed as a function of .S/A by

Ja=1=3(S[N)+(3[2) (S/})? (32)
Combination of egs. (19) and (31) gives a relation between f, and 4G.
Ja=3/2) (x| ARAG)—3(x] ARAGH1 (33

Thus, it was shown that f is a quadratic function of S/A or of 4G

Conformational Entropy and Entropy of Fusion

According to eq. (19), difference 4.5 between the entropy of fusion and the entropy

of transition in amorphous regions is represented by

hy—hy  ARS

4 S=(sp—s5z)=" T TTAT (34)
Hence, substituting eq. (22) in eq. (34), one obtains
It R
st te 35)

If 2y = kg, then,
AS==—k[x) (36)

The entropy difference 4.5 shown in egs (34)-(36) should be equal to the conformational
entropy of amorphous chains, hence, this quantity is indicated by the following equa-
tions for Gaussian and Langevin chains, by the use of egs. (7) and (8).

4 S:IJ{Q—E i (r*—nb*—2rnb cos 'y)}, (Gaussian chain) B7)
AS:Kz{ —2“?;2 +1n <Sl%ﬁﬁ > —p cos 'y}, (Langevin chain) (38)
REFERENCES

(1) N. Tanaka and A, Nakajima, Bull. Institute Chem. Res. Kyoto University, 48, 236 (1970).
(2) N. Tanaka and A. Nakajima, 7éid., 49, 377 (1971).

(3) N. Tanaka and A. Nakajima, 76¢d., 49, 382 (1971).

(4) P.J.Flory, /. Chem. Phys., 11, 223 (1949).

(5) P.J. Flory, /. Amer. Chem. Soc., 78, 5222 (1956).

(6) E. W. Tischer, Kolloid-Z. Z. Polym., 218, 97 (1967).

(7) H.G. Zachmann, bid., 216/217, 180 (1967).

(8) H.G. Zachmann and P. Spellucdi, #7d., 213, 39 (1966).

(9) N. Saito, “Polymer Physics”, Shyokabo Pub. (1958).

(10) L. R G. Treloar, “The Physics of Rubber Elasticity”’, Oxford (1949).

(69 )



