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     Expressions of various average molecular weights including light-scattering apparent values, 
 compositional heterogeneity and molecular weight distribution have been derived for block and graft 

 copolymers by applying, respectively, the random-coupling, and the random-grafting statistics. The 
 average molecular weights may be correlated with certain easily accessible experimental data. The 
 relations provide important criteria for checking the heterogeneity of the material under investigation. 

     In particular it was shown that the complete description of compositional heterogeneity and molec-
 ular weight distribution may be obtained from the following experimental data: 

 i) The overall chemical composition. 
 ii) Molecular weight distributions of constituent homopolymers, i. e., for a block copolymer those 

       of the two precursor homopolymers, and for a graft copolymer those of the backbone prepolymer 
       and of the graft-side-chains which may or may not he identical to that of the ungrafted side-chain 
       homopolymer separable from the reaction mixture. 

 iii) For a graft copolymer the true graft ratio or the grafting efficiency. 
 iv) And for a mixed block copolymer the type and the relative amount of each species involved, 

       which may be deduced from the reaction mechanism and kinetics. 

                           INTRODUCTION 

   Compositional heterogeneity and molecular weight distribution are important factors 
for characterizing physical properties of copolymers. Nevertheless, careful studies on 
the heterogeneities of copolymers appear to be rather sparse. Immediately after the 
now well-known theory of addition copolymerization1-4l was first presented, several 

authors developed the theory to describe the compositional heterogeneity and molecular 
weight distribution of addition copolymers.5`7) However, it is of rather recent event that 
these earlier theories have been seriously tested and proved to be generally valid.8-11) 
This situation appears to have been resulted from the difficulty and tediousness in carrying 
out the experimental analysis. This is to be contrasted to the microstructural analysis 
of copolymers and stereospecific polymers mostly based on a highly sophisticated technique 
of high resolution nuclear-magnetic-resonance spectroscopy.12,13>Upon carrying out 
nmr measurements and subsequent microstructural analysis one often ignores the hetero-

geneity of the material one is dealing with. However, occasionally careful characterization 

  * I~n~'~ l fat: Laboratory of Polymer Characterization, Institute for Chemical Research, 
     Kyoto University, Uji, Kyoto. 

 ** V rl: On leave from Department of Polymer Engineering, College of Engineering, Pusan 
     National University, Pusan, Korea. 

( 332 )



                           Heterogeneities of Block and Graft Copolymers 

     study reveals that a material which has been believed (without reason) to be a single 
     component could be in fact a mixture or a complex of entirely different  species.14) Thus 
     the ignorance of characterizing the heterogeneity could lead to an erroneous conclusion. 

     Anyway the ease and the sophistication of nmr have stimulated the development of the 
     copolymerization theory to describe microstructural characteristics of copolymers13) which 

     of course has been embraced in the original theory.1-4) 

         Another drawback in carrying out the copolymer heterogeneity analysis arises from 
     the fact that many experimental techniques such as light-scattering,15 -17) gel permeation 

     chromatography (gpc),18,19) etc. have poor sensitivity and can provide only limited in-
     formation on the copolymer heterogeneity. For example, use of a dual detector in gpc 

      provides an information only on point-by-point composition at each constant elution volume 
leve1.19) In order to deduce a detailed information from these experiments, one has to 

     have an adequate theory which correlates the measurable quantities with the copolymer 
     heterogeneity. Still another difficulty is expected in the interpretation of experimental 

     data. For example, equilibrium sedimentation in a density gradient20) provides an 
     excellent technique of detecting heterogeneity of copolymer sample. However, the 

     quantitative interpretation of the result is not at all easy because of many complicating 
     factors.20) Here again it seems to be easier to deduce an equilibrium band shape from 

     the knowledge of the sample heterogeneity rather than to do the reverse. 

         The advent of graft and block copolymers in practical application such as high 
     impact plastics and thermoplastic elastomer21,22) have led to a new problem in the co-

     polymer heterogeneity analysis. Apparently the heterogeneity of graft and block co-
     polymers cannot be described by the theory of addition copolymerization. Experimental 

     techniques which have been successful for random copolymers might not be effective for 

     graft and block copolymers : Fractionation encounters a difficulty of coprecipitation or 
      coelution of more than one components.21,23) Thin-layer chromatographic (tic) separation 

11) also is hampered by this phenomenon and by conformational anomalies which alter the 

     adsorption characteristics of graft and block copolymers onto substrate (usually silica gel) 
surfaces.24,25) High resolution nmr is useless for analyzing extent of grafting or blocking, 

     unless they exist in very high frequencies. 

         In this series of studies we have attempted to examine copolymerization theories 

     (including existing ones) and methods of the heterogeneity analysis. The purpose is 
     twofold: (i) One is to find out the features of the compositional heterogeneity and molecular 

     weight distribution of a copolymer in relation to the copolymerization mechanism and 
kinetics; and (ii) the other is to establish methods of deducing the features of the copolymer 

     heterogeneity from a minimal amount of accessible information. In this first paper we 
     examine the compositional heterogeneity (CH) and molecular weight distribution (MWD) 

     functions of linear block copolymers (of arbitrary block number) and of graft copolymers, 
     assuming that the MWDs of individual subchains are mutually independent. For block 

     copolymer we assume that the polymerization proceeds through random coupling mecha-
      nism, i.e., the reactivity of active terminals of precursor homopolymers is independent 

     of their molecular weight. This model corresponds to those obtained by anionic living 

      polymerization method21,26,27)and also by coupling reaction between complementary 
      active terminals of precursor homopolymers.21,28) For graft copolymer we assume that 

      grafting is completely random, i.e., all segments of the backbone chains have equal prob-

                                 ( 333 )
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          ability to be grafted, and also that any side reactions such as backbone breakdown and 

          cross-linking do not take place. Admittedly these assumptions are too crude to be valid 

           for many practical examples. However, the analysis would have some value for certain 
            simple cases.21,29) 

                              AVERAGE MOLECULAR WEIGHTS 

           Number-average molecular weight: We consider an AB-binary copolymer system. 

           Determination of number-average molecular weight Mn based on colligative properties 

          measurements can be applied, in principle, without any ambiguity to any heterogeneous 

          system. Likewise average composition x (by weight fraction of component A) of the 

           copolymer can be determined without ambiguity. In terms of the CH and MWD function, 
           we have 

          Mn=ff1 MN(x, M)dxdM(1) 
                       00 

          ff1xW(x, M)dxdM(2)                        00 

          where N(x, M)dxdM and W(x, M)dxdM, respectively, represent the number- and weight-
           fraction of component having molecular weight M and composition x. These two dis-

           tributions are related by 

            W(x, M)dxdM=(M/Mn)N(x, M)dxdM(3) 

           Here we introduce experimentally measurable quantities MnA and Mne as 

            MnA=fofo1xMN(x, M)dxdM=%Mn(4a) 
MnB=(1—x)Mn(4b) 

           These quantities alone cannot tell anything about the sample heterogeneity except for 

           certain special cases as will be discussed later.30,31) 

           Weight-average molecular weight: For an AB-binary copolymer weight-average mo-

          lecular weight MW can be defined as 

          Ma,—foffMW(x, M)dxdM(5a) 
           which is written as 

Mw= MwA+(1—X)MwB+2MwAB(5b) 

            xMa,A=foffx2MW(x, M)dxdM(5c) 

               (1—X)MwB=fof'(1—x)2MW(x, M)dxdM(5d) 

              MwAB=foffx(1—x)W(x, M)dxdM(5e) 
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    The quantities  Mai( and MwK (K=A or B) are the number and weight-average molecular 

     weights, respectively, of the K-component. However, these do not represent the individual 

     subchains but the sum of all K-segements in each copolymer chain. The correlation 

    between these two sets of average molecular weights will be discussed later. The signifi-
    cance of the quantity MWAB is not clear, until a specific model is defined to describe the 

     system. For example, it is zero for a mixture of two homopolymers. 

     Light-scattering apparent molecular weight: For a copolymer especially having com- 

     positional heterogeneity the light-scattering method has fundamental difficulty.15'16> 
     This is also true for conventional sedimentation equilibrium method.32) Nevertheless, 

     these methods are only reliable ones for determining Mw of heterogeneous copolymers. 
         We assume linear dependence of specific refractive-index increment v of a copolymer 

     on composition x 

v=xvA-k(1—)1)v$(6) 

     Then one can write light-scattering apparent molecular weigh.t16) Mapp as determined 

    by the procedure of Zimm33) as follows 

MaPP=v 2[ MwAVA2+(1—X)MwBvB2+2vavBMwAB](7) 

     where vx represents the value of homopolymer K. The quantity Mapp can also be written 
     in the form15,16) 

MaPP=Mw+2bP+b2Q(8a) 

           P=ff'(x—x)MW(x, M)dxdM 
x(1-50(MwA—MwB)+(1-25c-)MwAs(8b) 

            Q=fof1(x—x)2MW(x, M)dxdM 
=x(1—X)[(1—X)MwA+XMwB-2MwAB](8c) 

b=(vA—vB)/v(8d) 

    All these equations (1)-(8) have been derived without introducing any assumptions except 
    that of Eq. (6), which has been experimentally justified.15,16) Therefore, these equations 

     should be generally valid for any copolymer systems. As opposed to MnK, the quantity 
MwK cannot be easily determined. However, Eq. (7) shows that light-scattering measure-

     ments in a solvent isorefractive to one component (i. e., vJ=0) allows one to determine 
MwK of the other component K. Usually measurements at least in three different solvents 

    are necessary to determine the parameter P and Q including Mw itself. These parameters 
    are often insensitive, but can represent to some extent the heterogeneity of the copolymer 
     sample.17) 

                 HETEROGENEITY OF LINEAR BLOCK COPOLYMERS 

    Random Coupling Statistics 

     The CH- and MWD-function: We consider a multiblock copolymer consisting of m 
    and n pieces of A and B blocks, respectively. (Usually m=n or Jm—nJ=1.) Let 
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NK(M)dM represent the normalized number-based MWD of individual K blocks. We 
assume that all NK(M)'s of the type K are identical and coupling of the precursor chains 

proceeds completely in random fashion. In other words, all active ends have equal 
opportunity of coupling irrespective of their chain lengths. With these assumptions the 

normalized number-based frequency of a species having M=MA+MB=(Ml+M2+... 

+Mm)A-I-(Ml+M2+• • •-I-Mn)5 will be 

N(M1, M2, •••, Mm+n)dM1dM2•••dMm+n 
mn 
            =

iUNA(Mi)dMIiiiNB(Mi)dMi(9)           =1j=1 

and the weight-based frequency is W(...)dM1dM2...dMm+n=(M/Mn)N(...)dM1dM2... 
dMm+n• Using the relations MA=xM and MB=(1—x)M, we have, for example, the 

weight-based CH- and MWD-function 

        W(x, M)dxdM 
XM30/1--Ml 

(M2/Mn){ f NA(M1)dMl f NA(M2)dM2••• 
XM-M1• ..-Mm-2 

                           fNA(m-1)NA(xM—M1...—Mm4dMm-1 
                   (1-4M (1-x)M-Mi 

                f NB(M1)dM1 f Ns(M2)dM2••• 
(1-X)M-Mi.••-Mn-2 

                   fNB(Mn4NB[(1—x)M—M2... —Mn_1]dMn_1}dxdM (10) 
If the MWDs of the precursors are known, the integration of Eq. (10) can be carried out 
numerically by the aid of a computer. If the MWDs can be expressed by analytical 
functions such as the Schulz MWD-function,34) the most probable distribution,35) the 
Poisson distribution,35) etc., the calculation is much simpler. 
Average molecular weights: Certain average quantities can be calculated from Eq. (10) 
without any explicit knowledge of the NK(M) functions. For example, we have following 
equations for x, Mn, and Mw of a (m, n)-multiblock copolymer 

=mMnA/Mn(11a) 

Mn=mMnA+nMnB(11b) 

Mw=X[MwA+(n1 1)MnA] 

+(1—x)[MwB+(n-1)MnB]+2)1(1—x)Mn(11c) 

where MnK and MWK are those of the precursor K (K=A or B) 

MnK= f MNK(M)dM(12a) 

1VIwK=f'.MWK(M)dM(12b) 
Comparing Eqs (4), (5), (11), and (12), we see that 

MnK=(number of K-blocks)M,,K(13a) 
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 MwK=MwK  +  (number of K-blocks-1)1VInK(13b) 

MwAB=mMnAnMn5/Mn=x(1—X)Mn(13c) 

YK=Yx/(number of K-blocks)(13d) 

where Y's are the MWD indices, i.e., Mw/Mn=1+Y, etc. These equations are com-
bined with Eq (8) to give 

Mw=(1+Y)Mn=[1+x2YA+(1—it)2YB]Mn(14a) 

P=x(1—x)[xYA—(1—x)YB]Mn(14b) 

Q=c2(1_)-02(Yn+YB)Mn(14c) 

Then from Eqs. (8) and (14) or from Eqs. (7) and (13), we have 

Mapp= {1+(xvA/v)2YA+[(1—X)vB/v]2YB} Mn(15a) 

vA/v=l+b(1—x) and v$/1)=1—bx(15b, c) 

Thus if measurements are made in a solvent isorefractive to one component, say, vB 
0 or b=1/5t, we have Mapp/Mn=MwA/MnA, or if vA=O or b=-1/(1—x), we have Mapp/ 
Mn=MwB/MnB. Anyway the quantities Mw, P, and Q can be predicted from more 

easily accessible quantities Mn, x, and Yx's as far as the random coupling statistics is 
valid for the system. 

   The Equations (13) and (14) suggest an interesting feature of the block copolymeri-
zation through the random coupling mechanism. As pointed out by Freyss et al.,30) 
the MWD of an AB-diblock copolymer is always smaller than that of its most polydisperse 

precursor, and often can be even smaller than either of the two precursors. When the 
number of blocks becomes large, the MWD may become very narrow in comparison 
with that of the individual blocks. This is due to partial compensating effect of the 
random coupling mechanism. However, this does not imply that multiblock copolymers 
may become automatically homogeneous in composition. Coupling of a shorter A-chain 

with a longer B-chain and vice versa narrows the MWD but apparently not the CH-function. 
In addition to this, in practical cases of multiblock copolymerization the product often 

turns out to be a mixture of copolymers of different block number, which of course is a 
highly heterogeneous material. 

Mixed Block Copolymers 

Average molecular weights and the CH- and MWD function: Practical block copoly-
merization often leads to the formation of a mixed block copolymer. In such a case the 
mole fraction nj of a component j can be related with the copolymerization kinetics. 
First let us assume nj be known. We assume that the j-mer consists of jA-blocks of type 

A and jB of type B. Homopolymer contamination is simply defined as a component 
in which j (or j5) is zero. Again we assume that NK(M)dM is identical for all the K– 
blocks in all the j-mers. Then the average composition itj, the number- and weight– 

average molecular weight<Mj>n and <Mj> can be related with MnK and M. of the 

precursors by Eqs. (11)–(13). The quantities x, Mn and Mw of the whole mixture are 

x=Ewjxj=Mn lEnjxj<Mj>n(16a) 
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Mn=Enl<M3>n(16b) 

Mw=Ewj<Mi>w(16c) 

            where wj is the weight fraction of the j-mer in the mixture 

wj=ni<Mj>n/Mn(17) 

            The summation in Eq. (16) extends over all the j-mers including homopolymer contam-
           ination. Apparently for a mixed block copolymer the simple relations, Eqs. (11a) and 

            (13a), are invalid. This in turn is an indication of the sample being a mixture but not 
            a pure block copolymer. Anyway, combining these equations with Eqs. (11)-(13), we 
             have 

MwK/Mn'=1+YK= E nijK(JK-j- s)/(E njja)2(18) 

           Then Eq. (18) combined with Eq. (14) predicts the values of Mw, P, and Q of the mixed block 

            copolymer. In the above derivations it is clear that only the knowledge of x, YK, and 
nj is enough to estimate the extent of heterogeneity as represented by the parameters 
Mw/Mn, P/Mw, and Q/Mw. This makes it unnecessary to carry out light scattering 

            measurements for the purpose of the heterogeneity analysis. 
               The CH- and MWD-function of the j-mer Wj (x, M)dxdM is given by Eq. (10), 

           in which m is replaced by j and n by jB. Then we have for the distribution function 
           of the mixed block copolymer 

             W(x, M)dxdM=EwjWi(x, M)dxdM(20) 

           Again the knowledge of NK(M)dM and nj's is enough to predict the distribution function. 
Examples of mixed block copolymers: Probably the simplest example of mixed block 

            copolymers is an anionically prepared AB-diblock copolymer under the presence of im-

            purities. The product is a mixture of, say, homopolymer A and AB-diblock copolymer, 
            i.e., A*-›-A+AB*. Let k be the mole ratio of the deactivated to the whole A-precursors, 

k=[A]/[AI. Then we have n1=k(1A=1, 1B=0) and n2=1—k(2A=2B=1) and the 
           following simple relations 

X=MnA/[MnA+(1—k)Mn5](21a) 

                           Table I. Relative Amounts and Number Average Molecular Weights of 
                             Constituent Species in a Mixed Block Copolymer Prepared by a 
                               Dianionic Initiatort, 

                  In the precursorIn the product 

                 Relative<Ma>nRelative<Mi>n              Species 
molesSpeciesmoles 

        A* 2sMnA A2sk12.0 
                                          *AA* 1—s 2MnAAA(1—s)k2 2MnA 

                               AB2s(1—k) 1V1nA+17ins 

                                       AAB2(1—s)(1—k)k 2MnA+MnB 

                                       BAAB(1—s)(1—k)2 2(MnA+MO) 

t The parameter s is the mole ratio of the deactivated to the whole initiators, and k the mole 
                     ratio of the deactivated to the whole A-terminals. 
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 MwA/MnA=1+YA, and MWB/MnB=(1-{-YB)/(1—k)(21b, c) 

Mn=MnA-P(1—k)MnB(21d) 

Other quantities also can be calculated easily. 
   A BAB-triblock copolymer prepared by a dianionic initiator should give a somewhat 

more complex mixture, if impurities exist in the reaction system. The product is not 
simply a mixture of poly(A), poly(AB), and poly(BAB), because the reaction would pro-

ceed according to the following scheme: 

2I*{1—s)~*AA*(1—k)2 *BAAB* 
2(1—k) AAB* 

                               k2                           AA 

2(1—s)sA*1—kAB* 

k A 

                      precursor product 

It should be noted that even the precursor has the MWD different from that of the homo-
polymer contaminant in the product, because the ratio of AA to A is different in the pre-
cursor and the product. Incomplete removal of the homopolymer contaminant would 
complicate the situation. Anyway the values of hi and <MJ>0 will be those listed in 
Table I. 

   Commercially important block copolymers of polystyrene-polydiene-polystyrene 
type, e.g., Kraton from Shell Chemical Company,22) are prepared by coupling of AB— 
diblock copolymers. Apparently the product could be a mixture of poly(AB) and poly-
(BAAB), of which the relative amounts depend on the coupling efficiency. 

   A multiblock copolymer of polystyrene (PST) and polytetrahydrofuran (polyTHF) 
prepared by Yamashita et al.28) through ion coupling between PST-dianion and polyTHF— 
dication provides an excellent example of a mixed block copolymer, to which the present 
theory is applicable. The relative frequencies, the sizes etc. of the constituent species can 
be described by the theory of condensation polymerization developed by Flory.35) In 

            Table II. Relative Amounts and Number-Average Molecular Weights of 
               Constituent Species in a Mixed Block Copolymer Prepared by Coupling 

                of Dianionic and Dicationic Precursors*. 

  SeciesRelative MolesM   P at p=patp=1a>n 

       (1—P)2r1/2_     Odd-A j-merpJ1r1/1+1/ r-2p 0[(j+1)MnA+(J-1)MnB1/2 
(1—rP)2r 3/2_     Odd -B j-mer pf-Sri/2  1+1/

r-2p r5/2(1—r)Jr 1/2[(j-1)MnA+(j+1)MnBI/2 

  Even j-merJ_1rJ/2 2(1—p)(2MAB       JP(1 -F1/r2p)1—rP)r0(j/)(n~-Mn) 

     * The parameter r is the mole ratio of the A- to B-groups, r=NA/NB<1 , initially present in 
       the system. The parameter p is the probability of an A-group reacted, i. e.. the extent of 
       reaction of A. Then rp is the extent of reaction of B. 
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           this system three kinds of copolymer molecules can be found; molecules composed of 
            even-number of blocks (even j-mer), molecules composed of odd-number of blocks and 

           having A-blocks at both ends (odd-A j-mer), and molecules composed of odd-number 
          of blocks and having B-blocks at both ends (odd-B j-mer). The values of n~, and <Mi> 

          estimated by the Flory theory are listed in Table II. These values and NK(M)dM may 
          be combined with Eq. (10) to predict the CH- and MWD-function. 

          Behavior of the Model 

           Approximation of equal blocks: Although a complete CH- and MWD-function can be 
          deduced from Eq. (10), it is often not practical to carry out the numerical multiple inte-

          gration in Eq. (10), if the block-number is large. A good way to avoid this difficulty is 
           to employ an approximate expression for the true MWD function, which can be handled 

           analytically. Another possible alternative is to employ an approximation of equal blocks, 
           which assumes that all blocks of the same type in the same molecule are of the same length. 
          This approximation has been introduced by Tung and Wiley29) for the analysis of graft 

           copolymers. For a (m, n)-multiblock copolymer, we use the following equation instead 
         of Eq. (10) 

W*(x,M)dxdM=(M2/mnMf)NA(xM/m)NB[(1—x)M/n]dxdM(22) 

          To test this approximation, we employed the Schulz (number-based) MWD function34) 
           for the precursors 

N(M)dM=[yh/I'(h)] {Mh-lexp(—yM)} dM(23a) 

                  h h+1 =h+2—                                                      (23b)                 y= M
n MW Mz —... 

           Using Eq. (23), we carried out the multiple integration of Eq. (10) and the approximate 
           calculation in Eq. (22). The results are compared in Fig. 1 in the forms of the CH-function 
          W(x), the MWD-function W(M), and the average composition <x> at each level of M 

W(x)dx=[ f W(x, M)dM]dx(24a) 

W(M)dM=[ f01W(x, M)dx]dM(24b) 

            <x>=W`1(M) fo1xW(x, M)dx](24c) 
          Apparently the approximation, Eq. (22), is exact for a diblock copolymer. This represents 

           all multibl.ock copolymers in a class, wherein the overall composition x and the number-
          average molecular weight Mn of the block copolymers are the same, and also the MWD 

          indices of the precursors are the same. Usually the Eq. (22) gives the largest heterogeneity, 
           and the real ones with larger block number are less heterogeneous. This is the result of 

           neglecting the compensating effect in random-coupling mechanism. The approximation 
           is rather poor especially for those with large block number. 

           Models with Schulz MWD function: To examine the nature of the random-coupling 
           model in greater detail, we present here some examples of CH- and MWD-function, 
           employing Schulz MWD-function for the precursors. Use of such analytical functions 
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            Fig. 1. Test of the approximation of equal blocks for (m, n)-multiblock 
                copolymers with Schulz MWD functions for the precursors, which were 

                assumed to have the MWD indices YA=Ya=0.10, and overall com-
               position x=0.50: From the above, (a) the W(x) versus x relations; and 
              (b) the W(M) versus log(M/Mn) relations with the variation of com-

                position <x). Broken curves indicate the approximation which are 
                exact for (1, 1)-diblock copolymer. 

is convenient because of the following reasons: The Schulz MWD-function involves 
only two adjustable parameters, Mn and Mw/Mn (through y and h in Eq (23) ). The 

values of MnKs can be related with Mn and x of the block copolymer by Eq (11) (by 
Eq. (16) for a mixed block copolymer). Therefore, the features of block copolymer hetero-

geneity can be expressed only by the MWD indices VA and Ys of the precursors, when 
Mn and x have been given. 
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. Fig. 2. Typical behavior of model diblock copolymers, for which the parameters 
       were x=0.50 with varying YA=YB as indicated: From above, (a) the Mann/ 

Mn versus b relations, in which circles indicate solvents isorefractive to either 
      one of the blocks, i. e.. vA or vB=0; (b) the W(x) versus x relations; and (c) 

      the W(M) and <x> versus log (M/Mn) relations. 
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                         Fig. 6. Results of dual-detector gpc analysis of a mixture of PST and PST-
                              PMMA diblock copolymer: From above, gpc chromatograms, W(Me) 

                           and <x> versus log Me, of PST and PST-PMMA; and (b) those of the 
                               mixture. The chromatograms were corrected only for the detector res-
                              ponse but not for the elution volume versus molecular weight calibration 

                              of the block copolymer. 

              Below the Mapp versus b relation (Eq. 14), the W(x) function (Eq. 24a) and the W(M) 
          versus log M relation (Eq. 24b) are demonstrated for AB-diblock copolymers with the 

           Schulz-MWD-functions for their precursors. Three typical examples are given here in 

          Fig. 2 through 4. They are (i) a set of curves at x=0.50 with varying YA=YB; (ii) that 

           at x=0.50 and VA =0.10 with varying YB; and (iii) that at YA=YB=0.10 with varying R. 

               Some interesting features of the block copolymer heterogeneity emerge from the 
           results. First of all, the compositional heterogeneity is usually considerably large, while 

           the MWD is relatively narrow: For example, even a sample with the value YA (=o) 

           as small as 0.01 has the halfwidth of x=0.04 around its peak composition R=0.50, while 

           its MWD index Y=0.005. If the MWD-indices 'VA and YB of the precursors exceed one, 
           the product becomes practically a mixture of homopolymers (cf., Fig. 2). Although 

           this is a direct consequence of using the Schulz function, the situation should be more or 
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less similar in those of other types of the MWD functions. 
    The second feature is that, as opposed to statistical copolymer, the light-scattering 

P parameter is not generally zero. For block copolymer, it becomes zero, if and only if 
 RYA=(1—R)YB holds. Then as anticipated from Eq. (14b), the composition <x> at 

constant level of M decreases, stays constant, or increases with M according to whether 
RYA is smaller, equal to, or larger than (1—R)YB, respectively. The <x> versus M 
relation is similar (but not exactly the same) to the <x> versus elution volume Ve relation 
obtained by a dual detector gpc. The invariance of <x> with M (or Ve) does not at all 

guarantee compositional homogeneity of the sample. 
    Another example is the results of a mixture of an AB-diblock copolymer and its 

precursor homopolymer A. Figure 5 shows the results, in which the parameters were 
chosen to represent an actual system of polystyrene (PST)-poly(methyl methacrylate) 

(PMMA) AB-diblock copolymer and its precursor PST (component A).37) On the 
other hand, Figure 6 shows dual detector gpc data of the same system. The data are 

plotted in the form of W(Me) and <x> versus log Me, where Me is the gpc apparent 
molecular weight as determined by a conventional Ve versus M calibration with PST 

standards.18,19,37) These two sets of data are not quite identical with each other, since 

the gpc chromatograms were corrected only for the difference in the detector response but 
not for the Ve versus M calibration for PST-PMMA block copolymers.37,38) However, 
we see a qualitative agreement between the theory and the gpc experiments as shown in 
Figs. 5 and 6. 

                HETEROGENEITY OF GRAFT COPOLYMERS 

Random Grafting Statistics 

Definition of the system: Another interesting example of the CH- and MWD-analysis 
is that of a graft copolymer. We consider here a simplest case in which grafting is com-

pletely random and no side reactions such as backbone degradation and cross-linking 
take place during the reaction. Graft distribution and MWD analysis of such a system 
has been already carried out by Tung and Wiley.29) Here we attempt to extend their 
method to include the description of average molecular weights and CH-function. 

   We consider a product obtained by polymerization of monomer A in the presence of 
homopolymer B (backbone chains), in which occasional grafting of homopolymer A 

(graft chains) onto homopolymer B is induced. The following parameters are convenient 
to describe the system: 

       grafting efficiency (1—f)=WAG/WA(25a) 

    graft ratio g=WAG/WB(25b) 

where WA=WAF+WAG is the weight of all (free and grafted) A-chains, and WB is that 
of B-chains initially added to the polymerization mixture; the superscript G refers to 

grafted components and F to free or ungrafted components. The grafting probability 
p for a B-segment (or q for an unit mass of B-segment) to be grafted is the ratio of the 
total number of graft A-chains NAG divided by the total number of B-segments (or the mass 

of B-chains WB) in the system. Random grafting states that all B-segments have equal 
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probability to be grafted.These parameters g, f, and q (or p) may then be related as 

q=g/MnA=(WA/WB)(1-f)/MnA(26) 

where MnA is the number-average molecular weight of graft A-chains, which are assumed 
to have the same MWD with free A-chains separable from the system.39) 

   Before characterizing a grafting-reaction product, one often attempts to (or actually 
does) remove a part or all of ungrafted components in a preparatory scale. For such a 

purified system we define the average composition x by the weight fraction of A. If 
an unpurified product as a whole is given, we have 

x=g/(1—f-{-g)(27a) 

On the other hand, if a system without any free A-chains remaining is given, we have a 
simple relation 

X=g/(1+g)(27b) 

For a system from which only a part of free A-chains have been removed, the parameter 
f in Eq. (27a) loses its original meaning, but may be redefined as a new parameter represent-
ing the weight ratio of the residual free A-chains to the all A-chains in the system. 

   The number-average molecular weight Mn of such a system is, by definition, the 
total mass divided by the total number of molecules, which is the number of B-chains 

plus the number of residual free A-chains NAF. Then we have 

MII 1= tf/MnA+(1 _RN nB(28a) 

where MnB is the number-average molecular weight of B-chains initially added to the 
system. On the other hand, if the values of MnA are different for the graft and the free 
A-chains, as demonstrated by Taga and Inagaki40) for styrene-grafted-cellulose, the 
MnA in Eq. (28a) should be that of the free A-chains, while that of Eq. (26) must be that 
of the graft A-chains. When both are identical, combining Eqs. (26) and (27), we have 

Mn 1=x/MnA } (1—gmB)(1x)/MnB(28b) 

where gMnB is, by definition, the number-average graft frequency <m>„, i.e., the total 
number of the graft A-chains divided by the total number of the backbone B-chains. 

   The parameter f varies from (1—the grafting efficiency) for an unpurified product to 
zero for a system completely freed from ungrafted A-chains. For the latter, we have 

Mn=MnB/(1—%)=gMnB/X(28c) 

These equations provide an indirect method of determining g and hence the grafting 

probability q (or p) from easily accessible quantities t, Mn, MBA, and MnB, among which 
determination of MnA is the most problematic, though. The parameter g determined by 
Eq. (28) can be compared with the value of g directly determined by some analytical 
methods such as fractionation, chromatographic separation, etc. 

   It should be noted here that so far we have not used the assumption of the random 
grafting. In other words, the Eqs. (25)-(28) should be generally applicable to any systems 
regardless of the grafting mechanism. Only if some side reactions on backbones (deg-
radation or cross-linking) have been taking place, the quantity WI- nB in Eq. (28) is no 
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longer that of the original B-chains but that of the B-chains after the reaction. It should 
also be noted that none of the Eqs. (27) and (28) are valid for a system from which a part 
or all of ungrafted B-chains have been removed. This is because the MWD and the 
average molecular weights of the ungrafted B-chains should be different from those of 
the grafted B-chains, as a result that B-chains of different molecular weights should have 
different opportunities to be grafted. For example, if the random-grafting statistics 

prevails, the ungrafted B-chains should have lower average molecular weights than the 
grafted B-chains, since a B-chain should be grafted with a chance proportional to its 
molecular weight. This is to be contrasted to the random coupling in block copolymeri-
zation, in which all precursors of any lengths should have virtually the same chance of 
coupling. 
    For estimating  Mw and light-scattering apparent value Mapp, the Eqs. (5)-(8) are still 
valid. The problem was discussed by Vorlicek and Kratovi1.17) The problem here is 
how to correlate the quantities MnK, Ma,K, and MWAa in Eqs. (5)-(8) with more easily 

accessible quantities, e.g., MnK, Mw,K, etc. Because of the nature of the grafting process 
as discussed above, the analysis of Mw and Mapp requires some knowledges on the graft 
distribution. We will discuss this problem later. 
The graft distribution, the CH- and MWD-function: The random-grafting statistics 
has been beautifully formulated by Tung and Wiley,29) which will be briefly summarized 
below. Reminding that p is the probability of a B-segment to be grafted, we may write 
the probability Pmn of a backbone B-chain having n segments to be grafted m times 

(including m=0, i.e., a case in which the chain escaped from grafting): 

Pmn=Cmnpm(1—p)n-'n(29) 

where Cmn is the binomial coefficient. For n>>m, Eq. (29) can be approximated by the 
Poisson distribution 

Pmn = (np)m exp(—np) /m !(30a) 

Or recalling that np=qM with M being n time the mass of a B-segment, we have 

Pmn=(gM)mexp(—gM)/m !(30b) 

   Let W5(M) represent the normalized MWD of backbone B-chains. The portion of 
backbones with molecular weight M and grafted m times is 

Wam(M)=Pm'\kTB(M)(31a) 

Then the weight fraction of backbone B-chains having m-fold grafts is 

wam= f WB (M)dM(31b) 

While the relative number of such chains is 

Nam(M) =M-1Wam(M)(31c) 

Nm=Nam= f M-1Wam(M)dM(31d) 
From Eqs. (31a)—(31d), the number-average and the weight-average graft frequencies can 
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           be defined, respectively, as 

                                 all 

          <m>n=mOmNBrn/NB=gMUB(32a) 

                                 all 

<m>w= E mwB'n=gMWB(32b) m=o 

          Thus the analysis of graft-distribution is possible, if the knowledge of grafting probability, 

          Eq. (30), and the MWD of backbone B-chains are available. 
             Now from the above graft-distribution expression, Eq. (31), and the MWD of graft 

          A-chains, we can derive the CH- and MWD-function for the graft copolymer. First we 

          introduce the relative number of chains having m-fold grafts and M=MA+MB with 

MA=xM=Ml-I-M2+... +Mm as 

Nm(MB,Mi,M2, •••, Mm)dM8dM1dM2...dMm 

Nsm(MB)dMB II NA(Mi)dMi(33a) 
l-1 

          where NA(M) is the normarized number-based MWD of the graft A-chains. The relative 
          weight of chains specified by graft frequency m, composition x=MA/M and molecular 

         weight M is obtained from Eq. (33a) as 

XM 

Wm(x, M)dxdM = M2{NBm[(1—x)M]f NA(M1)dMl... 
M—M1...—Mm-p 

fNA(Mm_1)NA(xM—M1...—Mm_1)dMm_1}dxdM (33b) 
              Adding up all these components including residual free A-chains, we have the normal-

          ized (weight based) CH- and MWD-function as 

                 W(x, M)dxdM= {xfWAF(M)8(x=1)+[1—xf]WG(x, M)} dxdM (34a) 

                                               all 

WG(x, M)dxdM,--(WG)--1 E Wm(x, M)dxdM(34b) 
m=0 

              WG=WAG I WB= frf1Wm(X, M)dxdM(34c) 
m=000 

          Here WG(x, M)dxdM is the normalized CH- and MWD-function of the graft components 
          including the ungrafted backbones, i.e., the distribution function expected to be obtained 

          when the system is completely freed from residual free A-chains (f=0); WG is the total 
          weight of the graft components; WAF(M) is the MWD of free A-chains, which is assumed 

          to be equal to that of the graft A-chains; and 8(x) is the delta function. When a part or 
          all of ungrafted backbone B-chains have been completely extracted from the system, the 

          function WG(x, M) and WG must be modified accordingly: Namely the summation in 
         Eqs. (34b) and (c) should start at m=1 and WB0(M) term for the residual ungrafted 

          backbones should be added. It should be noted that even in such a case the WB(M) term 
          in Wm(x, M) must be the one for the original B-homopolymers and not the one for the 

          B-chains after the extraction, since WB(M) and WB0(M) differ from each other (cf., Eqs. 

(30)-(33) ). 
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 Average molecular weights: Now we are ready to derive expressions for various average 
 molecular weights. The number-average  Mn has been already given by Eq. (28), which 

 should be valid for any graft copolymer products. For Mw and Mapp, we have to calcu-
 late MwK (K=A or B) and MwAB as defined by Eq. (5). First for MwB, noting that (1— 

 x)M=MB and 

WB-1 f01(1—x)W(x, M)dxdM=WB(MB)dMB 

 we have from Eqs (5d), (31), (33), and (34) 

MwB=MwB(35a) 

 This implies that the value of MwB determined from Mapp data obtained in a solvent 

vA=0 should be equal to MwB of the B-chains initially added to the system, if and only 
 if neither the backbone degradation nor the cross-linking take place during the grafting 

  reaction. 
     Calculation of MwA is more complicated. We split the MwA term derived from Eqs. 

(5c), (33), and (34) into the components, one representing free A-chains and each of those 
 representing m-fold grafted chains. Recalling Eq. (33a), we have 

MwA=fMwA 

           all1(xM)2Nm(x, M)dxdM        +miWAm/WA)f0f0                        forf01(xM)Nm(x, M)dxdM 
 where WAm is the relative weight of graft A-chains in the component having m-fold grafts. 

 The integrals in the above equation become MwA--(m-1)MnA (cf., Eq. (11) ). Then 
 from Eqs. (31)-(33) and the above equation we have 

MwA=MwA+(1—f)<m>wMnA=MwA+(1—f)gMw5(35b) 

 Finally for MwAB, we have from Eqs. (5e) and (31)-(34) 

MwAB=(1—X)<m>wMnA=(1—R)gMwa(35c) 

 Now combining Eq. (35) with Eqs. (5) and (8), we have for Mapp 

Mw=XMwA+(1—R)MwB+[2—x(1+f)]gMwB(36a) 

P=R(1—R)(MwA—MyB)+(1—"X)[1—R(1+f)]gMwB(36b) 

Q=R(1—R)[(1—R)M „B—(1—R)(1-+-f)gMwB](36c) 

 It should be noted that if the average molecular weights of the graft and free A-chains 

 differ from each other, the MwA term in Eqs. (35) and (36) should be the weight average of 

 the two different values of MwA. If all the free A-chains are extracted from the system, 
 i.e., f=0 and g=R/(1—R), the molecular weight values should be those of the graft A-

 chains, and then Eqs. (28) and (36) become very simple. On the other hand, if a part or 

 all of the ungrafted B-chains are extracted from the system, the MwB term is not equal 
 to that of the original B-chains but should be a complicated average calculated by using 
 the adequately modified MWD function as mentioned above. 

(351)



                                  T.  KOTAKA, N. DONKAI, and T. I. MIN 

         Using Eq. (33), we also can write down the average composition xm and the number-
     average molecular weight <Mm>n (and other averages also) of the chains having m-fold 

     grafts as follows 

Xm=mMnA/<Mm>n(37a) 

<Mrn>n=<MBin>,-EmMnA(37b) 

     Here <Mam>n is the number-average molecular weight of backbones that are grafted 
     m times. Likewise using Eq. (31), we can define the number-average <Mam>n and other 

     averages of the backbones having m-fold grafts as 

            <Mam>n= fWam(M)dMIfM-1Wan'(M)dM(37b) 
     oo 

<Mam%w=f~MWam(M)dM/ f Wam(M)dM(37c) 

<Mam>n=<MBm '>w=<Mam-2>z=...(37d) 

     Apparently in each average the values with different m differ from one another and also 

     from Mna, unless the original B-chains are monodisperse in molecular weight and no 

      side-reaction of the backbones occur. 

     Behavior of Random Grafting Model 

Approximation of equal grafts: Because of the time-consuming nature of the multiple 
     integration in Eq. (33), Tung and Wiley29) adopted the approximation of equal grafts, 

     which states that all graft A-chains in a molecule have the same length. Use of this 
     approximation replaces Eq. (33) by 

             W*(x, M)dxdM=(M2/m)Nsm[(1—x)M]NA(xM/m)dxdM(38) 

     Tung and Wiley29) tested this approximation for the MWD function of graft copolymer 
     chains with m=2, and found it to be fairly good approximation. We also have tested 

     this approximation for a system to which the Schulz MWD-function is applicable. The 
     situation is similar to the case of a multiblock copolymer: Namely a graft copolymer 

     component with m-fold grafts is similar to a (m, 1)-multiblock copolymer with NA(M) 
     and Nam(M) instead of N5(M) for the MWD-function. Therefore, the approximation 

     predicts a larger heterogeneity for the component having larger m. However, in this 
     case the approximation is somewhat better by the following two reasons. One is that, 

     as mentioned before, in a graft copolymer backbones having larger MB are more frequently 

     grafted, as opposed to a block copolymer in which all chains of any lengths have virtually 
     equal opportunity of coupling. This would suppress, to some extent, the discrepancy 

     between the results of the exact and approximate models. Secondly, the relative amount 
     of a graft component having larger m decreases very rapidly as m increases, unless the 

     grafting probability is very high (cf., Table III). Therefore, the contribution of the 
     poorly approximated component becomes negligibly small. This is not necessarily so 

     in a mixed multiblock copolymer. 
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          Table III. Typical Graft-Distributions of Randomly Grafted Polymers Having 

             Backbones with Varying Polydispersity under the Same  Grafting-Probability*. 

      Graft 
     NumberWeight Fraction of Backbones Grafted m Times w3m 

m 

M,030401.001.05 1.101.502.003.00 
     0 0.741 0.732 0.722 0.656 0.5917 0.4941 

     1 0.222 0.227 0.232 0.257 0.2731 0.2779 

      2 0.0333 0.0363 0.0405 0.0671 0 0945 0.1303 

      3 0.0033 0.0042 0.0051 0.0146 0.0291 0.0570 

      4 0.0002 0.0004 0.0005 0.0023 0.0084 0.0241 

   50.0005 0.0023 0.0099 

   60.0001 0.0006 0.0040 

  70.0002 0.0016 
  80.00004 0.0007 

 90.0003 

 100.0001 

     * The grafting probability was assumed to be gMnB=0.300. 

Graft-distribution in model system: Graft-distribution may be deduced from the 
knowledges of q (or p) and the MWD of B-homopolymer initially added to the system, 

provided the random-grafting statistics prevails. We will demonstrate a few examples, 
again using the Schulz MWD-function for WB(M). Table III summarizes typical graft-
distributions of backbones having different MWD indices onto which the grafting takes 

place with the same probability q. Apparently the narrower becomes the MWD of back-
bones, the more rapidly decreases the contribution of components with large m. Table IV 
summarizes the results of random-grafting on backbones of a given MWD index with 
different probabilities. The most densely populated species is that having m=<m)n. 
In heavily grafted systems (e.g., those with <m> >1), the population of highly grafted 
species is considerably large and its decrease with increasing m is very slow, especially for 
systems having highly polydisperse backbones. 

   For the same model we can calculate various average molecular weights of backbones 
having m=1, 2, 3,... grafts by using Eqs. (23), (31), and (37): 

            <m>n _  MnB MwB MzB         1+ 
hB <MB°)n <1VIBl>n <MB2>n -...(39) 

Interestingly the ratios of <MBo>n of ungrafted backbones to those with one, two, three 

etc. grafts are equal, respectively, to the ratios of MnB to MWB, MzB, etc. of the original 

backbone chains. The ratio <Msm>w/<MBm>n for any value of m is equal to MWB/MOB. 
These relations would be generally valid for other systems having different types of MWD-
function. In fact Ikada et al.23),29) found that <MB1)n/<MB°>0=2 for many systems 

which are presumably approximated by the most probable distribution, i.e., MwB/MnB=2. 
Their results are a special case of Eq. (39). 
Heterogeneity of model graft copolymer: To examine the nature of the random-grafting 
model, we present here an example of CH- and MWD-function of a model system, again 
employing the Schulz MWD-function for the A- and B-chains. Figure 7 shows the results, 

wherein the parameters chosen were x=0.600 and g=0.200; 10-3MnA=66.7 and YA= 
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          Table IV. Typical Graft-Distributions of Randomly Grafted  PoIymers under 

              Varying Grafting-Probability*. 

      Graft 
     NumberWeight Fraction of Backbones Grafted m Times we' 

m  gMnB 0.100 0.200 0.300 0.600 1.200 3.000 

     0 0.761 0.604 0.494 0.306 0.1595 0.0540 
     1 0.190 0.259 0.278 0.251 0.1689 0.0694 
     2 0.040 0.092 0.130 0.171 0.1490 0.0744 
     3 0.008 0.031 0.057 0.109 0.1227 0.0744 
     4 0.001 0.010 0.024 0.067 0.975 0.0717 
     5 0.0003 0.003 0.010 0.040 0.0757 0.0676 
    60.001 0.004 0.024 0.0579 0.0628 
    70.0003 0.002 0.014 0.0438 0.0577 
    80.000? 0.008 0.0328 0.0525 
  90.005 0.0244 0.0475 
  100.003 0.0181 0.0428 

  150.0002 0.0038 0.0240 
 200.0008 0.0127 
 250.0002 0.0066 
  300.00003 0.0033 
 350.0017 

 400.0008 
 450.0004 
 500.0002 

     * The backbone polydispersity was assumed to be M,B0MnB=3.00. 

1.00; and 10-3MnB=100 and 1-(g= 2.00. These values lead to f=0.8667 and <m>n= 

0.300. The model approximately represents an unpurified styrene-grafted-polybutadiene 

obtained by benzoyl peroxide initiated polymerization of styrene under the presence of 
a polybutadiene prepolymer.41) Certain interesting features emerge from the results. 

First of all, the system seems to be a mixture of two homopolymers and relatively low 

A-containing copolymer. This is due to the relatively low grafting-efficiency and the 

low MnA value of this particular system. Note that, for example, R1=0.2623. Secondly, 

in the CH-function the component with only one graft shows a peculiar composition 

dependence. This is due to the high heterogeneity of the A-chains and the relatively low 

value of i i• Namely since the polydisperse A-chains have large number of low molecular 
weight species, the backbones are more easily grafted with these smaller A-chains. The 

situation is similar to a diblock copolymer composed of highly polydisperse precursors 

(cf., Figures 2 and 3). 
   On the other hand, Figure 8 shows a gpc chromatogram, W(Me) versus Me data, 

of the same graft product obtained by a dual detector gpc.37,41) Here Me is determined 
from the elution volume Ve versus M calibration with PST standards and is not corrected 

for the calibration of the graft copolymer. Nevertheless, the qualitative behavior of these 

two results appear to be fair agreement. Tung and Wiley29) have made a more direct 

comparison of theoretical and experimental chromatograms of a styrene-grafted-poly-

butadiene system, after theoretically correcting the Ve versus M relation and the refractoxn- 
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Fig. 7. Typical behavior of a random-grafting model, for which the parameters chosen were 

i=0.60 and g=0.20; 10-3 MnA=66.7 and YA=1.00;and 10-3MnB=100 and VB=2.00. 

                                                        / 

   These values lead to 10-3Mn=84.7, f=0.8667 and\m>n=0.300. The model approxi-
   mately represents a styrene-grafted-poly-butadiene system shown in Fig. 8. From above, 

   (a) the W(M) versus log(M/Mn) for the graft A-chains and the backbone B-chains; (b) the    W(
x) versus x relation of the graft system; and (c) the W(M) and <x> versus log(M/Mn) 

   relations. Broken curves indicate the contribution of each component as specified. 
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            Fig. 8. Dual detector gpc chromatograms, W(Me) and <x> versus log Me' 
                  of an unpurified styrene-grafted-polybutadiene system: Broken curves 

                indicate those of extracted free PST and polybutadiene prepolymer. 
                  They were corrected only for the detector response. 

eter responses of the graft copolymer. They found a good agreement and concluded 
that the random-grafting statistics applies quite well to the system they have studied. 

    Here we have extended the same theory to include the description of various average 
molecular weights and also the CH-function, which would add several important criteria 
on checking the heterogeneity of graft copolymers. 

                           CONCLUSION 

    A theory has been developed to describe various average molecular weights and the 

CH- and MWD-functions of block and graft copolymers which can be obtained through 
certain simple reaction mechanisms. For block copolymers, we assume random-coupling 
mechanism through active terminal groups of the two precursor homopolymers. The 
knowledges of (i) the type of the polymer obtained (e.g., block number, AB- or BAB-type, 

etc.), (ii) the overall chemical composition, and (iii) the MWD indices VA and YB of the 

precursors suffice to predict the light-scattering apparent versus the number-average value, 
Mapp/Mn. If the material is a mixed block copolymer, the knowledge of (iv) the relative 
amount of each species is required, which may be deduced from the copolymerization 
kinetics. A complete CH- and MWD-function of such a system can be predicted from 

the knowledges of (v) the MWD-functions of the precursors in addition to those of (i), 

(ii), and (iv). 
    For graft copolymers, we assumed random-grafting mechanism without accompanying 

any side-reactions such as backbone degradation and cross-linking. Determination of 
the true graft ratio (or the grafting efficiency) and the number-average molecular weight 

of the graft side-chains is indispensable for estimating the grafting probability, which is 
a key parameter in describing the graft-distribution. On the other hand, determination 
of the overall composition, the number-average molecular weights of the whole system 
and of the A- and B-chains provides another possible route of estimating the grafting 
efficiency. 
    Various average molecular weights including light-scattering apparent value can 
be related with more easily accessible quantities, as in the case of block copolymers. A 
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complete CH- and MWD-function of a graft copolymer can be predicted from the knowl-

edges of (i) the overall composition, (ii) the true graft ratio, and (iii) the MWD-functions 

of the backbone prepolymer and the graft side-chains. Even when the MWDs of the 

grafted and free side-chains are different, the analysis is still possible, provided these two 
MWDs are known. 
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