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    The most simple model of atoms is a spherical atom in which the charge due to electrons is uni-
formly distributed. In the second model, the potential in an atom is expressed, instead of a uniform 
distribution, as a function of distance from the central nucleus concerned. In this case, by introduc-
ing a non-dimensional statistical potential, quantitative estimates of atomic behavior can be approx-
imately made. This is called the Thomas-Fermi (TF) method. This method is much simpler than 
the self-consistent field method, but in some cases, at least for the ground state of atoms, the TF method 
is useful without critical loss of accuracy. The principle of the TF method is reviewed as well as 
applications of the method for atoms compressed under a high pressure. 

                         I. INTRODUCTION 

    The equation of state of material is, in general, expressed in terms of pressure 
P, volume v and temperature T, and thus is treated from the macroscopic point of 
view. However, starting from the total energy (kinetic energy-potential energy) 
of electrons contained in the atom in question, it is possible to obtain the equation 
of atomic state and to applicate to the macroscopic state of the many-atom system. 

    There are several ways to obtain the energy of atomic electrons. The self-

consistent field theory of Hartreel' and Hartree-Fock" provides the most reliable 
solutions for the atomic behavior. But, because of complexity in calculations, this 
method is not always proper for investigations of the overall atomic behavior. 

   By introducing a statistical potential, investigations of atomic state, at least for 
the ground state configuration, can be made much easier than in the self-consistent 

field method. This is the TF method,'" where the potential is given as a function 
of distance r from the central nucleus. Since the equation of state in the TF method 
is subject only to atomic number and its radius, it should give informations on the 
energy of electrons in the atom of which boundary is altered by any external con-
dition. This fact indicates that the TF method can be used to find atomic behavior 
compressed under a high pressure. 

   In the present article, the equation of state of atoms by means of the TF method 
is presented. For simplicity, temperature T is considered to be constant. Com-

parisons of the theoretical result obtained by the TF method to some experimental 
data on the compressibility of atoms are also made to check the utility of this method. 

* riNlY'E : Laboratory of Nuclear Radiation, Institute for Chemical Research, Kyoto University, 
  Kyoto. 
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                              II. THOMAS-FERMI METHOD 

            In the TF method, the atomic model is assumed to be as follows: 

        (1) Atoms are spherical. 
        (2) The potential in atoms is spherically symmetry and is almost constant in the 

        range much larger compared to the electron wave length. 

        (3) The exchange interaction is neglected. 

        (4) The whole electron system is in the lowest energy state. 
           We also introduce the following two boundary conditions: 

        (a) The electric potential near the nucleus is approximated by Ze/r, where Ze is the 
        nuclear charge and r is the distance from the nucleus. 

        (b) The total charge of electrons in the atom is —Ze, i.e., the atom is electrically 
         neutral. 

           Suppose that the total potential energy of electrons is —eV (r), including mutual 
        interactions with the nucleus and other electrons contained in the atom. If the 

        total energy of electrons in this field is represented by —eE, we have 

      P2 —eV(r) _ —eE ,(1 )                 2
m 

        where p is the electron momentum, m is the electron mass. 
            Taking into consideration the assumption (2), we introduce the Fermi-Dirac 

        statistics. When the absolute temperature T is zero, the number of states which 
       fall into the momentum range between p and p+dp is (87c/h3)p2dp per unit volume, 

        where spin is taken into account and h is the Planck constant. If the maximum 
        momentum of electrons corresponding to the maximum energy is assigned as pmax, 

        the integration in the momentum space from zero to pmax gives the state density in 
        the ordinary Cartesian coordinates, which is 

          f}pmax 87r p2dp=87tp3ax3(2 ) 
        Joh33h 

       where pmax=[-2me(Eo—V)]1!2. The charge density of electrons is given by Eq. (2) 
        multiplied by —e, 

p=—8 re[-2me(E0—V)]3V2 .(3 ) 

        Using the Poisson equation 

V2V (r) = —47rp ,(4 ) 

        the resulting equation is 

               

l  d  (r2  dV)=327c2e [2me(V—Eo)]312•(5 ) 
              r2 dr`drJ3h3 

        Let introduce new variables here as given in the following relations 
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           r = /.2x , 

 (   97t2 1/3  /a=ao
128Z/ r(6) 

          Yq5 Ze  V—Eo = 
x Y = , 

where ao is the Bohr radius. From Eq. (6), we get 

(V—E0)r=Zech..(7) 
The above equation indicates that the quantity Zecb is of the nature of an effective 
nuclear charge, which is smaller than Ze due to the shielding effect of electrons sur-
rounding the nucleus. From Eq. (7), it is evident that Zec/r is the effective potential 
in the atom. In other words, q, is a non-dimensional parameter which gives the 
effective potential in the atom. 

   According to the boundary condition (a), the potential near the nucleus is 
Ze/r, so that as r goes to zero, Ze0 approaches Ze. This leads to the new boundary 
condition 

c5(0) = 1 .(8 ) 

   By the boundary condition (b), the atom in question is electrically neutral. 
Thus, the electric field at the boundary of the spherical cell must be zero. From 

Eq. (7) 

Zeg Ze d$' = 0(9 ) 
         \ dr Jr=r0 r02 ro dr Jr=r0 

In terms of the new variables, Eq. (9) becomes 

   Cd~/__ ~(X)(10)         dxx=x X 

where r0=,uX. Eq. (10) is the new boundray condition corresponding to the second 
boundary condition (b). 

   At this stage, let get back to the Poisson equation, which can be rewritten in 
terms of the new variables. This gives 

d2q5u 

             __ 2  3272e(2mer)3/2q3~2       '.(11)       dx2 y 3h3x1/2 

The above equation becomes a simple second order derivative equation by eliminat-
ing Y and g, which is 

d2q5 _ 03/2(12) ------ •
dx2x1/2 

This is called the TF equation. The boundary conditions imposed on Eq. (12) are 
of course Eqs. (8) and (10). The solution of Eq. (12) can be obtained by numerical 
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calculations. The typical solution obtained by Slater and Krutter5j is shown in Fig. 
1. If the initial slope of the TF parameter, 0/(0), is equal to —1.58808, 0 ap-

proaches asymptotically to the x axis as x goes to infinitive. This means that, for 
sb'(0)=-1.58808, the atomic boundary is at x=oo (free atom). When 0'(0)> 
—1.58808, q5 has a minimum value at a certain value of x. In this case, as evident 
from Eq. (10), the tangent to the curve 0 at x=X should pass through the origin of 
the coordinate. 

      II I I 

1.0 

0.5— L1Ximmunimmi( (Al 
0 

0 2 46 8 10 
X 
               Fig. 1. The TF function (x) versus the distance from the center 

                    of the atom, x. (A) 95'(0)=-1.58808 (free atoms), (B) 
g'(0) > —1.58808 (atoms with the finite boundary X). 

            III. KINETIC ENERGY OF ELECTRONS IN AN ATOM 

III.1. When the Atomic Boundary is at x= co 

    The maximum kinetic energy of electrons in a free atom is Ymax2/2m, which is 
equal to the Fermi energy EF, i.e., 

                   2 

    Pmax = e(V—E5) = EF .(13) 
p2 

By substituting the relation (V—E0)=Zegux, EF becomes 

E(14) 
                       ,ux 

    The total kinetic energy, Ek;,l, of the whole system is 

Ek,n = J N<E>4irr2dr ,(15) 

0 where <E> is the average kinetic energy of electrons and N is the number of elec-
trons. As suggested in Sec. II, the potential in the atom is almost constant in much 
larger range compared to the electron wave length. Therefore, if the Fermi-Dirac 
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statistics for T=0 are approximately satisfied, the average energy of electrons be-

comes 

 <E>=83N(2m)2/245/2 ,(16) 
where v is the volume of the atom. Then, from Eqs. (15) and (16),  Ekin is 

      Ekin=8h3(2m)3/2IoEF5/247rr2dr.(17) 
Substituting Eq. (14) inEq. (17), we get 

32  x31/3 7C4/3me4Z7/3w0512      E
kin—5 x 22/3h2i sxv2dx(18) 

where r is converted to x. Eq. (18) can be calculated by means of integration by 

parts and alsoby using Eq. (12). The result is 

   Ekin--~Zer0'(0).(19) 

III.2. When the Atom has the Finite Radius X 

   In this case, the upper limit of integration in Eq. (18) should be replaced by 
X in the calculation of Ekin . Carrying out the integration over x, the final result of 
Ekin is 

      Ekin=—7Zer[~'(0) — 5Xi/205/2(X)] .(20) 

          IV. POTENTIAL ENERGY OF ELECTRONS IN AN ATOM 

IV.1. When the Atomic Boundary is at x=00 

The potential energy per atom is, in general, given by the following equation 

Epot= 2pVdv+ 2ZeVo ,(21) 
where V is the whole potential and Vo is the potential at the nucleus due to electrons. 
The quantity p is the charge density due to electrons, which is given by —ne (n is 
the electron density). Since the whole potential V is Ze0Ir and the potential due 
to p near the nucleus is 

r-ne/r, Eq. (21) becomes         El,oc=—1 J Zech nedv—1Zef ne  dv 
        2 r 2 J r 

—  1  ~Ze2  (1+0) n47cr2dr.(22) 
2r 

The electron density n is related to EF by the well known equation, 
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 EF  =  (h2/2m) (3n/87r)2/3, and hence from Eq. (14) we get 

n 83  (2rnZ)3f2(e)3/z(23) 
   Substituting Eq. (23) in Eq. (22), Epot is 

E_8 x61/37r4Z7/3me4°O 03/2+ 05/2dx .   pot—(24) 
                3h2 Jo x1/2 

   By integrating the above equation over x, the final result of Epot is 

Epot = 6 Zer0/(0) .(25) 

   IV.2. When the Atom has the Finite Radius X 

       As for the case of Sec. III.2, the upper limit of integration in Eq. (24) is replaced 
   by the finite value X. By similar calculations to those for the kinetic energy, Epot 

   of the atom with the finite boundary is obtained, 

Epot =6Zer [0/(0)—1  X1/205/2 (X)—7 0(X)1.(26) 
7312 X 

                     V. EQUATIONS OF STATE OF ATOMS 

       As described in the preceding section, Ek,n and Epot of electrons in the atom 
    are determined as a function of TF function 0(x).  For arbitrary X, Ekin, and Epot 

   are related through the virial theorem,6) which takes the form 

                   E'kin-{- 

       

1---Epot =2Pv ,(27) 
   where P denotes the pressure and v is the volume. Substituting Eqs. (20) and (26) 

   in Eq. (27), the equation of state can be obtained as 

Pr=Zer[2Xi/205/2(X)—1  0(X)](28) 
156 X 

       The problem we have to consider at this stage is how to determine the TF func-
    tion 0(x).  There are several methods 7-11) to get 0 (x) . As an example, the method 

    by March") which can be applied for atoms under an ultra-high pressure is presented 
    here. 

       Supposing the atomic radius X is small enough, the solution 0(x) is expanded 
   in a Taylor series around the boundary point X. Then we have 

0(x) = 0(X)+ E tn(X—x)n n=1(29) 

to =(-1)ngi<n)(X) 
n! 
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where  95`n'  (x) is the nth derivative of (x) . For convenience, we introduce a 

parameter a defined by 

    c6' (X) =qi(X)= a2 .(30) 

Then the coefficients of the Taylor series are expressed in terms of X and a. With 
the coefficients, the Taylor series of q5 (x) is 

95(x) = Q5 (X) — a2 (X — x) + —2X (X — x)2 

                                      —  a3 (X—x)3+ a4X(X—x)4—  a4 (X x)5 •••(31) 
6 1680 

Determinations of a as a function of X can be achieved by imposing the boundary 

condition 0(0) =1 

0(0) = 1 

      — 3a3X3+20a4X5+••• .(32) 
Thus,A 

          31131     a — X(1201+...) .(33) 
From Eqs. (30) and (33), q5(X) is approximately given by 

32/3 (1/3 (X)10X+...) .(34) 
Substituting this equation in Eq. (28) and using the relation v= (4ir/3) (aX)3, the 
equation of state in terms of P and v is obtained, 

             PG-1°i3 -=                  7 (  3  )213(Z)-1/3h2  
                 60\8rm 

             X[1—20~cme2 (4Zv)1/3+...1. (35) 
      L7 hJ 

   In order to check the utility of the TF method for the atom under a high pres-
sure, comparisons of the calculated results by this method with some experimental 
data are made. Altshuler et al.13' proposed a method for determination of pressures 
and densities of shock compressions. The dynamic compressibility of "Cu, 30Zn, 
47Ag 48Cd, 50Sn, 79Au, "Pb, and 83Bi were measured in the pressure range of 0.4^-
4 Mbar. The largest change in density observed was about 2.28 for bismuth. In 
Fig. 2, the experimental values by Altshuler et al. for 30Zn, 50Sn, "Pb, and 83Bi are 
shown with the theoretical values calculated by Latter et al.8'9' by means of the TF 
method. 
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                Fig. 2. Volume changes of various elements by shock compressions (Ref. 
                     13) and the TF function calculated by Latter et al. (Refs. 8, 9). 

       By comparing both values, theoretical and experimental, and taking into con-

   sideration large errors which are unavoidable in a high-pressure experiment, the 

   approximation by the TF method can be considered as a good approximation for 

   elements of Z> 50 and for pressures over several Mbar. However, for light elements 

   compressed in the pressure range of less than Mbar, the TF method is not useful 
    anymore. 

       As described in the present article, the atomic radius X is the only important 

   physical parameter in the TF method. It should be noted that in the TF method 
   the same potential is used for all configurations of the atom. It is evident, there-

   fore, that the error introduced in this approximation grows with increasing excitation 

   of the atom. For excited atomic states, the TF method should be modified by means 

   of the perturbation corrections to the energies and wave functions. This notwithstand-

   ing, the TF method may give some important informations on atomic states. Ap-

   plications for the atom compressed by a high pressure is a good example. 
        In the TF method, the exchange interactions are not taken into account. Dirac') 

   introduced the exchange factor in the TF equation. This is called the Thomas-

   Fermi-Dirac equation, which is much better approximation for atoms under a high 

   pressure. Reviews on the TFD method will appear elsewhere. 
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