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     The osmotic equilibrium between polymer-mixed solvent system and dialyzate has been analysed 
a 

 by using the characteristic function F=A—Enepe and the volume molality as composition variable. 

                                             , 

 Here A is the Helmholtz free energy, ne and pe are the amount and the chemical potential of diffus-
 ible components i (=0, 1,..., d). It is proved that at the theta composition of the dialyzate, the second 
 virial coefficient of the polymer solution vanishes, and simultaneously, the phase separation sets in if 

 the polymer molecular weight is infinitely large. Thus, if the dialysis method is properly applied, the 
 nature of the theta state in mixed solvent systems becomes exactly identical with that in single solvent 

 systems. 

                           INTRODUCTION 

   The theta temperature of a polymer solution is usually defined as the temperature 

at which the second virial coefficient vanishes. It can be also obtained by extrapolat-

ing the critical solution temperature of the solution to the limit of infinite polymer 

molecular weight. The two methods should lead to the same result according to the 

Flory theory of polymer solutions.') Furthermore, the theory predicts that the 

excluded volume effect within each polymer molecule vanishes at the same temperature 

and that the intrinsic viscosity becomes proportional to the square root of the polymer 

molecular weight. These predictions have been verified experimentally for a number 

of polymer-solvent systems, including polyelectrolytes in aqueous salt solutions. 

   Recently, Benoit has pointed out that in the case of neutral polymers in mixed 

solvents, the intrinsic viscosity at the theta composition of solvent often deviates from 

the square-root dependence of molecular weight.2) Thus, we find it necessary to 

re-examine the thermodynamic significance of the theta state of mixed solvent systems. 

This paper describes a brief preliminary account of the study. 

                       COMPOSITION VARIABLES 

   In thermodynamic analysis of multicomponent systems, the use of appropriate 

composition variables is essential for developing clear calculations. Thus, we give 
first a review on the nature of various composition variables. 

    Consider a multicomponent system which consists of r+1 nonreacting components, 
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and label these components as  i=0, 1,..., r. We denote the amount of component i ' 
by n, and the total amount of substances by n: 

n=Eini(1) 
i=0 

If the system is closed against the environment, the total amount of substances n is 
constant, and hence it serves as a good measure of the size of the system. Then, the 
mole fractions defined by 

xE=n:/n i=1, 2,... r(2) 

will form an appropriate set of variables for specifying the composition of the solution. 
The weight fractions can also be used for the same purpose. However, if the system 
is open to the environment, n is not kept constant and the mole fractions can no longer 

be the best composition variables. 

   Open multicomponent systems may be divided into two types according to whether 

the pressure remains unspecified or not. In the former case, we can adopt the volume 

V for defining the size of the system, and conveniently use the volume molality c, for 

specifying the composition: 

ci=ni/V i_1, 2,. r(3) 

The volume molality of component 0 can also be defined as c0=-2/0/ V, but this is merely 
a dependent variable which satisfies the relationship, 

Eci Vi= 1(4). i=0 

Here V, represents the partial molar volume of component i. The mass concentrations 
C, are defined by 

Ci=n M;/V=c=Mi i=1, 2,.:. r(5)` 

where M, is the molar mass of component i, and they can be used instead of c1. 
   In order to treat open systems under constant pressure properly, it is better to use 

the amount of one selected component, say no, for defining the system size. Thus, in 
this case, the molality m, given by 

mi=ni/noMo i=1, 2,... r(6) 

may be a most natural choice of composition variables. no is here assumed to be con-
stant by definition, hence any change of n, affects m, directly. " This simplifies greatly 
the treatment of the constant pressure systems. 

                        OSMOTIC PRESSURE 

   The osmotic equilibrium in multicomponent solutions has been studied extensively 
by Scatchard3) and by Casassa and Eisenberg.4) They are able to clarify the thermo-
dynamic meaning of the dialysis method in the study of mixed solvent systems. They 
developed basic calculations by using the molality as composition variable, and then 
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    rewrite the results by converting the molality into the concentration scale on volume 
    basis. We here show a shortcut for these treatments. 

        Let there be on one side of a semipermeable membrane a polymer-mixed solvent 
    system consisting of  r+1 components altogether, of which d+ 1 components permeate 

the membrane and the remaining s (=r—d) components do not. Following Casassa 
    and Eisenberg, we call the former components the "diffusible" components and the 

    latters the "nondiffusible" components, and the system itself the "inner" solution. 
    On the other side of the membrane is placed an "outer" dialyzate phase containing only 

d+1 diffusible components. If we designate by primes quantities relating the outer 
    solution, the conditions for osmotic equilibrium may be written as 

'  

                                            (7) 
                              p, c1,...cd, cd+i, ...cd+s) i=0, 1,... d 

T'=T(8) 

p—p'=n(9) 

    In ordinary type of osmotic pressure measurements, the outer solution with fixed 
    compositions is maintained at constant temperature and pressure, hence at constant 

    chemical potentials /4.  Thus, by the condition (7), the inner solution is also main-
    tained at constant temperature and at constant chemical potentials of the diffusible 

    components. For the sake of brevity, we call this the constant pp condition. The 

    pressure change in the inner solution is directly related to the variation of osmotic 
pressure: 

dff = (dp)T ,,D(10) 

        As is well-known, the characteristic function of a system defined by a given set of 
    variables T, V, and ni (i=0, 1,..., d+s) is the Helmholtz energy A, for which we 

    have 

                                                            d+s 
dA=—SdT—pdV+- ,uidni(11) 

i=o 

    Here S is the entropy of the system. Now, let us define a new function F by 

d 
F=A— E nr/a; (12) 

i=o 

    The total differential of F may be given as 

dd+s 

dF=—SdT—pdV—Enid,ui+ E ,uidni(13) 1=0 i=d+1 
    This equation indicates that the function F serves as the characteristic function for the 

    system with a given set of variables T, V, po, • • •, pd, nd+1, • • •, nd+8, hence for the con-
    stant pp system. From Eq. (13), we obtain 

     _(14)                     (OF1                              S—
\ 0T /v,PD.s 

   n (114 )
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(  OF  /(15)                        P=aVT ,µD,ns 

               ni —a i=0,1,... d(16)                          \/
T,v,pn.ns 

                 —_( OFi=d+1,...d+s (17) a
ni T,V,pn,ns 

   The general form of the Gibbs-Duhem equation for multicomponent systems may 
be written as 

d+s 
SdT+Vdp— E nidfi=0(18) 

For the present inner solution with fixed T and pi), this equation reduces to a simple 
form 

                                            d+s 
                V(dp)T,,D—E ni(dpi)T,wn=0(19) 

                                           i=d+1 

Then, substitution of Eqs. (3) and (10) into Eq. (19) yields 

                                       d+s 

dll = Ec; (d~t;)T ~D(20) 
                                        i=d+1 

or 

(alr  l ES c'( a~~(21) aCj )ck i=d+1 aCjT,µD,ck 

In terms of the mass concentrations C„ this equation can be expressed as 

           (arll=ES Ci a4t11(22) 
aC; iCk i=d+1 Mi aCj T.~D.Ck 

   Now, remembering Eq. (17) for pt, we obtain 

        (a/t'—a62F a~j)(23)                       n;T ,V,I~D,nsn;ani \ an; T,V,, D,ns 

which may be rewritten as 

         a ui  1
/auj(24)                     (C1/T,/~D.ek(ari)T,k,D,ck 

or 

         1 (
/api1(aPj)(25)                        MiaC;T,J.D,Ck— M;aCi/T,AD,Ck 

This symmetry suggests that in dilute solutions under constant T and pp, the chemical 

potential p of nondiffusible solute component i can be expanded in the form 

ui(T, /-D' Cd+1, •••Ca+s)=It,°•(T, fD)+RT In Ci+RT In yi (26) 

with 
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 d+s 

In  yi  =  Mi  E Bi i(T, j; 
 j=d+1 

                               1 d+s d+s                      +-"E,E Bijk(T, AD)CJCk+...} (27)                                       2j=d+1 k=d+1 

         Here R is the gas constant and y is the activity coefficient in the C-concentration scale. 
        All the coefficients, Ba5, Bijk, and so on, are symmetric with respect to permutation of 

          suffixes. 

           Substituting Eqs. (26) and (27) into Eq. (22), we obtain 

           1  d+s(Sifd+s                RT(aC•)-E{----I. +BijCi+EBijkCiCk+...} (28)                     JCki=d+1ak=d+1 

         where 8,4 represents the Kronecker delta. Then, integration of Eq. (28) leads to 

                          d+s Ci 1 d+s d+s 
--- E+—EEB1JC=C, R Ti=d+1Mi2 i=d+1 j=d+1 

                              1 d++ d+s d+s 
                            3 i=a+lj=El k=1BijkCiC3Ck + ...(29) 

         The total concentration Cs and the number-average molar mass M.of the solutes may 
        be defined as 

Cs=Ed+s Ci (30) 
                                                          i=d+1 

and 

                   Mn y~
inMaF'i(Ci/Mi) Ei(i/Mi)(31) 

ei = Ci/Cs(32) 

         Using these notations, we can rewrite Eq. (29) in the form, 

                   RT=Mn+A2(T, 11D)C+A3(T, I1D)Cs+..• (33) 
                                       1 d+s d+s 412(T, /1D) _----iE1 jE1E1EjBij(T,,AD) (34) 

                       A3(T, AD)=,.3.~i~'jF'helefskBijk(T,/D) (35) 

         Equation (33) is the virial expansion for the osmotic pressure in the constant pp 
        system, and the coefficients A2 and A3 may be called the, second and the third virial 

        coefficients, respectively. The above equations (33) to (35) are formally identical with 
         the corresponding equations for solutions in single solvent. 

                      THETA COMPOSITION OF MIXED SOLVENT 

            As is seen from Eq. (34), the second virial coefficient in the present system depends 
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  on the temperature and the chemical potentials  ("D• Therefore, it is possible to adjust 
 A2 to zero by changing in. This can be done by adjusting the composition C{ (i 

=1,..., d) of the outer dialyzate phase to appropriate values. We call this state of the 

  dialyzate the "theta composition" of the mixed solvent. Thus, it is important to note 
  that the theta state in mixed solvent systems can never be attained by resolving a 

  given solute into a solvent with a fixed composition. The solvent composition should 
 be defined in the outer dialyzate phase. 

     Now, let us turn to discussion on the phase diagram in mixed solvent systems. 
  To do this, we consider a simplest example, i.e.,a ternary solution consisting of two 

 diffusible components (i=0, 1) and one nondiffusible component (i=2). Under fixed 
 values of T and pp, the condition for stable equilibrium is given by 

(62F)T,v, ,n2 > 0(36) 

  Then, standard arguments show that the critical solution point is determined by two 
  simultaneous equations, 

         .a2)0(37) 
aC2T,µo,µi — 

              02 4112 =0(38)                             ac
2z 

 Substitution of these equations into Eq. (22) yields 

          dCz=0(39) 

             ~  
          z

CZ=0(40) 

                                         z 

     Now, substituting Eq. (33) into these equations, and neglecting higher terms, we 
  obtain 

1 +AT 
1V1z /0z(+3A3(T, /tDc)C2,1C2c=0 (41) 

                  2A2(T, /iDC)+6A3(T, fDc)C2c°0(42) 

 where the suffix c denotes the critical solution point. Equations (41) and (42) give 
  the solution 

1  A
2(T, .aDe)C2c = —

2(43) 

                 A3(T, /IDc)C2c—3m2(44) 
 These equations indicate that at the critical solution point, A2( T, PDC) should be nega-

  tive, while A3(T, live) should be positive. Of course, the latter argument can not be 
  decisive because of the neglect of contributions from higher virial coefficients. 

     Finally, let us assume that 
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 A3(7', I De)00M2—a(45) 

Then, Fqs. (43) and (44) yield 

                                ac                CocMz-(1-a)/z(46) 

_ 

                  A2(T, ,uDc) 0cM2—(1+a)72(47) 

The exponent a is zero in the Flory-Huggins theory. Therefore, we may safely assume 
that —1 <a<1 for flexible chain polymers. Then, if the symbol 0 is used for the criti-
cal solution point in the limit of M2-->00, we obtain' 

C20=0 and A2(T, /1D9)=0(48) 

   The two definitions of the theta point, one from A2 and the other from the critical 
solution point, give the same result provided that the dialysis method is properly ap-

plied to the mixed solvent system under consideration. The significance of the dialysis 
method has been well recognized among researchers of polyelectrolyte solutions, but 
often overlooked by researchers of neutral polymer solutions. 

   Finally, we record the conditions for the critical solution point in multicomponent 
systems under constant T and pp: 

           Ca lid -I-1 1/=0 (49)                                                Cd+1/T,p4),•••µa,aa+2,•••µa+s 

62ud+1 = 0 (50)                           UC
'd+12  ~T,µo,•••ka;µa+z,•••µa+s 

The derivation of these equations may be found in literatures.5) 
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